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ABSTRACT 14 

In this study, 360 intact almonds, half sweet and half bitter, were assessed by near-infrared 15 

(NIR) spectroscopy to predict amygdalin content (established by high performance liquid 16 

chromatography (HPLC)) and by applying partial least squares (PLS) to the spectral data. 17 

After optimising amygdalin extraction and chromatographic conditions, the amygdalin 18 

contents found by HPLC were not detected or below to 350 mg·kg-1 for sweet almonds, 19 

and between 14,700 and 50,400 mg·kg-1 for bitter almonds. The intact almond spectra 20 

resulted in good predictions of amygdalin content with R2
p of 0.939 and RMSEP of 0.373. 21 

Almonds were correctly classified into sweet and bitter by linear discriminant analysis 22 

(LDA), quadratic discriminant analysis (QDA) and PLS-DA, with sensitivity and 23 

specificity values higher than 0.94 for evaluation set samples. Based on these results, it 24 
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can be concluded that NIR spectroscopy is a good non-destructive alternative to be used 25 

as an automatic in-line classification system by food industry. 26 

 27 
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1. Introduction 36 

 37 

Almonds (Prunus amygdalus) are an edible kernel in its natural state and a fruit 38 

of high commercial value for the food and cosmetic industries. Two different types can 39 

be distinguished depending on kernel bitterness: bitter and sweet almonds (Borrás, 40 

Amigo, van den Berg, Boqué, & Busto, 2014). Sweet almonds are widely used as a main 41 

ingredient in manufactured food products, while bitter almonds provide the main source 42 

of bitter almond oil, used as both flavouring and an ingredient in cosmetics (Salas-43 

Salvadó, Casas-Agustench, & Salas-Huetos, 2011). The bitter almond flavour is a 44 

consequence of the presence of cyanogenic glucosides, such as amygdalin and prunasin 45 

(Sánchez-Pérez, Jørgensen, Olsen, Dicenta, & Møller, 2008). Amygdalin concentrates in 46 

almond kernels, while prunasin is a monoglycoside of roots, leaves and kernel of 47 

immature almonds that converts into amygdalin during maturation. The bitter taste occurs 48 

due to enzymatic hydrolysis by β-glucosidase that produces benzaldehydes, sugars and 49 

hydrogen cyanide to provide a chemical defence barrier against herbivores, insects and 50 

pathogens. 51 

One complicated aspect for the almond sector is lack of homogeneity of almond 52 

batches. For example, many different shape and size varieties are marketed with the same 53 

commercial name which cause disorders for the processing industry. Additionally, the 54 

presence of bitter almonds in batches and, as a result, in the final food product, can 55 

become a public health issue that endangers almond marketing. Hence, it is necessary to 56 

develop analytical methodologies capable of discriminating between sweet and bitter 57 

almonds. One of the traditionally used methods to determine cyanogenic compounds in 58 

almonds is high performance liquid chromatography (HPLC). Several authors have 59 

studied the optimisation of the extraction process and the effect of sample preparation to 60 

evaluate amygdalin and prunasin levels in almonds (Arrazola, Grané, Martin, & Dicenta, 61 
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2013; Bolarinwa, Orfila, & Morgan, 2014; Dicenta et al., 2002; Ferrara, Maggio, & 62 

Pizzigallo, 2010; Lee, Zhang, Wood, Rogel Castillo, & Mitchell, 2013; Yıldırım, San, 63 

Koyuncu, & Yıldırım, 2010). However, such methodologies are complex, expensive, 64 

require highly trained personnel, long sample preparation times and reagent use, and are 65 

also destructive, which means that these technologies are not always available to all food 66 

industries (Liang, Slaughter, Ortega-Beltran, & Michailides, 2015). Thus simpler, faster 67 

and non-destructive techniques are required and near-infrared (NIR) spectroscopy is a 68 

good alternative. The potential of this technology has been previously demonstrated to 69 

authenticate the geographical origin of pistachio and to recognise samples with a 70 

Protected Designation of Origin (Vitale, Bevilacqua, Bucci, Magrì, Magrì, & Marini, 71 

2013), to inspect internal damages in almonds (Nakariyakul, 2014), and to detect both 72 

fungal infection (Aspergillus flavus and Aspergillus parasiticus) in almond kernels (Liang 73 

et al., 2015) and hidden damage in raw almonds (Rogel-Castillo, Boulton, 74 

Opastpongkarn, Huang, & Mitchell, 2016), among others. Only one published study 75 

about the discrimination of sweet and bitter almonds using both NIR and Raman 76 

spectroscopy was found in the literature (Borrás et al., 2014), and no work is available 77 

about predicting the amygdalin content of both sweet and bitter almonds by rapid and 78 

non-destructive techniques.  79 

The objective of this study was to investigate the feasibility of NIR spectroscopy, 80 

in combination with chemometric methods, to non-destructively predict amygdalin 81 

content in intact almonds (established by HPLC). It should be pointed that amygdalin was 82 

the only cyanogenic glucoside quantified in this work since prunasin was not present in 83 

mature almonds. Moreover, the potential of this technique was also evaluated in the 84 

discrimination of sweet from bitter almonds. 85 

 86 
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2. Materials and methods 87 

 88 

2.1. Chemicals and samples 89 

 90 

The following analytical grade reagents were used: amygdalin (BioXtra, ≥ 97.0% 91 

HPLC, Sigma-Aldrich, St. Louis, Missouri, USA), acetonitrile (ACN, HPLC Far 92 

UV/Gradient Grade, J.T. Baker, The Netherlands), methanol (MeOH, AGR ACS, ISO, 93 

Ph.Eur. Assay ≥ 99.8%, Labkem, Barcelona, Spain) and acetone (VWR Prolabo, 94 

Fontenay – sous – Bois, France). Deionised water was obtained using an Aquinity 95 

deionizer (Membrapure GmbH, Berlin, Germany). 96 

The number of almonds employed in this study were 360 (180 sweet and 180 bitter 97 

almonds), which were kindly provided by Agricoop (Alicante, Spain). Sweet almonds 98 

belonged to six commercial varieties: Planeta (P), Comuna (C), Largueta (L), Rumbeta 99 

(R), Marcona (M) and Guara (G). Bitter almonds (A) were a mix of non-specific varieties. 100 

The analysed almonds were free of visual damage and were of uniform size and colour.  101 

 102 

2.2. Instrumentation and experimental conditions 103 

 104 

2.2.1. NIR spectroscopy 105 

 106 

In situ recording of NIR spectra was directly carried out on the intact almond 107 

kernel (with skin) at room temperature (22±1°C) in a NIR spectrometer from Avantes BV 108 

(The Netherlands), model AVS-DESKTOP-USB2. The NIR spectrometer collected 109 

spectra by covering the 888–1,795 nm range, and data were measured every 3.535 nm in 110 

the diffuse reflectance mode using a detector model AvaSpec-NIR256-1.7 NIRLine. Two 111 
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points were acquired per sample on each almond side, and the mean of both spectra was 112 

employed for the statistical analysis. All the spectra were acquired using a bi-directional 113 

fibre optic reflectance probe, model FCR-7IR200-2-45-ME, whose tip is created at 45º to 114 

avoid back-reflection from almond face. The legs of the probe are formed by six fibre 115 

cables of 200 μm by connecting one leg with the light source (model AvaLight-HAL-S, 116 

formed by a 10-W tungsten halogen) and the other with the spectrometer. The software 117 

to perform the spectroscopic measurements was Avasoft version 7.2. 118 

The external white reference was a 99% diffuse reflectance standard (WS-2, 119 

Avantes BV) which allowed to adjust the integration time to 500 ms for a maximum 120 

reflectance value of around 90% of saturation (Lorente, Escandell-Montero, Cubero, 121 

Gómez-Sanchis, & Blasco, 2015). The dark spectrum was recorded by completely 122 

covering the probe tip and by switching off the light source.  123 

 124 

2.2.2. Amygdalin extraction and HPLC 125 

 126 

In order to proceed with amygdalin extraction, almond skins were removed by 127 

immersion in hot water for 5 min before drying almonds at room temperature. Then, 128 

almonds were crushed in a porcelain mortar. In order to obtain ca. 100% of amygdalin 129 

recovery from the samples, different solvents and extraction times were attempted. The 130 

best results were obtained when the grounded almond was suspended in 20 mL MeOH, 131 

and kept at constant agitation for 24 h using a magnetic stirrer. Finally, the obtained 132 

supernatant was filtered through a 0.22 μm PTFE syringe filter. For sweet almonds, the 133 

filtered solution was injected directly into the chromatograph, while for bitter almonds 134 

this solution was 1:10 (v/v) diluted with MeOH to obtain an amygdalin concentration that 135 

fell within the linear range of the calibration curve. 136 
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Amygdalin determination was performed in a liquid chromatograph from Hitachi 137 

Ltd. (Tokyo, Japan) model LaChrom Elite. The chromatograph was composed of an auto-138 

sampler and a UV detector (models L-220 and L-2400, respectively). Amygdalin 139 

determination was performed using a 5 µm analytical column, model Liquid Purple C18 140 

(250 x 4.6 mm i.d.) from Análisis Vínicos (Tomelloso, Spain). After testing different 141 

chromatographic parameters and mobile phase compositions, the best results were 142 

obtained with an isocratic elution using a mobile phase that contained water and ACN 143 

(80:20 v/v). The other chromatographic conditions were: UV detection, 218 nm; injection 144 

volume, 20 µL; flow rate, 1.0 mL min-1. 145 

 146 

2.3. Spectral pre-treatment 147 

 148 

Prior to spectral pre-treatment, all the spectra were analysed by principal 149 

component analysis (PCA) to identify and eliminate defective spectral outliers, and to 150 

explore the data structure between objects based on Hotelling’s T2 and squared residual 151 

statistics (Beghi, Giovenzana, Tugnolo, & Guidetti, 2017). Then, the diffusive reflectance 152 

data were transformed into absorption spectra by log (1/R) transformation in order to 153 

linearise the correlation with the analyte concentration (Hernández, Lobo, & González, 154 

2006). Moreover, the spectral range was trimmed to a region of 1,000-1,750 nm to reduce 155 

spectral noise. In this work, several spectral pre-treatments were simultaneously applied: 156 

Savitzky-Golay smoothing using a 3-point gap (Carr, Chubar, & Dumas, 2005), extended 157 

multiplicative scatter correction (EMSC) and the second derivate with a 2.3-gap-segment. 158 

When used together, the signal-to-noise ratio improved (Gorry, 1990; Savitzky & Golay, 159 

1964), the parallel translation of spectra was eliminated (He, Li, & Shao, 2006; Martens, 160 

Nielsen, & Engelsen, 2003; Bruun, Søndergaard, & Jacobsen, 2007), and useful 161 
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information was retrieved (Cortés, Ortiz, Aleixos, Blasco, Cubero, & Talens, 2016; 162 

Rodriguez-Saona, Fry, McLaughlin, & Calvey, 2001). The criterion to select among the 163 

different pre-treatments was to obtain the best predictive ability, which is the equivalent 164 

to the highest robustness of the analytical method in the experimental domain (Xiaobo, 165 

Jiewen, Povey, Holmes, & Hanpin, 2010). 166 

 167 

2.4. Chemometric data processing 168 

 169 

Spectral data were organised in a matrix, where rows represented the number of 170 

samples (N = 360, 180 sweet and 180 bitter almonds) and columns denoted variables (X-171 

variables and Y-variables). The X-variables, or predictors, were the spectral signals. The 172 

Y-variables, or responses, were the amygdalin percentages determined per sample by 173 

HPLC or the dummy variable for the classification models. 174 

To develop the prediction and discriminant models, a training set was used that 175 

consisted in randomly selecting 80% of samples. Each model was internally validated by 176 

the leave-one-out cross-validation technique (Huang, Yu, Xu, & Ying, 2008). An 177 

independent evaluation set composed of the remaining 20% of samples was used to 178 

evaluate the constructed models (Soares, Gomes, Galvão Filho, Araújo, & Galvão, 2013). 179 

Both spectral pre-treatment and multivariate analysis were performed with the 180 

statistical software program ‘The Unscrambler X’ (version 10.3, Camo Process SA, 181 

Trondheim, Norway). 182 

 183 

2.4.1. Predicting amygdalin content using PLS 184 

 185 
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 PLS was the selected chemometric technique to predict the amygdalin content of 186 

both sweet and bitter almonds. For PLS, covariance was maximised between the linear 187 

functions of the spectral variations (X-variables) and the corresponding defined value of 188 

amygdalin content (Y-variable). PLS model accuracy was judged according to the values 189 

of: the root mean square error of calibration, cross-validation and prediction (RMSEC, 190 

RMSECV and RMSEP, respectively) and the coefficient of determination for calibration, 191 

cross-validation and prediction (R2
C, R2

CV, R2
P, respectively), and also by the required 192 

number of latent variables (LV).  193 

 194 

2.4.2. Classifying almonds according to their bitterness 195 

 196 

 Classification of almonds in terms of bitterness (sweet and bitter) was performed 197 

by constructing three different discriminant models: LDA, QDA and PLS-DA. These 198 

models are supervised algorithms based on the relationship between spectral intensity and 199 

sample characteristics; in this case using the spectral variations as X-variables and the 200 

two established categories (sweet and bitter) as Y-variables. For PLS-DA, the Y-variable 201 

was a discrete numerical value (zero for sweet and one for bitter almonds), while LDA 202 

and QDA assumed a categorical value created by assigning different letters to sweet and 203 

bitter almonds. Hence, these discriminant analyses sought to correlate the spectral 204 

variations with the defined classes in attempt to maximise the covariance between both 205 

types of variables. 206 

For LDA and QDA, the number of samples in the training set had to be larger than 207 

the number of variables included in the model (Kozak & Scaman, 2008; Sádecká, 208 

Jakubíková, Májek, & Kleinová, 2016). Thus, variable reduction was necessary. This 209 

reduction was achieved using the PCA scores as input data since the linear combinations 210 



10 
 

of the original variables called principal components (PCs) were not correlated 211 

(Rodriguez-Campos, Escalona-Buendía, Orozco-Avila, Lugo-Cervantes, & Jaramillo-212 

Flores, 2011). In this study, the first nine PCs were used to supersede the original data 213 

(He et al., 2006).  214 

The three classification models were then evaluated for sensitivity and specificity, 215 

where sensitivity relates to the probability that the sample possessing the desired 216 

characteristic gives a positive test result, while the latter is the probability that the sample 217 

without the desired characteristic gives a negative test result (Amodio, Ceglie, Chaudhry, 218 

Piazzolla, & Colelli, 2017). This also leads to the development of valuable indices, such 219 

as the non-error rate (NER) or classification rate, which represents the percentage of the 220 

correctly classified samples, and is the average of the sensitivity calculated over the 221 

various classes, as indicated in Eq. (1): 222 

n

Sn
NER

A

a a  1       (1) 223 

where Sn is the sensitivity for each a class and n is the total number of classes.  224 

 225 

3. Results and discussion 226 

 227 

3.1. Optimising amygdalin extraction 228 

 229 

To achieve the best extraction conditions to recover amygdalin from almonds, two 230 

parameters, extraction solvent and time, were optimised. The best conditions were 231 

selected by establishing the recovery percentages, which were estimated by considering 232 

the quantity of amygdalin in the almond and the quantity recovered after applying the 233 

extraction conditions. All the experiments were repeated 3 times.  234 
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To perform the experiment, sweet almonds in which amygdalin content was not 235 

detected were employed. For each test, 2 mg amygdalin standard was added to 1 g of 236 

triturated almond. Initially, three solvents (MeOH, H2O and MeOH:H2O 80:20 (v/v)) 237 

were tested and their extraction efficiency was compared. For this purpose, 20 mL of each 238 

solvent were added to the spiked sample to be continuously stirred for 24 h. Recoveries 239 

ca. 100% were obtained using MeOH, while the other solvents (H2O and MeOH:H2O 240 

80:20 (v/v)) only provided recovery values ca. 15 and 2%, respectively. For this reason, 241 

MeOH will be next used.  242 

After optimizing the extraction solvent, the extraction time was next optimised. 243 

For this purpose, times between 15 min and 32 h were assayed. Recovery values were ca. 244 

100% only after 24 h of extraction. For this reason, this time was selected for further 245 

studies. 246 

 247 

3.2. Optimizing chromatographic conditions 248 

 249 

The optimisation of the chromatographic conditions was performed using the 2mg 250 

g-1 spiked almond sample to achieve a satisfactory resolution between the amygdalin peak 251 

and other matrix peaks that absorb at 218 nm (maximum amygdalin wavelength). Most 252 

manuscripts previously reported in literature (Ferrara et al., 2010; Arrazola et al., 2013; 253 

Yıldırım et al., 2010; Dicenta et al., 2002) employed mixtures of ACN and H2O as the 254 

mobile phase; then mixtures of ACN and H2O at different percentages were tested by 255 

using two types of elution: isocratic and gradient. In all cases, 20 µL of sample were 256 

injected at a 1 mL min-1 flow rate. The best results considering both resolution and 257 

analysis time were provided by isocratic elution with 80% H2O and 20% ACN, which 258 

was selected. 259 
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After selecting the previous conditions, the influence of flow rate on separation 260 

performance was evaluated. Flow rates between 0.5 and 1.5 mL min-1 were tested. Using 261 

a 0.5 mL min-1, peak width and retention time increased when compared with a flow rate 262 

of 1.0 mL min-1. When 1.5 mL min-1 was tested, amygdalin and a matrix peak, which 263 

were resolved using lower flow rates, partially overlapped. Therefore, a 1.0 mL min-1 264 

flow rate was established as the optimal one.  265 

Lastly, different injection volumes were also tested (from 5 to 30 µL). A 20 µL 266 

volume was adopted as the best compromise between peak resolution and sensitivity.  267 

 268 

3.3. HPLC analytical figures of merit and amygdalin determination in almonds 269 

 270 

The different parameters to evaluate the analytical performance of the HPLC 271 

method are shown in Table 1. The method’s precision was evaluated by the repeatability 272 

values obtained within one day and for three days. As observed, the relative standard 273 

deviation (RSD) values for the retention times and peak areas were lower than 0.31 and 274 

1.41, respectively. 275 

Amygdalin quantification was performed by the external calibration curves of the 276 

peak areas. To construct them, six amygdalin standard solutions at different 277 

concentrations between the ranges shown in Table 1 were prepared and injected. The 278 

concentrations employed for the first calibration curve were 0.1, 1, 5, 10, 25 and 50 mg 279 

L-1, while they were 50, 100, 250, 500, 750 and 1000 mg L-1 for the second one. The 280 

calibration curve constructed within the 0.1-50 mg L-1 amygdalin range was employed to 281 

quantify amygdalin in sweet almonds, whereas the other calibration curve (50-1000 mg 282 

L-1) was used to quantify the analyte in bitter almonds after a 1:10 (v/v) sample dilution 283 

with MeOH to obtain an amygdalin concentration that fell within the linear range of the 284 
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second calibration curve. The obtained determination coefficients were higher than 285 

0.9996 (see Table 1). The other parameters included in Table 1 were the limit of detection 286 

(LOD) and limit of quantification (LOQ) of amygdalin. LODs and LOQs were estimated 287 

following the ICH guidelines (1996). As shown in Table 1, the LOD and LOQ values 288 

were 0.02 and 0.07 mg L-1, respectively. These values were lower than others found in 289 

bibliography (Ferrara et al., 2010; Arrazola et al., 2013; Bolarinwa et al., 2014). 290 

Moreover, in order to assure that no matrix effect was observed while quantifying 291 

amygdalin in almonds, standard addition calibration curves (taking into account the 292 

linearity ranges of Table 1) were also constructed. Both curves provided R2 > 0.9995 and 293 

similar slopes as the external calibration curves. Therefore, it was concluded that the 294 

external calibration curves were correctly used to quantify amygdalin in almonds.  295 

The efficiency of amygdalin extraction from almonds was estimated by a recovery 296 

study. To carry out this study, sweet almonds in which amygdalin was not detected were 297 

spiked with different amygdalin contents that ranged from 0.1 to 60 mg per 1g of almond 298 

(see Table 2). All the obtained recovery values were comprised between 98.4% and 299 

102.9%, which demonstrated excellent amygdalin extraction efficiency.  300 

Next, all the almond samples considered in this study (360 almonds) were injected 301 

into the HPLC system. According to the amygdalin content found in these samples, they 302 

were classified into two groups: sweet almonds, whose amygdalin content was under the 303 

LOD or below 350 mg·kg-1, and bitter almonds, whose content ranged from 14,700 and 304 

50,400 mg·kg-1. In sweet almonds, the amygdalin content varied among the different 305 

varieties considered in this study: the lowest content was obtained for the Planeta and 306 

Comuna varieties, in which the amygdalin content of several almonds was below the 307 

LOD. The highest content was found for the Guara variety (350 mg·kg-1). These contents 308 
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were consistent with the amygdalin contents previously reported in the literature (Lee et 309 

al., 2013). 310 

 311 

3.4. Spectral analysis 312 

 313 

Fig. 1 shows the raw spectra (Fig. 1a) and the pre-treated mean spectra (Fig. 1b) 314 

of sweet and bitter almonds, where the presence of signal peaks at wavelengths of 1125, 315 

1195, 1250, 1380, 1440, 1625 and 1730 nm were evidenced. The region at 1,370-1,400 316 

nm corresponded to the first vibrational overtones which is associated with the O-H 317 

stretching modes of water absorption (Clément, Dorais, & Vernon, 2008; Lestander & 318 

Geladi, 2005; Magwaza, Opara, Nieuwoudt, Cronje, Saeys, & Nicolaï, 2012). It is known 319 

that sugars display bands in the wavelength regions of 1,100-1,600 nm and 1,700-2,300 320 

nm (Tewari, & Irudayaraj, 2004); hence, the signal peaks observed within these regions 321 

could correspond to the second and first overtones of the C-H stretching associated with 322 

sugars (Osborne, Fearn, & Hindle, 1993; Golic, & Walsh, 2006; Walsh, Golic, & 323 

Greensill, 2004). 324 

 325 

3.5. Predicting amygdalin content using PLS 326 

 327 

In order to predict the amygdalin content of the almond samples, a PLS model 328 

was constructed. For the calibration samples, the lowest RMSEC value was 0.28 when 329 

seven LV were included in the calibration model, with a R2
C of 0.967. When the model 330 

was validated using the leave-one-out cross-validation technique, the obtained RMSECV 331 

was 0.337, with a R2
CV of 0.954. Finally, when PLS model performance was evaluated 332 

by evaluation set samples, the RMSEP was 0.373 with a R2
P of 0.939. The good prediction 333 



15 
 

performance obtained for the evaluation set samples is shown in Fig. 2. Thus, the obtained 334 

results demonstrated that the calibration model optimised by the leave-one-out cross-335 

validation was representative, and that the model could accurately predict amygdalin 336 

content in different almond lots with unknown content.  337 

 338 

3.6. Classifying almonds according to their bitterness using LDA, QDA and PLS-DA 339 

 340 

The possibility of classifying sweet and bitter almonds was evaluated by 341 

constructing and comparing three discrimination methods: LDA, QDA and PLS-DA. As 342 

previously mentioned, a PCA model was first constructed for LDA and QDA to reduce 343 

the variables. The first nine PCs explained 95% of the spectral data. Thus, these PCs were 344 

used for LDA and QDA model construction purposes. When the three models were 345 

constructed, all the training set samples were correctly classified. The results obtained for 346 

the evaluation set samples for all the models are shown in Table 3. As observed in the 347 

confusion table, only two samples of each category were not correctly assigned for LDA 348 

and QDA, while all the samples were correctly classified for PLS-DA. The same result is 349 

observed in Fig. 3. Moreover, the corresponding sensitivity and specificity values for each 350 

model are also included in Table 3. The best results were obtained with the PLS-DA 351 

model (sensitivity, specificity and NER of 100%), although the results of the LDA and 352 

QDA models were also satisfactory (sensitivity, specificity and NER of 94.4%). Thus, it 353 

can be concluded that all the discriminant models led to a satisfactory almond 354 

classification according to their bitterness.  355 

 356 

4. Conclusions 357 

 358 
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In this work, the potential of NIR spectroscopy to predict amygdalin content in 359 

intact almonds and to classify almonds according to their bitterness was demonstrated. 360 

After optimising different experimental parameters and chromatographic conditions, the 361 

amygdalin content of 360 almonds was established by HPLC. The amygdalin content of 362 

the sweet almonds of different commercial varieties was not detected or below 350 363 

mg·kg-1, whereas amygdalin content ranged between 14,700 and 50,400 mg kg-1 for bitter 364 

almonds. Using PLS, the amygdalin content of these samples was satisfactorily predicted 365 

with R2
P and with RMSEP of 0.939 and 0.373, respectively. Moreover, both sweet and 366 

bitter almonds were correctly classified into these categories by the construction of the 367 

LDA, QDA and PLS-DA discriminant models, where the best results were obtained for 368 

the PLS-DA model. Thus, it can be concluded that the NIR spectroscopy technique is a 369 

very promising non-destructive alternative to discriminate between sweet and bitter 370 

almonds, which could be implemented into industry as an automatic in-line classification 371 

system to ensure satisfactory almond quality control. 372 
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Figure captions 500 

 501 

Fig. 1. Spectra of almonds obtained from (a) raw data and (b) pre-treated data. 502 

 503 

Fig. 2. Measured versus predicted amygdalin content by PLS in the prediction set. 504 

 505 

Fig. 3. Discrimination plots of the (a) LDA, (b) QDA and (c) PLS-DA models constructed 506 

to classify the evaluation set almonds according to their bitterness.  507 


