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Abstract

Achieving optimal detection performance with low complexity is one of the

major challenges, mainly in multiple-input multiple-output (MIMO) detection.

This paper presents three low-complexity Soft-Output MIMO detection algo-

rithms that are based mainly on Box Optimization (BO) techniques. The pro-

posed methods provide good performance with low computational cost using

continuous constrained optimization techniques. The first proposed algorithm

is a non-optimal Soft-Output detector of reduced complexity. This algorithm

has been compared with the Soft-Output Fixed Complexity (SFSD) algorithm,

obtaining lower complexity and similar performance. The two remaining al-

gorithms are employed in a turbo receiver, achieving the max-log Maximum a

Posteriori (MAP) performance. The two Soft-Input Soft-Output (SISO) algo-

rithms were proposed in a previous work for soft-output MIMO detection. This

work presents its extension for iterative decoding. The SISO algorithms pre-

sented are developed and compared with the SISO Single Tree Search algorithm

(STS), in terms of efficiency and computational cost. The results show that the

proposed algorithms are more efficient for high order constellation than the STS
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1. Introduction

Soft-Output (SO) detection implies significant challenges for practical re-

ceiver implementations, particularly in the context of multiple-input multiple-

output (MIMO) wireless communication systems. SO detection achieves signif-

icantly better performance than Hard-Output (HO) detection and is needed to

reach optimum performance of the modern coding systems [1]. On the other

hand, an iterative receiver that employs Soft-Input Soft-Ouptut (SISO) detec-

tion improves the performance of a Non-Iterative Soft-Output (NISO) detection

[1], since the near-optimal performance of turbo receivers is achieved by exchang-

ing soft extrinsic information between a SISO detector and a SISO decoder in

an iterative loop.

Throughout the paper we are going to use the following notation: SISO will

denote a detector in an iterative receiver (the detector takes the received signal

and the soft information provided by the channel decoder as inputs); NISO will

denote a non iterative detection (the detector takes the received signal as input

but does not process any information provided by the channel decoder, so no

iteration is performed between the detector and the decoder); and SO is used

to denote both cases. The problems that arise from these technologies (NISO

and SISO) for MIMO detection are computationally very complex, furthermore

the complexity exponentially increases when antenna number increases. Thus,

it is necessary to develop efficient algorithms in both cases if these techniques

are to be used in practical applications. Furthermore several strategies such us

the max-log approximation [2] (log
∑
i exp(φi) ≈ maxφi) can be employed to

reduce the complexity of the exact computation.

There are several SO algorithms for MIMO systems [3]-[8], and they offer

different tradeoffs between performance and complexity. The Repeated Tree

Search (RTS) and the Single Tree Search (STS) algorithms provide the max-
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log SO solution. Both algorithms use an HO Sphere Decoder (SD) to compute

the extrinsic information and have been thoroughly discussed for the NISO

case in [8] and for the SISO case in [9], including the application of a clipping

boundary to both algorithms. The STS algorithm reduces the computational

cost of the solution with respect to the RTS algorithm. Moreover, there are

several non-optimal max-log NISO detection algorithms such us Soft-Output

Fixed-complexity SD (SFSD) [10], the Smart Ordering and Candidate Adding

(SOCA) [11] or Soft-Output K-Best [12]. Among these methods, SFSD reaches

almost max-log Maximum Likelihood (ML) performance with low complexity.

The work described in this paper focuses on low-cost SO MIMO detection

algorithms. We propose three methods: one for NISO case called Box Optimiza-

cion Hard Detector with soft-output (BOHD-SO), which exhibits a non-optimal

max-log ML performance; and two SISO methods, SISO Box Optimization Re-

peated Tree Search (SISO-BORTS) and SISO Double Tree Search (SISO-DTS),

with max-log Maximum a Posteriori (MAP) performance based on a previous

work reported in [13]. These algorithms reduce the complexity based on the use

of continuous constrained optimization methods where the bounds are fixed,

hence the name of Box Optimization (BO). As the target of this work, this

auxiliary technique is used to implement different low-complexity SO detection

algorithms.

The work described in [13] has as its main goal the improvement in efficiency

of NISO max-log detection algorithms, where the iteration at the receiver was

not considered. In the present paper we meaningfully extend the work presented

in [13] to the Soft-Input case. Thereby in the present work the a priori infor-

mation is incorporated by extending BORTS and DTS presented in [13] to the

SISO detection.

Furthermore, a new method called BOHD-SO has been proposed. This

algorithm is based on the BO algorithm and the HO ML detector described in

[14]. Therefore, the BOHD-SO algorithm has been proposed and evaluated for

NISO detection. Since it is a suboptimal algorithm, it will be compared with

the SFSD algorithm in terms of efficiency and accuracy. It has been proved that
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the use of the BOHD-SO algorithm in a turbo receiver does not improve the

performance detection, for this reason it is only presented for the NISO case.

Table 1 summarizes the main features of the proposed and referenced algo-

rithms.

Algorithm SO SISO No clipping Clipping Performance Ref

BOHD No No Yes No max-log ML [14]

SFSD Yes No Yes No almost max-log ML [10]

BOHD-SO Yes No Yes No almost max-log ML this work

RTS Yes Yes Yes Yes max-log MAP [15]

STS Yes Yes Yes Yes max-log MAP [8][9]

BORTS Yes No Yes Yes max-log ML [13]

DTS Yes No No Yes max-log ML [13]

SISO-BORTS Yes Yes Yes Yes max-log MAP this work

SISO-DTS Yes Yes No Yes max-log MAP this work

Table 1: The main features of the algorithms.

2. Model Description

Let us consider a MIMO Bit-Interleaved Coded-Modulation (BICM)[16] sys-

tem with nT transmit antennas and nR receive antennas (nR ≥ nT ), as shown

Figure 1. In this system, the sequence of information bits is encoded using an

error-correcting code and is passed through a bitwise interleaver before being

demultiplexed into nT streams. The bits are mapped into a complex symbol

si, which is taken from a constellation Ω of size |Ω| = M and hence carrying

k = log2M code bits each, si ↔ (xi,1, · · · , xi,k) with xi,b ∈ {0, 1}. Thus, the

mapper translates nT k bits to one transmit symbol vector s. In the following,

the index i ∈ {1, · · ·nT } refers to the antenna index and the index b ∈ {1, · · · , k}

refers to the bit index within symbol si. The transmit symbol vector is given

by s = (s1, · · · , snT
)T and the complex baseband model can be written as

y = Hs + v. (1)
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Figure 1: Block diagram of a MIMO-BICM system with nT transmitting antennas and nR

receiving antennas.
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Figure 2: Block diagram of an ID-BICM receiver.

Here, H ∈ CnR×nT is the MIMO channel matrix, which is composed of

independent elements hij ∼ N (0, 1), and v denotes an additive white Gaussian

noise (AWGN) complex vector with elements vj ∼ N (0, σ2
n) where σ2

n represents

the noise variance per complex dimension.

A BICM with Iterative Decoding (ID-BICM) can be used on the receiver

side. Figure 2 shows the block diagram of an ID-BICM receiver. In this case, a

SISO detector is needed. On the other hand, when iterations are not performed,

the detector used is a NISO detector, see Figure 1.

First of all, let us to review the formulation of a SISO detection in an ID-

BICM receiver since it is the general case. Afterwards, the NISO detection will

be presented as a specific case of SISO detection. Extrinsic soft information

in the form of log-likelihood ratios (LLRs) and denoted by LE is exchanged

between the detector and the decoder in the ID-BICM scheme, as shown in

Figure 2. Each LEi,b value in the LE matrix represents the extrinsic soft infor-

mation that is associated with the xi,b bit. These extrinsic LLRs can be easily
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computed using the intrinsic information (LI) calculated by the detector for

each of the encoded bits xi,b and the a priori information (LA) provided by the

decoder:

LE = LI − LA. (2)

Thus, LE ,LI , and LA are matrices of nT × k size where each (i, b) entry repre-

sents the corresponding soft information associated with the xi,b bit.

Based on (1) and using the Bayes’ theorem and the max-log approximation

[1], the intrinsic max-log LLR values can be calculated as:

LIi,b =
1

σ2
n

[
min
sεχ0

i,b

{Λ(s)} − min
sεχ1

i,b

{Λ(s)}

]
, (3)

where χui,b denotes the set of possible transmitted vectors for which b bit in si

is equal to u. The Λ(s) metric is derived from

Λ(s)′ = ‖y −Hs‖2 − logP [s], (4)

where the term − logP [s] uses the a priori soft reliability information matrix

(LA) provided by the decoder (see Figure 2) and can be computed as:

logP [s] = K −
nT∑
i=1

k∑
b=1

1

2

(
xi,bL

A
i,b

)
, (5)

where K is a constant term independent of the binary-valued variables xi,b.

Further details about the reliability information provided by the detector can

be found in [1].

Let us use the QR decomposition of the channel matrix, H = Q

R

0

, where

the matrix Q = [Q0 Q1] is unitary and R is upper-triangular. In (4), the

metric can be computed as

Λ(s)′ = ‖z−Rs‖2 + ‖z0‖2 − logP [s], (6)

where z̃ = QHy =

 z

z0

. The term ‖z0‖2 cancels out in the LLR calculation.

Therefore, the metric in (4) will be computed as

Λ(s) = ‖z−Rs‖2 − logP [s], (7)
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Since Q is a unitary matrix, y and z̃ have the same Euclidean norm. There-

fore, due to the upper triangular shape of R, (7) will be computed as:

Λ(s) =

nT∑
i=1


∣∣∣∣∣∣zi −

nT∑
j=i

Ri,jsj

∣∣∣∣∣∣
2

− logP [si]

 , (8)

with − logP [s] =
∑nT

i=1− logP [si]. Expression (8) can be iteratively calculated

and depicted by a tree structure, computing a partial distance at each level i.

The partial distances are evaluated as

Λi = Λi+1 + ei, i = nT , nT − 1, · · · , 1 (9)

with

ei =
1

σ2
n

∣∣∣∣∣∣zi −
nT∑
j=i

Ri,jsj

∣∣∣∣∣∣
2

− logP [si]. (10)

Note that the − logP [si] term in (10) can provide negative increments in (9).

This situation leads to an unfavorable tree search. In order to avoid this effect,

the − logP [si] is redefined as [9]

− logP [si] ≈
k∑
b=1

1

2

(
|LAi,b| − xi,bLAi,b

)
. (11)

Therefore the term − logP [s] in (5) is set to:

− logP [s] ≈
nT∑
i=1

k∑
b=1

1

2

(
|LAi,b| − xi,bLAi,b

)
. (12)

It is important to note that using the modified − logP [si] in (10) does not lead

to an approximation of (3) [9].

One of the two minima in (3) is the metric (dMAP ) given by the maximum

a posteriori (MAP) transmitted symbol vector, sMAP :

sMAP = arg min
s∈ΩnT

{
‖z−Rs‖2 − logP [s]

}
(13)

dMAP = ‖z−RsMAP‖2 − logP [sMAP]. (14)
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The other minimum in (3) has to be calculated for every coded bit. This

minimum is called a counter-hypothesis metric (d̄i,b), which is given by the

minimum metric associated to

s ∈ X
(xMAP

i,b )

i,b (15)

where xMAP
i,b denotes the complement of bit xi,b in sMAP. This counter-hypothesis

metric can be computed as

di,b = min

s∈χ(sMAP
i,b )

j,b

(
‖y −Hs‖2

σ2
n

− logP [s]

)
. (16)

Finally the max-log MAP intrinsic LLRs are calculated through a tree search

as

LIi,b =
1

σ2
n

(
dMAP − di,b

) (
1− 2xMAP

i,b

)
, (17)

where the term at the end adjust the sign depending on whether dMAP corre-

sponds to the first or the second minimum in (3).

Instead of computing the intrinsic information first as in (17) and then

evaluating expression (2), the extrinsic information can be obtained through a

tree search by a small change. The counter-hypothesis distance can be replaced

by extrinsic metrics, which are computed as:

δi,b = di,b +
(
1− 2xMAP

i,b

)
LAi,b. (18)

Then the max-log MAP extrinsic LLRs in a SISO detector can be computed

using (17), just by replacing di,b with δi,b:

LEi,b =
1

σ2
n

(
dMAP − δi,b

) (
1− 2xMAP

i,b

)
. (19)

For NISO detection the a priori information LA is zero. In this case, there

is no difference between extrinsic and intrinsic information, so the intrinsic

information computed by (17) directly is fed back to the decoder. To compute

(17) for NISO detection, the previous formulation can be used omitting the term

− logP [s] in (8),(10),(13), and (14). This way, instead of the MAP solution, the
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maximum likelihood solution (ML) (sML and dML) is obtained (using (13) and

(14) without the term − logP [s]):

sML = arg min
s∈ΩnT

{
‖z−Rs‖2

}
, (20)

dML = ‖z−RsML‖2. (21)

Therefore, to compute the max-log LLRs it is necessary to calculate a de-

tection hypothesis (MAP solution for SISO and ML for NISO) and all of the

counter-hypothesis metrics as this section describes. This involves a high com-

putational cost. Some strategies like the clipping method or non-optimal algo-

rithms can be used to reduce the computational cost, which leads to a reduction

in performance.

The clipping method can be easily applied to reduce complexity [17]. Given

a clipping parameter Lclip which ensures that |LEi,b| ≤ Lclip, it is assumed that

any δi,b larger than dMAP +Lclip can be set to the value dMAP +Lclip and does

not need to be computed exactly, thereby reducing the search of our detector

and thus the complexity. However, the performance is degraded. This method is

widely used in MIMO detection and it is important to note that the LLR values

obtained by the max-log MAP SISO algorithms, which use the same clipping

value Lclip, will be exactly the same.

3. Box optimization algorithm

The goal of this work is to use continuous constrained optimization tech-

niques to implement different SO low-complexity algorithms. The BO method

can be used to drastically reduce the computation required by MIMO signal de-

tection algorithms in different ways. By solving the continuous unconstrained

least squares problem

ŝ = arg min
s∈CnT

‖z−Rs‖2, (22)

by ŝ =
(
RHR

)−1
RHz and rounding ŝ to the nearest element of the constella-

tion Ω, we obtain the known Zero-Forcing (ZF) estimator (̂sq). If one or more
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components of the ŝ vector are outside of the interval [min(ΩR),max(ΩR)] (it

is assumed that Ω can be represented as ΩR × ΩR), it can be said that ŝ is out

of the constellation. It was reported in [13] that, in this case, by solving an

auxiliary problem described as continuous constrained optimization, a better

approximation to the ML solution than ŝq is given.

Consequently, the BO method is applied when ŝ is out of the constellation,

solving the following auxiliary problem:

sb = arg min
sεCnT

‖z−Rs‖2

min(<(Ω)) ≤ <(si) ≤ max(<(Ω)), 1 ≤ i ≤ nT
min(=(Ω)) ≤ =(si) ≤ max(=(Ω)), 1 ≤ i ≤ nT

(23)

where si, 1 ≤ i ≤ nT , are the components of the s vector in (1). Once (23) is

solved, all of the components of sb are then rounded to the nearest element of the

constellation Ω, obtaining sbq. The solution search is bounded by a zone in the

form of a box in (23), hence the name of Box Optimization. The BO algorithm

that is used in this work to solve (23) is described in [14]. This BO algorithm is

an adapted version of the algorithm proposed in [18] using specific features of the

problem and thus notably reducing its computational cost. The BO algorithm

described in [14] is applied during the sphere decoder search, to decide whether

a partial solution should be (or not) further explored. This can happen in any

level of the tree, and the cost of the application of the BO algorithm depends

partly on the level of the tree being explored. Furthermore, the cost of the

application of the BO algorithm depends on the number of inner iterations of

the BO algorithm. This number is usually 1 (as was shown experimentally in

[14]), but not always, and cannot be predicted in advance . Considering all

these details, it is not possible to give a meaningful bound on the theoretical

complexity of the BO algorithm

All of the SO detection algorithms proposed in this paper use the BO tech-

nique. The general method to apply the BO method to the SO detection is

represented in Algorithm 1.

10



Algorithm 1 General method for application of the BO algorithm in MIMO

detection.
Input: z, R, Ω, ŝ

Output: sbq

1: if ŝ is in of ΩnT box then

2: ŝ is rounded to the nearest element of Ω obtaining sbq

3: else

4: BO is applied to obtain sb as in (23)

5: sb is rounded to the nearest element of Ω obtaining sbq

6: end if

Paper [13] claims that ŝ will be mainly out of the constellation in low SNR

scenarios. However, the probability that ŝ was out or in was not provided in [13].

Furthermore, it can be observed that the results show improvements for all the

signal-to-noise ratio (SNR) values, not only for low SNR since they also depends

on the channel matrix condition number. For this reason, the probability that

ŝ was out, Pout, has been analyzed. A mathematical derivation of Pout can

be found in Appendix A. Pout has also been evaluated for different numbers of

antennas, constellation orders, and SNR values. The results show that, for all

the evaluated parameters, Pout is really high (greater than 70%).

3.1. Box Optimization with SD detection

The continuous constrained optimization technique has been used to help the

SD detection algorithms reduce the computational complexity. One possibility

proposed in [19] is the use of sbq, given by Algorithm 1, to select the initial SD

radius instead of the ZF estimator (̂sq). The distance given by sbq is usually

closer to the dML distance than the one given by ŝq since the BO method will

be applied with high probability. Thus, the number of expanding nodes and

the complexity are reduced. Alternatively, a tighter radius estimation before

the expansion of each node can be obtained. As explained in [20], the pruning
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condition before the expansion of each node can be set to:

Λ̃i+1 ≤
(
r2 − c

)
, (24)

where Λ̃i+1 refers to Λi+1 in (9) without a priori information. Paper [20] dis-

cussed several methods to compute the lower bound c, one of which is the use

of a BO technique. However, the methods evaluated in [20] require high com-

putational resources. On the other hand, [14] uses a BO method that includes a

number of improvements and reduces the complexity. Consequently, an optimal

Box Optimization Hard Detector (BOHD) was presented in [14]. The BOHD

algorithm is much faster than standard ML SD detectors, especially for high

order constellations or large numbers of antennas.

4. BO-based Soft MIMO detectors

In this section we investigate several possibilities for the MIMO detection

problem. Particularly, in subsection 4.1 we present a new NISO detector called

BOHD-SO algorithm. The proposed algorithm uses the BOHD hard output

detector and the BO estimator to compute the LLR values, achieving a low

complexity detector. Since the proposed BOHD-SO algorithm is suboptimal, it

will be compared with the SFSD algorithm in terms of efficiency and accuracy.

On the other hand two SISO MIMO detectors are presented in subsections 4.2

and 4.3. These algorithmes are an extension of the algorithms proposed in

[13]. In [13] the SISO RTS and STS algorithms was improved using the box

optimization (BO) techniques, giving place to the BORTS and DTS algorithms.

The BORTS and DTS algorithms was proposed in [13] for the NISO case. In

these subsections, we extend these algorithms for the SISO detection. In this

way the necessary modifications to incorporate the a priori information in the

SISO-BORTS and SISO-DTS algorithms are presented in this subsection.

4.1. NISO BOHD-SO

The proposed algorithm is based on a repeated strategy to compute the

counter-hypothesis distances. First, a tree search is run once, using the BOHD

12



Algorithm 2 BOHD-SO algorithm

Input: z, R,Ω

Output: LI

1: sML and dML computed by BOHD

2: ŝ =
(
RHR

)−1
RHz

3: if ŝ is in of ΩnT box then

4: sbo = ŝ

5: else

6: BO is applied to obtain sb as in (23)

7: sbo = sb

8: end if

9: for i = 1 to nT do

10: for b = 1 to k do

11: sbo is rounded to the nearest element of Ω̃i,b obtaining d̄i,b

12: LIi,b is computed using (17)

13: end for

14: end for

algorithm proposed in [14]. Thus, the ML solution is computed in an efficient

way. Once sML and dML have been calculated, the counter-hypothesis distances

are obtained using a modified version of Algorithm 1. Algorithm 2 shows how

BOHD-SO works.

From lines 3 to 8 of Algorithm 2, the general method presented in Algo-

rithm 1 is applied but performing a slight variation. The output is not rounded

to the nearest element of Ω because the rounding operation will be different for

each counter-hypothesis metric. From lines 3 to 8 of Algorithm 2, the sbo vector

is computed. This vector has already been calculated by the BOHD algorithm

in the preprocessing stage (see Algorithm 1 in [14]). Thus, the calculation of

sbo can be omitted in Algorithm 2, reducing the computational cost.

The rounding operation is done in line 11, where Ω̃i,b is the “restricted”

Ω. By Ω̃i,b, we mean that the considered constellation points are those that
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have the corresponding bit complemented. To compute the counter-hypothesis

distance associated with the LEi,b value when the (i, b) bit of the sML solution is

equal to one, we only consider the constellation points with the (i, b) bit equal

to zero. Therefore, we obtain all the counter-hypothesis distances, repeating

this strategy for each bit.

The BO method could be executed for each counter-hypothesis metric by

applying the original Algorithm 1 for each distance and considering Ω̃ instead

of Ω as the input argument. However, this means that the BO method has

to be applied for each counter-hypothesis metric, increasing the computational

cost. In this way, Algorithm 2 executes the BO method only once, reducing the

complexity.

It was also verified by simulation that the performance in terms of BER of

this algorithm is far from the max-log ML performance due to the simple way

in which the counter-hypothesis distances are obtained. Lattice reduction (LR)

techniques is commonly applied to improve the performance of low-complexity

detectors for MIMO systems without increasing the complexity dramatically

[21][22][23]. In the proposed algorithm, when LR is aided to the proposed

algorithm as in [22], the performance results are very close to the max-log per-

formance, as shown in the Results section. To implement the LR algorithm the

Lenstra, Lenstra and Lovsz (LLL) algorithm [24] have been considered due to

it offers a good trade-off between performance and complexity.

4.2. SISO-BORTS

The RTS algorithm described in [15] starts by solving (13) through a MAP

SD algorithm. The Schnorr-Euchner sphere decoder (SESD) [25] is usually

selected for this purpose. Once sMAP and dMAP have been computed, the

counter-hypothesis distances are obtained by running the SESD again for each

bit, as described in [15]. Therefore, the SESD has to be executed nT · k + 1

times. Clearly the main disadvantage of this strategy is the increased complex-

ity, especially for low SNR.

The large reduction in time and in visited nodes shown in [14] for the BOHD
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hard detector makes it a perfect candidate to replace the standard SESD de-

tector in the RTS algorithm. In [13], this idea was proposed and evaluated for

NISO, showing a large reduction in complexity for the new RTS algorithm. In

this work, we propose and evaluate the extension to the Sof-Input case given a

SISO-BORTS algorithm. For this purpose, the original BOHD algorithm pro-

posed in [14] has to be slightly modified. The original algorithm computes the

ML solution, regardless of the prior information provided by the decoder. The

a priori information has to be incorporated to compute (9) in each evaluated

node. Besides, it is important to note that the pruning criteria evaluated in

(24) has to be computed as:

Λ̃i+1 ≤ r2 − c−
i∑

j=1

min {− logP [sj ]} . (25)

Thus, the tightening of the tree-pruning criteria using (25) reduces the number

of visited nodes compared to (24). The SISO-BORTS algorithm described above

has been implemented for the cases with and without clipping. Furthermore,

the resulting algorithm would be trivially parallelizable (like the original RTS).

In [17], it is explained how the clipping technique is easily included in the

RTS strategy, leading to a reduction in search complexity. Since the MAP solu-

tion is computed previously, when the SESD reruns to compute each extrinsic

metric, the initial maximum radius will be upper bounded by dMAP + Lclip.

This strategy considerably reduces the number of nodes explored and the com-

putation cost.

For the proposed algorithm, when clipping is applied and the BOHD al-

gorithm is used again to compute the counter-hypothesis, we can use the sb

estimated vector by box optimization to bound the distance. We know that any

possible transmitted vector will give us a greater Euclidean distance than the

distance given by sb. Therefore, if we satisfy the following equation(
‖z−Rsb‖2 + min

s∈ΩnT
{− logP [s]}

)
>
(
dMAP + Lclip +

(
1− 2xMAP

i,b

)
LAi,b

)
(26)

we can set the δi,b value that we are computing to dMAP + Lclip and avoid the
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tree search, thereby reducing the complexity. It is important to remember that

the indices (i, b) refer to the b bit in the i antenna. Any possible transmitted

vector will give us a δi,b distance larger than dMAP + Lclip.

4.3. SISO-DTS

The STS algorithm was proven to be more efficient than the RTS algorithm

in [9], The STS algorithm has the standard SESD structure and it transverses

the tree only once, calculating all the necessary metrics to compute (19) with

only one execution. In order to detect all of these metrics simultaneously, the

radius must be larger (at least as large as max(δi,b)) and calculated again before

computing any node or leaf. The STS algorithm without clipping cannot be

easily combined with BO techniques, since the STS radius must be larger and

the BO obtains an extremely tight bounds of the radius.

When clipping is used the situation is different as explained in [13]. The work

in [9] describes how LLR clipping can be incorporated into the STS algorithm by

modifying the list administration when the current MAP hypothesis changes. If

clipping is applied to the STS algorithm, all of the nodes with a partial distance

contained in the interval [dMAP , dMAP +Lclip] are visited. The minimum num-

ber of nodes to be visited should be the number of nodes with a partial distance

within this interval. However, the STS algorithm proceeds like the SESD detec-

tor; it starts with the initial distance as +∞ and updates it whenever STS finds

a feasible leaf. These first leaves may have a partial distance that is larger than

dMAP . As long as STS does not find the MAP solution, the algorithm expands

nodes with partial distances that are larger than dMAP + Lclip. This means

that some (possibly many) extra nodes with a partial distance greater than

dMAP + Lclip may have to be expanded. Taking advantage of the availability

of the fast BOHD algorithm (which has been extended in a previous section to

the Soft-Input case) to reduce the number of nodes, we can first compute sMAP

and dMAP . Since the sMAP has already been computed, the maximum value

for the δi,b can be set to dMAP+Lclip, decreasing the number of visited nodes.

As we stated in the explanation of the STS algorithm, the radius is calculated
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again before computing of any node or leaf. It must be noted that the radius

recalculation is a process that is quite expensive. In terms of computing time

it is beneficial to avoid this recalculation; however, if no recalculation is made,

the number of visited nodes can be too large. Taking advantage of the BOHD

algorithm by computing the sMAP solution in a previous step, we can use the

following as a pruning condition. Given a partial distance dp, if dp is greater

than dMAP + Lclip, this node is pruned; otherwise, the node is expanded. The

outcome of this new modification (which is an extension of the DTS algorithm

proposed previously in [13] for NISO) should be that the number of visited

nodes increases and the average time complexity decreases (compared with the

original STS algorithm) because most of radius recalculations are avoided.

5. Results

Numerical simulations have been performed in order to evaluate the pro-

posals. The numerical results have been computed by Monte Carlo simulations

with high enough channel realizations to provide statistically reliable results.

To this end a number of minimum simulated frames has been defined. A BICM

scheme with random interleaved has been considered. In the simulations each

channel realization remained constant during a block of 16 transmitted vectors.

A convolutional encoder of codeword size 2304 and rate 1/2 was used. The gen-

erator polynomials [133o, 171o], constraint length 7 and max-log BCJR channel

decoder were chosen. The number of iterations in the iterative receiver was set

to 4.

First, we present the results obtained through simulation for NISO detection.

The SFSD algorithm was chosen for comparison because, it almost achieves the

max-log ML performance with low complexity since it is a suboptimal algorithm.

The performances of the algorithms were compared in terms of Bit Error Rate

(BER) and computational cost (floating point operations (flops)). A 4 × 4

complex MIMO scenario with 16 and 64 QAM constellations was also chosen.

Figure (3a) shows the BER performance for the proposed BOHD-SO algo-
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Figure 3: BER and number of flops for the BOHD-SO and SFSD algorithms in a 4 × 4

MIMO system with a 16-QAM constellation (continuous lines) and a 64-QAM constellation

(discontinuous lines).

rithm, the SFSD algorithm, and the max-log cases. The curves show how the

BOHD-SO and SFSD algorithms almost achieve max-log performance for both

constellation sizes, with BOHD-SO being slightly better than SFSD (especially

for 64-QAM constellations). The performance of the BOHD-SO detector in a

system with higher code rate has been also analyzed achieving also near max-log

performance.

The computational cost in terms of flops is represented in Figure (3b), com-

paring the efficiency of BOHD-SO and SFSD. The curves show how BOHD-SO

needs less flops than SFSD, achieving better accuracy in terms of BER. The

max-log performance can also be achieved by the STS or SISO-DTS algorithms,

but increasing the cost of the BOHD-SO algorithm.

As mentioned in the introduction section, the performance of two max-log

MAP algorithms without clipping is equal. A similar situation occurs when

clipping is applied using the same clipping value. This has been verified by the

measurement of the BER performance, which is illustrated by Figure 4. This

figure represents the BER performance from the first iteration (the detector and

decoder have been run once) to the fourth iteration (the detector and decoder

have been run four times). The results for STS, SISO-BORTS, and SISO-DTS
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Figure 4: Max-log BER performance for a 4×4 MIMO system with a 16-QAM and Lclip = 0.1

are exactly the same for the three algorithms, as was expected.

The complexity results obtained for the extensions to the Soft-Input case of

the DTS and BORTS algorithms are presented in Figures 5, 6, and 7. The com-

putational complexity of the SISO algorithms is evaluated by the average num-

ber of visited nodes, flops, computing times, and number of comparisons. For

each SNR, the average of 10000 realizations for each parameter were recorded.

For this type of algorithms, the number of visited nodes is chosen as the main

metric because it is independent of the computing platform. However, we also

record the computing times because we have large variations in the cost of the

expansion of a single node. The number of flops is another metric that is often

used; however, in this case, it can be somewhat misleading. The reason is that

these algorithms perform a large number of comparisons, which in some cases

is larger than the number of flops. For this reason, we also record the number

of comparisons.

Figure (5) summarizes the numerical results in the case without clipping.

The results show that STS is faster for 16−QAM modulation. Furthemore, STS

requires less flops than SISO-BORTS. However, the number of expanded nodes

is similar for both algorithms and the number of comparisons is reduced by the
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Figure 5: Average computation cost parameters for the SISO STS and SISO-BORTS algo-

rithms for a 4× 4 MIMO system, 16-QAM and 64-QAM without clipping and 4 iterations at

the iterative receiver.

SISO-BORTS algorithm. The results for the 64−QAM constellations are really

different. The SISO-BORTS algorithm outperforms the STS algorithm in all

evaluated parameter values. The percentage cost reduction of the compuational

cost between SISO-BORTS and STS for each evaluated parameter has been

represented in Table 2, for a 4×4 MIMO system using a 64−QAM constellation

without clipping. A higher percentage indicates a lower computational cost of

the SISO-BORTS algorithm with regard to the STS algorithm. Table 2 shows

the great advantage of using SISO-BORTS instead of the STS algorithm without

clipping when 64-QAM constellation is employed.

Figures (6) and (7) represent the results obtained for the STS, SISO-BORTS,
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Without clipping

SNR(dB) 5 7 9 11 13 15 17

Time 88.12% 74.87% 80.99% 73.29% 84.41% 81.95% 87.80%

Flops 89.75% 78.14% 83.64% 76.30% 85.46% 82.04% 90.26%

Nodes 81.44% 59.88% 75.56% 64.08% 78.66% 74.02% 84.43%

Comparisons 98.88% 97.59% 98.34% 97.75% 98.61% 98.2402% 99.03%

Table 2: Percentage reduction of the computational performance parameters between SISO-

BORTS and STS for a 4× 4 MIMO system and a 64−QAM constellation without clipping.

A higher percentage reduction indicates a lower computational cost of the SISO-BORTS al-

gorithm with regard to the STS algorithm.

and SISO-DTS algorithms applying the clipping method. The experiments were

done using two different clipping parameter values (0.1 and 0.4). In the 16 −

QAM case, STS and SISO-DTS exhibit a better performance when compared

with SISO-BORTS. If we compare the two best algorithms for this case, it can

be observed that SISO-DTS is faster than RTS for both clipping values and

all of the evaluated parameters. When the modulation order and the clipping

parameter increase, the SISO-BORTS algorithm becomes comparatively more

efficient than the STS algorithm.

One phenomenon that requires attention is that SISO-DTS is substantially

faster than STS in terms of computing times and flops; however, SISO-DTS

expands an equal number or more nodes than STS. Clearly the computing time

per node of SISO-DTS is smaller than STS due to the large number of radius

recalculations, which has been avoided in STS. This statement is clearly reflected

in Table 3, which represents the percentage of reduction using the SISO-DTS

algorithm instead of STS for a 64−QAM constellation and Lclip = 0.1.

6. Conclusion

The proposed detection algorithms exhibit very meaningful properties. The

BOHD-SO algorithm is a non-optimal NISO algorithm that almost achieves

the max-log performance with very low complexity, obtaining a more accurate

response than the SFSD algorithm and less complexity in terms of flops when
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Figure 6: Average computation cost parameters for the SISO STS, SISO-BORTS and SISO-

DTS algorithms for a 4 × 4 MIMO system, 16-QAM and 64-QAM with Lclip = 0.1 and 4

iterations at the iterative receiver.

Clip 0.1

SNR(dB) 5 7 9 11 13 15 17

Time 55.73% 45.56% 54.76% 49.46% 48.75% 48.43% 49.49%

Flops 43.88% 32.77% 44.79% 40.52% 40.32% 38.67% 38.77%

Nodes 13.57% -6.62% 11.38% 4.52% 2.81% 0.57% 0.91%

Comparisons 80.26% 75.06% 78.79% 76.87% 75.42% 74.92% 75.88%

Table 3: Percentage reduction of the computational cost parameters between SISO-DTS and

STS for a 4 × 4 MIMO system and a 64 − QAM constellation with Lclip = 0.1. A higher

percentage reduction indicates a lower computational cost of the SISO-DTS algorithm with

regard to the STS algorithm.
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Figure 7: Average computation cost parameters for the SISO STS, SISO-BORTS and SISO-

DTS algorithms for a 4 × 4 MIMO system, 16-QAM and 64-QAM with Lclip = 0.4 and 4

iterations at the iterative receiver.

LR is applied. Thus, the BOHD-SO algorithm is a good option when a non-

iterative receiver is used, providing good performance with low complexity.

On the other hand, the extension of SDTS and BORTS to the Soft-Input

case was studied and analyzed. The main feature of these extension is that

by achieving the MAP solution, the algorithms obtain better results in terms

of computational cost than the STS algorithm when the constellation size in-

creases. The advantages of SISO-BORTS with respect to the STS algorithm are

also quite remarkable for large problems; for example, this algorithm reduced

the computational time in 64 − QAM up to 80% in the case without clipping

and up to 40% with a clipping value of 0.4. The SISO-DTS algorithm that is
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used with clipping, outperformed the computational cost of the STS algorithm

for all of the cases and parameters tested. Therefore, in an iterative receiver

and large systems, the SISO-BORTS algorithm is the best option when clipping

is not used. When clipping is applied, the SISO-DTS algorithm provides the

max-log MAP performance with the least complexity, regardless of the system

size.

Appendix A. Proof of Probability of being out of the box

The BO algorithm is used when the ZF estimator is out of the box that is

defined by the limits of the constellation. The ZF estimator is calculated in

(A.1) as:

ŝ = H†y = s + H†v, (A.1)

where H ∈ CnR×nT with (nR ≥ nT ), y ∈ CnR×1, v ∈ CnR×1 and s ∈ CnT×1.

The BO algorithm is applied when any component of ŝ is outside of the box that

is delimited by the constellation. Therefore, BO execution probability can be

computed as the union of nT compatible events, since it will be the probability

that one or more components of ŝ get outside. In a simple case with only two

antennas, we would have the probability of the union of two events:

Pout = P (s1 ∪ s2)out

= P (s1)out + P (s2)out − P (s1 ∩ s2)out

= P (s1)out + P (s2)out − P (s1)out · P (s2)out,

(A.2)

where P (s1)out represents the probability of being out the box of the first com-

ponent in ŝ and P (s2)out represents the probability of the second component.

On the other hand, P (s1∩s2)out can be calculated as P (s1)out ·P (s2)out because

the events are independent. Extending this result to the nT transmit antennas

24



event case, we have:

Pout =

nT∑
i=1

P (si)out −
∑
i 6=j

P (si ∩ sj)out +
∑
i 6=j 6=k

P (si ∩ sj ∩ sk)out−

− . . .+ (−1)(nT +1)P

(
nT⋂
i=1

si

)
out

,

(A.3)

where P (si)out represents the probability of being out the box of the si compo-

nent. The next step is to compute the P (si)out values.

As can be observed in (A.1), the si component may or may not be outside,

depending on the noise variance and on the channel matrix pseudoinverse. First

of all, when the channel is a diagonal matrix with its diagonal elements equal

to one, the probability only depends on the noise. Thus, the probability of a

component being out (P (si)out) will be the probability that the real part is out

or the probability that the imaginary part is out, or both. In other words,

P (si)out = 2p(si)out − p(si)2
out. (A.4)

The probability that the real or imaginary part is out is denoted by p(si)out, so

(A.4) can be computed as a union of two independent events.

We will assume that there exists a set ΩR such that the constellation Ω

can be obtained as ΩR × ΩR. Therefore, if Ω is an M − QAM constellation,

each component (real and imaginary) of the constellation belongs to a L-PAM

constellation with L equal to
√
M . Let the sent symbol be the m-th constellation

point and let p(si,m)out be the probability of getting outside, which can be

calculated as:

p(si,m)out = p(n < [1−m]d) + p(n > [L−m]d), m = 1, . . . , L. (A.5)

where d is the distance that the contiguous elements of the constellation are

separated and n is a gaussian noise of zero mean and σ2
n variance. Since it can

be checked by symmetry that

p(si,m)out = p(si,L−m+1)out, (A.6)
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if the symbols are equiprobable, the average probability will be:

p(si)out =

√
M

M
· 2

L/2∑
m=1

p(si,m)out (A.7)

=
1√
M
· 2

L/2∑
m=1

{p (n < [1−m]d) + p (n > [L−m]d)} . (A.8)

Given the symmetry of Q(x) we have

p(n > z) = p(n < −z) = Q

(
z

σn

)
(A.9)

with

Q(x) =
1

2
erfc

(
x√
2

)
. (A.10)

Thus:

p (n < [1−m]d) = p (n > [m− 1]d) = Q

(
[m− 1]d

σn

)
(A.11)

p (n > [L−m]d) = Q

(
[L−m]d

σn

)
. (A.12)

It is necessary to describe the relationship between the quotient d/σn and

the SNR. If the constellation is polar, then the coordinates of the m− th symbol

(i.e., Em = (2m − 1)d/2) will be the opposite of the M −m + 1 − th. Thus,

their energies will be equal. In this case, the energy average by symbol can be

expressed as:

Es =
1

L

L∑
m=1

Em =
2

L
·
L/2∑
m=1

[
(2m− 1)

d

2

]2

=
2

L
·
L/2∑
m=1

[
(2m− 1)2 d

2

4

]
=
d2

12
(L2−1).

(A.13)

Then

SNR =
Es · nT
σ2

=
1
12d

2(L2 − 1)

σ2
· nT . (A.14)

According to the previous equation

d

σ
=

√
12

L2 − 1
· SNR

nT
(A.15)

However, a non-ideal channel will affect (A.7). In (A.1), it can be observed

how the noise varies depending on the pseudoinverse of the channel, n̆ = H†n.

26



Thus, the noise in each receiver antenna is computed as

n̆i = H†in, (A.16)

where the subindex H†i denotes the i-th row of H†. Therefore, the power of the

new noise in each receiver antenna can be obtained as

E
{
n̆in̆i

H
}

= E
{

H†innH(H†i )
H
}

= H†iE
{
nnH

}
(H†i )

H (A.17)

= H†iσ
2
n(H†i )

H (A.18)

Then, computing the SVD decomposition of H as

H = USVH = U

Σ

0

VH , (A.19)

we obtain

H†i = Vi

[
Σ−1 0

]
UH = Vi

[
Σ−1 0

] UH
1

UH
2

 = ViΣ
−1UH

1 . (A.20)

Therefore

H†i (H
†
i )
H = ViΣ

−1UH
1 U1Σ

−1VH
i (A.21)

= ViΣ
−2VH

i . (A.22)

Thus, the power of the new noise in each receiver antenna is computed as

σn̆i

2 = σ2
nH†i (H

†
i )
H (A.23)

= σ2
nVi(Σ

−2)VH
i . (A.24)

Therefore, taking into account the channel matrix. the p(si)out probability

is calculated as

p(si)out =
1√
M
· 2

L/2∑
m=1

{
Q

(
[m− 1]d

σn̆i

)
+Q

(
[L−m]d

σn̆i

)}
(A.25)

Table A.4 represents Pout using (A.3) versus the experimental values. These

probabilities have been computed as an average of 1000 realizations and have

been represented for different numbers of antennas, constellation orders and

SNR values.
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Table A.4: Experimental\theoretical probabilities of ŝ be out of the constellation in %.

4-QAM 16-QAM 64-QAM

SNR(dB) 4× 4 8× 8 4× 4 8× 8 4× 4 8× 8

0 99,90\99,92 1\1 98,94\98,99 99,99\99,99 97,62\97,57 99,97\99,97

5 99,77\99,81 1\1 96,54\96,70 99,92\99,93 91,85\91,44 99,60\99,55

10 99,68\99,71 1\1 93,49\93,91 99,66\99,73 83,10\82,45 98,00\97,74

15 99,64\99,65 1\1 91,38\91,84 99,35\99,44 74,61\74,64 94,81\94,63

20 99,60\99,62 1\1 90,46\90,72 99,14\99,21 69,35\69,77 91,45\91,73
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