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Abstract

Alzheimer’s disease is a neurodegenerative process leading to irreversible men-
tal dysfunctions. To date, diagnosis is established after incurable brain struc-
ture alterations. The development of new biomarkers is crucial to perform an
early detection of this disease. With the recent improvement of magnetic res-
onance imaging, numerous methods were proposed to improve computer-aided
detection. Among these methods, patch-based grading framework demonstrated
state-of-the-art performance. Usually, methods based on this framework use in-
tensity or grey matter maps. However, it has been shown that texture filters
improve classification performance in many cases. The aim of this work is to
improve performance of patch-based grading framework with the development
of a novel texture-based grading method. In this paper, we study the potential
of multi-directional texture maps extracted with 3D Gabor filters to improve
patch-based grading method. We also proposed a novel patch-based fusion
scheme to efficiently combine multiple grading maps. To validate our approach,
we study the optimal set of filters and compare the proposed method with differ-
ent fusion schemes. In addition, we also compare our new texture-based grading
biomarker with state-of-the-art methods. Experiments show an improvement of
AD detection and prediction accuracy. Moreover, our method obtains compet-
itive performance with 91.3% of accuracy and 94.6% of area under a curve for
AD detection.
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classification, Mild Cognitive Impairment
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent dementia [27] that is char-
acterized by an irreversible neurodegeneration leading to mental dysfunctions.
Patients with AD have a memory lost with difficulty of remembering newly
learned information that disrupts daily life [2]. Subjects with Mild Cognitive
Impairment (MCI) present higher risk to develop AD [26]. However, before first
clinical symptoms brain changes occur such as synaptic and neuronal loses. To
date, diagnosis of AD is established after advanced brain structure alterations.
This motivates the development of new imaging biomarkers able to detect the
early stages of the disease. Furthermore, the early detection of AD can accel-
erate the development of new therapies by making easier the design of clinical
trials.

During the last decades, the improvement of medical imaging like magnetic
resonance imaging (MRI) led to the development of new biomarkers with com-
petitive performance for AD diagnosis and prognosis [6]. Most of the proposed
methods have been based on specific regions of interest (ROI). Among struc-
tures impacted by AD, previous investigations mainly focused on medial tem-
poral lobe and especially on hippocampus (HIPP). Alterations on this structure
are usually estimated using volume [18], shape [1] or cortical thickness mea-
surements [13] (see [36] for a review). Besides ROI-based methods, whole brain
analysis performed on anatomical MRI have also been proposed to detect areas
impacted by AD. These methods are usually based on voxel-based morphometry
(VBM) or tensor based morphometry (TBM) frameworks [3]. It is interesting
to note that both VBM and ROI-based studies confirmed that medial temporal
lobe is a key area to detect the first signs of AD [36]. In the medial tempo-
ral lobe, the HIPP is one of the earliest region altered by AD [16]. Recently,
advanced methods were proposed to capture structural alterations of the HIPP
[6]. Those techniques demonstrated their efficiency to detect the different stages
of AD [28]. Among them, patch-based methods obtained competitive results to
detect the earliest stages of AD [21; 9; 32]. Moreover, it has been shown that
patch-based methods could detect AD more than seven years before conversion
to dementia [10] or can be used for differential diagnosis [19]. Therefore, such
advanced image analysis methods seem promising candidates to perform AD
prediction.

Patch-based methods are usually based on intensities [9; 33] or grey matter
density maps [20]. However, it is has been demonstrated that HIPP texture
improves the detection of early stages of AD [28]. A VBM method using sev-
eral textural filter on medial temporal lobe area demonstrated the reliability
of texture information in AD detection [7]. Moreover, HIPP texture enables
to improve AD detection compared to HIPP volume [29]. This method could
potentially capture MRI signal alterations related to neurofibrillary tangles and
beta-amyloid plaque deposition, although such alterations are not directly de-
tectable with MRI at current resolution. Besides, a recent study recently showed
the efficiency of using edge detection filters to improve of patch-based segmen-
tation [15]. This result highlights that patch-based grading methods could be
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improved by estimating patterns similarity on derivative image features. There-
fore, we propose to perform patch-based grading on multiple texture maps ob-
tained with Gabor filters. Gabor filters are designed to detect salient features
at specific resolution and direction. These filters were widely used for texture
classification [25; 12; 14]. The proposed strategy enables to better capture tex-
ture modifications occurring at the first stages of the pathology by improving
patch comparison.

The first contribution of this work is to propose a new texture-based grad-
ing framework to better capture structural alterations caused by AD. This new
framework proposes multi-directional texture grading based on 3D Gabor filters.
Secondly, in order to combine all the grading maps estimated on texture maps,
we propose an innovative adaptive patch-based fusion strategy based on a local
confidence criterion. This fusion framework can be applied to any patch-based
processing to combine different features or modalities. Moreover, contrary to
usual grading-based methods using the average grading values over the consid-
ered ROI, we propose a classification step based on a nonparametric grading
values distribution representation to better discriminate pathologies stages. In
our experiments, we first study the optimal number of Gabor filter directions
for AD detection. In addition, we compare different texture filers such as local
variance or entropy. We also compare our new adaptive fusion method with
different fusion schemes. Finally, to highlight the improvement of classification
performances provided by our new framework, we compare our new method
with the state-of-the-art approaches and demonstrate its efficiency.

2. Materials

2.1. Dataset

Table 1: Description of the dataset used in this work. Data are provided by ADNI.
Characteristic / Group CN sMCI pMCI AD
Number of subjects 226 223 165 186
Ages (years) 76.0± 5.0 75.1± 7.5 74.5± 7.2 75.3± 7.4
Sex (M/F) 117/109 150/73 101/64 98/88
MMSE 29.05± 0.9 27.1± 2.5 26.3± 2.0 22.8± 2.9

Data used in this work were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset1. ADNI is a North American campaign
launched in 2003 with aims to provide MRI, positron emission tomography
scans, clinical neurological measures and other biomarkers. The data used in
this study are all the baseline T1-weighted (T1w) MRI of the ADNI1 phase.
This dataset includes AD patients, MCI and cognitive normal (CN) subjects.

1http://adni.loni.ucla.edu
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The group of MCI is composed of subjects who have abnormal memory dys-
functions and embed two groups, the first one is composed with patients having
stable MCI (sMCI) and the second one is composed with patients with pro-
gressive MCI (pMCI), such patients converted to AD during the following 48
months from the baseline [36]. The information of the dataset used in our work
is summarized in Table 1.

2.2. Preprocessing
All the T1w images were processed using the volBrain system [22]4. This

system is based on an advanced pipeline providing automatic segmentation of
different brain structures from T1w MRI. However, in this work, only hippocam-
pus segmentations were used. The preprocessing is based on: (a) a denoising
step with an adaptive non-local means filter [23], (b) an affine registration in
the MNI space [4], (c) a correction of the image inhomogeneities [34] and (d)
an intensity normalization [24]. Afterwards, MRI were segmented in the MNI
space using non-local patch-based multi-atlas methods [8]. The obtained hip-
pocampus were segmented according to the EADC protocol [5] designed for AD
studies.

3. Methods

In this section, we describe the different steps of the proposed texture-based
grading framework as illustrated in Figure 1. First, we use multi-directional
Gabor filters to extract texture in different directions. Second, a patch-based
grading method is applied within each texture map computed. Afterwards, all
the texture grading maps are merged with our novel adaptive fusion method. Fi-
nally, the input of classification method is a histogram representation of texture
grading values in each hippocampus.

3.1. Texture maps estimation
The estimation of patch similarities could be improved by using texture

representation instead of using raw intensities. Indeed, it was demonstrated
that the use of edge detectors improves patch-based segmentation accuracy [15].
Moreover, it was also demonstrated that HIPP textural information plays an
important role in AD detection [28]. Hence, we propose a new texture-based
grading framework that simultaneously captures HIPP texture alterations and
improves patches similarity estimation. In this work, texture information is
extracted from MRI using a bank of 3D Gabor filters (see Figure 2). We used
Gabor filters since they are designed to detect texture patterns at different

4http://volbrain.upv.es
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Figure 1: Proposed adaptive fusion of texture-based grading framework: from left to right,
the T1w input data, the texture maps for different directions, the intermediate texture-based
grading maps, the final fused grading map and the histogram-based weak classifiers aggrega-
tion.

scales and directions [25]. Impulse response of the 3D Gabor filter is given by
the following equation:

h(X,σ, F, θ, φ) =
1

(2π)3/2σ3
exp

(
− x2 + y2 + z2

2σ2

)
ĥ(X,F, θ, φ) (1)

where X = (x, y, z), σ represents the standard deviation of the Gaussian func-
tion. (θ, φ) are the orientation angles. F represents the central frequency of the
frequency response. Finally, ĥ(X,F, θ, φ) is given by:

ĥ(X,F, θ, φ) = exp
(
j2πF (x sin θ cosφ+ y sin θ sinφ+ z cos θ)

)
(2)

In our method, the texture maps are the magnitude of the signal resulting from
the convolution of our Gabor filters bank with the MRI. In the proposed pipeline
(see Fig. 1), the preprocessed MRI of the subject under study is filtered with a
bank of Gabor filters to obtain multiple texture maps. All the training library
is also filtered with the same filters bank. Therefore, for each texture map, a
texture-based grading map can be estimated.

3.2. Patch-based grading
Grading framework uses patch-based techniques to capture signal modifica-

tions related to anatomical degradations caused by AD [9]. To date, patch-based
grading methods demonstrate state-of-the-art performances to detect the ear-
liest stages of AD [20; 33]. To determine the pathological status of a subject,
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Figure 2: Sample of absolute value of complex number computed by Gabor filters. The
hippocampal area is filtered with gabor at different directions. From left: Original image,
textural maps provided by our Gabor filters bank given by the parameter set {(θ = 0;φ =
0), (π/2;π/2), (0;π/2), (0;π/4), (0;−π/4), (−π/4, π/4), (π/4, π/4)}. It can be noticed that
for each direction, different textures are extracted.

.

grading-based methods estimate at each voxel the state of cerebral tissues us-
ing anatomical patterns extracted from a training library T composed of two
datasets, one with images from CN subjects and one with AD patients. Next,
for each voxel of the considered subject, the patch-based grading method pro-
duces weak classifiers denoted g. This weak classifier is based on the similarity
between the patch surrounding the voxel under study xi and a set Ki of simi-
lar patches extracted from T . In this work, we used an approximative nearest
neighbor method to find similar patches in the training library in order to dras-
tically reduce the required computational time [17]. The grading value g at xi
is defined as:

gxi =

∑
tj∈Ki

w(Pxi , Ptj )pt∑
tj∈Ki

w(Pxi , Ptj )
, (3)

where tj is the voxel j belonging to the training template t ∈ T , Pxi and Ptj

are the patches surrounding xi and tj , respectively. The function w(Pxi , Ptj ) is
the weight assigned to the pathological status pt of t. We estimate w such as:

w(Pxi
, Ptj ) = exp

(
−
||Pxi − Ptj ||22

h2 + ε

)
(4)

where h = mintj ||Pxi
− Ptj ||22 with ε→ 0, pt is set to −1 for patches extracted

from AD patient and to 1 for those extracted from CN subject. The L2-norm is
used to estimate the similarly between patches. Thus, our patch-based grading
method provides at each voxel a score representing an estimation of the alter-
ations caused by AD.

6



3.3. Adaptive fusion
In this work, we propose a novel framework to fuse the multiple texture-

based grading maps obtained from the estimated texture maps. Our fusion
strategy assumes that all the estimated grading maps may not have the same
relevance, but more importantly all local weak classifiers gxi

in these maps do
not have the same quality. Hence, at each location, we propose to combine
weak classifiers derived from multiple texture maps according to a confidence
criterion. Therefore, the grading value gxi,n at voxel xi,n of a texture-based
grading map n , is weighted by:

αxi,n
=

∑
tj∈Ki,n

w(Pxi,n
, Ptj,n) (5)

that reflects the confidence of gxi,n
for the texture-based grading map n, here

tj is the voxel j belonging to the training template t ∈ T and Ki,n is the
set of similar patches extracted from the training library T at the voxel xi of
the texture map n. Thus, each texture-based grading map provides a weak
classifier at each voxel that is weighted with its degree of confidence αxi,n

. The
final grading value gxi

is given by:

gxi =

∑
n∈N αxi,ngxi,n∑

n∈N αxi,n

. (6)

The proposed fusion framework is spatially adaptive and take advantage of
having access to a local degree of confidence αxi,n

for each grading map n.
Basically, the confidence αxi,n gives more weight to a weak classifier estimated
with a well-matched set of patches. This adaptive fusion strategy can applied
to any patch-based processing to combine multiple feature or modalities.

3.4. Weak classifiers aggregation
In previous works on patch-based grading, the weak classifier aggregation

was performed using a simple averaging [9; 17]. While using a strategy based
on averaging enables to be robust to noise, this may remove relevant information
on weak classifiers distribution. Therefore, in this paper we propose to approx-
imate weak classifiers distribution using histogram. Consequently, we classify
histogram bins instead of classifying mean grading value over the segmentation
mask. Here, histograms were separately estimated for right and left hippocam-
pus and concatenate into a single feature vector. The number of bins are set
following Sturge’s formula that intends to find the optimum number of bin for
a certain size of sample [30]. Finally, to prevent bias introduced by structure
alterations related to aging, all the grading values are age corrected with a linear
regression based on the CN group [11]. This correction is done by removing the
test CN subjects into a cross-validation procedure.
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3.5. Implementation
During our experiments, texture maps were obtained using one scale and

11 different directions. The texture-based grading maps were estimated using
patches of 5 × 5 × 5 voxels. The grading step based on an optimized Patch-
Match [17] was performed using K = 50. The required computational time was
3s per texture maps, thus the global grading step required 15 seconds with our
setup. A support vector machine (SVM) with a linear kernel was used to classify
each test subject. We used the Matlab function provided by the Statistics and
Machine Learning Toolbox. In our experiments, the soft margin parameter C
was optimized with a Bayesian optimization method. The results of each ex-
periment were compared in terms of accuracy (ACC) and area under the ROC
curve (AUC), specificity (SPE), and sensitivity (SEN). The AUC is estimated
with the a posteriori probabilities provided by the SVM classifier. We carried
out several experiments: CN versus AD, CN versus pMCI, AD versus sMCI
and sMCI versus pMCI. A t-test were performed to study the significance of
the results provided by adaptive fusion scheme compared to mean of textural
maps and late fusion into SVM classifier. Finally, our new texture-based grad-
ing framework was validated within a repeated stratified 10-fold cross-validation
procedure iterated 50 times for CN versus AD, CN versus pMCI and AD ver-
sus sMCI comparisons. The mean ACC, AUC, SPE, and SEN over these 50
iterations are provided as results. As demonstrated in [33], training the classi-
fier with CN and AD enables to discriminate sMCI and pMCI subjects better.
Moreover, it enables to perform classification without cross-validation proce-
dure and to limit bias and over-fitting problem. Therefore, only one run was
performed for sMCI versus pMCI comparison.

4. Results
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Figure 3: Evolution of the accuracy and AUC for CN versus AD and sMCI versus pMCI
comparisons according to the number of Gabor filters. Red and green doted line represented
the accuracy and the AUC of intensity-based grading.
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Table 2: Comparison of grading features based on histogram representation of the probability
distribution of grading values. This table presents a comparison of intensity-based grading
and texture-based grading. These results show that texture-based grading improves AUC of
all comparisons. Moreover, these results show that histogram representation provides similar
or better results for all comparisons than using average value (see Table 3). All the results
are expressed in percentage of AUC, SEN, and SPE.

Intensity-based grading histo. Texture-based grading histo.
(AUC/SEN/SPE in %) (AUC/SEN/SPE in %)

CN vs. AD 93.5/95.5/82.7 94.6/94.2/86.6
CN vs. pMCI 90.0/81.8/81.4 92.0/92.5/81.2
AD vs. sMCI 81.1/78.5/68.3 82.6/77.6/72.6
sMCI vs. pMCI 74.9/77.6/67.2 76.1/74.9/70.2

4.1. Optimal number of directions
First, the optimal number of filter directions were investigated. Figure 3

shows the evolution of accuracy related to the number of directions. This ex-
periment demonstrates that 5 different directions are enough to obtain the best
results for CN versus AD comparison. Indeed, the accuracy does not increase
using more directions. The best accuracy is reached with 5 different directions
for sMCI versus pMCI. A fusion of Gabor filters at different scales was also per-
formed. However, this experiment shown that filters at the full image resolution
is enough to obtain the best results. The experiments showed that the opti-
mal set of filters directions is {(θ = 0;φ = 0), (π/2;π/2), (0;π/2), (π/4;π/4),
(π/4;−π/4)}. Therefore, in the rest of the experiments, comparisons were per-
formed with Gabor filters in these 5 different directions and at the full images
resolution.

Table 3: Comparison of grading features based on mean of the grading values within the HIPP
structure. This table presents a comparison of intensity-based grading and texture-based
grading. These results show that texture-based grading improves AUC of all comparisons.
All the results are expressed in percentage of AUC, SEN, and SPE.

Intensity-based grading mean Texture-based grading mean
(AUC/SEN/SPE in %) (AUC/SEN/SPE in %)

CN vs. AD 92.6/86.7/83.3 94.7/93.4/87.6
CN vs. pMCI 89.9/78.2/85.4 92.3/91.6/83.0
AD vs. sMCI 80.8/76.2/69.9 82.2/77.6/71.0
sMCI vs. pMCI 73.2/76.4/65.0 75.1/77.0/64.1

4.2. Comparison grading based on intensity vs. texture
To estimate the improvement provided by texture-based approach, we com-

pare results obtained with our framework using intensities of the images in the
MNI space (i.e., intensity-based grading) and texture maps. For this compar-
isons, intensity and texture-based grading were estimated using exactly the same
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pipeline involving adaptive fusion and histogram-based weak classifiers aggrega-
tion. Table 2 summarizes the results of intensity-based grading and the proposed
texture-based grading obtained with 5 Gabor filters. Results are expressed with
area under the curve (AUC), sensibility (SEN) and specificity (SPE) measures.

As it is shown, texture-based grading improves classification performances
in all experiments using mean or histogram-based grading. Indeed, the compar-
isons conducted with histogram-based representation show that texture-based
grading obtains 94.6% of AUC for CN versus AD, 92.0% of AUC for CN versus
pMCI, and 82.6% of AUC for AD versus sMCI comparisons while intensity-
based grading obtains 93.5% of AUC for CN versus AD, 90.0% of AUC for CN
versus pMCI, and 81.1% of AUC for AD versus sMCI comparisons. Finally,
with histogram representation, texture-based grading obtains 76.1% of AUC for
sMCI versus pMCI comparisons and intensity-based grading obtains 74.9%. As
results based on histogram representation, the average grading aggregation fol-
lows the same tendency. These results demonstrate that texture maps enable
to better capture structural alterations.

4.3. Comparison average grading vs. histogram-based grading
In this section, we compare our proposed histogram-based weak-classifier

aggregation of texture-based grading values with a straightforward average that
is usually used in patch-based grading framework. As presented in Table 3 and
2, the results show that histogram representation of weak classifiers distribution
provides similar or better classifications results for all comparisons. Histogram-
based aggregation obtains 94.6% and 92.0% of AUC while the average obtains
94.7% and 92.3% of AUC for CN versus AD and CN versus pMCI comparisons,
respectively. Moreover, histogram-based aggregation obtains better results for
AD versus sMCI and sMCI versus pMCI comparisons with 82.6%, and 76.1%
of AUC compare to the average that obtains 82.2% and 75.1% of AUC for the
same comparisons, respectively.

4.4. Comparison of different fusion schemes
Our fusion scheme was compared with a fusion based on the mean of texture-

based grading maps (i.e., fusion of the different grading maps provided at each
direction with a straightforward average) and a SVM fusion of our texture-based
grading features (i.e., concatenation of the histogram features at the different
considered directions into the SVM classifier). Results are summarized in Fig-
ure 4. During the experiments, adaptive fusion obtained an accuracy of 91.3%
for CN versus AD comparison, the fusion using SVM classifier obtained 90.1%
and the mean fusion obtained 89.1%. Moreover, for sMCI versus pMCI com-
parison adaptive fusion obtains 72.2% of accuracy while SVM fusion obtains
68.3% and mean fusion obtains 69.1%. Thus, adaptive fusion obtained the best
results. Indeed, the results obtained by adaptive fusion is 1.2 percentage point
higher than SVM fusion and 2.1 percentage point higher than mean fusion for
CN versus AD comparison and 3.8 percentage point higher than SVM fusion
and 3.1 percentage point higher than mean fusion. In order to study the sig-
nificance of the accuracy differences between each fusion method, p-values were
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Figure 4: Comparison of different fusion schemes: mean of textural-grading maps, adaptive
fusion of textural-grading maps and fusion into a SVM classifier (i.e., concatenation of the
histogram representing the grading of each texture direction as the input of SVM method).
This comparison shows that adaptive fusion provides best results for both AD detection and
prediction (i.e., CN versus AD and sMCI versus pMCI). P-values were estimated with a t-test
to compare adaptive fusion with other fusion methods.

estimated with a t-test. These experiments showed that adaptive fusion provides
significantly better results for CN versus AD comparisons.

4.5. Comparison of different texture-based filters
Figure 5 shows comparison of classification results for different texture fil-

ters. This comparison was conducted with standard deviation (STD), entropy,
gradient, and Gabor filters. Entropy and STD filters were computed into a win-
dow size of 5×5×5 voxels. Patch-based grading maps from gradient and Gabor
filters were merged with our novel adaptive fusion scheme. STD filters obtained
89.1% of accuracy for CN versus AD comparison and 67.1% for sMCI versus
pMCI comparison. Entropy filter obtained an accuracy of 90.5% for CN versus
AD comparison and 68.1% for sMCI versus pMCI comparison. Gradient filter
obtained 90.8% for CN versus AD and 70.1% for sMCI versus pMCI. This exper-
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Figure 5: Comparison of classification performances for different texture filters. From left to
right, we compare standard deviation (STD), entropy, gradient and Gabor filters. Entropy
and STD filters were computed with a window size of 5×5×5 voxels. The results shows that
only gradient and Gabor filters enable to improve performances for both AD detection and
prediction. P-values were estimated with a t-test to compare Gabor filters to other texture
filters.

iment shows that only gradient and Gabor filters obtain better results for both,
AD detection and prediction compared to intensity-based grading with 91.3%
and 72.2% of ACC for CN versus AD and sMCI versus pMCI comparisons, re-
spectively. Thus, patch-based grading applied on an optimal set of Gabor filters
provides better results than others texture filters for both considered compar-
ison. Gabor filters improve by 3.2 and 2.1 percent points of accuracy for CN
versus AD and sMCI versus pMCI, respectively, compared to gradient filter.

4.6. Comparison to state-of-the-art methods
In addition, a comparison with state-of-the-art methods are provided in Ta-

ble 4. The results of this comparison are expressed in accuracy. On one hand, to
compare classification results using the same structure, the proposed framework
is compared with grading methods based on HIPP (see the upper part of Table

12



4). Thus, our proposed texture-based grading method is compared with the
original patch-based grading method [9], a grading based on multiple instance
learning method [32], and a patch-based grading based on a sparse represen-
tation using two different registration strategies [33]. This comparison shows
that our method provides best results among HIPP-based grading methods. It
reaches 91.3% of accuracy for CN versus AD, and 72.2% of accuracy for sMCI
versus pMCI comparisons. On the other hand, our proposed method applied
into hippocampus is compared with methods based on a whole brain analysis
using similar dataset (see the lower part of Table 4). Indeed, we compare our
texture-based grading approach applied on HIPP with an ensemble grading that
proposed to extend the original patch-based grading to a whole brain analysis
based on grey matter maps [20], the patch-based grading method based on a
sparse representation applied on the whole brain [33], a sparse ensemble grading
method that analyzes the whole brain [21], and a Deep Learning (DL) method
based a whole brain analysis [31]. The results show that our method obtains the
best accuracy for AD versus CN. This result is similar to classification results
obtained with a DL and sparse ensemble grading method [31; 21]. However,
methods based on a whole brain analysis and using non linear registration ob-
tain more accurate classification results for sMCI versus pMCI.

5. Discussion

In this work, to improve patch-based grading framework, we proposed to
capture texture information with a bank of Gabor filters. Our experiments
showed that using more than 5 directions does not improve the results while
increasing computational time (see Figure 3). Moreover, we also investigated
a multi-scale texture approach. However, the experiments carried out showed
that only one scale, at the full image resolution, is enough and the use of multi-
scale texture did not improve classification performances. Therefore, we propose
a multi-directional texture-based grading framework based on 1 scale and 5
directions.

A new grading values aggregation method based on histogram was also pro-
posed. During our experiments, histogram representation of grading values
distribution did not provide improvement for CN versus AD comparison com-
pared to use a simple average value. That could be explained by the fact that
CN and AD distributions are well separated and a parametric representation
of their distributions is enough to discriminate these two groups. However, for
sMCI versus pMCI case, the two distributions are less separable and histogram
representation lead to better classification performances with in average a gain
of 1 percentage point of AUC compared to a simple average value.

In order to fuse efficiently the different texture-based grading maps, we pro-
posed a novel patch-based grading fusion scheme. This method is based on a
confidence value estimated at each voxel. The comparison with different fusion
schemes demonstrated the efficiency of our method. Indeed, compared to a
straight average of the texture-based grading maps and a SVM fusion of the
final histogram features with the classifier, our proposed method obtained best
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Table 4: Comparison with state-of-the-art methods, all the results are expressed in accuracy.
The upper part of this table presents results of results of methods applied on the HIPP
structure. Texture-based grading improves CN versus AD classification by 2.3 percent points
and sMCI versus pMCI classification by 1.2 percent points of accuracy compared to grading
approaches based on the same HIPP structure. The lower part presents results of methods that
propose a whole brain analysis. Compared to these approaches, our method obtains similar
results than advanced methods based on whole brain analysis for CN versus AD classification.
However, such methods obtain better performances for sMCI versus pMCI classification. In
this table, we provide the type of registration (Reg.) involved in the methods and the type of
features (Feat.).

Methods Reg. Feat. CN vs. AD sMCI vs. pMCI
(ACC in %) (ACC in %)

Hippocampus
Original Grading [9] Affine Intensity 88.0 71.0
Multiple Instance Grading [32] Affine Intensity 89.0 70.0
Sparse-based Grading [33] Affine Intensity − 66.0
Sparse-based Grading [33] NL Intensity − 69.0
Proposed Method Affine Texture 91.3 72.2
Whole Brain
Ensemble Grading [20] NL GM − 75.6
Sparse-based Grading [33] Affine Intensity − 66.7
Sparse-based Grading [33] NL Intensity − 75.0
Sparse Ensemble Grading [21] NL GM 90.8 −
Deep Ensemble Learning [31] NL GM 91.0 74.8

GM = Grey matter
NL = Non linear

accuracy for AD detection and prediction. Moreover, the obtained improvement
was significant. This improvement can be explained by the fact that our pro-
posed adaptive fusion method weights the grading values of each texture map
according to their relevances while the fusion into SVM classifier and the average
of texture maps considers each grading value as having the same importance.

Our work hypothesis is also that directional texture filters enable to improve
patch comparison, and thus increase AD detection and prediction accuracy. To
validate this hypothesis, our novel texture-based grading using an optimal set of
Gabor filters were compared with others texture filters as done for segmentation
in [35] (see Figure 5). STD, entropy, gradient and Gabor filters were compared
for AD detection and prediction. This experiment showed that STD and en-
tropy does not enable to improve patch comparison compare to intensity. The
limitation of these filters might be to perform feature estimation within a win-
dow. Thus, only gradient and Gabor filters improve classification performances
for AD detection and prediction. Moreover, Gabor filters obtain best results for
both comparisons. This improvement is related to the use of additional texture
directions compared to the three texture directions provided by gradient filter.
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Table 4 summarizes the comparison of our proposed method with other grad-
ing methods proposed in the literature. These results demonstrate that Gabor
filters enable to better capture structural alterations than method based on in-
tensity or grey matter data. Indeed, texture maps provide enhance information
leading to a better grading process. Thus, our method outperforms other grad-
ing methods using intensity when applied on the same structure [9; 32; 33]. At
the lower part of Table 4, we compare the performance of our HIPP-based grad-
ing method with methods using the whole brain. First, for AD versus CN, the
proposed method obtained similar or better results than methods applied over
the whole brain. It is important to note that these methods require non linear
registration [21; 20; 33; 31] while our method only requires affine registration
and proposes a fast grading step. Second, for sMCI versus pMCI, our method
obtained better results than all the methods involving a simple affine registra-
tion, including whole brain method proposed in [33]. On the other hand, the
best results for sMCI versus pMCI are produced by whole brain grading [20; 33]
using non linear registration. The improvement when using non linear registra-
tion is observed for HIPP-based and whole brain methods [33]. However, this
improvement is obtained at the expense of using non linear registration, which
is subject to failure and requires high computational time. Our method also
demonstrated competitive performances for AD versus CN classification com-
pared to advanced DL methods using whole brain and non linear registration
[31]. Finally, this comparison shows that patch-based grading methods [20; 33]
obtain similar or better results than recent deep learning methods [31] when
applied over the entire brain after non linear registration.

6. Conclusion

In this work, we have proposed a new texture-based grading framework to
better capture structural alterations caused by AD. Moreover, to combine grad-
ing maps estimated on texture maps, we have presented a new adaptive fusion
scheme. We also have proposed an histogram-based weak classifiers aggregation
step to better discriminate early stages of AD. We have studied the optimal set
of texture directions and compare to others fusion schemes. Experiments con-
ducted in this work demonstrated the relevance of using textural information
in combination with with our novel locally adaptive fusion method. Finally,
we have demonstrated the competitive performances of our new texture-based
grading framework compared to several state-of-the-art approaches. In future
works, we will investigate the extension of our texture-based grading framework
to a whole brain analysis.
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