Document downloaded from:

http://hdl.handle.net/10251/123147
This paper must be cited as:

Pérez-Gonzalez, AM.; Molté, G.; Caballer Fernandez, M.; Calatrava Arroyo, A. (2018).
Serverless computing for container-based architectures. Future Generation Computer
Systems. 83:50-59. https://doi.org/10.1016/].future.2018.01.022

The final publication is available at

http://doi.org/10.1016/j.future.2018.01.022

Copyright E|sevier

Additional Information

Serverless Computing for Container-based Architectures

Alfonso Pérez** Germéan Molté?*, Miguel Caballer®, Amanda Calatrava®

@Instituto de Instrumentacion para Imagen Molecular (13M)
Centro mixto CSIC - Universitat Politécnica de Valéncia
Camino de Vera s/n, 46022, Valencia

Abstract

New architectural patterns (e.g. microservices), the massive adoption of Linux contain-
ers (e.g. Docker containers), and improvements in key features of Cloud computing
such as auto-scaling, have helped developers to decouple complex and monolithic sys-
tems into smaller stateless services. In turn, Cloud providers have introduced serverless
computing, where applications can be defined as a workflow of event-triggered functions.
However, serverless services, such as AWS Lambda, impose serious restrictions for these
applications (e.g. using a predefined set of programming languages or difficulting the
installation and deployment of external libraries). This paper addresses such issues by
introducing a framework and a methodology to create Serverless Container-aware AR-
chitectures (SCAR). The SCAR framework can be used to create highly-parallel event-
driven serverless applications that run on customized runtime environments defined as
Docker images on top of AWS Lambda. This paper describes the architecture of SCAR
together with the cache-based optimizations applied to minimize cost, exemplified on a
massive image processing use case. The results show that, by means of SCAR, AWS
Lambda becomes a convenient platform for High Throughput Computing, specially for
highly-parallel bursty workloads of short stateless jobs.

Keywords: Cloud Computing, Serverless, Docker, Elasticity, AWS Lambda

1. Introduction

Cloud computing introduced the ability to provision on-demand computational re-
sources reducing the needs for on-premises resources. Indeed, Virtual Machines (VMs)
have played a fundamental role to create customized and replicable execution environ-
ments for applications, in order to guarantee successful executions. Also, elasticity has
been the cornerstone functionality of IaaS (Infrastructure as a Service) Cloud computing
where new VMs can be provisioned in order to cope with increased workloads. Public
Cloud providers such as Amazon Web Services (AWS) [I] have fostered the migration
of complex application architectures to the Cloud in order to take advantage of the
pay-per-use cost model.

*Corresponding author: Tel. 434963877356
Email address: alpegon3@upv.es (Alfonso Pérez)

Preprint submitted to Elsevier February 1, 2018

In parallel, the mainstream adoption of Linux containers, propelled by the popularity
of Docker [2], enabled users to maintain customized execution environments, in the shape
of lightweight Docker images instead of bulky Virtual Machine Images. This paved the
way for the microservices architectural pattern to rise, in order to decouple complex
applications into several small, independently deployed services that interact via REST
interfaces [3]. Creating distributed applications based on microservices required the
ability to manage a fleet of Docker container at scale, thus fostering the appearance of
Container Management Platforms (CMPs) such as Kubernetes, Apache Mesos or Docker
Swarm. Public Cloud providers also provided their CMP offerings as a service, as is the
case of Amazon ECS [4].

The ability to run containers at scale was adopted by public Cloud providers to cre-
ate serverless computing [5] in which applications are defined as a set of event-triggered
functions that execute without requiring the user to explicitly manage servers. As an
example, AWS Lambda supports functions defined in different programming languages.
AWS Lambda executes those functions on specific runtime environments provided by con-
tainers specifically tailored for the execution of the function, depending on the language
chosen.

Serverless computing introduces large-scale parallelism and it was specifically de-
signed for event-driven applications that require to carry out lightweight processing in
response to an event (e.g. to do a minor image manipulation when a file is uploaded
to an Amazon S3 bucket or to access a NoSQL back-end to retrieve data upon invoca-
tion of a REST API). However, the programming model that these services impose, as
is the case AWS Lamdba, hinder the adoption of this service for the general execution
of applications. It is true that one can include a binary application in a deployment
package for AWS Lambda but, still, managing the execution of generic applications in
AWS Lambda is far from being a trivial task. Considering the popularity of Docker as
a software distribution approach, it would be convenient to be able to run containers
out of Docker images in Docker Hub on AWS Lambda to support generic execution of
applications on such a serverless platform.

To this aim, this paper introduces SCAR, a framework to transparently execute con-
tainers (e.g. Docker) in serverless platforms (e.g. AWS Lambda). The following benefits
are obtained: First, the ability to run customized execution environments in such plat-
forms opens up new approaches to adopt serverless computing in scientific scenarios that
were previously unable to easily exploit the benefits of such computing platforms. Sec-
ond, new programming languages can be used apart from those natively supported by
the serverless platform. Third, a highly-parallel event-driven file-processing serverless
execution model is defined. This has allowed to run on AWS Lambda High Through-
put Computing applications on customized runtime environments provided by Docker
containers.

After the introduction, the remainder of the paper is structured as follows. First, sec-
tion [2] describes the related work in this area. Then, section [3]describes the SCAR frame-
work together with the underlying technology employed and the programming model that
it introduces for event-driven file-processing applications. Next, section [f] describes dif-
ferent use cases of this framework together with execution results in order to evaluate
the benefits and limitations of the framework. Finally, section [5| summarizes the main
achievements and points to future work.

2. Related work

Serverless computing is a new execution model that is currently emerging to transform
the design and development of modern scalable applications. Its evolution is reinforced by
the continuous advances in container-based technology together with the consolidation of
cloud computing platforms. In this way, new event-driven services have appeared in the
last three years. AWS Lambda [6] was the first serverless computing service to appear
offered by Amazon Web Services, followed by Google Cloud Functions [7], Microsoft
Azure Functions [8], and the open source platform Apache OpenWhisk [9]. A discussion
about all these services can be found in the work by McGrath et al. [10], where authors
evaluate the usage of this new event-driven technology with two different case studies,
outlining the potential of cloud event-based services.

Although it is a relatively new area, there exists in the literature several works con-
tributing to the evolution of serverless computing. For example, the initial developments
of OpenLambda are presented in [I1] as an open-source platform for building web ser-
vices applications with the model of serverless computing. The work also includes a
case study where performance of executions in AWS Lambda are compared with execu-
tions in AWS Elastic Beanstalk [12], which concludes with better performance results
for AWS Lambda. The study by Villamizar et al. [I3] presents a cost comparison of
a web application developed and deployed using three different approaches: a mono-
lithic architecture, a microservices architecture operated by the cloud customer, and a
microservices architecture operated by AWS Lambda. Results show that AWS Lambda
reduces infrastructure costs more than 70% and guarantees the same performance and
response times as the number of users increases.

Several tools related with serverless computing are emerging in the literature. First,
Podilizer [I4] is a tool that implements the pipeline specifically for Java source code as
input and AWS Lambda as output. Second, Snafu [I5] is a modular system to host,
execute and manage language-level functions offered as stateless microservices to diverse
external triggers. Finally, [I6] presents the prototype implementation of PyWren, a
seamless map primitive from Python on top of AWS Lambda that is able to reuse one
registered Lambda function to execute different user-defined Python functions.

Also, use cases of this emerging event-based programming model can be found in
the literature, like the work by Yan et al. [I7] where the authors present a prototype
architecture of a chatbot using the OpenWhisk platform, or the experiments described
in [I8] about face recognition with LEON, a research prototype built with OpenWhisk,
Node-RED [I9] and Docker. Another use of serverless computing is data analytics,
exemplified in [20], covering data processing with Spark and OpenWhisk.

All the works mentioned above highlight the advantages of using these new event-
driven services because they are more elastic and scalable than previous platforms. More-
over, they point out the challenges derived from the granular nature of serverless comput-
ing. The work by Baldini et al. [5] regarding the open problems of serverless computing
identifies several unaddressed challenges which include: i) the ability to run legacy code
on serverless platforms, and ii) the lack of patterns for building serverless solutions.

Indeed, this paper addresses the aforementioned challenges by introducing an open-
source framework that enables users to run generic applications on a serverless platform,
AWS Lambda in this case. This introduces unprecedented flexibility for the adoption
of serverless computing for different kind of applications. Previously, users were con-

3

Log Service |« Supervisor

Script][App

G)
(e |)
()

Data Stage) (ContamerRuntime

Log Manager

Event—P T ol %(Invocation >

Figure 1: Architectural approach for supporting container-based applications on serverless platforms.

strained to create functions on the specific programming languages supported by AWS
Lambda. In addition, we introduce a High Throughput Computing programming model
to create highly-parallel event-driven file-processing serverless applications that execute
on customized runtime environments (provided by Docker images) on AWS Lambda.

Therefore, the main scientific contribution of SCAR is to democratize serverless com-
puting for a wide range of scientific applications and programming languages that were
not previously able to easily exploit a serverless platform. As far as the authors’ knowl-
edge, this is the first work in the literature that proposes, and provides an open-source
implementation, a framework to run containers out of Docker images in a serverless plat-
form such as AWS Lamdba. Indeed, several examples of applications successfully ported
to serverless computing on AWS Lambda with SCAR are already available in the GitHub
repository [2I]. These include, but are not limited to, deep learning frameworks, such as
Theano [22] and Darknet [23], programming languages such as Erlang [24] and Elixir [25]
and generic tools for image and video processing such as ImageMagick [26] and FFmpeg
[27]. We believe that the integration of Docker for application delivery with a serverless
platform such as AWS Lambda provides an appropriate platform for different computing
scenarios that require fast elasticity and the ability to scale beyond the limits of current
TaaS Clouds.

3. The SCAR Framework

Figure [1| describes the architectural approach designed to support container-based
applications on a serverless platform. The services typically made available by the Cloud
provider are: i) Serverless service, also known as Functions as a Service (FaaS), responsi-
ble for executing the Cloud functions in response to events; ii) File storage service, which
hosts the files uploaded by the user and triggers the events to the Serverless service so
that the file can be processed by the invocation of the function. N file uploads will
trigger N invocations of the function where each one processes exactly one file; iii) Log
service, where the information concerning the execution of the function is logged; iv)

4

Monitoring service, which provides metrics of the resources consumed by the function.
In addition, a Container Image Service is required, in order to store the images that
include the operating system together with the application and its dependencies.

An invocation of the function involves the execution of the Supervisor, responsible
for: i) Data stage from the File storage service into the temporary data space allocated
to that particular function invocation; ii) Cache management in order to minimize the
data movement from the Container image service to the data space available to the
function; iii) Log management, to retrieve the output of the execution of the container.
The supervisor delegates on a Container runtime in order to instantiate a Container out
of an image, on which either a script or an application is run on the customized runtime
environment provided by the container.

3.1. Underlying Technology Employed in SCAR

The following subsection identifies and justifies the different technology choices made
to develop SCAR.

3.1.1. Cloud provider services: AWS

As described in the related work section, there are different services for serverless
computing. We chose AWS Lambda [6], a serverless computing service to run code, in
the shape of functions created in a programming language supported, in response to
events so that no explicit management of servers is performed by the user. The most im-
portant features and limitations of AWS Lambda are: i) Constrained computing capacity
currently limited by a maximum of 3008 MB, where CPU performance is correlated with
the amount of the memory chosen; ii) Maximum execution time of 300 seconds (5 min-
utes); iii) Read-only file system based on Amazon Linux; iv) 512 MB of disk space in
/tmp, which may be shared across different invocations of the same Lambda function; v)
Default concurrent execution limit of 1000 invocations of the same function, which can
be increased, vi) Supported execution environments: Node.js v4 and 6, Java 8, Python
3.6 and 2.7, .NET Core 1.01 (C#), and vi) No inbound connections are allowed for the
Lambda invocations.

For the file storage service, Amazon S3 (Simple Storage Service) was chosen, an
object storage designed to provide durable and highly available access to files, stored in
buckets, which are created in a specific AWS Region. S3 can publish event notifications
when certain actions occur. For example, the s3:ObjectCreated event type is published
whenever the S3 APIs such as PUT, POST or COPY are used to create an object in
a bucket. These events can be published for different destinations (services) such as
Amazon SNS (a push messaging service), Amazon SQS (a message queuing service) and
AWS Lambda.

Amazon CloudWatch [28] is the monitoring service of AWS. In particular, Cloud-
Watch Logs is a service to monitor, store and access log files produced from different
sources and services in AWS. Therefore, the standard output generated by the Lambda
function invocations are sent to CloudWatch Logs so that different Log streams are
obtained from which to obtain the information regarding the execution of a given invo-
cation.

3.1.2. Containers: Docker, Docker Hub and udocker

Among the different choices for Linux containers, such as OpenVZ [29] and LXC/LXD
[30], we chose Docker due to its mainstream adoption for software delivery. This is exem-
plified by Docker Hub [31] a cloud-based registry service that hosts Docker images and
can automatically create them by linking code repositories, thus providing a centralized
place to distribute Docker images.

Since external packages cannot be installed on a FaaS platform, i.e., no root privileges
are available to install Docker, a mechanism to run a container out of a Docker image on
user space without requiring prior installation is needed. This is precisely the ability of
udocker [32] [33], a tool to execute containers in user space out of Docker images without
requiring root privileges. This allows pulling images from Docker Hub and create con-
tainers by non-privileged users on systems where Docker cannot be installed. This tool
has demonstrated to be useful to run jobs on customized execution environments in both
Grid environments (such as the European Grid Infrastructure) and HPC (High Perfor-
mance Computing) clusters of PCs in the context of the INDIGO-DataCloud European
project [34].

Udocker provides several execution modes, described in the documentation [35]. How-
ever, due to the restrictions of the execution environment provided in AWS Lambda, only
the F'I execution mode properly works, which involves using Fakechroot [36] with direct
loader invocation. Using this approach, it is possible to run a process in the execution
environment provided by a Docker image without actually creating a Docker container.

Notice that process isolation is automatically provided by the execution model of AWS
Lamdba, where different invocations of the same function are run on isolated runtime
spaces.

3.2. Architecture of SCAR

SCAR allows users to define Lambda functions, where each invocation will be respon-
sible for executing a container from a Docker image stored in Docker Hub and, optionally,
execute a shell-script inside the container for further versatility. Figure [2| describes the
architecture of SCAR. The framework architecture is divided in two parts:

e SCAR Client. The client is a Python script that provides a Command-Line In-
terface (CLI) that is responsible for: i) validating the input information from the
user; ii) creating the deployment package, which includes udocker; iii) creating the
Lambda function containing the SCAR Supervisor; iv) providing an easy access to
the Logs generated by each invocation of the Lambda function; v) providing means
for the user to manage the lifecycle of the Lambda function (init, list, run, delete)
and vi) manage the configuration to trigger events from an S3 bucket to a Lambda
function. The client heavily uses the Boto 3 library [37] to interact with the AWS
services

e SCAR Supervisor. The supervisor represents the code of the Lambda function,
which targets the Python 3.6 runtime environment and is responsible for: i) re-
trieving the Docker image from Docker Hub using udocker into /tmp, unless the
Docker image is already available there; ii) creating the container out of the Docker
image and setting the appropriate execution mode for udocker; iii) in case of being
triggered from S3, manage the staging of the input data into the container and

6

SCAR (Client) D:culi)er o2k
' [

run init

@ @ ‘ @ return pull

[Ilﬂ Lambda
Lambda function Lambda function instances

SCAR (Supervisor)
lgoeeenn])t
Udocker |
P Creates p ool

wEEE ’,
«

User-defined Outputs
Docker image in
DockerHub

s3 Received CloudWatch
L} L

event

Logs

— Log
- f— Streams

S3
bucket

/input
/output

Figure 2: Architecture of SCAR.

the stage out of the output results back into S3; iv) passing down the environment
variables to the container (those defined by the user and others of interest, such as
the temporary credentials, so that the code running in the container has precisely
the same privileges as the Lambda function itself; v) merging the generated output
from the script running in the container to the Lambda output in order to have
consolidated logging available in CloudWatch Logs.

The usage of SCAR in order to run a generic application on AWS Lambda is as follows,
as described in Figure 2] First, the user chooses a Docker image available in Docker
Hub and creates (init) the Lambda function with the specific performance configuration
provided by the user (in terms of memory). Second, the user can directly invoke (run)
the Lambda function. This triggers the SCAR supervisor which, as described earlier,
effectively ends up executing a container out of a Docker image and optionally run a
user-defined shell script. Data staging from and to S3 is automatically managed by the
SCAR supervisor, together with diverting the logs into CloudWatch.

Notice that caching is a fundamental technique for the SCAR framework, especially
considering the maximum execution time of 300 seconds. The first invocation of a
Lambda function will pull the Docker image from Docker Hub into /tmp, which can
take a considerable amount of time (in the order of seconds), depending on the size of
the Docker image. Subsequent invocations of the Lambda function may already find that
Docker image available in /tmp and, therefore, there is no need to retrieve the Docker
image again from Docker Hub.

OUTPUT_DIR="/tmp/$REQUEST_ID/output"

echo "SCRIPT: Invoked Video Grayifier. File available in $SCAR_INPUT_FILE"

FILENAME=‘basename $SCAR_INPUT_FILE®

OUTPUT_FILE=$0UTPUT_DIR/$FILENAME

echo "SCRIPT: Converting input video file $SCAR_INPUT_FILE to grayscale to output file $0UTPUT_FILE"
ffmpeg -loglevel panic -nostats -i $SCAR_INPUT_FILE -vf format=gray $0UTPUT_FILE < /dev/null

Figure 3: Sample script to perform video transcoding.

However, caching does not restrict to the Docker image. In addition, the container
created with udocker, is also shared among all the Lambda invocations that may find
it already available in /tmp. The rationale behind this approach is that since Lambda
functions are provided with a read-only file system, so are provided the scripts executed in
the containers run on the Lambda functions. Notice that due to the stateless environment
inherent to the Lambda functions, caching does not introduce side effects. It just reduces
the invocation time whenever the cache is hit and the container is already available.

Therefore, the duration of the Lambda function invocation using SCAR is greatly
dependent on the ability for the Lambda functions to find a cached container file system
in /tmp. This will be thoroughly assessed in section

Concerning the overhead introduced by SCAR, users should be aware that it requires
a reduced amount of memory and disk space to run (~36MB of RAM and ~16MB of
disk space). Indeed, it is the size of the container what really determines how much disk
space is going to be available to be used by the applications. Empirical experimenta-
tions show that an image in Docker Hub larger than 220MB will hardly fit inside the
ephemeral storage allocated to the Lambda function, due to the storage requirements of
both the Docker image and the container file system unpacked by udocker. Regarding
the remaining time available for the execution of the application, once the first invoca-
tion is finished and the container is cached, SCAR takes a negligible time to check if the
container exists, thus allowing the application to run during almost the maximum time
provided by the function.

3.3. Event-Driven File-Processing Serverless Programming Model

SCAR introduces a programming model that can be effectively used to process files on
demand, by triggering the execution of the Lambda function as soon as a file is available in
an Amazon S3 bucket. This is a summary of the programming model, exemplified by an
application to transform videos into a grayscale using the well-known ffmpeg application.
This use case is available online for the reader to test it [3§].

The following command creates a Lambda function that will be triggered for any
video upload to the input folder in the scar-test bucket. Upon invocation of the Lambda
function, a container out of the sameersbn/ffmpeg Docker image (available in Docker
Hub) will be started and the process.sh shell-script will be executed inside.

scar init -s process.sh -n lambda-ffmpeg -es scar-test sameersbn/ffmpeg

The programming model results in the following workflow:

1. The user uploads the video into the input folder of the scar-test S3 bucket.
8

2. The input video file is made available to the executed container in
/tmp/$REQUEST_ID/input, as specified by the $SCAR_INPUT_FILE environment
variable.

3. The script converts the video to grayscale and saves the output file into
/tmp/$REQUEST_ID/output.

4. The video file is automatically uploaded to the output folder of the Amazon S3
bucket and deleted from the underlying storage.

The content of the script is included in Figure |3l Notice the simplicity of the script
that just invokes the command-line application in order to process the video using FFm-
peg into an output folder. Since data stage is automatically managed by the SCAR
Supervisor (running on the Lambda function), the user just focuses on how to specifi-
cally process one file. Then, multiple instances of this script can be run in parallel, each
one running on its own Lambda invocation in order to simultaneously process different
videos at scale, taking into account the limited storage space available. This approach
also facilitates testing, which can be performed locally to process one file within a Docker
container and then can be scaled out to thousands of concurrent invocations run on AWS
Lambda.

It is important to point out that there is currently no other work in the literature that
proposes a High Throughput Computing Programming Model to create highly-parallel
event-driven file-processing serverless applications that execute on customized runtime
environments provided by Docker containers run on a serverless platform such as AWS
Lambda.

4. Use Cases: Results and Discussion

This section provides a thorough assessment of the capabilities and limitations of
SCAR, which are greatly dependent on the underlying features of AWS Lambda. As
stated in section Lambda functions have a maximum execution time of 300 seconds
and an allocated temporary space (in /tmp) of 512MB. Going beyond those thresholds
make the Lambda function invocation fail.

According to the documentation [39], when a Lambda function is invoked, AWS
Lambda launches a container (i.e., an execution environment). After a Lambda function
is executed, the service keeps the container for some time just in case the same Lambda
function is invoked again. The service freezes the container after a Lambda function
finishes, and thaws the container for reuse, in the case AWS Lambda decides to reuse the
container when the Lambda function is invoked again, a process known as the freeze /thaw
cycle. Therefore the /tmp content remains when the container is frozen, providing a
transient cache that can be used for multiple invocations

Notice that, when using SCAR, a container in user-space is run via udocker inside the
container provided by the AWS Lambda invocation. Being able to cache the user-space
container dramatically affects the execution time of a Lambda function created by SCAR.
To this end, subsection [£.1] provides a comprehensive study of the reuse of the ephemeral
disk space. Next, subsection [4.2]introduces a realistic use case of the programming model
presented in section A customized execution environment containing an open-source
deep learning framework is used to recognize and classify a set of images stored in a Cloud

9

35 T T T T 60 T T T T
reg-resp minideb
async c7
30 b ubl4 —— |
25 | b
z 20 . z
) L .
£ E
E 15 H 1 =
10 H B
5| |]
ol I I L O T —
0 20 40 60 80 100 60 80 100
No. of invocations No. of invocations
Figure 4: Average execution time (in seconds) Figure 5: Average execution time (in seconds)
for each invocation type (i.e. request-response for different container sizes. All the invocations
and asynchronous). are asynchronous.

provider making use of the massive scaling capabilities of the serverless architectures with
the help of SCAR.

4.1. On the Freeze/Thaw Cycle: Disk Space Reuse

Due to the importance of the AWS Lambda Freeze/Thaw cycle for the SCAR frame-
work, an study of the behavior of this feature is conducted in order to extract optimized
invocation patterns to be used in SCAR. For all the tests in this study, only the time
used to download the Docker image from Docker Hub and run actions (i.e., creation of
the container via udocker) are measured. The time spent by the script executed inside
the container is negligible for this study. Also, the memory was set to 512 MB for all the
functions.

The first comparison is done between the two different invocation types that AWS
Lambda offers (i.e. request-response and asynchronous) [40]. We analyze the time spent
for each invocation. Each one involves creating a container out of a Docker image (in
this case centos:7 [4I]) stored in Docker Hub and executing a trivial shell-script inside.
Ten different Lambda functions were created for each invocation type (i.e. a total of 20
different Lambda functions). Each function was invoked a hundred times (i.e. a total of
2.000 invocations). Figure |4 shows the average execution time for each invocation type.

The req-resp line refers to the request-response invocation type and it shows that
all the invocations performed after the first one take a negligible time to execute. This
means that the first invocation spends 25 seconds on average downloading the container
image from Docker Hub, creating the container and running a script inside it. However,
the subsequent invocations execute very rapidly. This is a coherent behavior when using
the request-response type, where subsequent invocations after the first one will find the
container file system already available in the ephemeral space of the Lambda function
invoction (i.e. cached by SCAR).

The async line refers to the asynchronous invocation type and it shows an slightly
erratic behavior in the execution time of the functions along the first 40 invocations.

10

Indeed, the asynchronous model carries out all the invocations almost simultaneously,
though there is a slight delay due to the SCAR invocation manager. Therefore, the
Lambda functions that are invoked first do not find the container cached in /tmp and
need to retrieve the Docker image from Docker Hub and create the container. This
means that the execution is performed successfully, but requires additional time. After
approximately 40 invocations, the container is finally cached in the ephemeral disk space
and, therefore, the execution time of the subsequent invocations decreases considerably,
as expected.

Therefore, the main conclusion of this first experiment is that a newly created Lambda
function with SCAR should be executed at least once, in order to fully cache the con-
tainer in the ephemeral disk space, before attempting to perform multiple asynchronous
invocations.

To further investigate how the container size affects the caching behavior when using
the asynchronous invocation type, we launched different functions that use different
container image sizes and we analyzed the duration of the invocations. To carry out this
experiment we created three different function types: the minideb type, which uses the
Docker image bitnami/minideb [42] and has an image size of 22MB; the ¢7 type, which
uses the Docker image centos:7 [41] and has an image size of 7T0MB; and finally the ub14
type, which uses the Docker image grycap/jenkins:ubuntul/.04-python [43] and has an
image size of 1563MB. Each one of these types are used to create ten functions (i.e. a
total of 30 different Lambda functions) and each different function is invoked a hundred
times (i.e. 3.000 invocations in total). For the sake of clarity, the execution times of the
functions belonging to the same type are presented as average values. Figure [5| shows
the results of these invocations.

The minideb function, which represents the smallest container image, is the first to
present a cached behavior. The ¢7 function, which has the medium size container image,
is cached after approximately 30 invocations and the function with the largest container
image, ub14, requires more invocations, approximately 80, before it is cached. In this
figure, it can be clearly seen the relation between increasing the container image size
and the time that takes the container image to be cached in the ephemeral disk space.
As explained above, this is directly related to the asynchronous way of working of the
Lambda functions, in which the system does not wait for the previous invocation to finish.
Therefore, the container image can be cached or not depending on the time passed since
the first execution and the size of such container image.

As seen in the experiments, on the one hand there is the request-response invocation,
where SCAR achieves a cached behavior starting from the second invocation, at the
expense of waiting for that first invocation to end. On the other hand, there is the
asynchronous invocation type, in which all the invocations can be carried out in parallel,
but the container size affects the time until the containers are cached by SCAR in the
ephemeral disk space.

In the programming model proposed by SCAR, the executions benefit from both
invocation types by performing the first invocation as request-response and the rest
invocations as asynchronous. To assess the advantages of this approach, an experiment
was carried out using the aforementioned approach. The same function types described
in the previous test were used to carry out this experiment: minideb, c¢7 and ublj.
These types were used to generate 30 different functions and each function was invoked
a hundred times. Again, for the sake of clarity, the execution times of the functions

11

60 7 T T T T 60 ——T—T—T——T—T T T T T
minideb
c7
50 _‘ ubl4y —— | 50 .
40 H 1 a0 1
@ @
) L] . L . .
£ £
= =
20 [b 20 B
10 4 B 10 | B
0 LLM*—_‘A“V—“MT_AA‘AV_*L 0 LT T 1 1 1 1 1 1
0 20 40 60 80 100 0 15 30 45 60 75 90 105120135150
No. of invocations Time (m)
Figure 6: Average execution time (in seconds) Figure 7: Execution time (in seconds) used by
for different container sizes. The first invoca- the function related to the time waited (in min-
tion type is request-response and subsequent utes) from a previous invocation of the same
are asynchronous. Lambda function.

belonging to the same type are presented as average values.

Figure [0] presents the results of this experiment. The erratic behavior of the caching
system has disappeared and all the invocations present a cached performance starting
from the second invocation and thereafter. This approach allows SCAR to reduce the
overall execution time and, therefore, we adopt it for the event-driven file processing
programming model. As such, a Lambda function created with SCAR is previously
preheated, i.e., invoked with a request-response type, so that subsequent parallel asyn-
chronous invocations already find the container cached in the ephemeral disk space.

The last experiment designed for this case study investigates the influence of the time
between invocations on the ability for AWS Lambda to reuse the container, which ends
up on SCAR being able to find a cached container, thus speeding up the Lambda function
invocation. Therefore, since the benefits of preheating a Lambda function were identified,
it is important to know the time before it cools down again, i.e., when the invocation of
the function will not reuse the same Lambda container and, therefore, SCAR will have to
retrieve the Docker image again from Docker Hub and create a new user-space container.

To this end, this experiment invokes the Lambda function in predefined ranges of time
(each one of them defined by increasing 15 minutes the previous waiting time). Eleven
time ranges were defined, from 0 to 150 minutes of waiting time. A thousand different
functions were created and invoked just once in each period, resulting in a total of 11.000
invocations launched.

Figure [7] shows the results of this experiment using a box plot representation of
the time used by each invocation. The whiskers of the box plot extend for a range
equal to 1.5 times the interquartile range. By analyzing the figure we can extract three
conclusions: first, all the functions show that the invocations are being cached between
15 and 30 minutes; second, if we wait more than 60 minutes the cache is lost and all of
our functions need to download again the container image, and finally, waiting 45 or 60
minutes do not ensure the correct working of the cache due to the randomness of the

12

OUTPUT_DIR="/tmp/$REQUEST_ID/output"
FILENAME=‘basename $SCAR_INPUT_FILE .jpg‘
RESULT="$0UTPUT_DIR/$FILENAME.out"
OUTPUT_IMAGE=$FILENAME-out

echo "SCRIPT: Received file ’$SCAR_INPUT_FILE’."
echo "SCRIPT: Saving result in ’$RESULT’ and output image in ’$0UTPUT_IMAGE.png’"

cd /opt/darknet
./darknet detect cfg/yolo.cfg yolo.weights $SCAR_INPUT_FILE -out $0UTPUT_IMAGE > $RESULT

mv $0UTPUT_IMAGE.png $0UTPUT_DIR/

Figure 8: Script used to launch the YOLO object detection library of the Darknet framework. It also
processes the inputs and outputs of the container.

underlying system.

Understanding the behavior of the Freeze/Thaw cycle and, therefore, when an in-
vocation of a Lambda function created with SCAR will be cached, enables to adopt
best practices when adopting serverless computing to execute generic applications. This
knowledge is applied in the following section with a real example on image recognition
using a deep learning framework.

4.2. Massive image processing

In this section SCAR is used to deploy a customized execution environment in order
to recognize different patterns in images using deep learning techniques. The framework
used to recognize the patterns is Darknet [44], an open source neural network framework
written in C, in combination with the You Only Look Once (YOLO) [45] library. The
Docker image used for this case study can be found in the grycap/darknet [46] Docker
Hub repository and the memory set for the function in this case study is 1024MB, which
is the minimum function size that allows to run the experiment due to memory and time
constraints.

The programming model presented in section [3.3] has been extended with the ability
to automatically perform Lambda invocations out a set of files already available in a
Cloud storage service (Amazon S3, in this case). This feature allows the user to reuse
an existing S3 bucket with data files in order to perform a High Throughput Computing
analysis across all the files in that bucket. A Lambda invocation per file will be carried out
(up to the 1.000 soft limit of concurrent Lambda invocations). Each Lambda invocation
will execute a shell-script to process exactly one file.

For this experiment we use: 1) a thousand images of animals and objects already stored
in an AWS S3 bucket with a size of almost 500MB; ii) the Docker image stored in Docker
Hub which contains all the libraries and dependencies needed to execute the Darknet
software and iii) a shell-script executed inside the container, in charge of processing the
input image, using DarkNet and the YOLO library to obtain the output (the patterns
recognized in the image).

The script used to launch the Darknet object detection software is presented in Figure
The SCAR_INPUT_FILE variable is created by SCAR to simplify the creation of the
script and contains the name of the file received by the Lambda function invocation.
Some output variables are created and the information about the script execution is

13

Figure 10: Animals recognized after the execu-
tion of the YOLO library. This output image
has been generated by the Darknet framework.

Figure 9: Test image passed to the Darknet
framework.

/tmp/b472565a-62ee-11e7-b079-4f£49957d32f/input/giraffe. jpg: Predicted in 11.708465 seconds.
giraffe: 90%
zebra: 80%

Figure 11: Darknet output file produced for the test image. It contains the total execution time and
the objects recognized (in this case animals) with a percentage of certainty.

written in the standard output. When the container execution finishes and the output
files have been processed, SCAR writes all the standard output produced by the container
in the Lambda function logs, thus easing the traceability of possible errors. The Darknet
invocation command receives an image as an input file and stores the results in two
separate files, the OUTPUT_IMAGE which will be the image with the recognized objects
and the RESULT file which will contain the percentage of certainty for each recognized
object. Sample input/output images are presented in Figures El and 10| respectively. Also
the output file generated after processing the image is shown in Figure[[1] To finish, the
image produced is moved next to the output file into the output folder, so that SCAR
can automatically upload them into S3. Remember that the user does not have to write
any code to manage the download and upload of the input and output files respectively.
All the files are managed transparently by SCAR.

After the execution of the case study, the following metrics were retrieved: 2 minutes
used to finish the experiment; 880 minutes as the total aggregated execution time across
the multiple Lambda function invocations; 4.575 different objects and animals recog-
nized. As summary, in only two minutes we have downloaded, processed and uploaded
a thousand images without worrying about the deployment and the management of the
architecture.

It is important to point out four main conclusions that arise from this case study.
Firstly, without SCAR the user has no easy way of using specific libraries such as Darknet
in serverless providers like AWS Lambda. Secondly, the user does not have to manage
the deployment of computational infrastructure, auto-scaling, coordinating the execution

14

of jobs, etc. Instead, the serverless computing platform introduced seamless elasticity by
performing multiple concurrent executions. Thirdly, the simplicity of the programming
model introduced by SCAR just requires the user to write a shell-script to process a
file assuming that will be automatically delivered. This is probably the simplest, most
convenient approach to perform a file-processing application on the Cloud. Fourthly,
once the Lambda function has been created by SCAR, this turns into a reactive service
that is left on the Cloud service at no cost unless it is triggered again by uploading a
new file to the bucket. This will cause a new Lambda function invocation, resulting in
the creation of the container and execution of the shell-script to process the file. This
has an important economic factor, since real pay-per-use is enforced as opposed to the
pay-per-deploy approach that happens when deploying a VM in a Cloud service, which
has a cost regardless of the actual usage of the VM.

Finally, notice that the ability to scale in the order of thousands of Lambda function
invocations reduces the requirement for a job scheduler, in cases where the incoming
workload can be seamlessly absorbed by the underlying computing platform.

To finish, we present a cost of the case study execution. Based on the metrics ex-
tracted earlier, the average execution time of the invocations is 52.8 seconds. Each
function used 1024MB of memory, and one invocation per photo available in the bucket
was carried out, 1.000 in total. The AWS Lambda pricing calculator [47] indicates a cost
of $0.88. Since AWS Lambda offers a free usage tier that includes 1 million requests
and 400.000 GB-seconds of compute time per month, and this use case involved 1.000
requests and 52.000 GB-seconds, the real cost of classifying the images was $0.

5. Conclusions and Future Work

This paper has introduced SCAR, a framework to execute container-based applica-
tions using serverless computing, exemplified using Docker as the technology for con-
tainers and AWS Lambda as the underlying serverless platform. This is a step forward
contribution to the state of the art, implemented in an open-source framework, that
opens new avenues for adopting serverless computing for a myriad of scientific applica-
tions distributed as Docker images.

Using the proposed approach, customized execution environments can now be em-
ployed instead of being locked-in to programming functions in the programming lan-
guages supported by the serverless platform (in our case AWS Lambda). This has easily
introduced the ability to run generic applications on specific runtime environments de-
fined by Docker Images stored in Docker Hub, a functionality that is actually missing
from the current serverless computing platforms.

A High Throughput Computing programming model has been developed in order to
create highly-parallel event-driven file-processing serverless applications that execute on
customized runtime environments provided by Docker containers run on AWS Lambda.
This has been exemplified by using a deep learning application to perform pattern recog-
nition on an image dataset.

SCAR not only provides means to deploy containers in AWS Lambda, it also man-
ages the Lambda functions’ lifecycle and eases the execution of the serverless workflow
by applying optimizations without the need of user intervention, such as caching the
container’s underlying file system to minimize the execution time.

15

However, the current limitations of AWS Lambda in terms of maximum execu-
tion time (5 minutes), maximum allocated memory (3008 MB) and, most important,
ephemeral disk capacity (512 MB), impose serious restrictions for the applications that
can benefit from SCAR. Bursty workloads of short stateless jobs are specially appropri-
ate to benefit from the ultra-elastic capabilities of AWS Lambda, both in terms of the
amount of concurrent Lambda function invocations (in the order of thousands) and the
rapid elasticity (in the order of few seconds). Having said that, we expect these limits to
be risen in future updates of the service, which will be greatly help expand the adoption
of SCAR for applications that cannot be encapsulated in a Docker image fitting in such
scarce amount of computing and storage resources.

Future work of SCAR includes adapting the development to other serverless providers.
In particular, our dependence on udocker, begin developed in Python, suggests using a
provider supporting that language, such as Microsoft Azure Functions (Google Cloud
Functions currently only supports Node.JS). Notice that the programming model of
SCAR is agnostic to the provider. In addition, SCAR users could benefit from a mech-
anism that maintains the deployed Lambda functions ‘hot’, based on the knowledge ex-
tracted from the freeze/thaw cycle study by means of periodic invocations of the Lambda
functions. Finally, we are currently researching on mechanisms to checkpoint applications
so that new Lambda functions are spawn recursively in order to bypass the maximum
execution time for iterative scientific applications.

Acknowledgements

The authors would like to thank the Spanish “Ministerio de Economia, Industria y
Competitividad” for the project “BigCLOE” under grant reference TIN2016-79951-R.
The authors would also like to thank Jorge Gomes from LIP for the development of the
udocker tool.

References

[1] Amazon. Amazon Web Services (AWS). https://aws.amazon.com. [Online; accessed 25-July-2017].

[2] Docker. Docker. https://www.docker.com. [Online; accessed 25-July-2017].

[3] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara, Fabrizio Montesi,
Ruslan Mustafin, and Larisa Safina. Microservices: yesterday, today, and tomorrow. CoRR,
abs/1606.04036, 2016.

[4] Amazon. Amazon EC2 Container Service. https://aws.amazon.com/ecs/. [Online; accessed 25-
July-2017].

[5] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick
Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski, and Philippe Suter. Serverless
Computing: Current Trends and Open Problems. pages 1-20, jun 2017.

6] Amazon. Amazon Lambda (AWS Lambda). https://aws.amazon.com/lambda/. [Online; accessed
25-July-2017].

[7] Google. Google Cloud Functions. https://cloud.google.com/functions/. [Online; accessed 25-
July-2017].

[8] Microsoft. Microsoft Azure Functions. https://azure.microsoft.com/en-in/services/
functions/, [Online; accessed 25-July-2017].

[9] The Apache Software Foundation. Apache openwhisk. http://openwhisk.org/. [Online; accessed
25-July-2017].

[10] G. McGrath, J. Short, S. Ennis, B. Judson, and P. Brenner. Cloud event programming paradigms:
Applications and analysis. In 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pages 400-406, June 2016.

16

https://aws.amazon.com
https://www.docker.com
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
http://openwhisk.org/

(11]

(12]

(13]

(14]
(15]
[16]

(17]

(18]

[19]
20]

21]

[22]
23]
[24]
[25]
[26]

[27]
28]
[29]
(30]
(31]
(32]
(33]

(34]

(35]
(36]

(37]
(38]

(39]

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Serverless computation with openlambda. In 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), Denver, CO, 2016. USENIX
Association.

Amazon. AWS Elastic Beanstalk. https://aws.amazon.com/elasticbeanstalk. [Online; accessed
25-July-2017].

Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Salamanca, Mauricio Verano,
Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano, and Mery Lang. Cost comparison
of running web applications in the cloud using monolithic, microservice, and aws lambda architec-
tures. Service Oriented Computing and Applications, 11(2):233-247, 2017.

Josef Spillner and Serhii Dorodko. Java code analysis and transformation into AWS lambda func-
tions. CoRR, abs/1702.05510, 2017.

Josef Spillner. Snafu: Function-as-a-service (faas) runtime design and implementation. CoRR,
abs/1703.07562, 2017.

Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. Occupy the cloud: Dis-
tributed computing for the 99%. CoRR, abs/1702.04024, 2017.

Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. Building a chatbot with serverless
computing. In Proceedings of the 1st International Workshop on Mashups of Things and APIs,
MOTA 16, pages 5:1-5:4, New York, NY, USA, 2016. ACM.

Alex Glikson, Stefan Nastic, and Schahram Dustdar. Deviceless edge computing: Extending server-
less computing to the edge of the network. In Proceedings of the 10th ACM International Systems
and Storage Conference, SYSTOR ’17, pages 28:1-28:1, New York, NY, USA, 2017. ACM.
Node-RED. Node-RED. https://nodered.org/. [Online; accessed 25-July-2017].

Alex Glikson. TRANSIT: Flexible pipeline for IoT data
with Bluemix and OpenWhisk. https://medium.com/openwhisk/
transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0. [On-
line; accessed 25-July-2017].

GRyCAP. SCAR Github Repository. https://github.com/grycap/scar. [Online; accessed 25-
July-2017].

Theano. Theano. http://deeplearning.net/software/theanol [Online; accessed 25-July-2017].
Joseph Redmon. Darknet. https://pjreddie.com/darknet/. [Online; accessed 25-July-2017].
Erlang. Erlang. https://www.erlang.org/. [Online; accessed 25-July-2017].

Jose Valim. Elixir. https://elixir-lang.org/. [Online; accessed 25-July-2017].

ImageMagick Studio. Image Magick. https://www.imagemagick.org. [Online; accessed 25-July-
2017].

FFmpeg. FFmpeg. https://ffmpeg.org/l [Online; accessed 25-July-2017].

Amazon. Amazon CloudWatch. https://aws.amazon.com/cloudwatch. [Online; accessed 25-July-
2017].

Virtuozzo. OpenVZ. https://openvz.org. [Online; accessed 25-July-2017].

Canonical. LXC. https://linuxcontainers.org/. [Online; accessed 25-July-2017].

Docker. Docker Hub. https://hub.docker.com/. [Online; accessed 25-July-2017].

Jorge Gomes. udocker. https://github.com/indigo-dc/udocker. [Online; accessed 25-July-2017].
Jorge Gomes, Isabel Campos, Emanuele Bagnaschi, Mario David, Luis Alves, Joao Martins, Joao
Pina, Alvaro Lopez-Garcia, and Pablo Orviz. Enabling rootless linux containers in multi-user
environments: the udocker tool. arXiv preprint arXiv:1711.01758, 2017.

D. Salomoni, I. Campos, L. Gaido, G. Donvito, P. Fuhrman, J. Marco, A. Lopez-Garcia, P. Orviz,
1. Blanquer, G. Molto, M. Plociennik, M. Owsiak, M. Urbaniak, M. Hardt, A. Ceccanti, B. Wegh,
J. Gomes, M. David, C. Aiftimiei, L. Dutka, S. Fiore, G. Aloisio, R. Barbera, R. Bruno, M. Far-
getta, E. Giorgio, S. Reynaud, and L. Schwarz. INDIGO-Datacloud: foundations and architectural
description of a Platform as a Service oriented to scientific computing. Technical report, INDIGO-
DataCloud, mar 2016.

Jorge Gomes. udocker documentation. https://github.com/indigo-dc/udocker/blob/
udocker-fr/doc/user_manual.md. [Online; accessed 25-July-2017].

JPiotr Roszatycki. Fakechroot. https://github.com/dex4er/fakechroot, [Online; accessed 25-
July-2017].

Amazon. Boto 3. http://boto3.readthedocs.io. [Online; accessed 25-July-2017].

GRyCAP. FFmpeg on AWS Lambda. https://github.com/grycap/scar/tree/master/examples/
ffmpeg. [Online; accessed 25-July-2017].

Amazon. AWS Lambda. How it works. http://docs.aws.amazon.com/es_es/lambda/latest/dg/

17

https://aws.amazon.com/elasticbeanstalk
https://nodered.org/
https://medium.com/openwhisk/transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0
https://medium.com/openwhisk/transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0
https://github.com/grycap/scar
http://deeplearning.net/software/theano
https://pjreddie.com/darknet/
https://www.erlang.org/
https://elixir-lang.org/
https://www.imagemagick.org
https://ffmpeg.org/
https://aws.amazon.com/cloudwatch
https://openvz.org
https://linuxcontainers.org/
https://hub.docker.com/
https://github.com/indigo-dc/udocker
https://github.com/indigo-dc/udocker/blob/udocker-fr/doc/user_manual.md
https://github.com/indigo-dc/udocker/blob/udocker-fr/doc/user_manual.md
https://github.com/dex4er/fakechroot
http://boto3.readthedocs.io
https://github.com/grycap/scar/tree/master/examples/ffmpeg
https://github.com/grycap/scar/tree/master/examples/ffmpeg
http://docs.aws.amazon.com/es_es/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/es_es/lambda/latest/dg/lambda-introduction.html

[40]
[41]
[42]
[43]
fa4]
[45]
[46]

[47]

lambda-introduction.htmll [Online; accessed 25-July-2017].

Amazon. Invoke. http://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html. [On-
line; accessed 25-July-2017].

CentOS. Docker Hub: centos:7. https://hub.docker.com/_/centos/l [Online; accessed 25-July-
2017].

bitnami. Docker Hub: bitnami/minideb. https://hub.docker.com/r/bitnami/minideb/, [Online;
accessed 25-July-2017].

GRyCAP. Docker Hub: grycap/jenkins:ubuntul4.04-python. https://hub.docker.com/r/grycap/
jenkins! [Online; accessed 25-July-2017].

Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/darknet/,
2013-2016.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXi:1612.08242, 2016.

GRyCAP. Docker Hub: grycap/darknet. https://hub.docker.com/r/grycap/darknet/. [Online;
accessed 25-July-2017].

Amazon. Amazon Lambda pricing calculator. |https://s3.amazonaws.com/lambda-tools/
pricing-calculator.html. [Online; accessed 25-July-2017].

18

http://docs.aws.amazon.com/es_es/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/es_es/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html
https://hub.docker.com/_/centos/
https://hub.docker.com/r/bitnami/minideb/
https://hub.docker.com/r/grycap/jenkins
https://hub.docker.com/r/grycap/jenkins
http://pjreddie.com/darknet/
https://hub.docker.com/r/grycap/darknet/
https://s3.amazonaws.com/lambda-tools/pricing-calculator.html
https://s3.amazonaws.com/lambda-tools/pricing-calculator.html

