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Abstract

In the last ten years, one of the most significant technological developments that will lead to the
new broadband wireless generation is the communication via Multiple-Input Multiple-Output
(MIMO) systems. MIMO systems are known to provide an increase of the maximum rate, relia-
bility and coverage of current wireless communications. Maximum-Likelihood (detection over
Gaussian MIMO channels is shown to get the lowest Bit Error Rate for a given scenario. How-
ever, it has a prohibitive complexity which grows exponentially with the number of transmit
antennas and the size of the constellation. Motivated by this, there is a continuous search for
computationally efficient optimal or suboptimal detectors.
In this work, we carry out an state of the art review of detection algorithms and propose the
combination of a suboptimal MIMO detector called K-Best Sphere Decoder with a channel
matrix condition number estimator to obtain a versatile combined detector with predictable
performance and suitable for hardware implementation. The effect of the channel matrix con-
dition number in data detection is exploited in order to achieve a decoding complexity lower
than the one of already proposed algorithms with similar performance. Some practical algo-
rithms for finding the 2-norm condition number of a given channel matrix and for performing
the threshold selection are also presented and their computational costs and accuracy are dis-
cussed.
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Resumen

Uno de los desarrollos tecnológicos más significativos de la última década que llevarán a la
nueva generación de banda ancha en movilidad es la comunicación mediante sistemas de
múltiples entradas y múltiples salidas (MIMO). Los sistemas MIMO proporcionan un notable
incremento en la capacidad, fiabilidad y cobertura de las comunicaciones inalámbricas ac-
tuales. Se puede demostrar que la detección óptima o de máxima verosimilitud (ML) en canales
MIMO Gaussianos proporciona la mı́nima tasa de error de bit (BER) para un escenario dado
pero tiene el inconveniente de que su complejidad crece exponencialmente con el número de
antenas y el tamaño de la constelación utilizada. Por este motivo, hay una contı́nua búsqueda
de detectores óptimos o subóptimos que sean más eficientes computacionalmente.
En este trabajo, se ha llevado a cabo una revisión del estado del arte de los principales algorit-
mos de detección para sistemas MIMO y se ha propuesto la combinación de un detector MIMO
subóptimo conocido como K-Best Sphere Decoder con un estimador del número de condición de
la matriz de canal, para conseguir un detector combinado basado en umbral con complejidad
predecible y adecuado para implementación en hardware. Se ha explotado el efecto del número
de condición en la detección de datos para disminuir la complejidad de los algoritmos de de-
tección existentes sin apenas alterar sus prestaciones. Por último también se presentan distintos
algoritmos prácticos para encontrar el dos número de condición ası́ como para realizar la se-
lección del umbral.

Author: Roger Varea, Sandra, email: sanrova@iteam.upv.es
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Chapter 1

Introduction

1.1 MIMO overview

In radio communications, Multiple-Input and Multiple-Output, or MIMO, refers to the
use of multiple antennas at both the transmitter and receiver sides to improve communi-
cation performance. It is one of several forms of smart antenna (SA), and the state of the
art of SA technology.

MIMO technology has attracted attention in wireless communications, since it offers
significant increases in data throughput and link range without additional bandwidth or
transmit power. It achieves this by higher spectral efficiency (more bits per second per
Hertz of bandwidth) and link reliability or diversity (reduced fading). Because of these
properties, MIMO is a current field of international wireless research [11].

MIMO can be sub-divided into three main categories, precoding, spatial multiplexing,
or SM, and diversity coding.

• Precoding is multi-layer beamforming in a narrow sense or all spatial processing at
the transmitter in a wide-sense. In (single-layer) beamforming, the same signal is
emitted from each of the transmit antennas with appropriate phase (and sometimes
gain) weighting such that the signal power is maximized at the receiver input. The
benefits of beamforming are to increase the signal gain from constructive combining
and to reduce the multipath fading effect. In the absence of scattering, beamform-
ing results in a well defined directional pattern, but in typical cellular conventional
beams are not a good analogy. When the receiver has multiple antennas, the trans-
mit beamforming cannot simultaneously maximize the signal level at all of the re-
ceive antenna and precoding is used. Note that precoding requires knowledge of
the channel state information (CSI) at the transmitter.

• Spatial multiplexing requires MIMO antenna configuration. In spatial multiplex-
ing, a high rate signal is split into multiple lower rate streams and each stream is
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CHAPTER 1. INTRODUCTION 2

transmitted from a different transmit antenna in the same frequency channel. If
these signals arrive at the receiver antenna array with sufficiently different spatial
signatures, the receiver can separate these streams, creating parallel channels for
free. Spatial multiplexing is a very powerful technique for increasing channel capac-
ity at higher Signal to Noise Ratio (SNR). The maximum number of spatial streams
is limited by the lesser in the number of antennas at the transmitter or receiver. Spa-
tial multiplexing can be used with or without transmit channel knowledge.

• Diversity coding techniques are used when there is no channel knowledge at the
transmitter. In diversity methods a single stream (unlike multiple streams in spatial
multiplexing) is transmitted, but the signal is coded using techniques called space-
time coding. The signal is emitted from each of the transmit antennas using certain
principles of full or near orthogonal coding. Diversity exploits the independent
fading in the multiple antenna links to enhance signal diversity. Because there is no
channel knowledge, there is no beamforming or array gain from diversity coding.

Spatial multiplexing can also be combined with precoding when the channel is known at
the transmitter or combined with diversity coding when decoding reliability is in trade-
off. Spatial multiplexing techniques makes the receivers very complex, and therefore it
is typically combined with Orthogonal frequency-division multiplexing (OFDM) or with
Orthogonal Frequency Division Multiple Access (OFDMA) modulation, where the prob-
lems created by multi-path channel are handled efficiently. The IEEE 802.16e standard
incorporates MIMO-OFDMA. The IEEE 802.11n standard, which is expected to be final-
ized soon, recommends MIMO-OFDM. MIMO is also planned to be used in Mobile radio
telephone standards such as recent 3GPP and 3GPP2 standards. In 3GPP, High-Speed
Packet Access plus (HSPA+) and Long Term Evolution (LTE) standards take MIMO into
account. Moreover, to fully support cellular environments MIMO research consortia in-
cluding IST-MASCOT propose to develop advanced MIMO techniques, i.e., multi-user
MIMO (MU-MIMO).

1.2 The detection problem

Maximum-likelihood (ML) detection over Gaussian Multiple-Input Multiple-Output (MIMO)
channels is shown to get the lowest Bit Error Rate (BER) for a given scenario [3]. However,
it has a prohibitive complexity which grows exponentially with the number of transmit
antennas and the size of the constellation. Motivated by this, there is a continuous search
for computationally efficient detectors, as the well-known suboptimal linear detectors
based on the ZF or MMSE approaches [3] or the recently proposed Sphere Decoding (SD)
techniques ([10],[5]). Unfortunately, the detection throughput of regular SD algorithms
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is non-fixed, that can make these methods non useful for real time detection and hard-
ware implementation. On the other hand, the SD method called K-Best [9] exhibits fixed
complexity, but it has the drawback of not reaching the ML solution in all cases.

1.3 Outline of the Master Thesis

This master thesis is structured as follows.
In Chapter 2, the MIMO system model considered in our work is described. Next,

the data detection problem for this system and several linear detection algorithms are
presented.

Chapter 3 is dedicated to the description of tree-search detection algorithms, also com-
monly known as Sphere Decoders, which achieve full or almost ML performance with
lower complexity than the exhaustive search. Special attention will be paid to K-Best
Sphere Decoding algorithm, since it will be the base algorithm for the proposed com-
bined detector.

Chapter 4 deals with the main contribution of this Master Thesis. Throughout this
chapter, the structure of the combined K-Best Sphere Decoder proposed by the authors is
detailed.

In Chapter 5 the problem of finding channel matrix condition number estimators is
overcome and Chapter 6 focuses on proposing some threshold selection methods.

Chapter 7 denotes to the mixed problem of channel estimation and data detection, in
particular, the application of Sphere Decoding methods for this purpose has been carried
out.

Results appear in Chapter 8 and a summary and conclusions are drawn in Chapter 9.



Chapter 2

System model and detection algorithms
for MIMO

Throughout this chapter the data detection problem in MIMO will be stated and several
MIMO detection algorithms will be described.

2.1 System model

Present work is focused on the well-known Bell-Labs Layered Space Time system (BLAST)
[6], illustrated by Fig. 2.1, although its application is not limited to this particular case.
BLAST is a high speed wireless communication system that employs multiple antennas
at both the transmitter and the receiver. In a BLAST system, the data stream is split
equally into nT transmit antennas and simultaneously sent to the channel thus overlap-
ping time and frequency. The signals are received by nR receive antennas as shown in
Fig. 2.1 and the receiver has the task of separating the received signals in order to recover
the transmitted data.

Let us consider a BLAST MIMO system characterized as block fading (the channel re-
mains constant along the whole transmission of a data block), with nT transmit antennas,
nR receive antennas, nR ≥ nT , and a signal to noise ratio denoted by ρ. The baseband
equivalent model for such MIMO system is given by

xc = Hcsc + vc, (2.1)

where sc represents the baseband signal vector transmitted during each symbol period
formed by elements chosen from the same constellation such as M-QAM. Vector xc in
(2.1) denotes the received symbol vector and vc is a complex white Gaussian noise vector
with zero mean and power No. Sometimes for simplicity the noise is considered with unit
variance. The Rayleigh fading channel matrix Hc is formed by nR × nT complex-valued
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CHAPTER 2. SYSTEM MODEL AND DETECTION ALGORITHMS FOR MIMO 5

elements, hij , which represent the complex fading gain from the j-th transmit antenna
to the i-th receive antenna. Moreover, the channel matrix Hc is considered known at the
receiver for simplicity. It should be taken into account that in order to apply some detec-

Data Detector

Estimated
    Data

v1

vnR

x 1

x nR

s1

snT

h1,1

hnR nT

hnR ,1

h1,nT

Transmitter Receiver

Figure 2.1: BLAST system model with nT transmit antennas and nR receive antennas.

tion methods to the system model (2.1), for instance the Sphere Decoding techniques, the
complex model is usually transformed into a real one [9].[

<(xc)

=(xc)

]
=

[
<(Hc) −=(Hc)

=(Hc) <(Hc)

] [
<(sc)

=(sc)

]
+

[
<(vc)

=(vc)

]
(2.2)

From now on, the real form of the system (2.1) will be considered, where the real
equivalent system will be (2.2)1. The signal vectors will be next denoted as x, s and v, and
the real channel matrix will be now called H. Note that the dimensions of these vectors
and matrix will be changed, the size of x and v will become 2nR × 1, vector s will be
considered a 2nT × 1 vector and thus the channel matrix H will have 2nR × 2nT entries.

2.2 Detection algorithms

It can be seen in Fig. 2.1 that the receive antennas see the superposition of all the transmit-
ted signals. Given the received signal x, the detection problem consists on determining
the transmitted vector ŝ with the highest a posteriori probability. This is typically carried
out in practice by means of solving the following least squares problem

ŝ = arg min
sεM2nT

||x−Hs||2 , (2.3)

where ‖ · ‖ denotes the 2-norm and ŝ is an 2nT -dimensional vector with entries belonging
to a M-ary alphabet. Eq. (2.3) is often called the Maximum Likelihood detection rule.

1<(·) and =(·) stand for the real and imaginary parts respectively.
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Fig. 2.2 shows the classification of nearly most of the existing MIMO detection al-
gorithms. In a first level, detection algorithms can be classified between ML (or exact)
methods and almost ML methods. A second classification depends on the way of per-
forming the detection that can be either in a linear way (just multiplying by a matrix in
reception) or carrying out a successive interference cancellation (SIC) or via a tree search
(Sphere Decoders).

  MIMO 

detectors

Quasi-ML

 methods
    ML

methods

   Linear 

 detection

     SIC

 detection

   ZF MMSE ZF-(O)SIC
  MMSE-

  (O)SIC
 K-Best

     
ASD

 Búsqueda 

Exhaustiva

       ML

 
 Tree-search

  algorithms

MF

 Tree-search

  algorithms

  SD with

early ending

 SD without

early ending

Figure 2.2: Classification of several MIMO detection algorithms.

All the BLAST detection algorithms presented above will be described throughout the
rest of this chapter and the following one.

2.2.1 Maximum Likelihood (ML) detector via exhaustive search

The ML detector is the optimal detector in terms of BER since it gets the exact solution of
the ML detection rule (2.3). Due to the fact that all the possible s vectors belong to a finite
2nT -dimensional lattice, the simplest way of finding the solution of (2.3) is performing
an exhaustive search of points in the lattice and selecting the one that minimizes (2.3).
This strategy leads to a very complex algorithm, with a computational cost exponentially
growing with the number of transmit antennas and the size of the constellation. Alterna-
tive detectors have been developed in order to decrease this high cost in spite of losing
performance and the most important ones will be in what follows presented.

2.2.2 Matched Filter (MF) detector.

The MF detector appeared as an extension of the data detection in SISO (Single-Input
Single-Output) channels [2]. The detection step is carried out just by multiplying the
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received vector by the transpose and conjugate of the channel matrix2

ŝ = quantize{HHx}. (2.4)

This algorithm exhibits near optimum behavior when the columns of H are close to be
orthogonal, since it means that the several channels that exist in parallel are almost inde-
pendent among themselves.

2.2.3 Zero Forcing (ZF) detector.

The ZF detector considers the signal from each transmit antenna as the target signal and
the rest of signals as interferers [2]. The main goal of this detector is setting the interferers
amplitude to zero and this is done by inverting the channel response and rounding the
result to the closest symbol in the alphabet considered. When the MIMO channel matrix
is square (nR = nT ) and non-singular (invertible) the inversion step is performed just
using the inverse of the channel matrix

ŝ = quantize{H−1x}. (2.5)

However, when the channel matrix is tall (nR > nT ), the pseudo inverse of H is then used,
what leads to the following inversion step

ŝ = quantize{(HHH)−1HHx}. (2.6)

The ZF detector presents the problem of, in some cases, finding singular channel matrices
that are not invertible. Another disadvantage is the fact that ZF focuses on cancelling
completely the interference at the expense of enhancing the noise [2]. Motivated by this,
the MMSE detector appeared.

2.2.4 Minimum Mean Square Error (MMSE) detector

The MMSE detector [2] minimizes the error due to the noise and the interference com-
bined. This is done by using the following detection step:

ŝ = quantize{(HHH + NoI)
−1HHx}, (2.7)

where I denotes an identity matrix.

2Also, a quantization step is needed to round off the result to the closest symbol in the alphabet consid-
ered, here it comes represented by the function quantize.
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2.2.5 Nulling and cancellation detectors

The performance of already presented algorithms (ZF and MMSE) can be improved by
using nonlinear techniques as symbol cancellation [3]. By using symbol cancellation, an
already detected and quantized symbol from each transmit antenna is extracted out from
the received signal vector, similarly to what is done in decision feedback equalization or
multiuser detection with successive interference cancellation (SIC). Therefore, as soon as
a signal is detected, the next one will see one interferer less.

Nulling and cancellation detectors with ordering
Nulling and cancellation detectors have the drawback of adding interference to the

next symbols to be detected, when there has been any wrong decision in the already
detected symbols. It can be shown that it is advantageous to find and detect first the
symbols with the highest signal to noise ratio, i.e., the most reliable ones. This strategy is
known as nulling and cancellation with ordering (O-SIC) [12].

Unfortunately, none of the already presented linear and SIC algorithms can reach the
ML solution in all cases. This drawback will be overcome in the next chapter by employ-
ing SD algorithms.



Chapter 3

Sphere Decoding Algorithms

In this chapter, Sphere Decoding (SD) algorithms will be described and their advanta-
geous behavior will be also discussed. Sphere Decoding (SD) methods have the ability of
reaching the ML solution at lower complexity than the exhaustive search, by looking for
the ML solution just within a hypersphere centered at the received signal vector. This will
be shown graphically and mathematically throughout this chapter.

3.1 Sphere Decoding Fundamentals

The main interest of Sphere Decoding methods is that instead of performing an exhaus-
tive search over the total 2nT -dimensional lattice points, these methods [10] limit the
search for the solution to only the lattice points located within a distance of the received
vector lower than a given maximum distance, called sphere radius R. The sphere radius
constraint can be included in the in the ML detection rule as follows

ŝ = arg min
sεM2nT

{||x−Hs||2 ≤ R}, (3.1)

For instance, Fig. 3.1 shows the lattice points of a 2x2 MIMO system using a BPSK constel-
lation. It can be seen that if a sphere radius R is chosen, there are two lattice points that
lie inside the sphere, these two points represent the candidate solutions. The ML solution
would then be the closest lattice point of the list of candidate points, which is labelled in
the figure as ML. These methods can substantially reduce the decoding complexity, how-
ever, it is necessary to find a suitable value of the sphere radius, what can be difficult in
practice. The importance of the sphere radius will be discussed below.

A QR factorization of the channel matrix (H = QR) allows transforming the system
(2.3) of Chapter 2 to an equivalent one that can be solved using a tree structure [10]. Matrix
Q is orthogonal, QQT = I, and matrix R can be decomposed into an upper triangular
2nT × 2nT matrix, denoted by R1, and a (2nR − 2nT ) × 2nT matrix of zeroes. In case

9
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s1
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 -1

 -1
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Candidate
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ML

Figure 3.1: Decoding sphere of radius R for limiting the candidate lattice points in a 2x2
MIMO system using a BPSK constellation.

of multiplying (2.3) by QT and calling y = QTx, the problem (2.3) can be equivalently
expressed as

ŝ = arg min
sεM2nT

{||y −R1s||
2 ≤ R}, (3.2)

or in a more detailed way as

ŝ = arg min
sεM2nT

{
2nT∑
i=1

|yi −
2nT∑
j=i

rijsj|2 ≤ R}. (3.3)

where the triangular structure of R1 has also been exploited.
In order to solve (3.3) via a tree search, the following recursion is performed for i =

2nT , . . . , 1:
Ti(S

(i)) = Ti+1(S
(i+1)) + |ei(S

(i))|2 (3.4)

ei(S
(i)) = yi −

2nT∑
j=i

rijsj, (3.5)

where i denotes each tree level, S(i) = [si, si+1, . . . , s2nT
], Ti(S

(i)) is the accumulated Partial
Euclidean Distance (PED) up to level i, where T2nT +1(S

(2nT +1)) = 0, and |ei(S
(i))|2 is the

distance between levels i and i + 1 in the decoding tree, which will be represented as the
branch weight. Partial solutions are represented as nodes n and nodes are expanded in
order to look for the ML solution or the closest lattice point. It is required to find the ML
solution expanding as few nodes as possible in order to reduce the computational effort.
Fig. 3.2 depicts the decoding tree associated to the decoding sphere of Fig. 3.1, note that
the tree will have as many levels as transmit antennas in the system (for complex constel-
lations this number of levels will be doubled) and each node will have as many children
nodes as the constellation size (for complex constellations the size of the equivalent real
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constellation will be considered instead). It can be seen that the search for the solution
is performed in two levels, in each level branches with an accumulated PED higher than
the sphere radius are discarded, resulting in less visited points.

X

[+1] [-1]

+1

+1

-1

+1

+1

-1

-1

-1

Xs

s 

2

1

X

ML

Figure 3.2: Decoding tree associated to the decoding sphere of Fig. 3.1.

Different tree search strategies have been proposed, some of them can be found in
[9],[10] and [15] but they can be classified into two main types of tree search: Depth-
First and Breadth-First. In the Depth-First algorithms the tree is explored beginning from
the root descending to the leaf nodes, but exploring every child node from left to right.
Fig. 3.3 makes clear this kind of search.

Figure 3.3: Decoding tree where a Depth-First strategy is followed.

In the Breadth-First algorithms the tree is explored descending level by level up to
the leaf nodes, every child in the same level has to be visited before starting to visit the
following level. Fig. 3.4 depicts the general idea behind Breadth-First algorithms.

As said above, a suitable sphere radius is generally needed for getting the ML solution
expanding as few nodes as possible. However, if a too small sphere radius is chosen,
there can be no candidate solutions and the algorithm will not perform correctly. On
the other hand, if a too large sphere radius is selected, too many candidate points may
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Figure 3.4: Decoding tree where a Breadth-First strategy is followed.

be found and the complexity of the algorithm can equal the one of an ML exhaustive
search, without any advantage over existing methods. Fig. 3.5 shows the candidate points
inside two spheres of different radius, for a 2D case. Selecting the smaller radius (R1)
provides just one candidate point and choosing R2 leads to a search among four candidate
points. There exist several estimates of the radius [10], for instance the ones that set the
sphere radius as the distance between the received vector and the solution provided by
a low complexity detection method as ZF or MMSE. Other authors suggest choosing a
scaled version of the noise variance as a candidate radius, since it seems obvious that the
transmitted vector will be moved away from its original position a distance related to the
variance of the noise in the system.

R1

R2

Figure 3.5: Comparison between the number of candidate points inside spheres of radius
R1 and R2.
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3.2 Fincke-Pohst and Schnorr-Euchner Sphere Decoders

One of the earliest Depth-First Sphere Decoding algorithms that appeared is the one that
follows the Fincke-Pohst (FP-SD) strategy [5]. The main feature of this algorithm is that
candidate solutions are discarded based on a sphere radius that has to be selected in a
correct way.

First Last1 10

  2

3 4

5 6

7

8

9

Figure 3.6: Decoding tree for a 3x3 MIMO system with a BPSK constellation which follows
a Fincke-Pohst search strategy.

Let us show how this method works with an example. It can be seen in Fig. 3.6 a
decoding tree for a 3x3 BPSK MIMO system. It will be considered that an appropriate
sphere radius has been selected before starting the search for the solution. The order in
which nodes are visited is denoted by ascending numbers. Branches and nodes in gray
color correspond to solutions that have been discarded because their PEDs are known to
exceed the sphere radius. It can be seen that after traversing the three levels of the tree,
there are just three possible solutions inside the sphere, with leaf nodes numbered as 5, 6
and 9. The final solution would then be the path with the minimum sum of PEDs from
the root among this three candidates.

The Schnorr-Euchner SD (SE-SD) also performs a Depth-First search but it refines the
FP algorithm for computing even less number of nodes. Instead of exploring the tree
from left to right, the SE-SD computes the PEDs of the children nodes from a given node
in the current level and explores them in increasing order of their branch weights. This
improvement leads to reaching valid leaf nodes quickly than by using the FP-SD. Un-
fortunately, the number of branch and node weights to compute remains the same. For
overcoming this problem, SE-SD proposes changing the search radius adaptively once a
leaf node has been discovered, since after having discovered a point in the search set, we
become interested only in locating those points that are even closer to the target than that
point.
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3.3 K-Best Sphere Decoder

K-Best Sphere Decoder [9] is a Breadth-First algorithm that expands only those K sur-
vivor nodes that show the smallest accumulated PEDs at each level of the decoding tree,
see Fig. 3.7.

LEVEL       +1

LEVEL 

LEVEL 2

LEVEL 1

Expand k

Expand k

Expand k

Select solution

nT

n
T

Figure 3.7: Decoding tree of the K-Best algorithm.

This method has a considerable difference respect to Fincke-Pohst, since now the can-
didate solutions are not discarded using a sphere radius but having a list with a fixed
number of closest lattice points (K) up to the current level. The detected signal vector ŝ

is given by the path from the root up to the leaf node with the smallest total Euclidean
distance.

The main advantage of this method is that the maximum number of paths is limited,
that yields a fixed computational effort and makes the algorithm hardware implemen-
tation easier. Variants of this algorithm also include a sphere radius in order to reduce
the number of explored paths [13] but unfortunately, this number is then non-fixed and
unknown.

As it is shown in [13], it is more likely to discard the ML solution at early decoding
stages, since in latest levels the accumulated PED is closer to the final total distance. Thus,
the method can also be modified to work with different K values at different decoding
levels, which is called Dynamic K-Best. Dynamic K-Best will have the disadvantage of
not having the same complexity at every level.

3.4 Automatic Sphere Decoder

The Automatic Sphere Decoder (ASD) was initially proposed in [15]. It is a Breadth-
First algorithm that does not make use of a sphere radius to find the solution. It stores
a list that defines the limit between the already explored part of the tree and the non-
explored yet. At the beginning of the algorithm, the list only contains the root node and
its associated accumulated distance, which is equal to zero. In each iteration, the ASD
selects and expands the node inside the list that has the smallest associated distance. This
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just expanded node, is removed from the list and replaced by its children nodes. The
first time that a leaf node is selected for expansion the detector returns the associated
candidate solution and ends.

LEVEL       +1

LEVEL 

LEVEL 2

LEVEL 1

n
T

n
T

Figure 3.8: Decoding tree of the ASD algorithm.

In Fig. 3.8 it can be seen the decoding tree when just the root node and a node located
at the nT level have been expanded. The already visited branches are depicted in gray.

The main disadvantage of this method is the need for a variable size list of nodes,
what makes its Hardware implementation more difficult.



Chapter 4

Combined K-Best Sphere Decoder

Experiments [1] show that the channel matrix condition number is strongly related to the
performance of suboptimal detection schemes, since it is a measure of how the original
constellation is distorted by the channel. For instance, Fig. 4.1 shows the performance
degradation of some MIMO detectors with the increase of the channel matrix condition
number for a value of signal to noise ratio ρ = 20dB. Note that it can be found a channel
matrix condition number value that makes the performance of 5-Best equal to the 8-Best
or even to the ML. Also, as the condition number gets higher, the performance of 8-Best is
not as much degraded as the one of 5-Best. Considering this, it seems obvious that a suit-
able combination of both algorithms based on the channel condition number could have
an almost ML behavior for this value of ρ. It can also be shown that the condition number
increases with the size of the channel matrix [7], so for a higher number of antennas, the
detection degradation will increase.

Authors of [14] have developed combined detectors based on condition number thresh-
olding, for instance ML and ZF, but so far their complexities are generally non-fixed. Fur-
thermore, another disadvantage of these algorithms is the need for implementing two
or more different decoders to build the combined one. Therefore, we suggest to use a
unique algorithm, the K-Best SD, and just change subsequently its parameter K between
a set of acceptable values previously selected, which is obviously more suitable for real
systems. Moreover, it will be necessary to develope some condition number estimator for
determining which detector is the most appropriate for each channel. In Chapter 5 a low
complexity 2-norm condition number estimator that makes use of the QR factorization
[8], which is always available when working with SD methods [10], will be developed.
This estimator together with the Power Method for computing eigenvalues [8] can pro-
vide a useful approximation of the condition number of the channel matrix. As a result,
the combined decoder including the condition number estimator will have an adjustable
and predictable complexity, so it will become suitable for practical systems.

16
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Figure 4.1: BER of different MIMO detectors with a 16-QAM constellation, a 4x4 MIMO
channel and a value of ρ = 20dB, as a function of the channel matrix condition number
κ2(H).

4.1 Combined decoder

The proposed combined decoder always works with a K-Best detector but it can select
a low value of K while working with well-conditioned channels and switch to a higher
value of K whether the channel is unfortunately ill-conditioned. This way, a greater de-
coding tree is visited when dealing with poor channels, thus there is less probability of
discarding the ML solution too early. As said before, an estimator of the condition num-
ber together with a threshold condition number, denoted by κth, are used to classify the
channels and consequently adjust the K parameter.

Fig. 4.2 depicts the flow diagram of this combined sphere decoder and the steps to
perform the combined detection are next detailed. Firstly a threshold condition number
is chosen. It must be checked whether H changed, in case it did not change, the currently
fixed K-Best is used, otherwise the new channel condition number has to be estimated.
Then, using the threshold κth, the suitable K value is selected between k1 and k2 with
k2 > k1. Finally, K-Best Sphere Decoding is used for carrying out the detection. It can be
observed in Fig. 4.2 that, as said before, an estimator of the condition number together
with a threshold condition number, denoted by κth, have been used to classify the chan-
nels and consequently fix the K value.
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Figure 4.2: Flow diagram of a combined K-Best Sphere Decoder with threshold selection
and channel condition number estimation.

The performance achieved by this combined detector will be discussed in Chapter 8.



Chapter 5

Channel matrix condition number
estimation

The sensitivity of the solution of a non-singular system of linear equations Ax = b with
respect to perturbations of the matrix A is directly related to its condition number [4].
Although the matrix condition number depends on the selected norm, if the matrix is
well-conditioned, the condition number will be small in all norms, otherwise it will be
large. Thus, the most convenient norm is usually selected between the 1-norm, 2-norm
and ∞-norm. The 2-norm condition number is defined as

κ2(A) =
σmax

σmin

, (5.1)

being σmax and σmin the maximum and minimum singular values of A respectively. When
A is square n × n, κ2(A) can be also computed as ‖A‖‖A−1‖. Although other condition
numbers can be considered, κ2(A) will be selected in our work because of some special
properties presented below. Fig. 5.1 shows the probability density function of the 2-norm
condition number for a 8x8 real Gaussian MIMO channel matrix, it can be seen that al-
though lower condition number values are more likely, there are also channel occurrences
with high condition number where the performance of suboptimal detectors is decreased,
as it was introduced in Chapter 4.

5.1 Condition number estimator

In order to carry out the combined detection in practice, it is important to have a reli-
able estimate of κ2(H). As explained above, K-Best requires a factorization of the form
H = QR. Only in case of working with 2-norm it is true that

κ2(H) = κ2(R1) = ‖R1‖‖R−1
1 ‖, (5.2)

19
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Figure 5.1: Probability density function of the 2-norm condition number of 8x8 real Gaus-
sian channel matrices.

since ‖Q‖ = 1.
Due to the fact that R1 is triangular, it can be noted that ‖R1‖ can be calculated faster

than ‖H‖. Moreover, ‖R1‖ = σmax can be efficiently computed by applying the Power
Method [8] and a low complexity estimator will be proposed for calculating ‖R−1

1 ‖ =

1/σmin.

5.1.1 The Power Method for computing ‖R1‖
The Power Method is an iterative algorithm that obtains the largest eigenvalue of a given
matrix [8]. Given a n×n diagonalizable matrix A with |λ1| > |λ2| ≥ . . . ≥ |λn| eigenvalues,
this method starts with a unit 2-norm vector q(0) ∈ Rn as an initial approximation of
one of the dominant eigenvectors. At each iteration i, it computes the new q(i) in two
steps. First, the vector z(i) = Aq(i−1) is calculated and next it is normalized resulting in
q(i) = z(i)/‖z(i)‖. After the last iteration of the process, the maximum eigenvalue can be
computed as

λmax = [q(i)]TAq(i). (5.3)

In our work, the Power Method is proposed for calculating ‖R1‖ = σmax, previously
calculating the maximum eigenvalue of A = RT

1 R1, which corresponds to σ2
max (obvi-

ously, the method can be applied to RT
1 R1 without computing explicitly this product).

Considering that the maximum size of the channel matrices is usually up to 8x8, a max-
imum number of 10 iterations for running the Power Method gets quite accurate results.
Thus, the number of flops can be computed as 21n2 + 22n.
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Table 5.1: Measured Complexity in Number of Flops
Real channel Proposed estimator for κ2(R1) Power Method for κ2(R1)

4x4 482 850

8x8 1698 3042

16x16 6338 11458

5.1.2 Estimator of ‖R−1
1 ‖

This method was firstly developed in [4]. Two triangular systems need to be formulated.
The first one is RT

1 x = b and b has to be chosen so that its solution x̂ will make ‖x̂‖/‖b‖
as large as possible. This is achieved by an iterative process with n steps, considering the
size of R−1

1 is n. At each step i, bi is chosen between +1 and −1, in order to maximize xi,
which will be computed as

riixi = bi − (r1ixi + . . . + ri−1ixi−1). (5.4)

The second system to solve is R1y = x̂. Once its solution ŷ is obtained, the estimation for
‖R−1

1 ‖ = 1/σmin is given by ‖ŷ‖/‖x̂‖. The computational cost of this estimator is 2n2 + 6n

flops.
As soon as σmax and 1/σmin are available, κ2(R1) is calculated as the product of both

values.
In [14] the authors estimate both σmax and 1/σmin by means of the Power Method, what

leads to a total number of flops of 42n2 + 44n + 2. On the other hand, the mixed estimator
that we propose has been selected in the present work mainly because it better exploits
the QR factorization used in the K-Best algorithms, also it only requires 23n2 + 28n + 2

flops.
Fig. 5.2(a) shows that the relative error of our proposed estimator for κ2(R1) is higher

than the one of the Power Method for computing the whole condition number. How-
ever, as can be seen in Fig. 5.2(b), the error magnitude is not very significant, making this
estimator useful for combined detectors. Table 5.1.2 shows that the complexity of our pro-
posed estimator measured in number of flops is almost the half of the complexity of the
estimator that only employs the Power Method. It is possible to decrease the complexity
of our proposed estimator even more by estimating ‖R1‖ in the same way that ‖R−1

1 ‖.
However, by doing this, the accuracy of the resulting condition number estimator can be
not good enough for our application.
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Figure 5.2: Error of our proposed estimator compared with the error of the Power Method
for computing the whole condition number: (a) Relative, (b) Absolute.



Chapter 6

Threshold selection

Two ways of selecting the threshold condition number κth in a combined decoder are pre-
sented throughout this section. The first one is based on the analysis of the achieved BER
of the lower performance algorithm used in the combined decoder for a given SNR. Con-
sidering the algorithm has an average BER denoted by BERav, a suitable κth must guar-
antee that BER ≤ BERav when our channel has κ2(H) ≤ κth. This will be done in order
to assure that the lower performance algorithm is only used when it has optimal perfor-
mance. Taking into account these considerations, BER values of the lower performance
algorithm are represented within a range of condition numbers in a similar manner than
in Fig. 4.1. The abscissa value of κ2(H) for which a BER = BERav is achieved is selected
as the candidate κth, since its obvious that for κ2(H) > κth the achieved BER will overpass
BERav.

Let us clarify this threshold selection method by means of an example. Supposing that
the lower performance algorithm used in the combined one is 2-Best, Fig. 6.1 depicts the
achieved BER for condition numbers ranging from 1 to 30 when the value of ρ is equal
to 20dB. The average BER obtained for this SNR (without condition number distinction)
was BERav = 1.52 × 10−2 and this value sets the threshold to κth = 9.41. For simplicity,
choosing the value of κth = 10 instead of κth = 9.41 leads also to acceptable results.

The second method for selecting the threshold states that the chosen κth should pro-
vide the desired average computational cost of the combined algorithm, which is related
to the average number of expanded nodes n. For instance, in case of combining k1-Best
SD and k2-Best SD, considering k1 < k2, for a threshold value of κth, the resulting average
number of expanded nodes nκth

would be given by

nκth
= (1− Pκ≥κth

)nk1−Best + Pκ≥κth
nk2−Best, (6.1)

where Pκ≥κth
is the probability of having a channel with condition number higher than

a threshold κth and it can be calculated as a cumulative distribution of the probability
density function depicted in Fig 5.1. The number of expanded nodes in each ki-Best al-

23
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Figure 6.1: BER for the 2-Best SD with ρ = 20 on a 4x4 MIMO 16-QAM system as a
function of the channel matrix condition number κ(H).

gorithm is denoted by nki−Best (for i = 1, 2). It can be noted that the desired maximum
average number of expanded nodes will determine the threshold value. In the same way,
for a given threshold, the number of expanded nodes will be straightforwardly predicted.



Chapter 7

Joint channel estimation and signal
detection

In our system design, perfect knowledge of the channel coefficients has been assumed
(perfect Channel State Information (CSI)). Note that in the introduction chapter we con-
sidered a block fading channel H for formulating the detection problem. In practical
systems, the channel coefficients are often estimated using a training sequence, thus sac-
rificing a fraction of the transmission rate. The obtained channel estimate is then used for
performing the typical data detection, using in most cases some of the algorithms pre-
sented in Chapters 2 and 3. This is usually called as disjoint channel estimation and data
detection strategy.

In this Master Thesis the problem of Joint channel estimation and data detection has
been considered. It has already been shown that carrying out both steps simultaneously
can considerably reduce the computational effort without reducing the detection perfor-
mance very much [16]. The computational cost decrease appears due to the fact that
Sphere Decoding algorithms can be applied when the joint channel estimation and data
detection problem is formulated as an integer least-squares problem. In what follows
we will deal with the problem of joint channel estimation and data detection for SIMO
channels. So far, no interesting results have been obtain for the MIMO case.

7.1 System model

Let us consider a SIMO channel with nR receive antennas and constant for some time
interval T . If the channel is represented by a nR × 1 channel vector h, the received signal
X can be written as

X = hs∗ + V = h[s∗τ s∗d] + V, (7.1)
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where sτ is the Tτ × 1 vector of training symbols and sd is the Td × 1 vector of data sym-
bols, with Tτ + Td = T . The components of sτ and sd belong to a PSK constellation and
they are supposed to be normalized for having energy equal to 1. Matrix V represents a
nR ×T additive noise matrix whose elements are assumed to be independent, identically
distributed (iid) complex Gaussian random variables.

7.2 The joint ML channel estimation and signal detection
problem

The joint ML channel estimation and signal detection problem can be stated as follows:

min
h,sd

||X− hs∗||2 , (7.2)

which is a mixed optimization problem: it is a least-squares problem in h and an inte-
ger least-squares problem in sd. The solution to the integer least-squares problems (data
detection problem) is usually found via the already presented detection techniques (see
Chapters 2 and 3), but from now on we will try to solve both optimization problems
simultaneously.

For any given s, the channel ĥ that minimizes (7.2) is given by

ĥ = Xs/ ||s||2 =
1

T
Xs. (7.3)

Substituting (7.3) into (7.2) gives

||X− hs∗||2 =
∣∣∣∣∣∣∣∣X(I− 1

T
ss∗)

∣∣∣∣∣∣∣∣2 = tr[X(I− 1

T
ss∗)X∗] = tr(XX∗)− 1

T
s∗X∗Xs, (7.4)

and the problem (7.2) becomes equivalent to

max
sd

s∗X∗Xs. (7.5)

Let λ̂ = λmax(X
∗X) denote the maximum eigenvalue of X∗X, and let ρ > λ̂ (for instance,

it can be chosen ρ = tr(X∗X)). The problem (7.5) is then equivalent to

min
sd

s∗(ρI−X∗X)s. (7.6)

For simplicity, we will call ρI−X∗X = Γ and Γ will be positive definite by construction.
It will be useful to partition Γ as

Γ =

[
Γ11 −Γ12

−Γ∗12 Γ22

]
, (7.7)
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where Γ11 is a Tτ × Tτ matrix, Γ12 is a Tτ × Td matrix and Γ22 is a Td × Td matrix. Since
Γ is positive definite, so is Γ22. Therefore, it can be written

[
s∗τ s∗d

] [
Γ11 −Γ12

−Γ∗12 Γ22

] [
s∗τ
s∗d

]
= (sd−Γ−1

22 Γ∗12sτ )
∗Γ22(sd−Γ−1

22 Γ∗12sτ )+sτ (Γ11−Γ12Γ
−1
22 Γ∗12)sτ .

(7.8)
Since sτ (Γ11 − Γ12Γ

−1
22 Γ∗12)sτ does not depend on sd, the optimization (7.6) becomes

min
sd

(sd − Γ−1
22 Γ∗12sτ )

∗Γ22(sd − Γ−1
22 Γ∗12sτ ) = min

sd
‖sd − Γ−1

22 Γ∗12sτ‖2Γ22 (7.9)

Due to the fact that Γ22 is positive definite, it has a Cholesky factorization of the form
Γ22 = R∗R where R is an upper triangular matrix. If we denote ŝd = Γ−1

22 Γ∗12sτ in 7.9 and
make use of the Cholesky factorization of Γ22, the minimization problem results in

min
sd

‖R(sd − ŝd)‖2, (7.10)

thus, it is easy to see that the problem (7.10) can be efficiently solved by means of Sphere
Decoding algorithms.



Chapter 8

Results

8.1 Combined K-Best Sphere Decoder

The experimental setup used for our simulations is depicted in Fig. 8.1.
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Figure 8.1: Experimental setup for testing the Combined K-Best Sphere Decoder.

The bit stream b is mapped into symbols of a constellation such as QPSK or 16-QAM
forming the vector sc. The symbol vector is next affected by the channel and the addition
of a noise vector. The received vector xc needs to be transformed into its real form x,
together with the channel estimate Ĥc, which is supposed to be available in the reception
part. Next, the received data enters the Combined K-Best decoder for carrying out the
data detection. It is supposed that the Combined decoder has an estimate of the channel
condition number and also a threshold has been selected in a previous training period,
this blocks are not included in the system description because they were detailed in Chap-
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ter 4. After performing the detection, the detected symbol vector s is transformed into its
original complex form ŝc. The detected symbol vector is then demapped into the vector
of bits b̂. Finally both b̂ and b are the inputs of a Bit Error Counter, which will provide
the Bit Error Rate of the algorithm as an output.

A 4x4 MIMO system and a 16-QAM alphabet were considered for our simulations. A
bitstream of 10000 bits was mapped into symbols and sent in groups of 4 simultaneously
by the 4 transmit antennas. The combined algorithm was formed by the 2-Best SD and
the 12-Best SD. The threshold value κth = 10 was chosen following the first proposed
threshold selection method, see Chapter 6 and a higher threshold value was chosen to
compare results, in this case κth = 20. The algorithm was run first using the exact 2-
norm channel matrix condition number and afterwards using the estimator proposed
in Chapter 5. As expected, Fig. 8.2 illustrates that the performance gets worse as the
threshold increases and estimating the 2-norm condition number does not change the
performance of the combined detectors at all.
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Figure 8.2: Comparison between the BER of the proposed combined K-Best detector with
two different thresholds on a 4x4 MIMO using 16QAM, working with the exact and es-
timated 2-norm condition number, all compared to conventional 2-Best and 12-Best de-
coders.

Another interesting step was to compare the performance of our combined decoders
with the fixed K-Best Sphere Decoders that needed the expansion of the same number
of nodes (i.e. the fixed K-Best decoders with the same computational complexity than



CHAPTER 8. RESULTS 30

Table 8.1: Average number of expanded nodes n for the different decoders under study.
2-Best 3-Best 5-Best 12-Best Combined κth = 10 Combined κth = 20

16 24 40 88 37.25 21.89

each of the combined decoders) in order to know if performing a combined detection
was worth. In Fig. 8.3, the two cases of combined decoder (with κth = 10 and κth = 20)
are compared to the conventional K-Best SD algorithms that expand the similar average
number of nodes, which are respectively 5-Best and 3-Best, as Table 8.1 shows.

It can be observed in Fig. 8.3 that the combined decoders show better performance
than the conventional ones, for a given complexity. Note that in Table 8.1 the values of
n for the 2-Best and 12-Best SD are also included and, obviously, the values nκth=10 and
nκth=20 remain between them. It can be concluded that exploiting the knowledge about
the channel matrix condition number really can help to decrease the detection complexity.
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Figure 8.3: BER curves of the proposed combined K-Best detector with two different
thresholds on a 4x4 MIMO using 16QAM, both compared to the conventional K-Best
decoders with equivalent complexity (3-Best and 5-Best).
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8.2 Joint channel estimation and data detection

The performance of the joint ML channel estimation and data detection algorithm is next
compared to the one of the disjoint channel estimation and data detection. In the case of
the joint channel estimation and detection, the ML detection algorithm used for solving
(7.10) is the ASD (detailed in Chapter 2), because by using this method an ML detection
can be guaranteed with quite low complexity. Both channel estimation and data detection
techniques are also compared to the Perfect CSI case, where the channel is supposed
perfectly known at the receiver.

For this purpose, a 1x2 SIMO BPSK system was considered for our simulations. Note
that in addition to the data detection, channel estimation is now being carried out, so
it will be necessary to send the data in time blocks. For the simulations with the joint
channel estimation and detection algorithm, the data is transmitted in blocks of 10 and
one training symbol is embedded, resulting in a time period of T = 11. For the disjoint
channel estimation and detection case, again just one training symbol is used (for consis-
tently comparing with the previous case) and the detection algorithm used is the 1-Best,
since this algorithm obtains the ML solution, when there is just one transmit antenna and
the symbols belong to a BPSK alphabet, in a very efficient and accurate way. Simulation
results are obtained via Monte Carlo runs in which h and V are varied, being the entries
of both iid complex Gaussian random variables. The comparison among the performance
of the three techniques proposed above is depicted in Fig. 8.4.

It can be noted that the joint estimation and detection performs better than the disjoint
estimation and detection and the performance achieved by the joint algorithm is quite
close to the perfect CSI case.

Another simulation with quasi-ML joint estimation and detection was carried out us-
ing the suboptimal algorithms 1-Best and 2-Best. Fig. 8.5 shows that this algorithms can
get almost ML results, note that by using a 2-Best detection algorithm the BER curve
almost matches the one with the ASD.

Finally, in Fig. 8.6 it can be seen the difference in performance of the joint ML estima-
tion and detection and the perfect CSI case for a SIMO QPSK system with nR = 6 and
T=11. It can be noted that the joint channel estimation and data detection algorithm has a
worse performance for higher order constellations such as QPSK instead of BPSK.
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Figure 8.4: BER performance of a SIMO BPSK system with nR = 2 and T=11 in the cases of
perfect CSI, disjoint channel estimation and data detection and joint channel estimation
and data detection.
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Figure 8.5: BER performance of a SIMO BPSK system with nR = 2 and T=11, with joint
channel estimation and data detection using different detectors.
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Figure 8.6: BER performance of a SIMO QPSK system with nR = 6 and T=11 in the cases
of perfect CSI and joint channel estimation and data detection.



Chapter 9

Summary and Conclusions

Throughout this Master Thesis an overview of detection algorithms for MIMO has been
presented. The most important contribution has been the development of a combined
decoder that uses different values of K in the K-Best algorithm, depending on the 2-norm
condition number of the channel matrix.

It has been shown that before carrying out the combined detection, a channel matrix
condition number estimator is needed. For this purpose, a condition number estimator
based on the QR decomposition of the channel matrix, which is very useful for combined
detectors using SD methods, and also on the Power Method has been proposed. Also, two
meaningful ways of determining the threshold condition number to use have also been
described. Simulation results have been included in order to discuss the performance of
the combined decoder. The BER achieved by two particular cases of combined decoders
was represented and it was shown that the proposed decoder together with the condition
number estimator and threshold selection algorithms can obtain successful results with
the advantage of having bounded complexity.

In the last part, another interesting application of Sphere Decoder methods was pre-
sented. It consisted on doing a joint ML channel estimation and data detection for SIMO
channels using the optimal Sphere Decoder called ASD. Results show that this method
works better than the disjoint channel estimation and data detection even when subop-
timal sphere decoders like the 1-Best or 2-Best are employed instead of the ASD. This is
an interesting result, since 1-Best and 2-Best have bounded complexity in comparison to
ASD and their complexities are known to be much lower. Unfortunately, as the order of
the constellation employed increases, the performance of the joint channel estimation and
detection method gets worse.

Future work could focus on finding further more efficient ways of carrying out the
joint ML channel estimation and data detection and also on achieving better results than
the already published for the MIMO case.
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Abstract— It is known that Sphere decoding (SD) methods can 
provide Maximum-Likelihood (ML) detection over Gaussian 
MIMO channels with lower complexity than the exhaustive 
search. Channel matrix condition number represents an 
important influence on the performance of usual detectors. 
Throughout this paper, two particular cases of a SD method 
called K-Best carry out a combined detection in order to reduce 
the computational complexity with predictable performance 
degradation. Algorithm selection is based on channel matrix 
condition number thresholding. K-Best is a suboptimal SD 
algorithm for finding the ML solution of a detection problem. It 
is based on a fixed complexity tree search, set by a parameter 
called k. The proposed receiver makes use of a low value of k 
while working with well-conditioned channels and switches to a 
higher value of k whether the channel gets worse. It is also 
presented practical algorithms for finding the 1-norm condition 
number of a given channel matrix and the condition number 
threshold selection. Finally an algorithm variant that switches 
between an ML SD and a linear detector is also evaluated. 

Keywords- Sphere Decoding, MIMO detection, K-Best; 
condition number; 

I.  INTRODUCTION 
Motivated by the need of increasingly sophisticated 

connectivity anytime and anywhere, wireless communications 
have attracted increasing research attentions recently. Mainly 
Multiple-Input Multiple-Output (MIMO) wireless 
communication systems that exhibit several transmit and 
receive antennas. This feature can provide several advantages, 
for instance, an increased capacity that can reach, in some 
scenarios, the Shannon limit. What is really interesting about 
the benefits offered by MIMO systems is that all of them can 
be reached without the need for additional spectral resources, 
which are really expensive and scarce. The most typical ways 
of using a MIMO system are diversity and multiplexing [1]. 
This work is focused on the Bell-Labs Layered Space Time 
system (BLAST), an example of multiplexing MIMO system, 
although the developed algorithm use is not limited to this 
particular case. 

A. Maximum-likelihood  decoding  
Maximum-likelihood (ML) detection over Gaussian MIMO 

channels is shown to get the lowest BER for a given scenario 
[1]. However, it has a prohibitive complexity which grows 
exponentially with the number of transmit antennas and the 

size of the constellation, since it makes an exhaustive search to 
reach the solution. Sphere Decoding (SD) techniques [2,3] can 
reach the ML solution at lower complexity than the exhaustive 
search. These methods look for a solution within a hypersphere 
centered at the received signal vector. Unfortunately, the 
complexity of regular SD algorithms is strongly dependent on 
the preprocessing stage to look for the sphere radius and also 
on its value. SD algorithms computational cost varies also with 
different signals and channels. Therefore, since the detection 
throughput is non-fixed, these methods are not suitable for real 
time detection and hardware implementation. On the other 
hand, the SD method called K-Best [4] exhibits fixed 
complexity, but it does not reach the ML solution in all cases.  

It has already been shown in [5] that the channel condition 
number has an important influence on the performance of 
detectors. Throughout this paper, a K-Best SD decoder, which 
switches its complexity between a lower or higher value 
depending on the channel condition number, is developed. 
Paper presents: 

• A combined decoder that uses different values of k in 
the K-Best algorithm depending on the condition 
number in 1-norm of the channel matrix. 

• A condition number estimator based on the QR 
decomposition of the channel matrix [6]. 

• A decoder that combines a linear detector and an 
optimum Sphere Decoder. 

II. SYSTEM MODEL 
Let us consider a MIMO system with nT transmit antennas 

and nR receive antennas and a signal to noise ratio denoted 
by ρ . Symbols coming from the data stream are taken in 
groups of nT and sent, overlapped in time and frequency, 
through the nT transmit antennas. The baseband equivalent 
model for such MIMO system is given by 

= +
Tn

ρx Hs v .    (1) 

Where 
T

=
T1 2 ns , s ,...,s  s represents the baseband signal 

vector transmitted during each symbol period, all its elements 
are chosen from the same constellation such as M-QAM, 
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therefore all possible s vectors belong to a finite nT-
dimensional lattice. The constellation points are scaled by a 
factor so that the average power of the constellation is one. 

Vector 
T

=
R1 2 nx , x ,..., x  x in (1) denotes the received 

symbol vector, and 
T

=
R1 2 nv ,v , ...,v  v stands for an 

independent identical distributed (i.i.d.) complex zero-mean 
Gaussian noise vector with unit variance. The channel between 
each transmit and receive antenna is modeled as flat fading. 
This way, the channel matrix H is formed by R Tn n×  

complex-valued elements, ijh , which represents the fading gain 
from the j-th transmit antenna to the i-th receive antenna. The 
elements of H are considered i.i.d. complex zero-mean 
Gaussian variables with a variance of  0.5 per dimension.  

It should be noted that in order to apply Sphere Decoding 
methods to the system model (1), the complex model is usually 
transformed into a real one rewriting the complex system as 

 
( ) ( )
( ) ( ) .

( ) ( ) ( )
( ) ( ) ( )

R IRe Re Re
Im Im ImI R

−
= +
      
            

H Hx s v
x s vH H

       (2)  

III. SPHERE DECODING ALGORITHMS 
Given the received signal, x, the detection problem consists 

in determining the transmitted vector with the highest a 
posteriori probability. This is typically carried out in practice 
by means of solving the called least squares problem  

2

.ˆ arg min
TnM Tn

ρ
∈

= −
s

s x Hs   (3) 

Since all the possible s vectors belong to a finite nT-
dimensional lattice, a first way of finding the solution of (3) 
can be simply performing an exhaustive search of  M Tn points, 
which gives a very complex algorithm. Instead of performing 
an exhaustive search over the total nT-dimensional lattice 
points, SD methods [3] limit this search to only the lattice 
points located within a distance of the received vector lower 
than a given maximum distance, called sphere radius. The ML 
solution would then be the closest lattice point of the list of 
visited points. However, it is necessary to find a suitable value 
of the sphere radius, what can be difficult in practice. 

The search in the SD algorithm is carried out by means of a 
decoding tree that represents how the distance from the 
received vector to the solution is calculated as an addition of 
partial Euclidean distances (PEDs), associated to the tree 
branches. Partial solutions are represented as nodes and nodes 
are expanded in order to look for the ML solution, representing 
a computational effort. It is required to find the ML solution 
expanding as few nodes as possible. Different tree search 
strategies have been proposed, some of them can be found in 
[2,3,4]. A QR factorization of the channel matrix is required to 
work with a decoding tree structure. This factorization allows 
to transform the system to an equivalent one that can be solved 
by means of branch costs and  PEDs. 

A. K-Best Sphere Decoder 
 

K-Best [4] SD algorithm, instead of expanding every node 
at each level of the decoding tree or sphere, expands only k 
survivor nodes, which show the smallest accumulated PEDs. It 
works visiting the tree level by level and expanding only k 
nodes at each level. Finally, when the last level is reached, the 
leaf node with the smallest total Euclidean distance is selected 
as solution, see Fig. 1. The detected signal vector is given by 
the path from the root up to this leaf node.  
LEVEL M+1

LEVEL M

LEVEL 2

LEVEL 1

Expand k

Expand k

Expand k

Select solution 

Figure 1.  Decoding tree of  the K-Best algorithm 

The main advantage of this method is that the maximum 
number of paths is limited and this makes its hardware 
implementation easier. Variants of this algorithm include a 
sphere radius in order to reduce the number of explored paths 
[7] but unfortunately, this number is then non-fixed and 
unknown. As it is shown in [7], it is more likely to discard the 
ML solution at early decoding stages, since in latest levels the 
accumulated PED is closer to the final total distance. Thus, the 
method can also be modified to work with a different k values 
at different decoding levels, which is called Dynamic K-Best.   

IV. CONDITION NUMBER 
The sensitivity of the solution of a non-singular system of 

linear equations Ax = b with respect to perturbations of the 
matrix A is directly related to the condition number ( )κ A  [6], 

which is defined as 1 .( )P P P
κ −=A A A  It can be noticed 

that ( )κ A  is a function of the lP norm, generally only  l1, l2 
and l∞ norms are useful in practice. The variation of κ with the 
norm can be somewhat predicted, since on a finite dimensional 
vector space, all norms are related [8]. For instance, the 1κ and 

2κ are related on nℜ and their equivalence is given by 

2 1 2
1 ( ) ( ) ( ).n
n

κ κ κ≤ ≤A A A   (4) 

A. Condition number estimator 
It is important in practice when solving linear systems to 

have some estimate of ( )κ A  which will give at least a reliable 
indication of its order of magnitude. When a linear system 
Ax = b  has been solved by a direct method, one has some 
factorization of A and it is natural to make use of this in 
determining the estimate of ( )κ A . The problem is perhaps 
simpler when we have a factorization of the form A=QR, 
which is known as the QR factorization, where Q is orthogonal 
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QQT=I and R is upper triangular. In this case 
2 2

=A R and 
1 1

,
2 2

− −=A R  what means that ( ) ( )2 2 .κ κ=A R  

However, we concentrate on estimating ( )1 ,κ R  since the l1 
norm of R can be efficiently computed [6][9] and can be used 
as an estimator of ( )1 .κ A  Although other possibilities exist, 
this estimator has shown to be very useful when working with 
SD methods, since a QR factorization of the channel matrix is 
always available and it is used in the present work. 

V. COMBINED DECODER 
As it was explained above, the proposed K-best decoder 

will select a low value of k while working with well-
conditioned channels and switch to a higher value of k whether 
the channel is unfortunately ill-conditioned. This way a greater 
decoding tree is visited when dealing with poor channels and 
there is less probability of discarding the ML solution too early. 
An estimator of the condition number together with a threshold 
condition number, denoted by thκ , are used to classify the 
channels and consequently fix the k parameter. 

In order to estimate thκ  it is very helpful to represent 
within a determined range of condition numbers the BER of the 
lower performance algorithm used in the combined decoder. 
This way it can be observed the condition number values that 
make the BER exceed the mean BER achieved by this 
algorithm. For instance, the mean BER of the K-Best algorithm 
with k=2 and 20dBρ =  on a 4x4 MIMO system working with 
a 16-QAM alphabet was given by BER2-Best=0.022. As 
expected, Fig. 2 shows that the BER of this decoder increases 
as the condition number of the matrix does. The BER is almost 
every time below the BER2-Best,, for channels with κ<30, see 
Fig. 2, therefore this value of thκ could be chosen. In section 

IV, the value of 60thκ =  is selected as well for this system, in 
order to compare the results.  
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Figure 2.  BER for the K-Best decoder with  k=2 and 20dBρ =  on a 4x4 
MIMO and 16 QAM as a function of the channel condition number in 1-norm. 

An alternative to choose the threshold condition number 
can be based on the desired average computational cost of the 
combined algorithm, which is related to the average number of 
expanded nodes, n. It is somewhat possible to estimate the 

threshold condition number using the desired average number 
of expanded nodes, n, and the number of expanded nodes of 
each of the decoders that compose the combined one, together 
with the probability distribution of the 1-norm condition 
number of a given random model of channel matrix [10]. For 
instance, in case of combining two K-Best algorithms with k1 
and k2, 1 2k k< , for a threshold value of ,thκ  the relationship 
between the numbers of expanded nodes, which is very closely 
related to the computational costs, would be  

1 2
.Best Best)(1 +

th th thk kn P n P nκ κ κ κ κ κ= ≥ − ≥ −= − ⋅ ⋅      (5) 

where 
th

Pκ κ≥ is the probability of having a channel with 

condition number higher than a threshold .thκ   

VI. RESULTS 
In this section, we discuss the performance of the proposed 

combined receiver by means of simulations. The particular 
case of MIMO system used for simulations was a 4x4 system, 
working with a 16-QAM alphabet. In all the simulations the 
number of different realizations of the Gaussian channel was 
between 100 and 1000. The combined receiver switches 
between two K-Best algorithms: one with k=2, where the 
decoding tree is pruned from the first level, and the other with 
k=12, where the tree is pruned from the second level. 
Obviously, the behavior of the last case is almost ML. The 
performance of the combined receiver with condition number 
thresholds of 30thκ =  and 60thκ =  are shown in Fig. 3 and 
compared to an ML decoder. As expected, the performance is 
poorer as the threshold increases. Fig. 3 also includes the effect 
of the use of the condition number estimator instead of the 
exact value for the two cases of the combined receiver. It can 
be noticed that the estimation of the condition number does not 
degrade the performance of the detector in both cases. 
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Figure 3.  BER curve of the proposed combined K-best detector with two 
different thresholds on a 4x4 MIMO and 16 QAM, using the exact and 

estimated 1-norm condition number, all compared to ML detection.  
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Table I shows the average number of expanded nodes 
calculated using (5) for a K-Best decoder with k=2 and k=12, 
and for combined decoders with 30thκ =  and 60.thκ =  It can 
be noticed that for a given threshold, the complexity of a 
combined decoder can be predicted. And the other way round, 
a desired complexity can set the most suitable threshold. On 
the other hand, the complexity of the combined decoder 
reduces to a half for 30thκ =  or to a quarter for 60thκ =  
compared to the complexity of the 12-Best. The SNR 
degradation for BER=10-3 lies between 1 and 3dB, see Fig. 3. 

TABLE I.  AVERAGE EXPANDED NODES 

Average number of expanded nodes n 

2-Best 12-Best Combined 30thκ =  Combined 60thκ =  

16 88 40.06 23.41 

 

Finally, a variant of this combined receiver is presented. In 
this case the chosen low performance detector is ZF-SIC [1], a 
linear detector, and the K-Best detector with the higher value of 
k is replaced by an SD method called Automatic Sphere 
Decoder (ASD) [11] which always reaches the ML solution. 
The thresholds 10thκ =  and 30thκ =  were again chosen as 
described in section V. Notice that these thresholds are lower 
than the ones in the combined decoder using K-Best 
algorithms. This was somewhat expected since the condition 
number was calculated over the complex channel matrix (4x4) 
with half of the dimension of the real one and it is known that 
when the matrix elements are randomly and independently 
distributed as normal or uniform with zero mean and unit 
variance, the increase of the condition number is approximately 
linear in the size of the matrix [10]. Fig. 4 illustrates the 
performance of this detector. As it happened in Fig. 3, the 
higher the threshold is, the poorer the detector performs. The 
advantage of this method is that now we have a method that is 
ML and therefore achieves the best performance. 
Unfortunately, now neither the complexity can be bounded by 
a value nor the hardware adapted to deal with a single type of 
an scalable algorithm, as it occurs when using K-Best 
algorithms. 

VII. CONCLUSIONS 
A combined receiver that switches between a better 

performing decoder and worse, but faster, one, has been 
developed. The criterium to switch is based on the condition 
number of the channel matrix. In particular, two different 
combined decoders were presented, one switching between two 
K-Best algorithms and another combining ASD and ZF-SIC 
decoders. A method to compute the 1-norm condition number 
of a matrix using the QR decomposition, which has to be 
necessarily calculated for Sphere Decoding, is also presented 
together with two ways for selecting the condition number 
threshold, which have shown to be very useful in practice. In 
the simulations, we could observe that the final complexity can 
be adjusted with a threshold value in the K-Best combined 
decoder. Another interesting result is that the condition number 

estimation does not alter the achieved BER of a combined 
detector. Both things make the K-best based combined decoder 
a meaningful detection algorithm for practical systems. 
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Figure 4.  BER curve of the ASD, ZF-SIC decoders and a combination of 
them with different thresholds on a 4x4 MIMO and 16 QAM. 
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MIMO Channel Matrix Condition Number
Estimation and Threshold Selection for Combined

K-Best Sphere Decoders
Sandra Roger, Alberto Gonzalez, Vicenc Almenar and Antonio M. Vidal

Abstract—It is known that channel matrix condition number
represents an important influence on the usual detectors per-
formance. Therefore, a different detection algorithm depending
on the channel matrix condition number can be selected in
order to achieve a lower complexity than already proposed algo-
rithms with similar performance. Several authors have proposed
combined decoders based on channel matrix condition number
thresholding. These combined algorithms need an estimation
stage of the channel matrix condition number and a previous
selection of a suitable threshold condition number. This letter
presents a meaningful algorithm for finding the 2-norm condition
number of a MIMO channel matrix, specially suitable for
combined sphere decoders. Also, two possible threshold selection
methods are presented. A practical implementation of a combined
K-Best decoder is shown as application example.

Index Terms—MIMO detection, K-Best Sphere Decoder, ma-
trix condition number estimation, threshold selection.

I. I NTRODUCTION

Maximum-likelihood (ML) detection over Gaussian
Multiple-Input Multiple-Output (MIMO) channels is shown
to get the lowest Bit Error Rate (BER) for a given scenario
[1]. However, it has a prohibitive complexity which grows
exponentially with the number of transmit antennas and
the size of the constellation. Motivated by this, there is a
continuous search for computationally efficient suboptimal
detectors, as the well-known linear detectors based on the ZF
or MMSE approaches [1]. Recently, some other suboptimal
techniques as the K-Best Sphere Decoder (SD) algorithm
have been developed [2], [3]. These methods exhibit fixed
complexity, which is very useful for real time detection and
hardware implementation [4]. Furthermore, experiments [5]
show that the channel matrix condition number is strongly
related to the performance of these suboptimal detection
schemes, since it is a measure of how the original constellation
is distorted by the channel. For instance, Fig.1 shows the
degradation performance of some MIMO detectors with the
channel matrix condition number for a value ofρ = 20. Note
that it can be found a channel matrix condition number value
that makes the performance of 5-Best equal the one of 8-Best
or even the one of ML. Also, as the condition number gets
higher, the performance of 8-Best is not as much degraded as
the one of 5-Best. Considering this, it seems obvious that a

Sandra Roger (1), Alberto Gonzalez and Vicenc Almenar are with the In-
stitute of Communications and Multimedia Technologies (iTEAM), Technical
University of Valencia, Spain e-mail: (1) sanrova@iteam.upv.es.

Antonio M. Vidal is with the Department of Computer Systems and
Computation (DSIC), Technical University of Valencia, Spain.

suitable combination of both algorithms based on the channel
condition number could have an almost ML behavior for
this value ofρ. It can also be shown [6] that the detection
degradation increases with the number of antennas, which
fixes the size of the channel matrix.
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Fig. 1. BER of different MIMO detectors with a 16-QAM constellation,
a 4x4 MIMO channel and a value ofρ = 20, as a function of the channel
matrix condition numberκ2(H).

Several authors have developed combined detectors based
on condition number thresholding, for instance ML and ZF
were combined in [7] and two K-Best algorithms with different
K were combined in [8]. These combined detectors need an
estimation stage of the channel matrix condition number and
a previous selection of the most suitable threshold condition
number in each case, as illustrated by Fig.1. This letter
presents first a meaningful algorithm for finding the 2-norm
condition number and next two possible threshold selection
strategies. Although the proposed methods are specially suit-
able for combined Sphere Decoders, they can also be useful
for other combined detectors.

A. System model.

Present work is focused on the well-known Bell-Labs Lay-
ered Space Time system (BLAST), although its contribution
is not limited to this particular case. Let us consider a MIMO
system withnT transmit antennas,nR receive antennas with
nR ≥ nT and a signal to noise ratio denoted byρ. The
baseband equivalent model for such MIMO system is given
by

xc = Hcsc + vc, (1)
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where sc represents the baseband signal vector transmitted
during each symbol period formed by elements chosen from
the same constellation such as M-QAM. Vectorxc in (1)
denotes the received symbol vector andvc is a complex white
Gaussian noise vector with zero mean and unit variance. The
channel matrixHc is modelled as flat fading and it is formed
by nR × nT complex-valued elements,hij , which represent
the complex fading gain from thej-th transmit antenna to
the i-th receive antenna. Moreover, the channel matrixHc is
considered known at the receiver and block fading. It should
be noted that in order to apply SD methods to the system
model (1), the complex model is usually transformed into a
real one [2] and this fact will affect to the condition number
value, since it depends on the channel matrix size. From now
on, the real form of the system (1) will be considered, where
the real signal vectors will becomex, s, v and the real channel
matrix will be now calledH.

B. K-Best Sphere Decoding Algorithms.

Given the received signalx, the detection problem consists
in determining the transmitted vector̂s with the highest a
posteriori probability. This is typically carried out in practice
by means of solving the following least squares problem

ŝ = arg min
sεM2nT

||x−Hs||2 , (2)

where ‖ · ‖ denotes the 2-norm. A QR factorization of the
channel matrix(H = QR) allows transforming the system to
an equivalent one that can be solved using a tree structure
[9]. Matrix Q is orthogonal,QQT = I, and matrixR can be
decomposed in an upper triangular2nT ×2nT matrix, denoted
by R1, and a(2nR − 2nT ) × 2nT matrix of zeroes. In case
of multiplying (2) byQT and callingy = QTx, the problem
(2) can be equivalently expressed as

ŝ = arg min
sεM2nT

||y −R1s||
2 (3)

= arg min
sεM2nT

2nT∑
i=1

|yi −
2nT∑
j=i

rijsj |2. (4)

where the triangular structure ofR1 has also been exploited.
In order to solve (4) via a tree search, the following

recursion is performed fori = 2nT , . . . , 1:

Ti(S(i)) = Ti+1(S(i+1)) + |ei(S(i))|2 (5)

ei(S(i)) = yi −
2nT∑
j=i

rijsj , (6)

where i denotes each tree level,S(i) = [si, si+1, . . . , s2nT
],

Ti(S(i)) is the accumulated Partial Euclidean Distance (PED)
up to level i and |ei(S(i))|2 is the distance between levelsi
andi+1 in the decoding tree, which will be represented as the
weight of branch. Partial solutions are represented as nodesn
and nodes are expanded in order to look for the ML solution or
the closest lattice point. It is required to find the ML solution
expanding as few nodes as possible in order to reduce the
computational effort. K-Best SD algorithm [2] expands only
thoseK survivor nodes that show the smallest accumulated

PEDs at each level of the decoding tree. The detected signal
vector ŝ is given by the path from the root up to the leaf node
with the smallest total Euclidean distance. The main advantage
of this method is that the maximum number of visited paths
is limited, that yields a fixed computational effort and makes
the algorithm hardware implementation easier.

C. Combined K-Best Sphere Decoder.

In order to better illustrate the contributions of this letter, it
will be considered the Combined K-Best Sphere Decoder pro-
posed in [8]. Fig.2 depicts the flow diagram of this combined
sphere decoder which always works with a K-Best detector
but it adjusts itsK value depending on how the channel is
conditioned, a low value ofK is used for well-conditioned
channels and a higher value ofK is selected whether the
channel is unfortunately ill-conditioned. This way, a more
complex detection algorithm is used when dealing with poor
channels, thus there is less probability of discarding the ML
solution too early. The steps to perform the combined detection
are next detailed. Firstly a threshold condition number is
chosen. It must be checked whetherH changed, in case it
did not change, the currently fixed K-Best is used, otherwise
the new channel condition number has to be estimated. Then,
using the thresholdκth, the suitableK value is selected
betweenk1 and k2 with k2 > k1. Finally, K-Best Sphere
Decoding is used for carrying out the detection. It can be
observed in Fig.2 that, as said before, an estimator of the
condition number together with a threshold condition number,
denoted byκth, have been used to classify the channels and
consequently fix theK value. This letter develops a low
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Fig. 2. Flow diagram of a combined K-Best Sphere Decoder with threshold
selection and channel condition number estimation.

complexity estimator of the condition number of a matrix
that makes use of the QR factorization [10], which is always
available when working with SD methods [9] and often with
other suboptimal detectors [1]. A meaningful estimator of
the 2-norm of a matrix together with the Power Method for
computing eigenvalues [10] can provide a reliable and useful
approximation of the condition number of the channel matrix.

II. CONDITION NUMBER ESTIMATION.

The sensitivity of the solution of a non-singular system
of linear equationsAx = b with respect to perturbations of
the matrixA is directly related to its condition number [11].
Although the matrix condition number depends on the selected
norm, if the matrix is well-conditioned, the condition number
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will be small in all norms, otherwise it will be large. Thus, the
most convenient norm is usually selected between the 1-norm,
2-norm and∞-norm. The 2-norm condition number is defined
as

κ2(A) =
σmax

σmin
, (7)

being σmax and σmin the maximum and minimum singular
values ofA respectively. WhenA is squaren×n, κ2(A) can
be also computed as‖A‖‖A−1‖. Although other condition
numbers can be considered,κ2(A) will be selected in our
work because of some special properties presented below.
Fig.3 shows the probability density function of the 2-norm
condition number for a 8x8 real Gaussian MIMO channel
matrix, it can be seen that although lower condition number
values are more likely, there also appear several high values of
it that can degrade the performance of suboptimal detectors.
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Fig. 3. Experimental probability density function of the 2-norm condition
number of 8x8 real Gaussian channel matrices.

In order to carry out the combined detection in practice, it is
important to have a reliable estimate ofκ2(H). As explained
above, K-Best requires a factorization of the formH = QR.
Only in case of working with 2-norm it is true that

κ2(H) = κ2(R1) = ‖R1‖‖R−1
1 ‖. (8)

Due to the fact thatR1 is triangular, it can be noted that‖R1‖
can be calculated faster than‖H‖. Moreover,‖R1‖ = σmax

can be efficiently computed by applying the Power Method
[10]. Furthermore, it will be possible to avoid calculating the
inverse ofR1, which requiresO(n3) operations, by using an
appropriate estimator of‖R−1

1 ‖ = 1/σmin with only O(n2).

A. The Power Method for computing‖R1‖
The Power Method is an iterative algorithm that obtains

the largest eigenvalue of a given matrix. Given an × n
diagonalizable matrixA with |λ1| > |λ2| ≥ . . . ≥ |λn|
eigenvalues, this method starts with a unit 2-norm vector
q(0) ∈ Rn as an initial approximation of one of the dominant
eigenvectors. At each iterationi, it computes the newq(i) in
two steps. First, the vectorz(i) = Aq(i−1) is calculated and
next it is normalized resulting inq(i) = z(i)/‖z(i)‖. After the
last iteration of the process, the maximum eigenvalue can be
computed as

λmax = [q(i)]T Aq(i). (9)

In our work, the Power Method is proposed for calculating
‖R1‖ = σmax, previously calculating the maximum eigen-
value ofA = RT

1 R1 which corresponds toσ2
max (obviously,

the method can be applied toRT
1 R1 without computing

explicitly this product). Considering that the maximum size of
the channel matrices is usually up to 8x8, a maximum number
of 10 iterations for running the Power Method gets quite
accurate results. Thus, the number of flops can be computed
as21n2 + 22n.

B. Estimator of‖R−1
1 ‖

This method was firstly developed in [11]. Two triangular
systems need to be formulated. The first one isRT

1 x = b and
b has to be chosen so that its solutionx̂ will make ‖x̂‖/‖b‖
as large as possible. This is achieved by an iterative process
with n steps, considering the size ofR−1

1 is n. At each step
i, bi is chosen between+1 and−1, in order to maximizexi,
which will be computed as

riixi = bi − (r1ixi + . . . + ri−1ixi−1). (10)

The second system to solve isR1y = x̂. Once its solution
ŷ is obtained, the estimation for‖R−1

1 ‖ = 1/σmin is given
by ‖ŷ‖/‖x̂‖. Although other estimators of1/σmin have been
proposed, for example in [7] the authors estimate bothσmax

and1/σmin by means of the Power Method, this estimator has
been selected in the present work mainly because it exploits
the QR factorization used in the K-Best algorithms. Also it is
very suitable to be implemented in practice and it only requires
2n2 + 6n flops.

As soon asσmax and 1/σmin are available,κ2(R1) is
calculated as the product of both values. Fig.?? shows that the
relative error of our proposed estimator forκ2(R1) is higher
than the one of the Power Method for computing the whole
condition number. However, as can be seen in Fig.??, the error
magnitude is not very significant, making this estimator useful
for combined detectors. Table 1 shows that the complexity of
our proposed estimator measured in number of flops is almost
the half of the complexity of the estimator that only employs
the Power Method.
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Fig. 4. Error of our proposed estimator compared with the error of the
Power Method for computing the whole condition number. (a) Relative. (b)
Absolute.

III. T HRESHOLD SELECTION

Two meaningful ways of selecting the threshold condition
numberκth in a combined decoder are presented throughout
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TABLE I
MEASUREDCOMPLEXITY IN NUMBER OF FLOPS

Real channel Proposed estimator forκ2(R1) Power Method forκ2(R1)

4x4 482 850

8x8 1698 3042

16x16 6338 11458

this section. The first one is based on the analysis of the
achieved BER of the lower performance algorithm used in the
combined decoder. Considering the algorithm has an average
BER denoted byBERav, a suitableκth must guarantee that
BER ≤ BERav when our channel hasκ2(H) ≤ κth. This
will be done in order to assure that the lower performance
algorithm is only used when it has optimal performance.
Taking into account these considerations, BER values of the
lower performance algorithm are represented within a range
of condition numbers in a similar manner than in Fig.1. The
condition number value corresponding toBERav is selected
asκth, since forκ2(H) values higher thanκth it becomes true
that BER > BERav.

The second method for selecting the threshold states that the
chosenκth should provide the desired average computational
cost of the combined algorithm, which is related to the
average number of expanded nodesn. For instance, in case of
combiningk1-Best SD andk2-Best SD, consideringk1 < k2,
for a threshold value ofκth, the resulting average number of
expanded nodesnκth

would be given by

nκth
= (1− Pκ≥κth

)nk1−Best + Pκ≥κth
nk2−Best, (11)

where Pκ≥κth
is the probability of having a channel with

condition number higher than a thresholdκth and it can
be calculated as a cumulative distribution of the probability
density function depicted in Fig.3. The number of expanded
nodes in eachki-Best algorithm is denoted bynki−Best (for
i = 1, 2). It can be noted that the desired maximum average
number of expanded nodes will determine the threshold value.
In the same way, for a given threshold, the number of expanded
nodes will be straightforwardly predicted.

IV. RESULTS

A 4x4 MIMO system and a 16-QAM alphabet were con-
sidered for our simulations. Our proposed condition number
estimator and threshold selection methods were applied over
a combined K-Best algorithm withk1 = 2 and k2 = 12.
The threshold valuesκth = 10 and κth = 20 were chosen
following the first proposed threshold selection method. The
algorithm was run first using the exact 2-norm condition
number and afterwards using its proposed estimator. Fig.5 il-
lustrates that estimating the 2-norm condition number does not
change the performance of the combined detector significantly.
Therefore, the estimator is very suitable for this combined
sphere decoder.

V. CONCLUSION

Throughout this paper it has been proposed a condition
number estimator based on the QR decomposition of the
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Fig. 5. Comparison between the BER of the combined K-Best detector with
two different thresholds on a 4x4 MIMO using 16QAM, working with the
exact and estimated 2-norm condition number.

channel matrix and also on the Power Method, which has
been shown to be very useful for combined detectors using
SD methods. Moreover, two meaningful ways of determining
a suitable threshold were also cited. In the last part, two
particular cases of combined detectors were simulated, using
in both the exact and estimated condition number. It can
be concluded that the condition number estimator does not
degrade the performance of the combined sphere decoder at
all and the threshold selection algorithms provide successful
results.
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