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Abstract 

Cortical bone can be considered as a heterogeneous composite at microscopic 

scale, composed of osteons that act as reinforcement fibres embedded in interstitial 

matrix. Cement lines constitute the interface between osteons and matrix, and they often 

behave as the weakest links along which microcracks tend to propagate. However, current 

simulations of crack growth using XFEM combined with usual orientation criteria as 

implemented in commercial codes do not capture this behaviour: they predict crack paths 

that do not follow the cement lines surrounding osteons. The reason is that the orientation 

criterion used in the implementation of XFEM does not take into account the 

heterogeneity of the material, leading to simulations that differ from experimental results. 

In this work, a crack orientation criterion for heterogeneous materials based on interface 

damage prediction in composites is proposed and a phantom node approach has been 

implemented to model crack propagation. The method has been validated by means of 

linear elastic fracture mechanics (LEFM) problems obtaining accurate results. The 

procedure is applied to different problems including several osteons with simplified 
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geometry and an experimental test reported in the literature leading to satisfactory 

predictions of crack paths. 
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Crack path; heterogeneous media; orientation criterion; phantom node method; bone 

fracture. 

1. Introduction 

The study of the mechanical response of bone is an active field of research for both 

biologists and engineers [1]. Bone fracture, principally caused by accidents, is a common 

trauma affecting young and elderly people. In an increasingly aging society, bone fracture 

(usually hip fracture) has a great social importance involving enormous costs [2, 3]. The 

understanding of bone fracture at different length scales is still a challenge and its 

modelling may reveal insight into the fracture behaviour of bone at microscale. In this 

field, finite element modelling can help to predict and analyse the crack path under 

different conditions. Finite element simulations are also used in other biomechanical 

areas, such as bone remodelling [4, 5].  

Two main tissues can be distinguished within bone structure: the outer regions, 

composed of cortical bone and the inner regions composed of trabecular bone. The highly 

hierarchical structure of bone [6, 7] makes it necessary to develop multiscale models 

where the different scales must be properly modelled [8, 9]. On the one hand, cortical 

bone is a hard, dense and highly mineralised tissue, bearing the main compressive and 

bending loads. On the other hand, trabecular bone is made of a reticular, rod and plate-

like structure tissue, that permit a global bone mass reduction and leads a high surface 

area suitable for metabolic reactions [10-13]. 
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The role of cortical bone is crucial in the global fracture behaviour of bone. Its 

analysis at the microscale helps to the understanding of the macro fracture of long bones. 

At the microscale (50–500 μm), cortical bone is a heterogeneous material with non-

isotropic properties that can be considered as a biological composite, composed of fibres 

with high stiffness (in terms of Young’s modulus) embedded in a matrix [14]. The 

different constituents of cortical bone have dissimilar mechanical properties and this has 

a strong influence on the crack path at this scale. The basic structural unit of compact 

bone at the micro level is the osteon (also known as Haversian system) that has a 

complicated hierarchical morphology at a lower scale [6,11]. In this work, only the 

Haversian canal and the cement line will be considered. We distinguish three relevant 

constituents (shown in Fig. 1 at different scales): 

 Secondary osteons: recent osteons formed in the continuous process of bone 

remodelling. Their diameter ranges between 50–200 μm and length in the range 

3–5 mm [11, 15]. 

 Interstitial matrix: it is mainly composed of old osteons with high mineral content 

and about 10-15% higher stiffness than secondary osteons [16, 17]. 

 Cement line: a weak thin layer (about 1–5 μm thick [18]) surrounding the 

secondary osteons. The cement line constitutes the interface between secondary 

osteons and the interstitial matrix. This is a less mineralized zone which exhibits 

low toughness and stiffness properties, leading to propagation of cracks around 

secondary osteons [17-21]. 
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Figure 1. Scheme of the cortical bone structure from macroscopic to microscopic scale.  

 
The cement line has been analysed in the literature for being the constituent at the 

microscale that shows the highest risk of failure in cortical bone tissue (see for instance 

[20-25]). Fig. 2 shows an example of the crack propagation path following cement lines, 

reported in [24]. This interface between osteons and the interstitial matrix is often origin 

of cracks and its most probable propagation path [7, 24, 26, 27], as it is a less mineralized 

tissue [20]. Some authors suggest that collagen fibres do not cross cement lines and thus 

it represents the weakest interface within the cortical bone tissue [22, 23]. This approach 

is consistent with the phenomenon observed experimentally by which microcracks tend 

to follow the cement lines rather than crossing osteons [28]. Similarly, Nobakhti et al. 

[18] analyzed the behaviour of cement lines in cortical bone tissue and claim that strain 

increases at these interfaces. 
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Figure 2. Crack propagation path following the weakened interfacial zone (cement line). The crack does 

not cross the cement line. The main cracks are marked in red colour dashed lines. Reprinted from [24] 

with permission of John Wiley and Sons. 

Despite the interest of experimental studies, the simulation of bone fracture is still a 

challenge both at macroscopic and microscopic scale. Modelling crack propagation in 

cortical bone requires the implementation of techniques able to account for the 

heterogeneous nature of bone, and there is a lack of an appropriate criterion to predict 

fracture paths in this type of heterogeneous materials, as discussed in this section. 

Budyn et al. [29] analysed the crack propagation in osteons using the extended finite 

element method (XFEM). They predefined initial cracks into osteons and studied the 

subsequent propagation based on the maximum tangential stress (MTS) criterion, which 

is commonly used for homogeneous materials. The predicted crack path is straight and 

orthogonal to the prescribed displacement, without detecting the presence of 

heterogeneities such as the cement lines. The predicted path that crosses osteons is 

probably due to the propagation criterion used, which is not suitable for heterogeneous 

materials. Similar fracture paths were obtained in [30] accounting also for the effect of 

age in the porosity of the bone. Analogous results have been obtained by other authors 
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[31-33], without obtaining a realistic path. The above references applied fracture criteria 

initially conceived for homogeneous material. Also, XFEM combined with the MTS 

criterion is used in recent works [34], leading to non-realistic fracture paths, where the 

crack path is not affected by the presence of the cement line. 

Guo et al. [35], applied principles of LEFM to study the dependence of fracture 

process on the material properties using a simplified model composed of an osteon and 

the interstitial matrix. Their results claim that low-stiffness osteons (newly formed) may 

toughen cortical bone tissue as microcracks tend to propagate towards them, limiting its 

growth [35].  

Some authors have developed cohesive zone models to simulate material interface 

behaviour at different length scales in bone [9,36-39]. For example, Lin et al. [36] 

recently defined a cohesive zone model to define the mechanical behaviour at the 

nanoscale of the extrafibrillar matrix in bone, the interfacial interactions in a simplified 

hexagonal-based model under compression loading [36]. On the other hand, Cox and 

Yang [39] formulated a cohesive fracture model and applied it to human femoral cortical 

bone data. They studied the viability of assuming LEFM in cortical bone fracture, 

claiming that it only can be assumed when crack is longer than a certain length scale. 

Different multiscale approaches can be found that take into account the heterogenous 

microstructure [9,40-42]. Ural and Mischinski [9] developed a multiscale approach of 

bone fracture investigating the influence of bone microstructure properties on macroscale 

fracture. They used a computational fracture mechanics approach based on cohesive finite 

element modelling. At microscale, Ural et al. evaluated two different models: 2D finite 

element models created from human cortical bone microscopy images to determine the 

influence of cement line properties on the crack propagation path and finite element 

models of 3D compact tension test specimens with idealized geometry. The macroscale 
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simulations evaluated the fracture load of an idealized radius bone, incorporating the 

fracture toughness and critical strength values estimated at the microscale [9]. Vernerey 

and Kabiri [40,41] proposed an adaptive multiscale formulation to model fracture in 

heterogeneous media, providing both a concurrent microscopic and macroscopic 

description adaptively as fracture proceeds. Their approach consists in defining coarse 

finite elements in the macroscopic domain, while refining the mesh in high strained areas, 

coupling the embedded representative volume elements (RVE) with the rest of the 

domain. In [41] they use an XFEM modelling of crack propagation. Souza and Allen [42] 

highlighted the importance of defining the crack initiation and proposed a two-way 

coupled multiscale approach, where cohesive zones were modelled using an XFEM 

description. 

Li et al. [43] performed an experimental study and numerical simulations of fracture 

processes to characterize fracture toughness in bovine femoral cortical bone tissue, 

focusing on spatial variability and anisotropy of its resistance to fracture. The 

experimental data was obtained using single-edge-notch-bending specimens of cortical 

bone tested in a three-point bending setup, while the numerical approach was developed 

using the XFEM method. 

To the authors’ knowledge, none of these works addresses the need of a criterion for 

heterogeneous microstructure to predict the proper angle of propagation to simulate 

fracture paths in cortical bone. 

This paper focuses on the modelling of fracture propagation at the microscale taking 

into account its heterogeneous microstructure. In this work, the proposed criterion for 

crack propagation within a heterogeneous microstructure has been applied in combination 

with the Phantom Node Method (PNM). The Phantom Node approach has been 

implemented in the commercial FE code Abaqus by means of user’s subroutines. For the 
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sake of simplicity, the PNM has been chosen instead of the standard XFEM because it is 

easier to implement in a commercial code (no degree-of-freedom enrichment is needed).  

In this work, the simulation of simple cases corresponding to LEFM problems has 

allowed the validation of the implementation and assessment of its accuracy. Then, this 

procedure is employed to simulate crack propagation in cortical bone, with simplified and 

realistic bone microstructure morphologies, showing good correlation between 

experiments and numerical predictions.  

The PNM was proposed by Hansbo and Hansbo [44]. In PNM, the crack is treated 

explicitly and crack opening and shearing are calculated based on displacements of both 

original and phantom nodes overlaid to some of the original nodes [44,45]. Similar to 

XFEM formulation, in PNM an element can be intersected by a crack, so fracture does 

not need to follow element sides. Moreover, as proved by Song [46], PNM is equivalent 

to standard XFEM which is based on the framework of partition of unity method. To date, 

this method has been applied to different LEFM problems, and also in composite 

materials such as FRP composites [45,47], but not in cortical bone at microscopic scale.  

This work is organized as follows. After this introduction, the main features of the 

PNM implementation in a commercial code are explained and then, a validation of the 

implementation through LEFM problems is carried out. Then, the crack orientation 

criterion for heterogeneous materials is proposed. Using this criterion, different problems 

with idealized and realistic cortical bone geometry are simulated using the PNM, and 

compared to experimental results of the simulations carried out by other authors who used 

other methods. The conclusions of the work are presented in the last section. 
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2. Phantom Node Method (PNM) and validation 

2.1. Phantom Node Method (PNM) 

The PNM treats discontinuities explicitly, similar to XFEM, with only straight 

internal crack segments under consideration. A difference with XFEM is that PNM is not 

based on the enrichment of the FE model with additional degrees of freedom [48]. 

Considering the advantages of this feature of the PNM from the implementation 

viewpoint, we chose this approach over standard XFEM for the sake of simplicity. One 

disadvantage is that the crack tip enrichment cannot be included and that the crack must 

necessarily end at an element side. Often, this disadvantage is not critical because 

typically the mesh is sufficiently refined. 

When a crack intersects an element, this element is duplicated. Then, the nodal 

connectivity of the two elements is modified, linking the elements to each side of the 

crack, respectively (see Fig. 3). The nodes that belong to the new elements but are not 

connected to the previous mesh are called phantom nodes. This allows the displacement 

discontinuity needed to reproduce the crack presence. 

The new elements are subdivided into subdomains in order to carry out the numerical 

integration, which is performed at one side of the crack line only for each of these 

elements, being the crack one of the subdomain boundaries. Hence, the integrated 

subdomains match the previous domain of the problem. A quadrilateral element is either 

subdivided into two quadrilateral subdomains when the element is intersected through 

opposite faces or subdivided into triangular subdomains when contiguous faces are 

intersected. This subdomain division was used and explained by Möes et al. in [48]. 

The elements intersected by the crack are also named mathematical elements (MEs), 

which are only active in the region corresponding to the subdomain they represent [45]. 
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A scheme of several elements intersected by a crack and PNM topology is shown in Fig. 

3. 

 

Figure 3. Scheme of a crack modelled by means of Phantom Nodes. Elements intersected by the crack 

are duplicated and divided into two subdomains (Ω1 and Ω2). In this figure real nodes are represented as 

circular markers and Phantom Nodes are represented as square markers. Connectivity between crack tip 

nodes 3 and 4 is kept active. 

Thus, PNM is based on the topology modification of the elements intersected by a 

crack. This way, the new elements are connected to each of the sides of the crack line, 

respectively, allowing for the crack discontinuity. Only connectivity between crack tip 

nodes is kept active (nodes 3 and 4 in Fig. 3). The nodes of the crack tip element are only 

partially duplicated (nodes 2 and 5 are duplicated but 3 and 4 are not). Therefore, the 

crack tip will always be on the element side that connects the two nodes that are not 

duplicated. 

The implementation of the PNM is carried out through a user element (UEL) 

subroutine in the FE commercial code Abaqus/Standard. Subroutine inputs are: 

intersection points between elements and crack face, intersection type (opposite or 

contiguous faces) and distance from nodes to crack tip. With these parameters, our UEL 

subroutine is able to subdivide each intersected element into subdomains, integrating the 

active subdomains and assembling their contribution to the FE global stiffness matrix. 

The identification of the intersection type, points of intersection between crack and 
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element sides, element duplication and modifications in the topology are carried out 

through different Python scripts developed by the authors. 

When crack propagation is considered, it is necessary to estimate the new angle 

orientation for each crack increment. This postprocessing task is done by means of the 

output files treatment through a co-simulation between Abaqus/Standard and Python 

scripting. In these analyses, each crack increment involves a new simulation of the 

problem. 

2.2.  PNM validation 

Different analytical problems from LEFM have been solved to validate the PNM. 

First, a mode I problem is considered, where we simulate an infinite array of collinear 

cracks under tensile traction in an infinite domain. Secondly, the Westergaard’s problem 

is considered as a mixed mode crack problem. The aim of these analyses is to study the 

capabilities of the method and its robustness with different element sizes, in terms of 

stress intensity factor (SIF). In these problems SIF is calculated through the J-integral (in 

pure mode I) or through the interaction integral (in plane mixed mode behaviour). A 

sketch of each validation problem is shown in Fig. 4, where the shaded area is the domain 

numerically modeled. 
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Figure 4. Sketches of the two problems used in the PNM validation: a) Infinite array of collinear 

cracks in tension. b) Westergaard’s crack problem 

2.2.1. Infinite array of collinear cracks in tension 

This problem in pure mode I is used to obtain a first approximation regarding the 

dependence of the solution on the element size. Through Eq. 1 is possible to calculate the 

exact value of KI in this problem [49]: 

୍ܭ ൌ ඨ
2ܾ
ܽߨ

݊ܽݐ ቀ
ܽߨ
2ܾ
ቁ  (1) ܽߨ√ߪ

where the different variables are shown in Fig. 4a. In this problem a=1 and b=2a. A 

sufficiently large domain is considered. The model dimensions are 12a in y-axis and 2a 

in x-axis. σ is taken as σ = 1/2 (units of pressure), in order to yield KI = 1. The Young’s 

modulus is E=107 (units of pressure) and the Poisson’s ratio is ν = 0.333. A plane stress 

hypothesis is assumed, using quadrilateral elements (coded CPS4 in Abaqus). Boundary 

conditions simulate the periodic symmetry of the problem, so the lateral nodes of the 

domain represented in Fig. 4a are constrained in the X-direction. Using these boundary 

conditions the domain of an infinite array of collinear cracks in tension is reproduced. 
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In this problem, four meshes are used, with element sizes equal to: a/2, a/4, a/8 

and a/16. The different meshes and contour results in terms of σyy are shown in Fig. 5a.  

 

Figure 5. Infinite array of collinear cracks in tension. a) Different meshes. Plot of σyy stress field; b) 

Relative error in KI depending on element size. 

In Fig. 5a, the degree of refinement can be appreciated, showing that fine meshes 

are able to capture the fracture effects ahead the crack tip. The relative error obtained for 

KI (in percentage) obtained with the PNM is plotted in Fig. 5b. Results provide a good 

approximation to the exact value of KI for the problem of an infinite array of collinear 

cracks in tension problem when PNM is used. It can be seen that the relative error is about 

1% when the smallest element size is used (element size=a/16). Results in this validation 

problem provide a good approximation to the exact value in mode I.  

 

2.2.2. Westergaard’s crack problem 

A problem in mixed mode behaviour with an exact solution has also been solved 

for different element sizes in order to analyse the accuracy of the PNM. The problem 

analysed is an infinite plate with a crack of finite length, and it has been also used to 
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validate other approaches, such as XFEM [50]. The sketch of the problem is shown in 

Fig. 4b. Crack length is 2a, and the domain is biaxially loaded with remote uniform 

tractions for mode I and remote uniform shear for mode II (see Fig. 4b). Exact solutions 

for the SIFs of this problem are: ୍ܭ,ୣ୶ ൌ ୶ୣ,୍୍ܭ and ܽߨ√ߪ ൌ  .ܽߨ√߬

Using explicit expressions for the stress field in terms of spatial coordinates 

derived in [51], it is possible to compute equivalent nodal forces for a finite portion of the 

domain. These nodal forces are represented in Fig. 6a. For biaxial loading with remote 

uniform traction σ, the stress field at a point (x,y) associated with mode I loading is: 

୶୶୍ߪ ൌ
ߪ

ඥ|ݐ|
ቈ൬ݔ cos

ߔ
2
െ ݕ sin

ߔ
2
൰ ൅ ݕ

ܽଶ

ଶ|ݐ|
൬݉ sin

ߔ
2
െ ݊ cos

ߔ
2
൰቉ (2a) 
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ߔ
2
൰ െ ݕ

ܽଶ

ଶ|ݐ|
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ߔ
2
െ ݊ cos

ߔ
2
൰቉ (2b) 
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ߔ
2
൅ ݊ sin

ߔ
2
൰ (2c) 

And for loading with remote uniform shear traction τ (mode II) the stress field at 

points (x,y) belonging to the half plane x≥0 are given by: 

୶୶୍୍ߪ ൌ
߬

ඥ|ݐ|
ቈ2 ൬ݕ cos

ߔ
2
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ߔ
2
൰ െ ݕ
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ߔ
2
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ߔ
2
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where m, n, |t| and Φ are real-valued functions of x and y coordinates, defined as 
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݉ ൌ Reݐ ൌ ଶݔ െ ଶݕ െ ܽଶ (4) 

݊ ൌ Imݐ ൌ  (5) ݕݔ2

|ݐ| ൌ |݉ ൅ i݊| ൌ ඥ݉ଶ ൅ ݊ଶ (6) 

ߔ ൌ arg̅ݐ ൌ arg	ሺ݉ െ i݊ሻ        with  ߔ ∈	ሾ‐π,	πሿ (7) 

 

In this problem, crack length is a=1 and the finite domain dimensions are b=2a, 

c=a. Five uniform meshes have been used, with element sizes equal to: a/4, a/8, a/16, 

a/32 and a/49. Nodal equivalent forces (shown in Fig. 6a) are those that yield KI,ex = KII,ex 

= 1. As in the previous problem, the Young’s modulus is E=107 (units of pressure), the 

Poisson’s ratio is ν=0.333 and plane stress conditions are assumed (element CPS4 in 

Abaqus). 

 

Figure 6. Westergaard’s crack problem. a) Sketch of the problem with nodal forces for the third mesh of 

the sequence (element size equal to a/16). b) von Mises contour plot for the same mesh of the sequence. 

c) Relative error in KI and KII (in percentage). 

The relative error in KI and KII estimation is plotted in Fig. 6c. Results show that the 

method is accurate enough in problems with mixed mode behaviour, reaching errors in 

SIFs of about 1%. These results validate the proposed method for 2D problems.  
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3. Modelling fracture in cortical bone 

Once our implementation of the PNM has been validated, it will be applied to simulate 

problems of crack propagation. In this section, 2D fracture of cortical bone at the 

microscale is simulated for different morphologies of transversal sections. 

3.1. Crack orientation criterion 

Crack orientation criteria are necessary to predict the crack growth direction in 

simulations of crack propagation problems. Usually, for homogeneous materials and 

proportional loading conditions, the MTS criterion provides good results. Since cortical 

bone is a heterogeneous material that can be considered as a composite material with a 

reinforced microstructure [14], it is necessary to establish a proper crack orientation 

criterion that takes into account this heterogeneity. In this material, secondary osteons 

play the role of reinforcement fibres, embedded in the interstitial matrix, and cement lines 

act as the interface between fibres and matrix. In order to take into account the influence 

of the microscopic bone morphology, we have developed and applied a crack orientation 

criterion that considers the interface damage in structural composites (as proposed in 

[52]). According to [52], to predict the interface damage in a composite material, it is 

necessary to analyse the stresses ahead the crack tip, and to compare them with the critical 

stresses for each constituent of the composite.  

The type of failure in the composite depends on the critical strengths of the materials 

and their relative values. Hull et al. [52] propose relationships between stresses near the 

crack tip and ultimate strength of the constituents that determine the failure either in the 

matrix, in the interface or in the fibre. In following discussion, subscripts 1 and 2 refer to 

the parallel and transverse direction respect to the fibres respectively, and S1, S2 and S12, 

denote the ultimate strength limit in the corresponding direction (1, 2 or shear strength in 

the 1-2 plane). In these relationships, σ1 is the actual stress in the fibres direction and σ2 
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is the stress orthogonal to the fibres direction, both at the crack tip. ଵܵ is the uniaxial 

strength parallel to the fibres direction, ܵଶ is the uniaxial strength in the orthogonal 

direction and ଵܵଶ is the intralaminar shear strength in the fibres plane. 

When a brittle and sharp crack encounters a fibre, as shown in Fig. 7a, different 

fracture types can appear depending on the relative values of the constituent and interface 

strengths. In the crack tip region, different stresses exist (shown in Fig. 7b): σ1 tends to 

cause fibre failure, σ2 tends to cause interfacial fracture by tensile traction and τ tends to 

produce interfacial fracture by shear stress. Hull et al. propose different relationships 

between stresses in the vicinity of the crack tip and ultimate strengths of the composite to 

determine the type of fracture. They propose three situations about interface fracture (Fig. 

7c): 

 When ଵܵ/ܵଶ ൐ ଵߪ	 ⁄ଶߪ   interface cracking due to tensile traction normal to the 

interface will appear prior to fibre failure. 

 When ଵܵ/ ଵܵଶ ൐ ଵߪ	 ߬ଵଶ⁄   interface cracking due to shear stress will appear 

along the interface prior to fibre failure. 

 When ଵܵଶ/ܵଶ ൐ 	 ߬ଵଶ ⁄ଶߪ  , interface cracking will be more favourable due to 

transverse tensile traction than due to shear stress. Only if these relationships 

are not satisfied, crack will grow across the fibre. 
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Figure 7. Brittle fracture close to fibres and stresses ahead the crack tip. a) Brittle fracture matrix close to 

the fibre. b) Stresses ahead the crack tip. c) Interface fracture. 

 

Following this approach, the criterion proposed in this work consists in analysing the 

critical stresses ahead the crack tip as a function of the constituent and applying the MTS 

criterion methodology when the crack propagates within a single material. Therefore this 

criterion constitutes a simple method that can be applied to crack propagation problems 

in heterogeneous or composite materials. 

In Fig. 8a we show a scheme of the proposed criterion. For the application of the 

orientation criterion, circumferential stresses divided by critical stress of the 

corresponding constituent are computed ahead the crack tip at integration points of each 

element in a region of interest surrounding the crack tip. Due to discretization errors, 

integration points in the element close to the crack tip are discarded for the stress 

computation. In this work, full integration of elements is used. This way, the number of 

integration points available is 4 per element for the quadrilateral elements used in this 

work. The angle of propagation at each crack growth step will be the one for which f 

reaches a maximum value. 
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Fig. 8b shows a step of the propagation in an osteon, in which the crack tip is at the 

cement line. The red line shows the crack faces in this simulation. In the postprocessing 

stage, the parameter f is computed in the area of interest highlighted in Fig. 8b) and the 

next angle of propagation is the one for which the parameter f is the greatest. In this 

particular example and taking into account the strength limits of the different constituents, 

the most probable propagation angle is the one that follows the cement line. 

 

Figure 8. Crack orientation criterion developed in this work for fracture in cortical bone. Parameter f is 

calculated ahead the crack tip in a region of interest, and fracture is propagated in the direction where f 

reaches the maximum value. a) Scheme of the crack orientation criterion proposed in this work; b) Detail 

of the region of interest, showing a given step with the crack tip at the cement line as an example. 

Through this criterion, not only the principle of the MTS criterion is considered, 

but also the ultimate mechanical properties of each constituent, which are necessary for 

the correct crack path prediction in heterogeneous materials. 

3.2. Application to simplified geometries of cortical bone 

One of the goals of this paper is to reproduce realistic fracture paths found in a 

transversal section of cortical bone considering its morphology at the microscale. First, 

osteon-like structures with simplified geometry are modelled in order to test the PNM and 
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the crack orientation criterion proposed. Finally, the method is applied to simulate crack 

propagation in realistic microstructural morphologies of cortical bone. 

In what follows, we define the mechanical properties of the constituents under 

analysis. As explained in Section 1, we consider the following three main constituents: 

secondary osteons, interstitial matrix and cement lines. In the literature there is a wide 

dispersion regarding bone mechanical properties [21,25,53,54]. This scatter in the 

material properties can also affect to the numerical estimation of bone fracture load [55].  

Given the problem conditions of our study, the mechanical properties of cortical bone 

components (cement line, interstitial matrix and secondary osteons) used in our numerical 

models are shown in Table 1. These values as well as their physical dimensions are inputs 

in the simplified and realistic numerical models shown in this section. Poisson’s ratio has 

been assumed as v=0.3 for each component, since it is usually close to this value in the 

literature [16,18,56-60]. Table 1 summarizes different mechanical properties available in 

literature. 

Table 1. Summary of the mechanical properties and dimensions of constituents in cortical bone. 

Component E (MPa) σcrit (MPa) Gc (N/m) Dimensions (μm) 

Osteon 13290 [19] 100 [11] 860 [17] Dost = 100 – 300 [11, 61] 

Interstitial matrix 146101 55 [62] 238 [17] - 

Cement line 88 [18] 6 [21] 163 [21] Ecem = 5 [11] 

Haversian canal - - - Dhav = 20 – 90 [63] 

 

 

In what follows, several numerical models (simplified and realistic) are solved. 

Fracture is modelled by means of the PNM and using the crack propagation criterion 

1-Interstitial matrix is considered a more mineralised tissue than osteons [16,17]. Its Young’s modulus is often estimated as 10-15% higher than for osteons: 
13290MPa·1.1 = 14610 MPa. 
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proposed above, which enables the estimation of the orientation angle of each crack path 

in a heterogeneous material.  

3.2.1. Fracture in simplified geometries (one-osteon model) of cortical 

bone 

In this work, we have carried out simulations of simplified osteon morphologies 

in order to check the numerical prediction of crack paths. Here, crack paths obtained with 

the PNM and the proposed crack orientation criterion are compared with the ones 

predicted by XFEM provided by Abaqus and the results obtained by other authors in 

literature. Solving simplified numerical problems is useful to show the PNM capabilities 

to predict the crack path in fracture problems within heterogeneous materials, such as 

cortical bone. In this case, several models with different osteon distributions were 

developed. These models reproduce a three-point bending test with specimen fracture, 

since this kind of experiment is usually applied to cortical bone testing in order to measure 

its stiffness [11]. As presented in Section 1, the crack path is expected to grow mainly 

through the interstitial matrix and along cement lines, but rarely crossing osteons. 

The two different simplified cortical bone models are three-point bending test 

specimens considering one circular osteon in the mid-plane and two circular osteons off-

centred.  

The specimen dimensions of the one-osteon model are 640 μm × 240 μm. A sketch 

of the model is shown in Fig. 9a. The osteon is located in the mid-section of the specimen 

and its morphology is defined by Dost=200 μm and Dhav=50 μm surrounded by a cement 

line of thickness ecem=5 μm. The specimen is supported at two points, separated by a 

distance of 560 μm. A centred load is applied at the top side with a magnitude of F=20 

N. This load is similar to the loads reported in this kind of tests [27]. Plane strain 
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conditions have been assumed, using quadrilateral elements with full integration (CPE4 

in Abaqus). The element size is about 5 μm in order to match the cement line dimensions. 

The number of elements is approximately 7000. The mechanical properties of the 

different components are defined in accordance to the literature values summarized in 

Table 1. 

Several authors have developed this kind of simplified models using the XFEM 

implementation available in Abaqus in combination with the MTS criterion, which was 

initially conceived for homogeneous materials [27,29-31]. Here, we present a comparison 

between this procedure and the one proposed in this work. The simulations using the 

XFEM provided by Abaqus are applied with the Virtual Crack Closure Technique 

(VCCT) [64] available in Abaqus/Standard with critical energies for each component 

summarized in Table 1. The angle prediction is based on the MTS criterion. 

In this example, an initial crack is located at the lower side of the specimen 

(marked in red colour in Fig. 9a). The crack growth increment has been set equal to one 

element size. This small crack increment enables an accurate prediction of the crack path.  
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Figure 9. One-osteon model in a three-point bending test. a) Geometry and mesh of the test with one centred 

osteon. b) Crack path obtained through XFEM and MTS criterion available in Abaqus. c) Crack path 

obtained through PNM and MTS criterion. d) Crack path obtained through PNM and the criterion for 

heterogeneous materials proposed in this work. 

Figs. 9b, 9c and 9d show the different results for the crack path depending on the 

procedure and criteria used. Note that the fracture paths obtained when the MTS criterion 

is used (Figs. 9b and 9c) are approximately straight, crossing the cement line and the inner 

part of osteon, regardless the different mechanical properties of the constituents, which 

do not seem to affect the crack path computation. This does not match the experimental 

results shown by other authors, in which cracks mainly grow through the interstitial 

matrix and along the cement line. We observe that the simple implementation of the MTS 

criterion cannot discriminate the low ultimate stress of the cement line. On the contrary, 

the use of the proposed implementation of the PNM and the crack orientation criterion 

for heterogeneous materials, leads to a more realistic fracture path that takes into account 
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the heterogeneities within the microstructure (see Fig. 9d). In this case, high shear stresses 

and a low ultimate stress in the cement line entail crack propagation along it. At the end 

of the crack propagation, stresses in the interstitial matrix become high enough to divert 

the fracture from the cement line. Note that in our simulations the crack growth is 

quasistatic because we assume that the critical load has been reached, as in e.g. [50]. The 

objective of the numerical examples is to ascertain the proper orientation path considering 

the heterogeneity of the media. 

3.2.2. Fracture in simplified geometries with several osteons 

In this subsection, results for some simplified models with several osteons are 

presented. In the first one, the microstructural morphology of the cortical bone specimen 

is composed of two osteons and the specimen is subjected to three-point bending test 

conditions (a sketch of the problem is shown in Fig. 10a). The specimen dimensions are 

1000 μm × 400 μm. Close to the mid-section of the specimen two circular osteons are 

located, with the following dimensions: Dost1=200  μm, Dhav1=50  μm, Dost2=120  μm, 

Dhav2=60 μm. Both osteons are surrounded by the cement line of thickness ecem=5 μm. 

The distance between supports is 870 μm. As in the previous example, a centred load of 

F=20 N [27] is applied at the top side. Plane strain is assumed, using element type CPE4 

in Abaqus. The element size is about 5 μm and the mesh consists of approximately 9900 

elements. 

The same model is analysed using the XFEM implementation and the MTS 

criterion available in Abaqus/Standard, and compared with our implementation of the 

PNM with the heterogeneous material criterion proposed in this work. In this case, the 

initial crack is located off-centred with respect to the mid-section, as shown in Fig. 10a 

in red colour. 
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Figure 10. Two osteon model in a three-point bending test. a) Scheme and mesh of the test with two 

osteons. b) Crack path obtained through XFEM and MTS criterion available in Abaqus. c) Crack path 

obtained through PNM and MTS criterion. d) Crack path obtained through PNM and the criterion for 

heterogeneous materials proposed in this work. 

Fig. 10d shows that realistic fracture paths can be obtained through PNM and the 

crack orientation criterion proposed for heterogeneous materials. By using our proposal, 

the crack path follows the cement line, until stresses in the interstitial matrix are high 

enough to make it leave the cement line. In the same fashion, the fracture path reaches 

the second osteon and grows through its cement line. On the contrary, the XFEM method 

and the PNM combined with the MTS criterion lead to unrealistic fracture paths, Fig. 10b 
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and 10c, as the crack paths cross cement lines reaching the osteon, regardless the different 

material properties of each region. 

The next step in our analyses is to perform simulations carried out by other authors 

in simplified geometries. As explained in Section 1, several authors have simulated crack 

propagation in cortical bone with results which do not agree well with experimental 

evidence. In the work by Abdel et al. [31], authors simulate the fracture of a small cortical 

bone specimen, simplifying the geometry of osteons to cylinders. In their model, several 

osteons are positioned in a random distribution, with different diameter sizes. The 

numerical model has dimensions of 700 μm × 525 μm. Fig. 11b shows the osteon 

distribution and the boundary conditions that correspond to a tensile traction of the 

specimen. A plane strain condition is assumed. The element size is approximately 5 μm 

and the mesh consists of 18600 elements. The tensile traction applied to the right side is 

equivalent to a 2 N force, as in the original work [31]. An initial crack is located at the 

bottom of the sample and is marked in yellow colour in Fig. 11b. Abdel et al. simulated 

the problem using XFEM and the MTS criterion as available in Abaqus, obtaining a 

fracture path that crosses osteons, see Fig. 11a. The path growth does not seem to be 

affected by the cement line presence and its low stiffness and resistance. By using the 

XFEM implementation and MTS criterion available in Abaqus, the crack path is mainly 

determined by the position and size of the Havers canal, which act as stress raisers, despite 

the material heterogeneities. 
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Figure 11. Several osteon model presented by Abdel et al. [31]. a) Results obtained by Abdel et al. with 

XFEM and MTS criterion available in Abaqus. Reprinted from [31] with permission of Elsevier. b) 

Boundary conditions of the problem and results obtained with our implementation of the PNM and the 

criterion for heterogeneous materials proposed in this work. The initial crack segment is marked in 

yellow colour. 

Fig. 11b shows the crack path prediction when simulated with our PNM 

implementation and the crack orientation criterion for heterogeneous materials proposed 

in this work. Initially, the crack growth is ortogonal to the traction direction. After a few 

steps, the crack is affected by the presence of the first osteon to the rigth and reaches its 

cement line. The crack path continues along the cement line until stresses become higher 

in the interstitial matrix. This sequence of events is repeated during the simulation, 

leading to a more realistic crack path than the one predicted by the XFEM and MTS 

criterion as available in Abaqus.  

3.2.3. Realistic microstructural modelling of crack propagation in cortical 

bone compared to experimental results obtained by other authors 

Once the crack orientation criterion proposed in this work has been tested in different 

analysis with simplified geometries, a real cortical bone problem is modelled in this 

section. Several authors have developed experimental tests in cortical bone, observing a 

crack path mainly growing along cement lines. We aim to reproduce numerically the 
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experimental work carried out by [27], where authors calculated the local stress intensity 

factor in cortical bone of a human femur. In this work, Budyn et al. obtained experimental 

fractures in microsamples of bone and modelled them as numerical paths through XFEM, 

calculating the stress intensity factors at the crack tip. 

Here, we model the specimen coded w06003 by Budyn et al. and shown in Fig. 12a, 

reproducing its real geometry at the microscale. Fig. 12b shows the boundary conditions 

of the experimental test, and a detail of the crack path obtained by Budyn et al. [27]. The 

specimen dimensions are 6 mm × 2 mm, with an area of interest of 380 μm × 1100 μm, 

detailed in Fig. 12b. A small notch was generated in the bottom side of the specimen, in 

order to induce crack initiation. The applied load was set to F=26N, i.e. the same fracture 

load obtained experimentally for this specimen [27]. In this model, plane strain is 

assumed, the element size in the area of interest is approximately 5 μm and the mesh 

consists of approximately 27400 elements. 

The specimen geometry and the osteon distribution has been defined through points 

and splines by means of a Python script. Although the whole specimen was modelled, we 

only consider the osteon distribution in the zone of interest. Out of the red rectangle 

marked in Fig. 12b we consider a homogenized material. An initial crack was located at 

the notch tip. 
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Figure 12. Problem analysed by Budyn et al. [27]. a) Notched specimen showing the area of interest 

Reprinted from [27] with permission of John Wiley and Sons. b) Boundary conditions of the problem, 

detailed view of the fractured area and experimental crack path marked in red as obtained by [27]. 

Reprinted from [27] with permission of John Wiley and Sons. c) Crack path prediction obtained through 

the PNM and orientation criterion for heterogeneous materials proposed in this work. 

The implementation of the PNM together with the proposed crack orientation 

criterion was used to carry out the simulation. In the experimental test performed by 

Budyn et al. [27], the crack path mainly surrounded osteons along their cement lines (Fig. 

12b).  

The numerical results show an acceptable prediction of the experimental fracture path 

(Fig. 12c) with slight differences from the observed results. These differences are mainly 

due to the difficulty when modelling the complex microstructure of a real cortical bone 

sample at the microscale. Besides the difficulties of defining the borders of some of the 

osteons, other microdetails, such as microporosity, lacunae (see Fig. 12b) are not 

a) 

c) 
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accounted for in the numerical model. Nevertheless, the predicted crack path can be 

considered realistic and it is in good agreement with experimental evidence. This shows 

that a numerical model consisting of osteons, interstitial matrix, Havers canals and cement 

lines may be sufficient to simulate crack propagation in cortical bone at the microscale. 

Thus, the application of the implemented PNM and the proposed crack orientation 

criterion has proved to capture adequately the interaction between the constituents of 

cortical bone. This shows the importance of considering cortical bone as a heterogeneous 

material at the microscale. 

4. Conclusions 

The numerical modelling of crack growth in cortical bone at the microstructural level 

has been successfully accomplished through a user implementation of the PNM in the 

commercial code Abaqus combined with a dedicated orientation criterion for 

heterogeneous materials. The PNM allows representing the displacement discontinuity 

across crack faces avoiding the need of element sides to conform to the crack faces and 

the need of remeshing to simulate crack propagation. The proposed crack orientation 

criterion has proven to be essential, as it takes into account the heterogeneity of the 

constituents to determine the direction of crack propagation when a crack encounters a 

material interface. This aspect is not currently considered by commercial 

implementations of the XFEM in Abaqus and has led to unrealistic crack growth 

predictions in the literature.  

Previously, the method has been validated through LEFM problems with known 

solutions of reference, both in mode I and mixed mode. The implementation has proven 

to be sufficiently accurate when an appropriate mesh is used, with errors in SIFs 

estimation of about 1%. 
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After its validation, the PNM has been applied to model bone fracture at the micro 

scale. At this scale, the need of a crack propagation criterion that takes into account the 

heterogeneity of the microstructure is evidenced. The criterion is based on the prediction 

of interface damage considering the stress distribution ahead the crack tip in combination 

with the MTS criterion. This leads to crack growth predictions that are in good agreement 

with experimental observations, in contrast to other results found in the literature. 

Several examples with idealized osteons have been modeled using the PNM and the 

proposed crack orientation criterion and also a cortical bone microsample reported by 

other authors in the literature. As expected, crack paths mainly grow and propagate 

through the weakest interface (cement line) and do not tend to cross osteons. Thus, the 

crack growth predictions agree with the observed experimental crack paths. The presented 

results show the importance of considering the heterogeneity, in contrast to other current 

commercial implementations. Furthermore, the procedure can be applied to model crack 

growth in other heterogeneous structures. 
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