
      TRABAJO DE FIN DE MASTER 
               Presentado por           Para la obtención del       
 

Development of a daily scale hydrological forecasting system for the Júcar river basin 

Avesani Federico 

Master en Ingeniería de Caminos, Canales y Puertos  

ETS INGENIEROS DE CAMINOS,CANALES Y PUERTOS 

 Curso: 2018/2019 
 Fecha: 21/03/2019 
 Tutor: Pulido Velázquez, Manuel Augusto 
 Cotutor: Macián Sorribes, Héctor 





Development of a daily-scale hydrological forecasting system for the Júcar river basin (Spain) 

III 

Thanks 

First of all, I need to thank the people behind the Erasmus programme, for giving me the 
opportunity to move to another country to do my Master’s thesis. Without its help, it would 
have certainly been more difficult to do so. 
I thank the ECMWF for providing the forecasts data, which use was fundamental for this work. 
I thank AEMET and UC for the precipitation and temperature historical data provided for this 
work (Spain02 v5 dataset, available at http://www.meteo.unican.es/datasets/spain02). 
I thank Prof. Andrea Castelletti, of Politecnico di Milano, for putting me in contact with Prof. 
Manuel Pulido of UPV, the Advisor for my thesis work. 
I thank the Advisor prof. Manuel Pulido, for providing me with a very interesting and 
challenging topic on which to elaborate my work, and for the kind support and all the 
suggestions given. 
I thank the Post-doc and Co-advisor Hector Macian-Sorribes, which followed me during each 
stage of the development of my work, with incredibly swift and complete replies to my e-mails, 
despite being always quite busy with other works, and for encouraging me during the work 
with his positive attitude. 
I thank the professor of my Spanish language course Aina Gallart Fos, which helped my 
process of learning the Spanish language, fundamental during my stay in Spain, with 
interesting, light and useful lessons. I enjoyed every single moment of it, and I learned a 
language also thank to her. 
Last, but not less important, I have to thank the people who were not directly involved in my 
work, but nevertheless provided me with significant personal support which contributed to the 
final work:  
The ESN Valencia volunteers, for giving access to Erasmus students to a wide variety of travels, 
events and activities, which made me enjoy my stay in Spain even more; 
The good friends I met here, with whom I spent an amazing semester; 
All my other friends, which were always close to me and kept in touch despite the distance;  
My family, which has been supporting my university career during more than 5 years; 
My girlfriend Natalia, which I met here. She provided me a lot of help learning the Spanish 
language and support during the thesis work. 



IV 

Prospectus 

The present work aims to develop a prediction system for the future hydrological conditions 
of the river Júcar. The HBV model and 7 month-lead daily weather forecasts (precipitation and 
temperature) provided by the ECMWF (European Center for Medium-Range Weather 
Forecasts) are the pillars of this research. The sub-basins considered are those competent to 
the reservoirs of Alarcón, Contreras and Bellús. The model is calibrated with historical data. 
The evaporation time series, input necessary to the model, was calculated with the 
Thornthwaite equation. The ECMWF forecasts are manipulated through a statistical method 
of post-processing, the quantile mapping. The post-processing operation is carried out with 
the help of the software MATLAB: the amount of data to deal with is considerable and several 
hundreds of lines of code have been written for that scope. The calibrated model is then run 
with the bias-corrected forecasts and tested over a limited period of time, to assess its 
predictive ability. The results observed show a very promising picture: the system reliably 
simulated, month in advance, the general trend of the runoff time series, especially for dry 
periods. 
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CHAPTER 1 
INTRODUCTION 

1.1 Hydrological forecasting and decision making 
Since ENIAC (Electronic Numerical Integrator and Computer) was used to create the first 
forecasts via computer in 1950, there have been huge developments on climate and 
meteorological forecasts and natural resources system models, also thanks to the exponential 
increase in computation capacity. The main push to this development is given by the fact that 
many of the Earth’s natural resources, on which we as humans depend for our survival and 
development, are finite or, at best, limited. Yet the global population continues to grow, thus 
generating an ever-increasing demand for safe living space, fertile land, clean air, and 
especially fresh water. Fresh water availability and abundance has always been, in human 
history, a critical topic. Currently, more than two billion people live in highly water-stressed 
areas because of the uneven distribution of freshwater in time and space. Climate change is 
expected to accelerate water cycles and thereby increase the available freshwater. However, 
changes in seasonal patterns and increasing probability of extreme events may offset this effect 
(Ahuja et al., 2007; Luber & McGeehin, 2008).  The two extreme conditions, excess - as in 
floods - and scarcity - as in droughts - have caused and continue to cause relevant damage to 
the human civilization and to the environment. Anyway, there is great room for improvement 
in the reduction of the menace of these natural threats and early warnings of incoming extreme 
events are the first systems needed to initiate the necessary prevention actions. In this view, 
hydrological forecasts become of critical importance: they are the initiators of a crucial 
decision-making process which aims to lower the impacts of floods and droughts. 
Decision-making is generally speaking a complex process. There is wide literature about it, the 
possible techniques to tackle it (cost benefit analysis, multi-objective optimization, ELECTRE 
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methods, etc.), and the uncertainties which are inherent to the procedure (Coello Coello, 
Lamont, & Van Veldhuizen, 2007; Dupuit, 1844; Ehrgott, 2005; Figueira, Mousseau, & Roy, 
2016). Even in the ideal case, when all the necessary information is provided, it is not simple 
to take a decision, which could result in a non-efficient action, or in an unequal distribution of 
resources, and consequently possibly in socio-economical conflicts (Cooper, Barbara, Rice, 
1972). The latter are often present, especially if the information on which the decision is taken 
is not sufficiently clear, or certain. Stakeholders could try to manipulate information, in order 
to change the decision in their favour (Tversky & Kahneman, 1981). For the aforementioned 
reasons, it is fundamental to obtain satisfactory and reliable information about the system and 
to work with trained decision-makers. 

1.2 Research purpose 
The Júcar River Basin, located in eastern Spain, is subject to a typical Mediterranean climate, 
which results in a very irregular river flow pattern and a difficult water management operation. 
In addition, the area is characterized by a very dense population and active industrial and 
agricultural activities, which, due to the high-water demand, furtherly exacerbate the situation 
of the water resources management. The proposed research consists in the development of a 
hydrological daily-scale forecasting system specifically calibrated to the upper Júcar river 
basin, which contributes to the majority of the water resources available and holds the main 
reservoirs of the system, able to provide adequate forecasts about its future hydrological state. 
To do so, the seasonal meteorological forecasts provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) SEAS5 forecasting product (daily scale, 7-month lead 
time), through the Copernicus climate change service (https://climate.copernicus.eu/), after 
the application of an appropriate bias-correction algorithm, will be used as input to a daily-
scale hydrological model based on the rainfall-runoff model HBV. The bias-correction 
algorithm is applied to the forecasts in order to adjust the behaviour of the meteorological 
forecasts, generated using a worldwide coverage model, to the local meteorological conditions, 
using as reference data historical observations from the Spain02 v5 database. The HBV model 
will be calibrated and validated using historical meteorological and hydrological data of the 
Júcar River Basin. Then, the model will be fed with the bias-corrected ECMWF forecast data 
to get the desired run-off predictions. The resulting model will be able to deliver forecasts of 
the hydrological conditions, which will provide valuable insights about the future hydrological 
state of the basin, something crucial to improve the quality of the operational decisions made.  
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1.3 Thesis structure 
This work is divided into 7 parts.  

 Chapter one is dedicated to a brief introduction to the present research;  
 Chapter two provides a deep introspection into the materials and tools used to 

elaborate the data; 
 Chapter three illustrates the detailed procedure followed in the work; 
 Chapter four describes the case study: territory, geomorphology, economy, etc; 
 Chapter five reports the results obtained and critically discusses them; 
 Chapter six resumes the findings of the work, illustrates the conclusions and gives 

hints on possible future research lines;  
 The annex includes more plots of the simulations carried out and the source codes 

written. 
 



Chapter 2 Materials and tools 

4 

CHAPTER 2                    
MATERIALS AND TOOLS 

2.1 European framework on meteorological and 
hydrological forecasting 

Plenty of services are available all over the world to provide early drought/flood warnings. 
They are a clear example of two of the many possible uses of hydrological predictions. They 
are based on models and/or indicators which, using as input meteorological predictions of 
various forms (short term and long-term, ensemble or deterministic), compute the available 
water quantity. The EU possesses services for early warning of floods and droughts. 
The European Flood Awareness System (EFAS) is the service devoted to increase preparedness 
for riverine floods across Europe. It was started in response of the disastrous floods in Elbe 
and Danube rivers in 2002, which confronted the European Commission with non-coherent 
flood warning information from different sources and of variable quality, complicating 
planning and organization of aid. The aim of EFAS is to gain time for preparedness measures 
before major flood events strike both in the Member States as well as on European level. The 
system runs on both deterministic short-term forecasts and medium-range probabilistic 
ensemble forecasts, based on past years data. This data is the input to the LISFLOOD 
hydrological model. This latter is a hybrid between a conceptual and a physical rainfall-runoff 
model combined with a routing module in the river channel. It consists of 12 different 
subroutines, which compute the direct runoff from the surface soil and leaching from subsoil 
to the river catchment. (Bartholmes, Thielen, Ramos, & Gentilini, 2009; Thielen, Bartholmes, 
Ramos, & De Roo, 2009). EFAS is running fully operational since autumn 2012.  
The European drought observatory (EDO) is a service run by the European Commission’s 
Joint Research Centre (JRC) with the aim of early drought warnings and observation. The 
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monitoring of droughts is based on the analysis of a series of indicators, representing different 
components of the hydrological cycle (e.g. precipitation, soil moisture, reservoir levels, river 
flow, groundwater levels) or specific impacts (e.g. vegetation water stress) that are associated 
with a particular type of drought. 
These instruments are based on the climate data provided by the Copernicus programme, the 
European Union's Earth Observation Programme. Copernicus services are based on 
information from a dedicated constellation of satellites, known as “Sentinels”, as well as tens 
of third-party satellites known as “contributing space missions”, complemented by “in situ” 
measurement data. The Copernicus Services transform this wealth of satellite and in situ data 
into value-added information by processing and analysing the data, integrating it with other 
sources and validating the results. Datasets stretching back for decades and are made 
comparable and searchable, thus ensuring the monitoring of changes; patterns are examined 
and used to create better forecasts.  These value-adding activities are streamlined through six 
thematic streams of Copernicus services: 

 Atmosphere Monitoring; 
 Marine Environment Monitoring; 
 Land Monitoring; 
 Climate Change; 
 Emergency Management; 
 Security. 

2.2 SEAS5 weather forecasts  
The forecasts exploited in this research are generated by the SEAS5 system by ECMWF. SEAS5 
forecasts are created using computational models to calculate the evolution of the atmosphere, 
ocean and land surface starting from an initial state based on observations of the Earth system. 
Because of its nature of chaotic system, the atmosphere has the property of “forgetting” initial 
conditions: the importance of the past atmosphere state in determining its current one quickly 
fades away and after 10 to 15 days it is not relevant, meaning that other mechanisms have to 
be searched for longer lead-time forecasts. Longer term predictions of the climate are possible 
due to a number of components in the Earth system - E.g. the Madden-Julian Oscillation 
(MJO) and the El Niño-Southern Oscillation (ENSO) -, which evolve more slowly than the 
atmosphere. The SEAS5 system consists of an ocean analysis to estimate the initial state of the 
ocean, a global coupled ocean-atmosphere general circulation model to calculate the evolution 
of the ocean and atmosphere, and a post-processing suite to create forecast products from the 
raw numerical output. The ocean analysis is carried out by the NEMO (Nucleus for European 
Modelling of the Ocean) ocean model, while the atmospheric component is the ECMWF IFS 
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(Integrated Forecast System) version 43r1. SEAS5 forecasts with worldwide coverage are 
open-access available through the Copernicus Climate Change Service (C3S). They offer 
forecasts since 1981. The hindcast period of the SEAS5 forecasts ranges between 1993 and 
2016, and consists on making forecasts of the past in order to set up and adjust the model, as 
well as to provide the user with data with which the skill of the forecasting system can be 
assessed. The forecast period ranges between 2017 until now, being continuously updated. The 
set of forecasts for the hindcast period comprises 25 ensemble members or scenarios, while 
the set for the forecast period has 51 members. The difference on the size depending on 
hindcast or forecast is due to computational requirements. 

2.3 Bias correction of meteorological forecasts 
 All models are only abstract representations of reality, and model-generated forecasts are 

plagued by uncertainties and biases from various sources. Biases can result from the input data 
(e.g. measurement errors), the estimated model parameters, initial and boundary conditions, 
model structure or simplifying assumptions. Traditional meteorological forecasts are 
generated in a deterministic manner, i.e., the forecasts are provided in the form of a single 
time series. This type of forecasts is inherently incapable of accounting for forecast 
uncertainty. To assess forecast uncertainty and for different objectives (droughts, floods) the 
ensemble forecasting approach has gained popularity (Cloke & Pappenberger, 2009; Yang, 
Zhou, Yu, Krysanova, & Wang, 2015). Ensemble forecasts are generated by running the model 
(or models) several times with slightly perturbed factors such as model initial condition, model 
forcing, or model physics. This type of forecasts provides not only the most likely scenario for 
a given event but also associated quantitative uncertainty information. Studies have shown 
that ensemble forecasts can improve the forecast accuracy and extend the forecast lead times 
over deterministic forecast (Krishnamurti et al., 2000; Zappa et al., 2010). Regardless, biases 
from the forecast model will propagate to each subsequent step of modelling, degrading the 
overall quality of the resulting forecasts. Hence, it is necessary to apply statistical 
postprocessing methods to quantify and reduce those uncertainties. A well-constructed 
postprocessor achieves the following purposes:  

 it corrects the biases and dispersion errors in raw forecasts;  
 it preserves the predictive skill of the raw forecasts;  
 it downscales raw forecasts to the scale of applications (e.g., basin scale);  
 it generates ensemble members of interested variables, which preserve the 

spatiotemporal and intervariable statistical dependency structure. 
Different postprocessing methods have been developed for meteorological and other types of 
forecasts, due to their different statistical properties. For meteorological forecasts such as 
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surface air temperature and atmospheric pressure, the forecast errors can be represented by 
Gaussian distributions and can be corrected relatively easily by conventional regression 
methods. Postprocessing precipitation forecasts is more complicated because the distribution 
of forecast or observation of precipitation is a mixed discrete/continuous distribution, the 
forecast error is heteroscedastic and the extreme events are hard to represent because of 
limited samples (Scheuerer & Hamill, 2015). 
Over the recent years, plenty postprocessing methods have been proposed (Li et al., 2017), 
among them some examples are: 

 Quantile mapping: it aims to adjust the forecasts cumulative distribution function to 
match that of the historical observations (Piani, Haerter, & Coppola, 2010); 

 Rank histogram calibration: it is a method designed to calibrate forecasts based on the 
rank histogram of historical ensemble forecasts. Firstly, the constant biases in raw 
forecasts are removed. Then, the rank histogram is constructed based on the debiased 
forecasts and observations in the training datasets (Hamill & Colucci, 2002); 

 Ensemble pre-processor: this scheme is an example of a conditional distribution-
based method. It applies the conditional distribution formula to single-value (for 
example, the ensemble mean) raw forecasts to postprocess them. The conditional 
distribution of observations, given forecasts, combines both the prior climatological 
information and the model forecasts information. It is called ‘pre-processor’ because 
it deals with meteorological forecasts, which are inputs for hydrological models. It is 
a more complicated system, well suited to variables which present a degree of 
autocorrelation (J. Schaake et al., 2007); 

 Ensemble model output statistics: it is an example of regression-based method. These 
are convenient tools for modelling the statistical correlation between the predictand 
(i.e., the observation) and the predictors (i.e., the model forecasts). It is an evolution 
of classical regression0-based models, as in it takes into account the ensemble spread 
information to transmit it to the bias-corrected forecasts (Gneiting & Katzfuss, 2014; 
Gneiting, Raftery, Westveld, & Goldman, 2005). 

Quantile mapping is the bias-correction algorithm which has been selected to post-process the 
weather forecasts datasets employed in this work. Since the algorithm requires observations, 
it is calibrated and validated on historical weather forecasts (hindcasts) and the corresponding 
observations. This operation implies the hypothesis that the system will continue to behave in 
a similar way.   
Quantile mapping or cumulative distribution function (CDF) matching is a relatively simple 
postprocessing method that adjusts the CDF of the forecasts according to that of the 
observations. It receives its name due to the fact that performing it, each forecast value is 
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‘mapped’ to the corresponding quantile in the observation CDF. The exact procedure will be 
explained in details chapter 4.  
Quantile mapping has already been applied, among others, to the postprocessing of 
precipitation and temperature forecasts (Piani et al., 2010; Thrasher, Maurer, McKellar, & 
Duffy, 2012; Verkade, Brown, Reggiani, & Weerts, 2013). 

2.4 Hydrological forecasts 
Beyond providing protection from water shortages and possible flood damage, as mentioned 
before, proper forecasts of river flows and hydrological discharge can have a substantial 
economic impact, as this can help to improve the operation of water resource systems with 
significant benefits from water use and in the contract negotiation and hydropower sales 
(Harou et al., 2009; Kumar, 2012). Moreover, it is known that the flow of a river directly and 
indirectly influences its ecosystem: a higher flow results in a higher dilution effect, if any 
contaminant is present (almost in every catchment, in the modern era); different river flows 
change the state of river banks, modifying the habitat and thus the composition of the host 
species; different flow regimes have different sediment transport patterns, etcetera (Cheng et 
al., 2014; Falkenmark, 2004; Merritt, Letcher, & Jakeman, 2003). In order to take proper 
water management decisions, it is necessary to possess reliable hydrological forecasts. 

2.5 Hydrological models 
A mathematical hydrological model is an abstract model that uses mathematical language to 
describe the behaviour of a hydrological system. A model works receiving a state and an input 
(data collected or produced by another model) and generating an output. Models are generally 
composed by relationship and variables. Relationships describe the behaviour of the variables 
among each other, while variables are abstractions of system parameters of interest, that can 
be quantified. There are several types of models. The subdivision can be operated according to 
the structure of the model:  

 empirical models: they are purely data based, and don’t have any physical meaning 
behind the structure of the model itself. They look for a correlation between state, 
input and output, without trying to simulate any physical behaviour; 

 conceptual models: they try to describe the main dynamics occurring in the system, 
without the zeal of physical models; 

 physical models: they attempt at describing all dynamics occurring in the system. 
They are based on physical laws and are usually quite complex. 

The relationships constituting the model can have different mathematical forms:  
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 Linear or non-linear: related to the linearity or non-linearity of the equation 
describing the system; 

 Static or Dynamic: a dynamic model accounts for time-dependent changes in the state 
of the system, while a static (or steady-state) model calculates the system in 
equilibrium; 

 Discrete or continuous: a discrete model treats objects as discrete, such as the particles 
in a molecular model or the states in a statistical model, while a continuous model 
represents the objects in a continuous manner; 

 Deterministic or probabilistic (stochastic): a deterministic model is one in which every 
set of variable states is uniquely determined by parameters in the model and by sets 
of previous states of these variables; therefore, a deterministic model always performs 
the same way for a given set of initial conditions. Conversely, in a stochastic model 
randomness is present, and variable states are not described by unique values, but 
rather by probability distributions. 

Moreover, a hydrological model can operate in two modes: simulation and forecasting. A 
model used in simulation can be exploited to get information about the current state of a 
system, or the possible evolution of a system, given different circumstances (e.g., if decision 
“A” is taken, what will the outcome be). A model used in forecasting mode provides 
information on the (likely) future evolution of the system, providing different possible future 
scenarios and their respective probability of occurrence.  
Hydrological models are generally in the form of rainfall-runoff models: runoff is proportional 
to rainfall, with other factors modifying more or less the intensity of the proportionality 
between the two quantities. Conceptual rainfall-runoff models are widely used tools in 
hydrology. Contrary to more complex, physically-based models, the required input data are 
readily available for most applications. In spite of their attractiveness, conceptual models 
suffer from some fundamental problems. Some model parameters have a physical basis, but 
since they are effective parameters on the catchment scale, they are hardly measurable in the 
field. This makes a model calibration inevitable. However, it is often not possible to find one 
unique "best" parameter set, i.e. different parameters sets give similar good results during a 
calibration period (Vaze et al., 2010). Parameter uncertainty makes simulations for periods 
outside the calibration period less reliable. In addition, "model uncertainty" may exist, i.e. an 
uncertainty about which model to choose. 
However, the outstandingly higher simplicity, and the impossibility, at present time, of 
implementing (and executing) physical-based models of such complex systems, make of 
conceptual models the widest applied choice in the hydrology field. (Jakeman & Hornberger, 
1993; Moore, 2007; Todini, 1996). 
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 The main parts of a conceptual hydrological model are usually precipitation, snow, soil 
moisture, subsurface, and ground water models, which collaborate to produce an estimate of 
the total flow. Usually, a watershed is divided into sub-basins, in order to increase the accuracy 
in the simulation and to account for spatial heterogeneities: each sub-basin is calibrated 
separately in the model, obtaining this way different model parameter sets for each sub-
section. The runoff from each sub-basin is then connected to the main river and, eventually, 
to a lake. In the most recent years, research has focused more on stochastic manipulation of 
data (e.g., ensemble predictions, Monte Carlo analyses, etc) and forecasts quality, calibration 
and validation, uncertainty quantification, adaptation of the model to particulars situation, 
etc, rather than on the creation of new model types (Addor, Clark, & Nijssen, 2016; Arsenault, 
Poulin, Côté, & Brissette, 2014; R. J. Donohue, Roderick, & McVicar, 2010; Randall J. 
Donohue, Roderick, & McVicar, 2012; Holkje Barendrecht et al., 2018; Jin, Xu, Zhang, & 
Singh, 2010) . 
In this research, a conceptual model will be used to solve a water balance problem. A general 
water balance equation is: 

ࡼ = ࡾ + ࡱ +  Eq. (2.1) ࡿ∆ 
where ۾ is precipitation, ܀ evapotranspiration,  ۳ streamflow and ∆܁ is the change in storage 
(in soil or the bedrock/ground water). Eq. (2.1) uses the principles of conservation of mass in 
a closed system, whereby any water entering a system (via precipitation), must be transferred 
into either evaporation, surface runoff (eventually reaching the channel and leaving in the 
form of river discharge), or stored in the ground. 
Use of water balance models, for different purposes (drought forecasting, runoff evaluation, 
crop yield estimation, climate impact assessment, etc), have been widely explored in the recent 
past. (Gleick, 1987; Granier, Bréda, Biron, & Villette, 1999; Reynolds et al., 2000; J. C. 
Schaake, Koren, Duan, Mitchell, & Chen, 1996). Through mass conservation law, the 
relationship between water inflow, outflow, and storage in a specified catchment is 
mathematically derived by the water balance model, whose parameters represent the 
behaviours of the catchment. 

2.5.1 Model calibration and validation 
Conceptual and empirical hydrological models need a calibration process, which consists in 
the search for the best performing parameter set, with respect to previously established 
objective function(s). Up to this day, plenty of methods have been developed with the end of 
calibration (J. S. Bergstra, Bardenet, Bengio, & Kégl, 2011; Claesen & De Moor, 2015). Each 
one presents advantages and disadvantages.  
The traditional way of performing optimization has been grid search, or a parameter sweep, 
which is simply an exhaustive searching through a manually specified subset of the parameter 
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space. This method may require an excessively long optimization time, especially in the case 
of a high number of degrees of freedom (i.e., a high dimension parameter set) and/or 
complicated calculation of the objective function. 
An evolution of the traditional grid search is the random search, which randomly select the 
possible parameter combination. It can outperform the previous method, especially if the 
algorithm is not very sensitive to some of the parameters (J. Bergstra & Bengio, 2012), 
however, it only partially reduces the problem of dimensionality, and the computation time 
may still be too long.  
Gradient based methods, which evaluate the gradient or the Hessian matrix of the objective or 
its approximation through finite differences, are way faster than the previously mentioned 
ones. However, some of them need the objective function to be differentiable, and they may 
end up in local optimums. Evolutionary algorithms can be exploited for the optimization any 
problem, with any objective function. Although they perform the optimization very quickly 
when compared to other methods, they present the inconvenience of a less precise result. 
The methods can be applied in series, in order to compensate the disadvantages and get to a 
more precise result more efficiently. An example is the search for the “rough” optimal 
parametrization with an evolutionary algorithm, followed by a grid search, restricted to a 
smaller parameter space, to refine the result. 

2.5.2 The HBV model 
The Hydrologiska Byråns Vattenbalansavedlning (HBV) model used in the proposed research 
is a widely used water balance model. It is a deterministic conceptual model for runoff 
simulation, developed by Sten Bergström of the Swedish Meteorological and Hydrological 
Institute (SMHI) in 1976, and furtherly modified by the same author several times. The 
capability of the HBV model in conducting hydrological analysis related to the water balance 
is well known and has been used in more than 30 countries all around the world (Bergström, 
1976; Driessen et al., 2010; Engeland & Hisdal, 2009; Kobold & Brilly, 2006; Lindström, 
Johansson, Persson, Gardelin, & Bergström, 1997; Seibert, 1997; Şorman, Şensoy, Tekeli, 
Şorman, & Akyürek, 2009).  

HBV model structure 
The HBV model has a relatively simple structure, divided in 4 subroutines:  

 snow accumulation and melt by a degree-day method; 
 groundwater recharge and actual evaporation as functions of actual water storage in a 

soil box; 
 groundwater storage and discharge by three linear reservoir equations; 
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 channel routing by a triangular weighting function. 
It is semi-distributed, i.e. it allows to divide the catchment into sub-basins, elevation and 
vegetation zones. It requires a moderate amount of input data: areal precipitation, 
temperature and potential evaporation. The first two sets of data are readily available, while 
the potential evaporation needs to be computed, starting from the soil moisture and the land 
use. There are several ways to compute this variable, in this research the Thornthwaite 
equation will be chosen (Thornthwaite, 1948). For a more detailed description of the model, 
the interested reader can see the original paper by S. Bergstrom (Lindström et al., 1997).  

Creation of the .txt files 
The HBV light application offers a user-friendly tool to develop HBV models, but requires a 
specific file format for the input files. Moreover, each catchment must have its own folder, 
containing the sub-folders data and results. The results folder contains simulation and model 
parameter search results. The data sub-folder contains 2 files: 

 The PTQ-file contains time series of daily precipitation [mm/day], temperature [ºC] 
and discharge [mm/day]. The name of the input file is always ptq.txt and the format 
is as follows:  

a) a header of two lines, the first one contains a name for the catchment, the second 
line is not used by the program; 

b)  Date (YYYYMMDD), precipitation, temperature, discharge in one row per day 
(separated by tabs).  

Example (Figure 2.1) 

 
Figure 2.1: example of the ptq.txt file. Source: self-made. 
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 The evaporation-file contains values for the potential evapotranspiration [mm/day]. 
Its name is evap.txt and it is composed by one line (header) followed by the values 
(one value per row, as many values as time steps in the PTQ-file, i.e. one value for 
each day). 
Example (Figure 2.2): 

 
Figure 2.2: example of the evap.txt file. Source: self-made. 

HBV model calibration and validation 
The HBV-light software conveniently includes an automatic GAP (Genetic Algorithm and 
Powell’s method) tool for parameter search, which couples an evolutionary algorithm with a 
gradient-based algorithm, the Powell’s method. The Powell’s method is useful for calculating 
the local minimum of any objective functions, even complex and not differentiable ones, 
because it is not necessary to take derivatives. The strategy adopted by the GAP tool consists 
in finding first the approximate solution through the evolutionary algorithm, and then refining 
it with the Powell’s method. Within the tool, it is possible to set the parameter range, the 
probabilities of mutation, crossover and reselection of old characteristics, together with 
number of individuals and number of model runs. Depending on the size of the dataset, model 
runs and population size, it is possible to reach convergence of the results within a few minutes 
of automatic calibration. 

Genetic algorithms 
The general process followed by genetic algorithms is parallel to that followed by the 
Darwinian biological evolution, and consists of the following steps: 
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1. Creation of an initial population of random solutions (i.e., randomly generate tuples 
of parameter sets, typically 100+); 

2. Evaluation of the parameter sets tuples (individuals of the population) through the 
acquisition of their fitness function; 

3. Ranking of the parameter sets tuples by their relative fitness; 
4. Replacing of the worst-performing individuals with new ones generated through 

crossover and mutation. This process consists of randomly selecting the 
“characteristics”, i.e., parameters values, of the remaining population, modify them 
slightly and unite them in the new individuals; 

5. Repeating steps 2-4 until satisfactory algorithm performance is reached or algorithm 
performance is no longer improving. 

Powell’s method 
Powell’s method is employed in parameter search to refine the result, that is, it can be applied 
after a “rougher” optimization method, to get a more precise parameter set, improving model 
performance. It finds the local minimum of the objective function, and carries the convenient 
property of not needing the function to be differentiable. The method entails the following 
procedure (Powell, 2005): 

1. Definition of an initial position ࢞૙; 
2. Definition of a set of initial search vectors, typically n search vectors which are simply 

the normals aligned to each axis {࢙૚, ⋯ ,   ;{࢔࢙
3. Minimization of the objective function by a bi-directional search along each search 

vector, in turn. The bi-directional line search along each search vector can be done by 
Golden-section search or Brent's method; 

4. If a new minimum ࢞ ૚ is found, it can be expressed as a linear combination of the search 
vectors, i.e. ࢞૚ = ࢞૙ + ∑ ୀ૚࢏ࡺ࢏࢙࢏ࢇ ; 

5. The new displacement vector ∑ ࢏ࡺ࢏࢙࢏ࢇ  becomes a new search vector, and is added to the 
end of the search vector list; 

6. The search vector which contributed most to the new direction, i.e. the one which was 
most successful (ࢊ࢏ = ܏ܚ܉ ࡺୀ૚࢏ܠ܉ܕ  ;is deleted from the search vector list ,(‖࢏࢙‖࢏ࢇ

7. The new set of search vectors is {࢙૚, ⋯ , ,૚ିࢊ࢏࢙ ,ା૚ࢊ࢏࢙ ⋯ ,   .{࢔࢙
Steps 3-7 are iterated an arbitrary number of times until no significant improvement is made. 

2.6 Collected data 
In this work, a substantial amount of data has been necessary to calibrate and validate the 
model/system. The time lag between each observation/forecast entry is one day (daily-scale). 
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High-resolution precipitation and temperature data have been lumped into the sub-basin scale 
for each of the studied sub basins. The inflow to each reservoir is not directly measured, instead 
to obtain it a balance equation in the outlets of each sub-basin (which in all cases correspond 
to reservoirs) is used, Eq. (2.2):  

૙ = ࢔࢏ࡽ − ࢚࢛࢕ࡽ − ࢂ∆
∆࢚  Eq. (2.2) 

Where ࢔࢏ࡽ and ࢚࢛࢕ࡽ are, respectively, the inflow and the outflow in m3/s, ∆ࢂ is the reservoir 
volume variation between two consecutive days [m3] and ∆࢚ [s] is the duration of the time gap 
between two lake volume measurements (86400 seconds). This mass balance equation does 
not take into account losses: they will be added in this work. 
The Anuario de Aforos (Gauging Yearbook) and the Sistema Automático de Información 
Hidrológica (SAIH, Automatic Hydrological Information System) service offered by the Júcar 
Basin Agency provided the daily dammed volume and the average daily discharge from the 
reservoirs for the analysis period.  
Each reservoir area of competence (or sub-basin), that is, the total surface of the territory 
which run-off ends in the reservoir, has been calculated from a digital terrain model, supplied 
by the CHJ. This data is necessary in order to compute the area-specific precipitation. The CHJ 
also provided the mean monthly evaporation rates (for the Alarcón and Contreras reservoirs) 
and the infiltration rates (only for the Contreras reservoir, since Alarcón and Bellús don’t show 
significant infiltration), necessary to compute the mass balance. No evaporation rate was 
considered for the Bellús reservoir because, given its relatively small surface, it can be deemed 
irrelevant with respect to the other mass flows. 
Historical precipitation and temperature data have been provided by the Spain02 v5.0 service, 
offered by the Grupo de Meteorología de Santander (Santander Meteorology Group). The 
service delivers high-resolution daily precipitation and (maximum and minimum) 
temperature from 1951 to 2015 in a 0.1º (~10km) regular grid for peninsular Spain and the 
Balearic Islands. A dense network of around 2500 quality-controlled stations was selected 
from the Agencia Estatal de Meteorología (AEMET, Spanish Meteorological Agency) in order 
to build the gridded products. Daily precipitation records (and the resulting gridded values) 
for any given day n correspond to the precipitation registered between 0700UTC of day n and 
0700UTC of day n+1. 
The meteorological forecasts (precipitation and temperature) have been provided by the 
European Centre for Medium-Range Weather Forecasts (ECMWF) SEAS5 system. The 
datasets are delivered through the Copernicus Climate Data Store Service. They are in the form 
of an ensemble, being each ensemble member generated from the same model, changing 
slightly the initial conditions and boundary conditions from one member with respect to the 
others. A seasonal forecast is produced on the 1st day of each month and run for 7 months. The 
set of hindcasts (or re-forecasts) start on the 1st of every month for the years 1981-2016 and 
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have 25 ensemble members. The forecasts start on the 1st of January 2017 and have 51 
ensemble members. 
The computation of the actual evaporation requires, among others, daylight duration for each 
day of the year. This dataset has been retrieved from the website https://ptaff.ca/. The daylight 
duration refers to the year 2017. It is known that day duration changes during the years, as 
complex mechanisms are involved (mainly the tidal deceleration effect), but as this 
phenomenon only affects the day duration in the order of milliseconds each century, it has 
consequently been promptly ignored, and the 2017 data have been deemed good enough. 
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CHAPTER 3                    
PRESENTATION OF THE CASE STUDY 

3.1 Location 
The Júcar river basin territory (Demarcación Hidrográfica del Júcar, DHJ), managed by the 
Júcar River Basin Agency (CHJ), is located geographically in the east central end of the Iberian 
Peninsula (see Figure 3.1). Its physical boundaries are defined by the Real Decreto (Royal 
Decree) 125/2007, later modified by the Real Decreto 775/2015. It includes: 

 The territory of the inter-community river basins; 
 The territory of the intra-community river basins comprised between the left bank of 

the Gola del Segura at its mouth and the mouth of the Cenia River, including its basin; 
 The endorheic basin of Pozohondo 
 The natural endorheism formed by the system that constitute the Quejola, Jardín and 

Lezuza rivers and the Los Llanos area, together with the transitional waters.  
Its physiography is described as an interior mountainous area, with higher altitude points and 
a coastal area consisting of plains among which are those of Oropesa-Torreblanca, Castellón-
Sagunto, Valencia-La Ribera, Favara-Gandía-Denia. Its maximum level, Peñarroya, is located 
in the Iberian System, with an altitude of 2024 meters above sea level. 
The Demarcación Hidrográfica del JúcarDHJ (DHJ, Júcar Hydrographic Demarcation) 
borders the Ebro and Segura demarcations to the north and south respectively and the Tagus, 
Guadiana and Guadalquivir to the west, bordering the east with the Mediterranean. The total 
area of the territory of the demarcation is 42,735 km2. 
The CHJ DHJ is spread over five autonomous communities: The Valencian Community, with 
a surface participation of almost 50% of the total area, followed by the Community of Castilla-
La Mancha, with 37.6%, Aragón with 12.6%, Catalonia with 0.20% and Murcia with 0.15%. 
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There are 789 municipalities in the CHJ, 751 of which have their urban core located within the 
basin. Of these, 86% host less than 10000 inhabitants. Table 3.1 shows the distribution by 
autonomous community and province. 
 

 
Figure 3.1: Territorial scope of the DHJ. Source: https://www.chj.es. 
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Table 3.1: surface distribution of the CHJ by autonomous community and province. 
Province Surface [km2] Autonomous Community Surface [km2] 
Tarragona 88.00 Cataluña 88.00 
Teruel 5373.84 Aragón 5373.84 
Cuenca 8680.54 Castilla-La Mancha 16089.34 Albacete 7408.80 
Castellón 5785.11 

Comunidad Valenciana 21120.13 Valencia 10813.30 
Alicante 4521.72 
Murcia 64.01 Región de Murcia 64.01 
Total 42735.32 - 42735.32 

3.2 State of the art 
The Júcar River Basin, due to its precarious conditions and on the push of the European Water 
Framework Directive (WFD), has been subject to a number of studies, which investigated, 
among others, the aspects of hydrological conditions, water allocation, water quality. In this 
vast amount of research, the hydrological studies, which are those of interest for this work, 
have focused on:  

 Simulation of water quality, under different release policies and with historical data, 
through the application of a water quality model and a water quantity model: possible 
use as decision support systems (Ferrer, Pérez-Martín, Jiménez, Estrela, & Andreu, 
2012; Paredes-Arquiola, Andreu-Álvarez, Martín-Monerris, & Solera, 2010);  

 Influence of different hydrological input data (generated using different data-based 
models) on the simulation of a water resources management system (C., J., & R., 
2007); 

 Assessing and forecasting the impacts of global change on Mediterranean rivers, 
through a joint contribution of different Spanish universities and institutions (the 
SCARCE project) (Navarro-Ortega et al., 2012); 

 Integrated hydro-economic simulation and optimization model at the river basin 
scale: that is, combining economic management concepts and performance indicators 
with an engineering-level of understanding of a local hydrologic system (Heinz, 
Pulido-Velazquez, Lund, & Andreu, 2007); 

 Drought monitoring, early warning, planning, and ad-hoc decision support system 
(Andreu, Ferrer-Polo, Pérez, & Solera, 2009; Haro-Monteagudo, Solera, & Andreu, 
2017). 
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Moreover, there have been pan-European projects on hydrological forecasts which included, 
as study case, the Júcar river basin, among them SWICCA and EDgE. Project SWICCA 
(http://swicca.eu/) develops a system of drought indicators designed to estimate and act 
efficiently in the face of climate change. This system of indicators, however, is focused on 
climate change scenarios (time range of decades), while the prediction over several months 
has a limited number of variables and scenarios that do not correspond to the drought 
indicators currently used by the CHJ. Moreover, having been obtained with hydrological 
models calibrated on a pan-European scale, the adjustment of this system to the hydrology of 
the Júcar can be improved (Donnelly et al., 2016). In conclusion, the SWICCA project is not 
able to accurate and reliable hydrological forecasts for the Júcar river basin.  
The European project EDgE (http://edge.climate.copernicus.eu/), currently under 
development, with the participation of the CHJ and in which the Júcar is a case study, seeks 
to obtain relevant indicators for the decision-making in the water sector. As in the case of 
SWICCA, the project focuses on climate change scenarios (in greater detail than SWICCA), 
while the seasonal prediction part suffers from the same weaknesses as those mentioned for 
SWICCA and with more limited selection of variables.  
In conclusion, there is a lack in the research about a system able to predict the future 
hydrological state of the river basin: hence the innovation of this research, which proposes a 
hydrological forecasting system for the Júcar River Basin. This will be achieved using the HBV 
model, which will be fed with the seasonal meteorological forecasts provided by the European 
Centre for Medium-Range Weather Forecasts (ECMWF) System5 product, properly bias-
corrected through the quantile mapping method. The result will be a reliable and innovative 
hydrological daily-scale forecasting system for the Júcar River Basin. 

3.3 Climate 
The climate in the DHJ is a typical Mediterranean climate with warm summers and mild 
winters. It is situated within the thermo-Mediterranean and meso-Mediterranean bioclimatic 
zones. The thermal maximums are recorded in the months of July and August, coinciding with 
the dry season. The average annual temperatures range between 14 and 16.5 ºC. The average 
annual rainfall is about 500 mm, however there is great spatial variability with values at 300 
mm in the southernmost regions, while in other areas it reaches values above 750 mm, as 
shown in Figure 3.2. Also, during the months of October and November can occur episodes of 
precipitation of great intensity and short duration, commonly known as "gota fria". Most of 
the surface of the Confederation is covered by very permeable materials that favour the 
infiltration of the superficial waters of precipitation towards underground strata. 
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Figure 3.2: map of average annual precipitation in the CHJ from years 1980/1981 to 2005/2006. Source: https://www.chj.es. 

3.4 Water resources 
The Júcar river basin can be classified as a semi-arid or arid watershed, with large space and 
time variability in precipitation and river flows. In addition, water usage is very intense, with 
a ratio of used resources to renewable resources close to 1. The basin has suffered several 
droughts of different degree recently: they were in the years 1982-1986,1191-1996, 1997-2001, 
2004-2008.  
Among the several basins included in CHJ territory, the larger ones are the Júcar River Basin 
(22378 km2), and the neighbouring Turia River Basin (6913 km2). In the Valencia coastal 
plain, where both rivers have their final parts and between both mouths, there is a shallow lake 
called Albufera (2300 ha), with an associated wetland (23000 ha). Both the lake and the 
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wetland depend on return flows from irrigation areas belonging to both basins and on 
groundwater flows from the coastal aquifer beneath the plain.  
The main reservoirs for water supply are Alarcón (1118 hm3), Contreras (852 hm3), Tous (379 
hm3). Groundwater plays an important role: the basin has large calcareous aquifers in the 
north western upper parts, where the rivers are born, providing base flows. Also worth noting 
in the middle part, is the Mancha Oriental aquifer, that used to provide important base flow to 
the river, but nowadays it is being overexploited. This is causing the inversion of flows, so the 
river loses water to the aquifer in spring and summer. 
The main rivers of the CHJ are: Cenia, Mijares, Palancia, Turia, Júcar, Serpis and Vinalopó. 
The Júcar and Turia rivers, with a length of 512 and 280 km respectively, are the most 
important. The channels that constitute the main fluvial network have a markedly 
Mediterranean flow regime, characterized by drier periods in summer and growth of 
circulating flows during the autumn. 
The sub-basins investigated in this research are those competent to the reservoirs of Alarcón, 
Contreras and Bellús, located in the Júcar, the Cabriel (Júcar’s tributary) and the Albaida 
(Júcar’s tributary) respectively. They are highlighted in the map in Figure 3.3. 
 

 
Figure 3.3: map of a portion of the CHJ, with the three reservoirs investigated. Source: Google Earth. 
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3.5 Water demands 
The sectors that contributes the most to the to the total Gross Domestic Product (GDP) in the 
Júcar river basin are the services and tourism activities. Industry is the second most important 
sector, after agriculture and energy. However, agriculture, both rainfed and irrigated, is the 
economic activity that occupies almost half of the surface of the DHJ. The DHJ has an irrigated 
area representative of the current situation of approximately 390,000 ha,  mainly 
concentrated in the Plana de Castellón, Valencia and the lower basin of the Turia, the Mancha 
Oriental, the Ribera and the lower basin of the Júcar and the irrigation of the Vinalopó and 
Monegre valleys. 
Accordingly, out of a total water demand of the river basin (year 2017) of 3132 hm³/year, the 
agrarian one represents almost 80% of the total demand, with 2503 hm³/year.  
Regarding industrial activity, the most significant sectors are those corresponding to non-
metallic mineral products (which includes the ceramic sector), textiles, clothing, leather and 
footwear, food, beverages and tobacco. The greatest industrial activity is located in the 
exploitation systems of Turia, Júcar and Vinalopó-Alacantí. Industrial demand not dependent 
on urban supply networks (including the manufacturing industry and energy consumptive 
demand), is 123 hm³/year (almost 4%). 
The demand for urban supply is 494 hm³/year, which represents almost 16% of the total. 
Finally, there is the recreational demand with 12 hm³ / year (<0.5%).  
In 2012, the installed capacity in the Demarcation was 13313 MW, 12.11% of the total installed 
in Spain. Of this power, 8% corresponds to nuclear energy, 36% to other thermoelectric power 
plants and 56% to renewable energies (38% to wind energy, 7% to solar energy and 11% to 
hydroelectric power). 
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CHAPTER 4                    
METHOD 

 
Figure 4.1: schematic representation of the operations carried out. Source: self-made. 
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4.1 Observation data processing 
In this paragraph will follow a detailed description of the techniques, equation and methods 
used to process the observation data, before feeding it to the HBV-light software. The MS 
Office EXCEL software has been employed throughout this phase to carry out these 
operations. The main steps of the process are: 

1. Check of the data: search for repeated data and for syntax mistakes, for example 
negative precipitation values; 

2. Data selection: a part of the data has been selected, from 01/01/1995 till 11/12/2013. 
Older datasets have not been used to avoid the effect of climatic unsteady trends (due 
to climate change phenomena) and to avoid excessive computational times. Year 1995 
has been chosen as the beginning to capture the end of the 1991-1995 Jucar River 
Basin drought and the subsequent 1997-2001 drought period. Historical 
meteorological data are available till the end of 2015, but they are of no use, given the 
lack of complete reservoir data for 2014 and 2015. In the case of the Bellús reservoir, 
the starting date is 13/01/1998, because the reservoir became operational in that day. 
This selection of data is only applied in the HBV calibration-validation process: the 
whole dataset until 2015 will be used in bias-correction; 

3. Calculation of the actual inflow in the reservoir: this step is necessary due to the way 
the inflow is computed, as stated before in Paragraph 2.6. A correction is necessary, 
considering the non-neglectable contribution of evaporation and infiltration to the 
mass balance. The actual inflow is then divided by the competent area, to transform it 
into specific inflow, as required by the model. Paragraph 4.1.1 is devoted to a detailed 
explanation of this process; 

4. Computation of the potential evapotranspiration, with the Thornthwaite formula. 
Explained in Paragraph 4.1.2; 

5. Creation of the .txt files to feed to the model. Paragraph 2.5.2 describes this step. 

4.1.1 Actual specific inflow 

Evaporation 
The evaporation flow (ࡱࡽ, m3/s) depends on the evaporation rates (reported for in Table 4.1, 
obtained from the Júcar River Basin Authority CHJ) and on the reservoir water surface. In line 
with the procedures used by the CHJ, Bellús evaporation losses have been considered as 
negligible. Evaporation is calculated by Eq. (4.1): 
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ࡱࡽ = ࡱࡾ
૚

ૡ૟૝૙૙ ∙ ࢊ ∙ ૚
૚૙૙૙  Eq. (4.1) ࡿ 

Where ࡱࡾ is the evaporation rate [mm m-2 month-1], ࢊ is the number of days in the month of 
the interested day and ࡿ is the lake surface [m2]. This latter has been computed using an 
empirical formula that ties surface to volume, in line with the process used by the CHJ (Eq. 
(4.2)):  

ࡿ =  Eq. (4.2) ࢈ࢂࢇ
Where ࢂ is the lake volume [Mm3] and ࢻ and ࢼ empirical coefficients, reported in Table 4.2. 

Table 4.1: evaporation rates for the Alarcón and Contreras reservoirs. 
 Evaporation rates [mm m-2 month-1] 
Month Alarcón Contreras 
January 30 40 
February 40 50 
March 94 105 
April 99 110 
May 142 150 
June 210 200 
July 262 240 
August 238 215 
September 154 150 
October 84 100 
November 42 55 
December 23 40 

 
Table 4.2: a and b coefficients for the computation of the surface for the Alarcón and Contreras reservoirs. 

Reservoir a b 
Alarcón 49.94 0.70 

Contreras 32.70 0.66 

Infiltration 
In line with the procedures used by the CHJ, infiltration is neglected in Alarcón and Bellús 
reservoirs, in the former due to its impervious lake bottom and in the latter due to the 
impossibility to establish a relationship between storage and infiltration by the lack of enough 
data. It depends on the lake volume, and is described by Eq. (4.3): 

ࡵࡽ = ࢾࢂࢽ ૚
ૡ૟૝૙૙ ∙  Eq. (4.3) ࢊ
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Where ࡵࡽ  is the infiltration [m3/s], ࢽ and ࢾ empirical coefficients, reported in Table 4.3. 
Table 4.3: γ and δ coefficients for the computation of the infiltration flow in the Contreras reservoir. 

Reservoir γ δ 
Contreras 1.15 0.44 

Mass balance 
After the calculation of infiltration and evaporation, it is possible to write a mass balance 
equation that computes the actual hydrological discharge (ࡾࡽ, m3/s) entering each reservoir 
(Eq. (4.4)): 

ࡾࡽ = ࢔࢏ࡽ + ࡱࡽ +  Eq. (4.4) ࡵࡽ
The model requires as input the surface-specific run-off (࢘ࢗ), in mm/d: this can be obtained 
by Eq. (4.5): 

࢘ࢗ = ࡾࡽ
࡭ ∙ ૡ૟૝૙૙ ∙ ૚૙૙૙ Eq. (4.5) 

Where ࡭ is the area of the basin draining into the reservoir. The area of the three draining 
basins are shown in Table 4.4. 

Table 4.4: draining basin area for each of the reservoirs considered in the study. 
Draining basin Area [m2] 
Alarcón 3.003 E09 
Contreras 3.436 E09 
Bellús 4.843 E08 

4.1.2 Potential evapotranspiration 
Evapotranspiration is the grouping o of two processes: evaporation and transpiration.  
Evaporation is the physical phenomenon for which water goes to the gaseous state. 
Transpiration is a biological process through which plants release water to the atmosphere. 
Since the two phenomena are difficult to measure separately and the interesting parameter is 
the total amount of water dispersed into the atmosphere, they are considered jointly.   
Potential evapotranspiration (PET) is defined as the amount of evaporation that would occur 
if a sufficient water source were available, that is, in soils, when the soil porosity is completely 
saturated by water. Several methods have been proposed in literature to calculate it, among 
which the most popular are the Penman model (Penman, 1948) and the Thornthwaite 
equation (Thornthwaite, 1948).  Despite the higher accuracy, the Penman model requires 
measurements that are often difficult to obtain: wind speed, relative humidity, hours of actual 
sunlight. Since they were not available for this study with proper spatial resolution, the 
Thornthwaite method was selected.  
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Since there is no simple relationship between the monthly temperature and the potential 
evapotranspiration, because it varies depending on the climate. A “climate index”, depending 
on the number of hours daylight, is then introduced. The process is:  

1. Calculation of a monthly heat index ࢏, starting from the monthly average temperature 
 :illustrated in Eq. (4.6) ,ࢀ

࢏ = ൬ࢀ
૞൰

૚.૞૚૝
 Eq. (4.6) 

2. Sum of the monthly indexes of each year, to get the yearly heat index ࡵ, as shown in 
Eq, (4.7): 

ࡵ = ෍  Eq. (4.7) ࢏
3. Calculation of the daily potential evapotranspiration ࢀࡱࡼ [mm/d] (Eq. (4.8)): 

ࢀࡱࡼ = ૚૟ ࡸ
૚૛

ࡺ
૜૙ ൬૚૙ࢊࢀ

ࡵ ൰
ࢻ

 Eq. (4.8) 

Where ࡸ is the number of hours of daylight, which depends on the location of each 
sub-basin, ࡺ is the number of days of the month, ࢊࢀ is the average daily temperature 
and the coefficient ࢻ is obtained through Eq. (4.9): 

ࢻ = ૟. ૠ૞ ∙ ૚૙ିૠ ∙ ૜ࡵ − ૠ. ૠ૚ ∙ ૚૙ି૞ ∙ ૛ࡵ + ૚, ૠૢ૛ ∙ ૚૙ି૜ ∙ ࡵ + ૙. ૝ૢ૛૜ૢ Eq. (4.9) 
Note:  when the average daily temperature ࢊࢀ is equal or lower than zero, the potential 
evapotranspiration is set equal to null.  

4.2 Model calibration and validation 
Model calibration and validation consist in adjusting model parameters in such a way that the 
model output is as close as possible to reality. The way in which the parameter sets are 
generated will be explained below in this section. This process is necessary, because the model 
is of the conceptual type, and every case study is different from another. It is performed with 
the historical datasets, split into two subsets containing about 4/5 and 1/5 of the whole dataset, 
respectively for calibration and validation. The adopted principle is to find, among the 
parameters sets that perform best on the calibration subset, the best one for the validation 
subset. 
The HBV-light software includes an automatic calibration tool, which has been exploited for 
the calibration of the sub-basins. This tool feats a system consisting of a genetic algorithm 
optimization followed by a Powell algorithm for local optimization (GAP tool), to find the best 
performing parameter set. The best performing parameter sets are found for the two datasets, 
compared between them, and modified till a compromise is found: a parameter set that 
performs close to optimum in calibration and that does not decrease validation performance 
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significantly. The selected objective function is the Nash-Sutcliffe Efficiency ࡱࡿࡺ, defined in 
Eq. (4.10). 

ࡱࡿࡺ = ૚ − ∑ሺ࢙࢈࢕ࡽ − ሻ૛࢓࢏࢙ࡽ
∑ሺ࢙࢈࢕ࡽ − തതതതതതሻ૛࢙࢈࢕ࡽ  Eq. (4.10) 

Where ࢙࢈࢕ࡽ is the observed discharge, ࢓࢏࢙ࡽ  the simulated discharge and ࢙࢈࢕ࡽതതതതതത the observed 
discharge mean value. 
The Nash-Sutcliffe Efficiency provides a measure of how well observed flow is replicated by 
the model, based on how well the plot of observed versus simulated data fits the 1:1 line. Nash–
Sutcliffe efficiency can range from −∞ to 1. An efficiency of 1 corresponds to a perfect match of 
modelled discharge to the observed data. An efficiency of 0 indicates that the model 
predictions are as accurate as the mean of the observed data, whereas an efficiency less than 
zero occurs when the observed mean is a better predictor than the model or, in other words, 
when the residual variance (described by the numerator in the expression above), is larger 
than the data variance (described by the denominator). Essentially, the closer the model 
efficiency is to 1, the more accurate the model is. Threshold values to indicate a model of 
sufficient quality have been suggested between 0.5 < NSE < 0.65 (R. D. Harmel et al., 2013; 
Ritter & Muñoz-Carpena, 2013). This threshold holds respected in this study for every 
calibrated sub-basin.  

4.2.1 Calibration 
Model calibration consists in finding the best performing (according to the ࡱࡿࡺ function, Eq. 
(4.10)) parameter set for the calibration dataset. After setting the warm up period to 6 months, 
the GAP optimization is carried out, with the following process: 

1. The first run is carried out with wide parameter search ranges and large number of 
model runs (each model run corresponds to the trial of one of the parameter sets of 
the population);  

2. The model is run with the best performing parameter set found by the tool;  
3. A new GAP-tool run is issued, setting new parameter ranges according to the previous 

result: the centre of the range will be the value of the best performing parameter in the 
previous iteration. If any of the parameters in the previous iteration is set to the range 
limit, the new search range will start from that value;  

4. Multiple runs are executed, and the parameters values are then manually modified, in 
order to explore the interdependency of the parameters and the sensitivity of the 
model to them. Smaller number of model runs are set, since the best solution is 
promptly found, to save computational time;  

5. Once a few stable solutions are found (since some parameters depend on each other, 
different combination can yield similar results), the parameter sets are saved. 
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4.2.2 Validation 
The first part of the process is carried out similarly to calibration. Firstly, a number of best 
performing parameter sets are found, then they are compared with the ones found in 
calibration. If the results present important differences, the values are adjusted, in such a way 
to find a parameter set that fits well both the calibration and validation subsets. As a rule of 
thumb, a satisfactory ࡱࡿࡺ in validation can be up to 0.2 points lower than that obtained in 
calibration. However, if the performance is not close to that obtained with the ad-hoc 
parameter search, a better fit will be looked for. In fact, in some cases it is possible to 
significantly improve the validation performance, while only slightly worsening the 
calibration’s one. The process is carried out with the help of the GAP tool, with the following 
procedure:  

1. Find a few good parameter sets for the validation dataset, in the same way explained 
for the calibration process;  

2. Try the parameter sets selected in the previous calibration process. If any of them 
provides a satisfactory result, i.e., sufficiently close (0.04-0.05) to that granted by the 
ad hoc validation subset parameter search, it is selected; 

If the result is not satisfactory: 
3. Fix, in the GAP search (that is, set the search range to 0), the parameters which have 

a similar value in both calibration and validation and to which the model does not 
appear to be sensitive, in order to concentrate the search on more “troublesome” 
parameters; 

4. Try different combination of the left parameters, both in the calibration and validation 
subsets. A compromise solution should be found, which performs worse than the 
optimums found for each subset, but still provides a sufficiently good result for both 
subsets. 

4.3 Bias correction of the forecasts 
The bias correction process is exploited to remove systematic errors from the forecasts, using 
observations as reference. In this project, we have used a quantile mapping approach to bias-
correct the seasonal forecasts. This process adjusts the cumulative distribution function of the 
forecasts to the observed one by applying mapping functions between the corresponding 
quantiles. A quantile mapping algorithm has been implemented with the software MATLAB, 
deemed a good choice, given the large amount of data to elaborate. In fact, considering the 
years 1995-2015, each with 25 ensemble members, 7-month lead reforecasts, yields a total of 
1’290’000 entries, for each sub-basin, for each variable. The whole dataset will be split into 
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two subsets. For temperature, the subdivision was 1995-2008/2009-2015, for precipitation 
1995-2005/2006-2015. The first subset will be used to find the correction function, the second 
one to test it. If the performance is not satisfactory in the second subset, different parameters 
in the correction function search will be tried. The procedure is carried out for each reservoir, 
for both precipitation and temperature, and it entails the following steps: 

1. Data loading, complete with date: for each sub-basin and variable and for observations 
and reforecasts. The observation datasets include data gathered from 1980 to 2015, 
while the reforecasts datasets start in 1995 and end in 2015. 

2. The highest and lowest value registered in the observations, for each month, are 
respectively the high and low thresholds for the corrected forecasts of that month; 

3. Calculation of the quantile mapping coefficients to be applied to the forecasts; 
4. First performance check, visual: creation of a graph of the CDFs of the observations, 

forecasts and corrected forecasts. The CDFs are referred to the same period of time; 
5. Application of the correction to the second subset; 
6. Verification of the performance by means of the monthly mean average error. 

4.3.1 Data loading 
All the data is loaded into the MATLAB workspace from EXCEL spreadsheets, with the help of 
a purposely made MATLAB function. The whole observation dataset is held by one single 
sheet, while the hindcasts are divided by year into different files. The hindcasts spreadsheets 
were adjusted to match the MATLAB format requirements. 
The observation data is loaded as is from the spreadsheet, one column holding the date entries 
and the other the correspondent measured values. 
The hindcasts data is loaded in two different modes, by month and by ensemble. In the “by 
month” matrix each column represents a month and holds all the forecasts targeted at that 
month and the exact date is not saved. The “by ensemble” matrix, differently, reports the data 
exactly as it is in the worksheet, with date of issue, target date and corresponding value for 
each ensemble. Each subsequent year of data is loaded below. Examples are shown for better 
clarity in Figure 4.2 and Figure 4.3. The first matrix (data by month) will be used to calibrate 
the bias correction algorithm, while the second will be used to apply the bias-correction and 
as performance comparison standard. 
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Figure 4.2: example of the forecasts data by month matrix loaded in MATLAB. Source: self-made. 

 
Figure 4.3: example of the forecasts data by ensemble member, as is in the original EXCEL sheet. The first column holds the issue date, the second the target date and the remaining 25 the 25 ensemble members. Source: self-made. 

4.3.2 Bias correction algorithm calibration 
After the data loading, the actual bias-correction function can be implemented. Camici et Al. 
(2013) applied two different scaling strategies, based on linear regression correction and 
Cumulative Density Function (CDF) matching, to remove systematic differences between 
satellite and site-specific soil moisture data (Camici, Brocca, Melone, & Moramarco, 2013). A 
CDF matching approach similar to that implemented by Camici et Al. was implemented in the 
present research, to bias-correct precipitation and temperature forecasts. It consists in three 
main processes: finding the correction algorithm, applying it to the forecasts, and measuring 
the corrected dataset performance, compared to the biased data. The procedure has been 
applied separately for each month, in order to adequately capture the in-year pattern of 
meteorological variables. 
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Search of the correction algorithm 
The first part of the process consists in the following steps: 

1. Find the lower and upper limits of the monthly CDFs: they correspond, respectively, 
to the lowest and highest value ever registered in the historical observations in that 
month, from 1995 to 2015; 

2. Select the time range of the first dataset, i.e. the calibration subset; 
Then, for each month (all the Januaries, all the Februaries, etc): 

3. Sort the data in ascending order; 
4. Associate each value of the sorted vectors ࢙࢞࢈࢕ (observations) and ࢞࢘࢕ࢌ (forecasts) to 

its cumulative probability, respectively ࢙࢈࢕ࢌ and ࢘࢕ࢌࢌ; 
5. Divide the sorted vector into a pre-defined number of subsets ࢘࢖࢔. The division is 

operated by percentile range, e.g. every ten percentile points; 
For each percentile range: 

6. Linearly interpolate the forecast values ࢞࢘࢕ࢌ to the quantiles of the observed values 
 ;as shown by Eq. (4.11) ,࢙࢈࢕ࢌ

࢏,࢚࢔࢏࢞ = ൫࢞࢏,࢘࢕ࢌశ૚ି࢞࢏,࢘࢕ࢌ൯
൫࢏,࢘࢕ࢌࢌశ૚ି࢏,࢘࢕ࢌࢌ൯ ࢏,࢙࢈࢕ࢌ + ࢏,࢘࢕ࢌࢌ                                      ࢏,࢘࢕ࢌ࢞ < ࢏,࢙࢈࢕ࢌ <  ା૚          Eq. (4.11)࢏,࢘࢕ࢌࢌ

7. Calculate the difference ࢞ࢌࢌ࢏ࢊ between the observed sorted values and the interpolated 
sorted forecast values; 

8. Calculate the coefficients of an n-th degree polynomial, that fits the interpolated values 
 ;This is the end of the calibration process .(Eq. (4.12)) :ࢌࢌ࢏ࢊ࢞ to the difference ࢚࢔࢏࢞

࢚࢖࢕,࢏ࢇ = ࡺୀ૙࢏ܖܑܕ ܏ܚ܉  ฮ࢞ࢌࢌ࢏ࢊ − ൫ࢇ૙ + ࢚࢔࢏૚࢞ࢇ + ૛࢚࢔࢏૛࢞ࢇ + ⋯ + ࢔࢚࢔࢏࢞࢔ࢇ ൯ฮ            Eq. (4.12) 
Note: since the first part of the sorted precipitation data is constant and equal to zero, a 
modification was introduced to the algorithm: when the range of the data is smaller than a 
pre-set minimum, the polynomial degree would be zero, i.e. the function approximation is a 
constant. 

Apply the correction to the forecasts 
The correction coefficients have been saved in a matrix, for each month there are ࢘࢖࢔ ∙ ሺ࢔ + ૚ሻ 
coefficients, each ሺ࢔ + ૚ሻ tuple to be applied to the correspondent percentile range. The 
thresholds ࢏࢚࢒ and ࢏࢚ࢎ (respectively low and high) of the percentile range ࢏ are calculated 
according to Eq. (4.13a) and Eq (4.13b): 

࢏࢚࢒ =  ൯            Eq. (4.13a)࢏,࢘࢕ࢌ൫࢞ܖܑܕ
࢏࢚ࢎ =  ൯ Eq. (4.13b)࢏,࢘࢕ࢌ൫࢞ܠ܉ܕ

Where ࢞࢏,࢘࢕ࢌ is the subset of the sorted forecasts correspondent to the percentile range ࢏. 
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The correction equation is reported in Eq. (4.14): 
࢘࢘࢕ࢉ࢟ = ࢘࢕ࢌ࢟ + ૙ࢇ + ࢘࢕ࢌ૚࢟ࢇ + ૛࢘࢕ࢌ૛࢟ࢇ + ⋯ + ࢔࢘࢕ࢌ࢟࢔ࢇ             Eq. (4.14) 

Where ࢟࢘࢕ࢌ represents the biased forecasts and the coefficients ࢏ࢇ the solutions found by Eq. 
(4.12) for the percentile range correspondent to that which the ࢟࢘࢕ࢌ value belongs to. As final 
step, a cut to the highest and lowest values is applied, to improve the efficiency at the extremes. 
The limits were set as the highest observed value increased by 20% and the lowest observed 
value decreased by 20%. This operation has been deemed necessary after reviewing the results: 
the CDF graphs were showing extremes of the corrected forecast well beyond the extremes of 
the observations. 
The last operation, after applying the correction, is trying different modes of the correction 
algorithm: change the subdivision of the datasets, number of percentile ranges and polynomial 
degree. Finally, the best performing ones (or, in case of similar performance, the ones which 
require the lowest computational effort) are chosen. 

Performance evaluation 
The monthly MAE (Mean Absolute Error) indicator, with respect to the observations, is used 
to measure the performance of the bias-correction. The monthly time span is selected to avoid 
a bias towards rainy days for the precipitation variable. If measuring daily error instead of 
MAE, if a rainy day is wrongly forecasted as dry, or the other way around, the error shows more 
than dry days correctly forecasted: one bad forecast on a rainy day may offset several good 
ones on dry days. Before computing the actual MAE, the values – observations, hindcasts and 
bias-corrected hindcasts - had to be aggregated over each month of data, for each year. Each 
ensemble member has been treated separately. The MAE is calculated, afterwards, with the 
following formula, for the month ࢏ of the year ࢐, for each ensemble member of the reforecasts 
and corrected reforecasts (Eq. 4.15)): 

࢐࢏ࡱ࡭ࡹ = ห࢙࢞࢈࢕,ଙଚതതതതതതതത −  ଙଚതതതതതതതതห            Eq. (4.15),࢘࢕ࢌ࢞
Where ࢙࢞࢈࢕,ଙଚതതതതതതതത is the average of the observed variable through month ࢏ of the year ࢐ and ࢞࢐࢏,࢘࢕ࢌ is 
the average of the forecasted variable through month ࢏ of the year ࢐.  
Next step is the averaging of the MAEs of the different ensemble members, in order to get a 
single array. The lower the MAE, the better, and the comparison between the MAEs, of the 
same month of biased and bias-corrected hindcasts is an indicator of the performance of the 
bias-correction. If the performance is deemed good enough, the next step is applying the bias 
correction algorithm for real-time forecasts, for which no observation can be used as 
comparison beforehand. 
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4.4 Testing the system 
The previously calibrated HBV model is fed with the biased and bias-corrected forecasts, 

to produce new runoff simulations, which will be compared with the observed data. The model 
will be run multiple times: 25 times (one for each ensemble member of the forecasts) for each 
month of the investigated period, the drought of the years 2005-2008. Each run will be input 
with a dataset of 365 entries (one year of data), of which the first 5 months (150 days) are 
observation data and the last 7 months (215 days) are forecast data. The 5 months of 
observations will serve the purpose of model “warm up”, i.e. finding the initial conditions, as 
the HBV light software does not allow to specify initial conditions. The actual simulation is 
then produced with the forecast data. 
The complete process consists in, for each of the sub-basins: 

1. Create the input files, for each month: these include the previous 5 months of 
observations, used in the model “warm up”, to obtain the initial conditions, and 7 
months of corrected forecasts, starting at the target month; 

2. Repeat step 2 for the original forecasts: the input files with the original forecasts will 
be tested as well, to compare the performance of biased and bias-corrected forecasts;  

3. Apply the Thornthwaite method, as described in paragraph 4.1.2, to calculate the 
potential evapotranspiration. The calculation is carried out with the temperature data 
of the input files (as in points 2 and 3), for each one of them; 

4. Apply the parameters previously found in the calibration-validation process 
(illustrated in paragraph 4.2) and run the HBV model, feeding it with the 
precipitation, temperature and potential evapotranspiration time series; 

5. Repeat step 5 for each input dataset created in steps 2 and 3. 
 
 



Chapter 5 Results 

36 

CHAPTER 5                    
RESULTS 

This chapter is devoted to a detailed illustration and discussion of the results, as obtained by 
the thorough and comprehensive application of the procedure described in Chapter 4. The 
order in which the results are reported follows that of the previous chapter, to achieve better 
readability and clarity. Results are shown with the help of tables, figures and graphs, and 
critically analysed. 

5.1 Observation data processing 
After the data collection, this is the first step. It has been chosen to carry out the procedure 
with the EXCEL software, given the relatively simplicity of the operations performed. A part 
of the whole dataset has been selected, from 01/01/1995 to 11/12/2013 for the Alarcón and 
Contreras reservoirs, from 13/01/1998 to 11/12/2013 for the Bellús reservoir. 

5.1.1 Sub-basin inflow 
The computation of the actual specific inflow requires the calculation of two quantities: 
evaporation and infiltration. The evaporation flow is derived from Eq. (4.1). Relevant 
statistical characteristics of the time series, for each reservoir, are reported in Table 5.1. 
Evaporation losses in Bellús have not considered significant, as explained in paragraph 4.1.1. 
Figure 5.1 shows an example of the graph of the evaporation time series, for the Alarcón 
reservoir. A strongly seasonal behaviour is evident. 
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Table 5.1: main statistical characteristics of the evaporation time series, by reservoir. 
Parameter Alarcón Contreras Bellús 
Mean [m3/s] 1.308 0.412 - 
Standard deviation [m3/s] 1.190 0.331 - 
Skewness [-] 1.344 1.428 - 

 

 
Figure 5.1: Alarcón reservoir evaporation time series, period 1995-2013. Source: self-made. 
Eq (4.3) allows for the calculation of the infiltration. Infiltration losses have only been 
estimated in Contreras. In Table 5.2 the main statistical characteristics of the time series have 
been reported. Due to its insignificance (error < 10-3) when compared to the actual inflow and 
the evaporation contributions, the infiltration has been neglected. 

Table 5.2: main statistical characteristic of the infiltration time series, for the Contreras reservoir. 
Parameter Value 
Mean [m3/s] 3.77 E-06 
Standard deviation [m3/s] 1.29 E-06 
Skewness [-] 0.381 

 
The application of the mass balance equation as reported in Eq. (4.4) and the normalization 
to the basin competent area (Eq. (4.5)), yields the corrected specific inflow time series. The 
graph for one of the reservoirs is shown as an example in Figure 5.2 and the statistical 
characteristics, as before, are reported in Table 5.3. The drought period of 2005-2008 can be 
clearly noted in the plot: during those years, the runoff is steadily very low. 
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Table 5.3: main statistical characteristics of the corrected specific inflow time series, by reservoir. 
Parameter Alarcón Contreras Bellús 
Mean [mm/d] 0.294 0.150747 0.158 
Standard deviation [mm/d] 0.367 0.202421 0.746 
Skewness [-] 5.052 5.185368 25.162 

 

 
Figure 5.2: Alarcón reservoir actual sub-basin inflow, period 1995-2013. Source: self-made. 

5.1.2 Potential evapotranspiration 
The calculation of the potential evapotranspiration (PET) time series, as described in 
paragraph 4.1.2, requires several steps. The two variables concurring on its calculation are 
daylight duration and daily temperature. 
The final potential evapotranspiration is calculated at the daily scale, for each reservoir, 
following Eq. (4.8). Main statistical characteristics are reported in Table 5.4 and an example 
of the time series plot in Figure 5.3 for the Alarcón reservoir. 
Table 5.4: main statistical characteristics of the potential evapotranspiration time series, by reservoir. 
Parameter Alarcón Contreras Bellús 
Mean [mm/d] 59.599 54.229 73.473 
Standard deviation [mm/d] 48.118 43.444 53.716 
Skewness [-] 0.552 0.484 0.564 
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Figure 5.3: Alarcón sub-basin potential evapotranspiration, period 1995-2013. Source: self-made. 

5.2 Model calibration and validation 
Table 5.5: final parameter sets selected for each reservoir after the calibration-validation procedure with the GAP-tool of the HBV-light software. 

Parameter Routine Sensitivity range Alarcón Contreras Bellús 
TT 

Snow 

- -0.540 3.000 1.880 
CFMAX - 2.840 4.533 4.750 
SP - 1.000 1.000 1.000 
SFCF - 1.000 0.884 0.010 
CFR - 0.050 0.050 0.050 
CWH - 0.100 0.100 0.100 
FC 

Soil moisture  
10 350.000 570.000 450 

LP 0.05 0.999 0.999 0.300 
BETA 0.02 0.390 0.917 0.920 
PERC 

Soil response  

0.13 0.860 0.864 5.600 
UZL 1÷2 20.000 39.016 8.000 
K0 0.06 0.700 0.202 0.500 
K1 0.01 0.079 0.170 0.500 
K2 0.007 0.018 0.012 0.012 
MAXBAS Triangular 

routing 
0.1 3.660 4.227 3.070 
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Once every dataset necessary to run the model has been produced in the required format, the 
calibration and validation procedures, as described in paragraph 4.2, can take place. The snow 
routine parameters did not show a very important effect in the model calibration: in fact, snow 
is not an important factor in the selected reservoirs, and is rarely present. The K1, K2 and 
MAXBAS appeared to have a single optimum value range: other explored combination of 
values would not be performing even close to the optimum. The parameters FC, LP and BETA 
showed a high interdependency: there were different set of values which returned a similar 
performance in the simulation, although with different simulation results. The FC value could 
be varied by 50 or more units, adjusting the others would compensate the loss of performance, 
but a right combination had to be found. This property was exploited during the calibration-
validation process, when there was high disagreement among the calibration and validation 
parameters. The FC parameter was fixed, and the optimal combination was searched through 
the GAP tool, until a good compromise was reached.  The same occurred with the PERC, UZL 
and K0 parameters, although on a smaller range of variability: the PERC value could change 
about by 5 units. The final selected parameter sets are reported, for each reservoir, in Table 
5.5. The “sensitivity range” column shows a sensitivity analysis of the parameters: varying the 
parameter by the respective indicated value would decrease the Nash-Sutcliffe efficiency of 
about 1%. 
The HBV-light software plots: 

 The observed temperature; 
 The observed precipitation and simulated snow; 
 The simulated vs. observed runoff and their total cumulated difference. 

A screen capture of the results is shown in Figure 5.4 for the Alarcón sub-basin. 
The simulated-observed runoff plot gives a first idea of the goodness of the model: the trend 
of the observed runoff is very well followed by the simulated time series, despite the noisy 
signal of the observed data. The peaks are often not very well matched, but this was to be 
expected: they are single occurrences, with an important random component that can’t be 
expected to be well reproduced. Anyway, there is no apparent dissociation between the general 
trend: even if high peaks are not well represented, they are simulated with a smaller runoff 
peak. On the other hand, the dry periods are very well represented: there is no case in which a 
low observed runoff corresponds to a high simulated one. This means that the model can have 
a significant importance in simulation and prediction of drought events, and is able to simulate 
less water-stressed periods. 
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Finally, the HBV-light software produces a report of the performance of the simulation, 
according to several different objective functions, explained below (Krause, Boyle, & Bäse, 
2005; R. D. Harmel et al., 2013): 

 Coefficient of determination (ࡾ૛): it is defined as the squared value of the coefficient 
of correlation according to Bravais-Pearson. ࡾ૛ can also be expressed as the squared 
ratio between the covariance and the multiplied standard deviations of the observed 
and predicted values. Therefore, it estimates the combined dispersion against the 
single dispersion of the observed and predicted series. The range of ࡾ૛ lies between 0 
and 1. A value of zero means no correlation at all whereas a value of 1 means that the 
dispersion of the prediction is equal to that of the observation. A “satisfactory” value 
for watershed-scale model is ࡾ૛>0.6. The observation data is marked as ࢟࢏, its mean 
as ഥ࢟, the simulated results as ࢏ࢌ and its mean as ࢌത. It is computed through Eq. (5.1): 

૛ࡾ = ቀ∑ ሺ࢟࢏ − ࢏തሻݕ  ൫࢏ࢌ − ݂൯̅ቁ૛

∑ ሺ࢟࢏ ࢏തሻ૛ݕ − ∑ ൫࢏ࢌ − ݂൯̅૛
࢏

 Eq. (5.1) 

 
 Nash–Sutcliffe model efficiency coefficient (ࡱࡿࡺ): as described in paragraph 4.2. The 

NSE is calculated according to Eq. (4.10); 
 Nash-Sutcliffe efficiency with logarithmic values (ܖܔ  to reduce the problem of :(ࡱࡿࡺ

the squared differences and the resulting sensitivity to extreme values the Nash-
Sutcliffe efficiency ࡱࡿࡺ is often calculated with logarithmic values of ࢟ and ࢌ. 
Through the logarithmic transformation of the runoff value the peaks are flattened 
and the low flows are kept more or less at the same level. As a result, the influence of 
the low flow values is increased in comparison to the flood peaks resulting in an 
increase in sensitivity of ܖܔ  .to systematic model over- or underprediction ࡱࡿࡺ

 Flow-weighted Nash efficiency (࢝ࡱࡿࡺ): all criteria described above quantify the 
difference between observation and prediction by the absolute values. As a result, an 
over- or underprediction of higher values has, in general, a greater influence than 
those of lower values, even if this effect is lower for the ܖܔ  indicator. As a solution ࡱࡿࡺ
to this problem, the efficiency can be measured on relative deviations, as in Eq. (5.3): 

ࡱࡿࡺ࢝ = ૚ −
∑ ൬࢟࢏ − ࢏࢟࢏ࢌ ൰૛

࢏

∑ ቀ࢟࢏ − ഥ࢟ഥ࢟ ቁ૛
࢏

 Eq. (5.3) 

Through this modification, the differences between the observed and predicted values 
are quantified as relative deviations which reduce the influence of the absolute 
differences during high flows significantly. In addition, the influence of the absolute 
lower differences during low flow periods are enhanced because they are significant if 
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looked at relatively. As a result, the relative forms are more sensitive on systematic 
over- or underprediction, in particular during low flow conditions. 

The HBV program is fed with the calibration and validation datasets, and produced the 
simulation results sought. In Table 5.6 and Table 5.7 the performance obtained by the model 
is summarized, according to four different objective functions. A significant goodness of fit, for 
every objective function, is obtained, and the thresholds for a sufficient to good fit are 
respected in for the (0.5<ࡱࡿࡺ) ࡱࡿࡺ and ࡾ૛ (ࡾ૛>0.6) according to Moriasi et Al. (2015) and 
Ritter et Al. (2013). As was expected, the flow weighted efficiency shows higher values: the 
influence of the high flow values is reduced, and since the model simulates very well low flows, 
they gain a higher importance in the performance assessment.  The performance lowers in 
system validation, as expected, but it does not decrease more than 0.15, indicating a good 
agreement of the conditions between the calibration and validation subsets. 

Table 5.6: goodness of fit functions evaluated for the three considered sub-basins. Calibration subset. 
Objective function Alarcón Contreras Bellús 

R2 0.769 0.773 0.643 
NSE 0.753 0.770 0.594 
lnNSE 0.512 0.546 0.256 
wNSE 0.818 0.847 0.663 

 
Table 5.7: goodness of fit functions evaluated for the three considered sub-basins. Validation subset. 
Objective function Alarcón Contreras Bellús 

R2 0.643 0.762 0.620 
NSE 0.639 0.727 0.512 
lnNSE 0.463 0.508 0.216 
wNSE 0.665 0.832 0.599 

5.3 Meteorological forecasts bias correction 
In this section, the results of the bias correction algorithm described in paragraph 4.3 are 
illustrated, with the help of plots generated by the MATLAB code. The parameters explored 
for the bias-correction were: 

 Subdivision break-point of the dataset; 
 Fitting polynomial degree; 
 Number of subdivisions of the whole percentile range. 
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The calibration algorithm was launched multiple times, trying different combination of these 
parameters. Every time, the performance was evaluated, comparing the adjusted dataset with 
the observations, according to the MAE indicators. As a rule of thumb, the simpler the system, 
the better: a more complicated solution (i.e., higher polynomial degree and/or more percentile 
ranges) has to be justified with a clear performance improvement.  

 Polynomial degree: it has been found that increasing the polynomial degree over two 
created problems in the fitting, resulting in divergence. The precipitation dataset 
performed best with a second degree, while for the temperature a simpler first-degree 
regression was chosen, because no relevant difference existed between both choices; 

 Number of percentile ranges: for the selection of the number of percentile ranges, 
holds the same said for the polynomial degree choice. Moreover, it has been found that 
splitting the percentile range in more than 20 did not make any difference, and in 
some cases would even worsen the performance of the system; 

 The dataset split seemed to have a more important impact on the overall performance 
of the system: changing the range by one year would noticeably, even if not 
dramatically, change the performance.  

The final choice for said parameters, which provided the best fit of the corrected time series to 
the observation, is reported in Table 5.8, for precipitation and temperature. 

Table 5.8: final choice of parameters for the bias-correction algorithm. 
Parameter Precipitation Temperature 
Subdivision (first / second) 1995-2005 / 2006-2015 1995-2008 / 2009-2015 
Polynomial degree 2 1 
Number of percentile ranges 20 10 

 
Figure 5.5 and Figure 5.6 show an example of the biased and bias-corrected temperature CDFs 
in the same plot as that of the observations, for the two subsets. A significant improvement 
can be noticed in the matching of the CDFs. There seem to be systematic errors in the original 
forecasts: they tend to underestimate temperature. The correction algorithm properly adjusts 
the forecasts to the observation, with an optimal performance in the matching of the CDFs. A 
slightly lower performance can be observed in the test dataset for the months of February and 
March: in particular, in the month of February, the original forecasts seems to have a similar 
performance to that of the bias-corrected ones. However, in the remaining ten months, the 
bias-correction algorithm keeps a good performance in the test subset.  
In Figure 5.7 and Figure 5.8 an example is displayed for the precipitation variable. In this case, 
as was expected, there seem to be no improvement after the application of the correction 
algorithm: the CDF of the original forecasts already shows a good match to that of the 
observations.  
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The bias correction algorithm found is then applied to the data. The resulting corrected 
forecasts are plotted against the original forecasts and observation in Figure 5.9 and Figure 
5.10. From the graphs, it is clear that the adjusted temperature forecasts follow the 
observations better than the original biased data, while no definitive judgement can be made 
looking at the precipitation graph: there are high observed peaks which are covered by neither 
the original nor the corrected forecasts, nevertheless, the corrected forecasts increase more 
than the original biased data when these peaks occur. However, even if these are good 
premises, nor the graphical observation of the plots, nor the simple improvement of the CDFs 
are definitive proofs to tell if the algorithm is actually working: to really evaluate the 
performance of the bias correction algorithm, the mean average error indicator was employed. 
It has been calculated according to the following patterns: 

 Yearly sum: sum of the monthly MAE of each month of the year. An example is 
reported in Figure 5.11; 

 Month average: average of the MAEs of every month. Figure 5.12 shows an example. 
From the examination of the bar plots, several considerations can be made. 
As hinted in the analysis of the CDFs, an overall good performance of the algorithm for the 
temperature correction is achieved, while the precipitation correction does not deliver the 
same results. In fact, as an unconditional method, QM does not preserve the connection 
between each pair of forecast and observation values. Thus, QM might sometimes adjust the 
raw forecasts to the wrong direction for some forecast values and cannot provide satisfying 
results as conditional methods. Moreover, Zhao et al. found that although QM is able to correct 
the bias, it cannot ensure the reliability and coherence of forecasts (‘coherence’ here means 
forecasts are at least as skilful as climatology). The reason is that QM does not consider the 
correlation between raw forecasts and observations. 
More in detail, the performance seems to vary significantly, by year and by month: for 
example, the precipitation correction usually yields a performance similar to that of the 
original forecasts. Looking at the temperature correction performance, in Figure 5.11 the 
picture is clear: the algorithm improves the predictive ability of the forecasts: nevertheless, in 
the year 2010 the performance of the corrected forecasts is worse than that of the original 
forecasts. Also, looking at Figure 5.12 it can be seen that the performance changes throughout 
the year, with lower values during the summer months. 
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Figure 5.11: Yearly sum of the MAE indicator of the biased and bias-corrected temperature time series. Alarcón sub-basin. Source: self-made. 

 
Figure 5.12: average MAE of every month of the biased and bias-corrected temperature time 

series. Alarcón sub-basin. Source: self-made. 
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5.4 Hydrological forecasts generation 
Hydrological forecasts for the Júcar sub-basins of Alarcón, Contreras and Bellús have been 
generated for the period 2005-2008, which corresponds to a severe drought episode, to test 
the skill of the hydrological models and meteorological forecasts described before to provide 
comprehensive hydrological forecasts. The model will be run once for every ensemble member 
of the corrected forecast. Each plot corresponds to 25 model runs. The title of each plot 
indicates the month in which the forecasts were issued (the forecasts are issued on the first 
day of the month), and shows the simulation of the next 215 days. Five time series are plotted 
in the same graph: one corresponds to the observed runoff and the other four correspond to: 

 The 25th percentile of the runoff simulation ensemble fed with the corrected forecasts; 
 The 75th percentile of the runoff simulation ensemble; 
 The median of the runoff simulation ensemble; 

Such an organization has been decided in order to retain and show the statistical information 
given by the 25 ensemble members of the forecasts, while keeping the plot readable without 
filling it with 27 different time series. 

5.4.1 Alarcón sub-basin 
Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16 show the simulated vs observed plots for 
the Alarcón sub-basin, for the period 2005-2008. A very good agreement between the trends 
of observation and corrected simulations can be observed in the whole dataset, excepting some 
isolated cases. The general trend seems to highlight that the first quartile of the simulations 
run with the corrected forecasts matches the observations better than all the other simulated 
time series. On occasions (forecasts issued on May 2006, May and June 2007 and July and 
November 2008), the initial conditions are not properly set by the HBV model, resulting in an 
initial error after which the simulated time series tends to get closer to the observed one. HBV 
light does not allow to introduce the initial conditions, so a warm-up period of 5 months, fed 
with observations, was used. In some cases, this period was not enough to secure that initial 
conditions were adequately reproduced and, as a result, the runoff for the beginning of the 
forecasting period was wrong (for example, Alarcon in May 2006). Moreover, wrong initial 
conditions could result in a completely prejudiced forecast.  
The general trend of a low runoff, for the whole period, is correctly simulated by the system. 
The driest periods, corresponding to the summer months of the years 2005 and 2006 and the 
second part of 2007, have been simulated correctly, with months of anticipation. More in 
details: 
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 The dry periods of the summer-fall of 2005, 2006 and 2007 were predicted already in 
the first month of the same year, and consistently simulated in the following months: 
there were clear clues for an incoming particularly dry spell months in advance; 

 The recuperation moment in the end of 2006-spring 2007 was forecasted as well: the 
simulations showed a steady increase of the runoff, several months before, and they 
were consistently, month after month, predicting an increase of the water flow; 

 The forecasts issued in the months of July, August and September 2007 wrongly 
indicated a less dry period in the winter 2007-spring 2008. However, starting from 
October 2007, the forecasts started to correctly indicate the following dry period; 

 The dry summer of 2008 was forecasted already starting from January of the same 
year, and the more wet fall and winter were predicted as well. 

From these observations, it is evident that the dry periods are consistently reproduced several 
months before their occurrence. Moreover, there have been no “false positives”: if a period was 
forecasted to be dry, then it actually was dry. The system made some mistakes on the 
prediction of more wet periods. Some of them were predicted to occur before they actually 
happened, others were not forecasted. The very wet spring of 2009 was not predicted by the 
system.  
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5.4.2 Contreras sub-basin 
The simulation results are shown in Figure 5.17, Figure 5.18, Figure 5.19 and Figure 5.20 
For the Contreras sub-basin, the same analysis has been carried out. In this case, the system 
performs even better: the simulations show a tighter correspondence to the observations, even 
if they do not reproduce the noise of the observed runoff signal. Particularly in the first tested 
year (Figure 5.17) the model is working exceptionally well: the maximum difference between 
the trends of the observations and simulations is 0.05 to 0.1 mm/d. In the other years a very 
good correspondence to the trend is observed as well, with the same characteristics highlighted 
before for the Alarcón sub-basin: the system reproduces dry periods very well, but it lacks 
predictive capacity for more wet periods (Figure 5.19 and Figure 5.20), and misses the peaks, 
even if it shows an increase in the simulated runoff in correspondence of the peaks. Anyway, 
this effect may be because some of the peaks correspond to convective phenomena that cannot 
be adequately captured by the SEAS5 model, as they happen in specific locations, while the 
model has worldwide coverage. This phenomenon cannot be predicted with more than few 
days in advance (and in some case even hours in advance), so it was not expected to be 
reproduced by 7-month lead forecasts. This case, in the same way of the previous, confirms 
that the 25th percentile is the one that gets the closest to the observations trend.  
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5.4.3 Bellús sub-basin 
The simulations plots for the years from 2005 to 2008 are reported in Figure 5.21, Figure 5.22, 
Figure 5.23 and Figure 5.24. The plots are cut to the y value of 0.8, to better highlight the low 
values: high peaks of observed runoff reach up to 30 mm/d, making the lowest (and most 
occurring) values less readable if kept in the scale. The smaller scale of this basin makes 
hydrological forecasts more difficult. In this case, the peaks in the observations are barely 
“noticed” by the simulations, and wetter stages between the dry periods are not very well 
simulated. This happens for the same reasons explained in the previous paragraph 5.4.2 for 
the Contreras sub-basin. Nevertheless, there is a noticeable increase in the 75th percentile of 
the ensembles, in these cases, indicating a higher uncertainty of the weather forecasts, as 
opposed to the very little variations present in more dry moments. Sufficient results are 
obtained in dry periods, with the ensemble median of the simulations being the closest to the 
observations. There is a consistent error in the setting of the initial conditions: it can be 
observed in the fact that simulations, at the beginning of the plot, are not very describing of 
the observations, and tend to get closer with the advancing of the simulation time. The lower 
grade of coincidence of the simulations to the observations is due to the lower performance 
attained by the previous HBV calibration and by the small surface of the sub-basin, which 
produces high variability in the signal of the observed runoff. The lower skill may also be 
caused by the fact that the Bellús sub-basin presents a very small area, compared to that of 
Alarcón and Contreras, and thus its inner variability cannot be adequately capture by the 
meteorological forecasting model SEAS5, whose global coverage makes that very few pixels 
cover this sub-basin.  
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CHAPTER 6                    
CONCLUSIONS 

This is the last chapter of the work, and it is devoted to a brief summary of the work, critical 
conclusions and possible future lines of research.  

6.1 Brief summary of the analysis 
This work focused on the creation of a hydrological forecasting system, specifically calibrated 
on 3 sub-basins of the Júcar river basin. To do so, several different tools have been exploited. 
The hydrological model providing the simulations is the HBV model, already widely and 
successfully tested in a variety of different studies. To calibrate the model to the local 
conditions, observation data were used, obtained from the Spain02 v5 dataset. The weather 
hindcasts (forecasts generated on past periods), downloaded through the Copernicus Climate 
Data Store Service, were generated by the ECMWF SEAS5 system, which relies on an analysis 
of the initial state of the ocean, a global coupled ocean-atmosphere general circulation model, 
and a post-processing suite. Said forecasts were then processed with a quantile mapping bias-
correction method, to account for and correct systematic errors present in the original 
ensemble. 
The first step, after obtaining the necessary data, was the preparation of the input to the HBV 
model, operation carried out with the EXCEL software. The potential evapotranspiration was 
calculated with the Thornthwaite formula, deemed the best option in this case: the Penman 
formula required data which were not readily available. 
Then, the HBV model was calibrated, for every studied sub-basin, with the help of the GAP 
(Genetic Algorithm-Powell) parameter search tool included in the HBV-light software. 
Sufficient to good results were obtained in the model calibration and no systematic errors were 
observed in the simulated time series. The Bellús sub-basin showed the least satisfying, even 
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if still sufficient, results: this is due to the small areal dimension of the sub-basin, and the fact 
that it is subject to swift and unpredictable changes of the runoff, which lead to very high peaks, 
difficult to correctly simulate by any model. Anyway, the base flow was very well simulated by 
the model. 
The third action to be carried out was the bias-correction of the forecasts. Given the large 
amount of data to process, it was preferred to use the MATLAB software, given its capacity of 
dealing conveniently with datasets of important dimensions and automating repetitive 
calculations. The application of the correction method provided good results with the 
temperature variable, while a less convincing performance was obtained for the precipitation. 
This is due to the fact that the quantile mapping technique is an unconditional method: it does 
not preserve the connection between each pair of forecast and observation values. Since 
precipitation forecasts suffer from not only bias but also reliability and coherence problems, 
an unconditional method did not provide satisfactory results. 
Finally, the bias-corrected forecasts were input to the previously calibrated HBV model, to test 
the predictive ability of the system. The dry period 2005-2008 was studied for each of the sub-
basins. The resulting simulations indicated a good agreement to the trend of the observations, 
especially during dry periods. Stages with a higher runoff were not simulated with the same 
accuracy, even if an increasing trend in the simulations matched the observations in these 
cases. The forecasting potential of the system seem to be very interesting: dry events were 
predicted, consistently, several months before their occurrence. 

6.2 Conclusions 
The implemented system is able to return reliable forecasts of the trend of the future state of 
the upper Júcar river basin. It showed a particularly good performance in consistently 
predicting, months in advance, incoming dry periods. However, it does not reproduce the 
relatively high variability of the runoff, and showed lower performance in predicting wetter 
periods. This was expected: wet periods have a very unpredictable pattern in the 
Mediterranean climate, and are usually brief moments of heavy precipitations. 
Moreover, the presented system suffers from the typical and inherent issues which trouble 
every mathematical model: mistakes in the measures, mistakes in model structure, mistakes 
in model calibration, initial conditions, boundary conditions and simplifying assumptions 
contribute to a not perfect correspondence of the simulations to the reality.  
In particular for this case, the weak points encountered have been: 

 The computation of the actual inflow to the reservoir, which is very difficult to 
accurately calculate, given the vast surface of the basin and the variety of mechanisms 
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involved. In addition, the considered evaporation and infiltration phenomena were 
described by empirical relationships, which are good enough, but not very accurate; 

 The precipitation and temperature measures are interpolated from different 
measuring points and sub-basin averages have been considered, rather than higher 
resolution grids; 

 The 7 month-lead forecasts, despite the recent considerable improvements, still are 
not as reliable as short-term forecasts, for which alternative (but yet not open-access) 
products exist; 

 The bias correction method exploited, while showing a good performance for the 
temperature forecasts, does not offer significant skill improvements to the 
precipitation forecasts; 

 The calibration procedure relies on the idea of stationarity, which is not strictly 
respected: land use change and climate change can affect the definition of the model 
coefficients. 

Future research can try to remediate these problems. Still, despite all these issues, the study 
showed a rather good overall performance of the implemented system in the studied area. 

6.3 Further investigation lines 
The present research was the first to implement a bias-correction algorithm to daily-scale 
seasonal forecasts to be input to a hydrological model in the Júcar river basin: no such a 
scheme has been seen before. The results are promising, but more research needs to be done. 
Different bias-correction methods can be tested, in order to select the one which best fits each 
variable, especially for the precipitation forecasts, which were not satisfactorily corrected with 
the quantile mapping bias correction adopted, due to their problems of reliability and 
coherence. Different techniques have been tried in other studies, which showed better 
performance.  
The system needs to be furtherly tested, on different sub-basins of the same river basin and on 
different river basins, in Spain and in other countries, to furtherly confirm its efficacy. The 
various possible adjustable parameters and methods have not been completely explored in this 
research: for example, a different, similarly performing parameter set, could have been chosen 
for the HBV model calibration, or a non-linear fitting function could be used to fit the forecasts 
quantiles to the observations’ ones. 
Different sources of forecasts could be used as input to the system: just one of the many 
forecasts products of the Copernicus programme has been used.  
Different hydrological models could be tested, to simulate the runoff of the sub-basins. 
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Finally, the system could be coupled with a water resources management model and tested to 
understand the improvements it would bring to the administration of the water resources of 
the river basin. 
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ANNEX 

This annex contains the code written in the MATLAB software for the bias-correction 
algorithm, divided by function, and the code written in VBA for the arrangement of the EXCEL 
sheets of the original forecasts. 

MATLAB source codes: scripts 
These source codes create and save variables directly in the current working directory. 

assemble_matrices.m 
% Assemble matrices to load for the results: after running % temperature_correction and precipitation_correction (in this order) run temperature_correction ; run precipitation_correction ; % ALARCÓN % prec OBS_prec_Alarcón = [OBS_Alarcónp ; OBS_Alarcónp_v] ; prec_Alarcón_ = [prec_Alarcón_c ; prec_Alarcón_v ] ; prec_ens_Alarcón_ = [prec_ens_Alarcón_c ; prec_ens_Alarcón_v ] ; Alarcón_prec_corr = QMAPP(prec_Alarcón_, prec_ens_Alarcón_, 1, COEFF_Alarcónp, paramp) ; Alarcón_pmean_corr = dailyavg(Alarcón_prec_corr) ; Alarcón_pmean = dailyavg(prec_ens_Alarcón_) ; % temp OBS_temp_Alarcón = [OBS_Alarcónt ; OBS_Alarcónt_v] ; temp_Alarcón_ = [temp_Alarcón_c ; temp_Alarcón_v ] ; temp_ens_Alarcón_ = [temp_ens_Alarcón_c ; temp_ens_Alarcón_v ] ; Alarcón_temp_corr = QMAPP(temp_Alarcón_, temp_ens_Alarcón_, 2, COEFF_Alarcónt, paramt) ; Alarcón_tmean_corr = dailyavg(Alarcón_temp_corr) ; Alarcón_tmean = dailyavg(temp_ens_Alarcón_) ; % CONTRERAS % prec OBS_prec_Contreras = [OBS_Contrerasp ; OBS_Contrerasp_v] ; 
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prec_Contreras_ = [prec_Contreras_c ; prec_Contreras_v ] ; prec_ens_Contreras_ = [prec_ens_Contreras_c ; prec_ens_Contreras_v ] ; Contreras_prec_corr= QMAPP(prec_Contreras_, prec_ens_Contreras_, 1, COEFF_Contrerasp, paramp) ; Contreras_pmean_corr = dailyavg(Contreras_prec_corr) ; Contreras_pmean = dailyavg(prec_ens_Contreras_) ; 
  
% temp OBS_temp_Contreras = [OBS_Contrerast ; OBS_Contrerast_v] ; temp_Contreras_ = [temp_Contreras_c ; temp_Contreras_v ] ; temp_ens_Contreras_ = [temp_ens_Contreras_c ; temp_ens_Contreras_v ] ; Contreras_temp_corr= QMAPP(temp_Contreras_, temp_ens_Contreras_, 2, COEFF_Contrerast, paramt) ; Contreras_tmean_corr = dailyavg(Contreras_temp_corr) ; Contreras_tmean = dailyavg(temp_ens_Contreras_) ; 
  
% BELLÚS % prec OBS_prec_Bellús = [OBS_Bellúsp ; OBS_Bellúsp_v] ; prec_Bellús_ = [prec_Bellús_c ; prec_Bellús_v ] ; prec_ens_Bellús_ = [prec_ens_Bellús_c ; prec_ens_Bellús_v ] ; Bellús_prec_corr= QMAPP(prec_Bellús_, prec_ens_Bellús_, 1, COEFF_Bellúsp, paramp) ; Bellús_pmean_corr = dailyavg(Bellús_prec_corr) ; Bellús_pmean = dailyavg(prec_ens_Bellús_) ; 
  
% temp OBS_temp_Bellús = [OBS_Bellúst ; OBS_Bellúst_v] ; temp_Bellús_ = [temp_Bellús_c ; temp_Bellús_v ] ; temp_ens_Bellús_ = [temp_ens_Bellús_c ; temp_ens_Bellús_v ] ; Bellús_temp_corr= QMAPP(temp_Bellús_, temp_ens_Bellús_, 2, COEFF_Bellúst, paramt) ; Bellús_tmean_corr = dailyavg(Bellús_temp_corr) ; Bellús_tmean = dailyavg(temp_ens_Bellús_) ;  
precipitation_correction.m 
% this script loads the original data and computes the coefficients of the quantile % mapping correction algorithm for the precipitation variable [Alarcónp,date] = xlsread('pr_Spain02_v50_daily.xlsx','A10964:B24112'); dtt = datetime(date,'InputFormat','dd/MM/yyyy'); date = datenum(dtt) ; Alarcóndatap = [date,Alarcónp] ; [paramp.mind, paramp.maxd] = minmax(Alarcóndatap, 0) ; % resevoir: 1 for Alarcón, 2 for contreras, 3 for Bellús; % sheetnr: 1 for precipitations, 2 for temp; % start = starting year, fin = end year % ISPREC = 1 treats the data as precipitation start  = 1995 ; fin    = 2005 ; 
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startv = fin+1 ; finv   = 2015 ; paramp.degree = 2; paramp.nrpct = 20 ; paramp.limit = 10^-3 ; paramp.minrange = 10^-3 ; sheetnr = 1 ; ISPREC = sheetnr ; 
  
% ALARCÓN: CALIBRATION reservoir = 1 ; % get the forecasts: by month and by ensemble, with date [prec_Alarcón_c, prec_ens_Alarcón_c] = get_forecasts(sheetnr,reservoir,start,fin) ; % get the vector of dates of the calibration dataset datec = date(year(dtt)<=fin & year(dtt)>=start) ; % select the observations correspondent to the calibration dataset OBS_Alarcónp = [datec Alarcónp(year(dtt)<=fin & year(dtt)>=start)] ; % get the coefficients  COEFF_Alarcónp = Quantilemapping_calibration(OBS_Alarcónp,prec_Alarcón_c, 1, paramp, reservoir, 0) ; 
  
% ALARCÓN : VALIDATION % get forecasts data [prec_Alarcón_v, prec_ens_Alarcón_v] = get_forecasts(sheetnr,reservoir,startv,finv) ; % get the date array datev = date(year(dtt) <= finv & year(dtt) > fin) ; % get the observation data OBS_Alarcónp_v = [datev Alarcónp(year(dtt)<=finv & year(dtt) > fin)] ; 
  
% CONTRERAS: CALIBRATION Contrerasp = xlsread('pr_Spain02_v50_daily.xlsx','D10964:D24112'); Contrerasdatap = [date,Contrerasp] ; [paramp.mind, paramp.maxd] = minmax(Contrerasdatap, 0) ; reservoir = 2 ; % get the forecasts: by month and by ensemble, with date [prec_Contreras_c, prec_ens_Contreras_c] = get_forecasts(sheetnr,reservoir,start,fin) ; % select the observations correspondent to the calibration dataset OBS_Contrerasp = [datec Contrerasp(year(dtt)<=fin & year(dtt)>=start)] ; % get the coefficients COEFF_Contrerasp = Quantilemapping_calibration(OBS_Contrerasp,prec_Contreras_c, 1, paramp, reservoir, 0) ; 
  
% CONTRERAS : VALIDATION % get forecasts data [prec_Contreras_v, prec_ens_Contreras_v] = get_forecasts(sheetnr,reservoir,startv,finv) ; % get the observation data 
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OBS_Contrerasp_v = [datev Contrerasp(year(dtt)<=finv & year(dtt) > fin)] ; 
  
% BELLÚS: CALIBRATION Bellúsp = xlsread('pr_Spain02_v50_daily.xlsx','H10964:H24112'); Bellúsdatap = [date,Bellúsp] ; [paramp.mind, paramp.maxd] = minmax(Bellúsdatap, 0) ; reservoir = 3 ; % get the forecasts: by month and by ensemble, with date [prec_Bellús_c, prec_ens_Bellús_c] = get_forecasts(sheetnr,reservoir,start,fin) ; % select the observations correspondent to the calibration dataset OBS_Bellúsp = [datec Bellúsp(year(dtt)<=fin & year(dtt)>=start)] ; % get the coefficients COEFF_Bellúsp = Quantilemapping_calibration(OBS_Bellúsp,prec_Bellús_c, 1, paramp, reservoir, 0) ; 
  
% BELLÚS : VALIDATION % get forecasts data [prec_Bellús_v, prec_ens_Bellús_v] = get_forecasts(sheetnr,reservoir,startv,finv) ; % get the observation data OBS_Bellúsp_v = [datev Bellúsp(year(dtt)<=finv & year(dtt) > fin)] ;  
temperature_correction.m 
% this script loads the original data and computes the coefficients of the quantile % mapping correction algorithm for the temperature variable [Alarcónt,date] = xlsread('tas_Spain02_v50_daily.xlsx','A6:B13154'); dtt = datetime(date,'InputFormat','dd/MM/yyyy'); date = datenum(dtt) ; Alarcóndatat = [date,Alarcónt] ; [paramt.mind, paramt.maxd] = minmax(Alarcóndatat, 0) ; % resevoir: 1 for Alarcón, 2 for contreras, 3 for Bellús; % sheetnr: 1 for tempipitations, 2 for temp; % start = starting year, fin = end year % ISPREC = 1 treats the data as tempipitation start  = 1995 ; fin    = 2008 ; %performance is ~ constant for Alarcón and Bellús, for contreras best is with fin = 2008 startv = fin+1 ; finv   = 2015 ; paramt.degree = 1; % doesn't change results much, so i select the easiest paramt.nrpct = 10 ; % doesn't change results much, so i select the easiest paramt.limit = 10^-3 ; paramt.minrange = 10^-3 ; sheetnr = 2 ; ISPREC = sheetnr ; 
  
% ALARCÓN: CALIBRATION 
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reservoir = 1 ; % get the forecasts: by month and by ensemble, with date [temp_Alarcón_c, temp_ens_Alarcón_c] = get_forecasts(sheetnr,reservoir,start,fin) ; % get the vector of dates of the calibration dataset datec = date(year(dtt)<=fin & year(dtt)>=start) ; % select the observations correspondent to the calibration dataset OBS_Alarcónt = [datec Alarcónt(year(dtt)<=fin & year(dtt)>=start)] ; % get the coefficients COEFF_Alarcónt = Quantilemapping_calibration(OBS_Alarcónt,temp_Alarcón_c, 2, paramt, 1, 0) ; 
  
% ALARCÓN : VALIDATION % get forecasts data [temp_Alarcón_v, temp_ens_Alarcón_v] = get_forecasts(sheetnr,reservoir,startv,finv) ; % get the date array datev = date(year(dtt) <= finv & year(dtt) > fin) ; % get the observation data OBS_Alarcónt_v = [datev Alarcónt(year(dtt)<=finv & year(dtt) > fin)] ; 
  
% CONTRERAS: CALIBRATION Contrerast = xlsread('tas_Spain02_v50_daily.xlsx','D6:D13154'); Contrerasdatat = [date,Contrerast] ; [paramt.mind, paramt.maxd] = minmax(Contrerasdatat, 0) ; reservoir = 2 ; % get the forecasts: by month and by ensemble, with date [temp_Contreras_c, temp_ens_Contreras_c] = get_forecasts(sheetnr,reservoir,start,fin) ; % select the observations correspondent to the calibration dataset OBS_Contrerast = [datec Contrerast(year(dtt)<=fin & year(dtt)>=start)] ; % get the coefficients COEFF_Contrerast = Quantilemapping_calibration(OBS_Contrerast,temp_Contreras_c, 2, paramt, 2, 0) ; 
  
% CONTRERAS : VALIDATION % get forecasts data [temp_Contreras_v, temp_ens_Contreras_v] = get_forecasts(sheetnr,reservoir,startv,finv) ; % get the observation data OBS_Contrerast_v = [datev Contrerast(year(dtt)<=finv & year(dtt) > fin)] ; 
  
% BELLÚS: CALIBRATION Bellúst = xlsread('tas_Spain02_v50_daily.xlsx','H6:H13154'); Bellúsdatat = [date,Bellúst] ; [paramt.mind, paramt.maxd] = minmax(Bellúsdatat, 0) ; reservoir = 3 ; % get the forecasts: by month and by ensemble, with date [temp_Bellús_c, temp_ens_Bellús_c] = get_forecasts(sheetnr,reservoir,start,fin) ; 
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% select the observations correspondent to the calibration dataset OBS_Bellúst = [datec Bellúst(year(dtt)<=fin & year(dtt)>=start)] ; % get the coefficients COEFF_Bellúst = Quantilemapping_calibration(OBS_Bellúst,temp_Bellús_c, 2, paramt, 3, 0) ; 
  
% BELLÚS : VALIDATION % get forecasts data [temp_Bellús_v, temp_ens_Bellús_v] = get_forecasts(sheetnr,reservoir,startv,finv) ; % get the observation data OBS_Bellúst_v = [datev Bellúst(year(dtt)<=finv & year(dtt) > fin)] ; 
 

results.m 
% this is the file which provides the results of each subbasin % Contents:  % Graphs of the CDFs of corrected and biased forecasts vs observations; % Observed vs simulated (with the bias-corrected forecasts) flow; % Confrontation of the MAE of the biased vs corrected forecasts. % for each resrvoir % next command will take around to 20 minutes to complete run Assemble_matrices % if the workspace generated by the previous command have been saved, load % it with the following, without running the first one load('final workspace.mat') % ALARCÓN reservoir = 1 ; % Graphs of the CDFs of corrected and biased forecasts vs observations: % prec figure ; [~] = Quantilemapping_calibration(OBS_Alarcónp,prec_Alarcón_c, 1, paramp, reservoir, 1) ; figure ; Quantilemapping_validation(OBS_Alarcónp_v, prec_Alarcón_v, 1, COEFF_Alarcónp, paramp, reservoir, 1) % temperature figure ; [~] = Quantilemapping_calibration(OBS_Alarcónt,temp_Alarcón_c, 2, paramt, reservoir, 1) ; % try the correction function on the validation dataset figure ; Quantilemapping_validation(OBS_Alarcónt_v, temp_Alarcón_v, 2, COEFF_Alarcónt, paramt, reservoir, 1) % Observed vs simulated flow % watch out! put the parameter, clarea and simulation files before starthbv=2005; finhbv = 2008;  for i = starthbv:finhbv     figure; 
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    HBV_files(Alarcóndatap, Alarcóndatat, prec_ens_Alarcón_, temp_ens_Alarcón_, Alarcón_prec_corr, Alarcón_temp_corr, i, i, reservoir) end % MAE temp mae_data (1995, 2015, date, dtt, Alarcónt, temp_ens_Alarcón_c(:,2:end), temp_ens_Alarcón_v(:,2:end), temp_Alarcón_c, temp_Alarcón_v, 2, COEFF_Alarcónt, paramt, reservoir) % MAE prec mae_data (1995, 2015, date, dtt, Alarcónp, prec_ens_Alarcón_c(:,2:end), prec_ens_Alarcón_v(:,2:end), prec_Alarcón_c, prec_Alarcón_v, 1, COEFF_Alarcónp, paramp, reservoir) 
  
% view the corrected vs biased time series  % prec figure;  plot(datetime(OBS_prec_Alarcón(:,1),'ConvertFrom','datenum'),OBS_prec_Alarcón(:,2),'Color',0.7*[1,1,1]) ; hold on ; plot(datetime(Alarcón_pmean(:,1),'ConvertFrom','datenum'), Alarcón_pmean(:,2),'b-') ; plot(datetime(Alarcón_pmean_corr(:,1),'ConvertFrom','datenum'), Alarcón_pmean_corr(:,2),'r--') ; title('Alarcón precipitation') ; legend('Observations', 'original forecasts', 'bias-corrected forecasts','location','Northeast'); ylabel('Precipitation [mm/d]') ; % temp figure;  plot(datetime(OBS_temp_Alarcón(:,1),'ConvertFrom','datenum'),OBS_temp_Alarcón(:,2),'Color',0.7*[1,1,1]) ; hold on ; plot(datetime(Alarcón_tmean(:,1),'ConvertFrom','datenum'), Alarcón_tmean(:,2),'b-') ; plot(datetime(Alarcón_tmean_corr(:,1),'ConvertFrom','datenum'), Alarcón_tmean_corr(:,2),'r--') ; title('Alarcón temperature') ; legend('Observations', 'original forecasts', 'bias-corrected forecasts','location','Northeast'); ylabel('Temperature [°C]') ; 
  
% CONTRERAS reservoir = 2 ; % Graphs of the CDFs of corrected and biased forecasts vs observations: % prec figure ; [~] = Quantilemapping_calibration(OBS_Contrerasp,prec_Contreras_c, 1, paramp, reservoir, 1) ; figure ; Quantilemapping_validation(OBS_Contrerasp_v, prec_Contreras_v, 1, COEFF_Contrerasp, paramp, reservoir, 1) % temperature figure ; [~] = Quantilemapping_calibration(OBS_Contrerast,temp_Contreras_c, 2, paramt, reservoir, 1) ; figure ; 
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Quantilemapping_validation(OBS_Contrerast_v, temp_Contreras_v, 2, COEFF_Contrerast, paramt, reservoir, 1) % Observed vs simulated flow starthbv=2005; finhbv = 2008;  for i = starthbv:finhbv     figure;     HBV_files(Contrerasdatap, Contrerasdatat, prec_ens_Contreras_, temp_ens_Contreras_, Contreras_prec_corr, Contreras_temp_corr, i, i, reservoir) end % MAE temp mae_data (1995, 2015, date, dtt, Contrerast, temp_ens_Contreras_c(:,2:end), temp_ens_Contreras_v(:,2:end), temp_Contreras_c, temp_Contreras_v, 2, COEFF_Contrerast, paramt, reservoir) % MAE prec mae_data (1995, 2015, date, dtt, Contrerasp, prec_ens_Contreras_c(:,2:end), prec_ens_Contreras_v(:,2:end), prec_Contreras_c, prec_Contreras_v, 1, COEFF_Contrerasp, paramp, reservoir) 
  
% view the corrected vs biased time series  % prec figure;  plot(datetime(OBS_prec_Contreras(:,1),'ConvertFrom','datenum'),OBS_prec_Contreras(:,2),'Color',0.7*[1,1,1]) ; hold on ; plot(datetime(Contreras_pmean(:,1),'ConvertFrom','datenum'), Contreras_pmean(:,2),'b-') ; plot(datetime(Contreras_pmean_corr(:,1),'ConvertFrom','datenum'), Contreras_pmean_corr(:,2),'r--') ; title('Contreras precipitation') ; legend('Observations', 'original forecasts', 'bias-corrected forecasts','location','Northeast'); ylabel('Precipitation [mm/d]') ; % temp figure;  plot(datetime(OBS_temp_Contreras(:,1),'ConvertFrom','datenum'),OBS_temp_Contreras(:,2),'Color',0.7*[1,1,1]) ; hold on ; plot(datetime(Contreras_tmean(:,1),'ConvertFrom','datenum'), Contreras_tmean(:,2),'b-') ; plot(datetime(Contreras_tmean_corr(:,1),'ConvertFrom','datenum'), Contreras_tmean_corr(:,2),'r--') ; title('Contreras temperature') ; legend('Observations', 'original forecasts', 'bias-corrected forecasts','location','Northeast'); ylabel('Temperature [°C]') ; 
  
% BELLÚS reservoir = 3 ; % Graphs of the CDFs of corrected and biased forecasts vs observations: % prec figure ; [~] = Quantilemapping_calibration(OBS_Bellúsp,prec_Bellús_c, 1, paramp, reservoir, 1) ; figure ; Quantilemapping_validation(OBS_Bellúsp_v, prec_Bellús_v, 1, COEFF_Bellúsp, paramp, reservoir, 1) 
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% temperature figure ; [~] = Quantilemapping_calibration(OBS_Bellúst,temp_Bellús_c, 2, paramt, reservoir, 1) ; figure ; Quantilemapping_validation(OBS_Bellúst_v, temp_Bellús_v, 2, COEFF_Bellúst, paramt, reservoir, 1) % Observed vs simulated flow starthbv=2009; finhbv = 2012;  for i = starthbv:finhbv     figure;     HBV_files(Bellúsdatap, Bellúsdatat, prec_ens_Bellús_, temp_ens_Bellús_, Bellús_prec_corr, Bellús_temp_corr, i, i, reservoir) end % MAE temp mae_data (1995, 2015, date, dtt, Bellúst, temp_ens_Bellús_c(:,2:end), temp_ens_Bellús_v(:,2:end), temp_Bellús_c, temp_Bellús_v, 2, COEFF_Bellúst, paramt, reservoir) % MAE prec mae_data (1995, 2015, date, dtt, Bellúsp, prec_ens_Bellús_c(:,2:end), prec_ens_Bellús_v(:,2:end), prec_Bellús_c, prec_Bellús_v, 1, COEFF_Bellúsp, paramp, reservoir) 
  
% view the corrected vs biased time series  % prec figure;  plot(datetime(OBS_prec_Bellús(:,1),'ConvertFrom','datenum'),OBS_prec_Bellús(:,2),'Color',0.7*[1,1,1]) ; hold on ; plot(datetime(Bellús_pmean(:,1),'ConvertFrom','datenum'), Bellús_pmean(:,2),'b-') ; plot(datetime(Bellús_pmean_corr(:,1),'ConvertFrom','datenum'), Bellús_pmean_corr(:,2),'r--') ; title('Bellús precipitation') ; legend('Observations', 'original forecasts', 'bias-corrected forecasts','location','Northeast'); ylabel('Precipitation [mm/d]') ; % temp figure;  plot(datetime(OBS_temp_Bellús(:,1),'ConvertFrom','datenum'),OBS_temp_Bellús(:,2),'Color',0.7*[1,1,1]) ; hold on ; plot(datetime(Bellús_tmean(:,1),'ConvertFrom','datenum'), Bellús_tmean(:,2),'b-') ; plot(datetime(Bellús_tmean_corr(:,1),'ConvertFrom','datenum'), Bellús_tmean_corr(:,2),'r--') ; title('Bellús temperature') ; legend('Observations', 'original forecasts', 'bias-corrected forecasts','location','Northeast'); ylabel('Temperature [°C]') ; 
test_parameters.m 
% this script is created to conveniently test the parameters of the % bias-correction algorithm start  = 1995 ; fin    = 2006 ; startv = fin+1 ; 
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finv   = 2015 ; param.degree = 1; % doesn't change results much, so i select the easiest param.nrpct = 10 ; % doesn't change results much, so i select the easiest param.limit = 10^-3 ; param.minrange = 10^-3 ; sheetnr = 2 ; ISPREC = sheetnr ; 
  
% Alarcón reservoir = 1 ; COEFF_Alarcón = Quantilemapping_calibration(OBS_Alarcón,temp_Alarcón_c,ISPREC, param, reservoir, 0) ; mae_data (start, finv, date, dtt, Alarcón, temp_ens_Alarcón_c, temp_ens_Alarcón_v, temp_Alarcón_c, temp_Alarcón_v, ISPREC, COEFF_Alarcón, param, reservoir) 
  
% Contreras reservoir = 2 ; COEFF_Contreras = Quantilemapping_calibration(OBS_Contreras,temp_Contreras_c,ISPREC, param, reservoir, 0) ; mae_data (start, finv, date, dtt, Contreras, temp_ens_Contreras_c, temp_ens_Contreras_v, temp_Contreras_c, temp_Contreras_v, ISPREC, COEFF_Contreras, param, reservoir) 
  
% Bellús reservoir = 3 ; COEFF_Bellús = Quantilemapping_calibration(OBS_Bellús,temp_Bellús_c,ISPREC, param, reservoir, 0) ; mae_data (start, finv, date, dtt, Bellús, temp_ens_Bellús_c, temp_ens_Bellús_v, temp_Bellús_c, temp_Bellús_v, ISPREC, COEFF_Bellús, param, reservoir)  

MATLAB source codes: functions 
These source codes need to be called from regular scripts, they create the variables in their 
own workspace. They are useful when a same task has to be repeated for different cases. 

dailyavg.m 
% this function computes the average forecasted value by day: first, it % computes the ensemble mean, then the average forecast of each day function [avg_by_day] = dailyavg(ens) mean_ =[ens(:,2) mean(ens(:,3:27),2) ]; mean_ = sortrows(mean_,1) ; starti = mean_(1,1) ; 
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endi = mean_(end,1) ; avg_by_day = nan(endi-starti,2) ; for i = starti:endi     idx = mean_(:,1) == i ;     avg_by_day(i-starti+1,2) = mean(mean_(idx,2));     avg_by_day(i-starti+1,1) = i ; end end 
get_flow.m 
% this function reads the data contained in the PTQ file to get the % observed flow time series function [Q] = get_flow(reservoir) sizeA = [4 6920]; if reservoir ==1     name = "PTQ_Alarcón_c.txt" ;     namee ="Alarcón_EVAP.txt" ; elseif reservoir ==2     name = "PTQ_Contreras_c.txt" ;     namee ="Contreras_EVAP.txt" ; else     name = "PTQ_Bellús_c.txt" ;     namee ="Bellús_EVAP.txt" ;     sizeA = [4 5812] ; end % open PTQ file fileID = fopen(name) ; % specify file format for the fscanf function formatSpec = '%f %f %f %f'; % read the file and assign it to a variable Q = (fscanf(fileID,formatSpec,sizeA))' ; fclose(fileID) ; % get the date S = num2str( Q(:,1)); % first 4 characters are the year, then 2 for month and 2 for day y = S(:,1:4) ; m = S(:,5:6) ; d = S(:,7:8) ; % assemble them together in the ddmmyyyy format dmy = [ d m y ] ; % conversion to the desired format date = datetime(dmy,'InputFormat','ddMMyyyy') ; date = datenum(date) ; % definitive Q variable which will be used Q = [date Q(:,4) ] ; %EVAP = load ('Alarcón_EVAP.txt','-ascii') ; %EVAP = [date EVAP] ; end 
get_forecasts.m 
% this function reads the forecasts from the EXCEL worksheets. It returns % the values as they are in the worksheet and arranged by month 
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function [y_m,ensemble] = get_forecasts(sheetnr,reservoir,start,fin)  % create first part of name string name = 'ECMWF_forecast_values_daily_' ; % select appropriate range if reservoir == 1     range = 'C8:AA2587' ; elseif reservoir == 2     range = 'BA8:BY2587' ; else     range = 'EW8:FU2587' ; end  % preallocate variables for speed forecast1 = nan(2580,25) ; forecast = nan(2580,25) ; y_m = nan(5500*(fin-start+1),12) ; ensemble = nan(2580*(fin-start+1),27) ; for i = start:fin i_str    = num2str(i-1) ;  i_str1   = num2str(i) ; name_i   = strcat(name,i_str,'.xlsx') ; %creation of the name string of year i-1 name_i1  = strcat(name,i_str1,'.xlsx') ; %creation of the name string of year i % read the file of year i-1 forecast = xlsread(name_i,sheetnr,range) ; [~,dt]   = xlsread(name_i,sheetnr,'B8:B2587') ;   % reading the date of year i-1 dt       = datetime(dt,'Inputformat','dd/MM/yyyy') ; % read the file of year i forecast1 = xlsread(name_i1,sheetnr,range) ; [~,dt1] = xlsread(name_i1,sheetnr,'A8:B2587') ; % reading the date of year i dt1 = datetime(dt1,'Inputformat','dd/MM/yyyy'); % create the ensemble matrix: % convert datetime to datenum dtn1 = datenum(dt1) ; % create the definitive ensemble file ensemble(2580*(i-start)+1:2580*(i-start+1),1:2) = dtn1 ; ensemble(2580*(i-start)+1:2580*(i-start+1),3:27) = forecast1 ; for j = 1:12     % in this loop, get all the values correspondent to the MONTH J and     % YEAR I     % get all the values of the month j of year i from the 1st dataset     mont = forecast((month(dt) == j & year(dt) == i ), :)  ;     % put them in an array     mont = mont(:) ;     % get all the values of the month j of year i from the second dataset     mont1 = forecast1((month(dt1(:,2)) == j & year(dt1(:,2)) == i ), :) ;     mont1 = mont1(:) ;     % put all the values together     mont2 = [mont; mont1] ; 
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    % fill the matrix of forecasts: first data is first forecasts issued in     % year i-1 for Jan 1st of year i     % the max length is 5500, but not every month has 5500 forecasts: fill     % the rest with nan     y_m(1+5500*(i-start):5500*(1+i-start),j) = [mont2;nan(5500-length(mont2),1)] ;     % filter: if sheetnr = 1 (precipitation) put to 0 negative values      if sheetnr == 1     y_m(y_m < 0) = 0 ;     end end  end end 
HBV_files.m 
% this function creates the files needed to run the HBV model and runs the % simulations. It returns the plots containing the simulations obtained by % feeding the model with the original forecasts ensemble mean and the 25th % and 75th percentile and the median of the simulations obtained feeding % the model with the corrected forecasts ensemble members. function [] = HBV_files(OBSp, OBSt, forp, fort, corr_forp, corr_fort, start, fin, reservoir) % create string of names for the graph if reservoir ==1     name = "Alarcon" ; elseif reservoir ==2     name = "Contreras" ; else     name = "Bellus" ; end ptqheader = [name ; "Date   P[mm/d] T[°C]   Q[mm/d]"] ; % create the header of the file to be printed 
  
% load observations D_OBS = OBSp(:,1); %date of the obs OBSdatat = OBSt(:,2) ; %values of the temp obs OBSdatap = OBSp(:,2) ; %values of the prec obs D_OBS1 = datetime(D_OBS,'ConvertFrom','datenum'); % select the values from start to fin OBS_idx = year(D_OBS1)>=(start-1) & year(D_OBS1)<=fin ; %indicator to select values within start-1  % (because jan of the first year of forecasts requires data of the previous year)and fin years D_OBS = D_OBS(OBS_idx);        % obs date limited to indicator OBSdatap = OBSdatap(OBS_idx) ; % prec obs values limited to indicator 
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OBSdatat = OBSdatat(OBS_idx) ; % temp obs values limited to indicator 
  
%load forecasts D_FOR = corr_forp(:,1) ; % date of issued forecasts FORdatap = corr_forp(:,2:end) ; % values of prec forecasts with target date FORdatat = corr_fort(:,2:end) ; % values of temp forecasts with target date D_FOR1 = datetime(D_FOR,'ConvertFrom','datenum'); % select the values from start to fin FOR_idx = year(D_FOR1)>=start & year(D_FOR1)<=fin ; %indicator to select values within start and fin years D_FOR = D_FOR(FOR_idx);      % for issue date limited to indicator FORdatap = FORdatap(FOR_idx, :) ; % for prec values limited to indicator FORdatat = FORdatat(FOR_idx, :) ; % for temp values limited to indicator 
  
%load flow Q = get_flow(reservoir) ; D_Q = Q(:,1) ; % date of flow Qdata = Q(:,2:end) ; % values of flow D_Q1 = datetime(D_Q,'ConvertFrom','datenum'); % select the values from start to fin Q_idx = year(D_Q1)>=(start-1) & year(D_Q1)<=fin+1 ; %indicator to select values within start and fin years D_Q = D_Q(Q_idx);      % Q date limited to indicator Qdata = Qdata(Q_idx) ; % Q values limited to indicator 
  
% load daylight duration file for EVAP file creation daydur = load('daylight duration.txt', '-ascii') ; % temp = [FORdatat(1:215,1) mean(FORdatat(1:215,2:end),2)] ; % EVAP = thornthwaite(daydur,temp) ; %evapname = compose(formatSpecd,name, '_EVAP.txt') ; %EVAP = load(evapname, '-ascii') ; %EVAPdata = EVAP(Q_idx) ; %select the values in the same position of the Q. They correspond to the same date 
  
%create the new folder: %folder name: formatSpecb = "%s%s" ; newfolder = compose(formatSpecb,name, "\data\") ; %catchment folder direction:  catchment = char(compose(formatSpecb, 'C:/Users/avefe/Desktop/tesi/hbv/', name)) ; 
  
% preallocation resultsdata = nan(215,25) ; 
  
for i = 1:12*(fin-start+1)       % get the dates     printtargetdate = FORdatap(1+(i-1)*215:i*215,1) ; %select the target dates of forecasts issued in month i 
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    printissuedatei = D_FOR(1+(i-1)*215:i*215) ;     %select the issue date with position correspondent to the month i  
     
    % assemble the matrix to create the prec + temp variables of the PTQ file: 6 months of obs and 7 of     % forecasts     idx = D_OBS<printissuedatei(1) & D_OBS>=(printissuedatei(1)-150) ; %150 days of warm up period, till the last day before forecasts     OBSprint = [ OBSdatap(idx) OBSdatat(idx)] ; % first 5 months of warm up     totdate = [ D_OBS(idx) ; printtargetdate ] ; % returns the complete date column     idxq = D_Q<=max(totdate) & D_Q>=min(totdate) ; % index that selects the dates = totdate for the observed flow     Qprint = Qdata(idxq) ; %select the observed flow values correspondent to the totdate index     totdatedt = datetime(totdate,'ConvertFrom','datenum') ;      totdate1 = datestr(totdatedt,'yyyymmdd') ; % put the date in the format needed by the HBV program     resultsdate = datetime(printtargetdate,'ConvertFrom','datenum') ;     for k = 2:26     printforp = FORdatap(1+(i-1)*215:i*215,k) ;    %select the prec values with position correspondent to the month i, for the ensemble k     printfort = FORdatat(1+(i-1)*215:i*215,k) ;    %select the temp values with position correspondent to the month i, for the ensemble k 
      
    FORprint = [ printforp printfort] ; % 7 months forecasts 
  
    % assemble the matrix to create the temp file to feed to the thornthwaite function: 365 days of data     evapprint = [OBSdatat(idx) ; printfort] ; % first 150 days of obs + 215 days of forecasts 
  
    % call the function and create the EVAP array for the EVAP file     printevap = thornthwaite(daydur,[totdate evapprint]) ; 
    
    % Create the PTQ file      print1 = [OBSprint ; FORprint] ; % first 6 months of observations for warm up, then 215 days of forecasts 
  
    % create the name of the PTQ file 
     
    ptqfilename = char(compose(formatSpecb,datestr(datetime(printissuedatei(1),'ConvertFrom','datenum'),'yyyy-mm-dd'), "_PTQ.txt")) ;     evapfilename = char(compose(formatSpecb,datestr(datetime(printissuedatei(1),'ConvertFrom','datenum'),'yyyy-mm-dd'), "_EVAP.txt")) ; 
   
    % create the name of the destination folder     formatSpecc = "%s%s%s" ;     % direction of the PTQ file with the forecasts 
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    ptqfiledir = compose(formatSpecc,"C:/Users/avefe/Desktop/tesi/hbv/", newfolder,ptqfilename) ; 
  
    % direction of the EVAP file     destevap = compose(formatSpecc,"C:/Users/avefe/Desktop/tesi/hbv/", newfolder,evapfilename) ; 
  
    % create the PTQ file     % create the matrix to be printed in the file: first column is the     % date, 2nd is the prec, 3rd temp, 4th observed runoff     formatSpec = "%s\t%f\t%f\t%f" ;      ptq = compose(formatSpec,totdate1, print1(:,1), print1(:,2) , Qprint) ;     ptq = [ptqheader;ptq] ;  % total matrix needed     fileID = fopen(ptqfiledir,'w');     fprintf(fileID,"%s\r\n",ptq) ;     fclose(fileID) ;     clear fileID 
     
    % create the EVAP file with the corrected forecasts     evapfile = num2str(printevap) ;     evapfile = [name ; evapfile] ;     fileID1 = fopen(destevap,'w');     fprintf(fileID1,"%s\r\n",evapfile) ;     fclose(fileID1) ;     clear fileID1 
         
    % after the creation of the HBV files, run the program itself and save     % the results     % set parameters: Save the simulation results and set start and end of the     % simulation period     simstart = datestr(datetime(printtargetdate(1),'ConvertFrom','datenum'),'yyyymmdd') ; %format required     simend = datestr(datetime(printtargetdate(end),'ConvertFrom','datenum'),'yyyymmdd') ;     resultname = char(compose(formatSpecb,datestr(datetime(printissuedatei(1),'ConvertFrom','datenum'),'yyyy-mm-dd'), "_Res")) ;     summaryname = char(compose(formatSpecb,datestr(datetime(printissuedatei(1),'ConvertFrom','datenum'),'yyyy-mm-dd'), "_summary.txt")) ;   eval(['!"C:/Program Files (x86)/HBV-light/HBV-light-CLI.exe" Settings ',catchment,' /SaveResults /Start:', simstart,' /End:', simend,' /ptq:',ptqfilename,' /evap:',evapfilename]);   eval(['!"C:/Program Files (x86)/HBV-light/HBV-light-CLI.exe" Run ',catchment,' SingleRun Results /results:',resultname,' /ptq:',ptqfilename,' /evap:',evapfilename,' /summary:',summaryname]); 
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    % load results file:     formatSpece = "%s%s%s%s" ;     resultspath = compose(formatSpece, catchment,"/Results/",resultname,".txt") ;     fileID2 = fopen(resultspath,'r') ;     % get the cell array of date, simulated and observed flow     results = textscan(fileID2,'%s %f %f %*[^\n]', 'headerLines',1) ;     % conversion into matrix     % first column is the simulated runoff, second is the observed runoff 
     
    resultsdata(:,k-1) = cell2mat(results(2)) ;     fclose(fileID2) ; 
  
    end 
  
%plot  set(gcf,'position',[ 530, 190, 1111, 794])     subplot(3,4,i)     plot(resultsdate,observedrunoff,'Color',0.7*[1,1,1], 'linewidth',3)     hold on     plot(resultsdate,median(resultsdata,2), 'r-','linewidth',2)     plot(resultsdate,prctile(resultsdata,25,2), 'b--','linewidth',1)     plot(resultsdate,prctile(resultsdata,75,2), 'b--','linewidth',1)     xlabel('date'), ylabel('runoff [mm/d]')     xlim([min(resultsdate) max(resultsdate)]) ;     ylim([0 0.8])     monthTitle =['Jan';'Feb';'Mar';'Apr';'May';'Jun';'Jul';'Aug';'Sep';'Oct';'Nov';'Dec'];     title(monthTitle(i,:),'fontweight','bold','fontsize',10), grid on     if i==12     sgtitle(name) ;     end end end 

 

MAE.m 
% this function calculates the Mean Average error with respect to the  % observations of the original forecasts and of the bias-corrected forecasts function [BIASmae, CORRmae] = MAE(OBS, BIAS, CORR) %organize observations D_OBS = OBS(:,1); D_OBS = datetime(D_OBS,'ConvertFrom','datenum'); OBSdata=(OBS(:,2)); %organize biased forecasts 
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D_BIAS = BIAS(:,1) ; D_BIAS = datetime(D_BIAS,'ConvertFrom','datenum'); BIASdata = BIAS(:,2:end) ; 
  
D_CORR = CORR(:,1) ; D_CORR = datetime(D_CORR,'ConvertFrom','datenum'); CORRdata = CORR(:,2:end) ; % variables preallocation OBSmean = nan(12,1) ; BIASmean = nan(12,size(BIASdata,2)) ; CORRmean = nan(12,size(BIASdata,2)) ; BIASmae = nan(12,1) ; CORRmae = nan(12,1) ; BIASabserr = nan(size(BIASdata,2),1) ; CORRabserr = nan(size(BIASdata,2),1) ; for i = 1:12     % mean value of the observation for the month i     OBSmean(i) = mean(OBSdata(month(D_OBS)==i)) ;    for j = 1:size(BIASdata,2)        % select the ensemble member j        BIASdataj = BIASdata(:,j) ;        CORRdataj = CORRdata(:,j) ;        % mean value of the forecasts for the ensemble j and month i      BIASmean(i,j) = mean(BIASdataj(month(D_BIAS)==i)) ;      CORRmean(i,j) = mean(CORRdataj(month(D_CORR)==i)) ;       % absolute error of the forecasts for the ensemble j and month i      BIASabserr(j) = abs(BIASmean(i,j)-OBSmean(i)) ;      CORRabserr(j) = abs(CORRmean(i,j)-OBSmean(i)) ;    end    BIASmae(i) = mean(BIASabserr) ;    CORRmae(i) = mean(CORRabserr) ; 
    
end end 
mae_data.m 
% this function creates the bar plots of the MAE: sum by year, month % average and monthly   function [] = mae_data (start, finv, date, dtt, OBS, ens_c, ens_v, for_c, for_v, ISPREC, COEFF, param, reservoir) % create string of names for the graph if ISPREC ==1     variable = 'precipitation' ; else     variable = 'temperature' ; end if reservoir ==1     name = "Alarcón" ; elseif reservoir ==2     name = "Contreras" ; else     name = "Bellús" ; end 
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formatSpec = "%s%s%s" ; titlestring = compose(formatSpec,name, " ", variable) ; % MAE sumBIAS = nan(finv-start+1,1) ; sumCORR = nan(finv-start+1,1) ; BIASmae = nan(finv-start+1,12) ; CORRmae = nan(finv-start+1,12) ; % "assemble" the biased forecast ensembles: date date_ens1 = ens_c(:,1) ; date_ens1 = datetime(date_ens1,'ConvertFrom','datenum'); date_ens2 = ens_v(:,1) ; date_ens2 = datetime(date_ens2,'ConvertFrom','datenum'); % get the corrected forecasts for_ = [for_c;for_v] ; for yr = start:finv  % get the observations correspondent to the year yr OBS_ = [date(year(dtt) == yr) OBS(year(dtt) == yr)] ; % get the forecasts correspondent to the year yr and pile them together: % ensemble prec_ens = [ens_c(year(date_ens1) == yr, :) ; ens_v(year(date_ens2) ==yr, :)] ; % by month for_yr = for_(1+5500*(yr-start):5500*(yr-start+1),:) ; % get the corrected forecasts prec_corr = QMAPP(for_yr, prec_ens, ISPREC, COEFF, param) ; 
  
[BIASmae(yr-start+1,:), CORRmae(yr-start+1,:)] = MAE(OBS_, prec_ens, prec_corr) ; sumBIAS(yr-start+1) = sum(BIASmae(yr-start+1,:)) ; sumCORR(yr-start+1) = sum(CORRmae(yr-start+1,:)) ; end if finv ~=start %plot the yearly MAE sum figure ; bar([(start:finv)' (start:finv)'],[sumBIAS, sumCORR]); title([titlestring,'Yearly MAE sum']) ; legend('Biased forecast error', 'Corrected forecast error'); xlabel('year') ; ylabel('MAE value') ; %plot the average MAE for all the Jan, Feb, March, etc. figure ;  bar([(mean(BIASmae))', (mean(CORRmae))']); title([titlestring,'Average monthly MAE']) ; legend('Biased forecast error', 'Corrected forecast error'); xlabel('month') ; ylabel('MAE value') ; end % plot the monthly MAE % get the month-year array idx = year(dtt)>=start & year(dtt)<=finv ; y = year(dtt(idx)) ; m = month(dtt(idx),'shortname') ; m_y = [char(m) num2str(y)]; m_y = (unique(m_y(:,:),'stable','rows')) ; m_y = cellstr(m_y) ; 
  
% transpose the matrix 
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BIASmae1 = BIASmae' ; CORRmae1 = CORRmae' ; figure ;  % BIASmae(:) rearranges the matrix into a vector, by column. for this % reason it was necessary to transpose before bar([BIASmae1(:), CORRmae1(:)]); title([titlestring,'Monthly MAE']) ; xticks(1:length(m_y)) ; xticklabels(m_y) ; legend('Biased forecast error', 'Corrected forecast error'); xlabel('date') ; ylabel('MAE value') ; end 
minmax.m 
% this function returns the minimum and maximum value of each month of data % input function [mindata, maxdata] = minmax(OBS,percincrease) data = OBS(:,2) ; date = OBS(:,1) ; date = datetime(date,'ConvertFrom','datenum'); maxdata = nan(12,1) ; mindata = nan(12,1) ;  for i = 1:12     monthdata=(data(month(date)==i));     maxdata(i) = max(monthdata)*(1+percincrease) ;     mindata(i) = min(monthdata)*(1-percincrease) ;     if mindata(i)<0     mindata(i) = min(monthdata)*(1+percincrease) ;     end end 
QMAPP.m 
% this function corrects the forecasts with the coefficients previously % found function [ens_corr_ok] = QMAPP(FORECASTS, ENSEMBLE, ISPREC, COEFF, param) %-------------------------------------------------------------------------- % quantile mapping function 
  
% parameters limit = param.limit ; nrpct = param.nrpct ; degree = param.degree ; % filters lw = param.mind ; hi = param.maxd ; %initialize for speed thrsh = nan(12,nrpct) ; thrsl = nan(12,nrpct) ; 
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% get date and the ensemble mean ens_date = datetime(ENSEMBLE(:,2), 'ConvertFrom','datenum') ; ens_date1 = ENSEMBLE(:,1) ; ens_corr = ENSEMBLE(:,3:end) ; ens_corr_ok = ens_corr ; if ISPREC ==1 ens_corr(ens_corr<=limit) = 0 ; ens_corr_ok(ens_corr_ok<=limit) = 0 ; end 
  
for i=1:12     % for each month of the year     %remove nan and select column correspondent to month i      FORmont = rmmissing(FORECASTS(:,i)) ;     % set forecasts lower than the limit to 0(if data is precipitation)     if ISPREC == 1     FORmont(FORmont<limit) = 0 ;     end     % calculate the cumulative probability     PFOR = (1:length(FORmont))'./(length(FORmont)+1);     %sort forecasts     sortFOR = sort(FORmont) ; 
     
   % find an equation for each 10th percentile     for j = 1:nrpct     % find the lower and higher thresholds for each percentile range     thrsh(i,j) = max(sortFOR(PFOR<=j*(1/nrpct) & PFOR>j*(1/nrpct)-(1/nrpct))) ;     thrsl(i,j) = min(sortFOR(PFOR<=j*(1/nrpct) & PFOR>j*(1/nrpct)-(1/nrpct))) ;     % correction     % conditions: lower than the higher threshold,     % higher than the lower threshold, in the month i     % correction applied to each ensemble member     for k =1:size(ens_corr,2)      idx = (ens_corr(:,k)<=thrsh(i,j) & ens_corr(:,k)>=thrsl(i,j) & month(ens_date)==i ) ;     ens_corr_ok(idx,k) = polyval(COEFF(i,(j-1)*(degree+1)+1:(j-1)*(degree+1)+1+degree), ens_corr(idx,k))+ens_corr(idx,k) ;     end    end    %if ISPREC == 1    % filter for low values (of each month)    ens_corr_ok(ens_corr_ok<=lw(i) & month(ens_date)==i ) = lw(i) ;    % filter for high values (of each month)    ens_corr_ok(ens_corr_ok>=hi(i) & month(ens_date)==i) = hi(i) ;    %end end 
  
  if ISPREC == 1   ens_corr_ok(ens_corr_ok<0) = 0 ;   end    ens_date = datenum(ens_date) ;   ens_corr_ok =  [ens_date1 ens_date ens_corr_ok] ; 
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end 
quantilemapping_calibration.m 
% this function calculates the coefficients of the quantile mapping % correction to be applied to the forecasts function [COEFF_ok] = Quantilemapping_calibration(OBS,FORECASTS,ISPREC, param, reservoir, graph) %-------------------------------------------------------------------------- %                           CDF matching approach % The function allows to rescale the input data (FOR) to match the  % Cumulative Distribution Function (CDF) of benchmark data (OBS). % create string of names for the graph if reservoir ==1     name = "Alarcón" ; elseif reservoir ==2     name = "Contreras" ; else     name = "Bellús" ; end if ISPREC ==1     name2 = "Precipitation" ; else     name2 = "Temperature" ; end % prepare observation data D_OBS = OBS(:,1); D_OBS = datetime(D_OBS,'ConvertFrom','datenum'); OBSdata=(OBS(:,2)); % load parameters: equation degree and percentile subdivisions degree = param.degree ; nrpct = param.nrpct ; % lower boundary for the values(precipitation): values below are set = 0 limit = param.limit ; % minrange: supposedly the measurement error minrange = param.minrange ; % filters lw = param.mind ; hi = param.maxd ; %preallocate for speed COEFF_ok = nan(12,(degree+1)*nrpct) ; FORCDF = nan(length(FORECASTS),1) ; for i=1:12     % for each month of the year     OBSmont = OBSdata(month(D_OBS)==i);     % account for measurement error: observations lower than limit     % approximated to 0. This applies only with precipitation data     if ISPREC == 1      OBSmont(OBSmont<limit) = 0 ;     end     %remove nan and select column correspondent to month i     FORmont = rmmissing(FORECASTS(:,i)) ;     % set forecasts lower than the limit to 0(if data is precipitation) 
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    if ISPREC == 1     FORmont(FORmont<limit) = 0 ;     end     % calculate the cumulative probabilities     POBS = (1:length(OBSmont))'./(length(OBSmont)+1);     PFOR = (1:length(FORmont))'./(length(FORmont)+1);     %sort forecast and observed values     sortFOR = sort(FORmont) ;     sortOBS = sort(OBSmont) ;     % values correspondent to high and low percentiles filters     % find an equation for each 10th percentile    for j = 1:nrpct     % cumulative probabilities of each percentile range     POBSj = POBS(POBS<=j*(1/nrpct) & POBS>j*(1/nrpct)-(1/nrpct)) ;       PFORj = PFOR(PFOR<=j*(1/nrpct) & PFOR>j*(1/nrpct)-(1/nrpct)) ;     sortFORj = sortFOR(PFOR<=j*(1/nrpct) & PFOR>j*(1/nrpct)-(1/nrpct)) ;     sortOBSj = sortOBS(POBS<=j*(1/nrpct) & POBS>j*(1/nrpct)-(1/nrpct)) ;     % Interpolation of input data (sortFORj), correspondent to the     % percentiles PFORj, to the same percentiles (POBSj) of benchmark data (OBS)     FORint   = interp1(PFORj,sortFORj,POBSj,'linear','extrap'); 
     
    % Computation of the differences between the CDFs of OBS and SAT data     DIFF = sortOBSj-FORint; 
     
    % Fitting of a polynomial curve to DIFF: if the observed values are all     % within a small range, then approximate with the average, otherwise     % use a (degree) degree polynomial     if range(sortOBSj) <= minrange         COEFF = polyfit(FORint,DIFF, 0);     else         COEFF= polyfit(FORint,DIFF, degree);     end      % fill the COEFFj vector: it contains the coefficients of each      % percentile range for the month i     COEFFj(1+(j-1)*(degree+1):j*(degree+1)) = COEFF ;      % Evaluation of the polynomial curve to SAT data     FORCDF(FORmont<=max(sortFORj)& FORmont>=min(sortFORj))= polyval(COEFF,FORmont(FORmont<=max(sortFORj)& FORmont>=min(sortFORj)))+FORmont(FORmont<=max(sortFORj)& FORmont>=min(sortFORj));    if ISPREC == 1        FORCDF(FORCDF<0) = 0 ;    end 
  
   end       % filter for low values (only temperature)    %if ISPREC == 1    FORCDF(FORCDF<=lw(i)) = lw(i) ;    % filter for high values    FORCDF(FORCDF>=hi(i)) = hi(i) ; 
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  % end    % fill the COEFF matrix, each row represents the coefficients of a month     COEFF_ok(i,:) = COEFFj ;     if graph ==1     % graphs     % Comparison of cdf curves estimated for: benchmark data (OBSmont),      % data to modify (FORmont), corrected data (FORCDF)     % set min and max of the graphs:     ming = min(OBSmont)-1;     if ISPREC == 1         ming = 0 ;     end     maxg = max(OBSmont)+1 ;     set(gcf,'position',[ 530, 190, 1111, 794])     subplot(3,4,i)     plot( sort(OBSmont),(1:length(OBSmont))/(length(OBSmont)+1),'Color',0.7*[1,1,1], 'linewidth',7)     hold on     plot(sort(FORmont),(1:length(FORmont))/(length(FORmont)+1), 'b-','linewidth',4)     % plot the corrected CDF, eliminating nan values      plot( sort(rmmissing(FORCDF)),(1:length(rmmissing(FORCDF)))/(length(rmmissing(FORCDF))+1), 'r--', 'linewidth',2)     xlabel('data'), ylabel('Cumulative Density Function')     xlim([ming maxg]) ;     monthTitle =['Jan';'Feb';'Mar';'Apr';'May';'Jun';'Jul';'Aug';'Sep';'Oct';'Nov';'Dec'];     title(monthTitle(i,:),'fontweight','bold','fontsize',10), grid on     if i==12      legend ('Reference data','Original biased data','Corrected data','Location', 'Southeast');      strtitle =  name + " " + name2 + "\n" + "P. degree " + num2str(degree) + ", subdivisions "+ num2str(nrpct) ;      strtitle2 ="\n" + "Period " + num2str(min(year(D_OBS))) +" - " + num2str(max(year(D_OBS))) ;      strtitle3 = strtitle + strtitle2 ;      strtitle = compose(strtitle3) ;      sgtitle(strtitle) ;  
      
    end     end 
        
end end 
quantilemapping_validation.m 
% this function applies the quantilemapping correction coefficients found 
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% to the second dataset to test them function [] = Quantilemapping_validation(OBS, FORECASTS, ISPREC, COEFF, param, reservoir,graph) %-------------------------------------------------------------------------- % THIS IS THE VALIDATION FUNCTION: IT APPLIES THE COEFFICIENTS FOUND IN % CALIBRATION TO THE VALIDATION DATASET % create string of names for the graph if reservoir ==1     name = "Alarcón" ; elseif reservoir ==2     name = "Contreras" ; else     name = "Bellús" ; end if ISPREC ==1     name2 = "Precipitation" ; else     name2 = "Temperature" ; end % prepare observation data D_OBS = OBS(:,1); D_OBS = datetime(D_OBS,'ConvertFrom','datenum'); OBSdata=(OBS(:,2)); % load parameters limit = param.limit ; nrpct = param.nrpct ; degree = param.degree ; % filters lw = param.mind ; hi = param.maxd ; % preallocate variables for speed FORCDF = nan(length(FORECASTS),1) ; for i=1:12     % for each month of the year     OBSmont = OBSdata(month(D_OBS)==i);     % account for measurement error: observations lower than limit     % approximated to 0. This applies only with precipitation data     if ISPREC == 1      OBSmont(OBSmont<limit) = 0 ;     end     %remove nan and select column correspondent to month i      FORmont = rmmissing(FORECASTS(:,i)) ;     % set forecasts lower than the limit to 0(if data is precipitation)     if ISPREC == 1     FORmont(FORmont<limit) = 0 ;     end     % calculate the cumulative probability     PFOR = (1:length(FORmont))'./(length(FORmont)+1);     %sort forecasts     sortFOR = sort(FORmont) ; 
     
   % find an equation for each 10th percentile     for j = 1:nrpct 
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    sortFORj = sortFOR(PFOR<=j*(1/nrpct) & PFOR>j*(1/nrpct)-(1/nrpct)) ;     % Evaluation of the polynomial curve to FOR data      FORCDF(FORmont<=max(sortFORj)& FORmont>=min(sortFORj))= polyval(COEFF(i,(j-1)*(degree+1)+1:(j-1)*(degree+1)+1+degree),FORmont(FORmont<=max(sortFORj)& FORmont>=min(sortFORj)))+FORmont(FORmont<=max(sortFORj)& FORmont>=min(sortFORj));     % filter for negative values (only if precipitation)     if ISPREC == 1        FORCDF(FORCDF<0) = 0 ;     end     % filter for low values (only if temperature)     if ISPREC ~= 1       FORCDF(FORCDF<=lw(i)) = lw(i) ;     end    % filter for high values    FORCDF(FORCDF>=hi(i)) = hi(i) ;    end     if graph == 1     % Comparison of cdf curves estimated for: benchmark data (OBSmont),      % data to modify (FORmont), corrected data (FORCDF)      % set min and max of the graphs:     ming = min(OBSmont)-1;     if ISPREC == 1         ming = 0 ;     end     maxg = max(OBSmont)+1 ;     set(gcf,'position',[ 530, 190, 1111, 794])     subplot(3,4,i)     plot( sort(OBSmont),(1:length(OBSmont))/(length(OBSmont)+1),'Color',0.7*[1,1,1], 'linewidth',7)     hold on     plot(sort(FORmont),(1:length(FORmont))/(length(FORmont)+1), 'b-','linewidth',4)     % plot the corrected CDF, eliminating nan values      plot( sort(rmmissing(FORCDF)),(1:length(rmmissing(FORCDF)))/(length(rmmissing(FORCDF))+1), 'r--', 'linewidth',2)     xlabel('data'), ylabel('Cumulative Density Function')     xlim([ming maxg]) ;     monthTitle =['Jan';'Feb';'Mar';'Apr';'May';'Jun';'Jul';'Aug';'Sep';'Oct';'Nov';'Dec'];     title(monthTitle(i,:),'fontweight','bold','fontsize',10), grid on     if i==12      legend ('Reference data','Original biased data','Corrected data','Location', 'Southeast');       strtitle =  name + " " + name2 + "\n" + "P. degree " + num2str(degree) + ", subdivisions "+ num2str(nrpct) ;      strtitle2 ="\n" + "Period " + num2str(min(year(D_OBS))) +" - " + num2str(max(year(D_OBS))) ;      strtitle3 = strtitle + strtitle2 ; 
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     strtitle = compose(strtitle3) ;      sgtitle(strtitle) ;     end     end 
     
end end 
thornthwaite.m 
% this function calculates the daily potential evapotranspiration according to % the Thornthwaite method function [EVAP] = thornthwaite(daydur,temp) % daydur input is a nx2 matrix, first column is the date (datenum format), second day % duration (float number). Temp has the same format. Input files must % contain 365 days, doesn't matter which is the first day. % format temp data D_temp = temp(:,1); %date of the obs Tempdata = temp(:,2) ; %values of the temp obs D_temp1 = datetime(D_temp,'ConvertFrom','datenum'); % sort from 1st of Jan to 31 of dec: % get the day of year sortday = day(D_temp1,'dayofyear') ; % create a matrix with the dayofyear and data matrix = [sortday Tempdata] ; Tempdata = sortrows(matrix,1) ; Tempdata = Tempdata(:,2) ; 
  
% format daylight data D_daydur = daydur(:,1); %date of the obs Daydurdata = daydur(:,2) ; %values of the ddur obs D_daydur1 = datetime(D_daydur,'ConvertFrom','datenum'); % get number of days per month  N = nan(12,1) ; for i = 1:12     N(i) = length(D_daydur1(month(D_daydur1)==i)) ; end % light factor calculation: 16/12*daylight length LF = 16/12*Daydurdata ; 
  
% month duration factor: N(i)/30 MF = N./30 ; % repeat it for each day of each month MFr = repelem(MF,N) ; 
  
% calculate the yearly heat index for each year % limits of the loop: % preallocation of variables for speed mtemp = nan(12,1) ; mhindex = nan(12,1) ; for k = 1:12 
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    idx = month(D_temp1) == k ; %index to select data of month k & year j     mtemp(k) = mean(Tempdata(idx)); % mean temp of the month k and year j     % if monthly mean temp lower than 0, put it to 0       if mtemp(k)< 0          mtemp(k) = 0 ;       end     mhindex(k) = (mtemp(k)/5)^(1.514) ; %compute the monthly heat index end yh = sum(mhindex(:)) ; % calculation of the alpha coefficient alpha = (6.75*10^(-7))*(yh)^3 - (7.71*10^(-5))*(yh)^2+(1.792*10^(-2))*yh + 0.49239 ; % CALCULATION OF THE POTENTIAL EVAPORATION % temperature < 0 = 0: when temp is lower than 0, no evaporation Tempdata(Tempdata<0) = 0 ; EVAP = LF.*MFr.*(10.*Tempdata./yh).^alpha ; 
  
EVAP = rmmissing(EVAP) ; end 

VBA source codes 

sheet_correction.xlsm 
Sub Elimina_cartella() ‘ ‘ Delete sheet Macro ‘ Delete sheet and change date format ‘ Dim i As Integer Dim name As String For i = 1981 To 2015 name = "C:\Users\avefe\Desktop\tesi\DAILY_FORECASTS\ECMWF_forecast_values_daily_" & i     Workbooks.Open Filename:=name ‘ Delete empty sheets     Sheets("Data_per_cell_prec").Delete     Application.DisplayAlerts = False     Sheets("Data_per_cell_temp").Delete     Application.DisplayAlerts = False ‘ Format date in the temp sheet     Sheets("Data_per_subbasin_temp").Activate     Sheets("Data_per_subbasin_temp").Columns("C:C").Select     Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove     Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove     Sheets("Data_per_subbasin_temp").Range("C8").Select 
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    Sheets("Data_per_subbasin_temp").Range("C2587").Select     ActiveCell.FormulaR1C1 = "x"     Sheets("Data_per_subbasin_temp").Range("C8").Select     Sheets("Data_per_subbasin_temp").Range(Selection, Selection.End(xlDown)).Select     Selection.FormulaR1C1 = "=INT(RC[-1])"     Selection.Copy     Sheets("Data_per_subbasin_temp").Range("D8").Select     Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _         :=False, Transpose:=False     Application.CutCopyMode = False     Sheets("Data_per_subbasin_temp").Range("B4:B7").Select     Selection.Copy     Sheets("Data_per_subbasin_temp").Range("D4").Select     ActiveSheet.Paste     Sheets("Data_per_subbasin_temp").Columns("B:C").Select     Application.CutCopyMode = False     Selection.Delete Shift:=xlToLeft     Sheets("Data_per_subbasin_temp").Range("B8").Select     Sheets("Data_per_subbasin_temp").Range(Selection, Selection.End(xlDown)).Select     Selection.NumberFormat = "m/d/yyyy" 
     
‘ format date in the prec sheet     Sheets("Data_per_subbasin_prec").Activate     Sheets("Data_per_subbasin_prec").Columns("C:C").Select     Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove     Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove     Sheets("Data_per_subbasin_prec").Range("C8").Select     Sheets("Data_per_subbasin_prec").Range("C2587").Select     ActiveCell.FormulaR1C1 = "x"     Sheets("Data_per_subbasin_prec").Range("C8").Select     Sheets("Data_per_subbasin_prec").Range(Selection, Selection.End(xlDown)).Select     Selection.FormulaR1C1 = "=INT(RC[-1])"     Selection.Copy     Sheets("Data_per_subbasin_prec").Range("D8").Select     Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _         :=False, Transpose:=False     Application.CutCopyMode = False     Sheets("Data_per_subbasin_prec").Range("B4:B7").Select     Selection.Copy     Sheets("Data_per_subbasin_prec").Range("D4").Select     ActiveSheet.Paste     Sheets("Data_per_subbasin_prec").Columns("B:C").Select     Application.CutCopyMode = False     Selection.Delete Shift:=xlToLeft     Sheets("Data_per_subbasin_prec").Range("B8").Select     Sheets("Data_per_subbasin_prec").Range(Selection, Selection.End(xlDown)).Select     Selection.NumberFormat = "m/d/yyyy" 
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‘ save and close file     ActiveWorkbook.Save     ActiveWorkbook.Close     Next i End Sub 
 

 


	portada
	TESI

