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En primer lugar, a mis directores, Dr. Samuel Morillas, Dra. Cristina
Jordán y Dr. Alberto Conejero. Las especiales circunstancias del desarrollo de
esta Tesis Doctoral también han requerido un gran esfuerzo por vuestra parte
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Chelo, por lo que me ha costado tener que cambiar estas palabras, porque sé
lo mucho que te habŕıa gustado leer esto y porque sigo sintiendo ese inmenso
amor y orgullo que sent́ıa cada vez que hablabamos. Y finalmente, a mi tito
Javi, por todo lo que me has querido como t́ıo, padrino y amigo y porque,
pase el tiempo que pase, siempre me acompañarás donde quiera que vaya.
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Abstract

Most people say that it is the intellect which
makes a great scientist. They are wrong:

It is character.

Albert Einstein.

Computer vision is one of the fastest growing fields at present which,
along with other technologies such as Biometrics or Big Data, has become
the focus of interest of many research projects and it is considered one of the
technologies of the future. This broad field includes a plethora of digital image
processing and analysis tasks. To guarantee the success of image analysis and
other high level processing tasks as 3D imaging or pattern recognition, it is
critical to improve the quality of the raw images acquired.

Nowadays all images are affected by different factors that hinder the
achievement of optimal image quality, making digital image processing a fun-
damental step prior to the application of any other practical application. The
most common of these factors are noise and poor acquisition conditions: noise
artifacts hamper proper image interpretation of the image; and acquisition in
poor lighting or exposure conditions, such as dynamic scenes, causes loss of
image information that can be key for certain processing tasks. Image (pre-
)processing steps known as smoothing and sharpening are commonly applied
to overcome these inconveniences: Smoothing is aimed at reducing noise and
sharpening at improving or recovering imprecise or damaged information of
image details and edges with insufficient sharpness or blurred content that
prevents optimal image (post-)processing.

There are many methods for smoothing the noise in an image, however
in many cases the filtering process causes blurring at the edges and details
of the image. Besides, there are also many sharpening techniques, which try
to combat the loss of information due to blurring of image texture and need
to contemplate the existence of noise in the image they process. When deal-
ing with a noisy image, any sharpening technique may amplify the noise.
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Although the intuitive idea to solve this last case would be the previous fil-
tering and later sharpening, this approach has proved not to be optimal: the
filtering could remove information that, in turn, may not be recoverable in
the later sharpening step.

In the present PhD dissertation we propose a model based on graph theory
for color image processing from a vector approach. In this model, a graph is
built for each pixel in such a way that its features allow to characterize and
classify the pixel. As we will show, the model we proposed is robust and
versatile: potentially able to adapt to a variety of applications. In particular,
we apply the model to create new solutions for the two fundamentals problems
in image processing: smoothing and sharpening.

To approach high performance image smoothing we use the proposed
model to determine if a pixel belongs to a flat region or not, taking into
account the need to achieve a high-precision classification even in the presence
of noise. Thus, we build an adaptive soft-switching filter by employing the
pixel classification to combine the outputs from a filter with high smoothing
capability and a softer one to smooth edge/detail regions.

Further, another application of our model allows to use pixels character-
ization to successfully perform a simultaneous smoothing and sharpening of
color images. In this way, we address one of the classical challenges within
the image processing field.

We compare all the image processing techniques proposed with other
state-of-the-art methods to show that they are competitive both from an
objective (numerical) and visual evaluation point of view.
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Resumen

La visión artificial es uno de los campos en mayor crecimiento en la actu-
alidad que, junto con otras tecnloǵıas como la Biometŕıa o el Big Data, se ha
convertido en el foco de interés de numerosas investigaciones y es considerada
como una de las tecnoloǵıas del futuro. Este amplio campo abarca diversos
métodos entre los que se encuentra el procesamiento y análisis de imagenes
digitales. El éxito del análisis de imágenes y otras tareas de procesamiento
de alto nivel, como pueden ser el reconocimiento de patrones o la visión 3D,
dependerá en gran medida de la buena calidad de las imágenes de partida.

Hoy en d́ıa existen multitud de factores que dañan las imagenes dificul-
tando la obtención de imágenes de calidad óptima, esto ha convertido el (pre-)
procesamiento digital de imágenes en un paso fundamental previo a la apli-
cación de cualquier otra tarea de procesado. Los factores más comunes son el
ruido y las malas condiciones de adquisición: los artefactos provocados por el
ruido dificultan la interpretación adecuada de la imagen y la adquisición en
condiciones de iluminación o exposición deficientes, como escenas dinámicas,
causan pérdida de información de la imagen que puede ser clave para cier-
tas tareas de procesamiento. Los pasos de (pre-)procesamiento de imágenes
conocidos como suavizado y realce se aplican comúnmente para solventar es-
tos problemas: El suavizado tiene por objeto reducir el ruido mientras que el
realce se centra en mejorar o recuperar la información imprecisa o dañada.
Con estos métodos conseguimos reparar información de los detalles y bordes
de la imagen con una nitidez insuficiente o un contenido borroso que impide
el (post-)procesamiento óptimo de la imagen.

Existen numerosos métodos que suavizan el ruido de una imagen, sin
embargo, en muchos casos el proceso de filtrado provoca emborronamiento
en los bordes y detalles de la imagen. De igual manera podemos encontrar
una enorme cantidad de técnicas de realce que intentan combatir las perdidas
de información, sin embargo, estas técnicas no contemplan la existencia de
ruido en la imagen que procesan: ante una image ruidosa, cualquier técnica
de realce provocará también un aumento del ruido. Aunque la idea intuitiva
para solucionar este último caso seŕıa el previo filtrado y posterior realce, este
enfoque ha demostrado no ser óptimo: el filtrado podŕıa eliminar información
que, a su vez, podŕıa no ser recuperable en el siguiente paso de realce.

En la presente tesis doctoral se propone un modelo basado en teoŕıa de
grafos para el procesamiento de imágenes en color. En este modelo, se con-
struye un grafo para cada ṕıxel de tal manera que sus propiedades permiten
caracterizar y clasificar dicho ṕıxel. Como veremos, el modelo propuesto es
robusto y capaz de adaptarse a una gran variedad de aplicaciones. En partic-
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ular, aplicamos el modelo para crear nuevas soluciones a los dos problemas
fundamentales del procesamiento de imágenes: suavizado y realce.

Se ha estudiado el modelo en profundidad en función del umbral, parámetro
clave que asegura la correcta clasificación de los ṕıxeles de la imagen. Además,
también se han estudiado las posibles caracteŕısticas y posibilidades del mod-
elo que nos han permitido sacarle el máximo partido en cada una de las
posibles aplicaciones.

Basado en este modelo se ha diseñado un filtro adaptativo capaz de elim-
inar ruido gaussiano de una imagen sin difuminar los bordes ni perder infor-
mación de los detalles. Además, también ha permitido desarrollar un método
capaz de realzar los bordes y detalles de una imagen al mismo tiempo que se
suaviza el ruido presente en la misma. Esta aplicación simultánea consigue
combinar dos operaciones opuestas por definición y superar aśı los inconve-
nientes presentados por el enfoque en dos etapas.
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Resum

La visió artificial és un dels camps en major creixement en l’actualitat
que, junt amb altres tecnlogies com la Biometria o el Big Data, s’ha convertit
en el focus d’interés de nombroses investigacions i és considerada com una
de les tecnologies del futur. Aquest ampli camp comprén diversos mètodes
entre els quals es troba el processament digital d’imatges i anàlisis d’imatges
digitals. L’èxit de l’anàlisis d’imatges i altres tasques de processament d’alt
nivell, com poden ser el reconeixement de patrons o la visió 3D, dependrà en
gran manera de la bona qualitat de les imatges de partida,

Avui dia existeixen multitud de factors que danyen les imatges dificultant
l’obtenció d’imatges de qualitat òptima, açò ha convertit el (pre-) processa-
ment digital d’imatges en un pas fonamental previ a la l’aplicació de qualsevol
altra tasca de processament. Els factors més comuns són el soroll i les males
condicions d’adquisició: els artefactes provocats pel soroll dificulten la inter-
pretació adequada de la imatge i l’adquisició en condicions d’il·luminació o
exposició deficients, com a escenes dinàmiques, causen pèrdua d’informació
de la imatge que pot ser clau per a certes tasques de processament. Els passos
de (pre-) processament d’imatges coneguts com suavitzat i realç s’apliquen
comunament per a resoldre aquests problemes: El suavitzat té com a ob-
jecte reduir el soroll mentres que el realç se centra a millorar o recuperar la
informació imprecisa o danyada. Amb aquests mètodes aconseguim reparar
informació dels detalls i bords de la imatge amb una nitidesa insuficient o un
contingut borrós que impedeix el (post-)processament òptim de la imatge.

Existeixen nombrosos mètodes que suavitzen el soroll d’una imatge, no
obstant això, en molts casos el procés de filtrat provoca emborronamiento
en els bords i detalls de la imatge. De la mateixa manera podem trobar una
enorme quantitat de tècniques de realç que intenten combatre les pèrdues
d’informació, no obstant això, aquestes tècniques no contemplen l’existència
de soroll en la imatge que processen: davant d’una image sorollosa, qualsevol
tècnica de realç provocarà també un augment del soroll. Encara que la idea
intüıtiva per a solucionar aquest últim cas seria el previ filtrat i posterior
realç, aquest enfocament ha demostrat no ser òptim: el filtrat podria eliminar
informació que, al seu torn, podria no ser recuperable en el següent pas de
realç.

En la present Tesi doctoral es proposa un model basat en teoria de grafs
per al processament d’imatges en color. En aquest model, es constrüıx un
graf per a cada ṕıxel de tal manera que les seues propietats permeten car-
acteritzar i classificar el ṕıxel en qüestió. Com veurem, el model proposat és
robust i capaç d’adaptar-se a una gran varietat d’aplicacions. En particular,



xviii

apliquem el model per a crear noves solucions als dos problemes fonamentals
del processament d’imatges: suavitzat i realç.

S’ha estudiat el model en profunditat en funció del llindar, paràmetre
clau que assegura la correcta classificació dels ṕıxels de la imatge. A més,
també s’han estudiat les possibles caracteŕıstiques i possibilitats del model
que ens han permés traure-li el màxim partit en cadascuna de les possibles
aplicacions.

Basat en aquest model s’ha dissenyat un filtre adaptatiu capaç d’eliminar
soroll gaussià d’una imatge sense difuminar els bords ni perdre informació dels
detalls. A més, també ha permés desenvolupar un mètode capaç de realçar
els bords i detalls d’una imatge al mateix temps que se suavitza el soroll
present en la mateixa. Aquesta aplicació simultània aconseguix combinar dues
operacions oposades per definició i superar aix́ı els inconvenients presentats
per l’enfocament en dues etapes.



Presentation

Lo bueno de la ciencia es que es cierta
independientemente de si crees o no en ella.

Neil deGrasse Tyson.

Image filtering is probably the most common image processing task. Fil-
tering an image means, in general, to transform that image into a more ap-
propriate one for a certain purpose. Image filtering step known as smoothing
is commonly applied to reduce the noise that may be present in an image
and that may alter the information it contains. The noise that contaminates
an image can be a serious inconvenience, both visually and for other imaging
tasks such as image analysis or pattern recognition. As a consequence, image
smoothing becomes an essential step in any computer vision system.

Along with smoothing, sharpening is another of the most common tasks
within image processing. Sharpening an image consists of recovering imprecise
or damaged information of details or edges with insufficient sharpness, blurred
edges or dark images that hinder a good interpretation of the image. As
denoising, this processing may preceed image processing tasks of many kinds:
from the visual improvement of the image to the application of a subsequent
treatment. In addition, each different objective can have different degrees of
needed or optimal sharpness: If we seek a visual improvement we will try
to recover the edges and details without exaggerating excessively; On the
other hand if we need to detect objects or recognize patterns, we will need
an approach much more aggressive that could even seem to worsen the visual
quality of the image.

First image processing solutions were developed for gray-scale, one-
channel, images. In the last years, the interest in using multichannel signals,
and in particular color images, has impressively grown in a variety of appli-
cations.

The earliest solutions to process color images were component-wise ap-
proaches that used some gray-scale image filter in each color channel. In
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this way, each channel was processed independently from the other channels.
However, it is known that the existing correlation among the image channels
should be taken into account. Otherwise, many color artifacts and other un-
desired effects may appear in the output images. This implied the need of
specific color image filtering solutions.

One of the most studied approaches for color image processing is the
vector approach. According to this approach, each image pixel is treated as a
vector comprised of the color components and the image is treated as a vector
field. Therefore, all image channels are jointly processed and the correlation
among the image channels is necessarily taken into account.

This PhD aims at developing a novel tool that allows to process color
images, from a vector point of view, for different objectives. We develop a
graph-based tool able to understand and describe the image in a local and
practical way. As we will see in the following chapters, it has applications to
edge detection, image denoising, and image sharpening.

This dissertation is divided into three parts where each part consists of
several chapters. Please note that each chapter is followed by the bibliographic
references used in it.

Part I includes preliminaries concerning the area of research of this dis-
sertation. This part is divided into 3 chapters, Chapter 1 presents the state-
of-the-art of separate smoothing and sharpening as well as techniques ap-
proaching both smoothing and sharpening. The reader can find here the
context of the problem in question and the work done in this field to date
from different points of view. We would like to point out that sharpening
is reviewed within the broader concept of image enhancement, where along
with shaperning techniques we can find other image processing tasks pursu-
ing image quality improvement. Notice that this review has been published
by the author in “Pérez-Benito, Morillas, S, C., Jordán, C., Conejero, J. A.,.
(2017). Smoothing vs. sharpening of colour images: Together or separated.
Applied Mathematics and Nonlinear Sciences, 2(1), 299-316”. Chapter 2 de-
scribes how the quality of both denoising and sharpening can be objectively
measured. Finally, Chapter 3 introduces some basic concepts about graph
theory intended to illustrate the reader who is unfamiliar with this field.

Part II and Part III presents the scientific contributions made in this PhD
thesis that have been already published in specialized journals. Part II in-
cludes only one chapter and could be considered the heart of this dissertation
as it presents the local graph model for color images used in the following.
This model allows us to understand and characterize a color image for dif-
ferent purposes. Two applications of this model are those presented in the
two chapters that compose Part III. In Chapter 5 we present the application
of the graph-based model for smoothing color images. The model is used to
define an adaptive filter able to remove Gaussian noise from color images.
Finally, Chapter 6 contains the most novel application of this model, its use
for simultaneous smoothing and sharpening of color images. The technique
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introduced in this chapter removes noise and sharpens edges and details of
the image in a simultaneous way which is both efficient and effective.

Finally, Part IV presents the overall conclusions and some potential future
research lines.

With the exception of chapters 2, 3 and 7, the rest of the chapters of
this thesis constitute a set of articles published in international journals or
conferences. The content of the chapter 1 is almost entirely the published
article. Chapter 4 is an extended version of the corresponding journal paper
to improve the model description and comprehension. Finally, chapters 5 and
6, are the full published journal articles. Notice that due to the self-contained
nature of the papers, probably some contents may be repeated along the
document. However, in spite of this, we have preferred to include the original
content of each published paper for the best understanding of the reader.
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1 State-of-the-art of Smoothing and
Sharpening

Pérez-Benito,C., Morillas, S, C., Jordán, C., Conejero,
J. A., (2017). Smoothing vs. sharpening of colour
images: Together or separated. Applied Mathematics
and Nonlinear Sciences, 2(1), 299-316.

Abstract

It is still a challenge to improve the efficiency and effectiveness of image de-
noising and enhancement methods. There exists denoising and enhancement
methods that are able to improve visual quality of images. This is usually
obtained by removing noise while sharpening details and improving edges
contrast. Smoothing refers to the case of denoising when noise follows a Gaus-
sian distribution. Both operations, smoothing noise and sharpening, have an
opposite nature. Therefore, there are few approaches that simultaneously re-
spond to both goals. We will review these methods and we will also provide
a detailed study of the state-of-the-art methods that attack both problems
in colour images, separately.

1.1 Introduction

Several factors impact on color images and they do not only affect visual per-
ception of the image. They also hinder the identification and distinction of
image features that are relevant for different applications such as segmenta-
tion or pattern recognition. Noise is one of the most common of these factors
and it can significantly affect visual quality of images, as well as the perfor-
mance of most image processing tasks. It is the result of errors in the image
acquisition process.

In several cases, images are taken under not suitable conditions: low light,
too much clarity or poor weather conditions. A deficient quality equipment
can hamper image acquisition because of transmissions errors, problems with
networked cables, signal disturbances, troubles with sensors, etc. Therefore,
pixel intensity values do not reflect true colors of the real scene we are shoot-
ing. For these reasons, lots of methods have been developed in order to recover
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lost image information and to enhance image details. Color image smooth-
ing is part of pre-processing techniques intended for removing possible image
perturbations without losing image information.

Analogously, sharpening is a pre-processing technique that plays an im-
portant role for feature extraction in image processing. But even in this last
case, smoothing will be needed in order to obtain a robust solution. This has
motivated the study and development of methods that were able to cope with
both operations.

The initial approach is usually to consider it as a two-steps process: first
smoothing and later sharpening, or the other way around. However, this
approach usually leads to many problems. On the one hand, if we first apply
a smoothing technique, then we could be losing information that cannot
be recovered in the succeeding sharpening step. On the other hand, if we
first apply a sharpening method over a noisy image, we will amplify the
noise present in it. The ideal way to address this problem is to consider a
method that was able to sharp image details and edges while removing noise.
Nevertheless, this is not a simple task given the opposite nature of these two
operations.

Many methods for both sharpening and smoothing have been proposed
in the literature, but if we restrict ourselves to methods that consider both of
them simultaneously, the state-of-the-art is not so extensive. In this work we
will also survey several methods of two-steps approaches in order to intensify
the features of an image and to reduce the existing noise of the image. We
will also review techniques that address both goals simultaneously.

In this way, the paper is organized as follows: Section 1.2 presents a brief
review about image smoothing. In Section 1.3 we revisit some well-known
techniques within enhancement and sharpening field. In Section 1.4.1 we in-
troduce two-steps methods for smoothing and later sharpening and, alterna-
tively, for sharpening and later smoothing. A comparison of both approaches
will be shown. This will motivate the need of techniques that simultaneously
address both processes, that will be exposed in Section 1.4.2. Finally, in Sec-
tion 1.4.2 we compare the results given by the aforementioned methods.

1.2 Smoothing

Image smoothing techniques have the goal of preserving image quality. In
other words, to remove noise without losing the principal features of the im-
age. However, there are several types of noise. The main three types are:
impulsive, additive, and multiplicative. Impulsive noise is usually character-
ized by some portion of image pixels that are corrupted, leaving the others
unchanged. Additive noise appears when the values of the original image have
been modified by adding random values which follow a certain probability
distribution. Finally, multiplicative noise is more difficult to be removed from
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images than additive noise, because in this case intensities vary along with
signal intensity (e.g., speckle noise).

There are different sources of noise and plenty of denoising methods for
each kind of noise. The most common one is probably the so-called thermal
noise. This impulsive noise is due to CCD sensor malfunction in the image
acquisition process.

Another interesting case is Gaussian noise, in which each pixel of the im-
age will be changed from its original value by some small amount that follows
a Gaussian distribution. This kind of noise is modelled as an additive white
Gaussian noise. So that, its presence can be simulated by adding random
values from a zero-mean Gaussian distribution to the original pixel intensi-
ties in each image channel independently, where the standard deviation σ of
the Gaussian distribution characterizes the noise intensity [52].

The elimination of this kind of noise is known as smoothing, and this will
be the type of noise elimination considered in this work. There are plenty of
nonlinear methods for smoothing. In the rest of the section, we will review
some of them.

1.2.1 Arithmetic Mean Filter

First approaches for Gaussian noise smoothing were based on linear strate-
gies. These methods, such as the Arithmetic Mean Filter (AMF), see for
instance [52], are able to suppress noise, because they take advantage of
its zero-mean property. However, they blur edges and texture significantly.
This motivated the development of non-linear methods that try to alleviate
these problems by, firstly, detecting image edges and details, and secondly,
by smoothing edges less than other parts of the image.

1.2.2 Bilateral Filter (BF)

Within nonlinear methods, a wide class of them uses averaging to take advan-
tage of the zero-mean property of the Gaussian noise. This class includes the
well-known Bilateral Filter (BF) [67] and its variants [13]. BF is a non-linear
method able to smooth an image while respecting strong edges. This can be
done by processing each pixel as a weighted average of its neighbours, where
the weights depend on the spatial and intensity distance of each pixel with
respect to the others. Several variants of the BF have been developed, for
instance, the integration of a BF with an edge detection algorithm proposed
in [24], or an adaptation of the BF with fuzzy metrics, as it is proposed in
[42].

Another non-linear method respectful with image structure is the Smallest
Univalue Segment Assimilating Nucleus (SUSAN)[64]. Here, a feature extrac-
tion algorithm is used to reduce noise using only sections from the local image
structure that have been selected as similar pixels. The original value of each
pixel is estimated using a weighted mean of the closest neighbours to it.
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1.2.3 Fuzzy Noise Reduction Filters

Given the difficulty of distinguishing between noisy pixels and those belonging
to details or edges of the image, fuzzy sets, which are capable of dealing with
uncertainty, are very appropriate for image filtering tasks. In fact, the ability
to manage uncertainty that is inherently adaptive implies that fuzzy filtering
is useful for the suppression of different types of noise, including Gaussian
noise.

Over the last years a huge amount of fuzzy filters were developed for im-
ages corrupted with impulse noise. They use fuzzy adaptive approaches that
outperform rank-order filter schemes (such as the median filter). Although
these filters are especially developed for grey-scale images, they can be used
to filter color images by applying them on each color component separately.
However, this approach generally introduces many color artifacts mainly on
edge and texture elements.

To overcome these problems several fuzzy filtering approaches for colour
images were successfully introduced. The vector median operations are ex-
tended to fuzzy numbers in [1]. In [2] a fuzzy rule based system determines the
filter output. The vector median and some fuzzy measures are used in [6, 7]
for calculating the fuzzy coefficients to determine the output as a weighted
average of the inputs. In [3, 4] fuzzy coefficients determine the filter output
by selecting the most representative input vector or as the combination of the
vectors inside the filter window. The result of the detection method, which
is applied on each color component separately, is used to calculate the noise-
free color component differences of each pixel. These differences are then used
by the noise reduction method so that the color component differences are
preserved.

One of the best-known nonlinear filters is the Fuzzy Noise Reduction
Method (FNRM) [61]. The core idea behind this method is to denoise each
pixel using pixels within its neighborhood but using two sub-filters. FNRM
provides very successful results. However, its drawback is that it respects
image edges but at the expense of removing less noise.

To overcome the shortcomings of this kind of filters, linear and non-linear
methods are combined in order to exploit the benefits of each of them for de-
noising colour images respecting details. In [23] graph theory is used to pro-
pose Soft-Switching Graph Denoising method (SSGD) that combines AMF
and FNRM where AMF is more relevant in homogeneous regions and FNRM
is more suitable for processing details. This method has been computationally
improved in [48].

The filters introduced in [25] give detection rules based on differences
between the peer group of a pixel and the peer groups of pixels in its neigh-
bourhood. In [41], an averaging operation of the fuzzy peer group of each pixel
is used for processing, which is called Fuzzy Peer Group Averaging (FPGA).
Other methods have been developed using fuzzy logic or soft-switching strate-
gies, such as those in [53, 43]. Methods based on different optimizations of
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weighted averaging are proposed in [35, 62]. Another important family of
filters are the partition based filters [62, 36], that classify each pixel to be
processed into several signal activity categories which, in turn, are associated
to appropriate processing methods.

1.2.4 Annisotropic Filtering (PM)

The Annisotropic Filtering was introduced by Perona and Malik (PM) [47].
There, a nonlinear adaptive diffusion process, called anisotropic diffusion, is
considered. It consists of adapting the diffusion coefficient with a double goal:
to reduce the smoothing effects near the edges for preserving image details,
while smoothing flatter areas. There are several methods inspired by the PM
model such as the one in [70], where a model based on a directional Laplacian
is shown.

Guo et al [16] presented an adaptive PM filter able to segment the noisy
image into two different regions, inner ones and borders. Then diffusion is
applied by adapting it depending on the region we are considering.

1.2.5 Block-Matching and 3D Filtering (BM3D)

In [10], Dabov et al introduced collaborative filtering strategies which are
probably the ones that provide the most impressive results within the block
matching based denoising. The method presented there is called Block-
Matching and 3D Filtering (BM3D). It is based on grouping, by matching,
similar 2D fragments of the image into a 3D data matrix in order to use a dif-
ferent filter for each group. Details on matching algorithms can be shown in
[20]. More precisely, filtering is achieved by the combination of collaborative
non-local means and a transform-domain shrinkage. It can be summarized
into 3 steps. First, a 3D transformation of each 3D group; secondly, a shrink-
age of the spectrum of the transform; and lastly, an inverse 3D transforma-
tion. This technique is applied to each channel of the luminance-chrominance
colour space, such as YCbCr or YIQ.

1.2.6 Principal Component Analysis (PCA)

Methods based on Principal Component Analysis (PCA) in the spatial do-
main have been applied in image denoising [45, 65]. The use of this technique
allows us to reduce dimensionality, by transforming input data into the PCA
domain in order to only preserve the most significant components. Muresan
and Parks propose to divide every image into patches that are in turn divided
into sub-windows, each of one has an associated vector built from pixels of
the corresponding sub-window. Then, PCA is applied over these vectors for
selecting a few principal components that are later used for smoothing [44].
This method has been refined in [75], where the training sample is selected by
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(a) Original Image (b) Noisy Image

(c) BF (d) BM3D (e) AMF (f) FNRM

(g) SSGD (h) PM (i) LPGPCA (j) FPGA

Fig. 1.1: Results under different smoothing methods applied to Lenna image cor-
rupted by a Gaussian noise with standard deviation σ = 10.

grouping pixels with similar local spatial structures using Local Pixel Group-
ing (LPG) before performing PCA. Additionally, the method in [44] has also
inspired the development of a filter for images obtained from single-sensor
digital cameras, named Colour Filter Array (CFA) [76].

1.2.7 Wavelet methods

Wavelet representation has become very popular within smoothing of im-
ages field [37]. It consists on decomposing an image signal into multiple
scales, which represent its different frequency components. There are plenty
of wavelets families, such as the ones of Haar, Daubechies, Coiflet, Sym-
let, Meyer, Morlet or the Mexican Hat, among others. In these methods,
smoothing is applied in the image by using a threshold for removing de-
tail coefficients. In this way, a hard scale-dependent threshold is proposed in
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(a) Original Image (b) Noisy Image

(c) BF (d) BM3D (e) AMF (f) FNRM

(g) SSGD (h) PM (i) LPGPCA (j) FPGA

Fig. 1.2: Results under different smoothing methods applied to Parrots image cor-
rupted by a Gaussian noise with standard deviation σ = 20.

[46]. Statistical modeling can be performed instead of thresholding to operate
over wavelet coefficients to suppress noise [39, 51]. Wavelet transformation
also works for data regularization as it is proposed in [17].

1.2.8 Results

In Figures 1.1 and 1.2 we can see the performance of some of the smooth-
ing filters reported in this section. They have been applied to classical Lenna
and Parrots images corrupted by some additive white Gaussian noise. BM3D
method offers impressive results in comparison to the others, as we can see
with Lenna images in Figure 1.1. PM smoothing method also presents good
results, since it smooths well the noise without losing details and edge infor-
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mation. However, if the level of noise is high, PM can produce some artifacts
in the image, as we can see in the PM filtered image of Parrots in Figure 1.2.

1.3 Sharpening

Image enhancement process consists of a collection of techniques whose pur-
pose is to improve image visual appearance and to highlight or recover certain
details of the image for conducting an appropriate analysis by a human or a
machine.

During the acquisition process, several factors can influence on the quality
of the image such as illumination conditions, ambient pressure or temperature
fluctuations. In order to enhance the image, we try to convert it for getting
details that are obscured, or to sharpen certain features of interest. There is a
large number of applications of these techniques that include medical image
analysis, remote sensing, high definition television, microscopic imaging, etc.
The existence of such a variety implies that there will also be very different
goals within image enhancement, according to each particular application. In
some cases, the purpose is to enhance the contrast, in others, to emphasize
details and/or borders of the image. We will refer to this last process as
sharpening, although the difference is not always clear. The choice of the
most suitable techniques for each purpose will be a function of the specific
task to be conducted, the image content, the observer characteristics, and
the viewing conditions.

In this section we present a brief overview about the principal sharpening
techniques. They can be classified into two different groups depending on
the image domain: spatial based and frequency based techniques. In the first
case, we directly operate over the pixel, while in the second we do it over
the transform (Fourier or wavelet) coefficients of the image. Here, the effect
of the transformation can only be noticed once we recover the image by the
inverse transform.

1.3.1 Spatial domain techniques

Spatial domain techniques for sharpening an image are based on manipula-
tions of pixel values. One of the ways to improve it is by augmenting the
contrast among different parts of the image.

There are several methods for image sharpening in the spatial domain.
One of the most well-known is Histogram Equalization (HE). It is based on
an adjustment of the contrast by using the histogram of the input image.
It is manipulated in order to separate intensity levels of higher probability
respect to their neighbour levels. In Figure 1.3 we can see the initial histogram
for a gray-scale image of Lenna and the one obtained after having applied
HE over the image. In Figure 1.4, we can see the input and output images
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(a) Histogram (b) Equalized histogram

Fig. 1.3: Histogram of a gray-scale image of Lenna and the histogram of the resulting
image after having applied HE.

(a) Original Image (b) HE

Fig. 1.4: Comparation between a gray-scale image of Lenna and the resulting image
after having applied HE.

corresponding to these histograms and how HE method works over a gray-
scale image increasing the global contrast.

The application of this technique in colour images is not a simple task.
Histogram equalization is a non-linear process and involves intensity values of
the image and not the colour components. For these reasons, channel splitting
and equalizing each channel separately is not the proper way for equalization
of contrast. So, the first step is to convert the colour space of the image from
RGB into other colour space which separates intensity values from colour
components such as HSV, YCbCr or Lab, and apply to the equalization over
the H, Y or L channel respectively. There are other approaches that generalize
histogram equalization to colour spaces. Among the most well-known is 3D
histogram [68].

There are lots of works seeking to improve HE techniques such as Bright-
ness Bi-Histogram Equalization (BBHE) [27], where the image histogram
is divided into two sub-histograms and they are independently equalized
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(a) Original Image (b) HE in RGB space (c) HE in Lab space

Fig. 1.5: Comparation between HE applied over RGB channels separately and over
L channel in Lab space.

(a) Original Image (b) BPFDHE (c) CLAHE

Fig. 1.6: Original image of Lenna and the output images obtained after applying
BPDFHE and CLAHE methods.

later. Dualistic Sub-Image Histogram Equalization (DSIHE) [69] is similar
to BBHE, but in this case the median value is used as a separation intensity
level of reference in order to divide the histogram into two sub-histograms.

With the Brightness Preserving Dynamic Histogram Equalization (BP-
DHE) [19], we smooth the input histogram by using a Gaussian kernel and
by avoiding a re-mapping of peaks unlike with the HE. This technique does
not carry on the imprecision of gray-values while processing crisp histograms.
In order to improve this technique, a fuzzy version of BPDHE is proposed to
handle inaccuracy of gray levels, which is called the Brightness Preserving Dy-
namic Fuzzy Histogram Equalization (BPDFHE) [63]. A more rigorous study
of methods that are based on histograms is presented in [72]. Besides, we can
find there a method proposed with the goal of maximization of the expected
contrast, called the Optimal Contrast-Tone Mapping (OCTM) method.

The aforementioned methods do not use spatial information neighbours of
a given pixel. They are confined to use the intensity values of all pixels of the
image. Local histogram equalization based methods were introduced in order
to adapt these techniques by using local information. In this way, the Contrast
Limited Adaptative Histogram Equalization method (CLAHE) is proposed in
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order to enhance image contrast by applying CLHE on small data regions for
adjusting the local contrast of an image [77]. The results locally obtained are
joined together by bilinear interpolation to get the output image.

We can see in Figure 1.6 the result of applying BPDFHE and CLAHE
methods to Lenna image. As it is indicated above, with this last method we
improve the performance through a local approach that allows us to extract
more information of the image structure.

Another well-known technique within spatial domain sharpening is the
Contrast Stretching (CS), which is based on modifying the dynamic range,
i.e., the range between the minimum and maximum intensity values of the
image of the gray levels in the image being processed [73]. Linear Contrast
Stretch (LCS) is the simplest contrast stretch algorithm that stretches pixel
values of a low or high contrast image by extending the dynamic range across
the whole image spectrum. One of the disadvantages of this method is that
some details may be loss due to saturation and clipping.

In the un-sharp masking (UM) approach [55] an edge image is computed
by using a fraction of the high-pass filtered version of the original image. This
edge image is added to the original one to form the enhanced image. The main
advantage of this method is their simplicity, however, this technique produce
an large amplification of noise which often makes this method not useful
in practice. Several approaches have been suggested for reducing the noise
sensitivity of the linear UM technique. Many of these methods are based on
the use of nonlinear operators in the correction path. A quadratic filter that
can be approximately characterized as a local-mean-weighted adaptive high-
pass filter is described in [56, 40]. An approach based on the order statistics
Laplacian operator is described in [28]. An adaptative approach that prevents
sharpening in flat regions is proposed in [54], that makes the method more
robust in presence of noise.

1.3.2 Frequency domain techniques

Frequency domain techniques are based on the use of transformations like the
Discrete Fourier (or Cosine) Transform or Wavelet Transforms. We remind
that each one of these methods is not unique and, in fact, they compile a
family of methods that are in essence the same, but each one with slight
differences respect to the others. They work as follows: First, we apply one of
these transformation methods, after we process the transform under one of
these methods and, finally, the inverse transformation of the processed image
gives us the result.

This approach has a wide advantage, the facility to distinguish between
regions in an image. Higher frequencies are related to edges or details and
lower ones correspond to smooth areas of the image. This easy separation
allows to process the image appropriately depending on the goal. However,
this also comprises that we are processing details of different regions at the
same time in a indistinguishable way. This also happens with smooth regions.
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Wavelet theory has become a potent image processing tool in the last
years, this technique provide us image spatial and frequency information. An
enhancement of the image can be obtained by adding high-pass or substract-
ing low-pass filtered versions from the image [38, 37]. One of the early works
on contrast sharpening in the wavelet domain is reported in [34], where a
parametrised hyperbolic function is applied to the gradient of the wavelet
coefficients. Since then, lots of works have been developed in the wavelet do-
main. For instance, Loza et al. proposed a non-linear enhancement method
based on the local dispersion of the wavelet coefficients [33]. This algorithm
enhances the contrast in images adaptively, based on local statistics of the
wavelet coefficients of the image.

A contrast enhancement technique using a scaling of the internal noise of
a dark image in the Discrete Cosine Transform (DCT) domain is developed
in [22, 21]. It is based on a concept of physics called Dynamic stochastic res-
onance (DSR), that uses noise to improve the performance of a system [14].
The proposed algorithm enhances the contrast on colour images by applying
the DSR method iteratively on the DCT coefficients of the image. DSR based
methods in the wavelet domain have been also proposed in [9]. DSR based
techniques are mainly centered in enhancement and not so much in sharp-
ening edges or details of the image. They provide a better outcome when
applied to low lighted images.

1.3.3 Results

In Figure 1.7 we can see the output of the UM and CLAHE methods for
Parrot image. We also can see enlarged images of detail regions of them, where
we can appreciate the sharpening effect over edges. This is an example of
sharpening technique as opposite to the examples showed in Figure 1.6, which
were methods more tied to contrast enhancement. They can be compared in
Figure 1.7, where we can see an example of contrast enhancement, using
CLAHE, versus sharpening using UM.

1.4 Simultaneous Smoothing and Sharpening

In this section we discuss about techniques that jointly considered smooth-
ing and sharpening. The first idea we come up is to process the image in
two different steps: first, by implementing one operation and then, over the
processed image, carrying on the second process. Here, the order in which
we carry the operations can greatly change the output. If we sharpen before
smoothing, we can increase the relevance of image noise, which will complicate
the smoothing task. If, by contrast, we smooth before sharpening, we may
loss information in the smoothing process that the sharpen method could not
recover. In general, the second approach usually provides better outcomes,
however, it is still not an optimal solution. For that reason, techniques that
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Fig. 1.7: First row, original Parrot image, filtered with UM and with CLAHE.
Second row, a little detail region.

were able to combine simultaneously both smoothing and sharpness have
been suggested in the last few years.

1.4.1 Two steps approach

Two-step methods for smoothing and sharpening consist on the sequential
application of two methods, one of each type. In Figure 1.8 we can compare
two-step methods based on BF for smoothing and CLAHE for sharpening.
In the first case, we start with BF, and in the second one with CLAHE. This
last method is applied to blurred Lenna and Parrot images in Figure 1.9.

We have seen the result of smoothing an image and subsequently apply
a sharpening technique over the denoised image. In the first step, we lost a
lot of information about the image, and then the second step was not good
enough to recover the lost information. To overcome this drawback, we can
first apply a sharpening, and in a second step we smooth the image. Results
of both approaches can be seen in Figures 1.8 and 1.9.

Another example of a unified two-step method for both smoothing and
sharpening over low light colour images is proposed in [29]. There two different
steps are applied too. BM3D filter is combined with a structural filter for
smoothing. Afterwards, a luminance adaptive contrast is applied in order to
sharp the details of the smoothed image.
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Fig. 1.8: First row, original image, original image blurred with Gaussian noise with
σ = 10, filtered image with BF and finally ouput of BF and posterior CLAHE.
Second row, original and noisy image, the enhanced image with CLAHE and finally
output of CLAHE and posterior BF.

Fig. 1.9: First row, original images and original images blurred with Gaussian noise
with σ = 10. Second row, the result of applying CLAHE and subsequently BF to
both images and then the opposite approach, BF and subsequently CLAHE.
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1.4.2 Simultaneous approach

Although smoothing and sharpening are apparently opposite operations, the
necessity of using both techniques at the same time is ever increasing. Both
of them have been extensively studied and the techniques developed for each
process are very different. However, this does not happen if we talk about
doing both operations at the same time. The state of the art in terms of
methods that are able to sharp details while removing noise is still relatively
reduced. In this section we present some of these techniques.

Two smooth and sharpening techniques, such as PM and CLAHE, have
been combined simultaneously by means of a synchronization algorithm [12],
where we can appreciate the improvement respect the corresponding two-step
methods based on them. The method draw on the advantage of these original
models and combine it for constructing a good tool for medical images, more
concretely for magnetic resonance.

As we saw in Section 1.4.1, PM is based in a non-linear forward diffusion
process geared by a diffusion variable that permits to control the smoothing
effects over the image. In this way, it is tempting to use backward diffusion in
order to obtain a sharpened image. However, backward diffusion is unstable
and an ill-posed problem. Nevertheless, Gilboa et al. show that it is possible
to combine forward and backward nonlinear diffusion processes for getting the
Forward-and-Backward (FAB) diffusion process [15]. FAB is able to sharpen
details while removing the noise. An adaptative control of the local degree of
diffusion depending on the local gradient and inhomogeneity is considered to
introduce the Local Variance-Controlled Forward-and-Backward (LVCFAB)
[71].

Nevertheless, in the same way that te backward diffusion process, the FAB
diffusion is unstable and ill-posed. In order to overcome this drawback Vadim
and Yehoshua proposed the use of Telegraph-Diffusion(TeD) [57, 58], instead
of the diffusion equation, giving rise to a stable smoothing and sharpening
method, called (TeD-FAB).

In [11], the authors proposed to combine BM3D with a transform-domain
sharpening technique, applied to blocks, in order to sharpen while noise is
being removed. We will refer to this method as (BM3DSharp).

We can also find fuzzy based methods with this double purpose. Russo
proposed, in [59, 60], a fuzzy neural network technique that consists on a
multiple-output processing system that adopts fuzzy networks in order to
combine sharpening and smoothing. In particular, three fuzzy networks are
combined; the first and third one smooth the image and the second one is
responsible of the sharpening. The aforementioned methods can be compared
in Figures 1.10, 1.11, and 1.12.

As we have mentioned UM has the disadvantages of increasing the noise in
homogeneous regions and of not being able to sharpen all details due to its use
of a fixed sharpening strength. With the purpose of overcome this drawback
and to remove the noise at the same time that edges are sharpened, Kim et
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al. have developed an adaptive unsharp mask, called Optimal Unsharp Mask
(OUM) [26]. It is based on the classical approach of the UM but changing its
parameter according to the local edge strength.

In [74], an Adaptive Bilateral Filter (ABF) based on the classical BF
is presented. BF is reformulated by integrating a shift-variant technique to
increase the slope of the edges and to smooth the noise. ABF presents a
similar sharpening performance as OUM, but without producing the artefacts
of OUM. Moreover, ABF achieves a better noise suppression than OUM.
However, ABF significantly increases the computational complexity, that is
proportional to the window size.

(a) Original (b) Noisy image

(c) TeD-FAB (d) Fuzzy Neural
Network

(e) BM3DSharp

Fig. 1.10: Denoising results for Lenna image corrupted by Gaussian noise with
standard deviation σ = 20.

To overcome this problem, an Adaptative Guided Image Filtering (AGF),
that combines a guided filter with the shift-variant technique, has been pro-
posed in [49, 50].

In a few words, the guided filter is a linear translation-variant filter in
which each pixel is replaced by a linear transform of a guidance image (input
image or another one). Saini et al. proposed a modification of the ABF that
firstly considers a segmentation of the image in clusters with similar structure
[66]. This clustering is based on features that describe the local structure of
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(a) Original (b) Noisy image

(c) Fuzzy Network (d) BM3DSharp (e) TeD-FAB

(f) Original (g) Noisy image

(h) Fuzzy Network (i) BM3DSharp (j) TeD-FAB

Fig. 1.11: Results of smoothing & sharpening with different methods an image
corrupted by Gaussian noise with σ = 30.



20 1 State-of-the-art of Smoothing and Sharpening

Fig. 1.12: First row, Lenna image corrupted by Gaussian noise with standard devi-
ations σ = 10, σ = 20 and σ = 30. Second row, the output of Fuzzy Network filter.
Third row, output of BM3DShar and in the last one, the output of TeD-FAB.
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the image. After a segmentation, each pixel is processed with a weighted
mean that uses bilateral weights of the corresponding cluster.

Wavelet based methods have also been proposed for dealing with smooth-
ing and sharpening simultaneously. In [32] the image on the HSV space is
transformed into the wavelet domain by Dual-Tree Complex Wavelet Trans-
form (DT-CWT), where the wavelets coefficients are adjusted in order to ob-
tain a smooth and enhanced image. In this line, Li-na et al. applied wavelet
methods colour images in the HSV space [30]. Their method uses properties
of each canal to get the desired result. In this way, the saturation channel
is smoothed according to a simple transformation by using the maximum
and minimum values of the RGB space. The luminance channel is smooth by
using a wavelet threshold and it is also enhanced by compression of the low
frequencies of the image. Finally, the hue channel is kept invariable.

In [18], the authors apply smoothing and sharpening process on images
in the Y IQ space. This method depends on the surface texture of each pixel
in order to smooth flat regions of the image while sharpening details. This is
done by a combination of a Gaussian derivative filter that divides the Y image
into flat and edge areas. The first ones are sharpened by using a Gaussian
derivative operator and the second ones are smoothed using SUSAN method.

A combined method based on the graph Laplacian operator is performed
in [31] where the output image is the solution of a minimization problem of a
function with two different terms: one is a standard sparse coding formulation
for image smoothing and the other one allows to sharpen the image thanks
to the Laplacian operator.

Conclusions

In this paper, the main techniques for removing white Gaussian noise in
colour images have been revisited. Also, we have reviewed the typical tech-
niques for colour images smoothing and sharpening, both in spatial and in
frequency domain.

Both operations have an opposite nature, the aim of smoothing an image is
to remove the noise. However, the aim of sharpening is somehow the opposite,
since it tries to emphasize details. These techniques are responsible for making
more visible variations and details or edges of the images. We have seen that
the application of both techniques in two steps, one after the other, produce
wrong results because of loosing some relevant information or sharpening the
noise.

The reduced number of approaches that simultaneously respond to both
goals lies on the difficulty of combining these apparently contradictory pro-
cess. We have reported the most remarkable of these methods.





References

[1] V. Chatzis, I. Pitas, Fuzzy scalar and vector median filters based on
fuzzy distances, IEEE Transactions on Image Processing 8 5 (1999)
731-734.

[2] K. Arakawa, Median filter based on fuzzy rules and its application to
image restoration, Fuzzy Sets and Systems, 77 1 (1996) 3-13.

[3] R. Lukac, K.N. Plataniotis, B. Smolka, A.N. Venetsanopoulos, cDNA
Microarray Image Processing Using Fuzzy Vector Filtering Framework,
Fuzzy Sets and Systems: Special Issue on Fuzzy Sets and Systems in
Bioinformatics, 152 1 (2005) 17-35.

[4] R. Lukac, K.N. Plataniotis, B. Smolka, A.N. Venetsanopoulos, A Multi-
channel Order-Statistic technique for cDNA Microarray Image Process-
ing, IEEE Transactions on Nanobioscience 3 4 (2004) 272-285.

[5] Y. Shen, K. Barner, Fuzzy vector median-based surface smoothing, IEEE
Transactions on Visualization and Computer Graphics 10 3 (2004) 252-
265.

[6] Y. Shen. K.E. Barner, Marginal fuzzy median and fuzzy vector median
filtering of color images, in Proc. 37th Annual Conf. Inf. Sciences &
Systems (2003).

[7] Y. Shen, K.E. Barner, Optimization of fuzzy vector median filters, in
Proc. 38th Annual Conf. Inf. Sciences & Systems (2004).

[8] S. Hore, B. Qiu, and H.R. Wu, Improved vector filtering for color images
using fuzzy noise detection, Optical Engineering , 42 6 (2003) 1656-1664.

[9] R. Chouhan, C. P. Kumar, R. Kumar, and R. K. Jha, (2012), Con-
trast enhancement of dark images using stochastic resonance in wavelet
domain. International Journal of Machine Learning and Computing,
2(5):711-715. doi 10.7763/IJMLC.2012.V2.220

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, (2007), Im-
age denoising by sparse 3D transform-domain collaborative filter-
ing. IEEE Transactions on Image Processing, 16(8):2080–2095. doi
10.1109/TIP.2007.901238

[11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, (2007), Joint image
sharpening and denoising by 3D transform-domain collaborative filter-
ing. In Proceedings of the International Workshop on Spectral Methods
for Multirate Signal Process, SMMSP 2007, volume 2007.

http://dx.doi.org/10.7763/IJMLC.2012.V2.220
http://dx.doi.org/10.1109/TIP.2007.901238


24 References

[12] F. H. Di Jia, J. Yang, Y. Zhang, D. Zhao, and G. Yu, (2010), A synchro-
nization algorithm of MRI denoising and contrast enhancement based on
PM-CLAHE model. JDCTA, 4(6):144–149.

[13] M. Elad, (2002), On the origin of the bilateral filter and ways to im-
prove it. IEEE Transactions on Image Processing, 11(10):1141–1151.
doi 10.1109/TIP.2007.901238

[14] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, (1998),
Stochastic resonance. Reviews of Modern Physics, 70:223–287. doi
10.1103/RevModPhys.70.223

[15] G. Gilboa, N. Sochen, and Y. Y. Zeevi, (2002), Forward-and-
backward diffusion processes for adaptive image enhancement and de-
noising. IEEE Transactions on Image Processing, 11(7):689–703. doi
10.1109/TIP.2002.800883

[16] Z. Guo, J. Sun, D. Zhang, and B. Wu, (2012), Adaptive Perona–
Malik model based on the variable exponent for image denois-
ing. IEEE Transactions on Image Processing, 21(3):958–967. doi
10.1109/TIP.2011.2169272

[17] B.-b. Hao, M. Li, and X.-c. Feng, (2008), Wavelet iterative regularization
for image restoration with varying scale parameter. Signal Processing:
Image Communication, 23(6):433–441. doi 10.1016/j.image.2008.04.006

[18] T. Horiuchi, K. Watanabe, and S. Tominaga, (2007), Adaptive filtering
for color image sharpening and denoising. In 14th International Con-
ference on Image Analysis and Processing Workshops, ICIAPW 2007,
196–201.

[19] H. Ibrahim and N. S. P. Kong, (2007), Brightness preserving
dynamic histogram equalization for image contrast enhancement.
IEEE Transactions on Consumer Electronics, 53(4):403-410. doi
10.1109/TCE.2007.4429280

[20] A. K. Jain, M. N. Murty, and P. J. Flynn, (1999), Data cluster-
ing: a review. ACM computing surveys (CSUR), 31(3):264–323. doi
10.1145/331499.331504

[21] R. K. Jha, R. Chouhan, and K. Aizawa, (2014), Dynamic stochastic
resonance-based improved logo extraction in discrete cosine transform
domain. Computers & Electrical Engineering, 40(6):1917–1929. doi
j.compeleceng.2013.07.024

[22] R. K. Jha, R. Chouhan, P. K. Biswas, and K. Aizawa, (2012), Internal
noise-induced contrast enhancement of dark images. In 19th IEEE Inter-
national Conference on Image Processing (ICIP), 2012, pages 973–976.

[23] C. Jordán, S. Morillas, and E. Sanabria-Codesal, (2012), Colour image
smoothing through a soft-switching mechanism using a graph model.
IET Image Processing, 6(9):1293–1298. doi 10.1049/IET-IPR.2011.0164

[24] W.-C. Kao and Y.-J. Chen, (2005), Multistage bilateral noise filtering
and edge detection for color image enhancement. IEEE Transactions on
Consumer Electronics, 51(4):1346–1351. doi 10.1109/TCE.2005.1561866

http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1109/TIP.2002.800883
http://dx.doi.org/10.1109/TIP.2011.2169272
http://dx.doi.org/10.1016/j.image.2008.04.006
http://dx.doi.org/10.1109/TCE.2007.4429280
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1016/j.compeleceng.2013.07.024
http://dx.doi.org/10.1049/IET-IPR.2011.0164
http://dx.doi.org/10.1109/TCE.2005.1561866


References 25

[25] C. Kenney, Y. Deng, B. Manjunath, and G. Hewer, (2001), Peer
group image enhancement. IEEE Transactions on Image Processing,
10(2):326–334. doi 10.1109/83.902298

[26] S. H. Kim and J. P. Allebach, (2005), Optimal unsharp mask for
image sharpening and noise removal. Journal of Electronic Imaging,
14(2):023005. doi 10.1117/1.1924510

[27] Y.-T. Kim, (1997), Contrast enhancement using brightness preserving
bi-histogram equalization. IEEE transactions on Consumer Electronics,
43(1):1–8. doi 10.1109/30.580378

[28] Y. H. Lee and S. Y. Park, (1990), A study of convex/concave edges and
edge-enhancing operators based on the Laplacian. IEEE Transactions
on Circuits and Systems, 37(7):940–946. doi 10.1109/31.55069

[29] X. Li, (2007), On modeling interchannel dependency for color image
denoising. International Journal of Imaging Systems and Technology,
17(3):163–173. doi 10.1002/ima.20112

[30] H. Li-na, G. Guo-hua, X. Jie, and X. Zheng-Long, (2009), Real-color im-
age denoised and enhanced synchronously based on wavelet transform.
In Second International Conference onIntelligent Computation Technol-
ogy and Automation ICICTA’09, 1:658–661. doi 10.1109/AICI.2009.251

[31] X. Liu, G. Cheung, and X. Wu, (2015), Joint denoising and contrast en-
hancement of images using graph Laplacian operator. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP)
2015, 2274–2278. doi 10.1109/ICASSP.2015.7178376

[32] A.  Loza, M. Al-Mualla, P. Verkade, P. Hill, D. Bull, and A. Achim,
(2014) Joint denoising and contrast enhancement for light microscopy
image sequences. In IEEE 11th International Symposium on Biomedical
Imaging (ISBI), 2014, 1083–1086. doi 10.1109/ISBI.2014.6868062

[33] A.  Loza, D. R. Bull, P. R. Hill, and A. M. Achim, (2013), Automatic
contrast enhancement of low-light images based on local statistics of
wavelet coefficients. Digital Signal Processing, 23(6):1856–1866. doi
10.1109/ICIP.2010.5651173

[34] J. Lu and D. Healy, (1994), Contrast enhancement via multiscale gradi-
ent transformation. In IEEE International Conference Image Processing,
ICIP-94, 2:482–486. doi 10.1109/ICIP.1994.413617

[35] L. Lucchese and S. K. Mitra, (2004), A new class of chromatic filters for
color image processing. theory and applications. IEEE Transactions on
Image Processing, 13(4):534–548. doi 10.1109/TIP.2003.822609

[36] Z. Ma, H. R. Wu, and D. Feng, (2007), Fuzzy vector partition filter-
ing technique for color image restoration. Computer Vision and Image
Understanding, 107(1):26–37. doi 10.1016/j.cviu.2006.11.017

[37] S. Mallat, (1999), A wavelet tour of signal processing. Academic press,
1999. doi 10.1162/comj.2007.31.3.83

http://dx.doi.org/10.1109/83.902298
http://dx.doi.org/10.1117/1.1924510
http://dx.doi.org/10.1109/30.580378
http://dx.doi.org/10.1109/31.55069
http://dx.doi.org/10.1002/ima.20112
http://dx.doi.org/10.1109/AICI.2009.251
http://dx.doi.org/10.1109/ICASSP.2015.7178376
http://dx.doi.org/10.1109/ISBI.2014.6868062
http://dx.doi.org/10.1109/ICIP.2010.5651173
http://dx.doi.org/10.1109/ICIP.2010.5651173
http://dx.doi.org/10.1109/ICIP.1994.413617
http://dx.doi.org/10.1109/TIP.2003.822609
http://dx.doi.org/10.1016/j.cviu.2006.11.017
http://dx.doi.org/10.1162/comj.2007.31.3.83


26 References

[38] S. G. Mallat, (1989), A theory for multiresolution signal decomposition:
the wavelet representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(7):674–693. doi 10.1109/34.192463

[39] M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin, (1999),
Low-complexity image denoising based on statistical modeling of wavelet
coefficients. IEEE Signal Processing Letters, 6(12):300–303. doi
10.1109/97.803428

[40] S. K. Mitra, H. Li, I.-S. Lin, and T.-H. Yu, (1991), A new class of nonlin-
ear filters for image enhancement. In 1991 International Conference on
Acoustics, Speech, and Signal Processing, ICASSP-91, 2525–2528. doi
10.1109/ICASSP.1991.150915

[41] S. Morillas, V. Gregori, and A. Hervás, (2009), Fuzzy peer
groups for reducing mixed gaussian-impulse noise from color im-
ages. IEEE Transactions on Image Processing, 18(7):1452–1466. doi
10.1109/TIP.2009.2019305

[42] S. Morillas, V. Gregori, and A. Sapena, (2006), Fuzzy bilateral filter-
ing for color images. In International Conference Image Analysis and
Recognition, 138–145. doi 10.1007/11867586 13

[43] S. Morillas, S. Schulte, T. Mélange, E. E. Kerre, and V. Gregori, (2007),
A soft-switching approach to improve visual quality of colour image
smoothing filters. In International Conference on Advanced Concepts
for Intelligent Vision Systems, 254–261. doi 10.1007/978-3-540-74607-
2 23

[44] D. D. Muresan and T. W. Parks, (2003), Adaptive principal components
and image denoising. In International Conference on Image Processing,
2003, 1, 1–101. doi 10.1109/ICIP.2003.1246908

[45] E. Oja, (1992), Principal components, minor components, and linear
neural networks. Neural Networks, 5(6):927–935. doi 10.1016/S0893-
6080(05)80089-9

[46] Q. Pan, L. Zhang, G. Dai, and H. Zhang, (1999), Two denoising meth-
ods by wavelet transform. IEEE Transactions on Signal Processing,
47(12):3401–3406. doi 10.1109/78.806084

[47] P. Perona and J. Malik, (1990), Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 12(7):629-639. doi 10.1109/34.56205
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2 Assessment of color image denoising and
sharpening methods

A key piece in the development of any image (pre-)processing technique is the
ability to measure its performance. That is to say, to measure how much the
image has been improved after removing noise, enhancing edges, increasing
the contrast, and so on. In this chapter we are going to explain how to
proceed when measuring the performance of a (pre-)processing method and
we will review the main techniques to carry out this task and that have been
used in this dissertation to evaluate denoising/smoothing and sharpening
performance.

To start, we need to select a set of test images that we consider inter-
esting. This selection will vary according to the objective we are looking for,
if we need sharp borders, a more homogeneous image, certain fine details or
some specific type of image such as medical image. In our case, we will use
generic/domestic images of everyday things that present edge and detail ar-
eas and also homogeneous zones. Figure 2.1 shows several test images, some
of them very well-known, that are used by the scientific community and that
are also used in this dissertation.

A simple and intuitive way to evaluate the performance of a filter or the
quality of an image is visual inspection by an expert observer. However, the
visual perception can fluctuate between subjects which makes this kind of
evaluation a weak tool. Although psychophysics evaluations could be used to
solve this issue, this kind of evaluation takes a long time and it is difficult to
replicate. For instance, a set of observers could be used so that results are
statistically processed including inter-observer and intra-observer analysis.
Besides, this requires a good sample selection and strict control of the exper-
imental conditions, so that they are the same for all users: lighting, screen,
distance, etc. Even controlling all the conditions, the results will depend
on the knowledge of the users, their experience, seriousness, availability, re-
peatability of their answers, etc. As a consequence, numerical computational
evaluations are preferred in general.

From now on, we are going to focus on the evaluation of denoising/smooth-
ing performance given that the techniques used include those for assessing
sharpening that we will highlight later.

Therefore, in order to evaluate smoothing, the test images are contam-
inated with some kind of simulated noise. There are several types of noise
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.1: Some classical test images used for filter assessment: (a) Lenna (90× 90),
(b) Pills (50×50), (c) Peppers (50×50), (d) Statue (200×200), (e) Parrots (80×80),
(f) Window (100× 100, (e) Parrots1 (80× 80), (e) Micro (51× 51)

that can corrupt color images. Probably the most common is the noise associ-
ated to the camera sensor or thermal noise. This noise is modeled as additive
White Gaussian noise having the following probability distribution in each
color channel:

p(x) =
1

(2πσ)
1
2

e
−x2

2σ2 (2.1)

where σ denotes the standard deviation of the distribution. This noise is
introduced independently in each color channel. However, it can be assumed
that all three color channels have the same average noise magnitude with
constant noise variance over the entire image plane. In Figure 2.2 we can see
some examples of noisy images. The Lenna image of the Figure 2.1 (a) has
been taken and Gaussian white noise with different standard deviations has
been added, specifically σ = 2.5, σ = 5, σ = 10 and σ = 20.

Then, the corrupted image is filtered using the filtering/smoothing/denois-
ing method to be assessed and the processed image is obtained.

Finally, the processed image is used to compute the image quality through
an Objective Image Quality Assessment (IQA) method. Over the last few
years, many methods of objective image quality assessment have been devel-
oped that we could classify within three types:

– Full-Reference Image Quality Assessment (FR-IQA)
– Reduced-Reference Image Quality Assessment (RR-IQA)
– Non-Reference Image Quality Assessment (NR-IQA)
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(a) σ = 2.5 (b) σ = 5 (c) σ = 10 (d) σ = 15 (e) σ = 20

Fig. 2.2: Examples of images with Gaussian noise with different standard deviations
from a reference image of the Figure 2.1(a)

Fig. 2.3: Image Quality Assesment (IQA).

The full reference techniques (FR-IQA) refers to assessing the quality of
the output image by comparing with the original, believed to be free-of-noise
version of the same image or, in general, with an ideal of reference, which is
a serious requirement. The filter performance is calculated by measuring the
deviation of a filtered image from the reference image in terms of an objective
score.

Reduced Reference Image Quality Assessment (RR-IQA) encompasses
methods that use only partial information of the reference image rather than
the full image to evaluate the quality of the filtered image. The reference
limitation presented by the FR-IQA methods remains in the RR-IQA. Also,
it is of paramount importance to carefully select the information used to as-
sess to quality successfully for the particular application. However, despite
all their limitations, RR-IQA techniques are widely used in satellite image
quality assessment and remote sensing, among other problems.

Nevertheless, in most real cases, as it happens in the sharpening/enhance-
ment field, the ideal of reference image is not available. In the case of sharp-
ening, this image does not exist. This limitation led to the development of the
third type of techniques: the Non-Reference Image Quality Assessment(NR-
IQA). These methods determine the quality of an image through the extrac-
tion of a series of image features and statistics from the output image that
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Fig. 2.4: Scheme of the filter evaluation.

are further processed in different ways to obtained the predicted quality, and
they do no longer need a reference image. This methods are of special interest
to this dissertation as in Chapter 6 we introduce a technique for simultaneous
smoothing and sharpening of color images that needs to be evaluated through
NR-IQA.

A review of the main methods to measure image quality is featured below.
We will review the most popular among the three types listed providing some
extra details on those used in the following chapters in this dissertation.

2.1 Full-Reference Image Quality Assessment

As commented above, for this type of methods, the quality is calculated
by measuring the deviation of the output image from the reference image.
Different functions can be used to measure this deviation. In order to properly
assess the quality of the filtering both the noise suppression and the detail
preserving abilities have to be evaluated. The Mean Absolute Error (MAE) is
the most used function to approach the detail-preserving assessment and the
Peak Signal to Noise Ratio (PSNR) is the function usually used to express
the noise suppression ability. This last one objective quality measure has been
used in this dissertation and it is defined as follows [23]:

MAE =

N ·M∑
i=1

Q∑
q=1

∣∣∣F qi − F̂ qi ∣∣∣
N ·M ·Q

(2.2)
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PSNR = 20 log

 255√
1

NMQ

N ·M∑
i=1

Q∑
q=1

(
F qi − F̂

q
i

)2

 (2.3)

where M , N are the image dimensions, Q is the number of channels of
the image (Q = 3 for color images), and F qi and F̂ qi denote the qth compo-
nent of the original image vector and the filtered image, at pixel position i,
respectively.

In addition, the Normalized Color Difference (NCD) measure is also
widely used since it approaches better the human perception of color dif-
ferences [17] and is defined as:

NCDLab =

N ·M∑
i=1

∆ELab

N ·M∑
i=1

E∗Lab

(2.4)

where ∆ELab = [(∆L∗)2 +(∆a∗)2 +(∆b∗)2]
1
2 denotes the perceptual color

error and E∗Lab = [(L∗)2 + (a∗)2 + (b∗)2]
1
2 is the norm or magnitude of the

original image color vector in the L∗a∗b∗ color space.
Although these are probably the most used measurements in the litera-

ture, we can find many other measurements with which to assessment the
quality of the images. Below are two methods that have also been used in
this dissertation.

2.1.1 Structural similarity index

The widely-used PSNR technique does not always correlate with human vi-
sual perception and image quality [4]. To tackle this limitation, other figures
of merit were proposed. One of the most popular ones is the structural sim-
ilarity index (SSIM). This measure is based on the some properties of the
human visual system to recognize structural similarity.

The main idea behind the method is to divide the images into blocks
to compute similarity between pairs of blocks in the same image location.
These similarities are later averaged to compute the overall image similarity.
For the blocks similarity, the following three factor expression that evaluates
similarity in luminance, contrast, and structure are used:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β [s(x, y)]γ (2.5)

where α > 0, β > 0 and γ > 0 are parameters used to adjust the relative
importance of the components and the luminance, contrast and structure
similarity are respectively given by:
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l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2.6)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(2.7)

s(x, y) =
σxy + C3

σxσy + C3
(2.8)

where µx, µy, σx, σy and σxy are the local means, standard deviations,
and covariance of the image windows x and y. The constant C1 is added
in order to avoid the instability when µ2

x + µ2
y is closer to 0 and is defined

as C1 = (K1L)2 being L the dynamic range of the pixel values (255 for
8-bit grayscale images), and K1 � 1 a small constant. In the same way,
C2 = (K2L)2 with K2 � 1. Finally C3 is defined as C3 = C2

2 .
Setting the weights α, β and γ equal to 1 the reduced formula is obtained:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.9)

This measure was later extended to color using fuzzy logic in the Fuzzy
Color Structural Similarity (FCSS) [2] measure, where more appropriate met-
rics were used to better process color correlation.

2.2 Reduced-Reference Image Quality Assessment

Reduced reference image quality metrics provide an intermediate solution be-
tween the FR and NR models. They are designed to predict the perceptual
quality of distorted images with only partial information about the refer-
ence images. RR methods are useful in several applications. For example, in
real-time visual communication systems, they can be used to track degrada-
tion of image quality and control streaming resources. In these techniques, a
minimum set of image parameters are extracted and then used to determine
image quality.

Jinjan et al. [15] developed a Reduced-Reference Image Quality Assess-
ment based on visual information fidelity. They have proposed an index and
used 30 bit data and achieve high consistency with human perception. Redi
et al. [16] used descriptors based on color correlogram. They have analysed
the alternations between the color distributions of an image for RR-IQA.
Rehman and Zhou [18] proposed a RR-IQA method from the estimation of
SSIM. Lin et al. [20] proposed an RRIQA by statically modeling the DCT
distribution. Experimental analysis determines that only a small number of
reduced reference parameters are sufficient to estimate the image quality. Xu
et al. [21] introduced an approach for RRIQA which measures the differences
of spatial arrangement between the reference image and distorted image in
terms of spatial regularity measured by fractal dimension. Bhatijaet al. [22]
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developed an application specific for smart cameras in which performance
improvement and robustness can be achieved by intelligent moderation of
the parameters both at algorithm and hardware level.

2.3 Non-Reference Image Quality Assessment

Currently, there is a growing number of non-reference image quality assess-
ment methods due to the need to estimate a score of image quality with-
out prior information or reference images, as it happens in sharpening and
smoothing methods, among others. Also, the access to high performance ma-
chine learning methods is being very helpful.

The NR-IQA methods are based on the extraction of certain features
of the image that will be employed to train some type of machine learning
model. This training is what allows them to determine the quality of an image
without the need to have information from the original image. However, as
with any learning method, there is an intrinsic dependence on the database
used for training. This dependence will be transferred to the application of
the methods to real images, with which we will have to be careful to use them
successfully.

In the following we review the most popular methods in this family.

2.3.1 BRISQUE

Mittal et al. [7] proposed Blind/Referenceless Image Spatial Quality Evalua-
tor (BRISQUE), as an image quality metric in spatial domain. This algorithm
is based on the idea that the normalized luminance coefficients of natural
images obey generalized Gauss probability distribution and the image distor-
tion will change the statistical characteristics of the normalized coefficient.
By measuring the change in statistical characteristics, distortion types can
be predicted and the visual quality of the image can be assessed.

This algorithm uses locally normalized luminance [9], i.e., Mean Sub-
tracted Contrast Normalized (MSCN) image (I ′) which is calculated as shown
below

I ′ =
I(i, j)− µ(i, j)

σ(i, j) + 1
(2.10)

µ(i, j) =

K∑
k=−K

L∑
l=−L

wk,lI(i+ k, j + l) (2.11)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l[I(i+ k, j + l)− µ(i, j)]2 (2.12)
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where I is the intensity of the image, i ∈ 1, 2, . . . ,M , j ∈ 1, 2, . . . , N
being M × N the image size and w = wk,l|k = −K, . . . ,K, l = −L, . . . , L a
two-dimensional circularly symmetric Gaussian weighting function.

The idea on which BRISQUE is based is that MSCN have statistical
properties which vary in the presence of distortions so that, if these changes
are quantified, the quality of an image can be measured. In this way, with
this MSCN image, a total of 16 different features in two different scales for
each image are computed.

Finally, using Support Vector Machine (SVM) regressor (SVR) [24] for
mapping from feature space to quality scores, BRISQUE is able to predict
the final score. We have used BRISQUE to assess our proposal in Chapter 6
in this dissertation.

2.3.2 GSVD

Gradient Singular Value Decomposition (GSVD) is based on quality spatial
features extracted from the product of energies of local dominant orientation,
from the assumption that noise and blur affect the dominant direction of the
local energy of the images.

For this, they start from a MSCN image [9], as BRISQUE. Once I ′ is
computed, the image is partitioned in patches of different size. The horizontal
and vertical components of the gradient are extracted for each patch, in this
way, the main structure information of the image is obtained.

Using the Singular Value Decomposition of the gradient (SVD) computes
the dominant orientation on each patch. Finally some features are extracted
from the eigenvalue product of the SVD, such as the maximum of the his-
togram.

Then, as in BRISQUE, a training database and the under assessment
image, the final score than quantifies the image quality is computed as the
Euclidean distance between the features of the image to be assessed and the
training database.

2.3.3 BLIINDS

Blind Image Integrity Notator using DCT Statistics(BLIINDS) [29] is based
on a function of the representation of the features selected to represent the
visual quality of the image being assessed. In particular, a feature representing
image contrast is evaluated. In addition, the features we extract are also
expected to take into account the sharpness of the image (without explicitly
measuring blur distortion or any other specific distortion).

This method studies how the statistics of spatial frequency domain char-
acteristics vary in natural and in distorted images. To do so, the discrete
cosine transform (DCT) is employed to extract a number of features and
model their statistics.
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It seeks to observe how certain perceptually relevant statistical features of
images change as an image becomes distorted, and then use these features to
train a statistical model that is developed to make non-reference predictions
about the quality of the assessed image.

A total of 4 features are computed in two different scales. Finally a prob-
abilistic model is trained on a subset of the LIVE image database [26] to
determine the parameters of the probabilistic model by distribution fitting.
Two probabilistic models are chosen: the multivariate Gaussian distribution
and the multivariate Laplacian distribution.

2.3.4 Other methods

In addition to the methods detailed above, among the most prominent NR-
IQA techniques we can find: BIQI [27], a two-step method which involves
distortion classification and a distortion quality assessment; DIVINE [28] as
a extension of BIQI in which a series of features in the wavelet domain are
used to predict the assessment; and BLINDS-II [29], that extracts features
in the block-based DCT domain.
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3 Graph Theory

Graph theory is a tool that allows us to model the relationships between data
elements and it has found wide application in science and engineering. Com-
puter vision and image processing have a long history of using graph models,
but these models have become increasingly dominant in recent literature.
Graphs can be used to model spatial relationships between near and distant
pixels, between image regions, between features, or as models of objects and
parts.

In the next chapter we will see a brief introduction of the image process-
ing techniques based on the most commonly used graph theory. From this
introduction we will build the graph-based model that shall constitute the
key piece of this dissertation.

In order to understand all the details of the model to be presented, as
well as to show the reader all the possibilities offered by graph theory, in this
chapter we will review the main concepts of graph theory most used in the
image processing field, [5] [8] [4].

We will review terms such as weighted graph, base of a large part of the
image processing models based on graphs, neighborhood of a node, which
keeps an immediate analogy with the term neighborhood of a pixel, or con-
nected component, one of the base concepts of the model to be presented. As
we will see in the next chapter, the analysis of the related components of a
graph will help us to distinguish the different areas of an image [7].

Although not all the concepts exposed next have been finally necessary
in the final development of the model, they compose the background that
has allowed to reach it. Knowing the possibilities of the graphs will help us
to better understand the image and transfer the properties of the graphs to
properties of the image.

3.1 Basic Graph Theory

Definition 3.1.1 A graph G is a finite non-empty set V (G) of objects called
nodes (or, equivalently, vertices) and a set L(G) of unordered pairs of distinct
nodes/vertices of G called edge. Each edge e ∈ L(G) has a unordered pair
(vi, vj) of nodes/vertices associated called tail(e) = vi and head(e) = vj.
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They are called the endpoints of e and denoted by endpts(e). If vi = vj, the
link e is called a loop.

From now on throughout the dissertation, we will equivalently use either
node/nodes or vertex/vertices for referring to the elements of V (G).

Fig. 3.1: Example of a graph with 6 nodes and 6 links.

In order to avoid confusion with the image processing terminology, we will
call links to the elements of L(G) instead of edges, as it is common practice.

We consider two functions s : L(G) −→ V (G) and t : L(G) −→ V (G).
Function s is called the source function and t the target function. Given a
link eij = (vi, vj) ∈ L(G), we say that s(eij) = vi is the origin or source of
eij and and t(eij) = vj is the endpoint or target of eij .

Definition 3.1.2 Adjacent nodes are two nodes vi, vj ∈ V (G) that are joined
by a link eij = (vi, vj).

Definition 3.1.3 Adjacent links are two links that have an endpoint in com-
mon.

The links d and i of the graph of the Figure 3.2 are loops.

Definition 3.1.4 An acyclic graph is a graph without cycles.

Definition 3.1.5 If node vi ∈ V (G) is an endpoint of a link eij ∈ L(G),
then vi is said to be incident on eij, and eij is incident on vi.

Definition 3.1.6 The degree of a node vi in a graph G, deg(v), is the number
of proper links incident on vi plus twice the number of self-loops.

Definition 3.1.7 The degree sequence of a graph is a sequence formed by
arranging the node degree in non-decreasing order.

Definition 3.1.8 In a graph, a walk form node v0 to node vn is an alternate
sequence

W =< v0, e1, v1, e2, . . . , vn−1, en, vn >

of nodes and links, such that tail(ei) = vi−1 and head(ei) = vi for i =
1, . . . , n.
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Fig. 3.2: A graph and the corresponding endpts of each link.

It is said that two nodes vi and vj are connected if there is a walk W that
joins them.

Definition 3.1.9 The length of a walk is the number of link-step in the walk
sequence.

Definition 3.1.10 A walk is said to be closed if the starting node is the same
as the ending node, that is v0 = vn. A walk is said to be open otherwise.

Definition 3.1.11 A subwalk of a walk W =< v0, e1, v1, e2, . . . , vn−1, en, vn >
is a sequence of consecutive entries S =< vj , ej+1, vj+1, . . . , ek, vk > such that
0 ≤ j ≤ k ≤ n, that begins and ends at a node. Thus, the subwalk is itself a
walk.

Definition 3.1.12 In a graph, the distance from node s to node t is the
length of a shortest walk form s to t, or ∞ if there is no walk from s to t.

Definition 3.1.13 A trail is a walk with no repeated links.

Definition 3.1.14 A path is a sequence of nodes v0, . . . , vn all different such
that every pair (vi, vi+1) is an link.

In other words, a path is a trail where all nodes are distinct.

Definition 3.1.15 If a walk W = v0, v1, e2, . . . , vl is such that l ≥ 3, v0 = vl
and the nodes vi, 0 < i < l, are distinct from each other and v0, then W is
said to be a cycle.

Definition 3.1.16 If every pair of distinct nodes of a graph without loops
are joined by a link we say that the graph is complete.

Definition 3.1.17 When each link (u, v) has an associated value w(u, v), we
say that the graph is weighted.
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Fig. 3.3: An example of a cycle in a graph.

Fig. 3.4: Example of a weighted graph.

The w(u, v) value is known as the weight of the link (u, v).

Definition 3.1.18 A subgraph of a graph G is a graph H whose nodes and
links are all in G.

Definition 3.1.19 A proper subgraph H of G is a subgraph such that V (H)
is a proper subset of V (G) of E(G) is a proper subset of E(G).

Definition 3.1.20 A subgraph H is said to be a spanning subgraph G if
V (H) = V (G).

Definition 3.1.21 For a given graph G the subgraph induced on a node sub-
set U of V (G), denoted by G[U ], is the sugbraph of G whose node-set is U
and whose link set consist of all links in G that have both endpoints in U .
That is,

V (G[U ]) = U
E(G[U ]) = {e ∈ E(G) : endpts(e) ⊆ U}

Definition 3.1.22 For a given graph G the subgraph induced on a link subset
d of E(G), denoted by G[D], is the sugbraph of G whose link set is D and
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Fig. 3.5: The subgraph induced on {v1, v7, v5, v4}.

whose node set consist of all nodes that are incident with at least one link in
D. That is,

E(G[D]) = D
V (G[D]) = {v ∈ V (G) : v ∈ endpts(e), for some e ∈ D}

Fig. 3.6: The subgraph induced on {d, e, g, i} .

Definition 3.1.23 A subgraph S of G is called a clique if its complete and
maximal respect the links.

In other words, a clique is a subgraph in which each node is connected
to all the other links of the subgraph and there is not another complete
subgraph that contains it strictly. This is tantamount to saying that the
subgraph induced by S is a complete graph.
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Definition 3.1.24 A size of a clique is the number of nodes it contains.

Fig. 3.7: Example of a graph with cliques.

Definition 3.1.25 Any node adjacent to a node is said to be its neighbor.

Definition 3.1.26 The neighborhood of a node v, NG(v), is the subgraph
induced by the node set consisting of v and all its neighbors.

Fig. 3.8: From left to right, an example of graph, the neighborhood of node v1 and
the neighborhood of the node v2.

3.2 Paths, Trees and Connectivity

Connectivity is one of the basic concepts of graph theory and one of the
most relevant concepts in the field of image processing. The study of the
connections between nodes and the characterization of a graph regarding its
connectivity will allow us to study and model the pixels of an image and work
with the tools provided by this theory. The concepts presented below will be
the basis of the processing model presented in this thesis as we will see in the
following chapters.
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Definition 3.2.1 A graph is connected if for every pair vi, vj of distinct
nodes there is a walk from vi to vj.

Definition 3.2.2 A connected component of a graph G is a connected sub-
graph H of G such that there is not a connected subgraph of G that contains
H strictly.

Intuitively, the components of a non-connected graph are the ”whole
pieces” it comprises.

Fig. 3.9: A graph with three components.

Different components of the same graph do not have any common nodes
because of the following theorem.

Theorem 1. If the graph G has a node v that is connected to a node of the
component H of G, then v is also a node of H.

Identify the components of a small graph is trivial. But larger graphs that
are specified by some computer representation require a computer algorithm.

Definition 3.2.3 A tree is a connected acyclic graph.

Definition 3.2.4 Let G be a graph and T a tree which is a subgraph of G.
A frontier link of G is an link which has exactly one endpoint in T .

Definition 3.2.5 A forest is a disjoint union of trees.

Fig. 3.10: A forest with three trees.
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Fig. 3.11: Example of a graph and a spanning tree.

Definition 3.2.6 A spannig tree of a graph is a spanning subgraph that is a
tree.

Proposition 3.2.7 A subgraph H of a connected graph G is a subgraph of
some spanning tree if and only if H is acyclic.

A spanning tree of the graph that minimizes the cost (compared to all
spanning trees of the graph) is called a minimal spanning tree. The different
weights ensure that the minimum spanning tree of a graph is unique. Without
this condition, there may be several different minimum spanning trees. The
problem of finding a minimal spanning tree of a graph appears in many
applications. There are various algorithms for finding minimum spanning
trees, and we present the one proposed by Prim. The principle of Prims
algorithm is to progressively build a tree, finding a minimum spanning tree
without explicitly examining all the spanning trees.

Data: A weighted connected graph G
Result: A minimum spanning tree T
Initialize the Prim tree T as node s;
Initialize the set of frontier links for tree T as empty;
while Prim tree T does not yet span G do

Update the set of frontier links for T ;
Let e be a frontier link for T with the smallest link-weight;
Let v be the non-tree end point for link e;
Add link e and node v to tree T ;

end
Algorithm 1: Prims algorithm minimum spanning tree.

The shortest path between two nodes of a graph consists on the path
with minimum weight, that is, the sum of the weights of the links that make
up the path is minimal. There are many algorithms that solve this problem,
among the best known are the Bellman-Ford algorithm, the Floyd-Warshall
algorithm or the Dijkstra algorithm.
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Fig. 3.12: A weighted graph and its minimum spanning tree.

Dijkstra algorithm allows us to efficiently find the shortest paths from
a node s of a general graph with positive weights to all other nodes. Note
that the only restriction is that the weights of the graph are required to be
nonnegative, condition that in several real-life applications is satisfied. The
strategy of this algorithm is similar to the one used for Prims algorithm,
growing a tree, starting at a node s, by adding, at each iteration, a frontier
link whose non-tree endpoint is as close as possible to s.

Data: A weighted connected graph G whose link-weights are
non-negative; and the initial node s of G

Result: A spanning tree T of G, rooted at node s, whose path
from s to each node v is a shortest path from s to v in
G; and the distance from s to each node.

Initialize the Dijkstra tree T as node s;
Initialize the set of frontier links for tree T as empty;
dist(s) = 0 Write label 0 on node s while Dijkstra tree T not
yet span G do

Update the set of frontier links for T ;
for each frontier link e for T do

Let x be the labeled endpoint of link e.;
Let y be the unlabeled endpoint of link e. ;
Set P (e) = dist(x) + w(e).

end
Let e be a frontier link for T that has the smallest P-value ;
Let x be the labeled endpoint of link e;
Let y be the unlabeled endpoint of link e;
Add link e and node y to tree T ;
dis(y) = P (e);
Write label dist(y) on node t. ;

end
Algorithm 2: Dijkstra algorithm for finding the shortest path.
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3.3 Graph representations

The graphical representation of graphs that we have seen in the different
examples offers us a visual and aesthetic tool to understand and work with
graphs. However it is not a very operative tool when carrying out more com-
plicated processes or working with large graphs.

The matrix representation of a graph is often convenient if one intends to
use a computer to obtain some information or solve a problem concerning the
graph. This kind of representation of a graph is conducive to study properties
of the graph by means of algebraic methods. We can consider several com-
puter representations of graphs. The data structures used to represent the
graphs can have a significant influence on the size of the problems that can
be performed on a computer and the speed with which they can be solved.
That is why it is so important to know the different graph representations.

In addition to the computational advantage, it is possible to derive inci-
dence ratios, circuits and cutting sets using theorems and matrix manipula-
tions. In other words, graph theory once again provides us a powerful tool to
model and understand data, in our case, images.

Below we introduce the most common matrix representations of the
graphs.

Fig. 3.13: A graph and its adjacency matrix.

Definition 3.3.1 The adjacency matrix of a graph G, denoted by AG, is the
matrix whose rows and columns are both indexed by identical orderings of
V (G), such that

AG[vi, vj ] =

{
1 if eij = (vi, vj) ∈ E(G)

0 in other case

A weighted graph may be represented using the weight as the entry.
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Definition 3.3.2 The adjacency matrix of a weighted graph G is given by

AG[vi, vj ] =

{
w(vi, vj) if (vi, vj) ∈ E(G)

∞ otherwise

Fig. 3.14: A weighted graph and its adjacency matrix.

Definition 3.3.3 The incidence matrix of a graph G is the matrix IG whose
rows and columns are indexed by some ordering of V (G) and E(G) respec-
tively, such that

IG[v, e] =


0 if v is not an endpoint of e

1 if v is an endpoint of e

2 if e is a loop at v

Fig. 3.15: A graph and its incidence matrix.
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Proposition 3.3.4 The sum of the entries in any row of an incidence matrix
is the degree of the corresponding node.

Proposition 3.3.5 The sum of the entries in any column of an incidence
matrix is equal to 2.
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Part II

Model based on Graph Theory





4 Model based on Graph Theory for Color
Image processing

After discussing some basic concepts about image processing and graph the-
ory, as well as having reviewed the state of the art of smoothing and sharp-
ening, we provide a brief overview of the use of Graph Theory in image
processing, that will serve as an introduction of a graph-based model of im-
ages.

More precisely, we describe a model for the description of the structure
of an image that is based on graph theory1.

This model permits us to distinguish the different areas of the image with
high precision and to characterize the nature of each pixel in the image. This
characterization turns the model into a powerful tool for different applications
of image processing, not only to segment and distinguish areas of the image,
but also to smooth and enhance the image. This model will be also used in
the following chapters.

In this chapter, we show how this model can be applied in order to to
detect the edges of a color image, by eliminating noise and even enhancing
its borders.

4.1 Modeling color images with Graph Theory:
Introduction

Graph theory offers us a way to represent and understand an image in a very
simple and visual way, as well as it also provides us with a powerful tool for
different image processing tasks. One of these tasks is segmentation, which
consists on partitioning an image into several disjoint subsets such that each
subset corresponds to a meaningful part of the image. This problem is com-
monly modeled in terms of partitioning a graph into several sub-graphs, so
that each of these sub-graphs represents one of these meaningful parts. In
this line, the most commonly used techniques are based on the use of mini-
mal spanning trees and graph cuts, with cost functions or based on Markov

1 Translation and further details of Pérez-Benito, C., Morillas, S., Jordán, C.,
Conejero, J. A. (2018, February). Determinación de componentes conexas en el
análisis de zonas homogéneas y de detalle en imágenes a color. In Modelling in
Science Education and Learning (Vol. 11, No. 1, pp. 5-14). Universitat Politècnica
de València.
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random fields. It is worth to mention that minimum spanning trees have been
also used for smoothing, see [10, 12, 13, 11].

Fig. 4.1: Example of mapping an image onto an 3-connected graph.

There are several ways to model an image using a graph, the most intuitive
and the most used one is to map each pixel of the image into a node of a
graph. In this way, nodes can be connected in different ways, for example with
spatial criteria. Then, we can assign weights to the links that join pairs of
nodes. An intuitive approach is to assign to this weight the difference between
the corresponding pixel intensities of the nodes, which is the one that will
be considered in our work. Nevertheless, weights can also be given by more
complex weight function. Both, the construction of the graph associated with
the image and its subsequent treatment will be what defines the processing
method.

Methods based on minimum spanning trees (mST) let us build a tree
associated with each image, trying to ensure that the edges of the graph
define as best as possible the similarity between the pixels they are joining.
The underlying idea is that in this tree the most similar pixels will be kept
together, so that, when cutting the mST into subtrees, we obtain a segmented
decomposition of the image.

Graph cut methods [2, 3, 4, 5, 6, 7] can also be considered as an alternative
way of converting the image into aff graph. Apart from considering each pixel
as a node, we add two (or more) additional nodes, one for each zone that
we want to distinguish within the image. We connect all the nodes among
them and assign weights to these links in order to keep the similarity of the
pixels. If we consider the additional nodes as sources and sinks, using Ford-
Fulkerson max-flow/min-cut algorithm it will return us a decomposition of
the graph into subgraphs corresponding to the image pixels, providing us
different clusters of the image.
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Fig. 4.2: Segmentation using Graph Cuts.

The performance of the previous approaches depend heavily on the weight
function associated with the links. The better that this function represents
local features, the better that the image processing will be.

4.2 Definition of the model

We describe our proposed model and how it will allows us to characterizes
a color image in a local way. For each pixel of the image, we consider also
all the pixels in its neighborhood. Despite we will also consider the general
case of a neighborhood given by a n × n square centered at each pixel, the
examples will be illustrated for 3× 3 neighborhoods.

For assigning weights to the links, we consider the decomposition of the
image into color channels, giving a description of the color image as a vector
field. In our work we will considered the decomposition into red, green, and
blue channels (RGB). Then, we consider each pixel of the image as a 3 com-
ponent vector, with one component for each channel. We also consider that
the intensity of a pixel in each channel takes a value between 0 and 255.

Given a color image F, represented in the RGB color space, we construct
a graph for each image pixel. For any arbitrary pixel of the image F0 we
considered a window centered on it of size N × N where N = 2n + 1 and
n = 1, 2, . . .. The remaining pixels in the window are denoted by Fi, i =
1, . . . , N2−1. Each pixel Fi will be represented by the 3-tuple (FRi , F

G
i , F

B
i ),

i = 0, . . . , N2 − 1 of its three color components in the RGB space.
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Fig. 4.3: Example of 3 × 3 and 9 × 9 window, its RGB color components and the
notation of each pixel of the window.

We define the local weighted graph GF0 associated to the pixel F0, with
the following set of nodes and links.

V (GF0
) = {Fi, i = 0, . . . , N2 − 1} (4.1)

L(GF0
) = {(Fi,Fj), i 6= j, ||Fi − Fj ||2 < U} (4.2)

That is, there is an edge between the pixels Fi and Fj , i 6= j, if the
euclidean distance between their color vectors in the RGB space is lower
than a certain threshold U . If such a link exists, its weight is

w(Fi,Fj) = ||Fi − Fj ||2, (4.3)

where || · ||2 stands for the Euclidean norm.
The Euclidean distance gives us a measure of similarity between pixels. So

that, the shorter the Euclidean distance between them, the more similar they
are. This model aims to associate each pixel of the image with a graph whose
connections represent the similarities between pixels.Then, if two pixels are
connected in the graph we can assume that they are similar enough.

We must also bear in mind that we will work with noisy images and
Gaussian Noise affects all pixels. This causes many difficulties to differentiate
whether a pixel belongs to a detail zone or, on the contrary, is a noisy pixel. In
general, the presence of noise will cause all Euclidean distances between pixels
to increase and therefore the value of the threshold U should be increased in
order to correctly differentiate homogeneous and detailed areas.
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Experimentally, it is possible to verify that the value of U is key in the
structure of the local graphs since it will allow us to determine the connected
component of the graph GF0

that contains the vertex F0. This connected
component is fundamental when it comes to classify image pixels as belonging
to homogeneous regions or regions of details.

The fact that the connected component that contains the central pixel
has many nodes and/or many edges will be a sign that the pixels are very
similar between them and therefore we will be in a homogeneous area. On
the other hand, if this component has few edges or few nodes, we will know
that the similarity between pixels is not so clear and we could be in an area
of detail. The structure that will allow us to know in which zone we are is
determined by the aforementioned threshold U .

The setting of the parameter U will depend on the specific application
of the model. As we have mentioned before, there are different features of
graphs that we can use to characterize the pixels of the image. The choice of
one or the other feature, and therefore the optimization of the threshold, will
depend on the pursued objective. In the next chapter we will see two possible
applications of the model presented, in each of them we will use two different
features:

– The cardinal of the link set of the connected component that contains the
central pixel, card(L(HF0

)).
– The cardinal of the node set of the connected component that contains the

central pixel, card(V (HF0)).

The first one is related to the structure of the graph and gives us a wider
range of values to classify the pixel. Given an N ×N window, card(L(HF0

))
will take values from 0 to

(
N
2

)
, which represents that the pixel belongs to an

area of very much detail, for the case of 0, or to a very homogeneous one, for
the case of

(
N
2

)
. This feature will be very useful when the main objective is

to segment an image as accurately as possible.
The second feature offers us a smaller range of values, from 0 to N , and

therefore a less detailed classification. However, this limited range makes the
selection of the threshold very restrictive and a good choice of threshold
will divide the graph into different connected components, each of of them
identifying an area of the image. This approach will let us classify pixels
between those that belong to the same area as the central pixel, and those
that belong to other areas.

We are going to illustrate it with an example: in the Figure 4.4 there is a
3×3 window corresponding to a detail area of the Pills image, specifically the
neighborhood of the pixel (26, 42). Visually it is clear that we are in a edge
or detail zone of the image, and we can easily appreciate two areas. In order
to simplify the subsequent examples we will enumerate the pixels/nodes of
the window/network as described in the figure.
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Fig. 4.4: From left to right: Example of a detail region of the image, zoom in 3× 3
window and finally the numeration of the pixels of the window.

In figure 4.5 we can see how the graph associated with this window is
transformed, reducing their number of edges and increasing the number of
connected components, as we increase the threshold.

In Figure 4.6 we can see how the number of edges in the connected com-
ponent of the central pixel increases as the threshold increases. When the
threshold is greater than the maximum of the weight links, the graph will
not change anymore, and all nodes will remain connected among them.

On the other hand, in the graphic of Figure 4.7 we see that the cardinal
of the nodes of the central pixel connected component takes the values 5, 7,
8 and 9 as the threshold increases.

It is clear that the use of link set cardinal provides a wider tange of values
and facilitates subsequent pixel classifications. However, as we will see below,
for certain applications the precision will not be as important as the existence
of a characterization of the different connected components in the graph.
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(a) U = 20 (b) U = 25 (c) U = 30

(d) U = 35 (e) U = 40 (f) U = 45

(g) U = 50 (h) U = 55 (i) U = 60

Fig. 4.5: Evolution of the graph as a function of the threshold.
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Fig. 4.6: Value card(L(HF0)) in function of the threshold.

Fig. 4.7: Value card(V (HF0)) in function of the threshold.

4.3 A edge detector based on the graph-model

Our model has a number of applications within image processing field. Prob-
ably, the more direct application is border detection. We have seen that the
feature that characterizes whether a pixel F0 belongs to a flat or edge/detail
region with the greatest precision is the cardinal of the links set of its con-
nected component, card(L(HF0

)). A higher cardinality indicates great sim-
ilarity between all the pixels in the window and, therefore, pixel F0 will be
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associated to a flat region of the image. On the other hand, lower values
indicates indicate less similarity between pixels and it will associate F0 to
textures, edges, or details.

In Figure 4.8 we show an example of a homogeneous region of an image
(left). We choose a 3 × 3 window around the central pixel (middle) and we
compute the associated subgraph GF0 for a threshold U = 38 (right), as we
have already indicated. Here, we can see that all nodes belong to a unique
connected component. This structure of the graph indicates us that we are
in a flat zone of the image, without details or edges. On the other hand,
in Figure 4.9 we show an example of an edge region, where we can see two
different connected components of the subgraph GF0 , one for each perfectly
differentiated zone in the 3× 3 image window.

Fig. 4.8: Example of homogeneous region, from left to right: flat region of the image,
a zoom of a 3× 3 window to be processed, and finally the graph associated to this
window for U = 38.

Fig. 4.9: Example of detail region, from left to right: detail region of the image, a
zoom in the 3× 3 window to be processed and finally, the graph associated to this
window for U = 38.

Now, if we create a gray-scale image of the given one, where the intensity
of each pixel is proportional to the cardinal of the set of links of the corre-
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Fig. 4.10: Evolution of the border detection in function of the threshold of the
Lenna image, from U = 10 to U = 60

Fig. 4.11: Evolution of the border detection in function of the threshold, from U = 5
to U = 70

sponding local graph, we will be able to see in a visual way the details of
the image. Figures 4.10 and 4.11 shows this gray-scale images and the effect
of the threshold in the classification. n both figures, we can see that for low
thresholds more pixels are classified as borders and for high thresholds, on
the contrary, we have more homogeneous zones.

Although the threshold value may vary according to specific objectives
in each case, we will try to select an optimal parameter, understanding by
optimal the one that best distinguishes the different areas of the image. For
this, we take as golden standard the output of the fuzzy edge detector [16]
and select the threshold that provides the grayscale image more similar to
our golden standard. To measure this similarity, we will use the well-known
mutual information that will allow us to compare our grayscale image with
the output of the fuzzy edge detector, see Figure 4.12.

To illustrate the robustness of our model, we show its operation on several
images with different levels of noise intensities. The results are shown in
Figure 4.13. We see that, as the noise increases, the model gives us a less
marked grayscale image. This is due to the need of increasing the threshold
when the noise intensity is very high in order to avoid confusing noise with
detail areas. Even so, we can see that edges and homogeneous areas of the
image are distinguished with enough clarity, even when high noise appears.
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Fig. 4.12: Schedule of the setting threshold parameter.

Note also that the optimal threshold value for classification not only de-
pends on the level of noise that it presents, but also on the image character-
istics. A very homogeneous image with few edges will not require the same
threshold as an image with a lot of detail. In the same way, we will not need
a very high threshold when the different zones of the image present lot of
contrast. However, but we will need to raise this parameter when we find
more blurred edges or if they present less contrast. An example of this can
be seen in the image of Parrots1 in Figure 4.13, where we can clearly see
in the grayscale image the most contrasted edges, as for example those that
delimit black and white areas. However, in areas with less contrasted edges,
such as the area of the green head of the parrot and the green background,
the differences are not so clear.



(a) Baboon (b) Baboon σ = 10 (c) Grayscale image

(d) Baboon2 (e) Baboon2 σ = 20 (f) Grayscale image

(g) Parrots1 (h) Parrots1 σ = 30 (i) Grayscale image

Fig. 4.13: Gray scale images, where the intensity of each pixel is proportional to
card(L(HF0)), for images with different levels of noise (σ = 10, 20 y 30).
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Part III

Applications of the model





Introduction

This part, consisting of two chapters, presents some applications to image
processing tasks of the graph-based model explained in Part II. These chap-
ters correspond to the following journal papers that, despite having some
overlapping with other parts of this dissertation, are included entirely for the
better understanding of the reader:

– Pérez-Benito, C., Morillas, S., Jordán, C., Conejero, J. A. (2018). A model
based on local graphs for colour images and its application for Gaussian
noise smoothing. Journal of Computational and Applied Mathematics, 330,
955-964.

– Pérez-Benito, C., Jordán, C., Conejero, J. A., Morillas, S. (2018). Graph-
based methods for simultaneous smoothing and sharpening of color images.
Journal of Computational and Applied Mathematics, 350, 380-395.

The first chapter presents a characterization of the pixels of the image
based on the features of the local graphs that are constructed for each pixel.
This characterization allows to distinguish homogeneous and detailed areas
even in the presence of noise which has led to the design of a hybrid fil-
ter of color images. The presented filter removes the Gaussian noise from
color images preserving edges and details of the image and thus avoiding the
introduction of blur.

The second chapter shows more advanced application of the model, made
possible through taking advantage of the features of the local graph defined
for each pixel. The image processing task addressed concerns the simultaneous
smoothing and sharpening of color images. These two operations have an
opposite nature which makes its simultaneous addressing challenging. The
method proposed in this chapter achieves to remove the Gaussian noise of
an image while improving the sharpness of details and edges. Not only the
proposed method achieves the goal but also does it in a single step, avoiding
the drawbacks of two-step solutions.
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Abstract

In this paper, a new model for processing colour images is presented. A
graph is built for each image pixel taking into account some constraints on
links. Each pixel is characterized depending on the features of its related
graph, which allows to process it appropriately. As an example, we provide a
characterization of each pixel based on the link cardinality of its connected
component. This feature enables us to properly distinguish flat image regions
in relation to edge and detail regions. According to this, we have designed
a hybrid filter for colour image smoothing. It combines a filter able to prop-
erly process flat image regions with another one that is more appropriate for
details and texture. Experimental results show that our model performs ap-
propriately. We also see that our proposed filter is competitive with respect
to state-of-the-art methods. It is close closer to the corresponding optimal
switching filter respect to other analogous hybrid method.

5.1 Introduction

Image denoising is a topic that has been extensively studied in computer
vision and digital image processing fields. The denoising (or filtering) step is
essential for almost every computer vision system because noise can signifi-
cantly affect the visual quality of images, as well as the performance of most
image processing tasks. Also, in the last years the use of colour images has
gained much attention within the computer vision field and therefore colour
image denoising has become an important research topic [1].

Among the different sources of noise in digital imaging, probably the most
common one is the so-called thermal noise, which is due to CCD sensor mal-
function. This kind of noise is modeled as an additive white Gaussian noise.
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So that, the presence of thermal (or Gaussian) noise can be simulated by
adding random values from a zero-mean Gaussian distribution to the origi-
nal values of each image channel independently. The standard deviation σ of
the Gaussian distribution characterizes the noise intensity [2]. Many methods
for reducing image Gaussian noise in colour images have been proposed in
the literature. We will review some of them.

The earliest approaches for Gaussian noise smoothing were based on lin-
ear approaches. These methods, such as the Arithmetic Mean Filter (AMF),
see for instance [2], are able to suppress noise because they take advantage
of its zero-mean property. However, they tend to blur edges and texture sig-
nificantly. This fact motivated the development of many nonlinear methods
that try to overcome these drawbacks by detecting image edges and details.
This is intended for smoothing there less than in the rest of the image.

Within nonlinear methods, many of them use averaging to take advantage
of the zero-mean property of the noise. This class includes the well-known
Bilateral Filter (BF) [6] and its variants [7]-[11]. Besides, in [12, 13] the au-
thors use an averaging operation which is restricted to the (fuzzy) peer group
members for each image pixel. Other methods are developed using fuzzy logic
or soft switching methods, such as those in [14]-[23]. Several methods based
on different optimizations of weighted averaging are proposed in [24]-[27].
Another important family of filters are partition based filters [27]-[29], that
classify each pixel to be processed into several signal activity categories which,
in turn, are associated to appropriate processing methods. Other filters follow
a regularization approach [30]-[40] based on the minimization of appropriate
energy functions by means of Partial Differential Equations (PDEs). Wavelet
theory has also been used to design image filtering methods [41]-[50]. The
combination of collaborative non-local means and wavelet filtering is pro-
posed in [51, 52], and a method using the wavelet transformation and data
regularization is proposed in [53]. Other recent methods make use of a com-
bination of image analysis techniques for image segmentation followed by an
appropriate smoothing of each image region [54]-[56]. More recently, meth-
ods using graph modeling colour images have provided competitive filtering
solutions as [57, 58].

Despite that many works have consider this question up to date, the
problem remains open. Recently, very few works have been published (just 2
articles [58, 40] in prestigious journals in four years, 2013-2016). This is due,
in part, to new image models being needed to develop new filtering solutions.
Therefore, in this paper we propose a new model for colour images which
is based on graph theory and vector processing. In the model, a local graph
is built for each image pixel taking into account some constraints on links.
Each pixel is characterized depending on the features of its related graph
so that it can be properly processed. As an application of the model, we
provide a characterization of each pixel based on the link cardinality of its
connected component. This feature is able to properly distinguish flat image



5.2 Image model based on local graphs 81

regions respect to edge and detail regions. According to this characterization,
we have designed a hybrid filter for colour image smoothing that combines
a filter able to properly process flat image regions with another one more
appropriate for details and texture. This approach follows the methodology in
[23, 57]. The experimental results show that the proposed filter is competitive
with analogous filters and closer to the corresponding optimal soft-switching
filter.

The paper is organized as follows: Section 6.2 described the local graph
model for colour images, Section 5.3 details the pixel characterization, and
Section 6.3 introduces the hybrid filter. Finally, experimental results and
conclusions are given in Sections 6.4 and 5.5.1, respectively.

5.2 Image model based on local graphs

A graph G is defined as a finite nonempty set V (G) of objects called vertices
and a set L(G) of unordered pairs of distinct vertices of G which, in order
to avoid confusion with the image processing terminology, we will call links
instead of edges, as it is common practice. Two vertices u and v joined by a
link (u, v) are said to be adjacent. When each link (u, v) has an associated
value w(u, v), we say that the graph is weighted.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and L(H) ⊆ L(G).
A walk W from a node v0 to a node vl in a graph is a sequence of vertices
say v0, v1, . . . , vl where (vi−1, vi) ∈ L(G), 0 < i ≤ l .

A graph is connected if for every pair vi, vj of distinct vertices there is a
walk from vi to vj .

A connected component of a nondirected graph G is a connected subgraph
H of G such that there is not a connected subgraph of G that contains H
strictly.

For a colour image F, which is represented in the RGB colour space,
we build a graph-based model for each pixel in F. In doing so, we take the
neighbours around each image pixel F0 in a window centered on it of size
N ×N where N = 2n+ 1 and n = 1, 2, . . .. The rest of the neighbour pixels
in the window are denoted as Fi, i = 1, . . . , N2−1. The central pixel F0 is in
turn defined by the tern (FR0 , F

G
0 , F

B
0 ) of its three RGB colour components.

In the following we will use n = 1 as it is common practice in colour image
filtering.

Given a pixel F0, we define a local weighted graph GF0
where V (GF0

) =
{Fi, i = 0, . . . , N2 − 1} and L(GF0

) = {(Fi,Fj), i 6= j, ||Fi − Fj ||2 < U}.
That is, a link exists between pixel Fi and Fj , i 6= j, if the euclidean distance
between their colour vectors is lower than a certain threshold U . If such a
link exists, its weight is w(Fi,Fj) = ||Fi − Fj ||2, where || · || stands for the
Euclidean norm, see the example in Figure 1.

The value of U critically influences the structure of each local graph since
it determines the connected component of GF0

that contains the node F0,
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Fig. 5.1: Example of 3 window in an image (left) and its associated graph with all
the links (center), and with the links lower than the threshold U (right) that is GF0 .

noted as HF0
. This connected component will play an important role in order

to classify the different regions of the image into flat or detail/texture regions.
We will discuss extensively the adjustment of the threshold U in the following
section. Our global image model is the composition of all local graphs that
characterize each image pixel.

5.3 A characterization of colour image pixels for
smoothing

As an example of application of our model we aim to develop a procedure for
smoothing colour images. To this end, it is critical to distinguish flat image
regions in front of edges and details. This is because optimal smoothing needs
to process differently flat regions, where smoothing can be more aggressive,
from texture and detail regions, where smoothing should be done with special
care. So, we need to devise a characterization based on our model to make
such a classification.

We have seen that the feature that better characterizes whether a pixel
F0 belongs to a flat or edge/detail region is the cardinal of the links set of
its connected component, card(L(HF0)). Lower cardinality is associated to
texture, edges and details whereas higher values correspond to flat image
regions, as we can see if we compare the images in Figure 5.3, that were
created assigning grayscale image levels proportional to card(L(HF0

)), with
the corresponding original images in Figure 5.3, that were created assigning
grayscale image levels proportional to card(L(HF0

)), with the corresponding
original images shown in Figure 5.2.

However, for this characterization to be as accurate as possible it is critical
to properly set the value of U for each input image. We have applied a method
for this as follows.
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(a) Lenna (b) Parrots (c) Statue (d) Peppers

Fig. 5.2: Set of training images

Fig. 5.3: Grayscale image where intensity of each pixel is proportional to
card(L(HF0)).

Fig. 5.4: Scheme of the method for set the optimal threshold U

5.3.1 Adjustment of U parameter

The role of U is to avoid that very different pixels in the image were connected.
In the context of image smoothing, we have to find a setting that is robust
to the presence of noise or at least we need to adapt it to the density of
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Fig. 5.5: NMI as a function of U for Parrots with different levels of noise

contaminating noise. Given that the feature that better characterizes whether
a pixel F0 belongs to a flat or detail region is card(L(HF0)), we focus the
adjustment of U to maximize the correlation between card(L(HF0)) and the
presence of edges/texture.

Therefore, we first have taken the four training colour images in Figure
5.2 and for each of them we have obtained a groundtruth image of edges
by means of the fuzzy edge detection method [64] as it is implemented in
MATLAB c© R2016b.

Secondly, for each noise free training image we have computed the value
of U that maximizes the images mutual information (NMI) [62, 63] between
the grayscale image obtained with the card(L(HF0

)) of each pixel and the
corresponding groundtruth image of the first step. Then, using each optimal
value of U and the values card(L(HF0)) we obtain four edge/texture reference
images that we use in the next step.

Thirdly, since our method will process noisy images with unknown noise
variance, it would be desirable to have robustness against noise or at
least adaptiveness to noise. So that, we have contaminated the training
colour images with different densities of additive white Gaussian noise
(σ ∈ {10, 20, 30}) according to the model in [2]. For each of the 12 noisy im-
ages we obtain the value of U that maximizes the NMI between the grayscale
image obtained with the card(L(HF0

)) of each pixel and the corresponding
edge/texture reference image of the second step. It can be seen in Figure
5.5 that the higher the image noise is, the greater the optimal threshold is,
too. Finally, we have conducted a linear regression analysis over all optimal
U to be able to appropriately set U for any input image. We have also used
an estimation of the standard deviation of the noise, σ̂, in the input image,
which is obtained using the method in [61] (we average the estimate in each
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Fig. 5.6: Regression bewteen the estimation of the noise and the optimal threshold

of the RGB channels). The regression, that can be seen graphically in Figure
5.6, concludes that we can safely set U as

U = 4.59σ̂ + 11.16, (5.1)

given that correlation coefficient r equals 0.9187. The scheme in Figure
5.4 summarizes the procedure applied.

5.4 Proposed hybrid smoothing method

Recent smoothing methods commonly present the drawback that, as the
higher the noise in the image is, the more confused is the noise in homo-
geneous regions with the image structure that should be preserved. So that,
it cannot be properly reduced.

There are some filtering structures more suitable for smoothing, and oth-
ers more powerful for preserving borders. We take, for instance, one filter
of each type: AMF to process image flat regions and the nonlinear method
called Fuzzy Noise Reduction Method (FNRM) [15] FNRM for the rest of the
image. We propose to combine them following the reasoning in [57].

The switching between AMF and FNRM is performed in a soft fashion so
that when the class of the image pixel is not clearly determined the results
of both methods are combined. The proposed filter follows the idea behind
the Soft-Switching Graph Denoising (SSGD) method in [57], but using our
new model and characterization based on card(L(HF0)). In addition, notice
that although we have used the AMF and FNRM, any other methods can be
used within the same structure and analogous improvements are expected.

The combination of the aforementioned methods is performed as follows:
Let us consider a pixel F0. Since L(HF0

) is a connected component of GF0
,
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the parameter card(L(HF0)) takes discrete values, between 0 and
(
N2

2

)
. In

our case N = 3 and

card(L(HF0
)) ∈ {0, . . . , 36}, (5.2)

We classify the image pixels of any image into one of these 37 different
categories, one for each admissible value of card(L(HF0)). In this way, we
build β = {β1, . . . , β37}, with 0 ≤ βi ≤ 1. If card(L(HF0)) = i − 1, we
make F0 in correspondence with βi. These values β′is shall determine the
soft-switching between AMF and FNRM to process each image pixel.

This new method will be called a Soft-Switching Local Graph Denoising
method (SSLGD). For each image pixel F0, if card(L(HF0)) = i, the output
of SSLGD is

SSLGDout(F0) = (1− βi)AMFout(F0) + βiFNRMout(F0) (5.3)

where βi ∈ [0, 1].
Notice that when βi = 1 the SSLGD method behaves as the FNRM ,

and when βi = 0 it coincides with the AMF . Thus, the value of βi should
depend on the nature of the pixel under process. Therefore, if the pixel F0

belongs to an homogeneous region of the image βi should be large (close to
1), otherwise, βi should be lower (close to 0).

In this method it is critical to find a setting for the values βi in equation
(5.3) in order to obtain the better combination between AMF and FNRM. To
do it we use the ascending gradient method for maximizing the Peak Signal
to Noise Ratio (PSNR) [2] between the filter output and the original noise
free image. In this optimization we have used as initial vector B0 = (β0

i ),
where β0

i = 1, and a step δ = 0.05. We find the optimization for the 4
training images each of them contaminated with 3 different densities of noise
(σ ∈ {10, 20, 30}) which provides 12 optimized sets of βi’s.

Now, by using these sets we compute three default sets of β = (βi)1≤i≤37’s,
one for low noise (β10, σ = 10), another for medium noise (β20, σ = 20)
and a third one for high noise (β30, σ = 30). To process an input image
where noise is unknown we use the noise estimation σ̂ and we choose among
β10, β20, β30 the set with superscript closest to σ̂, that we call it now β̄. The
choice of β̄ for each image is determined by the noise estimation. In this
sense, if the estimation of noise level is the same for two images, they will
be processed analogously, but two images having the same real noise level
may have different estimation of noise. As we have said before, the noise is
unknown in general, thus using a noise estimator provide us a more realistic
and robust approach when processing any image.

Although it is true that using more images makes better the learning, the
inclusion of more images will adjust the values in a unnecessary precision
since the step of β in the optimization is δ= 0.05 and then the differences in
the ranges in which we move are imperceptible. For this reason and taking



5.5 Experimental results 87

into account that our goal is to find an appropriate general robust setting
that could be used to process any unknown image, we consider four images,
with different structures that provide us enough information for set the beta
values in a general way.

Notice that we have chosen a window size 3 × 3. According to previous
works [65, 66], using N > 3 results in higher noise smoothing capability
but much more blurred images that make increasing the window not a good
choice in general. If the interest is to increase noise reduction capability, it
has been reported to be a much better choice to apply several iterations of
the same method, that is, filtering the output image again and again until
convergence is reached.

5.5 Experimental results

In this section, we compare the performance of the SSLGD filter respect to
other filters with the aim of validating the parameter settings. In Figure 6.10,
we show the validation set of images. We have added Gaussian noise with
standard deviations σ ∈ {10, 20, 30} to them, obtaining an experimental set
of 12 images.

(a) Micro (b) Pills (c) Window (d) img58

Fig. 5.7: Images used for the validation.

We process all 12 images with SSLGD using two different parameter set-
ting for U and β: one with the optimal settings for the particular image
and noise Uop, βop which we denote by SSLGDUop,βop , and another with the
estimated Ue and β̄ which we denote by SSLGDUe,β̄ . We compare the per-
formance for the experimental set of images with respect to the methods
AMF, FNRM, and SSGD, which is a method following the same structure of
SSLGD. In addition, we compare with the optimal hybrid method associated
to SSLGD and SSGD that we call Optimal Soft Switching (OSS), and which
is defined as the best combination between AMF and FNRM, defined for
each pixel F0 by:

OSSout(F0) = αiAMFout(F0)+(1−αi)FNRMout(F0) αi ∈ [0, 1] (5.4)
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where αi = argmin[0,1]||F0 − OSSout(F0)||, i ∈ {0, 1, . . . , 36} can be easily
derived analytically if the original image F is known.

As figures of merit for objective evaluation we have used the PSNR, SSIM
[60], and the Fuzzy Colour Structural Similarity [59], denoted by FCSS. These
latter two methods have proved to correlate with human perception better
than PSNR.

σ 10 20 30
PSNR FCSS SSIM PSNR FCSS SSIM PSNR FCSS SSIM

Micro

AMF 28.430 0.890 0.775 27.147 0.889 0.694 25.580 0.884 0.606
FNRM 31.334 0.943 0.866 27.964 0.925 0.741 25.216 0.902 0.617
SSGD 31.34 0.943 0.867 28.06 0.925 0.746 25.63 0.907 0.634

SSLGDβop,Uop 31.34 0.943 0.867 28.36 0.920 0.752 26.05 0.908 0.648
SSLGDβ̄,Ue 31.154 0.936 0.865 28.333 0.918 0.754 26.097 0.907 0.65

OSS 32.218 0.95 0.891 29.788 0.942 0.810 27.638 0.933 0.728

Pills

AMF 25.913 0.888 0.885 25.211 0.882 0.856 24.139 0.874 0.809
FNRM 32.417 0.944 0.962 28.143 0.919 0.901 25.138 0.891 0.825
SSGD 32.62 0.945 0.966 28.89 0.925 0.921 26.59 0.907 0.862

SSLGDβop,Uop 32.69 0.946 0.967 28.97 0.926 0.923 26.28 0.909 0.864
SSLGDβ̄,Ue 32.26 0.943 0.965 28.70 0.923 0.919 26.14 0.907 0.860

OSS 34.433 0.961 0.978 30.81 0.947 0.948 28.07 0.933 0.903

Window

AMF 22.36 0.832 0.715 22.00 0.834 0.689 21.42 0.833 0.650
FNRM 31.13 0.930 0.946 27.46 0.912 0.878 24.59 0.889 0.802
SSGD 31.14 0.929 0.94 27.4 0.91 0.873 24.65 0.892 0.8

SSLGDβop,Uop 31.21 0.931 0.951 27.67 0.916 0.889 24.96 0.897 0.815
SSLGDβ̄,Ue 30.34 0.92 0.95 26.93 0.906 0.879 24.47 0.888 0.792

OSS 32.87 0.946 0.965 29.59 0.936 0.925 27.05 0.925 0.7877

img58

AMF 27.78 0.912 0.831 26.58 0.908 0.746 25.29 0.898 0.659
FNRM 33.06 0.946 0.904 28.32 0.911 0.750 25.28 0.869 0.622
SSGD 33.24 0.958 0.905 29.38 0.931 0.77 26.69 0.911 0.67

SSLGDβop,Uop 33.45 0.947 0.9156 29.42 0.93 0.804 26.77 0.911 0.70
SSLGDβ̄,Ue 33.04 0.946 0.899 28.68 0.922 0.74 25.90 0.889 0.599

OSS 35.27 0.962 0.946 31.16 0.949 0.861 28.56 0.936 0.780

Table 5.1: Results in terms of PSNR, SSIM and FCSS of the validation set.

σ 10 20 30
PSNR SSIM PSNR SSIM PSNR SSIM

Window
SSGD 36.78 0.989 33.55 0.972 31.67 0.949

SSLGDβ̄,Ue 37.66 0.989 33.64 0.971 31.11 0.951

img58
SSGD 39.51 0.977 36.88 0.965 33.96 0.945

SSLGDβ̄,Ue 40.33 0.982 35.04 0.941 31.74 0.900

Micro
SSGD 40.60 0.982 35.18 0.945 33.62 0.915

SSLGDβ̄,Ue 41.86 0.983 37.83 0.967 35.42 0.948

Pills
SSGD 38.44 0.991 35.27 0.983 33.02 0.974

SSLGDβ̄,Ue 39.83 0.992 36.44 0.985 34.123 0.978

Table 5.2: Results in terms of PSNR and SSIM comparing with OSS
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From the results in Table 5.1 we can see that both in terms of PSNR, FCSS
and SSIM the performance of SSLGDβ̄,Ue is very close to SSLGDβop,Uop .
This means that the methods for parameter setting are performing appro-
priately. Also, we see that the performance of our method is competitive
with SSGD and both SSGD and SSLGD are a little bit below OSS, which
implies that the proposed method is competitive with respect to state-of-the-
art methods.

To see which of SSGD or SSLGD is closer to the optimal OSS we have
also computed the PSNR and SSIM for SSGD and SSLGD with respect to
OSS. These results are shown in Table 5.5, where we can see that SSLGD
is close to the optimal OSS, which is a strong point for our method and the
model behind it. We consider that this comparation is more important than
the one in Table 5.1, since the original image is irretrievable and OSS image
is the maximum to what can be reached with this kind of hybrid filter.

In Figure 5.8 we can see the qualitative results of AMF, FNRM, SSGD
and the new proposed filter SSLGD. They have been applied separately to
the set of validation images with standard deviation σ = 20.

As it can be seen, on the one hand AMF smooths the noise fine but it
blurs the image. On the other hand, we can see how in all the cases FNRM
does not blur the image. However, it does not remove so much noise. SSGD
improves this drawback combining both methods and achieving a good de-
noising without blurring the image. Finally, our propose method follows the
line of SSGD, being very close to it. The differences between both methods
can be appreciated in detail regions such as the blinds of Window, or the
edges of the capsules of Pills.

Although the result of SSLGD is close to SSGD, it can be seen more
globally as the result of SSLGD is closer to OSS image than the SSGD, what
is the most important for us, being especially appreciated in the homogeneous
regions.

5.5.1 Computational Complexity

We will analyze the computational complexity of the proposed method and
SSGD for each pixel of the image. The number of operations for each pixel
depends on the window NxN considered, a total of N2 pixels in the window.
Since both methods depend on two basic generic filters, one for homoge-
neous regions and other for borders regions, we will focus on the complex-
ity of SSLGD and SSGD. We denote the computational complexity of the
homogeneous-regions and detail-regions generic filters as H(N2) and E(N2),
respectively.

In the proposed method, for each pixel we have to compute the dis-
tance between the central pixel and its neighbours, that is to say, a total

of N2(N2−1)
2 distances, which means 9N2(N2−1)

2 distances in total. Once the
distances are calculated, we compare all of them with the fixed threshold in
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order to compute card(L(HF0)). This would amount to a total of N2(N2−1)
2

comparisons. In this way, we have a total of 10N2(N2−1)
2 comparisons. The

value of card(L(HF0
)) allows us to choose the corresponding β for combine

appropriately the based filters. Thus SSLGD needs a number of operations
of order O(N2) +H(N2) + E(N2).

SSGD filter, as SSLGD do, needs to compute the distances between

the central pixel and its neighbours ( 9N2(N2−1)
2 operations). Kruskal algo-

rithm, whose computational cost is O
(
N2 log(N2)

)
, is applied twice in or-

der to compute the maximum and minimum spanning tree by considering
the mentioned distance. Minimum spanning tree’s weight allows to compute
the coefficient that will be used in the linear combination of the generic
filters. The computational complexity of this method is therefore of order
O(N2 log(N2)) +H(N2) + E(N2).

The proposed SSLGD method is computationally more efficient than
SSGD. SSLGD has the advantage of having fixed parameters beta for process-
ing the pixels. In contrast, SSGD performs all the soft switching mechanism
completely for every pixel, which increases the number of operations and the
computational time.

Conclusions

In this paper, we have presented a new model based on local graphs for
low level image processing. In the model, each pixel is associated to a graph
whose features allow to characterize it. We show an application of the model
for Gaussian noise smoothing which is based on using each pixel graph to
decide whether a pixel belongs to a flat region or not. The model allows to
distinguish appropriately flat regions and border regions in an image even in
the presence of noise. Related to this classification a soft-switching filter is
built by using a filter with good smooth capability in flat regions and another
to smooth border regions. Also, parameters of the method have been analyzed
and it has been proposed how to set them automatically for any input image,
so that the filter is very easy to use.

Performance of the new proposed method, SSLGD, in terms of PSNR,
SSIM and FCSS shows that it is competitive with respect to state-of-the-art
methods, decreasing the computational complexity thanks to the global char-
acterization of the parameters, which allows us to reduce the computational
cost. Also, objective comparison with respect to the corresponding optimal
hybrid filter claims that our method is closer to the optimal than another
soft-switching filter with the same structure.



Fig. 5.8: Filtered image: first row the original images blurred with Gaussian noise
with σ = 20, second row the filtered images using AMF, third row using FNRM,
the fourth row with SSGD,the fifth row with SSGLD and finally OSS images.
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Abstract

In this work we introduce an image characterization of pixels based on lo-
cal graphs that allows to distinguish different local regions around a pixel.
This separation also permits us to develop a method for determining the
role of each pixel in a neighborhood of any other, either for smoothing or
for sharpening. Two methods for simultaneously conducting both processes
are provided. Our solution overcome the drawbacks of the classic two steps
sequential smoothing and sharpening process: enhancing details while reduc-
ing noise and not losing critical information. The parameters of the methods
are adjusted in two different ways: through observers visual quality optimiza-
tion and with an objective optimization criterion. The results show that our
methods outperform other recent state-of-the-art ones.

6.1 Introduction

The use of digital images has grown over the last few years and is now present
in almost every field, from domestic digital cameras to medical applications
or artificial intelligence. This has led to a great growth of techniques devoted
to improve the quality of images.

There are many factors that can affect the image quality, causing loss
of information, poor visual quality, and difficulties in image processing. The
presence of noise and the consequences of poor acquisition conditions, that
make the image blurry or not well defined in the edges and/or textures, are
the two most common causes of image degradation.

Noise may be introduced in digital images through different sources, but
the most common one is a CCD sensor malfunction which introduces the
so-called thermal noise. This kind of noise is modeled as an additive white
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Gaussian noise, that can be simulated by adding random values from a zero-
mean Gaussian distribution to the original values of each image channel in-
dependently. The noise intensity is characterized by the standard deviation
of the Gaussian distribution.

Image smoothing, used to remove this kind of noise, has been an inten-
sively studied problem in the image processing field for more than 25 years.
The smoothing step is essential for almost every computer vision system since
the noise can affect the performance of most image processing tasks. First
approaches to solve this problem followed a linear approach such as the clas-
sical arithmetic mean filter or Gaussian filter [24]. However, these methods
produced excessive smoothing near edges and details. This led to the develop-
ment of several nonlinear approaches that later constituted not only methods
for image smoothing but complex paradigms for image modelling with appli-
cations to many image processing tasks. The most popular frameworks are
anisotropic diffusion [19], bilateral filtering [29], mean shifting [4], scale-space
techniques [10], and total variation [27]. For more than 20 years, different fil-
tering solutions have been proposed within these frameworks including a vast
number of publications, which have been shown to share some commonalities
[1]. More recently, the extension to color image smoothing has been studied
[11] and new methods based on Fourier transform, wavelet theory [12, 34]
nonlocal means [2], collaborative filtering [5], fuzzy logic [15, 23], spatial-tonal
averages [30] and graph models [16] have been used in different smoothing
solutions.

On the other hand, image sharpening is used to improve the definition
of edges, texture, and details, which are of paramount importance for many
image analysis applications such as segmentation or object detection. The
unsharping mask method (UM) [25] and contrast enhancement techniques,
such as the histogram equalization [9, 22, 31], or linear contrast stretching
[32], are some recent and popular methods used for sharpening.

In practical applications, given that there are no pristine images, it is com-
mon to assume that they need some degree of both smoothing and sharpening
to be appropriate for further processing. However, there is an interdependency
of both operations since they both deal with high spatial frequencies in the
images: smoothing can reduce or even remove small details or textures that
a subsequent sharpening cannot recover properly; but also a sharpening can
detect image noise as textures to be highlighted.

An intuitive approach to this problem is the use of methods that join two
independent processing steps: a first step of smoothing to remove the noise,
and a second step of sharpening to enhance the edges, or, in reverse order,
a first step of sharpening and a second one of smoothing. Both approaches
are easy ways of trying to achieve the goal, given the broad state-of-the-art
in both smoothing and sharpening.

However, these approaches can also lead to some of the aforementioned
problems. On the one hand, if we first apply a smoothing technique there
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is a risk of losing detail or edge information that will not be recovered in
the sharpening step. On the other hand, if we apply a sharpening method
on a noisy image, we amplify the noise making more difficult the smoothing
task, which may lead to over smooth the image or failing in reducing part of
the noise. As a result, the application of these two complex processing steps
could be ineffective for further applications and even inefficient.

A more efficient solution to address this problem is to consider a simul-
taneous perspective being able of sharpening image details while removing
noise. This kind of solution can only be approached through nonlinear pro-
cesses which are needed to locally adapt the operations to be done and apply
appropriate intensities of smoothing and sharpening. However, this is not a
simple task given the opposite nature of these two operations. Some authors
have tried to address this problem, in general for gray-scale images, by using
different approaches as those reviewed in [18]: forward-and-backward diffusion
[26], block-matching and 3D filtering [5], different reformulations of the clas-
sical bilateral filter such as the adaptive bilateral filter [33], the guided image
filtering [20, 21], the adaptive unsharping mask [8] or difference of Gaussians
[7]. Even though the state-of-the-art concerning smoothing or sharpening is
very extensive, currently there are not many methods able to achieve both
goals simultaneously. For a recent review of these methods we refer the reader
to [18].

In this paper, we study how two nonlinear methods based on the compu-
tation of local graphs at each pixel provide enough information to simultane-
ously carry out the nonlinear process of smoothing the noise, while sharpening
the edges and details. For every pixel, we consider a 3x3 window and we de-
termine a weighted graph with the similarities between each pair of pixels
in that window. Then, for the central pixel, the subgraph with the closer
pixels to it is determined. In both methods, this subgraph will be used for
smoothing and the subgraph given by the rest of the nodes will be used for
sharpening. The nonlinear splitting of the local graph in these two subgraphs
was already considered for defining a smoothing soft switching filter in [16].
Using an analogous model, we extend here this operation to simultaneous
smoothing and sharpening of color images.

The paper is organized as follows: in Section 6.2 we describe our local
graph based model for processing color images. In Section 6.3 two pro-
posed techniques based on these local graphs for simultaneous sharpening
and smoothing are explained. The quantitative and qualitative experimental
results and conclusions are given in Section 6.4. Finally, in Section 5.5.1 we
outline the conclusions.



102 6 Contribution (ii)

6.2 Local graphs for color image modeling

In this section we briefly introduce the local graph-based model that allows us
to characterize a pixel in a color image and the notation to be used throughout
the paper.

A graph G is defined as a finite nonempty set V (G) of objects, called
vertices, and a set L(G) of unordered pairs of distinct vertices of G which, in
order to avoid confusion with the image processing terminology, we will call
them links instead of edges, as it is common practice. Two vertices u and
v joined by a link (u, v) are said to be adjacent. When each link (u, v) has
an associated value w(u, v), we say that the graph is weighted. A graph H is
called a subgraph of G if V (H) ⊆ V (G) and L(H) ⊆ L(G). A walk W from
a node v0 to a node vl in a graph is a sequence of vertices say v0, v1, . . . , vl
where (vi−1, vi) ∈ L(G), 0 < i ≤ l . A graph is connected if for every pair
vi, vj of distinct vertices there is a walk from vi to vj . A connected component
of a nondirected graph G is a connected subgraph H of G such that there is
no other connected subgraph of G that contains H, with its nodes and links,
strictly.

Given a color image F, we consider the neighbors around each image pixel
F0 in a 3×3 supporting window centered on it. The rest of the neighbor pixels
in the window are denoted as Fi, i = 1, . . . , 8, following a clockwise order.
Each image pixel is represented by its three color components in the RGB
space Fi = (FRi , F

G
i , F

B
i ).

We define a local weighted graph GF0
= (V (GF0

), L(GF0
)) associated to

any arbitrary pixel F0 and its associated 3 × 3 window, which makes our
model to be inherently nonlinear in the spatial domain of the image. Each
one of these graphs is defined as

V (GF0
) := {Fi, i = 0, . . . , 8}

L(GF0) := {(Fi,Fj), i 6= j, ||Fi − Fj ||2 < U}

with || · || standing for the Euclidean norm and U being a threshold, that is a
key parameter of the model which, in turn, makes the model being nonlinear
in the image range domain, as well. Last, if (Fi,Fj) ∈ L(GF0

), its weight will
be denoted by w(Fi,Fj) := ||Fi − Fj ||2.

The parameter U is crucial in the definition of the graph GF0 . Depending
on its value, GF0

can have one or more connected components that, even
in the presence of noise, will allow us to properly classify each pixel F0 as
belonging to a flat or to a detail region [16]. When the values of U are low
enough, the pixels in the connected component of the central pixel will permit
us to smooth this central pixel acting as a low-pass filter. Links that are
related to high values of the threshold U correspond to detail regions. In
addition, the structure of the links and nodes remaining in each connected
component of GF0

permits to locally characterize the image, and then to use
this information as an efficient edge detector [16, 17].
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Fig. 6.1: Example of a homogeneous region, from left to right: flat region of the
image, a zoom of a 3× 3 window to be processed, and finally the graph associated
to this window for U = 38.

Fig. 6.2: Example of detail region, from left to right: detail region of the image, a
zoom in the 3× 3 window to be processed and finally, the graph associated to this
window for U = 38.

In Figure 6.1 we show an example of a homogeneous region of an image
(left). We choose a 3 × 3 window around the central pixel (middle) and we
compute the associated subgraph GF0 for a threshold U = 38, as we have
already indicated (right). Here, we can see that all nodes belong to a unique
connected component. This structure of the local graph indicates that the
central pixel belongs to a flat zone of the image, without details or edges.
On the other hand, in Figure 6.2, we show an example of a pixel in an edge
region, where we can see two different connected components of the subgraph
GF0 , one for each zone perfectly differentiated in the 3× 3 image window.

The parameter U has been estimated through a linear regression analysis
over all optimal U obtained for the images in a training dataset, see [16]. For
those images, we also used an estimation of the standard deviation of the
noise, σ̂ , that was obtained by using the method in [6]. The regression con-
cluded that we can safely set U = 4.59σ̂+ 11.16. For more details about this
model, we refer the reader to [16], where it can be found further information
regarding the choice of this parameter U , and how the cardinal of the sets
of vertices and edges of the connected component of the central pixel help
us to characterize to which type of region the central pixel belongs. We will
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see in the following section how these characterizations allow us to design a
simultaneous smoothing and sharpening operation throughout the image.

6.3 Proposed methods for simultaneous smoothing and
sharpening

The most basic spatial filters able to perform either smoothing or sharpening
are linear kernel-based filters. There, each pixel is modified according to a lin-
ear combination of the pixels in its neighbourhood. If the coefficients of the
convolution kernel are positive and their sum is 1, then the kernel represents
a smoothing or low-pass filtering. It would smooth the homogeneous-like re-
gions, as well as reduce sharp transitions in intensities. Also, it would reduce
any high frequency white noise. However, if the coefficients of the convolu-
tion kernel are all negative, except the one corresponding to the pixel under
process, and their sum is 0, then the kernel represents a sharpening filter that
would highlight the local intensity contrast and, thus, it would sharpen edges
and details.

Therefore, from the linear kernel point of view, the nature of these two
operations is opposed. In addition, both methods apply the same linear com-
bination all along the image, which determines the intensity of the smoothing
or sharpening performed. Here, it relays the main inspiration of our proposals.

In the rest of the section, we explain how we use GF0
to create nonlinear

kernels able to simultaneously smooth and sharpen the image. Our methods
are based on kernel type operations but the image processing is considered
in a nonlinear way. That is, we do not keep constant the coefficients of the
linear combination to be used for all image pixels. Indeed, we can not only
switch from smoothing to sharpening kernels in different image regions, but
we could also use positive and negative coefficients in the same kernel so that
some pixels are used for smoothing and others for sharpening. So that, we
are able to conduct both operations simultaneously. The key point behind
this approach is to be able to determine at each image location which pixels,
if any, should be used for smoothing and, consequently, for reducing noise,
and which pixels, if any, should be used for sharpening. This information will
be extracted from the local graph model built for each image pixel, which is,
in turn, the key component of the method.

In Figure 6.3 we depict the points in the RGB space corresponding to the
3× 3 windows appearing in Figures 6.1 and 6.2. On the one hand, in Figure
6.3 (left) all the points are grouped in a narrow region of the space, which
correlates with the structure of the graph of Figure 6.1, where all nodes belong
to a unique connected component. On the other hand, in Figure 6.3 (right)
we can see two different groups of points in the color space corresponding
to the connected components of the graph of Figure 6.2: one group with the
points representing pixels similar to the central one, and another group with
the three pixels that do not share that similarity with the central pixel.
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Fig. 6.3: On the left, the nine points in the RGB space corresponding to the 3× 3
windows of Figure 6.1. On the right, the corresponding points obtained from Figure
6.2. The points in the connected component of the central pixel of each window are
colored in green and denoted by (CC) and the others are colored in white and
denoted by (NCC).

Fig. 6.4: Example in the Red-Green plane of the intuitive idea of the proposed
technique

In our first method, for every pixel F0 we consider the pixels in the con-
nected component of that pixel F0 in the graph GF0

, denoted by CCF0
, for

smoothing, and the pixels in the subgraph of the other connected compo-
nents, for sharpening. In Figure 6.4 we show this by using only two color
channels: green and red. In this example we can achieve smoothing by re-
placing the value of the central pixel by a linear combination of the pixels of
its connected component. Later, the result of the smoothing can be shifted
into the color space in the direction of the arrow in order to increase its
difference in relation to the pixels of the other connected component of this



106 6 Contribution (ii)

local graph. The distance shifted can be used for determining the amount of
sharpening achieved in the process.

We present a detailed description of our first proposed method, that we
call as Graph Method for Simultaneous Smoothing and Sharpening (GMS3).
For each pixel F0 in the image, we build the local graph GF0 , and determine
the pixels in the connected component of the pixel F0, V (CCF0). Then, we
can first make the smoothing operation by computing a smoothed version of
the central pixel, FS0 , as

FS0 =

∑
i∈V (CCF0

)

e−
‖Fi−F0‖2

2α2 Fi∑
i∈V (CCF0

)

e−
‖Fi−F0‖2

2α2

(6.1)

where α > 0 is a parameter that controls the smoothing effect. Here, we
have assigned a weight to each pixel according to its distance to F0, giving
greater weights to the nearest pixels to it, and thus achieving a nonlinear
kernel-based smoothing adapted to the local information around the pixel.

Second, the sharpening operation, also nonlinear kernel-based, is made
with the pixels outside of the connected component of F0, if there exists. In

this case, to perform the sharpening we compute the value FGMS3

0 as

FGMS3

0 := FS0 − λv being v =

∑
i 6∈V (CCF0

)

(
Fi − FS0

)
9− card(V (CCF0))

, (6.2)

where λ ∈ [0, 1] is a parameter for controlling the sharpening effect. In
this last operation, we compute the mean vector of the differences between
the central pixel and their dissimilar pixels. This is intended for increasing
locally the contrast, which is expected to sharpen the border/detail features
and to improve image quality. In fact, the use of the mean could also palliate
the effect of noise in the pixels different to the central pixel. If for some

channel of FGMS3

0 the value lays outside the range of [0, 255], we set it to the
corresponding extreme value, 0 or 255.

Finally, we also consider of particular interest to propose as an alternative,
a slight modification of the aforementioned method that consists on consid-
ering the normalized vector in equation (6.2). In this way, we would only
consider the vector direction and, thus, the sharpening will be independent
of the initial edge contrast. In other words, we would enhance all the edges
equally, instead of enhancing edges proportionally to their initial contrast.
We name this variation as the Normalized Graph-Method for Simultaneous
Smoothing and Sharpening (NGMS3) and its output will be obtained as
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FNGMS3

0 = FS0 − λ
v

‖ v ‖2
. (6.3)

with v defined as in (6.2). Here, the values of λ can be taken greater than 1.
In Figure 6.5 we show an example of the separate smoothing and sharp-

ening performance of the GMS3 and NGMS3 methods. To illustrate them,
in the first column we have chosen a noisy image and we have filtered it with
both methods with λ = 0, that is to say, without sharpening. We can appreci-
ate the smoothing and noise reduction while maintaining edges and details of
the image. In the next two columns, we have again the original image, with-
out noise, and the output of both methods under different parameters. Here
we can appreciate the opposite effect, the edges of the image are sharpened,
keeping the homogeneous zones.

Fig. 6.5: Performance of Smoothing and Sharpening of GMS3 and NGMS3 meth-
ods. First column: original noised image with σ = 10 and outputs by GMS3 and
NGMS3 using α = 5 and α = 10, resp. Second column: original image free of noise
and outputs by GMS3 using λ = 0.5 and λ = 0.8. Finally, third column: original
image free of noise and outputs from NGMS3 using λ = 15 and λ = 25.
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For a better understanding of how the proposed filters work and their
smoothing and sharpening capabilities, the intensity values before and after
the filtering of one of the image rows are shown in Figure 6.6.

In the first column, the three RGB channels of the noisy image of Figure
6.5 are shown (orange lines) along with the smoothed version (blue lines).
Here we can see how noisy areas are smoothed (left part of the graph) and
the border and detail areas are kept intact (right part of the graph).

In the second column, the sharpening results for all three channels are
shown. Here, we can compare the intensity values of the noise-free image (or-
ange line) with the sharpening version of the same image (blue line). In these
graphs we can see how homogeneous zones are preserved, while differences
increase in the border areas. These correspond to more intensified peaks in
the graphs.

(a) R-channel smoothed version (b) R-channel sharpened version

(c) G-channel smoothed version (d) G-channel sharpened version

(e) B-channel smoothed version (f) B-channel sharpened version

Fig. 6.6: 1D-representation of each of the RGB channels of one of the rows of the
noisy image in Figure 6.5 (orange line) versus its filtered version (blue line).
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6.4 Experimental results

In this section we aim to assessing the performance of the GMS3 and
NGMS3 methods using 8-bit per channel RGB images under different pa-
rameter settings, and also from different points of view.

As a first approach to analyze the proposed methods performance, we
show in Figures 6.7 and 6.8 some examples of how do they work with different
choices of the parameters α and λ, and the effect when increasing their values.

(a) (b) (c) (d)

Fig. 6.7: Examples of application of GMS3 method. From left to right: (a) original
noisy image with σ = 5, (b) processed image with α = 3, λ = 0.2, (c) processed
image with α = 5, λ = 0.2, and (d) processed image with α = 5, λ = 0.8.

Figure 6.7(a) is an image with Gaussian noise (σ = 5) and Figure 6.7(b)
is the processed image by GMS3 with low parameters for both smoothing
and sharpening (α = 3 and λ = 0.2). Figure 6.7(c) displays the result if we
raise the value of α, keeping the value of λ fixed (α = 5 and λ = 0.2), and
thus achieving greater smoothness. Finally, in Figure 6.7(d) we can see the
result of also increasing the parameter λ, thereby enhancing details and edges
of the image without intensifying the noise (α = 5 and λ = 0.8).

(a) (b) (c) (d)

Fig. 6.8: Examples of application of NGMS3: From left to right: (a) original noisy
image with σ = 5, (b) processed image with α = 3, λ = 5, (c) processed image with
α = 5, λ = 5, and (d) processed image with α = 5, λ = 30.
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A similar scheme as in Figure 6.7 is presented for the the NGMS3 method
in Figure 6.8. As we pointed out in Section 6.3, we can appreciate the dif-
ferences in sharpening between the two methods by focusing our attention
on Figures 6.7(d) and 6.8(d). We can see how GMS3 intensifies edges with
higher contrast, while NGMS3 gives us a more homogeneous sharpening.

We will see how the GMS3 and NGMS3 methods can be used to:

1. improve the performance of an edge detector over the output image,
2. process the image for optimizing the visual quality determined by a set

of observers, and

Finally, we will compare the proposed technique with the principal state-
of-the-art methods. We will see a visual comparison of all of them and addi-
tionally, in order to obtain a more objective comparison we will optimize the
parameters of each of the methods in terms of an objective quality measure.

6.4.1 Improvement of the performance of an edge detector

The objective of sharpening is not always just an improvement of the vi-
sual appearance of the image but also an improvement of the performance
of subsequent image processing techniques. We illustrate in Figure 6.9 the
improvement that the GMS3 and NGMS3 methods can provide for borders
and details detection. To this end, we have applied the Canny edge detector
to the noisy original image of Parrots with σ = 5, see Figure 6.7(a), and
to the corresponding processed images by GMS3 and NGMS3, shown in
Figures 6.7(d) and 6.8(d).

Figures 6.9(b) and 6.9(c) show the borders obtained by Canny edge de-
tector after applying GSM3 and NGMS3, respectively. In both cases we
can appreciate how the edges near the pick and the texture closer to the
eye are better recovered, specially for GSM3. Note that the improved best
edge definition provided by this last method is due to the less homogeneous
sharpening, that we pointed out in the previous section. This example also
illustrates that although higher levels of sharpening may reduce the visual
quality of the image, they may allow a better subsequent process of the image.

6.4.2 Optimizing the visual quality by a set of observers

We are going to show the preferred adjustment of the parameters of GSM3

and NGMS3 in terms of observers who evaluated the quality of the processed
image. To this end, we have considered the set of images shown in Figure
6.10 to which we have added white Gaussian noise with standard deviations
σ ∈ {2.5, 5, 10}. These levels of noise have been chosen taking into account
that σ = 2.5 (1%) is a noise level near the perceptual threshold, σ = 10 (4%)
is a noise clearly annoying, and σ = 5 (2%) is an intermediate value between
both of them.
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(a) (b) (c)

Fig. 6.9: Example of Canny edge detector applied to (a) the original noisy Parrot
image with σ = 5, and applied to the sharpened-smoothed results obtained by the
(b) GSM3 and (c) NGSM3 methods.

(a) Pills (b) Peppers (c) Lenna (d) Parrots

Fig. 6.10: Set of images considered for the observers optimization process.

A set of 6 observers was selected to adjust the model parameters. All
observers visualized the set of images, randomly ordered, under the same
conditions: in a dark room, with the same screen, at a distance of about 50cm,
and after five minutes of visual adaptation. For each image, each observer
has chosen the pair of parameters (α, λ) that yields the best quality image
according to their opinion. In Table 6.1, we show the characteristic percentiles
of the ordered observations of the parameters α and λ chosen by the observers.
Then, we considered the median value of each parameter as an optimum for
using it for further analysis.
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αobservers λobservers
P5 0.4 0.05
P25 2.25 0.1

GMS3 P50 4.43 0.16
P75 6.1 0.175
P95 6.8 0.5

αobservers λobservers
P5 2 0.1
P25 2 0.1

NGMS3 P50 8.67 4.54
P75 11.25 8.5
P95 18 18.1

Table 6.1: Adjustment of parameters α and λ by observers for percentiles 5, 25, 50,
75, and 95.

In Figure 6.16, we can see an example of the performance of the GSM3

and NGMS3 methods using these parameters over Pills image with a Gaus-
sian noise of standard deviation σ = 10. The results obtained by both meth-
ods are similar, with a slight decrease in smoothness being observed in the
case of GMS3. Once again, we appreciate that a more uniform enhancement
is offered by the NGMS3 method, as we formerly discussed in Section 6.3.

6.4.3 Comparison with the state-of-the-art techniques

We are going to compare the results of the proposed method with the results
obtained from some state-of-the-art methods of simultaneous smoothing and
sharpening in terms of an objective quality measure. The methods considered
for the comparison will be:

1. the forward-and-backward diffusion method (FAB) [26],
2. the fuzzy networks based technique (Fuzzy) [28],
3. the collaborative filtering based method (BM3D) [5] and
4. the Laplacian matrices based method (Laplacian) [7].

Except for the last one, these methods are designed for gray-scale images.
Therefore we have applied each one of these methods to each individual color
channel of the images.

Fuzzy and BM3D methods are controlled by a unique parameter. The
results depending on the evolution of their parameters can be appreciated in
Figures 6.11 and 6.12.

Fig. 6.11: Results of filtering the Lenna image with noise level equal to 5 with the
Fuzzy technique progressively increasing the smoothing-sharpening parameter from
30 to 5 in steps of 5.
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Fig. 6.12: Results of filtering the Lenna image with noise level equal to 5 with
BM3D progressively increasing the sharpening parameter from 0.8 to 1.3 in steps
of 0.1.

On the other hand, we represent the performance of the multi-parametric
(GMS3, Laplacian and FAB) methods respectively for both smoothing and
sharpening. We show in Figures 6.13, 6.14 and 6.15 the smoothing feed rate
from lowest to highest (horizontally) and how sharpening evolves, from lowest
to highest (vertically), according to the parameters variation in each one of
these methods.

From a qualitative point of view, we can appreciate the great capacity of
smoothing and sharpening presented by BM3D. It can also be noticed how
an increase of the enhancement is tied to an increase of the image contrast. In
contrast, FAB, Laplacian and GMS3 methods remove the image noise in an
adaptive way: by trying to maintain edges while presenting good sharpening
results, and by increasing the image sharpness without changing the image
contrast. On the one hand, Laplacian method offers good results, but with a
lower sharpening potential than GMS3. We also can see the high sharpening
potential of the FAB method, however, a lot of edge information is lost and
not recovered with the sharpening part, in contrast with the performance
of GMS3. Less noise smoothing will be required in order that FAB would
provide a final image of good quality.

Now, let us analyze the parameters adjustment from a quantitative point
of view. Additionally, we will also compare the results, visually and quan-
titatively, with other techniques within the state-of-the-art. As figure of
merit, we must use a non-reference quality measure given that no ideal
output exists when sharpening is performed. So as to, we have chosen
the well-known non-reference image quality assessment BRISQUE technique
(Blind/Referenceless Image Spatial Quality Evaluator) [13, 14].

First, the optimal parameters α and λ of GMS3 and NGMS3 have been
obtained by minimizing the sum of the squares of the BRISQUE score for the
same set of 12 images used in the previous section for observers optimization,
see Figure 6.10, using the Interior Point Algorithm [3]. These parameters are
optimal ones for the whole image set, that is, independently of the image
characteristics and noise, see Table 6.4.3.
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Fig. 6.13: Results of filtering the Lenna image with noise level equal to 5 with
GMS3 progressively increasing the smoothing and sharpening parameteres.

αBRSIQUE λBRISQUE
GMS3 7 0.275
NGMS3 5.5 3.5

Table 6.2: Optimal parameters for GMS3 and NGMS3 in terms of BRISQUE.

Results from observers criterion and the ones obtained from the BRISQUE
score, are slightly similar. However, in the case of the GMS3, observers
smoothed and sharpened less than what BRISQUE score suggests. We also
found the opposite effect with NGMS3. In Figure 6.16 we can visually com-
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Fig. 6.14: Results of filtering the Lenna image with noise level equal to 5 with
Laplacian progressively increasing the smoothing and sharpening parameteres.

pare the effects produced by both methods with the different optimal param-
eters obtained by each procedure.

Focusing our attention on Figure 6.16(c), corresponding to observers, and
on Figure 6.16(e), corresponding to BRISQUE, we can see the greater sharp-
ening given by the parameter fixed through BRISQUE. This effect cannot be
appreciated so clearly with NGMS3, as it can be seen in Figures 6.16(d) and
6.16(f), where only slight perceptual differences can be found.

In Figure 6.17, we can compare the performance of the methods looking
at a sample row of one image. There, each one of the RGB channels is repre-
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Fig. 6.15: Results of filtering the Lenna image with noise level equal to 5 with FAB
progressively increasing the smoothing and sharpening parameteres.

sented for two images, the original noisy one, Figure 6.16(d) and its filtered
version with NGMS3, Figure 6.16(e).

In these graphics we can see that high fluctuation areas due to the noise
(orange line) are softened in the filtered version of the image (blue line).
This can be easily appreciated in the last part of the graphs. Additionally,
we also note that the areas of peaks, associated with edges of the image, are
intensified. For example, between pixels 30 and 35 the presence of a border
or of a detail can be clearly observed, and how it has been intensified in the
filtered version.
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(a) Noisy-free image (b) GMS3
observers (c) NGMS3

observers

(d) Noisy image (e) GMS3
BRISQUE (f) NGMS3

BRISQUE

Fig. 6.16: Examples of filtering with GSM3 and NGSM3 using the parameters set
by observers (b) & (c) and with the optimal parameters fixed by using BRISQUE
score (e) & (f).

Finally, we are going to compare the results of GMS3 and NGMS3 with
the parameters obtained through the BRISQUE fitting, respect to the re-
sults given by the other methods. The optimal parameters for running these
methods have been obtained by minimizing the BRISQUE score, too, except
for the FAB method, due to convergence problems. In this last case, the
parameters have been set through observers optimal adjustment.

Table 6.3 summarizes the results of all these approaches in terms of the
BRISQUE score. We remind that the lower the BRISQUE score is, the higher
the image quality is. The GMS3 presents similar results to NGMS3 in terms
of BRISQUE score. In addition, both GMS3 and NGMS3 outperforms in
general the FAB and Fuzzy methods, and they are competitive respect to the
BM3D method. We show in Figure 6.19 the output of all these methods for
visual comparison. We can see that the sharpening level achieved by GMS3

is the highest one. FAB output still shows a little of noise and the Fuzzy
output looks quite blurred. Despite of BM3D offers very satisfactory results,
the quality of the image details and borders of NGMS3 and GMS3 outputs
look better. We would like to point out that BM3D is a non-local method
and therefore it deals with a greater amount of image information for the
image processing.
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(a) Red Channel (b) Green Channel

(c) Blue Channel

Fig. 6.17: 1D-representation of each of the RGB channels of the original noisy image
6.16(d) (orange line) versus its filtered version 6.16(e) (blue line)

σ = 2.5 σ = 5 σ = 10
Lenna Pills Peppers Parrot Lenna Pills Peppers Parrot Lenna Pills Peppers Parrot

GMS3 2.64 21.57 12.40 6.03 2.50 24.09 10.37 4.02 3.99 17.37 12.96 2.75
NGMS3 5.73 19.76 13.10 5.68 5.53 21.12 11.89 3.85 6.90 18.20 15.61 2.51

Fuzzy 18.94 20.41 21.50 4.25 14.38 21.18 19.33 3.58 4.20 24.76 25.80 13.15
FAB 8.09 24.86 27.11 11.69 9.71 32.44 28.06 18.78 38.57 39.81 59.34 59.71

BM3D 1.42 16.32 20.33 8.27 3.03 18.05 15.69 0.23 6.37 16.75 11.38 1.77
Laplacian 11.68 14.76 13.18 1.68 8.74 16.18 9.39 3.34 0.16 14.41 11.38 2.07

Table 6.3: Results in terms of BRISQUE score of our set of images.

Conclusions

In this work we have studied how pixels characterization based on local graphs
can be used to perform a simultaneous smoothing and sharpening of color
images, a topic little studied in the literature by now. The methods proposed
in this work, GMS3 and NGMS3 are inspired on linear kernel methods,
but carrying out the processing in a nonlinear way. Such processing not only
changes at different image regions, but also, within each local region. This
holds because, at every pixel, we use some pixels in the neighborhood for
smoothing and some others for sharpening. Their choice depends on the in-
formation obtained from the local graph analysis of the pixels of the image.
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(a) Lenna (b) Pills

(c) Peppers (d) Parrot

Fig. 6.18: Charts illustrating the behaviour ofGMS3,NGMS3, Fuzzy, FAB, BM3D,
and Laplacian methods, shown in Table 6.3.

We have studied in detail the performance of our proposed methods,
GMS3 and NGMS3, for different parameter adjustments, either by observers
evaluation as well as by optimizing a given non-reference image quality mea-
sure, the BRISQUE score. We have also compared the outputs with the
ones obtained from other state-of-the-art methods. The results show that
our methods are competitive with them, both in terms of objective assess-
ment, as well as of visual evaluation. Through all these analysis we have seen
that the GMS3 and NGMS3 methods are highly versatile, so that we can
tailor them to specific processing objectives.



(a) GMS3 (b) NGMS3 (c) Fuzzy

(d) FAB (e) BM3D (f) Laplacian

Fig. 6.19: Results of filtering the Lenna image with noise level equal to 5 with the
different methods
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Pižurica, E.E. Kerre, and W. Philips. A new fuzzy motion and detail
adaptive video filter. In Blanc-Talon J., Philips W., Popescu D., Scheun-
ders P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS
2007. Lecture Notes in Computer Science, vo.l 4678. Springer, Berlin,
Heidelberg, 640–651 (2007).



122 References

[13] A. Mittal, A.K. Moorthy, and A.C. Bovik. No-reference image quality
assessment in the spatial domain. IEEE T. Image Process., 21(12):4695–
4708 (2012).

[14] A. Mittal, A.K. Moorthy, and A.C. Bovik. Referenceless image spatial
quality evaluation engine. 45th Asilomar Conference on Signals, Systems
and Computers, 2011.

[15] S. Morillas, S. Schulte, T. Mélange, E. E. Kerre, and V. Gregori. A soft-
switching approach to improve visual quality of colour image smoothing
filters. In Blanc-Talon J., Philips W., Popescu D., Scheunders P. (eds)
Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture
Notes in Computer Science, vol. 4678. Springer, Berlin, Heidelberg, 254–
261 (2007).
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7 Conclusions and Future Work

7.1 Overall conclusions

In this dissertation a novel graph based model for color image processing
has been developed. In the model, each pixel is associated to a graph whose
features allow to characterize it for different purposes.

This model has been studied in depth to extract all the useful information
and turn it into a versatile tool. We have studied the behaviour of the model
in the presence of Gaussian noise of different intensities, the potential charac-
teristics of graphs that help us to describe the image and the key parameter
of the model, the threshold. We have seen that, depending on the objective
or application of the model that we want to carry out, the characteristics of
the graph that we will use, and therefore, how the model is used, changes.
This is evident in the applications that are presented.

With this model we could classify each of the pixels in an image by defin-
ing local graphs, whose features determine the nature of the pixel. This infor-
mation will be used to different tasks, the most immediate, edge detection.
However, as demonstrated in contributions (i) and (ii), this opens the door
to multiple types of image processing issues.

We have introduced an application of the model for Gaussian noise
smoothing which is based on using each pixel graph to decide whether a
pixel belongs to a flat region or not. For this application, the design of the
model has taken into account the need for high precision in the classification
of each pixel. Therefore, we have used the cardinal of the links set of the
local graphs that gives us a wider range of values and so a finer classification
than other features. In this way, the model allows to distinguish appropri-
ately flat regions and edge/detail regions in an image even in the presence
of noise. Related to this classification a soft-switching filter has been built
by using a filter with high smoothing capability in flat regions and a softer
one to smooth edge/detail regions. The parameters of the method have been
analyzed and it has been proposed how to set them automatically for any
input image thus facilitating its use.

Finally, the model has also allowed us to deal with one of the great chal-
lenges within image processing: simultaneous image smoothing and sharp-
ening. These two operations are opposed by definition, which makes their
simultaneous application a topic little studied in the literature so far.
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We have studied how pixels characterization based on local graphs can be
used to perform a simultaneous smoothing and sharpening of color images.
In this case, local graph features used changed with respect to the previous
application, and it was the connected components of the local graphs which
allowed us to use a set of pixels to sharpening and another set to smoothing.

We have studied in detail the performance of the proposed methods,
SSLGD, GMS3 and NGMS3, for different parameter settings. We have
also compared results with those obtained with other state-of-the-art meth-
ods. The results show that our methods are competitive with them, both in
terms of objective (numerical) assessment, as well as of visual evaluation.

7.2 Future work

Some lines that we find interest for future works include the following:

– To study the application of the model in other color spaces more faithful
to human visual perception such as CIELab.

– To adapt the model and the metrics used to represents pixel colour differ-
ences in the images in a way closer to the human visual perception.

– After knowing the limitations of the methods of measurement of quality of
images we believe that the local information provided by the graphs of the
model could serve to design a method of measurement of quality of images
and image similarity. The local graphs associated to each image pixels could
be compared and thus compare two images, providing a new look at image
similarity and quality assessment. Given two images, we could built the
graph-model of each image and study global and local disparities between
the two models that allow us to measure its resemblance.

– To study how to use the model to stand for those characteristics that are
interesting from a visual point of view that in turn we could associate to
a score of visual quality. In this way, we could use the model to design a
non-reference image quality measure.

– To apply the model to other higher level image processing and analysis
tasks such as pattern recognition, 3D imaging, etc.
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