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ABSTRACT Stochastic low-density parity-check decoders (SLDPCs) have found favor recently both for
correcting transmission errors as well as for improving the hardware efficiency. The main drawback of these
decoders is that they require hundreds of time periods to decode each frame, but their chip area is smaller
than that of their fixed-point counterparts, so they can achieve higher hardware efficiency and may consume
less energy. In this paper, we propose a novel extrinsic information transfer chart technique for characterizing
the iterative decoding convergence of all the sequences involved in the SLDPC. We have conceived a new
model, which takes into consideration not only the sequences exchanged between the decoders but also the
sequences generated inside the variable-node decoder (those which are stored in the edge memories). In this
way, the model is able to predict the number of decoding iterations required for achieving iterative decoding
convergence, as confirmed by own decoder simulations. The proposed technique offers new insights into the
operation of SLDPCs, which will facilitate improved designs for the research community.

INDEX TERMS EXIT chart, low-density parity-check decoder, stochastic arithmetic.

GLOSSARY

AWGN  Additive White Gaussian Noise
BER Bit Error Rate

BPSK  Binary Phase-Shift Keying

CN Check Node

CND Check Node Decoder

DCmax Maximum number of decoding cycles
Ey/No Signal to Noise Ratio per bit

EXIT Extrinsic Information Transfer

MI Mutual Information

LLR Logarithmic Likelihood Ratio

RN Random Number

LDPC Low-Density Parity-Check

SLDPC  Stochastic Low-Density Parity-Check
SP Sum of Products

VN Variable Node

VND Variable Node Decoder

5G-NR  5G new radio

I. INTRODUCTION
The interest in Low-density parity-check block codes [1]
has substantially grown in recent years due to their ability
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to achieve performances close to Shannon’s limit. Recently,
LDPC codes have been adopted by the 3GPP New Radio
technical specifications [2], because their parallel implemen-
tation is cable of meeting the high-throughput and the low-
latency requirement of the Fith-Generation (5G) systems.
They have also been adopted in long-haul fiber optic commu-
nications systems to mitigate the physical impairments and to
fully exploit the system capacity [3]. Recently, they have been
used in the Physical-layer Key Reconciliation method [4] as
well for enhancing communication security.

LDPC decoding operates on the basis of a serial con-
catenation of two decoders, namely of the variable node
decoder (VND) and of the check node decoder (CND).
The iterative decoding process consists of the two decoders
feeding and processing soft-valued bits back and forth
between each other through an interleaver and a
de-interleaver, which reorder the soft-valued bits in a non-
contiguous way for the sake of providing uncorrelated extrin-
sic information.

Typically, these decoders have been implemented using
fixed point two’s complement number representation. The
number of quantization bits used in fixed point iterative
decoders determines both their dynamic range and their
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hardware complexity [5]. Naturally, the higher the number of
quantization bits, the higher the error correction performance
of the decoder. However, having more quantification bits also
increases the hardware complexity, owing to the employment
of larger arithmetic circuits, larger number of interconnec-
tions and larger memory requirements. These increase the
chip-area, limit the maximum throughput and increase the
power disipation [6].

In order to alleviate the decoder complexity several sophis-
ticated designs have appeared in the recent literature. One
of these is based on the use of stochastic arithmetic which
emerged in the 1960s [7] as a method of designing low-
precision digital circuits, and has recently been used for
implementing neural networks [8] and LDPC decoders [9].
The main drawback of SLDPC decoders is, however, that the
number of decoding iterations required to converge is higher
than that of other approaches.

Recently, researchers have started to investigate the con-
vergence of diverse iterative decoding schemes. In [10],
a novel Extrinsic Information chart (EXIT chart) is proposed
for predicting the iterative convergence of the Fully Par-
allel Turbo Decoder. In this work, a new 3D EXIT chart
is formulated for considering the mutual information of
the Logarithmic Likelihood Ratios (LLRs) and of the state
metrics. Inspired by this work, we have obtained a pre-
diction of the SLDPC decoding convergence for the first
time.

The new contributions of this paper are as follows:

1) We demostrate that, in addition to the extrinsic proba-
bilities exchanged between the VND and CND, the con-
tent of the memories included in the VND must be
also considered when plotting the EXIT chart. This fact
constitutes a novelty respect to the EXIT chart model
used in conventional LDPC decoders.

2) We approach the EXIT chart analysis of the SLDPC
from a new perspective which takes into consideration
the inter-dependences between the extrinsic informa-
tion components. This technique is capable of accu-
rately predicting the convergence of the SLDPC to a
vanisihingly low BER, as confirmed by our full-decode
simulations.

The paper is structured as follows. Section II sumarizes the
LDPC algorithm. Section III introduces the Stochastic LDPC
decoder, centering our attention on the most pertinent details
of this contribution. The new EXIT chart conceived for the
SLDPC is described in Section IV. In this section we compare
the results predicted by the EXIT chart to the number of iter-
ations obtained after simulating the stochastic full-decoder
in order to quantify the accuracy attained. In Section V a
comparison between the 2D projection of a Sum of Products
LDPC decoder implementing using fixed point two’s com-
plement number representation and the stochastic approach
is presented. Finally, our concluding remarks are offered
in Section VI. For convenience the paper table of contents
is included in Fig. 1.
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FIGURE 1. Paper outline.

Il. LOW-DENSITY PARITY-CHECK DECODER

A binary LDPC code is specified by a sparse n x m parity-
check matrix H, where n represents the number of parity
checks and m represents the number of bits in the code block.
It can be represented graphically by a bipartite Tanner graph
using H as parity-check matrix, with n check nodes (CN) in
one class and m variable nodes (VN) in the other. An edge
exists between the variable node m and the check node n if
and only if H(n, m) = 1.

An LDPC code is called regular when it has identical col-
umn and row weights, defining weight as the number of 1’s
in a column or in a row (d, and d. respectively). The specific
choice of LDPC code construction is very important, with
computer generated random LDPC codes providing the best
performance, but also resulting in high complexity hardware
implementations.

The LDPC codes are decoded using message-passing algo-
rithms: at the i-th iteration, first, the variable-node decoder
operation is performed to compute the variable-to- check
messages ¢5;, which denote an estimate of the a posteriori
probability, and sent to the corresponding neighbor check
nodes; second, in the check-node decoder operation the
check-to-variable messages, r;, are computed and sent back
to the neighbor variable-nodes. The message-passing decod-
ing algorithm that achieves the best performance is the sum-
product (SP) algorithm of [11]. However, the SP algorithm
has a high implementational complexity in terms of the inter-
connection between the VND and the CND. This problem
is particularly acute for fully parallel decoders, resulting in
routing cogestion and interconnection problems.

Fig. 2 shows a simplified communication scheme, where
the transmitter employs an LDPC encoder and the receiver
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FIGURE 2. Schematic of an LDPC code, which comprises the CND and
VND decoder.

employs an LDPC decoder, formed by a set of variable
nodes (VN) and a set of check nodes (CN). The Tanner graph
is represented by the interleaver box.

A sequence of n information bits x can be LDPC encoded
into the m-bit encoded sequence x; with the aid of a n x m gen-
erator matrix G. Here, G is designed to produce codewords
that satisfy the corresponding parity-check matrix H. After
this, the sequence may be BPSK modulated and it is transmit-
ted over an Additive White Gaussian Noise (AWGN) chan-
nel. The received sequence is converted into Log-likelihood
ratio (LLR) using (1), where o2 is the variance of the Gaus-
sian noise channel. These LLRs values express how likely
these bit values are.

ci=2-xi/o? 1)

The decoder operates iteratively on the basis of the SP algo-
rithm, which is detailed through (2) to (5). During the first
iteration of the SP algorithm, the VN initialize their extrin-
sic probabilities qu according to the demodulator inputs c;.
After this, the extrinsic probabilities qu are forwarded to
the CNs as the a priori probabilities rj;.Then the CNs
employ (2) to obtain the extrinsic probabilities r;; which pass
through the de-interleaver in order to form the a priori VND
probabilities qf;

=33 [ (-2(1-m)) o

These probabilities appropiately combined with the
demodulator inputs ¢; to obtain the extrinsic probabilities qz
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as is detailed in (3).
Ci l_[j/EC,'\/' q;l//
Ci Hj’eciv qg/ + [] — Ci] Hj/eC,\,- <1 — qg,)

Each iteration of the SP algorithm is finalized with the
hard decision estimation of the decoded sequence, which is
performed by the VNs using (4) and (5).

3

e _
qij_

Ci H/GCi qg’
0i = - - 4)
Ci HjeCi 4q;; +[1—cal HjGCi (1 - qt'j)
& = 0 Q0;<05 )
1 otherwise

This process is repeated until all parity-check equations are
satisfied according to H - &T = 0, or until the maximum
affordable number of iterations has been carried out.

Ill. STOCHASTIC LDPC DECODER

Stochastic LDPC decoding was first proposed in [18] as a
new approach for low-complexity iterative decoding of error-
correcting codes on graphs. In this technique, probability
messages are encoded into streams of bits using Bernouilli
sequences in a way that the likelihood of observing a ‘1’ in a
stream is equal to the encoded probability. For instance, (6)
shows some possible streams for a probability of 3/10.

P = [1010010000]
P = [0011000010]
P = [0100110000] (6)

The main advantage of the stochastic representation is that
itresults in simple hardware structure for VNs and CNs, and it
significantly reduces the interleaver complexity because of its
bit-serial nature. These advantages are key in the case of fully-
parallel LDPC decoders [6], where the number of processing
nodes is high, and routing congestion is a major problem.

During the 2000s novel approaches have been proposed
for improving the performance of SLDPC decoders. In [19]
a SLDPC decoder that achieves comparable performance to
floating point Sum of Products decoder is presented for a half
rate (200, 100) LDPC code. This solution also suffers from
the drawbacks that stochastic decoders present, such as the
latching problem [12].

Explicitly, the latching problem is due to the presence
of undesired cycles in the code’s Tanner graph, which
result in correlated stochastic messages because a group of
nodes might retain in fixed states for several decoding iter-
ations. This fact dramatically degrades the convergence of
the decoder. In order to overcome this problem, beneficial
architectures have been proposed in [9] and [20], which are
based on the employment of edge memories. These memories
are introduced in the variable nodes for rerandomizing and
hence decorrelate the associated stochastic streams. As a
benefit, edge memories significantly reduce the chance of
latching.
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Recently, edge memories based technique has been
replaced by tracking forecast memories in [21] and [22].
This new approach has been involved for a (1056, 528)
LDPC decoder used in the IEEE 802.16 (WIMAX) stan-
dard, and shows that tracking forecast memories can provide
similar decoding performance to edge memories as a lower
complexity.

In [23] a hardware efficient SLDPC decoder has been
developed. This decoder occupies a silicon area of 3.93 mm?
using 90-nm CMOS technology and provides maximum
core throughput of 1724 Gb/s at Eb/No of 5.5 dB,
thereby its hardware efficiency is 43.86 Gb/s/mm?. This is
twice that the one reached by the best conventional LDPC
decoder implemented in [24], whose hardware efficiency
is 20.85 Gb/s/mm?>.

As we have mentioned, the main drawback of SLDPC
decoders is the excessive number of time periods required
for decoding each frame, albeit some strategies have been
proposed in [25] for reducing the average number of decoding
cycles.

The SLDPC decoder that we present in this paper is based
on the further developing one implemented in [14]. The fol-
lowing subsections describe the components of our SLDPC
decoder and present the implementation of these components
for a (847, 363) LDPC code, which is the one used in the
NATO Allied Communications Protocol 4724 [26], having
check node degree of d. = 7 and variable node degree of
d, =3.

A. CONVERTING PROBABILITIES INTO STOCHASTIC BITS
In this approach, probabilities are represented by Bernouilli
sequences which are generated by statistically independent
processes and only one bit is processed in each clock cycle,
that is referred to the decoding cycle of stochastic decoding.
To convert the probabilities into the Bernouilli sequences we
use the circuit shown in Fig. 3.

Probabilit;
= | Stochastic stream

Pseudo-random
sequence

FIGURE 3. Schematic of Stochastic Converter..

This structure consists of a comparator, which compares
the demodulator’s input probability (P) to a pseudo random
number (R), at each decoding cycle. The probability P is fixed
during the decoding of a block, while R is changing every
decoding cycle. The decoder needs a dedicated comparator
for each VN.

The comparator subtracts one input from another and uses
the sign bit of the result as the output. This output bit is equal
to 1 if P > R, while it is equal to O otherwise.

The pseudo random number is generated using a 7-bit
linear feedback shift-regiter (LFSR). It is a classical digital
circuit constructed of seven cascaded D-type flip-flops and a
feedback loop closed through an XOR gate [15].
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FIGURE 4. Schematic of Stochastic Variable Node having a degree of
dy =3 [9]©.

B. VARIABLE NODES AND EDGE MEMORIES

The VNs implemented in this decoder have degree-3
(d, = 3), which means that they have three extrinsic inputs qg.
and three extrinsic outputs qf/ which obey (3). The stochas-
tic arithmetic calculating (3) can be implemented using
the circuit of Fig. 4, which was proposed in [9]. Notice
that each VN contains three circuits like this, one for each
output.

FIGURE 5. Schematic of the Edge Memory [13]©.

The behavior of each part of the VN is described as
follows: if all input bits qg. have the same value, then this
value is passed to the output port and it is written in the
edge memory. We refer to this situation as the Agreed
state. Otherwise, if the inputs do not agree, a random bit is
selected from the edge memory, while is passed to the output
port, this is called the Hold state. In this way, the latching
problem is avoided by rerandomize the output of the VN.
Fig. 5 presents the schematic of the edge memory, which
consists of an addresable shift-register controlled by the
updated input. This is activated when an Agreed state is
produced.

The VN also includes a circuit that calculates the decoded
bit ¢;. This is presented in Fig. 6. This circuit employs a
16-bit edge memory and two 2-bit shift-registers to avoid the
latching problem. Notice that this bit is in stochastic format,
so we have to convert it to a probability, which is carried
out by passing ¢; to an up/down counter. The counter is
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Init

FIGURE 7. Schematic of Stochastic Check Node having a degree of dc = 7.

decremented in case of a 0 and incremented in case of a 1.
At any given decoding cycle, the sign bit of the counter
indicates the corresponding hard decision, with a O sign bit
indicating a decoded +1 BPSK symbol, and a 1 sign bit
indicating a decoded —1.

We use the decoded bits to compute the parity check equa-
tions. If the parity check equation of all the VNs is asserted
in the same decoding cycle, the decoder infers that all the
parity-check equations of the LDPC code have been satisfied,
whereupon the decoding process is terminated and the VNs
output the decoded bits.

C. STOCHASTIC CHECK NODE

Every CN has to evaluate equation (2). Fortunately, stochas-
tic arithmetic multiplications can be performed using XOR
gates. In this way, the stochastic implementation of a CN
having a degree of d. = 7 employs a 7-input XOR gate for
the computation of the parirty check signal. The rest of the
outputs rs are calculated by the XOR of each input and the
parirty check signal, as is shown in Fig. 7.

D. SIMULATION RESULTS
In order to characterize the operation of the SLDPC decoder
we have compared it to that of the floating point SP algorithm
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FIGURE 8. Simulation results for a (847,363) code using BPSK modulation
for communication over a AWGN channel. The edge memory length is
49 and DCmax=500.

for the same code. Fig. 8 shows the BER performance of our
SLDPC decoder for a (847, 363) LDPC code with respect to
floating point SP decoding (using 30 iterations).

The SLDPC decoder is programmed with a maximum
decoding cycles of 500.

LDPC codes can perform close to Shanon limit in the
waterflow region, however, as the signal-to-noise ratio con-
tinues to increase, LDPC codes may suffer from the error-
floor phenomenon. This fact limits the use of LDPC codes in
applications requiring very low error-rate. The selected code,
NATO Allied Communication Protocol 4724 [26], has this
error floor as a characteristic, as is observed in Fig. 8.

Fig. 8 demonstrates that the SLDPC decoder imple-
mented provides comparable performance to floating point
SP decoder.

IV. EXIT CHART OF THE STOCHASTIC DECODER

Extrinsic Information Transfer (EXIT) charts were proposed
in [28] as an alternative method for analyzing the convergence
behavior of iterative decoders. This technique has also been
widely applied for LDPC decoders, but never has been used
to analyze SLDPC decoders.

In [29] an in-depth study on the uses of EXIT charts has
been presented. It concludes that EXIT charts constitutes a
powerful tool for characterizing iteratively decoded systems.
Moreover, in [30] a complete evaluation of EXIT charts for
conventional LDPC decoders is presented.

According to this technique, the mutual information (MI)
I(x; x) of the extrinsic probabilities can be used for charac-
terizing the exchange of extrinsic information between the
CND and the VND. This parameter quantifies the accuracy
of the information in the probability sequence X regarding
the bit sequence x. The MIs values are constrained to the
range of [0,1], where O indicates that the probability has no
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information concerning the corresponding bits, while 1 indi-
cates a perfect match. Concretely, an EXIT chart function
plots the MI of the corresponding extrinsic probabilities of the
decoder’s output versus the MI of the corresponding a priori
input probabilities.

The mutual information is quantified by estimating
the distributions of the Bernouilli sequences bits p(g/x;),
where we have ¢, x;e {0, 1}. The MI may then be obtained
according to

MI=05- Z/

x=0,1""

]

palqlx;)
o0

2 - pa(qlx;) .
patalni = 1) + palglxi = 0)
where py4 is the conditional probability density function of the
sequence (g).

In the case of a SLDPC, we have to consider the MI of the
a priori and extrinsic Bernouilli sequences of each decoder,
in addition to the mutual information of the content of the
edge memories because the behavior of the VND depends on
these bits.

log @)

Channel prob

I(memoyt:Xj)

. CND

FIGURE 9. Interdependence among MI measurements.

Fig. 9 shows the interdependence among the different MI
that must be considered for drawing the EXIT chart functions
of the SLDPC decoder. In this case, the output of the CND
depends only on the input a priori probabilities (%), hence the
EXIT chart function of this decoder (fcyp) can be calculated
using the conventional method of [16]. However, in the VND,
the output depends both on the demodulator’s input proba-
bility, on the output of the edge memories and on the input
a priori probabilities (¢g%), so the function of the VND (fynp)
has three variables, and it can be represented by a surface for
a given value of signal to noise ratio (Ep/Np).

Additionally, the function of the edge memory (fgur)
depends on it’s previous state and on the input a priori proba-
bilities (¢%). This function should also be represented by a sur-
face. In this way, the 3D EXIT chart contains three surfaces:
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the CND surface (CNDy,,s), the VND surface (VNDy,r) and
the memory content surface (Memoyyr). (8), (9) and (10)
show the behavior of this model, which are visualized with
the aid of Fig. 9

1(q%; xi) = fenp [1 (4% xi) ] 3)
1(q%; xi) = funp [1 (g% xi) , I (memous; i), Ep /N, |

©)

I(memous; xi) = fem [I (g% xi) , I (memiy; x;)] (10)

The next subsections present the models used for drawing
each surface of the 3D EXIT chart.

A. STOCHASTIC VARIABLE NODE AND MEMORY
CONTENT SURFACES

Fig. 10 shows the schematic of the system used for plotting
the VND EXIT chart function surface and the memory con-
tent surface, when using BPSK modulation for comunication
over a AWGN channel. In this system, each bit of the encoded
sequence x; is repeated d,, times to form the longer sequence,
which can be used for computing the a priori probabilities
(¢) for a given mutual information (/A,) using the Gaussian
process presented in [27]. All of these bits are converted
into their stochastic representations, and are passed to the
stochastic VN in a serial way, one bit each decoding cycle.

EbNo NDS: Noise dependent scaling
LDPC BPSK Channel NDS
encoder modulate wave,, AWGN wave, l
LLR
Stochastic Random
IAv (0...1) RN _Conversion Number
> Stochastic
Conversion
Compute
extrinsic apriori llr lc
CHECHC
Imem (0...1) e 1)
—
s Stochastic Variable Node
Compute 3 Edge [ SRa 1) dv-3
memory content Memories [ "%
CCH
- T R
Imem,, Imem,,, IEv

FIGURE 10. Schematic of the system used for creating the VND surface.

Additionally, this longer sequence is also used for com-
puting the memory content bits for a given mutual informa-
tion (Imem) using the Gaussian non-binary process detailed
in [10]. These bits are converted into their stochastic repre-
sentation and are used for filling up the edge memories.

While the decoding process continues, the content of the
edge memories before the update process is compared to
the encoded sequence for computing the mutual informa-
tion Imem;,. In the same way, the content of the edge memo-
ries after the update process is used for obtaining the mutual
information Imem,,,;. The last one is the function that plots
the memory content (Fig. 11). As we expected, this function
depends linearly on the Imem, and has a weak dependence
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0.8

0.6

Imem out

0.4

0.2

0.6

0.4 1

0.4
Imem 0 0 02

1AV

FIGURE 11. Memory content surface having dy = 3 and Ej /Ny = 3.5 dB.

on the [A,. This is because the a priori input Bernouilli
sequences bits cannot affect more than one of the 48 bits
stored in the edge memory in each decoding cycle.

The outputs of the VN are used for performing the
mutual information calculation of the extrinsic Bernouilli
sequences (/E,). This parameter is represented by /(¢°; x;)
in Fig. 9. As we have discussed previously, this parame-
ter depends on the channel Ej/Ny value, on the a priori
Bernouilli sequences and on the memory content. This func-
tion represents the behavior of the stochastic VN and it will
be very useful for predicting the convergence of the decoder.
Fig. 12 shows this function at Ep /Ny = 3.5 dB. As we can
observe, this function depends strongly on the content of the
memory and this dependence is stronger when the variable
node degree is higher. This is because the higher the variable
node degree, the lower the probability of producing an Agreed
state, so the lower the dependence on the IA, becomes.

0.6
0.4 1

0.4
Imem 0 9 0.2

1AV

FIGURE 12. VND surface having dy = 3 and E, /Ny = 3.5 dB.

If we simulate this system for different values of Ej/Ny
we realize that upon increasing Ej /Ny the surface is raised,
hence achieving higher values of /E,.

B. STOCHASTIC CHECK NODE SURFACE
The EXIT chart function of the CND is based on the one
evaluated in [16] and it has been adapted to the case of
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LDPC encoder >

IAc
Generate |_' Repeat
LLRs i 3-times

Measure
IEc

s> CND

FIGURE 13. Schematic of the system used for evaluation the CND surface.

a stochastic decoder in this treatise for the first time. It is pre-
sented in Fig. 13, where the interleaver box () permutes
the bit sequence in order to obtain the a priori inputs of the
CND (r“). The simulation of this system generates Gaussian-
distributed a priori LLRs using the method detailed in [27].
These LLRs are converted to Bernouilli sequences using a
stochastic converter and are passed to the check node decoder.
The evaluation of the mututal information relies on using
the histogram based method [27], because the MI cannot be
accurately characterized for this relatively short code by the
Gaussian distribution.

The CND surface represents the mututal information
between the sequence and the output of the CND IE. =
I(r; r¢) versus IA.. Observe that this function is independent
of the channel’s E;, /Ny value. We represent this function in
the EXIT chart by plotting /E, along the abcissa axis, and /A,
along the ordinate axis.

IEV/IAc

0.4
IAV/IEc

Imem 0 0

FIGURE 14. 3D EXIT chart of the SLDPC Decoder at E, /Ny = 3.5 dB.

C. 3D EXIT CHART OF THE STOCHASTIC LDPC DECODER
The VND and CND EXIT chart functions of the SLDPC
decoder may be drawn together in a 3D figure (see Fig. 14)
to present the 3D EXIT chart. In order to plot the CND EXIT
function, we have repeated the values of the function for each
Imem value, since /E, is independent of I,,ep,.
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02 0 o0

IAV/IEc
Imem

(2)

0.2
| o 0 ™
mem

(b)

FIGURE 15. Predicted trajectories over the VND and CND surfaces and over the memory surface for E, /Ny = 4.5dB. (a) Predicted
trajectory over the VND and CND surfaces. (b) Predicted trajectory over the memory surface.

In parallel, the memory content surface must be plotted
in order to adequately model the behavior of the stochastic
decoder, as presented in Fig. 11.

1) PREDICTED TRAJECTORY

Once we have combined all functions in a pair of 3D plots
(the memory content surface and the 3D EXIT chart), we may
predict the future evolution of the extrinsic information
exchanged between the decoders, as the iterative decoding
process continues. In this way, the number of decoding cycles
required for attaining convergence can be calculated using the
stair-case-shaped decoding trajectory, which is drawn over
the 3D EXIT chart. Consequently, next we will elaborate
on the procedure of plotting the predicted trajectory of the
SLDPC decoder. More particularly, the algorithm of produc-
ing the predicted trajectory is as follows:

o Step 1: In the first decoding cycle the decoder is initial-
ized by filling up the edge memories with the demodula-
tor’s input probabilities and initializing IA,, also with this
probability. We use the memory surface of Fig. 15b to
determine the MI of the output of the memory Imeniy,; .
This is marked in Fig. 15b as point 1.

o Step 2: After that, we use the VND surface of Fig. 15a
to determine the MI of the extrinsic VND probability
IE, = 1(¢°; x;). To arrange for this, we have considered
IA, equal to the demodulator’s input probability and
Lyem equal to Imem,,,; obtained in the previous step. This
may be represented by a vertical step 2 in the trajectory
of Fig. 15a.

o Step 3: Taking into account that JA, = [E,, we start
from the point ({A., Ij;em) and proceed along the CND
surface in order to find the value of the extrinsic MI /E,..
This has been drawn in Fig. 15a as a horizontal step 3.

o Step 4: The next step represents the begining of the next
iteration. This step consists of obtaining the value of
Imemyy; given IA,, = IE, and I, equal to Imemyy,; of
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the last iteration. This is carried out by using the memory
surface of Fig. 15b. This position is translated to Fig. 15a
as represented by the vector 4.

The iterative process continues repeating Steps 2 to 4
until the end of the intersection between the surfaces
CNDy,r and VNDy,s is reached. The shortest the
intersection curve between the CNDy,,s and VNDy,y,
the fewer the number of periods required for achieving
iterative decoding convergence.

2) ITERATIVE DECODING CONVERGENCE

In order to evaluate the reliability of the proposed method
we have simulated the iterative SLDPC decoding presented
in Section III for different values of Ej/Ny. Specifically,
we have conducted simulations at E, /Ny = 1dB, Ep/Ny =
2.5dB, Ep/Ny = 3.5dB and Ep/Ny = 4.5dB. We have
measured the values of IA,, IE,, Imem;, and Imem,,; after
each decoding iteration.

On the other hand, the 3D EXIT charts have been drawn for
these values of Ej /Np and the predicted trajectories have been
calculated. For these processes the model of the decoder has
been initialized in the way that the channel probabilities are
passed to the a priori extrinsic information ¢“, and the con-
tents of the edge memories are also updated with this proba-
bility. In this way, the convergence is expedited. Fig. 16 to 19
show the predicted trajectory and the full-decoder trajectory
obtained by own simulations. The simulated trajectory is
always matching closely with the predicted one. In all of the
plots, the meassured trajectory fits on the CND surface and
on the memory surface, and it is always very close to the
VND surface. This fact allows us to confirm that the proposed
model is quite accurate.

Observing these figures, we can point out that the lower
the channel E} /Ny the longest the intersection curve between
the CNDyg,;y and VNDy,,¢, so the most the number of periods
required for achieving iterative decoding convergence, such
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FIGURE 16. Predicted (thin line) and Simulated trajectories over the VND and CND surfaces and over the memory surface
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FIGURE 17. Predicted and Simulated trajectories over the VND and CND surfaces and over the memory surface Ep /Ny = 3.5dB.
(a) Predicted and simulated trajectories over the VND and CND surfaces. (b) Predicted and simulated trajectories over the

memory surface.

as we expected. In the case of E;/Ny 1dB neither the
simulated nor the predicted trajectories converge.

On the other hand, observing the memory content
(Fig. 16b to 19b) we realize that the mismatch between the
predicted and the measured trajectories is higher than the
one observed in Fig. 16a to 19a. This mismatch is produced
because we are using a simplified model of the memories.
However, this mismatch does not produces a significant draw-
back in terms of the predicted number of iteration cycles that
the full-decoder needs to converge. In table 1 we figure out
the number of iteration cycles that the full-decoder needs
to converge and the predicted ones. As you can see, both
numbers are very close, hence it may be concluded that the
proposed 3D EXIT chart result are in agreement with the
measured simulation results.

EXIT charts are also useful to find the starting £, /Ny point
for decoding convergence. In this work, further E}, /Ny values
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TABLE 1. Number of iterations needed to converge for the Simulated and
the Predicted decoder.

E,/No | Simulated | Predicted
4.5dB 170 150
3.5dB 370 360
2.5dB 1500 1350

have been simulated and, from the results obtained, we can
conclude that the SLDPC decoder is able to reach conver-
gence when E;,/Nj is higher than 1.5 dB for the proposed
code, as it can be observed in Fig. 20.

3) PROJECTION INTO TWO DIMENSIONS

The performance of the SLDPC decoder can be readily inter-
preted by using the previous EXIT charts. However, this
plot is not the best one for visualizing the iterative decod-
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FIGURE 20. Comparison of the predicted trajectories for different values
of E, /Ny (4.5dB, 3.5 dB, 2.5 dB, 1.5 dB and 1 dB).

ing convergence and for quantifying the number of itera-
tion’s number. Therefore, it is conducive to project the 3D
EXIT chart into two dimensions. Thanks to this, a clearer
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observation of the predicted trajectory emerges. Specifically,
this new plot allows us to clearly observe the MI improvement
after each decoding period. This fact facilitates comparison
with the SLDPC full-decoder.

This 2D EXIT chart has been obtained by observ-
ing the IA, Lnem plane and the IE, Lpem plane of
figures 16a, 18a and 19a. The 2D projection of Fig. 16 to 19
are provided in Fig. 21 to 24. Here the circular markers
represent the projected 2D version of the predicted trajectory,
while the lines denote the mean of the measured MI observed
after each decoding cycle of a decoding iteration having
N = 847 bit-coded frames.

This 2D EXIT chart is also useful to count the number of
predicted decoding cycles. Every two marks of the graph rep-
resent a new decoding cycle, so the total number of decoding
cycles is half of the mark number.

The achievable accuracy may be confirmed by comparing
the predicted trajectory to the full-decoder trajectory using
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FIGURE 22. 2D projection of the Predicted trajectory and full-decoder
trajectory (Ep /Ny = 3.5dB).

the 2D EXIT chart of Fig. 21 to 24. Although there is some
mismatch, both trajectories follow the same direction and
reach convergence at a similar number of iterations. The
mismatch is particularly pronounced at E, /Ny = 1dB. This
mismatch may be explained by the random behavior of the
memories, which affect the behavior of the VND surface.
This behavior significantly increases the complexity of the
model. Our future work will be focus on analyzing and mod-
eling this behavior.

With the aim of highlighting the benefit that this proposal
provides, we include a computational complexity analysis in
terms of number of frames that must be simulated in order to
get smooth EXIT charts versus the number of frames for the
BER plot. EXIT charts have been implemented by simulating
5000 frames and the surfaces obtained has been interpolated
in order to get a fine grid. On the contrary, to perform a useful
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FIGURE 23. 2D projection of the predicted trajectory and full-decoder
trajectory (Ep/Ng = 2.5dB).
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FIGURE 24. 2D projection of the predicted trajectory and full-decoder
trajectory (Ep /Ny = 1dB).

BER plot we need to simulate almost 100,000 frames for each
Ep/Np value, which is a long and time consuming process.

V. COMPARISON OF SUM-PRODUCT LDPC AND
STOCHASTIC LDPC USING EXIT CHARTS

The novel approach presented in this paper allow us to char-
acterize the performance of a decoder without doing long
simulations.

The novelty of this approach lies in the application of
decoders based on Stochastic arithmetic. EXIT charts have
indeed been used for characterizing other LDPC decoders,
but they never have been applied to decoders relying on
Stochastic arithmetics.

In this section we are going to compare the EXIT charts
of the Sum-Product LDPC decoder (SP-LDPC) using fixed
point and the SLDPC decoder presented in this paper, using
the NATO Allied Communication Protocol 4724 code [26].
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FIGURE 26. EXIT Chart comparison between the SP and the Stochastic
LDPC, having a coding rate of 3/4 and a frame length of 847 bits is
employed along with BPSK modulation for communication over AWGN
channel (Ep /Ny = 1dB).

Fig. 25 and 26 present the 2D EXIT chart of the SP-LDPC
(dotted line) and the 2D projection of the SLDPC at Ej /Ny =
4.5dB and Ep/Ny = 1dB. In these figures, each pair of
cross markers corresponds to one of the decoding iteration
of the SP-LDPC decoder, and each pair of circle markers
corresponds to one of the decoding iteration of the SLDPC
decoder. It may be observe from Fig. 25 that the SP-LDPC
requires 15 iterations to achieve decoding convergence at
Ep/Ny = 4.5dB, meanwhile the SLDPC needs 150 iterations.
On the other way, when the EXIT charts tunnels of both
decoders are closed, such as happens at E,/Ng = 1dB,
the convergence does not occur. This is confirmed by the high
BER for both decoders presented in Fig. 8.
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VI. CONCLUSIONS

We presented an innovative EXIT chart, which is useful
for characterizing the iterative convergence of the SLDPC
decoder. Our new approach takes into consideration all the
MIs of both the LLRs and the content of the edge memories
for the first time. The 2D projection of the EXIT chart allows
us to clearly visualize the decoder trajectory. This plot is also
useful for comparing the predicted and simulated results.

It was shown that the diference between the number of
iterations predicted by the EXIT chart and that obtained after
simulation are between the 3% for Ej; /Ny = 3.5dB and 10%
for the Eb/Ny = 2.5dB.

The method proposed in this paper is applicable to other
code lengths. In [30] the impact of the code length on the
EXIT chart functions of a LDPC decoder is studied con-
cluding that the EXIT functions of the CND and VND of
different codes are nearly identical when the channel Ej /Ny
is 3dB. In the case of a Stochastic LDPC, the code length
is not a drawback provided that the channel E, /Ny is higher
than 1dB.

The proposed techniques offer new insights into the oper-
ation of the Stochastic LDPC decoder, which will enable
improved designs in the future, in the same way that con-
ventional EXIT charts have enhanced the design and under-
standing of conventional LDPC decoders. On the other hand,
the idea introduced in this work could be used as inspiration
for modelizing other systems formed by concatenated struc-
tures within memories.
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