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Abstract

We employed life cycle assessment to evaluate the use of hydrochars, prospective soil conditioners produced

from biowaste using hydrothermal carbonization, as an approach to improving agriculture while using carbon

present in the biowaste. We considered six different crops (barley, wheat, sugar beet, fava bean, onion, and

lucerne) and two different countries (Spain and Germany), and used three different indicators of climate change:

global warming potential (GWP), global temperature change potential (GTP), and climate tipping potential
(CTP). We found that although climate change benefits (GWP) from just sequestration and temporary storage of

carbon are sufficient to outweigh impacts stemming from hydrochar production and transportation to the field,

even greater benefits stem from replacing climate-inefficient biowaste management treatment options, like com-

posting in Spain. By contrast, hydrochar addition to soil is not a good approach to improving agriculture in

countries where incineration with energy recovery is the dominant treatment option for biowaste, like in Ger-

many. Relatively small, but statistically significant differences in impact scores (ISs) were found between crops.

Although these conclusions remained the same in our study, potential benefits from replacing composting were

smaller in the GTP approach, which due to its long-term perspective gives less weight to short-lived greenhouse
gases (GHGs) like methane. Using CTP as indicator, we also found that there is a risk of contributing to crossing

of a short-term climatic target, the tipping point corresponding to an atmospheric GHG concentration of

450 ppm CO2 equivalents, unless hydrochar stability in the soil is optimized. Our results highlight the need for

considering complementary perspectives that different climate change indicators offer, and overall provide a

foundation for assessing climate change mitigation potential of hydrochars used in agriculture.
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Introduction

Hydrochar is a carbonaceous material produced from

biomass residues using hydrothermal carbonization

(HTC; Berge et al., 2011; Titirici et al., 2014). It is mainly

used as solid fuel for domestic heating, but its use in

agriculture as soil conditioner with some carbon storage

value has recently attracted attention (Reza et al., 2014;

Burguete et al., 2016). Hydrochar has similar properties

to pyrolytic biochar, although the presence of water and

lower process temperature (180–250 °C) (when com-

pared to dry pyrolysis) make hydrochar less stable in

the soil compared to pyrolytic biochar. Recent studies

investigated various aspects of hydrochar use for crop

production, including its influence on seed germination,

plant morphology, crop productivity, or nutrient release

from the hydrochar to the soil (e.g., Malghani et al.,

2014; Reibe et al., 2014; Schimmelpfennig et al., 2015).

Because of the yet insufficient amount of data on these

aspects, more research was needed to determine effects

of hydrochar on crop production and soil processes

(Reza et al., 2014).

Assessment of environmental performance of hydro-

chars, including assessment of their potential contribu-

tion to climate change mitigation, can be quantified

using life cycle assessment (LCA). In LCA, resource

consumption and emissions of pollutants stemming

from the extraction of the raw materials (e.g., for HTC

plant), their manufacture and use or operations (e.g., for
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running the plant) up to their end of life (e.g., disposal

of post-treatment ashes and recycling operations) are

inventoried. These life cycle inventories are then

translated into impact indicator scores using substance-

specific characterization factors for various life cycle

impact categories, like climate change (Hauschild, 2005;

Hellweg & Mila i Canals, 2014). Studies investigating

environmental performance of hydrochars using LCA

have focused on its use as solid fuel so far (Berge et al.,

2015; Benavente et al., 2016; Owsianiak et al., 2016; Liu

et al., 2017). These four studies showed how environ-

mental performance of hydrochar used as solid fuel

depends on the type of fuel that the hydrochar substi-

tutes and on the incumbent waste management system

that HTC replaces.

Global warming potentials (GWPs) are usually

employed as indicators of climate change in LCA of

products and systems (Laurent et al., 2012; Hauschild

et al., 2013). In GWP, climate change impacts are

expressed in terms of contribution of a greenhouse

gas (GHG) to change in radiative forcing (not the

actual warming) over a defined time horizon, typically

100 years (Forster et al., 2007). Global warming poten-

tial calculated for a 100-year time horizon (referred to

as GWP100) is commonly used, standardized

approach for assessing climate change impacts in LCA

and carbon footprinting (e.g., ISO 14064, ISO 14067)

(Laurent & Owsianiak, 2017). In addition to GWP100,

the global temperature change potential at 100 years,

GTP100, has been proposed (Shine et al., 2007; Levas-

seur et al., 2017). It uses as an indicator the global

average temperature increase of the atmosphere at a

future point in time (here, 100 years) that results from

the emission (Shine et al., 2007). GTP100 is deemed as

the most appropriate indicator to capture climate

change impacts from gases with long residence times

in the atmosphere, like CO2. The third complementary

indicator of climate change is the climate tipping

potential (CTP), developed recently by Jørgensen et al.

(2014a, 2015). The CTP expresses the contribution of a

GHG emission to crossing a critical climatic target

level (e.g., at 450 ppm CO2 eq.) and is defined as cli-

mate impact relative to remaining capacity of the

atmosphere for receiving GHG emissions without

exceeding the atmospheric target level. Compared to

GWP100 and GTP100, the CTP is the indicator with

the shortest perspective as it addresses impacts occur-

ring within decades, and gives more weight to short-

lived GHGs like methane. Because of different per-

spectives that the three indicators offer, they are com-

plementary to each other and are considered as

different life cycle impact categories in LCA (Jørgensen

et al., 2014a; Levasseur et al., 2017). Their use in LCA

can potentially offer new insights into the climate

change mitigation potential of hydrochars. This has,

however, not been studied until now.

The aim of our study was therefore to evaluate the

application of hydrochar to agricultural soils as a poten-

tial technology for carbon sequestration and temporary

storage, using three indicators of climate change

(namely GWP100, GTP100, and CTP), while taking into

account uncertainties caused by yet incomplete knowl-

edge about the influence of hydrochar on crop produc-

tivity, hydrochar stability in the soils, and emissions of

GHGs from the soil as influenced by the hydrochar.

Although climate change impacts are the main focus of

this paper, we report full life cycle inventory and life

cycle impact assessment results presenting impact

scores (ISs) for 17 categories of environmental impacts.

We thereby acknowledge that a broad spectrum of

potential environmental problems, going beyond just

climate change, is relevant for decision making about

hydrochar use in agriculture.

Materials and methods

In the below, we present the study design and methods used

to carry out literature review as basis for defining scenarios

and model parameters in our LCA. Details of the LCA method-

ology are presented thereafter.

Study design

Figure 1 shows major methodological steps. As a starting point,

we collected empirical data from a literature review to support

defining relevant scenarios and model parameters for the LCA.

We systematically reviewed effects of hydrochar on crop pro-

ductivity, kinetics of evolution of CO2 derived from mineraliza-

tion of hydrochar carbon, and effect of hydrochar on priming

of mineralization of native soil organic carbon, CH4 fluxes, and

N2O fluxes from/into the soil. These reviewed data are used as

input for performing inventory modeling and subsequent life

cycle impact assessment including quantification of sensitivity

and uncertainty. Life cycle impact assessment was carried out

considering all relevant categories of environmental impact,

including the three indicators of climate change: global warm-

ing, global temperature change, and climate tipping. The

results were used to provide recommendations to decision

makers about the use of hydrochar in agriculture as a soil con-

ditioner, and recommendations for LCA practitioners and

method developers about the application of the three different

climate indicators in LCA.

Literature review and data treatment

A comprehensive review of Reza et al. (2014) was taken as

starting point to identify papers which might contain relevant

data on the effects of hydrochar on crop productivity and soil

emissions. To complement their review, additional new data

were retrieved from peer-reviewed studies available until
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March 2017 identified through searching the ISI Web of

Knowledge, version 5.7 (Thomson Reuters, New York, NY),

using a combination of keywords: (i) soil and either (a) hydro-

char or (b) hydrothermal. Citation lists of studies that contain

potentially relevant data were then consulted to complement

the search, and furthermore, all retrieved studies were

screened in ISI to identify studies which cited them. These

steps were iterated until no new studies were found. The data

collected in the literature review were critically assessed and

used in defining model parameters for modeling life cycle

inventories. For this purpose, we quantified medians, geomet-

ric means, geometric standard deviations, and ranges of col-

lected values. The collected data are documented and

analyzed in detail in the SI, Appendix S1 (Tables S1-S5). An

overview of criteria for inclusion of data into the study is pre-

sented below.

Crop productivity. Data on crop productivity were included if

two criteria were met: (i) Experiments were performed with

crops grown in soils (thus, excluding soil-less cultures); and (ii)

hydrochar was the sole carbon source (thus excluding hydro-

chars mixed with raw feedstock or organic fertilizers like man-

ure). To increase the number of data, we had to combine

information from experiments performed either with or with-

out addition of inorganic N, P, or K fertilizers. Furthermore,

we included data from both pot and field experiments. Both

plant biomass and grain yield were included as indicators of

the effects of hydrochar on crop productivity (Busch et al.,

2012; Gaji�c & Koch, 2012; George et al., 2012; Bargmann et al.,

2014a,b; Reibe et al., 2014, 2015; Wagner & Kaupenjohann,

2014).

Mineralization kinetics of hydrochar carbon. Hydrochar con-

tains carbon pools of different stability in soils and the mineral-

ization of hydrochar carbon often follows biexponential decay

kinetics (e.g., Bai et al., 2013). Thus, data on the content of

recalcitrant and labile carbon pools and the respective mineral-

ization kinetic parameters were only included if derived from

biexponential models. Furthermore, we combined data from

studies which quantified amounts of CO2 using one of the fol-

lowing methods: alkaline solutions used as CO2 traps com-

bined with titration (Gaji�c et al., 2012; Qayyum et al., 2012),

methods using incubation vessels combined with gas chro-

matography (Dicke et al., 2014; Schulze et al., 2016), methods

using an automated gas analysis systems (Lanza et al., 2015),

methods basing on measurements of isotope signature of CO2

(d13C-CO2) (Naisse et al., 2014; Budai et al., 2016), or methods

measuring evolution of 13CO2 from 13-C labeled carbon (Bai

et al., 2013). It was assumed that the evolved CO2 is solely a

result of hydrochar mineralization. We combined data irrespec-

tive of duration of the experiment.

Priming effects. To quantify mineralization of native soil

organic carbon as influenced by hydrochar (e.g., either posi-

tive or negative priming) separately from mineralization of

hydrochar C, we used methods based on measurement of

isotopic composition of the evolved CO2 (d13C analysis (Mal-

ghani et al., 2013; Bamminger et al., 2014; Budai et al., 2016).

Only isotope-based methods allow distinguishing between

CO2 originating from hydrochar carbon and that from soil

organic carbon. We excluded studies which report effects on

priming using exogenous carbon sources, like glucose. Again,

we combined data irrespective of duration of the experiment.

Fig. 1 Overview of major methodological steps in the study.
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Emissions of nitrous oxide, methane, and ammonia. We

combined data from all experiments reporting influence of

hydrochar or emissions of N2O, CH4, and NH3, irrespective of

experimental techniques used for incubation and measure-

ments, and again, irrespective of the duration of the experiment

(Kammann et al., 2012; Malghani et al., 2013; Dicke et al., 2014,

2015; Schimmelpfennig et al., 2014; Subedi et al., 2015).

Fertilizer requirements. Effects of hydrochar on improving

soil fertility due to retaining nutrients (Libra et al., 2011; Fang

et al., 2015) are difficult, if not impossible, to isolate from other

hydrochar-induced effect, for example, the improved water

retention properties. Thus, this parameter was not quantified,

and our assumption about no change in fertilizer requirements

was tested in sensitivity analysis.

Scenarios and model parameters

Scenarios. An overview of all 36 scenarios is presented in

Table 1. Overall, we considered six different crops (barley,

wheat, sugar beet, fava bean, onion, and lucerne) and two

different countries (Spain and Germany). Except onion and

fava bean, the crops chosen have been studied already in a

hydrochar context and can be considered as potential crops

for hydrochar applications. Spain and Germany were chosen

because HTC plants are being developed in these countries

(one of the first HTC plants has been erected in Spain) (Hitzl

et al., 2015), while European countries like Germany are

important potential users of carbonaceous products in Europe

(Ruysschaert et al., 2016). Hydrochar-induced emissions of

CH4 and CO2 into/from the soil (e.g., positive or negative

priming of mineralization of native soil organic carbon and

methane fluxes) are in current LCA practice not considered

man-made and, thus not taken into account, but it could be

argued that they are a result of human intervention and thus

important for decision making about hydrochar use in agri-

culture. They were thus also considered in the scenario

analysis. In all scenarios, we modeled hydrochar production

from green waste for full commercial-scale HTC plant

configuration with four reactors operating at capacity of 30

tonnes (dry weight) per day, as explained in Owsianiak et al.

(2016). Green waste was chosen among other potential feed-

stock at it is relatively uncontaminated (it has heavy metal

content comparable to that of food waste) and is relatively

abundant in Europe (Karak et al., 2012).

Model parameters. Based on findings from the literature

review, we identified model parameters used to construct life

cycle inventories (Table 2). Acknowledging that there is large

variability and/or uncertainty associated with the estimations

of these parameters, we defined baseline parameter values

used as default in all scenarios listed in Table 1. We also

defined perturbed parameter values representing lower and/or

higher ranges of parameters as basis for perturbation analysis

carried out to test the influence of a parameter value on the

results, and as basis for comprehensive uncertainty analysis.

Details of these analyses are presented together with descrip-

tion of LCA methodology in the sections Quantification of sen-

sitivity and Quantification of uncertainty.

Life cycle assessment

The LCA was conducted in accordance with the requirements

of the ISO14044 standard and the guidelines of the EU Com-

mission’s ILCD Handbook (ISO, 2006; EC-JRC, 2010).

Functional unit. The primary function of hydrochar in our

context is to (temporarily) store carbon when added to agricul-

tural soil. The functional unit, which ensures equivalence

between all the compared systems, was therefore defined as

“the average application and storage of 1 kg of biogenic HTC

carbon to a temperate agricultural soil.” This definition allows

for a fair comparison between hydrochars with various stabili-

ties in the soil (e.g., using parameter values reported in

Table 2). A secondary function of hydrochar when applied to

soil is its (potential) ability to support crop growth, and this

property was also investigated by employing parameter values

reported in Table 2.

Table 1 Overview of scenarios in the scenario analysis. Appendix S3 of the SI presents details of the accounting of hydrochar-

induced CO2 and CH4 emissions

No. Sensitivity parameter Country Crop type Priming effect Methane emissions

1 Baseline ES Barley Not considered Not considered

2–6 Crop type ES Wheat, sugar beet, fava

bean, onion, lucerne

Not considered Not considered

7–12 Geographic location of

hydrochar production and use

DE Barley, wheat, sugar beet,

fava bean, onion, lucerne

Not considered Not considered

13–24 Accounting for hydrochar-

induced CO2 emissions from

mineralization of native soil

organic carbon (positive

priming effect)

DE, ES Barley, wheat, sugar beet,

fava bean, onion, Lucerne

Considered (137%

of system without

hydrochar)

Not considered

25–36 Accounting for hydrochar-

induced methane emissions

DE, ES Barley, wheat, sugar beet,

fava bean, onion, lucerne

Not considered Considered (418%

of system without

hydrochar)
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Table 2 Model parameters for processes associated with hydrochar application to agricultural soils considered in the life cycle

assessment (LCA) model. All values are based on measured values retrieved from literature review (see SI, Appendix S1). Parameters

referred to as default apply to all scenarios listed in Table 1. Perturbation analysis was carried out to test the influence of a parameter

value on the results for selected scenarios

Parameter

Parameter values

Unit DescriptionDefault Perturbation

Application

rate

5000 2500; 10000 kgC ha�1 Application rate corresponds to that of 0.6% w/w content of hydrochar

incorporated into 15 cm soil depth and is based on values used in pot

experiments (Gaji�c & Koch, 2012). This value is in lower range of values

usually tested experimentally in (where up to 10% w/w is used), and is

expected to be within the range of values that would render field-scale

application of hydrochar to soil practically feasible. We also considered

two additional options: (i) 2500 kgC ha�1 and (ii) 10 000 kgC ha�1. The

former corresponds to nearly the smallest value tested experimentally

(0.34% w/w), while the latter is expected to be below or close to the

values that would be practically feasible in field-scale application

(ca. 1% w/w)

Crop

productivity

109 67; 178 % of

system

without

hydrochar

Median productivity increase measured for all crops at relatively medium

–low (≤4% w/w) application rates. We considered two alternative values:

(i) 67% of system without hydrochar, being equal to the 5th percentile of

values measured for crops at relatively medium–low (again, ≤4% w/w)

application rates and (ii) 178% of system without hydrochar, being equal

to the 95th percentile of values reported for all crops at medium–low

application rates (again, at <4% w/w)

Mineralization

rate constant for

the labile pool*

0.081 0.012; 0.14 day�1 Median mineralization rate constant for the labile carbon pool measured

across hydrochars in soils. Perturbation included: (i) slow mineralization,

with the values equal to the 5th percentile of values measured

experimentally for hydrochars in soils (0.012 day�1) and (ii) fast

mineralization, with the values equal to 95th percentile of values

measured experimentally for hydrochars (0.14 day�1)

Mineralization

rate constant for

the recalcitrant

pool

0.0003 0.00014; 0.0014 day�1 Median mineralization rate constant for the recalcitrant carbon pool

measured across hydrochars in soils. Perturbation included: (i) slow

mineralization, with the value equal to the 5th percentile of values

measured experimentally for hydrochars in soils (0.00014 day�1) and (ii)

fast mineralization, with the value equal to the 95th percentile of values

measured experimentally for hydrochars (0.0014 day�1)

Emissions of

N2O and NOx

87 418 % of

system

without

hydrochar

Average (geometric mean) value measured for hydrochars in soils. We

also considered the 95th percentile of emissions measured experimentally

equal to 418% of system without hydrochar. Emissions of N2O were

scaled to the N fertilizer input. Emissions of NOx are linearly related to

emissions of N2O in ecoinvent processes and were thus scaled accordingly

Input of N

fertilizer

100 50 % of

system

without

hydrochar

No influence of hydrochar on fertilizer input was assumed in the baseline

as number of studies on the effect of hydrochar on N fertilizer inputs is

limited and findings rather inconclusive. We also considered one

additional alternative: (i) 50% of system without hydrochar. Hydrochar

produced from green waste materials contains relatively large amounts of

N (1.7%, dry weight, ash-free) which might become a nutrient reservoir

for plants (Reza et al., 2014 and references therein). Thus, the 50% of

system without hydrochar is deemed to be within range of realistic

values. The ecoinvent processes for crop agriculture had to be modified to

scale inputs (ammonium nitrate), emissions to air (dinitrogen monoxide,

ammonia, nitrogen oxides), and emissions to water (nitrate) to different N

fertilizer inputs

*Fraction of the labile pool was assumed equal to 0.034 kgC kgC�1, which is an average (geometric mean) value measured across hydro-

chars. As the fraction of the labile pool was not found to vary largely across various hydrochars (variance equal to 0.006), this value was

used consistently. Fraction of the recalcitrant pool was calculated as a difference between total carbon pool and the labile pool.
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System boundaries of the assessment. Hydrochar application

to soil is a prototype technology, while the HTC itself is a rela-

tively immature option for biowaste treatment. Thus, the pro-

duction and use of hydrochar as soil conditioner are not

expected to have large structural changes on the market. There-

fore, the current study is considered a microlevel decision sup-

port (type A) situation according to ILCD guidelines, and the

assessment applies an attributional approach where average

Spanish or German data and energy mixes are used. System

boundaries specifying the processes included in the assessment

are presented in Fig. 2. Details of the system boundaries with

regard to the HTC and the hydrochar are described in

Owsianiak et al. (2016). In addition to replaced conventional

waste management system (composting or incineration, depend-

ing on the country), we also included HTC plant, production

and postprocessing of the hydrochar and HTC process water,

and transportation of the hydrochar. In cases of processes with

recovery of commodities, system expansion was performed,

where recycled steel substitutes the production of virgin steel

and the HTC process water (concentrated at the HTC plant

using reverse osmosis) substitutes the production of inorganic

fertilizers. Likewise, impact offsets (also known as credits) are

given to avoided agriculture, and to avoided conventional treat-

ment of biowaste in accordance with the recommendations of

the ILCD guidelines for this decision support type.

System modeling. The product systems were modeled in

SimaPro, version 8.3.0.0 (PR�e Consultants bv, the Netherlands).

Data for foreground processes in the HTC system, like types of

equipment and material and energy inputs for the plant, are

based on primary data measured at a HTC plant at Ingelia S.L.

(Valencia region, Spain). Data for generic processes, such as

electricity production and waste management processes, are

based on those available in the ecoinvent database, version 3.2

(Weidema et al., 2013). Ecoinvent is currently one of the most

comprehensive databases of life cycle inventories (i.e., aggre-

gates of resource consumptions and pollutant emissions for

specific processes taken in their life cycle perspective). Parame-

ters and data underlying the modeling of HTC plant and post-

treatment equipment are documented in Owsianiak et al. (2016)

(see Table S3 in their study).

Impact assessment. Environmental ISs were calculated using

the ILCD method for life cycle impact assessment (ILCD 2011

Midpoint+, version 1.05) (Hauschild et al., 2013), as imple-

mented in the LCA modeling software SimaPro, version 8.3.0.0

(PR�e Consultants bv, the Netherlands). Apart from ionizing

radiation impacts on ecosystems considered not sufficiently

representative for this type of impact, all ILCD impact cate-

gories were considered: global warming using GWP100 of

IPCC (2013), stratospheric ozone depletion, photochemical

ozone formation, terrestrial acidification, terrestrial, freshwater

and marine eutrophication, toxicity of released chemicals on

freshwater ecosystems (termed “freshwater ecotoxicity” in the

following) and on human health (termed “human toxicity,” dif-

ferentiated between cancer and noncancer effects), particulate

Fig. 2 System boundaries for hydrothermal carbonization (HTC) of biowaste with hydrochar application to an agricultural soil for

carbon sequestration and temporary storage. The functional unit is “the average application and storage of 1 kg of biogenic HTC car-

bon to a temperate agricultural soil.” Foreground processes refer to those processes which can be structurally changed by the decision

maker, like HTC and soil conditioning. They were constructed based on findings from literature review (for the soil conditioning)

combined with unit processes from earlier study by Owsianiak et al. (2016). Processes in the background system can typically not be

structurally changed by the decision maker and thus were modeled using generic processes from the ecoinvent database, version 3.2

(Weidema et al., 2013).
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matter formation, impacts of radioactive substance on human

health (termed “ionizing radiation”), land use, water use, and

mineral, metal, and fossil resource depletion (Hauschild et al.,

2013).

In addition to the use of GWP100, which is the default

metric used in the ILCD life cycle impact assessment method,

we use two complementary metrics, namely the global tem-

perature change potential (GTP100) and the CTP. These indi-

cators were chosen among other indicators as they (i) are

relevant to hydrochar systems (due to specific kinetics of

CO2 emissions from the hydrochar); (ii) can be used by LCA

practitioners with relatively small effort (Levasseur et al.,

2017); and (iii) represent wide range of different climate

impacts. Other indicators could also be considered (e.g.,

Levasseur et al., 2010), or existing indicators could be further

improved (e.g., to account for dynamics of biomass regrowth;

Guest et al., 2013; Cherubini et al., 2016), but their implemen-

tation was out of scope of this study. The three chosen indi-

cators have different time perspectives and therefore

represent different categories of impacts: from very short,

nearly immediate perspective representing impacts stemming

from the crossing of climatic tipping points (CTP), through

longer but still relatively short/medium-term perspective for

impacts stemming from increase in radiative forcing over the

time horizon of 100 years (GWP100), to long-term impacts

associated with increasing in mean surface temperature in

100 years (GTP100). Thus, the results are reported in parallel

to the other 14 ILCD impact categories. Major features of the

three climate change indicators are synthesized in Table 3.

List of all LCIA methods with references is presented in the

SI, Appendix S2.

Quantification of sensitivity

Scenario analysis. Sensitivity of the results to discrete parame-

ters (e.g., crop type, geographic location, and accounting of

CO2 and methane emissions) presented in Table 1 was con-

ducted by simply comparing ISs, without any internal

normalization.

Perturbation analysis. For continuous parameters presented

in Table 2, sensitivity of ISs was quantified using perturbation

analysis, by varying an input parameter and observing the

resulting change in IS relative to the result using the nonper-

turbed input parameter. Sensitivity of ISs was quantified by

computing normalized sensitivity coefficients (eq 1), as done in

e.g., Ryberg et al. (2015):

XIS;k ¼ DIS=IS
Dak=ak

ð1Þ

where XIS,k is the normalized sensitivity coefficient of IS for

perturbance of continuous parameter k, ak is the kth parameter

value, Dak is the perturbation of parameter ak, IS is the calcu-

lated IS, and DIS is the change of the IS that resulted from the

perturbation of parameter ak. Note, that the Dak is chosen based

on the realistic ranges of parameter values. A parameter is con-

sidered important if XIS,k ≥ 0.5, corresponding to a large sensi-

tivity (Cohen et al., 2013).

Quantification of uncertainty

We considered uncertainties in the parameters which were

found important in the perturbation analysis (i.e., XIS,k ≥ 0.5),

namely mineralization rate constants and crop yield. They were

assigned geometric standard deviations based on the distribu-

tion of measured values retrieved in the literature review, fol-

lowing the method presented in Huijbregts et al. (2003) (SI,

Appendix S4). Uncertainties in the life cycle inventories for the

foreground processes (e.g., in material inputs or emissions)

were estimated using the Pedigree matrix approach (Ciroth,

2013), as done in Owsianiak et al. (2016), whereas uncertainties

in the background processes were based on geometric standard

deviations already assigned to flows in the ecoinvent processes

that were used to create the background system. Monte Carlo

simulations (1000 iterations) were carried out for pairwise com-

parison between the baseline scenario and other scenarios

listed in Table 1 while keeping track of the correlations

between the two systems. Comparisons were considered statis-

tically significant if at least 95% of all 1000 Monte Carlo runs

were favorable for one scenario.

Results

Data collected from the literature review are reported in

the SI, Appendix S1. Life cycle inventories are reported

in Appendix S3. Below, we present an overview of life

cycle impact assessment results across all scenarios

showing results for selected scenarios and impact cate-

gories. Results for all scenarios and all impact categories

are documented in the Appendix S5.

Table 4 shows results in category-specific units across

all 17 impact categories computed for the scenarios of

barley agriculture in either Spain or Germany (scenarios

1 and 7 in Table 1, respectively). Figure 3 shows results

for the three indicators of climate change for twelve sce-

narios testing the influence of the type of crop in either

Spain or Germany (scenarios 1–12). Overall, four main

trends can be observed. First, using hydrochar in agri-

culture may bring environmental benefits, depending

on the impact category. In the baseline scenario of bar-

ley agriculture in Spain, environmental benefits are seen

in six of 17 impact categories, including climate change

(GWP100) and climate tipping, but not global tempera-

ture change (GTP100). Second, ISs are generally higher

for Germany as compared to Spain. For barley, statisti-

cally significant differences between Spain and Ger-

many were found in nine impact categories, and

Germany performed worse in all categories except

freshwater eutrophication (see Tables S12, SI

Appendix S5). Third, although differences in ISs

between crops might appear relatively small, we found

statistically significant differences in the majority of

impact categories (Tables S13-S14 in the SI,

Appendix S5). The fourth main observation is the

important contribution from emissions of methane and
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Table 3 Major features of the three indicators of climate change used in this study. List of all 17 LCIA indicators is presented in the

SI, Appendix S2

Name and

reference

Global warming potential (GWP)

(Forster et al., 2007)

Global temperature change

potential (GTP) (Shine et al.,

2007)

Climate tipping potential (CTP)

(Jørgensen et al., 2014a, 2015)

Abbreviation and

unit of indicator

GWP (e.g., GWP100) in kg CO2

eq. kg�1

GTP (e.g., GTP100) in kg CO2

eq. kg�1

CTP (e.g., CTPRCP6) in pptrc kg
�1

(parts per trillion of remaining

capacity of the atmosphere to

take up emission)

Definition “integrated radiative forcing of a

gas between the time of

emission and a chosen time

horizon, relative to that of CO2”

(Levasseur et al., 2017)

“global average temperature

increase of the atmosphere at a

future point in time that results

from the emission determined

for a specific time horizon

divided by the temperature

increase caused by an

equivalent amount of CO2”

(Levasseur et al., 2017)

“absolute impact from a

marginal GHG emission based

on its share of the total impact

that can still take place before a

predefined target level is

reached” (Jørgensen et al.,

2014a)

Cause–effect

description and

time horizon (as

used in this study)

Cumulative radiative forcing

over 100 years*

Instantaneous temperature at

100 years†

Cumulative impact of a GHG

emission relative to the

atmospheric capacity for taking

up GHG emissions before

reaching the target level as it

depends on the choice of target

level (e.g., 450 ppm eq) and the

development in atmospheric

GHG concentration (e.g., in

representative concentration

pathway RCP6 scenario)‡

Time perspective of

impact assessment

Short/medium-term climate

change (“rate of climate change,

impacts related to the

adaptation capacity of humans

and ecosystems”) (Levasseur

et al., 2017)

Long-term climate change

(“long-term temperature

increase and related impacts on

ecosystems and humans”)

(Levasseur et al., 2017)

Very short, nearly immediate

perspective representing

impacts stemming from the

crossing of climatic tipping

point at given target level (e.g.,

atmospheric CO2 concentration

of 450 ppm eq.)

Dealing with

carbon

sequestration and

biogenic emissions

of CO2

CO2 incorporated in biomass and

biogenic emissions of CO2 are

assigned GWP100 equal to -1

and 1 kg CO2 eq, respectively

CO2 incorporated in biomass and

biogenic emissions of CO2 are

disregarded as no

recommendations are made

about how to deal with biogenic

CO2 (Levasseur et al., 2017)

Uptake of CO2 is treated as

negative emissions for storage

occurring before target time, but

biogenic emissions of CO2 are

assigned CTP depending on the

timing of emission before the

target time

Dealing with

temporary carbon

storage and

delayed emissions

Delayed CO2 emissions are given

credits following the

assumption that storing 1 kg

CO2 eq. during 100 years

compensates a 1 kg CO2 eq

emission

Disregards any benefits from

temporary carbon storage and

just uses GTP100 values applied

to relevant GHG emissions

irrespective of when they occur

Carbon sequestered from the

atmosphere and later stored is

given credits only when stored

sufficiently long beyond target

time

Substance coverage Vast majority of relevant GHGs

including chlorofluorocarbons,

hydrofluorocarbons,

perfluorocarbons, and sulfur

hexafluoride

Major GHGs only, including

CO2, CH4, N2O, HCF-134a,

CFC-11, PFC-14, and sulfur

hexafluoride

Three major GHGs only: CO2,

CH4, and N2O

(continued)
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CO2 from mineralization of native organic carbon if

these GHGs are accounted for, with much larger contri-

bution from methane than that of CO2 (Fig. S3, SI

Appendix S5).

Overall, our results suggest that (i) hydrochar produc-

tion and use in agriculture can bring environmental

benefits, depending on the country of hydrochar

production and use, and category of impact considered;

(ii) consideration on the influence of hydrochar on emis-

sions of methane and CO2 from mineralization of native

soil organic carbon is important; and (iii) different indi-

cators of climate change provide compounding insights

with regard to climate change mitigation potential of

hydrochars.

Table 3 (continued)

Name and

reference

Global warming potential (GWP)

(Forster et al., 2007)

Global temperature change

potential (GTP) (Shine et al.,

2007)

Climate tipping potential (CTP)

(Jørgensen et al., 2014a, 2015)

Stakeholder

acceptance and

use

Widely accepted and used

indicator, employed in LCA

and carbon footprinting,

although there can be

differences in approaches to

dealing with biogenic carbon

and delayed emissions

(Christensen et al., 2009;

Laurent & Owsianiak, 2017)

Recommended by IPCC and

LCA community, although not

widely used in LCA studies

(Levasseur et al., 2017)

Relatively new indicator that has

not been widely used, except

demonstration case studies

(Jørgensen et al., 2014b, 2015)

*GWPs for shorter or longer time horizons, like 20 and 500 years, can also be calculated.

†GTPs for shorter time horizons, like 20 or 50 years, can also be calculated.

‡CTPs for different concentration pathways like the mitigation scenario RCP3PD or high baseline scenario RCP8.5 can also be

calculated.

Table 4 Characterized impacts and accompanying 95% probability ranges from Monte Carlo simulations, expressed in category-

specific units for hydrochar used in barley agriculture in Spain (baseline, scenario 1 in Table 1) and in Germany (scenario 7 in

Table 1). The probability ranges represent both parameter and inventory uncertainties, as explained in detail in the SI, Appendix S4.

Results for other scenarios are tabulated in the SI, Appendix S5 (Tables S9 and S10). Statistical comparison between impact scores tak-

ing into account correlations is presented in Table S12 of the SI (Appendix S5)

Impact category Unit

Impact score (95% probability range)

Scenario 1 (barley; Spain) Scenario 7 (barley; Germany)

Climate change (GWP100) kg CO2 eq �1 (�2.9 to 0.022) 0.54 (�1.1 to 1.3)

Climate change, long-term (GTP100) kg CO2 eq 0.07 (�0.53 to 0.53) 0.99 (0.1 to 1.4)

Climate tipping (RCP6 2017) pptrc �0.01 (�0.034 to 0.0044) �0.0077 (�0.034 to 0.0013)

Ozone depletion kg CFC-11 eq 1.0E-07 (8.4E-08 to 1.4E-07) 9.4E-07 (7.2E-07 to 1.3E-06)

Photochemical ozone formation kg NMVOC eq 5.3E-04 (�1.1E-03 to 1.8E-03) 2.3E-03 (�8.8E-04 to 1.0E-02)

Acidification molc H+ eq �0.007 (�0.017 to �0.0025) 0.0064 (0.0022 to 0.015)

Terrestrial eutrophication molc N eq �0.046 (�0.089 to �0.026) 0.0054 (�0.043 to 0.036)

Freshwater eutrophication kg P eq 0.0018 (0.0014 to 0.0025) 0.002 (�0.0019 to 0.0031)

Marine eutrophication kg N eq �0.0014 (�0.0031 to �0.00042) 0.00084 (�0.0039 to 0.0033)

Freshwater ecotoxicity CTUe 13 (10 to 16) 19 (�60 to 57)

Human toxicity, cancer effects CTUh 8.7E-08 (5.1E-08 to 1.2E-07) 2.1E-07 (2.5E-08 to 4.7E-07)

Human toxicity, noncancer effects CTUh 2.5E-06 (1.6E-06 to 5.0E-06) 6.0E-06 (�4.6E-05 to 5.4E-05)

Particulate matter kg PM2.5 eq 7.3E-04 (3.9E-04 to 1.1E-03) 1.3E-03 (7.9E-04 to 2.2E-03)

Ionizing radiation, human health kBq U235 eq 0.13 (0.12 to 0.16) 0.39 (0.15 to 3)

Water resource depletion m3 water eq �0.05 (�0.13 to �0.015) 0.2 (�1.1 to 0.59)

Land use kg C deficit 2.3 (�64 to 47) 0.74 (�60 to 57)

Mineral, fossil, and renewable

resource depletion

kg Sb eq 8.1E-05 (6.0E-05 to 1.3E-04) 8.0E-05 (5.1E-05 to 1.5E-04)
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Discussion

In the below, we explain results and evaluate of hydro-

char as a potential carbon sequestration and storage

technology. Implications for decision makers, LCA prac-

titioners, and method developers are presented there-

after.

Insights from the three indicators of climate change

To explain differences between countries, a process con-

tribution analysis, that is, identifying processes with the

largest environmental burden, was conducted for the

scenarios with barley agriculture in Spain and Germany

(scenarios 1 and 7 in Table 1), complementing overall

results presented in Table 4 and Fig. 3. As each indica-

tor sheds light on a specific aspect of climate change

impacts, results are interpreted per indicator. They are

presented in Fig. 4.

Global warming. The process contribution analysis

shows that climate change benefits from carbon seques-

tration and temporary storage, as quantified using the

GWP100 approach, are the same in the two countries

(Fig. 4a). Thus, the difference in ISs between Spain and

Germany originates from different processes, in particu-

lar the waste management system that is replaced by

HTC when green waste is treated hydrothermally. In

Spain, HTC replaces composting with fertilizer recov-

ery. Although there are some benefits from using com-

post as fertilizer (resulting in avoiding production of

inorganic fertilizer), overall composting is not beneficial

from the global warming perspective due to emissions

of methane. Thus, replacing composting with HTC

brings benefits to the hydrochar system. Figure 4a

shows that these benefits are at least twice higher than

benefits from carbon sequestration and temporary stor-

age in hydrochar (ca. 0.3 kg CO2 eq.), and are higher

than burdens stemming from transportation of the bio-

waste (ca. 0.2 kg CO2 eq), hydrochar production (ca.

0.3 kg CO2 eq), and its application to soil by ploughing

(ca. 0.05 kg CO2 eq.). By contrast, replacing biowaste

incineration with recovery of heat and electricity as pri-

marily done in Germany does not bring climate benefits

to the hydrochar system because the recovery of energy

at the incinerator itself avoids emissions of fossil CO2

which is an important contributor to global warming

impacts from electricity and heat production in Ger-

many. Although potential environmental benefits from

carbon sequestration and temporary storage are not suf-

ficient to outweigh climate burdens in this country, the

reader should note that this rebound effect might not

occur in countries with a cleaner grid mix.

Fig. 3 Characterized impact scores in category-specific units

for three climate change impact categories for hydrochar use

in agriculture of either of six crops (barley, wheat, sugar beet,

fava bean, onion, and lucerne) in either Spain or Germany

(scenarios 1–12 in Table 1). The scores are for the functional

unit defined as “the average application and storage of 1 kg

of biogenic HTC carbon to a temperate agricultural soil.”

Absolute uncertainties are too large to be shown, but statisti-

cal comparison taking into account correlation between

uncertainties revealed significant differences between coun-

tries and crops (see the SI, Appendix S5). Results for scenar-

ios considering priming effects and increase in methane

emissions (scenarios 13–24 in Table 1) are presented in the SI,

Appendix S5 (Fig. S3).
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Global temperature change. Assessment of climate change

mitigation potential of hydrochar using GTP100 as an

indicator generally shows no mitigation from using

hydrochar in agriculture irrespective of the country,

except for onion agriculture in Spain where negative

scores are calculated (Fig. 4b). Process contribution

analysis revealed that this is due to disregarding poten-

tial contribution from temporary carbon storage, cur-

rently not considered in the GTP100 approach. Potential

benefits from replacing composting are smaller than in

the GWP100 approach because GTP for methane is only

11 times larger than that of CO2 (as compared to its

GWP100 equal to 25 kg CO2 eq.). Indeed, with its

long-term perspective, GTP100 gives less weight to

short-lived GHGs like methane and this influences the

comparison in our case study. Omission of several chlo-

rinated and/or fluorinated methanes and ethanes from

our assessment due to missing GTP100 is not expected

to influence our conclusions, because their contribution

to climate change impacts in the GWP100 approach is

very small (ca. 1%), and because they are not important

GHGs in a biowaste treatment context.

Climate tipping. Climate tipping ISs are negative and

equal to �0.01 and �0.0077 pptrc for Spain and Ger-

many, respectively. Process contribution analysis

revealed that these negative scores are, again, mainly

due to replaced compositing of biowaste in Spain

(Fig. 4c). These benefits are larger (relative to contribu-

tion from other processes) than in the GWP100 approach,

however, because CTP of methane (for an emission

occurring in 2017) is 85 times larger than that of CO2. In

the CTP approach, which has the shortest perspective of

the three indicators, more weight is given to short-lived

GHG like methane. There are also climate tipping bene-

fits from avoided incineration calculated in Germany,

which is mainly due to emissions of biogenic CO2 when

biowaste is incinerated. This is different from the

GWP100 approach, where neutrality of biogenic carbon

sequestered and immediately emitted is assumed, and is

different from the GTP100 approach where biogenic CO2

is not accounted for (as no recommendations exist yet

about it; Levasseur et al., 2017). Although sequestration

and temporary storage of carbon are included in the CTP

approach, climate tipping benefits are only when carbon

is stored (sufficiently long), which is not the case for

incineration of biowaste where no storage occurs. Tem-

porary carbon storage does occur in case of hydrochar

added to soil, but impacts stemming from hydrochar

application to soils due to emissions of biogenic CO2 as

hydrochar mineralizes over time are larger than benefits

from temporary carbon storage because large part of bio-

genic CO2 will be emitted shortly before the climatic tip-

ping point, where CTPs are the largest, resulting in

climate impact rather than mitigation. Only a small part

of hydrochar carbon is stored beyond the target time.

Fig. 4 Contribution of life cycle processes to total impacts from hydrochar use in agriculture of barley in either Spain (ES) or Ger-

many (DE) (scenarios 1 and 7 in Table 1) presented for three climate change impact categories expressed in category-specific units (a:

GWP100; b: GTP100; c: CTP).
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When does hydrochar bring environmental benefits?

Perturbation analysis for parameters presented in

Table 2 identified inherent stability of the hydrochar in

the soil (i.e., mineralization rate constant for the recalci-

trant carbon pool) and crop yield as the most influential

parameters on environmental performance of hydrochar

(see Table S15 of the SI, Appendix S5). Uncertainty of

these parameters was considered in our analysis. Yet, it

could be argued that as experience with using hydro-

char in agriculture grows and technology matures, both

hydrochar stability and crop yield will be optimized.

This will reduce the uncertainty while potentially

increasing climate change mitigation potential of hydro-

char. Increasing yields may also increase other life cycle

impacts, beyond climate change. It is therefore useful to

investigate whether there are conditions where hydro-

char could bring enough benefits to outweigh all the

burdens in locations where its use is not yet beneficial,

like Germany, or to what extent it can increase climate

benefits in locations like Spain.

An important parameter potentially contributing to

climate change mitigation is the inherent stability of

hydrochar in the soil. The influence of hydrochar stabil-

ity on short/medium-term climate change (GWP100

approach) is illustrated in Fig. 5a. It shows how changes

in contribution from temporary carbon storage to global

warming (in terms of contribution to radiative forcing)

over the time horizon of 100 years increase with an

increase in hydrochar stability. When stability

increased, corresponding to mineralization half-life of

ca. 15 years (against ca. 5 years as default), benefits

from temporary carbon storage are roughly tripled. This

increase might seem significant, but it was not sufficient

to outweigh global warming impacts stemming from

other life cycle processes in Germany. The increase was

not that important in Spain where climate benefits

(GWP100) were always larger than burdens irrespective

of the hydrochar stability in the soil (see Appendix S5,

Table S17). This shows relatively small influence of

hydrochar stability on short/medium-term climate

change in these two countries. Figure 5b shows the

influence of hydrochar stability on climate tipping

impacts, which, contrary to the GWP100 approach, is

the smallest for least-stable hydrochar while differences

between the most stable hydrochar and the hydrochars

with default stability (equal to median across measured

values) are very small. This pattern was not unexpected

considering timing of CO2 emissions and magnitude of

CTPs. The contribution to climate tipping impact is ini-

tially smaller for the most stable hydrochar, consistently

with the GWP100 approach, because both emissions are

relatively small and CTPs are relatively small. Yet, this

contribution increases rapidly toward year 2032 because

large part of emissions will occur shortly before year

2032, where CTPs are the largest. This explains why

contribution to climate change mitigation is largest for

the least-stable hydrochar despite the fact that most

emissions occur shortly (within 2 years) after storage

time. These impacts are overall larger than some bene-

fits from temporary carbon storage beyond year 2032.

Thus, although from the very short-term perspective the

use of least-stable hydrochar in Germany appears most

beneficial, it does come at the expense of increasing

short/medium-term impact (see Appendix S5,

Table S17). Least-stable hydrochar could be a climate

sound option for use in Spain, as it reduces very short-

term climate (tipping) impacts, without considerably

worsening short/medium-term climate impacts (see

Appendix S5, Table S16). Long-term perspective offered

(a)

(b)

Fig. 5 Sensitivity of climate change impact scores to mineral-

ization rate constant of the recalcitrant carbon pool in the

hydrochar shown for the GWP100 approach expressed in terms

of contribution to radiative forcing (a), and for climate tipping

potential approach expressed in part per trillion of remaining

capacity equivalents (b). The overall impacts represent area

below the curves. Baseline value and perturbed values corre-

spond to those presented in Table 2. The values just are for

1 kg of C stored and emitted as CO2, disregarding other life

cycle impacts. GTP indicator is not affected by stability of

hydrochar and hence is not displayed.
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by the GTP indicator in its current form is not affected

by stability of hydrochar.

The second important parameter is the influence of

hydrochar on crop productivity. When this parameter

was equal to 109% of control (default value), the lowest

ISs were consistently calculated for onion in both coun-

tries, while the highest were for fava bean in Spain and

lucerne in Germany (Fig. 3). Although increasing yield

to 178% of control, which is in higher range of mea-

sured values, increases climate benefits (GWP100) by a

factor of 5–6 in Germany, these benefits do not out-

weigh burden as contribution of agriculture to total cli-

mate benefits is relatively small. Global warming

impacts remain positive for all crops, except onion (see

Table S19, Appendix S5), and the same trend was

observed for the GTP100 approach. Relatively large

impacts per tonne of onion produced, combined with rel-

atively large inherent yields per hectare in Germany

(40 tonnes ha�1), result in overall large benefits when

productivity increases. Overall, of all 17 categories of

impact considered, the ISs are negative in 2 (lucerne), 3

(fava bean), 5 (barley, wheat, and sugar beet), and 11

(onion) impact categories when yield is equal to 178% of

control in Germany (as compared with ISs being negative

in 1 impact category in the scenario with the default

value of 105%) (Tables S19). In Spain, where inherent

yields are lower, increasing crop productivity in Spain to

178% of system without hydrochar addition would result

in scores being negative in 8 (barley, wheat), 7 (sugar

beet, fava bean, lucerne), and 10 (onion) impact cate-

gories (as compared to 5–7 impact categories when

default value was used) (Table S19, Appendix S5).

Implications for implementation of the technology at field
scale

This first life cycle-based evaluation of hydrochar as a

potential carbon sequestration and temporary storage

technology when used as soil conditioner highlights the

key parameters which should be considered when mak-

ing decisions about potential implementation of the

technology at field scale.

We showed that although benefits from temporary

storage of carbon are not negligible, they are relatively

modest compared to impacts and benefits from replac-

ing inefficient waste treatment options, like composting.

Thus, climate change mitigation potential of hydrochars

is mainly from replacing climate-inefficient waste man-

agement system. Carbon storage benefits from HTC can

be either reinforced or counterbalanced by the type of

waste management systems that it substitutes.

Although the importance of a replaced waste manage-

ment system has been shown in our earlier study on

hydrochar used as solid fuel, here we show that it

becomes even more important when hydrochar is used

as soil conditioner because there are no benefits from

substituting energy sources (Owsianiak et al., 2016). As

solid waste management systems are site- and country-

specific, the overall performance of hydrochar systems

will be case-specific. Thus, decision makers should

carefully consider geographic location of hydrochar

production and use, with focus on consideration of con-

ventional biowaste management system within that

location that the hydrothermal treatment replaces. Life

cycle inventories described in the SI, Appendix S3, can

be readily adapted to determine whether hydrochar

production and use in agriculture in other geographic

locations are valuable.

When the technology is implemented at field scale,

focus will naturally be on ensuring that hydrochar

increases crop productivity (e.g., through hydrochar

washing to remove potentially toxic compounds). We

showed that this parameter influences other types of

impacts, not just climate change. Thus, all categories of

impacts should be considered when supporting deci-

sions about hydrochar use as soil conditioner. Decision

makers should also note that although from the climate

change perspective increasing yields might not always

be sufficient to bring climate change mitigation, there

will be environmental benefits in other impact cate-

gories, like terrestrial eutrophication and land use. This

highlights the potential of hydrochar when its influence

on crop productivity is optimized. Crop productivity

will determine the cost and benefits of the technology

and, ultimately, its practical implementation, and we

showed that it is an important parameter to consider

also from the environmental perspective.

Finally, although from a climate change mitigation

perspective the choice of crop was found to be of rela-

tively small importance, results presented in

Appendix S5 of the SI and discussed in the previous

paragraph clearly show that the response of hydrochar

systems to this parameter is crop-specific. Hydrochar

performs best for crops with inherently high yields per

hectare (like onion), where benefits from increased pro-

ductivity are the largest. It also performs well for crops

which require relatively large inputs of fertilizer, like

cereal crops, despite relatively low yields. By contrast,

hydrochar is not expected to perform well for crops

with low yields like fava bean or for crops which do not

require fertilize inputs like lucerne. Our results for the

scenario with lucerne also suggest that using hydrochar

for just temporary carbon storage, for example, in areas

where production of crops is not an important contribu-

tor to impact, like grass grown in grazing land, would

not be a good idea from an life cycle perspective as ben-

efits will not outweigh impacts even when high

increases in productivity are foreseen.
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Recommendations to life cycle assessment practitioners
and method developers

Using three different indicators of climate change might

seem challenging to LCA practitioners who need to cal-

culate ISs and interpret results. We stress, however, that

the three indicators are not alternatives to each other.

On the contrary, they complement each other by offer-

ing different perspectives to quantifying climate change

performance of a product or system. Our case study of

hydrochar used as solid conditioner displayed this.

Replacing composting with impacts driven by CH4

emissions shows different trends between the short/

medium-term perspective offered by the GWP100,

where benefits due to CH4 avoidance outweighing

impacts from CO2 emissions, and long-term perspective

offered by the GTP100 where the opposite was the case.

Replacing incineration shows generally no benefits in

short/medium- and long-term perspectives because of

the rebound effect on relatively dirty grid mix. Further,

climate benefits from temporary storage of carbon also

differ between indicators, indicating that there climate

change mitigation is more consistently and thoroughly

investigated when indicators offering different perspec-

tives are employed. As the perspective can influence the

assessment, we thus recommend practitioners quantify-

ing climate change mitigation potential of products

which release carbon temporarily, like hydrochars do,

using different set of indicators chosen based on their

relevance to the studied system. For hydrochar systems,

we recommend LCA practitioners using global warm-

ing potentials (GWP100) and CTPs, both with credits

given to temporary carbon storage, as these are particu-

larly relevant to hydrochars which degrade relatively

quickly in soils. The use of global temperature change

potential indicators (GTP100) is also advocated as it

focuses on long-term climate impacts, but it should be

used and interpreted with caution when used for sys-

tems with temporary carbon as currently this indicator

does not allow handling temporary carbon storage. For

developers of impact assessment methods, the priority

for method developers should be the harmonization of

the three indicators used in this study in terms of sub-

stance coverage, and proposing recommendations about

considering of temporary carbon storage in the GTP

approach as recently was tested by others (Cherubini

et al., 2016).
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Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2010) Considering time

in LCA: dynamic LCA and its application to global warming impact assessments.

Environmental Science and Technology, 44, 3169–3174.

Levasseur A, De Schryver A, Hauschild MZ, Kabe Y, Sahnoune A, Tanaka K, Cheru-

bini F (2017) Greenhouse gas emissions and climate change impacts. In: Global

Guidance for Life Cycle Impact Assessment Indicators - Volume 1 (eds Frischknecht R,

Jolliet O), pp. 60–79. UNEP/SETAC Life Cycle Initiative, Paris, France.

Libra JA, Ro KS, Kammann C et al. (2011) Hydrothermal carbonization of biomass

residuals: a comparative review of the chemistry, processes and applications of

wet and dry pyrolysis. Biofuels, 2, 71–106.

Liu X, Kent Hoekman S, Farthing W, Felix L (2017) TC2015: life cycle analysis of co-

formed coal fines and hydrochar produced in twin-screw extruder (TSE). Environ-

mental Progress and Sustainable Energy, 36, 668–676.

Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and

hydrothermal carbonization vary in carbon sequestration potential and green-

house gases emissions. Soil Biology & Biochemistry, 62, 137–146.

Malghani S, J€uschke E, Baumert J, Thuille A, Antonietti M, Trumbore S, Gleixner G

(2014) Carbon sequestration potential of hydrothermal carbonization char (hy-

drochar) in two contrasting soils; results of a 1-year field study. Biology and Fertil-

ity of Soils, 51, 123–134.

Naisse C, Girardin C, Lefevre R, Pozzi A, Maas R, Stark A, Rumpel C (2014) Effect

of physical weathering on the carbon sequestration potential of biochars and

hydrochars in soil. GCB Bioenergy, 7, 488–496.

Owsianiak M, Ryberg MW, Renz M, Hitzl M, Hauschild MZ (2016) Environ-

mental performance of hydrothermal carbonization of four wet biomass waste

streams at industry-relevant scales. ACS Sustainable Chemistry & Engineering, 4,

6783–6791.

Qayyum MF, Steffens D, Reisenauer HP, Schubert S (2012) Kinetics of carbon miner-

alization of biochars compared with wheat straw in three soils. Journal of Environ-

ment Quality, 41, 1210.

Reibe K, G€otz K-P, D€oring TF, Roß C-L, Ellmer F (2014) Impact of hydro-/biochars

on root morphology of spring wheat. Archives of Agronomy and Soil Science, 61,

1041–1054.

Reibe K, Roß C-L, Ellmer F (2015) Hydro-/Biochar application to sandy soils: impact

on yield components and nutrients of spring wheat in pots. Archives of Agronomy

and Soil Science, 61, 1055–1060.

Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J (2014)

Hydrothermal carbonization of biomass for energy and crop production. Applied

Bioenergy, 1, 11–29.

Ruysschaert G, Nelissen V, Postma R et al. (2016) Field applications of pure biochar in

the North Sea region and across Europe. In: Biochar in European Soils and Agriculture

(eds Shackley S, Ruysschaert G, Zwart K, Glaser B), pp. 99–135. Routledge, London.

Ryberg MW, Owsianiak M, Laurent A, Hauschild MZ (2015) Power generation from

chemically cleaned coals: do environmental benefits of firing cleaner coal out-

weigh environmental burden of cleaning? Energy & Environmental Science, 8,

2435–2447.

Schimmelpfennig S, M€uller C, Gr€unhage L, Koch C, Kammann C (2014) Biochar,

hydrochar and uncarbonized feedstock application to permanent grassland-

Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems &

Environment, 191, 39–52.

Schimmelpfennig S, Kammann C, Moser G, Gr€unhage L, M€uller C (2015) Changes

in macro- and micronutrient contents of grasses and forbs following Miscant-

hus 9 giganteus feedstock, hydrochar and biochar application to temperate grass-

land. Grass & Forage Science, 70, 582–599.

Schulze M, Mumme J, Funke A, Kern J (2016) Effects of selected process condi-

tions on the stability of hydrochar in low-carbon sandy soil. Geoderma, 267, 137–

145.

Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RB, Stuber N (2007) Comparing the cli-

mate effect of emissions of short- and long-lived climate agents. Philosophical Trans-

actions. Series A, Mathematical, physical, and engineering sciences, 365, 1903–1914.

Subedi R, Kammann C, Pelissetti S, Taupe N, Bertora C, Monaco S, Grignani C

(2015) Does soil amended with biochar and hydrochar reduce ammonia emis-

sions following the application of pig slurry? European Journal of Soil Science, 66,

1044–1053.

Titirici M-M, White RJ, Brun N et al. (2014) Sustainable carbon materials. Chemical

Society Reviews, 44, 250–290.

Wagner A, Kaupenjohann M (2014) Suitability of biochars (pyro- and hydrochars)

for metal immobilization on former sewage-field soils. European Journal of Soil

Science, 65, 139–148.

Weidema BP, Bauer C, Hischier R et al. (2013) Data quality guidelines for the ecoinvent

database version 3: Overview and methodology (final), Vol. 10.

Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Appendix S1. Data collected from literature review.
Figure S1. Variability in crop productivity as influenced by hydrochar application rate.
Table S1. Collected data on the effects of hydrochar on crop productivity.

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., 10, 230–245

244 M. OWSIANIAK et al.



Table S2. Collected data on the effects of hydrochar on mineralization kinetics of hydrochar carbon.
Table S3. Collected data on the effects of hydrochar on mineralization of native soil organic carbon (priming effect).
Table S4. Collected data on the effects of hydrochar on evolution of methane (CH4) from the soil.
Table S5. Collected data on the effects of hydrochar on evolution of nitrous oxide (N2O) from the soil.
Appendix S2. Details of life cycle impact assessment methods
Table S6. LCIA methods for the impact categories considered in this study as recommended methods by the International Refer-
ence Life Cycle Data System, ILCD (JRC, 2011).
Appendix S3. Data underlying LCA model, unit processes and LCI results.
Table S7. Model parameters and data sources for foreground processes in the hydrothermal carbonization (HTC) of green waste
at full-commercial scale with four reactors.
Table S8. Inventory for the unit process “Average application and storage of biogenic HTC carbon to a temperate agricultural soil
{ES, DE, miow}| hydrothermal carbonization (HTC) with carbon sequestration, Alloc Rec, U, MIOW” at full commercial-scale with
4 reactors.
Table S9. Yields of crops (i.e., crop productivity for system without hydrochar) in Spain and Germany used in the LCA.
Appendix S4. Details of uncertainty analysis.
Figure S2. Histograms of collected values of crop productivity (A) and mineralization rate constant of the recalcitrant carbon pool
(B).
Appendix S5. Additional life cycle impact assessment results.
Table S10. Characterized impacts and accompanying 95% probability ranges from Monte Carlo simulations, expressed in cate-
gory-specific units for hydrochar used in agriculture of various crops in Spain (ES) (scenarios 1–6 in Table 1).
Table S11. Characterized impacts and accompanying 95% probability ranges from Monte Carlo simulations, expressed in cate-
gory-specific units for hydrochar used in agriculture of various crops in Germany (DE) (scenarios 7–12 in Table 1).
Table S12. Percentage of Monte Carlo iterations where characterized impact scores are larger for Spain than for Germany.
Table S13. Percentage of Monte Carlo iterations where characterized impact scores are larger for barley when compared to the
other crop in Spain.
Table S14. Percentage of Monte Carlo iterations where characterized impact scores are larger for barley when compared to the
other crop in Germany.
Figure S3. Characterized impacts showing the influence of accounting for positive priming effect (scenarios 13–24 in Table 1) or
hydrochar-induced methane emissions (scenarios 25–36 in Table 1) on global warming (A, B), global temperature change (C, D),
and climate tipping (E, F) impacts for hydrochar used in agriculture of various crops in either Spain (left panel) or Germany (right
panel).
Table S15. Normalized sensitivity coefficients for perturbation of of model parameters listed in Table 2 for the scenario with bar-
ley agriculture in Spain (scenario 1 in Table 1).
Table S16. Characterized impacts expressed in category-specific units for hydrochar used in agriculture of various crops in Spain
(scenarios 1–6 in Table 1) for default hydrochar stability (mineralization rate constant of the recalcitrant carbon pool equal to
0.0003 day�1; results are also reported in Table S10) and for perturbation of the mineralization rate constant of the recalcitrant car-
bon pool equal to 0.00014 (high stability) and 0.0014 day�1 (high stability) Cells highlighted green indicate impact scores ≤0.
Table S17. Characterized impacts expressed in category-specific units for hydrochar used in agriculture of various crops in Ger-
many (scenarios 7–12 in Table 1) for default hydrochar stability (mineralization rate constant of the recalcitrant carbon pool equal
to 0.0003 day�1; results are also reported in Table S11) and for perturbation of the mineralization rate constant of the recalcitrant
carbon pool equal to 0.00014 (high stability) and 0.0014 day�1 (high stability) Cells highlighted green indicate impact scores ≤0.
Table S18. Characterized impacts expressed in category-specific units for hydrochar used in agriculture of various crops in Spain
(scenarios 1–6 in Table 1) for default crop productivity equal to 105% of system without hydrochar (results are also reported in
Table S10) and for perturbation of the crop productivity equal to 178% of system without hydrochar.
Table S19. Characterized impacts expressed in category-specific units for hydrochar used in agriculture of various crops in Ger-
many (scenarios 7–12 in Table 1) for default crop productivity equal to 105% of system without hydrochar (results are also
reported in Table S11) and for perturbation of the crop productivity equal to 178% of system without hydrochar.
Appendix S6. References.

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., 10, 230–245

CLIMATE CHANGE MITIGATION USING HYDROCHARS 245


