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A NOVEL APPROACH FOR ESTIMATING 

THE ARL-BIAS SEVERITY OF SHEWHART 
P-CHARTS 

 
Abstract: The Shewhart p-Chart is a widely used and taught 
control chart that monitors the process fraction of 
nonconforming, p. The control limits of this chart are 
computed from an equation derived from the central limit 
theorem that assumes the parameters p and sample size, n, 
provide a good approximation of the binomial to the normal 
distribution. It is known that if the approximation is poor the 
chart becomes ARL-biased with a consequent deterioration of 
its process improvement detection capability. Hence, if one is 
to use this chart its ARL-biased severity ought to be 
established in advance. Three parameters are used to 
estimate a chart´s ARL-bias severity, namely the in-control 
ARL, the relative ARL-bias and the maximum out of control 
ARL. However, calculating these parameters is a task that 
requires of lengthy calculations that often entails the use of 
specialised software. In this paper we present a new approach 
that facilitates the estimation of the bias severity, this 
approach consists of a closed-form equation that eases the 
calculations of the ARL-bias parameters and of a graphical 
method that permits  assessing a p-Chart´s ARL-bias severity 
level according to the severity zone in which its n and  p values 
fall into. 
Keywords: attribute chart, Average run length, ARL-bias, 
control chart, fraction non-conforming, p-Chart. 

 
 
1. Introduction1 

 
A control chart is a statistical tool that is 
extensively used for process monitoring in 
manufacturing and non-manufacturing 
industries. The Shewhart charts are among 
the most extensively used and are included in 
all statistical quality control textbooks. 
Depending on the data used to monitor the 
process, these charts can be divided into two 
groups: i. Variable charts (when continuous 
numerical data is used) and ii.  Attribute 
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charts (when count-type data is used). 
Montgomery (2009, pág. 226) provides a 
good insight into the theory and application of 
these charts.  
Among the most popular single-attribute 
Shewhart charts are the so called p and np 
charts that monitor the process fraction of 
nonconforming and the number of 
nonconforming respectively. These charts are 
used in cases when it is more convenient to 
classify process-produced items as 
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conforming or nonconforming than to 
measure their quality characteristics, or when 
only purely qualitative count data exist to 
monitor the process.  
Let’s suppose that X is the number of 
nonconforming products found when a 
random sample of n products are inspected, if 
the process is stable and the inspected 
products are independent, then X has a 
binomial distribution with parameters n and 
p. Let 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2,3, … ) denote the 
observations of X when the inspection is 
implemented. If p is known, or if it has been 
estimated, and if n is sufficiently large; then 
the process can be monitored by plotting the 
number of nonconforming products 𝑥𝑥𝑖𝑖 on an 
np-Chart or by plotting the fraction of 
nonconforming products  𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 𝑛𝑛⁄   on a p-
Chart with limits determined by equations 
(1a) and (1b). These equations are based on 
the central limit theorem that presumes the 
binomial distribution to be approximately 
normal. In this paper for reasons of 
conciseness we analyse exclusively the p-
Chart but the results also apply to the np-
Chart. 
When monitoring a process with a p-Chart, 
there will be points  𝑦𝑦𝑖𝑖  that fall inside and 
outside the chart limits. The monitored 
process is deemed to be in-control (or IC) if 

the  𝑦𝑦𝑖𝑖  that fall outside the chart limits do so 
according to the false alarm rate at which the 
chart was designed, a typical alarm rate is 
1/370. If  𝑦𝑦𝑖𝑖  fall outside the limits at a higher 
rate, then the process is deemed to be out of 
control (or OC). The chart could be OC 
because of: 1) p has increased (i.e. the process 
has deteriorated) or 2) p has decreased (i.e. 
the process has improved).  
The capability of the chart to detect an OC 
state is commonly measured by means of the 
Average Run Length (ARL), that being the 
average number of 𝑦𝑦𝑖𝑖  points plotted within 
the limits before a 𝑦𝑦𝑖𝑖  point appears outside 
them when p has shifted away from the in 
control target value (Mitra, 2008, pág. 277). 
To graphically observe this capability, one 
could plot the p-shift vs ARL, obtaining in 
that way the chart´s ARL curve. Figure 1 
shows an ideal ARL curve, we present the x-
axis as the percentual change (𝑝𝑝1 𝑝𝑝) − 1⁄  , 
where p is the process fraction of 
nonconforming and p1 denotes the actual p-
shift. In this case p1 = δp, with δ being the 
relative shift coefficient that can take values 
above or below one. For example: if p=0.1 
and δ=1.1 the resulting p1 is 0.11 and hence 
(𝑝𝑝1 𝑝𝑝) − 1⁄ =0.1, denoting that the process 
fraction of nonconforming has suffered a 10% 
positive shift. 

 

 
Figure 1. Example of an unbiased ARL curve 
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In Figure 1, when (𝑝𝑝1 𝑝𝑝) − 1 = 0⁄ , there is no 
p-shift and its corresponding ARL value is the 
IC-ARL (or ARL0), whilst when 
(𝑝𝑝1 𝑝𝑝) − 1 ≠ 0⁄  there is a p-shift and its 
corresponding ARL is the OC-ARL (or 
ARL1). It can be seen that always 
ARL1<ARL0 and that the curve is symmetric 
with respect to the y-axis. A p-Chart with an 
ARL curve like the one shown in Figure 1 will 
have equal capability to detect process 
deterioration or improvement. 
The ARL curve shown in Figure 1 is known 
as an unbiased ARL curve. Acosta-Mejia 
(1999) defined a control chart as being ARL-
unbiased if its ARL curve decreased as the 
process parameter moved away from the in-
control value, for a p-Chart the process 
parameter is p. However, Ryan (2011, pág. 
195) points out that when p < 0.5 the binomial 
distribution becomes skewed instead of 
normal and that in this case the ARL required 
by the p-Chart to detect a decrease in p will 
be higher than the ARL needed to detect an 
increase. When this happens we effectively 
have an ARL-biased chart with a diminished 
process improvement detection capability.  
A rule of thumb often given in statistical text 
books is that the binomial distribution will be 
approximately normal so long as np exceeds 
5 or 10. This rule, however, has been shown 
that does not provide satisfactory results 
when applied to p-Charts (Ryan T. P., 2011, 
pág. 183), mainly because the fractions of 
nonconforming in real-world production 
processes are very low, that is to say p ≪ 0.5. 
This situation effectively means that 
Shewhart p-Charts, even if they are designed 
following commonly given guidelines, could 
often be ARL-biased; an important fact 
hardly ever mentioned in Quality Control 
textbooks. Brown et al., (2001), comments on 
the deficiencies of several rules of thumb 
given in textbooks regarding binomial 
approximation to the normal distribution. 
A very effective way of finding out if a p-
Chart is ARL-biased is to compute the bias 
parameters and then use these to determine 
the bias severity. Three parameters are used 

to determine a chart´s ARL-bias severity, 
namely 1.-The in control ARL (or ARL0) 2.-
The maximum peak value of the ARL curve 
(or ARLM) and 3.-The relative ARL-bias (or 
ARL-bias(%)). However obtaining these 
parameters, particularly the ARLM and the 
ARL-bias(%), is a task that often requires of 
lengthy calculations and the use of computer 
programs like Matlab or R, especially if one 
wishes to examine several combinations of n 
and p. 
The fact that the p-Chart is a widely taught 
and used chart, led us to the conclusion that 
simpler methods for estimating its ARL-bias 
severity had to be developed. To this end, a 
new approach that facilitates the estimation of 
the ARL-bias severity was devised; this 
approach consists of a closed-form equation 
that eases the estimation of the ARL-bias 
parameters and of a graphical method 
whereby a p-Chart´s ARL-bias severity level 
can be deduced with only its n and p values. 
The research carried out along with the results 
and methods developed are presented in the 
following sections. 
 
2. Materials and method 
 
2.1. The three sigma p-Chart limits and the 
IC alpha tails 
 
Equations (1a) and (1b) are used to compute 
the control limits of the Shewhart p-Chart, 
these equations are derived using the central 
limit theorem under the assumption that the 
binomial distribution is approximately 
normal. A common textbook rule of thumb 
says that a good approximation is obtained 
when np ≥ 5 (or 10). 
 
Upper Control Limit: 

𝑈𝑈𝑈𝑈𝑈𝑈 =  𝑝𝑝 +  Z(1− α 2)⁄ �𝑝𝑝(1−𝑝𝑝)
𝑛𝑛

                        (1a) 

 
Lower Control Limit: 

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑝𝑝 −  Z(1− α 2)⁄ �𝑝𝑝(1−𝑝𝑝)
𝑛𝑛

                       (1b) 

 



 

212                                        M. A. Argoti, A. Carrión García 

Where: 
α = Type I error probability (Alpha error) 
n= sample size 
p= Known process fraction of nonconforming 
 
Note: If the process fraction of 
nonconforming is not known but has been 
estimated, then p̄ or pʹ are typically used in 
equations (1a) and (1b) to differentiate this 
case from the known p case. 
In equations (1a) and (1b), Z(1− α 2)⁄  is the 
(1 − 𝛼𝛼 2⁄ )𝑡𝑡ℎ quantile of the 𝑁𝑁(0,1) 
distribution. To obtain the widely used three 
sigma p-Chart an alpha error probability 
value of α= 0.0027 is used. This means that 
when  Z(1−α 2)⁄ = 3, and the process is under 
IC conditions, the lower and upper alpha tail 
error probabilities should be equal to α/2 or 
0.00135. In this paper we call these tail values 
IC alpha tails.  
Below a certain sample size, n, equation (1b) 
will compute negative LCLs, in that case is 
customarily to set the LCL=0. Given that the 
ARL-bias happens only when LCL ≠ 0, our 
calculations and analysis where done for 𝑛𝑛 ≥
1 +  9(1 − 𝑝𝑝)/𝑝𝑝  which ensures the existence 
of the lower control limit. 
 
2.2. Relation between the In-Control ARL 

and the IC alpha tails 
 
As mentioned in the introduction a chart´s 
ARL can be classified into two types, ARL0 
and ARL1. Let’s recall that the IC-ARL, or 
ARL0, is the average number of points that 
fall within the chart limits before a point fall 
outside them when the process is IC.  In this 
case, giving that the process is IC, the points 
that fall outside the limits are considered to be 
false alarms.  
The ARL0 is a function of the IC alpha tails 
and can be calculated by means of equations 
(2), (3) and (4). 
 
𝐴𝐴𝐴𝐴𝐴𝐴0 = 1

𝛼𝛼𝑜𝑜
                                                    (2) 

 
 

Where:   
𝛼𝛼𝑜𝑜 = 𝛼𝛼𝐿𝐿 + 𝛼𝛼𝑈𝑈 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   
 
𝛼𝛼𝑈𝑈 = 𝐼𝐼𝐼𝐼 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
𝛼𝛼𝑈𝑈 = 𝑃𝑃�𝑥𝑥 ≥ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑝𝑝�  

𝛼𝛼𝑈𝑈 = 1 − ∑  �𝑛𝑛𝑥𝑥� 𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥    
𝑥𝑥 = 0,1,2 … 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
0        (3) 

 
𝛼𝛼𝐿𝐿 =  𝐼𝐼𝐼𝐼 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
𝛼𝛼𝐿𝐿 = 𝑃𝑃�𝑥𝑥 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑝𝑝�  

𝛼𝛼𝐿𝐿 = ∑  �𝑛𝑛𝑥𝑥�  𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥      
𝑥𝑥 = 0,1,2 … 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
0                 (4) 

 
As previously shown a three sigma p-Chart 
should have, in theory, IC alpha tail values 
equal to 0.00135. Applying equation (2) we 
obtain that in this case the expected ARL0 is: 
 1/(𝛼𝛼𝐿𝐿 + 𝛼𝛼𝑈𝑈  )= 1/(0.00135 + 0.00135 ) = 
1/(0.0027 ) ≈ 370. This means that when the 
process is working under IC conditions, in 
average there would be one false alarm, or 
one point erroneously plotted outside the 
chart limits, every 370 samples. However, the 
expected value of ARL0=370 is rarely 
achieved, we show why this happens in the 
following section. 
 
2.2.1. IC alpha tails oscillation and its 
consequence on the ARL0 
 
Ryan (2011, pág. 190) shows a table that 
includes actual IC alpha tails values for 
several n and p combinations and uses this to 
conclude that the alpha tails for the three 
sigma p-Chart, deviate from the expected 
0.00135 value quite substantially. To 
supplement Ryan´s work we show 
graphically the actual oscillating behaviour of 
the IC alpha tails and its consequence on the 
ARL0. 
Figure 2 shows an example of the oscillation 
of the IC alpha tails in function of n for 
p=0.02. At low n values the tails get further 
apart with the lower tail getting closer to zero, 
whilst at higher n values the tails get closer 
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converging towards the expected 0.00135 
value. We analysed a range of p between 
0.01- 0.2 and found this behaviour to be 
similar for all those p values. 
Since the ARL0 is a function of the IC alpha 
tails then this value also oscillates, Figure 3 

shows the corresponding ARL0 for the alpha 
tails of Figure 2. Notice that often the ARL0 
is below 370, in those cases there will be more 
false alarms than expected, giving the 
erroneous impression that the process is out 
of control. 

 
Figure 2. Example of the oscillation of the IC alpha tails according to sample size 

 
Figure 3. Example of the ARL0 oscillation according to sample size 

 
2.2.2. The out of control ARL 
 
The OC-ARL, or ARL1, can be defined as the 
average number of points that fall within the 
chart limits before a point fall outside them 
when the process is OC.  As show in Figure 
1, the ARL1 should ideally be lower than the 
ARL0; this means that when the process is 
OC, the points that fall outside the limits 

should do so at a higher rate that when the 
process is IC. 
The ARL1 is calculated by means of 
equations (5) and (6). 
 
𝐴𝐴𝐴𝐴𝐴𝐴1 = 1

1− 𝛽𝛽
                                               (5) 
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𝛽𝛽 = 𝑃𝑃�𝑥𝑥 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑝𝑝=𝑝𝑝1� −  𝑃𝑃�𝑥𝑥 ≤  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑝𝑝=𝑝𝑝1�                                                                       (6) 
 
Where:  
p1= p-shift *p1 could be: p> p1 > p 
x= number of nonconforming units 
β= Beta error probability (calculated with the 
cumulative binomial distribution) 
 
2.3. The ARL-bias severity level 
 
As explained on the introduction section, a p-
Chart is considered to be ARL-biased if its 
ARL curve increases as p1 moves away from 
the in-control value p. Figure 4 and Figure 5 
show several examples of ARL biased curves 
for p=0.02 and p=0.1. Notice that in all cases 
the ARL curve peak value is higher than the 
ARL0 and that the x-axis location this peak is 
different to that of the ARL0, which is located 
at the x-axis zero point. These variations of 
the ARL curve peak value relative to the 
ARL0 can be used to quantify and determine 
the bias severity level of an ARL curve. 
In this paper we use the following parameters 
to quantify the ARL-bias severity level: 

1) The ARL-ratio = ARLM /ARL0 
Where: 
ARLM = ARL curve peak value  
ARL0= In-Control ARL 
Ideally (ARLM /ARL0) =1, 
otherwise the higher the ratio the 
greater the severity level. 
In this paper most of the time we 
present the ARLM and ARL0 values 
instead of their ratio, we choose to 
do this because they are more 
informative and the ratio can be 
easily calculated with those values 
in hand. 

2) The relative ARL-bias, denoted in 
this paper as ARL-bias(%). 
It is the percentage difference 

between the location of the ARLM 
and the ARL0 in the x-axis. Ideally 
the ARL-bias(%) should be equal to 
zero, otherwise the further apart 
from zero the greater the severity 
level.  
In a later section we present a 
closed-form equation by which this 
parameter can be estimated and also 
provide criteria that serves to 
establish the severity level according 
to the estimated ARL-bias(%) value. 

Let’s now focus on the curve for p=0.02 and 
n=600 of Figure 4. This curve has ARL-ratio= 
3.92, ARL0=354, ARLM=1389 and ARL-
bias(%)= -16%. This curve is clearly biased 
since for a wide range of p1<p the ARL1 is 
higher than the ARL0. The p1 at which the 
ARLM occurs, or p1-M, can be calculated 
using p1-M= [p + p(ARL-bias(%)/100)], in the 
example the p1-M = 0.0168. Also the p1 at 
which the bias region starts, or p1-S, can be 
calculated using p1-S= [p + 2p(ARL-
bias(%)/100)], in the example the p1-S = 
0.0136. It is easy to deduce that a p-Chart with 
these ARL characteristics would have a 
severely diminished process improvement 
detection capability.  
Notice that if p1-M is known then, by means of 
equations (5) and (6), the ARLM could be 
calculated. Hence, the ARLM can be 
estimated if the value of ARL-bias(%) is 
known.  
Notice also that the ARL-bias severity for the 
curves of Figures 4 and 5, reduces or 
increases in direct relation to the sample size 
n, with the severity for the combination p= 0.1 
and n=3200 being almost negligible. This 
indicates that for low p values it is possible to 
obtain p-Charts with quasi ARL-unbiased 
curves so long as n is very large. 



 

215 

 
Figure 4. Examples of biased ARL curves for p= 0.02, n=600 and n=1200 

 

 
Figure 5. Example of a biased ARL curve and of a quasi-unbiased ARL curve 

 
2.4. The IC alpha tails ratio - Rα 
 
First of all lets defined the IC alpha tails ratio 
as  Rα =  αL αU⁄  . Figure 6 shows the Rα 
variation for the IC alpha tails for p=0.02 
between n=442 and n=10000, it can be seen 

that the Rα oscillates in function of n and that 
its value gets closer to zero at low sample 
sizes.  
We plotted ARL curves for p=0.02 for 
different n values computing the ARL-bias 
severity and the Rα for each case, as an 
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example see the Rα values of Figure 4. The 
results we obtained showed that for p=0.02 
the ARL-bias severity appeared to increase as 
the Rα decreased.  
By means of plotting individual ARL curves 
we managed to study the relation between the 
Rα and the ARL-bias severity for a range of 
0.01≤p≤0.20; it was found that the severity 
tended to increase as the Rα decreased for all 
cases. From this preliminary study we 
concluded that a nonlinear relationship 

appeared to exist between the Rα and the 
ARL-bias(%). 
In order to ascertain the mathematical 
relationship that existed between the Rα and 
the ARL-bias(%), we carry out an in depth 
analysis that resulted on the development of a 
new approach for determining a p-Chart´s 
ARL-bias severity. The results and findings 
of this analysis are summarised in the 
following section. 

 

 
Figure 6. Example of the oscillation of the IC alpha tails ratio according to sample size 

 
3. Results 
 
3.1. A closed-form equation for estimating 
the relative ARL-bias 
 
To explore the relationship between Rα and 
ARL-bias(%) we created an algorithm 
capable of computing Rα and ARL-bias(%) 
for any combination of p and n.  We carried 
out extensive computer analysis for fractions 
of nonconforming between 0.001≤p≤0.2 with 
samples sizes of up to 10000. We computed 
the Rα and its corresponding ARL-bias(%) for 
each sample size.  
 
 

Figure 7 shows an example of the results, the 
width of the x-axis corresponds to a very 
small increment of Rα, from 0.2 to 0.23; it can 
be seen that the ARL-bias(%) oscillates in a 
random like manner.  
The results also revealed that, although 
almost imperceptible for very small Rα 
increments, the ARL-bias(%) gradually 
increases as Rα increases. Figure 8 shows the 
full extent of the ARL-bias(%) variation for 
p=0.04 for Rα values between 0.0048 and 
0.77. It can be seen that the overall variation 
is logarithmic and that the ARL-bias(%) 
rapidly approaches zero for Rα > 0.5.  The 
results for all other p were similar with only 
the curve slope varying for each case. 
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Figure 7. Example of the ARL-bias(%) oscillation for very small Rα  increments 

 

 
Figure 8: Example of the logarithmic relationship between ARL-bias(%) & Rα  and of the 

predicted ARL-bias(%) values using formula 7 
 

 
By applying multiple regression analysis to 
the results, we managed to developed 
equation (7). This closed-form equation gives 
reasonable estimates of the ARL-bias (%) for 
p  between 0.006 ≤ p ≤ 0.2. 
 
𝐴𝐴𝐴𝐴𝐴𝐴- 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(%) ≈ 𝑎𝑎 + 𝑏𝑏                             (7) 
Where: 

𝑎𝑎 = 0.89 − 0.87𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒( 𝑝𝑝)  
𝑏𝑏 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(𝑅𝑅𝛼𝛼) [2.63 − 0.52 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(𝑝𝑝)] 
p = Process fraction of nonconforming 
Rα= Alpha tails ratio (as defined in section 
2.4) 
An example of the goodness of fit of the 
results obtained with equation (7) is shown in 
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Figure 8. As can be seen, the formula gives 
reasonably accurate estimations of the ARL-
bias(%). However, above certain Rα 
threshold values, that are specific for each p, 
equation (7) will compute ARL-bias(%) 
above zero; for example for p=0.04 this 
threshold is 0.64 whilst for p=0.08 it is 0.72. 
Given that our results showed that the ARL-
bias(%) for Rα above those thresholds are 
always very close to zero, we recommend the 
use of the following guidelines when equation 
(7) computes values above zero: 

1) Give a value of -0.5% if estimated 
relative ARL-bias is: 0 < ARL-
bias(%)≤ 1.  

2) Give a value of 0% if estimated 
relative ARL-bias is: ARL-bias(%) 
> 1.  

Examples of ARL-bias(%) and ARLM 
estimations obtained by means of formula (7) 
are presented in Figures 4 and 5 along with 
the true values for comparison. 
 
3.1.1. ARL-bias severity level criteria 
 
We also carried an study of the relationship 
between the ARL-bias severity level 
parameters ARL-ratio and ARL-bias(%). 
This analysis was done for 0.006≤p≤0.2 with 
samples sizes of up to 10000, we computed 
the severity level parameters for each sample 
size.  
Figure 9 shows an example of the results for 
p=0.04, as can be seen the ARL-ratio tends to 
increase as the ARL-bias(%) decreases. This 
behaviour is similar for all other p values. 

 
Figure 9. Example of the relationship between the parameters ARL-ratio and ARL-bias(%) 

 
Based on the results of the ARL-bias(%) 
study summarised in this section, we 
conceived the severity level criteria shown in 
Table 1. This table complements equation (7) 

as it permits to establish a p-Chart´s ARL-
bias severity level by means of the estimated 
ARL-bias(%). 

 
Table 1. ARL-bias severity level criteria in function of the relative ARL-bias 

Severity level ARL-bias(%) 
Considerable ARL-bias(%) <  -10% 
Significant -10% ≤ ARL-bias(%) <  -3% 
Moderate -3% ≤  ARL-bias(%) <  -1% 
Slight -1% ≤  ARL-bias(%) <  -0.5% 
Negligible -0.5% ≤  ARL-bias(%) ≤  0% 

 



 

219 

Analysis of the results also led us to conclude 
that a p-Chart can be considered quasi ARL-
unbiased if its severity level parameters meet 
the following criteria: a) ARL-bias (%) ≤ -1% 
and b) ARL-ratio ≤ 1.1. In general these 
criteria are met by p and n combinations that 
produce slight or negligible severity levels. 
 
3.1.2. A procedure for estimating the ARL-
bias severity level parameters 
 
The following procedure can be followed to 
estimate a p-Chart´s ARL-bias severity level 
using equation (7). 

1) Calculate the control limits 
2) Calculate the IC alpha tails αL  and 

αU  (these can be easily computed 
using the cumulative binomial 
distribution available in commonly 
used software like Excel ) 

3) Use the IC alpha tails to determine 
the Rα and ARL0 

4) Use formula (7) to estimate the 
ARL-bias(%)  

5) Use Table 1 to establish the severity 
level 

6) Calculate p1-M  and use equation (5) 
to estimate the ARLM (The β value 
can be easily computed using the 
cumulative binomial distribution 
available in commonly used 
software like Excel) 

For example, a chart with p=0.03 and n=400 
will have an ARL-bias (%) ≈ -13.5, an 
ARL0=373, an ARLM ≈1395 and ARL-ratio 
≈ 3.74. The ARL-biased severity level of this 
chart is considerable and it should not be used 
if process improvement detection is required.  

Various authors have proposed diverse 
methods to obtain attribute Shewhart Chart´s 
with reduced ARL-biased severity, among 
others: Ryan et al. (1997), Acosta (1999), 
Ryan (2011), Oliveira et al (2012), Morais 
(2016), and Paulino et al (2016). 
 
3.2. ARL-bias zones for p-Charts 
 
In the introduction section we mentioned that 
when p≪0.5 the common text-book rule of 
thumb of np>5 or 10 does not seem to provide 
satisfactory approximations of the binomial 
to the normal distribution and that in 
consequence for low fractions on 
nonconforming, say 0.01≤p≤0.14, a p-Chart 
could often be ARL-biased. With this in mind 
and in order to establish the conditions 
required to obtain quasi ARL-unbiased p-
Charts, we decided to investigate the effect of 
p and n on the ARL-bias(%).  
We carried out an study for p between 0.01≤ 
p ≤0.14 and n up to 10000, computing the 
ARL-bias(%) of each n and p combination. 
Figure 10 shows an example of the results for 
p=0.04. We classified the results according to 
the following categories:  a) sample sizes with 
an ARL-bias(%) < -1% ; b) sample sizes with 
an ARL-bias(%) = -1% and c) sample sizes 
with an ARL-bias(%) > -1%.  
With the obtained results we constructed 
several “ARL-biased zones” that are in 
function of n and p. These zones are very 
useful as they can be used to quickly deduce 
a p-Chart´s ARL-bias severity level by means 
of its n and p values. These zones are: the no 
LCL zone, the ARL-biased zone, the ARL-
biased transition zone and the quasi ARL-
unbiased zones.  
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Figure 10. Example of the ARL-bias(%) variation in function of sample size and of the ARL-

bias zones for p=0.04 
 
3.2.1. The no LCL zone 
 
Figure 11 shows the “No LCL zone”, this 
zone contains combinations of p and n that 
produce p-Charts without lower control 
limits.  When a p-chart has no LCL it has null 

process improvement detection capability.  
The upper limit of this zone was calculated 
using 𝑛𝑛 = 1 +  9(1 − 𝑝𝑝)/𝑝𝑝. ARL-biased 
charts will start to appear above this limit. 

 

 
Figure 11. The no LCL zone for Shewhart p-Charts 

 
3.2.2. ARL-biased zone 
 
Figure 12 show the “ARL-biased zone”, this 
zone contains n and p combinations that 
produce ARL-bias(%) values below -1%. In 

this zone the closer the sample size gets to the 
upper limit the closer the ARL-bias(%) will 
get to -1%, resulting in mainly moderate 
ARL-bias severity levels. In the other hand, 
the closer the sample size gets to the lower 
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limit the greater the severity, obtaining levels 
that could vary between significant and 
considerable. 

Examples of the bias severity in this zone are 
presented in Table 2 for p=0.04 and 
increasing sample size n. 

 
Figure 12. The ARL-biased zone 

 
Table 2. Examples of bias severity levels according to sample size in the ARL-biased zone 

p n Rα ARL0 ARLM ARL-
bias(%) 

Severity 

0.04 220 0.04 276 958 -17.8 Considerable 
0.04 292 0.02 262 1068 -16.8 Considerable 
0.04 400 0.1 268 522 -9.5 Significant 
0.04 1100 0.27 352 447 -3.3 Significant 
0.04 2000 0.38 388 443 -1.7 Moderate 

 
Since the upper limit of the ARL-biased zone 
marks the threshold where the n and p 
combinations start to produce charts with an 
ARL-bias(%) ≥ -1%, then this limit could be 
thought of as the threshold where p and n 
starts to provide a good approximation of the 
binomial to the normal distribution. In other 
words, above this threshold the binomial 
distribution skewness becomes so small to the 
point of being almost symmetric and hence 
the central limit theorem normal 
approximation is greatly improved.  

As can be seen in the np values required to 
obtain a good approximation are considerably 
above the np > 5 rule of thumb mentioned in 
the introduction section. Notice also that the 
np value is case specific and that it varies 
logarithmically.    
Table 3 has selected values that would suffice 
to draw the upper boundary of the ARL-
biased zone. Figure 12 also shows the upper 
limit values predicted with a Support Vector 
Machine (SVM) regression model built using 
the values given in Table 3. 

Table 3. Selected n values for the upper limit of the ARL-bias zone 
p 0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.14 
n 7003 3976 2188 1434 1026 806 609 468 

 
3.2.3. The ARL-bias transition zone 
 
Figure 13 shows the “ARL-biased transition 

zone”. This zone contains n and p 
combinations that produce ARL-bias(%) 
values in the vicinity of -1%, giving rise to 
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ARL-bias severity levels that could vary 
between moderate, slight and negligible. 
Moderate levels happen mostly for sample 
sizes close to the lower boundary, whilst 
negligible levels start to appear for sample 

sizes close to the upper boundary.  
Examples of the bias severity in this zone can 
be seen in Table 4 for p=0.04 and increasing 
sample size. 

 

 
Figure 13. The ARL-biased transition and the quasi ARL-unbiased zones 

 
Table 4. Examples of severity levels according to sample size in the ARL-biased transition zone 

p=0.04 
n Rα ARL0 ARLM bias(%) Severity 

2190 0.54 372 394  -1.2 Moderate 
2686 0.33 350 411 -1.7 Moderate 
3150 0.49 315 339 -1 Slight 
5150 0.55 394 414  -0.8 Slight 
5236 0.46 355 384 -1 Slight 

 
3.2.4. The quasi ARL-unbiased zone 
 
The quasi ARL-unbiased zone, shown in 
Figure 13, contains n and p combinations that 
produce relative ARL-bias values between -
1% and 0% and hence the severity levels in 
this zone vary from slight to negligible. Slight 
levels occurs mostly for sample sizes closer 
to the boundary limit whilst negligible levels 
occur mostly for sample sizes that are far 

away from that limit.  
Since the severity levels in this zone could 
only be slight or negligible, then the p and n 
combinations that fall in this zone will always 
produce quasi ARL-unbiased charts. 
Example of bias severity levels in this zone 
can be seen in Table 5 for p=0.04 and 
increasing sample size n. 

 
Table 5. Examples of severity levels according to sample size in the ARL-biased transition zone 

p=0.04 
n Rα ARL0 ARLM bias(%) Severity 

5237 0.56 407 427 -0.8 Slight 
5250 0.57 359 375 -0.8 Slight 
6000 0.59 364 379 -0.5 Negligible 
8000 0.63 362 373 -0.5 Negligible 
10000 0.67 351 359 -0.2 Negligible 
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Since in this zone the ARL-bias severity 
varies between slight to negligible, the lower 
boundary of this zone, or equivalently the 
upper boundary of the ARL-biased transition 
zone, could be thought of as the threshold 
where p and n start to provide a very good 

approximation of the binomial to the normal 
distribution.  
Table 6 has selected values that would suffice 
to draw the lower boundary of the quasi ARL-
biased zone. 

 
Table 6. Selected n values for the upper limit of the ARL-bias zone 

p 0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.14 
n 38447 12547 5236 3224 2243 1689 1103 956 

Figure 14 shows all the ARL-biased zones in 
one graph. 

 

 
Figure 14. ARL-bias zones for Shewhart p-Charts 

 
4. Conclusions 
 
The objective of the research summarised in 
this paper, was to develop methods that would 
facilitate estimating a p-Chart´s ARL-bias 
severity. To reach this objective a whole new 
approach was devised for p values commonly 
found in real-world production processes, this 
approach is composed of: 

1) A closed-formed equation through 
which the relative bias, ARL-
bias(%), can be easily estimated, and 

2) A graphical method whereby a 
chart´s ARL-bias severity level can 

be inferred depending on the 
severity zone where its n and p 
values fall into. 

To complement the equation for the relative 
bias, a severity level criteria table was 
constructed. Five severity levels, varying 
from considerable to negligible, were 
established according to specific ARL-
bias(%) ranges.  
The ARL-bias severity zone method offers a 
quick and simple way for deducing a p-
Chart´s severity level. Four zones were 
defined, namely: the no LCL zone, the ARL-
biased zone, the ARL-biased transition zone 
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and the quasi ARL-unbiased zone. The 
advantage of using the bias zones is that a 
rough estimation of the bias severity level of 
several n and p combinations can be obtained 
without having to do any calculations. 
Naturally, if a more precise estimation is 
required then the formula method should be 
used.  
As a general rule we recommend that only p-
Charts with severity levels slight or 
negligible, in other words only quasi ARL-
unbiased p-Charts, be deemed as optimum for 
process monitoring. In any case, a p-Chart´s 
suitability to monitor a process must be 
ascertain analysing its ARL-bias severity 
parameters in conjunction with the specific 
process monitoring requirements, for 
example it could happen that process 
improvement detection may not be required, 
in such case charts with moderate or other 

severity levels could be considered as 
acceptable.  
A finding that we would like to highlight is 
that the upper boundaries of the ARL-biased 
zone and of the ARL-bias transition zone 
provide empirical threshold limits, above 
which, p and n start to provide a good and a 
very good approximation of the binomial to 
the normal distribution respectively and that 
these thresholds are considerably above the 
np ≥ 5 (or 10) rule of thumb commonly given 
in text books.  
The approach for estimating the ARL-bias 
severity presented herein makes the task of 
determining a p-Chart´s ARL-bias severity a 
lot simpler. We are confident this approach 
will be useful for quality control practitioners, 
students or anyone interested on applying a p-
Chart for process monitoring. 
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