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Abstract

We present a new set of direct numerical simulation data of a passive
thermal flow in a turbulent plane Poiseuille flow with constant Prandtl num-
ber Pr = 0.71, and mixed boundary conditions. Simulations were performed
at Reτ = 500, 1000, and 2000 for several computational domains in the range
of lx = 2πh to 8πh and lz = πh to 3πh. As a first key result we found that a
length of lx = 2πh and a width of lz = π is enough to accurately obtain the
one-point statistics and the budgets of the thermal kinetic energy, its dissi-
pation and the thermal fluxes. None of them collapse exactly in wall units.
On the other hand, the value of the thermal Kármán constant grows very
slightly with the Reynolds number with a value of κth = 0.44 for Reτ = 2000.
The statistics of all simulations can be downloaded from the web page of our
group.

Keywords: Turbulent channel flow, forced convection, Rayleigh number,
Prandtl number

List of symbols

xi Coordinate xi (≡ x, y, z)
y Vertical coordinate normalized with h starting from 0
Ui Velocity in the direction xi
Θ Temperature
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ui, θ Turbulent fluctuations
•′ Statistic parameter
〈•〉xi Mean value in xi direction
t Time
• Normalized by h, Ub and ν
•+ Normalized by uτ , Tτ and ν
h, ρ Channel half height and density
ν, cp viscosity and specific heat at constant pressure
κth thermal Kármán constant

uτ Friction velocity
(

=
√
τw/ρ

)
Tτ Friction temperature (= qw/ (ρcpuτ ))
Ub Bulk velocity (= 〈U1〉x,z,t)
qw Normal heat flux to the walls
Re Reynolds number (= Ubh/ν)
Reτ Reynolds friction number (= uτh/ν)
Pr Prandtl number (= ν/α)

1. Introduction

The behavior of turbulent flows is still an open problem in physics and
it is probably the one with most implications in day-to-day life. The study
of the thermal properties of flows for different values of Reynolds, Prandtl
and Rayleigh numbers are becoming more and more important. In a recent
study for NASA, Slotnick et al [1] highlighted the importance of thermal flows
in aeronautics applications for the foreseeable future. To cite only another
example, for Prandtl number different to the one of air, a better knowledge
of the dynamics of thermal flows is needed for the simulation of nuclear
Liquid Metal Reactors (LMR) [2, 3]. Due to the continuous improvement
of computer power, Direct Numerical Simulation (DNS) has become one of
the most promising technique to study applications involving drag, noise or
heat transmission. Moreover, as experiments involving thermal properties of
turbulent wall flows are difficult to perform, DNS appears to be an essential
tool.

The first DNS addressing heat transfer in turbulent channels was made
by Kim and Moin in 1987 [4], for Reτ = uτh/ν = 180 and Pr = 0.71. Here,
Reτ is the friction Reynolds number, Pr is the molecular Prandtl number,
uτ is the friction velocity, h is the semi-height of the channel, and ν is the
kinematic viscosity. Kim and Moin used an artificial boundary condition
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to describe the thermal flow, assuming constant heat generation throughout
the fluid. This procedure has the advantage that this heat can be treated
in the same way that the mean pressure gradient term is in the flow equa-
tions. Lyons et al [5] and Sumitani and Kasagi [6] used a different boundary
condition, with walls at different temperature, without considering any ef-
fect of buoyancy. Kasagi et al [7] introduced a more realistic condition in
1992, named mixed boundary condition (MBC from now on). This condition
was imposed on the two walls so that the local mean temperature increased
linearly in the streamwise direction. With any buoyancy effect neglected,
temperature was considered as a passive scalar. Using MBC as boundary
condition, the Reynolds number has been increased constantly during the
last few years for several Prandtl numbers. Saha et al [8], performed an ex-
cellent review of the different simulations made until very recently. Among
these articles, it is worth to mention the work of Abe, Kawamura, and col-
laborators [9, 10]. Up to the knowledge of the authors, the largest DNS
was made in 2004 by Abe et al [10], for Reτ = 1020 and Pr = 0.025 and
0.71. More recently, Duponchel et al [2] made a Large Eddy Simulation at
Reτ = 2000, that is the largest Reτ simulated up to now.

One critical point of DNS is the domain to be simulated. Saha et al in
two papers [8, 11] investigated the length of the largest turbulent structures
in pipes and the comparison between pipes and channels. In fact, in almost
all of the papers cited in this introduction and Saha et al’s works, the size of
the computational box is narrower and shorter than in the classical turbulent
channel flow simulations. While the more or less classical size of the com-
putational domain for Poiseuille flows is (8πh, 2h, 3πh) [12, 13, 14, 15, 16],
in most of the thermal flow simulations performed until now a box of length
4πh has been used. It is well known that to accurately represent the largest
structures of the flows, longer boxes are needed. Monty et al [17] found that
the length of the largest meandering structures of wall flows is up to 25h.
Moreover, in the case of Couette flows, the length of these structures is even
longer, up to at least 80h, [18] demanding even larger domains.

However, one of the reasons for using short and narrow boxes is that
DNS are computationally expensive. This cost can be approximated by
L2
xLyRe

4
τPr

3/2 [19], limiting the possibilities of running high Reynolds num-
bers. Lozano-Durán and Jiménez, [20] studying isothermal channel flows
found that one-point statistics can be accurately computed in boxes with
streamwise and spanwise sizes of only 2πh × πh. In this paper we show
that one-point statistic of the thermal flow, including dissipation and kinetic
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energy budgets, can be accurately represented in this box.
The paper is structured as follows. The numerical method and the vali-

dation strategy is explained in the second section. The statistics of the flow,
including the turbulent budgets, are discussed in the third section. The tur-
bulent structures of the flow are discussed in the fourth one. The fifth section
contains the conclusions.

2. Model description and formulation

In this work, a new set of DNS of a passive thermal flow in a Poiseuille
turbulent channel has been conducted within a computational box of Lx =
απh, Ly = 2h and Lz = βπh, with spanwise and streamwise periodicity, and
for several values of α and β.

The streamwise, wall-normal, and spanwise coordinates are x, y, and z
and the corresponding velocity components are U, V andW or, using index
notation, Ui. The temperature is denoted by T and the transformed tem-
perature (see below) by Θ. Statistically averaged quantities are denoted by
an overbar, whereas fluctuating quantities are denoted by lowercase letters,
i. e., U = U + u.

The flow can be described by means of the momentum and mass balance
equations, and the energy conservation principle. The fundamental equations
for the fluid flow are the classical Navier-Stokes equations for incompressible
flows [21].

∂tU
+
i + U+

j ∂jU
+
i = −∂jP+ +

1

Reτ
∂jjU

+
i , (1)

∂jU
+
j = 0. (2)

In these equations the superscript (+) indicates that the quantities have
been normalized by utau. As the thermal flow is modeled by the MBC,
the averaged temperature grows linearly with respect to x. A transformed
temperature Θ is introduced as Θ = T − Tw to satisfy the the constant heat
flux boundary condition [9, 21]. The great advantage of this method is that
Θ is periodic in the streamwise direction and Fourier methods can be applied.
The equation for Θ becomes ([11]),

∂tΘ
+ + U+

j ∂jΘ
+ =

1

Reτ Pr
∂jjΘ

+ + U+
1 /〈U+〉xyz. (3)
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Figure 1: Sketch of the geometry and coordinate system

Here, the temperature has been adimensionalised by the friction temper-
ature Tτ = qw/ρcpuτ . Using this model, the boundary conditions for the
modified temperature are simply Θ (y = 0, 2h) = 0.

Table 1 summarizes the parameters of the present simulations. The wall-
normal grid spacing is adjusted to keep the resolution at ∆y = 1.5η, i.
e., approximately constant in terms of the local isotropic Kolmogorov scale
η = (ν3/ε)1/4 for every Reτ case as in [14, 22]. In wall units, ∆y+ varies
from 0.42 at the wall up to ∆y+ ' 7.2 at the centerline. At the center of the
channel the resolutions along the three coordinates are approximately equal,
η − 1.8η, [23]. The wall-parallel resolution is the one employed by Hoyas &
Jiménez [14] and similar to [16]. As Pr = 0.7, the thermal scales are expected
to be of the same size that the ones of the flow, so the thermal flow does not
need a grid refinement. The mesh sizes given in table 1 are comparable to
the ones of Abe et al [10] for the streamwise direction and slightly better for
the spanwise, as Abe et al use ∆+

z = 4.25 for their Reτ = 1000 case. Only
the case P22 as a larger resolution, but without any effect on the convergence
or the statistics (not shown). Cases P5 and P1 has been already computed,
[10] but they have been computed again to validate the method used in this
work, and to compare the different domains using a single method. Case P21
and P22 are completely new.

Equation 3 was implemented in LISO code, which has successfully been
employed to run some of the largest simulations of turbulence [14, 24, 18, 22].
The Navier-Stokes equations are transformed into an equation for the wall-
normal vorticity ωy and for the Laplacian of the wall-normal velocity φ = ∇2v
as in [12]. The spatial discretization uses dealiased Fourier expansions in x
and z direction, and seven-point compact finite differences in y direction
with fourth-order consistency and extended spectral-like resolution [25]. The
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Case Line Reτ Lx Lz Nx Ny Nz ∆x+ ∆z+ TUb/Lx
P51 — ◦— 500 2πh 1πh 384 251 384 8.18 4.09 588
P52 — ∗— 500 4πh 2πh 768 251 768 8.18 4.09 200
P53 —�— 500 8πh 3πh 1536 251 1536 8.18 3.06 30
P11 — ◦— 1000 2πh 1πh 768 383 768 8.18 4.09 18
P12 — ∗— 1000 4πh 2πh 1536 383 1536 8.18 4.09 17.2
P13 —�— 1000 8πh 3πh 3072 383 2304 8.18 4.09 11
P21 — ◦— 2000 2πh 1πh 1536 633 1536 8.18 4.09 30
P22 — ∗— 2000 4πh 2πh 3072 633 2304 8.18 5.45 11

Table 1: Parameters of the simulations. Three different sets of friction Reynolds numbers
are presented, in three different computational domains. Nx, Ny, Nz are the numbers of
collocation points. The last column denote the computational time span while statistics
were taken in wash-outs (Ub/Lx). T is the computational time spanned by those fields.
Line shapes given in the second column are used to identify the cases through almost all
the figures of the present paper.

temporal discretization is a third-order semi-implicit Runge-Kutta scheme
[26]. In every simulation, the flow had to evolve from an initial file, which
has been taken from previous different simulations. The code was run until
some transition phase has passed and the flow had adjusted to the new set
of parameters. Once the flow is in a statistically steady state, statistics
are compiled. The running times used to compile statistics are shown in
the rightmost column of table 1. They are given in terms of wash-outs
periods, where Ub is the bulk velocity. The transitions until the simulations
reached a statistically steady state, which can be very time consuming, are
not contemplated in this table.

The validation of the code has been done in two separated steps. First, as
equation 3 has been implemented in an already trusted code, the one point
velocity statistics of the new database was compared to those previously
obtained [14, 27] with the same code. The agreement was excellent, and it is
not shown here for brevity. The second step was to validate the temperature
field, using the data coming from the database of Kawamura, [9]. Figure 2
shows the very good agreement for the mean temperature, figure 2a, both in
outer and inner scales. The thermal fluxes, and the rms of the temperature
fluctuation can be seen in figure 2b. The agreement in both cases is almost
perfect.

A further validation was made computing the total heat fluxes. Integrat-
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(a) (b)

Figure 2: Colour online. (a) Mean temperature profile in inner (bottom) and outer (top)
scales. (b) Wall normal and streamwise heat fluxes, and temperature RMS. Red dashed
line, case P12 in Table 1. Black line from [9].

ing equation 3 one gets

q+total =
1

Pr

dΘ+

dy+
− v+θ+ = 1− 1

Reτ

∫ y+

0

U+
1

〈U+〉
dy+. (4)

The total heat flux has been computed using the second and third terms
of equation 4 and the difference between them is shown (red line) in the figure
3 for the cases P12 and P22. These results totally agree with those from [9].
Moreover, for every case in the database this value was below 10−4, showing
that enough statistics have been compiled.

3. Statistics

3.1. Effect of the computational domain

The mean temperature profiles are shown, for the whole database, in
figure 4. They collapse fairly well to a logarithmic profile,

Θ = (1/κth) ln(y+) +B, (5)

which seems to be independent of the Reynolds number, figure 4a, for Reτ ≥
1000. The thermal Von Kármán constant, κth is 0.419, 0.438 and 0.440 for
Reτ = 500, 1000 and 2000 respectively. This limit value agrees with the one
computed by Abe et al [10]. The value of B is approximately B ≈ 3.1,
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(a) (b)

Figure 3: Colour online. Turbulent (black, dash-dot), molecular (blue) and total (green,
dashed) heat fluxes. The red pointed line indicates the difference between the LHS and
RHS of equation 4. (a) Case P12. (b) Case P22

close to the value obtained by Abe et al of B = 3.0. The thermal diagnosis
function defined as

ΞT = y∂yΘ+, (6)

is shown in figure 4b. The agreement between the different domains for
the same Reynolds number is remarkable along the whole channel for both
figures. None of the cases presented here show a clear logarithmic profile,
so simulations at larger friction Reynolds number are needed. There is an
almost perfect collapse in the viscous layer below y+ = 50, as in the case of
the streamwise velocity [20, 22].

In figure 5, the root-mean-square (RMS) fluctuations of the temperature

θ′+ =
(
θθ

+
)1/2

, and the thermal fluxes uθ
+

and vθ
+

are presented for the

different Reynolds and domains. The independence of the results from the
domain is also clear from figure 5, as all the cases collapse depending on their
corresponding Reynolds number.

Neither the thermal fluxes nor the RMS of the temperature scale exactly
in wall units near the wall. Furthermore, none of them presents a clear
logarithmic law in the outer region. The maximum of these three statistics
grows steadily with the Reynolds number. These maxima are at the same
location in wall units, (not shown) stressing the fact that Lx ≈ 2π and Lz ≈ π
is enough to obtain good statistic across the whole channel. A last point in
favor of this domain can be obtained from the turbulent Prandtl number,
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(a) (b)

Figure 4: Colour online. Lines as in Table 1. (a) Mean temperature profile. (b) Thermal
diagnostic function. In both figures, the black line is the thermal law of the wall, Θ =
Pr y+. The dashed horizontal line corresponds to a thermal Von Kármán constant of 0.44.

which is defined as the ratio of the momentum eddy diffusivity νt to the
thermal eddy diffusivity κt,

Prt =
νt
κt

=
uv

vθ

dΘ/dy

dU/dy
. (7)

Figure 5d shows Prt in the conductive sublayer, δθ = δuPr
−1/3 [28], where

δu ≈ 6 (fig. 4a). The values of Prt are similar to those of Kozuka et al [21],
and the figure shows a small decrease in the value of Prt with Reτ . Further-
more, this figure shows that the smallest domain is enough to obtain good
statistics even for quantities with quotients of derivatives in their definition.

3.2. Heat fluxes, energy and dissipation budgets

The budget equation for the component uiuj of the Reynolds stress tensor
is given by Mansour et al [29] or Hoyas and Jimenez [24]. The interested
reader is referred to these works and to Avsarkisov et al, [22] for further
information in Poiseuille or Couette flows. Concerning thermal flows, the
equation for the budgets of the turbulent heat fluxes, uiθ, the temperature
variance, kθ = 1/2 θ2, and the dissipation rate of the temperature variance,
εθ = 1

Pr
∂iθ∂iθ can be obtained from Sumitani and Kasagi [6] or Kozuka et

al [21]. These equations are transcribed here to facilitate the reading of the
paper.
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(a) (b)

(c) (d)

Figure 5: Colour online. (a) Intensity of the temperature fluctuation. Streamwise (b) and
wall normal (c) heat fluxes. (d) Near-wall behaviour of the turbulent Prandtl number.
Colours and lines as in Table 1.

The budget equation for the turbulent heat fluxes uiθ is given by

Duiθ

Dt
= Pi + εi + Ti + Πs

i + Πd
i + Vi, (8)

where D/Dt is the mean substantial derivative. The different terms on the
right hand side are referred to as production, dissipation, turbulent diffusion,
pressure-temperature gradient correlation, pressure diffusion, and viscous or
molecular diffusion. They are respectively defined according to
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Colour online. Budgets of the temperature variance k+θ (a, c, e) and streamwise
thermal flux (b, d, f) for the the three domains at Reτ = 500 (a, b), Reτ = 1000 (c,
d), and Reτ = 2000, (e, f). Symbols change from table 1. Production ♦, dissipation M,
viscous diffusion O, pressure-strain ◦, pressure diffusion ∗, turbulent diffusion �. Black
line in (a, b), data from Kozuka et al [21]

11



(a) (b)

(c) (d)

Figure 7: Colour online. Budgets of (a) Streamwise thermal flux uθ, (b) Normal heat flux
vθ, (c) Temperature variance k+θ , and (d) Dissipation, εθ. Colours as in table 1, symbols
changed. Production ♦, dissipation M, viscous diffusion O, pressure-strain ◦, pressure
diffusion ∗, turbulent diffusion �.
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(a) (b)

Figure 8: Colour online. Colours as in table 1, symbols changed. (a) Turbulent production
♦, molecular diffusion O, and dissipation M, terms of the budgets for εθ. These terms are
the ones presenting the worst scaling. (b) Dissipation budget, scaled by hν2/u3τθ

2
τ and

premultipled by y+. The production terms have been sum up to facilitate the discussion.
Symbols as in 7d
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Pi = −uiv∂yΘ− vθ∂yUi, (9a)

εi = −ν
(

1 +
1

Pr

)
∂xkui∂xkθ, (9b)

Ti = −∂xkuiukθ, (9c)

Πs
i = p∂xiθ, (9d)

Πd
i = −∂xk

(
δkipθ

)
, (9e)

Vi = ν∂xk

(
θ∂xkui +

1

Pr
ui∂xkθ

)
. (9f)

In the previous definitions, δij is Kronecker’s delta and repeated index imply
summation over k = 1, 2, 3. The transport equation of kθ involves production,
turbulent diffusion, viscous diffusion and dissipation terms,

Dkθ
Dt

= P + T + V + εθ (10)

These terms are defined as

P = vθ∂yΘ, (11a)

T = −1

2
∂yθ2v, (11b)

V =
1

2Pr
∂2yyθ

2, (11c)

εθ = − 1

Pr
∂iθ∂iθ. (11d)

Finally, the transport equation for εθ is given by

Dεθ
Dt

= Pm + Pmg + Pg + PT + Tt + V + εθ1. (12)

In this case, the terms are named mixed production, mean gradient produc-
tion, gradient production, turbulent production, turbulent transport, molec-
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ular diffusion and dissipation.

Pm =
2

Pr
∂iv∂iθ∂yΘ, (13a)

Pmg = − 2

Pr
∂xθ∂yθ∂yU, (13b)

Pg = − 2

Pr
v∂yθ∂

2
yyΘ, (13c)

Pt = − 2

Pr
∂iθ∂jθ∂jui, (13d)

Tt = − 1

Pr
∂yv∂iθ∂iθ, (13e)

vεθ =
1

Pr2
∂2yyε0, (13f)

εθ1 = − 2

Pr2
∂2kjθ∂

2
kjθ. (13g)

The effect of the domain in the budgets of the temperature variance and
the streamwise thermal flux is shown in the figure 6 for all cases. This effect
is hardly noticeable, as the different budgets collapse almost perfectly, even
for Reτ = 2000. To further validate the simulations, the budgets has been
compared with those at the highest Reynolds available,[21], figures 6a and
6b. The agreement is excellent, both in the center of the channel and the
wall.

As the effect of the domain is inappreciable, for the rest of the discussion
the box (4π, 2π) will be used. The four non-trivial budgets, for the three
Reynolds numbers, are shown in the figure 7. The data has been adimen-
sionalised by ν/u3τθτ in the case of the thermal fluxes, figures 7a and 7b. For
the kinetic energy, figure 7c the term ν/u2τθ

2
τ has been used. Finally, the dis-

sipation, figure 7d, employs ν3/u4τθ
2
τ . In the latter figure, the four production

terms have been sum up to facilitate the discussion.
The budgets of the heat fluxes, figures 7a and 7b, are similar to the bud-

gets of uu and uv for isothermal flows [24, 22]. The budgets scale reasonably
well beyond the sub-viscous layer, but again similarly to isothermal flows,
the dissipation and the viscous diffusion terms do not scale close to the wall
for uθ. The same problem arises for vθ where the two pressure terms do not
scale close to the wall. The budget of the kinetic energy shows the same
problem. The situation is considerably worse in the budget for the εθ, where
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the production of energy and the dissipation do not scale on the buffer layer.
To further explore this scaling failure, figure 8a shows the terms presenting
a worse scaling. These terms are the turbulent production, viscous diffusion
and dissipation ones. Thus, any code modeling directly the thermal dissipa-
tion has to be extremely careful with the treatment of these terms. If taken
into account that the viscous diffusion includes a second derivative at the
wall, the lack of points in these region can produce severe errors. A second
possible scaling for εθ is hν2/u3τθ

2
τ . This scaling presents the advantage that,

if premultiplied by y+, equal areas under the curves means equal contribu-
tion. Using this scaling, the terms for the largest Reynolds numbers collapse,
especially well in the buffer layer.

4. Turbulent structures

The instantaneous field of Θ is similar to the one of U . Figures 9a and
9b show the xy and zy structure of the instantaneous thermal field. Large
structures populate the center of the channel. The angle of the colder struc-
tures close to the wall in figure 9a is similar to those of the velocity field.
Figure 9c shows the streak structure of the thermal flow close in the buffer
layer. The center of the channel, figure 9d, presents longer structures, as it
was expected.

Although the long and wide structures present in figure 9d could indi-
cate that the domain is too short and narrow, the autocorrelation function
confirms that the domain has been well chosen. The correlation length of
the thermal disturbance at the center of the channel is shown in figure 10.
The two point autocorrelation coefficient Rθθ(∆x) is shown in figure 10a.
For x = 2πh, Rθθ(∆x) is close to zero for all cases. Analogously, Rθθ(∆z),
figure 10b, shows that domains with width less than πh could not work due
to a possible correlation of the data. It is also noticeable that the correlation
length does not depend on the Reynolds number.

The spectral analysis definitively confirms that lx = 2πh and lz = πh are
enough to accurately obtain the one-point statistics of the flow. In order to
obtain further information about the turbulent structures of the flow, two-
dimensional spectral energy densities Φ = kxkzE(kx, kz) are used. Figure 11
shows the spectra of θ and the real part of the cospectra uθ at approximately
y+ = 15, the height of the near-wall kinetic-thermal-energy maximum.

Figure 11a shows the spectral densities for both θ and u. Two lines are
given for each case, at 0.125 and 0.625 times the maximum of the spectrum.
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(a) (b)

(c) (d)

Figure 9: Colour online. Contours of the instantaneous Θ for the case C21. a) yx−plane.
b) zy−plane. c) xz−plane at y+ ≈ 15. d) xz−plane at the center of the channel

The maximum of the spectra are indicated by the symbol +. The spectra
of the velocity, thin lines of figure 11a, collapse as the spectra of the θ does.
Moreover, the maximum of both u and θ are approximately at the same
spot, indicating that the structures of the thermal field are highly correlated
to those of the streamwise velocity. This can be confirmed from figure 11b.
It can be seen that the cospectra and the u spectra collapse almost perfectly.
About the largest structures, the tail of the spectra indicates that the domain
is filtering part of the energy of the flow. However, at least a 87.5% of the
energy is well solved. This energy seems to no affect the statistics of the flow.

The situation is a bit different at the center of the channel. This can be
appreciated in figure 12 where the spectral densities of Φuu (figure 12a) and
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(a) (b)

Figure 10: Colour online. Lines as in table 1. The two-point autocorrelation coefficient
Rθθ of velocity fluctuations at the centerline, y/h = 1 (a) Streamwise, (b) Spanwise.

Φθθ (12b) are shown. Although the shape of both spectra is similar, a larger
distribution of scales is seen in the thermal flow. Apart from this, figure 12
confirms the fact that no important information is lost in the smaller boxes.
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(a) (b)

Figure 11: Colour online. Lines as in table 1. Spectral energy densities at y ≈ 15, in
terms of the wavelengths λ = 2π/k; (a) Thin lines, Φuu, thick lines, Φθθ (b)Thin lines,
Φuu, thick lines, real part of Φuθ. The spectra are normalized in wall units, and the two
contours for each spectrum are 0.125 and 0.625 times the maximum of the spectrum.

(a) (b)

Figure 12: Colour online. Spectral energy densities at the center of the channel, in terms
of the wavelengths λ = 2π/k; (a) Φuu (b) Φθθ. The spectra are normalized in wall units.
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5. Conclusions

In summary, seven new DNSs of heat transfer, at different Reynolds
numbers, in turbulent channels have been presented. The simulations at
Reτ = 500 and Reτ = 1000 have been used two-fold: first, to validate the
implementation of the code. Second, to show that a relatively small computa-
tional domain of (2π, 2h, π) have identical one-point statistics and turbulent
budgets than longer and wider domains. This is true even if the largest
structures do no fit in the domain.

Using the previous results, two more simulations for Reτ = 2000 have
been run. The results in the smallest domain were identical to the largest
one. The comparison between the several simulations at different Reynolds
numbers shows several scaling problems. Neither the rms of the temperature
nor the thermal fluxes scale properly. It has been impossible to identify
any logarithmic law for these quantities. As in the case of the streamwise
velocity, the indicator function shows that the logarithmic layer is still not
totally present. Also similarly to isothermal flows, the turbulent budgets
present several scaling failures. The most serious ones occur in the budgets
for vθ and the dissipation εθ. An alternative scaling shows a better behaviour
for the latter.

The analysis of the structures shows that the length and width of the
thermal structures scale well in wall units for the different Reynolds numbers.
This scales are similar to those of the streamwise velocity. Apart from visual
identification from instantaneous images of U and Θ, this fact has been
confirmed through the spectra of U and the cospectra of U and Θ.
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