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Abstract 
In this paper, a revised version of the Morris approach, which includes an improved sampling 

strategy based on trajectory design, has been adapted to the screening of the most influential 

parameters of a fuzzy controller applied to WWTPs. Due to the high number of parameters, a 

systematic approach has been proposed to apply this improved sampling strategy with low 

computational demand. In order to find out the proper repetition number of elementary effects of 

each input factor on model output (EEi) calculations, an iterative and automatic procedure has 

been applied. The results show that the sampling strategy has a significant effect on the parameter 

significance ranking and that random sampling could lead to a non-proper coverage of the 

parameter space. 
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1. Introduction 

WWTP models are used for many applications/purposes including plant design, optimisation and 

control. It is generally accepted that the modeling and simulation of WWTPs represents a powerful 

tool for control system design and tuning. However, model predictions are not free from uncertainty 

as these models are an approximation of reality (abstraction), and are typically built on a 

considerable number of assumptions. In this regard, sensitivity analysis provides useful information 

for the modellers as this technique attempts to quantify how a change in the model input parameters 

affects the model outputs. Different strategies have been applied in the literature (see for instance, 

Saltelli et al., 2000, Shahsavani and Grimvall, 2011, Nossent et al., 2011), which are typically 

classified into two main categories: global sensitivity analysis, where a sampling method is taken 

and the uncertainty range given in the input reflects the uncertainty in the output variables (Monte 

Carlo analysis; Fourier Amplitude Sensitivity Test (FAST), variance-based sensitivity analysis, 

Morris Screening (1991)); and local sensitivity analysis, which is based on the local effect of the 

parameters on the output variables (Weijers and Vanrolleghem, 1997; Brun et al., 2002).  

 

The Morris method is a one-factor-at-a-time (OAT) method of sensitivity analysis, which calculates 

the so-called elementary effects, EEi, of each input factor on model outputs. While the EEi is in 

itself a local measure of sensitivity, this drawback is overcome by repeating EEi calculations in the 

input space domain using Morris’ efficient random sampling strategy, which is obtained via a 

trajectory based design (see for instance, Saltelli and Annoni, 2010). The analysis of the distribution 

of elementary effects, Fi, of each input factor will assess the relative importance of the input factors, 

which approximates well to a global sensitivity measure. One key issue of this approach is that the 

sampling matrix is randomly generated. This random sampling strategy can be characterised by a 

poor representation of the sampling space, which can lead to a non-proper screening of the non-

influential parameters. For this reason, Campolongo et al. (2007) suggested a revised version of the 

elementary effects method, where an improved sampling strategy is defined by maximising the 
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distances between the final trajectories (r) selected. However, this improved sampling strategy was 

found to be unfeasible for large models due to the high computational demand required to solve the 

resulting combinatorial optimisation problem (Campolongo et al., 2007). Apart from trajectory 

based designs, other sampling strategies have recently been assessed for screening purposes, such as 

the radial based design (Saltelli et al., 2010; Campolongo et al., 2011). With this approach, the EE 

of each parameter is evaluated at the same initial point in the parameter space, but with a different 

step size. This design differs from trajectory based designs, where the EE of each parameter is 

evaluated with the same step size but at different initial points in the parameter space. 

 

Fuzzy logic based controllers have been successfully applied on wastewater treatment processes 

(see e.g. Ferrer et al., 1998; Serralta et al., 2002), since fuzzy sets theory offers an effective tool for 

the development of intelligent control systems (Zhu et al., 2009). Fuzzy control algorithms can be 

used to create transparent controllers that are easy to modify and extend because the fuzzy rules are 

written in the language of process experts and operators (Yong et al., 2006). Although these control 

systems have been shown to be more robust than classical controllers (Manesis et al., 1998; Traoré 

et al., 2005), they usually contain quite a number of parameters, which complicates their calibration. 

So far, these control systems have been tuned by trial and error methods, based on technical 

knowledge of process and controller performance (Chanona et al., 2006). Whatever optimisation 

method is applied, the fine-tuning of these controllers requires a previous selection of the most 

important parameters to be adjusted in each particular application. A systematic approach for the 

fine-tuning of fuzzy controllers based on model simulations was proposed by Ruano et al. (2010a) 

and it employs three statistical methods: (i) Monte-Carlo procedure: to find proper initial 

conditions, (ii) identifiability analysis: to find an identifiable parameter subset of the fuzzy 

controller based on local sensitivity analysis and (iii) minimisation algorithm. However, this 

methodology is based on local sensitivity analysis, and then requires an iterative procedure to 

confirm that the identifiable parameter subset does not depend on the local point in the parameter 

space where the identifiability study has been carried out. A global sensitivity analysis based on the 

Morris approach was proposed to overcome the problem of selecting the proper initial point in the 

parameter space (Ruano et al., 2010b). However, the random sampling strategy of this approach 

could lead to a non-proper screening of the non-influential parameters (Campolongo et al., 2007). 

In this study, the revised version of the Morris approach proposed by Campolongo et al. (2007) has 

been applied to screen out the most influential parameters of a fuzzy logic based aeration control 

system for WWTPs. Due to the high number of parameters, a systematic procedure has been 

proposed to overcome the high computational demand of this approach. Hence, an improved 

sampling strategy based on trajectory design is proposed for the application of the Morris method to 

systems with many input factors. Although this procedure does not guarantee that the final 

trajectories (r) selected present the global maximum distances between them, these distances are at 

least locally maximised. Finally, the results obtained with the application of the improved sampling 

strategy are compared with the ones obtained with a random sampling strategy.  
 

2. Materials and Methods 

2.1. Model description 

The Morris method was applied to assess the sensitivity of the parameters of a fuzzy logic based 

control system for controlling the aeration in a nutrient removing WWTP (see Figure 1). The fuzzy 

controller and the WWTP model were implemented and simulated using the simulation software 

DESASS (Ferrer et al., 2008). This software includes the plant-wide model Biological Nutrient 

Removal Model nº 1 (BNRM1, Seco et al., 2004). The control system was previously developed by 

the research group and it has been applied in several full scale WWTPs (Ribes et al., 2007). The 

main objective of this control system is to control the oxygen in the plant by using two types of 

controllers: (i) dissolved oxygen and (ii) air pressure. The control system modifies the valve 
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opening according to DO concentration and the rotational speed of the blower according to 

discharge pressure. As each control valve is governed by an independent DO controller, the air 

pressure controller is implemented in order to enhance the control system when there is more than 

one air valve in the same air pipeline. This controller aims to ensure that the one valve opening 

governed by its DO controller does not affect the air flow rate through the other valves in the same 

air pipeline. However, in this case study there is only one DO controller in order to simplify the 

aeration control system. 
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Figure 1. Flow diagram of the control system applied to a modified UCT process. 

 

For the DO controller the input variables are the oxygen error (OE) and the accumulated error 

(AOE), and the output variable is the increment/decrement of the air valve opening (IV). For the air 

pressure controller the input variables are the pressure error (PE) and the accumulated error (APE), 

and the output variable is the increment/decrement of the rotational speed of the blower (IB), which 

is governed by a frequency converter. Both controllers are fuzzy logic based controllers, which 

consist of five stages. Figure 2 (a) and Figure 2 (b) show these five stages for the dissolved oxygen 

controller and the air pressure controller, respectively. 
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  a) DO controller    b) Air pressure controller 

Figure 2. Fuzzy control stages for the two controllers: (a) dissolved oxygen controller; and (b) air pressure controller. 

 

The total number of parameters of both controllers (17) comes from these different stages into 

which fuzzy logic based controllers are divided, mainly derived from the defuzzification and 

fuzzification steps (Ruano et al., 2010a). In order to identify the parameters of this control system, 

acronyms for each parameter have been used. These acronyms are constructed as follows: 

“abbreviation of input variable”+“c/a”+“fuzzification/defuzzification membership function 

abbreviation”. For instance, the acronym OEaHN means the amplitude of the High Negative 

membership function for the input variable Oxygen Error; and the acronym IVcLN means the centre 

of the Low Negative membership function for the output variable Increment air Valve opening. The 

simulation strategy consisted of a steady-state simulation to obtain proper initial conditions 
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followed by 28 days of dynamic simulations. The last 14 days were considered for the evaluation of 

the control system performance. The standardised influent file for dry weather proposed by Copp 

(2002) was used in this study. The Integral Absolute Error (IAE, integral of the absolute value of 

the time dependent error function) obtained over the last 14 days for each controller was selected as 

the output measure (IAEO for Oxygen controller and IAEP for Pressure controller). So in this study 

the weighted contribution of the elementary effects obtained from both output variables was used.  

 

2.2. Morris screening with the improved sampling strategy 

The Morris method (1991) evaluates the so-called distribution of Elementary Effects (EE) of each 

input factor on model outputs, from which basic statistics are computed to derive sensitivity 

information. In this case study the scaled elementary effects SEEi proposed by Sin and Gernaey 

(2009) were applied. The finite distribution of elementary effects associated with each input factor 

denoted as Fi is obtained by randomly sampling different X from the parameter space. Nevertheless, 

this random sampling from X can imply a limited coverage of the space. Therefore, we applied the 

improved sampling strategy proposed in Campolongo et al. (2007). This idea consists in selecting 

the r trajectories in such a way as to maximise their dispersion in the input space. At first, a high 

number of random Morris trajectories M are generated and then the highest spread r trajectories are 

chosen. This spread is defined following the definition of distance between a couple of trajectories 

m and l defined by the following equation: 
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where )(zX m

i indicates the zth coordinate of the ith point of the mth Morris trajectory. Consequently, 

the best r trajectories out of M are selected by maximising the distance dml among them, and thus 

the quantity D, which is the sum of all the distances dml between the couple of trajectories belonging 

to the combination. This D quantity must be calculated for each possible combination of r 

trajectories. Consequently, the evaluation of all the possible combinations results in a high 

computational demand. To solve this combinatorial optimisation problem we developed an 

alternative methodology which does not take into account all the possible combinations, but it gets a 

combination of r trajectories out of M that are really close to the highest spread ones and with low 

computational demand. This approach, which has been programmed in Matlab, consists of different 

iterative steps that are shown in Figure 3, where the r trajectories are selected from a group of all 

the possible combinations. As Figure 3 shows, firstly the distance matrix, DM, between the initial M 

trajectories (see Eq.2) is calculated. 
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Each row of this matrix represents all the geometric distances, dml, between the trajectory 

corresponding to the number of the row, m, and the number of the column, l. Then, iteratively from 

i = 1 to i = r-1 the following procedure is carried out:  

1. From each row of the DM matrix, m, the i columns whose dml are the highest ones are 

selected, [n1,n2….ni]. Then, the quantity mnnn i
D ,...., 21

 is calculated for each row of the DM 

matrix, considering the i trajectories selected in each row. Thus, M values of D are obtained, 

generating the matrix Di+1 defined in the following expression: 
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where the sub index i+1 corresponds to the total number of trajectories considered. Then, the 

maximum value of Di+1 is selected, which represents the highest spread i+1 trajectories of 

these matrix: 
121

...,
iHHH nnn   

2. The next step is the selection of the r-(i+1) trajectories. Subsequently, iteratively, for k = 1 to 

k = r-i, the matrix Di+k+1 defined in the following expression is calculated: 
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where each row represents the quantity D for the trajectories: mnnn
kiHHH ,...,

21 
. Then, the 

maximum value of Di+k+1 is obtained, and the corresponding i+k+1 trajectory is selected. 

3. At last, for the specific i considered, a combination of r trajectories out of M is obtained: 

irHHH nnn ..,
21

.  

 

Once the r-1 iterations are executed, r-1 combinations of r trajectories will be generated, which are 

represented in the matrix Dr defined by the following expression: 
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Finally, the maximum value of Dr will define the final r trajectories selected, 
ir

nHnHnD ....2,1
. 

 

As an example, Figure 4 compares the empirical distributions (sampled values) for k = 4 parameters 

that are respectively obtained via the random sampling strategy proposed by Morris (1991) (Figure 

4a), via the revised sampling strategy proposed by Campolongo et al. (2007) (Figure 4b), and via 

the sampling strategy proposed in this paper (Figure 4c). The theoretical distributions in this 

example are the same as those proposed in Campolongo et al. (2007), i.e. discrete uniform with p = 

4 levels and for r = 20 trajectories. The empirical distribution illustrated in Figure 4c is not as close 

to the theoretical shape of the discrete uniform distributions as the one obtained in Figure 4b, but it 

significantly improves the results in comparison with the ones obtained with the random sampling 

strategy (Figure 4a). The sampling strategy proposed in this paper considerably reduces the 

computational demand required to select the optimal r trajectories out of M. For instance, for M = 

100 initial trajectories and r = 5, the computational cost of the rigorous method was 8 minutes 

whilst the method proposed in this paper gave the results in less than 2 seconds (obtained with 

Matlab® using a PC with a 2.53 GHz Intel® Core™ i5 processor). This computational demand 

depends mainly on the number of trajectories to be selected (r) from the initial ones (M). For 

instance, for selecting r = 20 trajectories out of M = 1000, the computational cost of the proposed 

strategy is about 5 minutes, whilst applying the rigorous approach it is unfeasible due to the high 

number of combinations to be evaluated (almost 3.4·10
41

). Although the proposed sampling strategy 

does not guarantee that the final trajectories (r) selected present the global maximum distances 
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between them, these distances are at least locally maximised. For instance, for the simple analytical 

example mentioned above (r = 5 trajectories out of M = 100 with k = 4 parameters and a grid of p = 

4), the distance between the final r trajectories obtained with the methodology proposed in this 

paper was D = 95.6 and with the rigorous approach was D = 97.6 (the global maximum distance). 

This difference in terms of distance can be acceptable enough, provided that when the random 

sampling strategy was repeated 10 times the highest distance obtained was D = 70.4. 
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Figure 3. Flow diagram of the proposed methodology to find r high spread trajectories out of M. 
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(c) 

Figure 4. Empirical distributions for k = 4 parameters, X1, X2, X3, X4 whose theoretical distributions are uniform 

discrete with 4 levels, sample size r = 20.  The samples are obtained using the random sampling strategy (a); the revised 

sampling strategy proposed by Campolongo et al. (2007) (b); and the sampling strategy proposed in this paper (c). 
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With regard to the sensitivity measures, the mean (m), the standard deviation (σ) and the absolute 

mean (m) of the SEEi values of each Fi are considered (Saltelli et al., 2004). The measure mhas 

been used to rank the parameters in order to systematically identify the non-influential parameters 

(low mfrom the influential ones (high m. An optimal setting of r (ropt) has been searched for 

with a constant resolution of p = 8. To this end, the repetition number of elementary effect 

calculations (r) of each distribution Fi was increased until the ranking of parameters (based on m 
remained more or less stable, i.e. the type II error is minimised (type II error: indentifying an 

important factor as insignificant). This stability has been numerically evaluated with a numerical 

index proposed in this paper (the position factor, PFri


 rj). For given rankings obtained by ri and rj, 

we define the index PFri


 rj by the following expression: 
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where Pk,i is the position of the kth parameter in the ranking obtained by ri, and 
jkik PP ,, ,m  is the 

average of the kth parameter positions in the ranking obtained by ri and rj. The index PFri


 rj 

indicates how different the rankings calculated by sampling sizes ri and rj are, i.e. a low value 

means that most of the parameters remain in the same or nearly the same position in the ranking (If 

PFri


 rj = 0 then Ranking ri = Ranking rj). Moreover, this index decreases the importance of a 

change in the position of parameters located at the bottom of the ranking. This criterion allows an 

optimal value for r (ropt) to be found. Once the ropt was found, the graphical Morris approach was 

used to find the significant parameters. In order to evaluate the effect of this improved sampling 

strategy, the Morris approach based on a random sampling strategy has also been applied and the 

results obtained with both sampling strategies have been compared. 
 

3. Results and Discussion 

The Morris method with the proposed improved sampling strategy was applied to a different 

number of trajectories (r), chosen from M = 1000 initial Morris trajectories, until the parameter 

significant ranking remained more or less stable, quantitatively measured by the index PFri


 rj. 

Similarly, the Morris approach based on random sampling was also applied. Table 1 shows the 

resulting sensitivity measures (m and σ) for the different number of elementary effects calculated 

with the improved sampling strategy. Table 2 shows the resulting PFri


 rj values for each pair of 

compared rankings: (a) the improved sampling strategy, and (b) the random sampling strategy. As 

can be seen in this table, at a low number of trajectories for the improved sampling strategy (from r 

= 5 to r = 40) the tendency of the PFri


 rj value is not monotonic. This behaviour reveals that, for 

this case study, values of r below 40 do not provide a suitable estimation of the sensitivity 

measures, which can be obtained when either a highly nonlinear model is used or a large input 

uncertainty is defined. These results are in contrast to previous applications of the Morris method 

since most of those studies used a low repetition number, e.g. r = (10~20) (Campolongo et al, 2007, 

Ruano et al., 2010b). Then, for higher values of r, the index manifests a downward trend as the 

number of trajectories is increased, which demonstrates a closer similarity between the positions of 

the parameters in the compared rankings. In contrast, the PFri


 rj values for the random sampling 

strategy decreases as the number of trajectories is increased, except for r = 4050 and for r = 

6070. Surprisingly, working with considerably high values of r, an increase in the number of 

trajectories from r = 60 to r = 70 does not imply an improvement in the PFri


 rj index. Moreover, 

the increase in this index is mainly due to a position change of the parameters located at the top of 

the ranking (data not shown) such as: PEcHN (High Negative membership function centre of the 

Pressure Error). These results can be interpreted as a result of a non-optimal coverage of the 

sampling space obtained by a random strategy, which could lead to a Type II error, i.e. failing in the 

identification of a parameter of considerable influence in the model; and a Type I error, as well, i.e. 
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considering a factor as significant when it is not. Thus, a suitable scan of the input space, such as 

the improved sampling strategy applied in this study, can lead to more realistic results. 

 
Table 1. Sensitivity measures of the control parameters at the different r evaluated with the improved sampling 

strategy. 

r = 5   r = 10   r = 15   r = 30 

Parameter m 



Parameter m 



Parameter m 



Parameter m 

PEaHN 2.401 3.356   PEcHN 3.101 3.895   APEaHN 2.451 3.557   APEaHN 2.141 3.246 

APEcHN 1.720 2.522   IVcHN 1.505 2.030   IBcHN 1.682 2.889   IBcHN 1.675 2.449 

IVcHN 1.668 2.643   PEaHN 1.434 2.538   PEcHN 1.586 3.049   PEcHN 1.579 2.835 

IBcHN 1.436 2.364   APEcHN 1.264 1.813   IVcHN 1.497 2.318   PEaHN 1.162 2.101 

PEcHN 1.144 2.248   IBcHN 1.102 2.215   IBcLN 1.356 2.035   PEcLN 0.860 1.639 

PEcLN 0.681 1.123   APEaHN 1.041 1.430   PEaHN 1.043 1.700   IBcLN 0.809 1.697 

OEcHN 0.601 0.779   RT 0.948 1.220   RT 1.022 1.652   AOEaHN 0.774 1.927 

AOEaHN 0.493 1.015   OEaHN 0.901 1.591   OEcHN 0.952 1.793   APEcHN 0.736 1.164 

APEaHN 0.424 0.487   IBcLN 0.872 1.648   PEcLN 0.942 1.964   IVcHN 0.706 1.352 

OEaHN 0.408 0.651   APEcLN 0.770 1.397   APEcHN 0.641 1.417   RT 0.684 1.504 

RT 0.316 0.405   PEcLN 0.416 0.901   OEaHN 0.632 1.298   OEcHN 0.603 1.264 

APEcLN 0.289 0.506   OEcHN 0.385 0.860   IVcLN 0.487 1.074   OEaHN 0.586 1.318 

OEcLN 0.213 0.309   IVcLN 0.332 0.651   APEcLN 0.288 0.712   APEcLN 0.433 1.213 

IBcLN 0.182 0.263   AOEaHN 0.305 0.591   AOEcHN 0.180 0.287   AOEcLN 0.274 0.905 

AOEcHN 0.108 0.193   OEcLN 0.245 0.453   AOEcLN 0.156 0.370   IVcLN 0.261 0.953 

AOEcLN 0.074 0.137   AOEcLN 0.222 0.540   OEcLN 0.151 0.275   OEcLN 0.237 0.621 

IVcLN 0.019 0.028   AOEcHN 0.146 0.309   AOEaHN 0.149 0.293   AOEcHN 0.174 0.326 

 

r = 40   r = 50   r = 60 r = 70 

Parameter m 



Parameter m 



Parameter m  Parameter m 

IBcHN 1.848 2.584   APEaHN 2.010 3.263   APEaHN 2.272 3.498 APEaHN 2.222 3.208 

APEcHN 1.681 2.571   IBcHN 1.981 3.030   PEcHN 1.973 3.282 PEcHN 1.909 3.249 

APEaHN 1.412 2.067   PEcHN 1.720 2.466   IBcHN 1.697 2.477 IBcHN 1.680 2.511 

PEcHN 1.394 2.180   IVcHN 1.204 2.121   PEaHN 1.397 2.299 PEaHN 1.315 2.257 

IVcHN 1.319 2.424   PEaHN 1.042 1.775   IVcHN 1.108 2.100 APEcHN 1.085 2.138 

OEaHN 1.285 2.816   APEcHN 0.994 2.068   APEcHN 1.007 1.745 IVcHN 0.941 1.669 

PEaHN 1.023 1.805   PEcLN 0.912 1.698   OEaHN 0.900 1.744 PEcLN 0.891 1.682 

OEcHN 0.957 1.694   OEcHN 0.771 1.483   RT 0.818 1.699 RT 0.861 1.604 

PEcLN 0.798 1.628   RT 0.763 1.445   IBcLN 0.816 1.703 IBcLN 0.761 1.486 

IBcLN 0.752 1.649   OEaHN 0.744 1.317   OEcHN 0.779 1.453 OEcHN 0.721 1.425 

AOEaHN 0.493 1.210   IBcLN 0.712 1.350   PEcLN 0.741 1.403 OEaHN 0.688 1.356 

RT 0.431 0.713   AOEaHN 0.349 0.859   AOEcHN 0.432 1.300 APEcLN 0.301 0.880 

OEcLN 0.341 0.887   IVcLN 0.308 1.452   AOEaHN 0.393 1.165 AOEaHN 0.282 0.741 

AOEcHN 0.335 1.204   APEcLN 0.272 0.723   AOEcLN 0.312 1.273 AOEcHN 0.270 0.792 

APEcLN 0.218 0.726   OEcLN 0.128 0.299   APEcLN 0.295 1.164 IVcLN 0.170 0.724 

AOEcLN 0.161 0.541   AOEcHN 0.122 0.367   IVcLN 0.132 0.517 OEcLN 0.164 0.561 

IVcLN 0.083 0.222   AOEcLN 0.039 0.090   OEcLN 0.121 0.294 AOEcLN 0.123 0.393 

 

Table 2. Position factors, PFri→rj, for the r calculated: (a) improved sampling strategy; (b) random sampling strategy. 

ri →rj 5→10 10→15 15→30 30→40 40→50 50→60 60→70 

(a) PF ri→ rj 7.5 7.8 4.2 7.8 5.4 3.5 1.9 

(b) PF ri→ rj 10.1 7.6 5.2 2.1 2.7 2.3 3.7 

 

As a result, r = 70 was selected as the optimal setting for this case study. The overall model 

evaluation cost was, therefore, 1190 simulations. We considered r = 70 as the optimal one, not only 

due to the low PF60


70 value but also due to the significant stability of the parameters located at the 

top of the rankings (see Table 1). Figure 5a shows the graphical Morris approach for the optimal 
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number of repetitions obtained for the improved sampling strategy. In addition, Figure 5b shows the 

same graph for r = 70 obtained with the random sampling strategy. This figure was used to screen 

out the non-influential parameters of the control system (i.e., the six parameters that are not labelled 

in Figure 1a). From the eleven influential parameters, RT (Response Time), OEcHN (High Negative 

centre of the Oxygen Error), APEaHN (High Negative amplitude of the Accumulated Pressure 

Error), IVcHN (High Negative centre of the Increment of the air Valve opening) and IBcLN (Low 

Negative centre of the Increment of the rotational speed of the Blower) presented a high mean and a 

low standard deviation, lying outside the wedge formed by two lines corresponding to mi = ±2SEMi. 

Thus, the effect of these parameters on the output variables are expected to be linear and additive, 

which is desirable for parameter estimation based on optimisation algorithms. In comparison with 

the results obtained for the random sampling strategy, the following could be said: (i) the resulting 

non-influential parameters agreed with the improved sampling strategy; (ii) the sensitivity measures 

of the eleven influential parameters are different from the ones obtained with the improved 

sampling strategy, which reflects that the sampling strategy has a significant effect on the parameter 

significance ranking. In addition, the necessity of finding out the optimal repetition number for SEEi 

calculations (r) has been underlined. Thus, a non-optimal selection of r would lead to Type I or 

Type II errors, as well.  
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Figure 5. (a) m versus, for ropt = 70, for the improved sampling; (b) m versus , for r = 70, for the random sampling. 

Lines correspond to mi = ±2SEMi; 
 

4. Conclusions 

The Morris method with the improved sampling strategy proposed by Campolongo et al. (2007) has 

been applied to a fuzzy logic based control system of a WWTP. A systematic approach has been 

proposed in order to apply this improved sampling strategy based on trajectory design to large 

models with low computational demand. In order to find out the proper repetition number of SEEi 

calculations (ropt), an iterative and automatic procedure has been applied. The optimal repetition 

number found in this study is in direct contrast with previous applications of the Morris method, 

which usually uses a low number of repetitions, e.g. r = (10~20). This high r value can be explained 

by either a highly nonlinear behaviour of the system, or the definition of a large input uncertainty. 

The results show that the sampling strategy has a significant effect on the parameter significance 

ranking and that the random sampling strategy could lead to a non-proper coverage of the sample 

space. Working with a non-proper sampling matrix and a non-proper sample size (r) could lead to 

either Type I or Type II errors. Overall, the improved sampling strategy proposed and the iterative 

and automatic procedure to find out the proper repetition number of SEEi calculations to apply the 

Morris approach, provides a good approximation of a global sensitivity measure, helping engineers 

to calibrate large models with many input factors such as the fuzzy control system used in this 

study. 
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Abstract 
In this work, a revised version of Morris approach, which includes an improved sampling strategy 

based on trajectory design, has been adapted to the screening of the most influential parameters of 

a fuzzy controller applied to WWTPs. Due to the high number of parameters, a systematic 

approach to apply this improved sampling strategy with low computational demand has been 

proposed. In order to find out the proper repetition number of elementary effects of input factor to 

model outputs (EEi) calculations, an iterative and automatic procedure has been applied. The 

results show that the sampling strategy has a significant effect on the parameter significance 

ranking and that random sampling could lead to a non-proper coverage of the parameter space. 

Keywords 
Fuzzy controllers; Morris screening; Sampling Strategy; Sensitivity analysis  

 

 

1. Introduction 

WWTP models are used for many applications/purposes including plant design, optimisation and 

control. It is generally accepted that the modeling and simulation of WWTPs represents a powerful 

tool for control systems design and tuning. However, the model predictions are not free from 

uncertainty as these models are an approximation of reality (abstraction), and are typically built on a 

considerable number of assumptions. In this regard, sensitivity analysis provides useful information 

for the modellers as this technique attempts to quantify how a change in the input model parameters 

affects the model outputs. Different strategies have been applied in the literature (see for instance, 

Saltelli et al., 2000), which are typically classified in two main categories: global sensitivity 

analysis, where a sampling method is taken and the uncertainty range given in the input reflects the 

uncertainty in the output variables (Monte Carlo analysis; Fourier Amplitude Sensitivity Test 

(FAST), Morris Screening (1991)); and local sensitivity analysis, which is based on the local effect 

of the parameters in the output variables (Weijers and Vanrolleghem, 1997; Brun et al., 2002).  

 

Morris method is a one-factor-at-a-time (OAT) method of sensitivity analysis, which calculates the 

so-called elementary effects, EEi, of input factor to model outputs. While the EEi is in itself a local 

measure of sensitivity, this drawback is overcome by repeating EEi calculations in the input space 

domain using Morris’ efficient random sampling strategy which is obtained via a trajectory based 

design. The analysis of the distribution of elementary effects, Fi, of each input factor will assess the 

relative importance of the input factors, which approximates well a global sensitivity measure. One 

key issue of this approach is that the sampling matrix is randomly generated. This random sampling 

strategy can be characterised by a poor representation of the sampling space which can lead to a 

non-proper screening of the non-influential parameters. For this reason, Campolongo et al. (2007) 

suggested a revised version of the elementary effects method, where an improved sampling strategy 

is defined by maximizing the distances between the final trajectories (r) selected. However, this 

improved sampling strategy was found to be unfeasible for large models due to the high 
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computational demand required to solve the resulting combinatorial optimisation problem 

(Campolongo et al., 2007). Besides the trajectory based design other sampling strategies have been 

recently assessed for screening purposes such as the radial based design (Saltelli et al., 2010; 

Campolongo et al., 2011). With this approach, the EE of each parameter is evaluated at the same 

initial point in the parameter space but with different step size. This design differs from the 

trajectories based design, where the EE of each parameter is evaluated with the same step size but at 

different initial points in the parameter space. 

 

Fuzzy logic based controllers have been successfully applied on wastewater treatment processes 

(see e.g. Ferrer et al., 1998; Serralta et al., 2002), since fuzzy sets theory offers an effective tool for 

the development of intelligent control systems (Zhu et al., 2009). Fuzzy control algorithms can be 

used to create transparent controllers that are easy to modify and extend because the fuzzy-rules are 

written in the language of process experts and operators (Yong et al., 2006). Although these control 

systems have shown to be more robust than classical controllers (Manesis et al., 1998; Traoré et al., 

2005), they usually contain quite a number of parameters which complicates their calibration. So 

far, these control systems have been tuned by trial and error methods, based on technical knowledge 

on the process and controller performance (Chanona et al., 2006). Whatever the optimisation 

method is applied, the fine-tuning of these controllers requires a previous selection of the most 

important parameters to be adjusted in each particular application. A systematic approach for fine 

tuning of fuzzy controllers based on model simulations was proposed by Ruano et al. (2010a) that 

employs three statistical methods: (i) Monte-Carlo procedure: to find proper initial conditions, (ii) 

Identifiability analysis: to find an identifiable parameter subset of the fuzzy controller based on 

local sensitivity analysis and (iii) minimization algorithm. However, this methodology is based on 

local sensitivity analysis, and then requires an iterative procedure to confirm the identifiable 

parameter subset does not depend on the local point in the parameter space where the identifiability 

study has been carried out. A global sensitivity analysis based on the Morris approach was proposed 

to overcome the problem of selecting the proper initial point in parameter space (Ruano et al., 

2010b). However, the random sampling strategy of this approach could lead to a non-proper 

screening of the non-influential parameters (Campolongo et al., 2007). In this work, the revised 

version of Morris approach proposed by Campolongo et al. (2007) has been applied to screen out 

the most influential parameters of a fuzzy logic based aeration control system for WWTPs. Due to 

the high number of parameters, a systematic procedure has been proposed to overcome the high 

computational demand of this approach. Hence, an improved sampling strategy based on trajectory 

design is proposed for the application of Morris method to systems with many input factors. 

Although, this procedure does not guaranty that the final trajectories (r) selected present the global 

maximum distances between them, these distances are at least locally maximized. Finally, the 

results obtained with the application of the improved sampling strategy are compared with the ones 

obtained with a random sampling strategy.  
 

2. Materials and Methods 

2.1. Model description 

Morris method was applied to assess the sensitivity of the parameters of a fuzzy logic based control 

system for controlling the aeration in a nutrient removing WWTP (see Figure 1). The fuzzy 

controller and the WWTP model were implemented and simulated using the simulation software 

DESASS (Ferrer et al., 2008). This software includes the plant-wide model Biological Nutrient 

Removal Model nº 1 (BNRM1, Seco et al., 2004). The control system was previously developed by 

the research group and it has been applied in several full scale WWTPs (Ribes et al., 2007). The 

main objective of this control system is to control the oxygen in the plant by using two types of 

controllers: (i) dissolved oxygen and (ii) air pressure. The control system modifies the valve 

opening according to DO concentration and the rotational speed of the blower according to 
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discharge pressure. As each control valve is governed by an independent DO controller, the air 

pressure controller is implemented in order to enhance the control system when there is more than 

one air valve in the same air pipeline. This controller aims that the one valve opening governed by 

its DO controller does not affect the air flow rate through the other valves in the same air pipeline. 

However, in this case study there is only one DO controller in order to simplify the aeration control 

system. 
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Figure 1. Flow diagram of the control system applied to a modified UCT process. 

 

For the DO controller the input variables are the oxygen error (OE) and the accumulated error 

(AOE) and the output variable is the increment/decrement of the air valve opening (IV). For the air 

pressure controller the input variables are the pressure error (PE) and the accumulated error (APE) 

and the output variable is the increment/decrement of the rotational speed of the blower (IB), which 

is governed by a frequency converter. Both controllers are fuzzy logic based controllers, which 

consist of five stages. Figure 2 (a) and Figure 2 (b) show these five stages for the dissolved oxygen 

controller and the air pressure controller, respectively. 
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  a) DO controller    b) Air pressure controller 

Figure 2. Fuzzy control stages for the two controllers: (a) dissolved oxygen controller; and (b) air pressure controller. 

 

The total number of parameters of both controllers (17) comes from these different stages in which 

are divided fuzzy logic based controllers, mainly derived from the defuzzification and fuzzification 

steps (Ruano et al., 2010a). In order to identify the parameters of this control system, acronyms for 

each parameter have been used. These acronyms are constructed as follows: “abbreviation of input 

variable”+ “c/a”+“fuzzification/defuzzification membership function abbreviation”. For instance, 

the acronym OEaHN means the amplitude of the High Negative membership function for the input 

variable Oxygen Error; and the acronym IVcLN means the centre of the Low Negative membership 

function for the output variable Increment air Valve opening. The simulation strategy consisted of a 

steady-state simulation to obtain proper initial conditions followed by 28 days dynamic simulations. 

The last 14 days were considered to evaluate the performance of the control system. The 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

standardised influent file for dry weather proposed by Copp (2002) was used in this study. The 

Integral Absolute Error (IAE, integral of the absolute value of the time dependent error function) 

obtained along the last 14 days for each controller was selected as output measure (IAEO for 

Oxygen controller and IAEP for Pressure controller). So, in this study the weighted contribution of 

the elementary effects obtained from both output variables was used.  

 

2.2. Morris screening with the improved sampling strategy 

The method of Morris (1991) evaluates the so called distribution of Elementary Effects (EE) of 

each input factor to model outputs, from which basic statistics are computed to derive sensitivity 

information. In this case study the scaled elementary effects SEEi proposed by Sin and Gernaey 

(2009) was applied. The finite distribution of elementary effects associated with each input factor 

denoted as Fi is obtained by randomly sampling different X from the parameter space. Nevertheless, 

this random sampling from X can imply a short coverage of the space. Therefore, we applied the 

improved sampling strategy proposed in Campolongo et al. (2007). This idea consists of selecting 

the r trajectories in such a way as to maximise their dispersion in the input space. At first, a high 

number of random Morris trajectories M are generated and then the highest spread r trajectories are 

chosen. This spread is defined following the definition of distance between a couple of trajectories 

m and l defined by the following equation: 
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where )(zX m

i indicates the zth coordinate of the ith point of the mth Morris trajectory. Consequently, 

the best r trajectories out of M are selected by maximising the distance dml among them, and thus, 

the quantity D, which is the sum of all the distances dml between couple of trajectories belonging to 

the combination. This D quantity must be calculated for each possible combination of r trajectories. 

Consequently, the evaluation of all the possible combinations results in a high computational 

demand. To solve this combinatorial optimisation problem we developed an alternative 

methodology which does not take into account all the possible combinations, but it gets a 

combination of r trajectories out of M that are really close to the highest spread ones and with low 

computational demand. This approach, which has been programmed in Matlab, consists in different 

iterative steps that are shown in Figure 3, where the r trajectories are selected from a group of all 

the possible combinations. As Figure 3 shows, firstly the distance matrix, DM, between the initial M 

trajectories (see Eq.2) is calculated. 
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Each row of this matrix represents all the geometric distances, dml, between the trajectory 

corresponding to the number of the row, m, and the number of the column, l. Then, iteratively from 

i = 1 to i = r-1 the following procedure is carried out:  

1. From each row of the DM matrix, m, the i columns whose dml are the highest ones are 

selected, [n1,n2….ni]. Then, the quantity mnnn i
D ,...., 21

 is calculated for each row of the DM 

matrix, considering the i trajectories selected in each row. Thus, M values of D are obtained, 

generating the matrix Di+1 defined in the following expression: 
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where the sub index i+1 corresponds to the total number of trajectories considered. Then, the 

maximum value of Di+1 is selected, which represents the highest spread i+1 trajectories of 

these matrix: 
121

...,
iHHH nnn   

2. The next step is the selection of the r-(i+1) trajectories. Subsequently, iteratively, for k=1 to 

k= r-i, the matrix Di+k+1 defined in the following expression is calculated: 
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where each row represents the quantity D for the trajectories: mnnn
kiHHH ,...,

21 
. Then, the 

maximum value of Di+k+1 is obtained, and the corresponding i+k+1 trajectory is selected. 

3. At last, for the specific i considered, a combination of r trajectories out of M is obtained: 

irHHH nnn ..,
21

.  

 

Once the r-1 iterations are executed, r-1 combinations of r trajectories will be generated, which are 

represented in the matrix Dr defined by the following expression: 
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Finally, the maximum value of Dr will define the final r trajectories selected, 
ir

nHnHnD ....2,1
. 

 

As an example, Figure 4 compares the empirical distributions (sampled values) for k=4 parameters 

that are obtained respectively via the random sampling strategy proposed by Morris (1991) (Figure 

4a), via the revised sampling strategy proposed by Campolongo et al. (2007) (Figure 4b), and via 

the sampling strategy proposed in this work (Figure 4c). The theoretical distributions in this 

example are the same as proposed in Campolongo et al. (2007), i.e. discrete uniform with p=4 levels 

and for r = 20 trajectories. The empirical distribution illustrated in Figure 4c is not as closer to the 

theoretical shape of the discrete uniform distributions as the one obtained in Figure 4b, but it 

improves significantly the results compared to the ones obtained with the random sampling strategy 

(Figure 4a). The sampling strategy proposed in this work reduces considerably the computational 

demand required to select the optimal r trajectories out of M. For instance, for M = 100 initial 

trajectories and r = 5, the computational cost of the rigorous method was 8 minutes whilst the 

method proposed in this work gave the results in less than 2 seconds (obtained with Matlab® using 

a PC with a 2.53 GHz Intel® Core™ i5 processor). This computational demand depends mainly on 

the number of trajectories to be selected (r) from the initial ones (M). For instance, for selecting r = 

20 trajectories out of M= 1000, the computational cost of the proposed strategy is about 5 minutes 

whilst applying the rigorous approach is unfeasible due to the high number of combinations to be 

evaluated (almost 3.4·10
41

). Although the proposed sampling strategy does not guaranty that the 

final trajectories (r) selected present the global maximum distances between them, these distances 
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are at least locally maximized. For instance, for the simple analytical example abovementioned (r = 

5 trajectories out of M = 100 with k= 4 parameters and a grid of p = 4) the distance between the 

final r trajectories obtained with the methodology proposed in this work was D = 95.6 and with the 

rigorous approach was D = 97.6 (the global maximum distance). This difference in terms of 

distance can be acceptable enough, provided that when the random sampling strategy was repeated 

10 times the highest distance obtained was D = 70.4. 
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Figure 3. Flow scheme of the proposed methodology to find a high spread r trajectories out of M. 
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(c) 

Figure 4. Empirical distributions for k=4 parameters, X1, X2, X3, X4 whose theoretical distributions are uniform discrete 

with 4 levels, sample size r=20.  The samples are obtained using the random sampling strategy (a); the revised sampling 

strategy proposed by Campolongo et al. (2007) (b); and the sampling strategy proposed in this work (c). 
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With regard to the sensitivity measures, the mean (m), the standard deviation (σ) and the absolute 

mean (m) of the SEEi values of each Fi are considered (Saltelli et al., 2004). The measure mhas 

been used to rank the parameters, in order to identify systematically the non-influential parameters 

(low mfrom the influential ones (high m. An optimal setting of r (ropt) has been searched with a 

constant resolution of p=8. To this end, the number of repetitions of elementary effects calculations 

(r) of each distribution Fi was increased until the ranking of parameters (based on m remains more 

or less stable, i.e. the type II error is minimised (type II error: indentifying an important factor as 

insignificant). This stability has been numerically evaluated with a numerical index proposed in this 

work (the position factor, PFri


 rj). For given rankings obtained by ri and rj, we define the index 

PFri


 rj by the following expression: 
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where Pk,i is the position of the kth parameter in the ranking obtained by ri, and 
jkik PP ,, ,m  is the 

average of the positions of the kth parameter in the ranking obtained by ri and rj The index PFri


 rj 

indicates how different are the rankings calculated by sampling sizes ri and rj, i.e. a low value 

means that most of the parameters remains in the same or near position in the ranking (If PFri


 rj = 0 

then Ranking ri = Ranking rj). Moreover, this index decreases the importance of a change in the 

position of parameters located at the bottom of the ranking. This criterion allows an optimal value 

for r (ropt) to be found. Once the ropt was found, the graphical Morris approach was used to find the 

significant parameters. In order to evaluate the effect of this improved sampling strategy, the Morris 

approach based on a random sampling strategy has also been applied and the results obtained with 

both sampling strategies have been compared. 
 

3. Results and Discussion 

The Morris method with the proposed improved sampling strategy was applied to different number 

of trajectories (r), chosen from M=1000 initial Morris trajectories, until the parameter significant 

ranking remained more or less stable, quantitatively measured by the index PFri


 rj. Similarly, the 

Morris approach based on the random sampling was also applied. Table 1 shows the resulting 

sensitivity measures (m and σ) for the different number of elementary effects calculated with the 

improved sampling strategy. Table 2 shows the resulting PFri


 rj values for each pair of compared 

rankings: (a) the improved sampling strategy, and (b) the random sampling strategy. As can be seen 

on this table, at low number of trajectories for the improved sampling strategy (from r= 5 to r =40) 

the tendency of the PFri


 rj value is not monotonic. This behaviour reveals that, for this case study, 

values of r below 40 do not provide a suitable estimation of the sensitivity measures, which can be 

obtained when either a highly nonlinear model is used or a large input uncertainty is defined. These 

results are in contrast to previous applications of the Morris method since most of these studies used 

a low repetition number, e.g. r=(10~20) (Campolongo et al, 2007, Ruano et al., 2010b). Then, for 

higher values of r, the index manifests a downward trend as the number of trajectories is increased, 

which demonstrates a closer similarity between the positions of the parameters in the compared 

rankings. In contrast, the PFri


 rj values for the random sampling strategy decreases as the number 

of trajectories is increased, except for r = 4050 and for r = 6070. Surprisingly, working with 

considerable high values of r, an increase of the number of trajectories from r=60 to r=70 does not 

imply an improvement in the PFri


 rj index. Moreover, the increase of this index is mainly due to a 

position change of the parameters located at the top of the ranking (data not shown) such as: 

PEcHN (High Negative membership function centre of the Pressure Error). These results can be 

interpreted as a result of a non-optimal coverage of the sampling space obtained by a random 

strategy, which could lead to Type II error, i.e. failing in the identification of a parameter of 

considerable influence in the model; and Type I Error, as well, i.e. considering a factor as 
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significant when it is not. Thus, a suitable scan of the input space, such as the improved sampling 

strategy applied in this work, can lead to more realistic results. 

 
Table 1. Sensitivity measures of the control parameters at the different r evaluated with the improved sampling 

strategy. 

r = 5   r = 10   r = 15   r = 30 

Parameter m 



Parameter m 



Parameter m 



Parameter m 

PEaHN 2.401 3.356   PEcHN 3.101 3.895   APEaHN 2.451 3.557   APEaHN 2.141 3.246 

APEcHN 1.720 2.522   IVcHN 1.505 2.030   IBcHN 1.682 2.889   IBcHN 1.675 2.449 

IVcHN 1.668 2.643   PEaHN 1.434 2.538   PEcHN 1.586 3.049   PEcHN 1.579 2.835 

IBcHN 1.436 2.364   APEcHN 1.264 1.813   IVcHN 1.497 2.318   PEaHN 1.162 2.101 

PEcHN 1.144 2.248   IBcHN 1.102 2.215   IBcLN 1.356 2.035   PEcLN 0.860 1.639 

PEcLN 0.681 1.123   APEaHN 1.041 1.430   PEaHN 1.043 1.700   IBcLN 0.809 1.697 

OEcHN 0.601 0.779   RT 0.948 1.220   RT 1.022 1.652   AOEaHN 0.774 1.927 

AOEaHN 0.493 1.015   OEaHN 0.901 1.591   OEcHN 0.952 1.793   APEcHN 0.736 1.164 

APEaHN 0.424 0.487   IBcLN 0.872 1.648   PEcLN 0.942 1.964   IVcHN 0.706 1.352 

OEaHN 0.408 0.651   APEcLN 0.770 1.397   APEcHN 0.641 1.417   RT 0.684 1.504 

RT 0.316 0.405   PEcLN 0.416 0.901   OEaHN 0.632 1.298   OEcHN 0.603 1.264 

APEcLN 0.289 0.506   OEcHN 0.385 0.860   IVcLN 0.487 1.074   OEaHN 0.586 1.318 

OEcLN 0.213 0.309   IVcLN 0.332 0.651   APEcLN 0.288 0.712   APEcLN 0.433 1.213 

IBcLN 0.182 0.263   AOEaHN 0.305 0.591   AOEcHN 0.180 0.287   AOEcLN 0.274 0.905 

AOEcHN 0.108 0.193   OEcLN 0.245 0.453   AOEcLN 0.156 0.370   IVcLN 0.261 0.953 

AOEcLN 0.074 0.137   AOEcLN 0.222 0.540   OEcLN 0.151 0.275   OEcLN 0.237 0.621 

IVcLN 0.019 0.028   AOEcHN 0.146 0.309   AOEaHN 0.149 0.293   AOEcHN 0.174 0.326 

 

r = 40   r = 50   r = 60 r = 70 

Parameter m 



Parameter m 



Parameter m  Parameter m 

IBcHN 1.848 2.584   APEaHN 2.010 3.263   APEaHN 2.272 3.498 APEaHN 2.222 3.208 

APEcHN 1.681 2.571   IBcHN 1.981 3.030   PEcHN 1.973 3.282 PEcHN 1.909 3.249 

APEaHN 1.412 2.067   PEcHN 1.720 2.466   IBcHN 1.697 2.477 IBcHN 1.680 2.511 

PEcHN 1.394 2.180   IVcHN 1.204 2.121   PEaHN 1.397 2.299 PEaHN 1.315 2.257 

IVcHN 1.319 2.424   PEaHN 1.042 1.775   IVcHN 1.108 2.100 APEcHN 1.085 2.138 

OEaHN 1.285 2.816   APEcHN 0.994 2.068   APEcHN 1.007 1.745 IVcHN 0.941 1.669 

PEaHN 1.023 1.805   PEcLN 0.912 1.698   OEaHN 0.900 1.744 PEcLN 0.891 1.682 

OEcHN 0.957 1.694   OEcHN 0.771 1.483   RT 0.818 1.699 RT 0.861 1.604 

PEcLN 0.798 1.628   RT 0.763 1.445   IBcLN 0.816 1.703 IBcLN 0.761 1.486 

IBcLN 0.752 1.649   OEaHN 0.744 1.317   OEcHN 0.779 1.453 OEcHN 0.721 1.425 

AOEaHN 0.493 1.210   IBcLN 0.712 1.350   PEcLN 0.741 1.403 OEaHN 0.688 1.356 

RT 0.431 0.713   AOEaHN 0.349 0.859   AOEcHN 0.432 1.300 APEcLN 0.301 0.880 

OEcLN 0.341 0.887   IVcLN 0.308 1.452   AOEaHN 0.393 1.165 AOEaHN 0.282 0.741 

AOEcHN 0.335 1.204   APEcLN 0.272 0.723   AOEcLN 0.312 1.273 AOEcHN 0.270 0.792 

APEcLN 0.218 0.726   OEcLN 0.128 0.299   APEcLN 0.295 1.164 IVcLN 0.170 0.724 

AOEcLN 0.161 0.541   AOEcHN 0.122 0.367   IVcLN 0.132 0.517 OEcLN 0.164 0.561 

IVcLN 0.083 0.222   AOEcLN 0.039 0.090   OEcLN 0.121 0.294 AOEcLN 0.123 0.393 

 

Table 2. Position factors, PFri→rj, for the r calculated: (a) improved sampling strategy; (b) random sampling strategy. 

ri →rj 5→10 10→15 15→30 30→40 40→50 50→60 60→70 

(a) PF ri→ rj 7.5 7.8 4.2 7.8 5.4 3.5 1.9 

(b) PF ri→ rj 10.1 7.6 5.2 2.1 2.7 2.3 3.7 

 

As a result, r=70 was selected as the optimal setting for this case study. The overall model 

evaluation cost was, therefore, 1190 simulations. We considered r=70 as the optimal one, not only 

due to the low PF60


70 value but also due to the significant stability of the parameters located at the 

top of the rankings (see Table 1). Figure 5a shows the graphical Morris approach for the optimal 
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number of repetitions obtained for the improved sampling strategy. In addition, Figure 5b shows the 

same graph for r=70 obtained with the random sampling strategy. This figure was used to screen 

out the non-influential parameters of the control system (i.e., the six parameters that are not labelled 

in Figure 1a). From the eleven influential parameters, RT (Response Time), OEcHN (High Negative 

centre of the Oxygen Error), APEaHN (High Negative amplitude of the Accumulated Pressure 

Error), IVcHN (High Negative centre of the Increment of the air Valve opening) and IBcLN (Low 

Negative centre of the Increment of the rotational speed of the Blower) presented high mean and 

low standard deviation, laying outside of the wedge formed by two lines corresponding to 

mi=±2SEMi. Thus, the effect of these parameters on the output variables are expected to be linear 

and additive, which is desirable for parameter estimation based on optimisation algorithms. 

Compared to the results obtained for the random sampling strategy, the following could be said: (i) 

the resulting non-influential parameters agreed with the improved sampling strategy; (ii) the 

sensitivity measures of the eleven influential parameters are different from the ones obtained with 

the improved sampling strategy, which reflects that the sampling strategy has a significant effect on 

the parameter significance ranking. In addition, the necessity of finding out the optimal repetition 

number for SEEi calculations (r) has been underlined. Thus, a non-optimal selection of r would lead 

to Type II error and Type I Error, as well.  
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Figure 5. (a) m versus, for ropt= 70, for the improved sampling; (b) m versus, for r=70, for the random sampling. 

Lines correspond to mi=±2SEMi; 
 

 

4. Conclusions 

The Morris method with the improved sampling strategy proposed by Campolongo et al. (2007) has 

been applied to a fuzzy logic based control system of a WWTP. A systematic approach has been 

proposed to be able to apply this improved sampling strategy based on trajectory design to large 

models with low computational demand. In order to find out the proper repetition number of SEEi 

calculations (ropt), an iterative and automatic procedure has been applied. The optimal repetition 

number found in this study is in direct contrast with previous applications of Morris method, which 

usually uses low number of repetition, e.g. r=(10~20). This high r value can be explained by either 

a highly nonlinear behaviour of the system, or a large input uncertainty defined. The results show 

that the sampling strategy has a significant effect on the parameter significance ranking and that the 

random sampling strategy could lead to a non-proper coverage of the sample space. Working with a 

non-proper sampling matrix and a non-proper sample size (r) could lead to either Type I or Type II 

errors. Overall, the improved sampling strategy proposed and the iterative and automatic procedure 

to find out the proper repetition number of SEEi calculations to apply the Morris approach, provides 

a good approximation of a global sensitivity measure, helping engineers to calibrate large models 

with many input factors such as the fuzzy control system used in this work. 
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Figure 1. Flow diagram of the control system applied to a modified UCT process. 
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Figure 2. Fuzzy control stages for the two controllers: (a) dissolved oxygen controller; and (b) air pressure controller. 
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Figure 3. Flow scheme of the proposed methodology to find a high spread r trajectories out of M. 
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(c) 

Figure 4. Empirical distributions for k=4 parameters, X1, X2, X3, X4 whose theoretical distributions are uniform discrete 

with 4 levels, sample size r=20.  The samples are obtained using the random sampling strategy (a); the revised sampling 

strategy proposed by Campolongo et al. (2007) (b); and the sampling strategy proposed in this work (c). 
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Figure 5. (a) m versuss, for ropt= 70, for the improved sampling; (b) m versuss, for r=70, for the random sampling. 

Lines correspond to mi=±2SEMi; 
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Table 1. Sensitivity measures of the control parameters at the different r evaluated with the improved sampling 

strategy. 

r = 5   r = 10   r = 15   r = 30 

Parameter  



Parameter  



Parameter  



Parameter  

PEaHN 2.401 3.356   PEcHN 3.101 3.895   APEaHN 2.451 3.557   APEaHN 2.141 3.246 

APEcHN 1.720 2.522   IVcHN 1.505 2.030   IBcHN 1.682 2.889   IBcHN 1.675 2.449 

IVcHN 1.668 2.643   PEaHN 1.434 2.538   PEcHN 1.586 3.049   PEcHN 1.579 2.835 

IBcHN 1.436 2.364   APEcHN 1.264 1.813   IVcHN 1.497 2.318   PEaHN 1.162 2.101 

PEcHN 1.144 2.248   IBcHN 1.102 2.215   IBcLN 1.356 2.035   PEcLN 0.860 1.639 

PEcLN 0.681 1.123   APEaHN 1.041 1.430   PEaHN 1.043 1.700   IBcLN 0.809 1.697 

OEcHN 0.601 0.779   RT 0.948 1.220   RT 1.022 1.652   AOEaHN 0.774 1.927 

AOEaHN 0.493 1.015   OEaHN 0.901 1.591   OEcHN 0.952 1.793   APEcHN 0.736 1.164 

APEaHN 0.424 0.487   IBcLN 0.872 1.648   PEcLN 0.942 1.964   IVcHN 0.706 1.352 

OEaHN 0.408 0.651   APEcLN 0.770 1.397   APEcHN 0.641 1.417   RT 0.684 1.504 

RT 0.316 0.405   PEcLN 0.416 0.901   OEaHN 0.632 1.298   OEcHN 0.603 1.264 

APEcLN 0.289 0.506   OEcHN 0.385 0.860   IVcLN 0.487 1.074   OEaHN 0.586 1.318 

OEcLN 0.213 0.309   IVcLN 0.332 0.651   APEcLN 0.288 0.712   APEcLN 0.433 1.213 

IBcLN 0.182 0.263   AOEaHN 0.305 0.591   AOEcHN 0.180 0.287   AOEcLN 0.274 0.905 

AOEcHN 0.108 0.193   OEcLN 0.245 0.453   AOEcLN 0.156 0.370   IVcLN 0.261 0.953 

AOEcLN 0.074 0.137   AOEcLN 0.222 0.540   OEcLN 0.151 0.275   OEcLN 0.237 0.621 

IVcLN 0.019 0.028   AOEcHN 0.146 0.309   AOEaHN 0.149 0.293   AOEcHN 0.174 0.326 

 

r = 40   r = 50   r = 60 r = 70 

Parameter  



Parameter  



Parameter   Parameter  

IBcHN 1.848 2.584   APEaHN 2.010 3.263   APEaHN 2.272 3.498 APEaHN 2.222 3.208 

APEcHN 1.681 2.571   IBcHN 1.981 3.030   PEcHN 1.973 3.282 PEcHN 1.909 3.249 

APEaHN 1.412 2.067   PEcHN 1.720 2.466   IBcHN 1.697 2.477 IBcHN 1.680 2.511 

PEcHN 1.394 2.180   IVcHN 1.204 2.121   PEaHN 1.397 2.299 PEaHN 1.315 2.257 

IVcHN 1.319 2.424   PEaHN 1.042 1.775   IVcHN 1.108 2.100 APEcHN 1.085 2.138 

OEaHN 1.285 2.816   APEcHN 0.994 2.068   APEcHN 1.007 1.745 IVcHN 0.941 1.669 

PEaHN 1.023 1.805   PEcLN 0.912 1.698   OEaHN 0.900 1.744 PEcLN 0.891 1.682 

OEcHN 0.957 1.694   OEcHN 0.771 1.483   RT 0.818 1.699 RT 0.861 1.604 

PEcLN 0.798 1.628   RT 0.763 1.445   IBcLN 0.816 1.703 IBcLN 0.761 1.486 

IBcLN 0.752 1.649   OEaHN 0.744 1.317   OEcHN 0.779 1.453 OEcHN 0.721 1.425 

AOEaHN 0.493 1.210   IBcLN 0.712 1.350   PEcLN 0.741 1.403 OEaHN 0.688 1.356 

RT 0.431 0.713   AOEaHN 0.349 0.859   AOEcHN 0.432 1.300 APEcLN 0.301 0.880 

OEcLN 0.341 0.887   IVcLN 0.308 1.452   AOEaHN 0.393 1.165 AOEaHN 0.282 0.741 

AOEcHN 0.335 1.204   APEcLN 0.272 0.723   AOEcLN 0.312 1.273 AOEcHN 0.270 0.792 

APEcLN 0.218 0.726   OEcLN 0.128 0.299   APEcLN 0.295 1.164 IVcLN 0.170 0.724 

AOEcLN 0.161 0.541   AOEcHN 0.122 0.367   IVcLN 0.132 0.517 OEcLN 0.164 0.561 

IVcLN 0.083 0.222   AOEcLN 0.039 0.090   OEcLN 0.121 0.294 AOEcLN 0.123 0.393 
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Table 2. Position factors, PFri→rj, for the r calculated: (a) improved sampling strategy; (b) random sampling strategy. 

ri →rj 5→10 10→15 15→30 30→40 40→50 50→60 60→70 

(a) PF ri→ rj 7.5 7.8 4.2 7.8 5.4 3.5 1.9 

(b) PF ri→ rj 10.1 7.6 5.2 2.1 2.7 2.3 3.7 

 

 

 


