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1 Summary  
This document shows how to check a beam with an overhang, taking into account 
the Ultimate Limit States conditions considered in the Spanish Code DB SE A. 

The geometry of the steel frame and the bracing system shown in the design must 
be taken into account in the analysis and design.  

2 Introduction 
Given the Steel frame shown in figure 1, it is requested to check BCD beam designed 
with a S 275 hot rolled IPE 240 considering only Ultimate Limit States. 

To understand the steel structure performance, a 3D model showing the bracing 
systems can be seen in figure 2.  

 

figure 1. Front view 

 

figure 2. 3D model showing the bracing Systems 
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3 Aims 
At the end of this document, the student will be able to check a simple supported 
beam with a cantilever designed with an S 275 IPE 240 cross section. 

For that purpose, the steps to be followed are: 

 Analyse a simple supported beam with a cantilever 

 Check the designed beam in bending 

 Check the designed beam in shear 

 Check if the interaction Bending moments and shear forces has to be 
considered 

 Check the lateral buckling condition 

 Check the shear buckling of the web 

 Check the local effects of the concentrated loads 

The design will be accepted only when all the conditions have been fulfilled. 

4 Worked example 

4.1 Geometric properties of the cross section  
Geometric properties and resistances of the cross sections are shown in tables 1and 
2  respectively. 

 

 

 

 

 

 

Table 1. Geometric properties of the cross section 

 

 

Table 2. Resistances of the cross section 
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4.2 Obtaining the internal forces 
In order to obtain the internal forces in the beam, and taking into account the 
principle of superposition, the load is divided into horizontal and vertical loads:  

1. Considering vertical loads  

Vertical reactions are obtained isolating the beam 
(see figure 3) and taking into account the vertical 
forces and bending moments equilibrium 
equations (Equation 3 and 4 respectively): 

 

       V B CF 0 R R 12 (8 2 ) 120 kN   

Equation 1. Vertical loads Equilibrium equation 

        B CM 0 R 8 12 (8 2 ) 5 0   

Equation 2. Bending moments equilibrium equation 

 

 

Figure 3. Vertical loads 

Calculating: 

  
    C B

12 (8 2 ) 5
R 75 kN; R 120 75 45 kN

8
 

2. Considering horizontal loads (see figure 4) 

Horizontal reactions are obtained taking into account an additional compatibility 
condition in equation 3 (beams compressive strain has been neglected) 

 h1 h2      Equation 3. Compatibility condition 
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Figure 4. Horizontal loads 

As in this case h1 = h2 and I1 = I2 :  
   

  
    

4 3
d dW h 3 W h2 P h

P
8 E I 3 E I 2 8

 

substituting and calculating: 
 

 


3 3 5
P 2,81 kN

2 8
 

Taking into account former values for reactions, the internal forces functions and 
diagrams are obtained in the following epigraph. 

4.2.1 Axial forces  

Axial function and diagram is (figure 5) 

From B to C: ( x )N 2,81 kN  

From C to D ( x )N 0 kN  
 

Figure 5. Axial forces diagram 
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4.2.2 Shear forces  

Shear forces functions and diagram is (see 
figure 6) 

From B to C:   ( x )V 45 12 x  

Shear force on the left of C: EdV 51 kN  

Shear force on the right of C: EdV 24 kN  

 

 Figure 6. Shear forces diagram 

Being the point where the shear force is zero:     45 12 x 0 x 3,75 m from B 

From C to D:   ( x )V 24 12 x  

4.2.3 Bending moments 
The maximum positive bending moment B is obtained considering the equilibrium of 
bending moments equation at 3,75 m form B (equation 4) 

     
2

max

3,75
M 45 3,75 12 0

2
     equation 4. Maximum bending moment 

Calculating:   maxM 84,375 kN m .  

The bending moments diagram is sketched in 
figure 7, being the maximum negative bending 
moment at C equal to: 

        maxM 12 2 1 24 kN m   

Figure 7. Bending moments diagram 

4.3 Ultimate Limit States Conditions 

4.3.1 Resistance 
 

 Bending moment condition: In the absence of shear force, the design value of the 
bending moment MEd  at each cross-section will satisfy equation 5 

  
,Ed c RdM M   equation 5. Bending moment condition 

 

with   EdM 84 375 000 N mm. .  (maximum value at 3,75 m from B) 

And  
0M

ypl
Rd,plRd,c

fW
MM




    because S 275 IPE 240 in bending is Class 1 

As   pl y RdM 95 857 142 N mm, , . .     (see table 2) 

And     Ed pl y RdM 84 375 000 N mm M 95 857 142 N mm, ,. . . .  the beam fulfils the 

bending condition. 
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 Shear forces condition: The design value of the shear force VEd at each cross-section 
will satisfy equation 6. 

 Ed pl RdV V ,   equation 6. Shear force condition 

with   EdV 51 000 N mm.  (maximum value on the left of B) 

And   pl y RdV 288 812 N, , .   (see table 1) 

As    Ed pl y RdV 51 000 V 288 812 N, ,. .   (see table 1)  complies shear condition 

• Shear and bending moments interaction: 

The theoretical plastic bending moment resistance of a cross-section is reduced by 
the presence of shear. For small values of the shear force this reduction is so small that 
may be neglected. Provided that the design value for the shear force VEd does not 
exceed the 50% of the design plastic shear resistance Vpl,Rd  no reduction needs to be 
made in the value of the former plastic bending moment resistance. 

The point to analyse if shear and bending interaction must be taken into account is 
C, where EdV 51 000 N. and  EdM 24 kN m  

 
Provided that     Ed pl y RdV 51 000 50 V 144 406 N, ,. % .  the shear and bending 

interaction is not considered. 
 
• Axial forces and bending moments interaction: 

In I cross-sections, the reduction of the theoretical plastic moment resistance by the 
presence of small axial forces is balanced by strain hardening and may be neglected. 
When the axial force is smaller than the axial resistance of the web (equation 7) 
bending and axial force interaction can be neglected. 

 
0M

y
vEd

f
A5,0N


   equation 7 

Provided that      Ed

275
N 2810 N 0 5 1910 250 119 N

1 05
, .

,
 the axial and bending 

interaction is not considered.  

 

4.3.2 Lateral buckling condition 
 
Lateral-torsional buckling condition is shown in equation 8. 
 
     

,Ed b RdM M    equation 8. Lateral buckling condition 

  

with   EdM 84 375 000 N mm. .  (maximum value at 3,75 m from B) 

and  ,
LT y y

b Rd
M1

W f
M



 

    equation 9. Lateral-torsional buckling resistance for beams 

as the cross-section is Class 1, equation 9 es equivalent to   , , ,b Rd LT pl y RdM M    
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being LT the reduction factor for lateral-torsional buckling, which value can be 

obtained from the buckling curves in figure 8, considering the non-dimensional 

buckling slenderness LT , calculated in equation 9, while crM value can be obtained 

following equation 10, once LT ,vM  and LT ,wM  (equations 12 and 12 respectively) are 

known. For that purpose,  values of LT ,vb , LT ,wb coefficients are shown in figure 8 

 

 y y
LT

cr

W f

M



   equation 10. non-dimensional buckling slenderness 

 2 2
cr LT ,v LT ,wM M M   equation 11. Elastic critical bending moment 

 1
LT ,v LT ,v

c

C
M b

L
   equation 12. Uniform torsional rigidity component  

 1
LT ,w LT ,w 2

c

C
M b

L
   equation 13. Non-uniform torsional rigidity component 

 

  
 

Figure 8. Lateral-torsional buckling coefficients and buckling curves 
 
The coefficient C1 depends on the load case and the effective length factor k. It 
takes into account the bending moment distribution along the beam. 
General cases are shown in table 3 
 

Loads and support 
conditions 

Bending moment diagram k C1 

1,
0 
0,
5 

1,
13 
0,
97 

1,
0 

0,
5 

1,
28 

0,
71 

Table 4. Transverse loading cases 
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Considering the bending moment diagram 
of the beam and the position of the points 
where the out of plane movement is 
restrained is shown in figure 9, it can be 
assumed that Lc = 1000 mm, k= 1, and 
therefore C1 = 1,13 and  

 
Figure 9. Bending moments  

and bracing system 

Operating     6
LT ,v 2

1,13
M 247.810 10 280.025.300 N mm

1.000
 

     9
LT ,w 2

1,13
M 580.441 10 655.898.330 N mm

1.000
 

  

    2 2
crM 280.025.300 655.898.330 713.173.743 N mm  

And    LT
100.650.000

0,3756 0,40
713.173.743

 (lateral buckling cannot occur) 

 

4.3.3 Shear buckling of the web 
Considering that the web is unstiffened, shear buckling of the web cannot occur if: 

  
w

d
70

t
  equation 14. Shear buckling of the web condition 

Being in this case 
   

   
240 2 9,8 2 15 235

34,7 70 64,7
6,2 275

  

therefore, the shear buckling of the web cannot occur. 

 

4.3.4 Local effects, concentrated loads 
Considering that the reactions are those shown 
in figure 10, The condition will be that every 
punctual load: 
 
 
 R < Rb,Rd           equation 15. Punctual loads condition 
 
where Rb,Rd is the design buckling resistance of 
the web of the beam considered as a short 
column:  
 

Rb,Rd = Nb,Rd,   with   



 

 y
b Rd

M1

A f
N min

,     

 

 

Figure 10. Reactions 

Being Nb,Rd the buckling resistance of the portion of the web bearing the punctual 
load. 
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Where           2
w w

235
A (20 t ) t 20 6,2 6,2 710 mm

275
 

 

 
     

  
w

3
3

w 4

235
20 6,2 6,2(20 t ) t 275I 2.265 mm

12 12
 

 

   min

I 2.265
i 1,78 mm

A 710
 

 

 
 


    

  
min

0,8 240 2 9,8 2 150,8 d
85,57

i 1,78
 

being  




R

and considering that the steel is S 275,  R 86,8  

 

      curve c
min

85,57
0,98 1 0,54

86,8
 

 

Then 
 

 b Rd

0 54 710 275
N 100 414 N

1 05,

,
.

,
 

 

As     Ed c b RdN R 75 000 N N 100 414 N,. .  it is not necessary to stiffen the 

beam. 

 

4.4 Final design of the beam 
As the S 275 hot rolled IPE 240 cross section fulfils all the Ultimate Limit States conditions, 
it can be designed with that cross section. 

5 Conclusion 
This document explains, with a worked example, how to check Ultimate Limit States 
conditions of a simple beam with a cantilever loaded with a uniform load 

With this purpose, the student has to follow the following steps: 

1. Obtain the internal forces in the analysed member 
2. Check the bending moments resistance condition 
3. Check the shear forces resistance condition 
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4. Check the bending moments-shear forces interaction 
5. Check the axial forces-bending moments interaction 
6. Check the lateral-torsional condition 
7. Check the shear buckling of the web 
8. Check the local effects of the concentrated loads. 
9. Finally, once al the conditions have been fulfilled, the initial design has been 

accepted. 
 

Finally, it is important to point out that the initial design of the cross section is not always 
going to fulfil all the conditions. In those cases, the cross section must be redesigned 
and checked until all the conditions are fulfilled. 

6 Proposed exercise 
 

Considering the frame in the figure, where 
the overhanging has been eliminated from 
the initial design, it is requested to check if 
the same cross section, with the same 
bracing conditions, will fulfil the Ultimate Limit 
State conditions.  
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8 Solution 
Being the maximum bending moment, at the middle of the span equal to: 

2

Ed

q L
M 96 kNm

8


  , and Mpl,Rd equal to 95857142 Nmm (table 2) the cross section 

fails the first condition, so, BC beam cannot be designed with an S 275 IPE 240 
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