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Abstract 

Beaches are extremely valuable ecological spaces where terrestrial and marine 

environments converge along a fragile transition strip. During the last century, the 

development of tourism has turned these coastal areas into a social and economic 

resource on a global scale. An improvement in our understanding of the physical 

processes that occur in the coastal zone has become increasingly important. To 

approach a coherent planning of coastal management it is necessary to consider 

the dynamism of the various morphological changes that characterize these 

environments. Therefore, measuring coastal evolutionary trends is essential for 

understanding the complexity of the phenomena that occurs on beaches at 

different spatial and temporal scales. Various analyses with an appropriate degree 

of precision enable detailing the types of change, as well as recognizing 

conditioning factors, and evaluating the environmental and socioeconomic 

consequences. 

The land-water boundary varies according to the sea level and the shape of 

a beach profile that is continuously modelled by incident waves. Attempting to 

model the response of a landscape as geomorphologically volatile as beaches 

requires multiple precise measurements to recognize responses to the actions of 

various geomorphic agents. It is therefore essential to have monitoring systems 

capable of systematically recording the shoreline accurately and effectively. New 

methods and tools are required to efficiently capture, characterize, and analyze 

information – and so obtain geomorphologically significant indicators. This is the 

aim of the doctoral thesis, focusing on the development of tools and procedures 

for coastal monitoring using satellite images and terrestrial photographs. 

On the one hand, the equations and implementation process of a versatile 

new photogrammetric methodology called C-Pro (Coastal Projector) are described. 

This system enables images from any video monitoring system to be 

georeferenced: so avoiding the rigid photogrammetric requirements that many of 

these known systems demand. The rigorous process of camera spatial resection is 

achieved by including the geometrical condition of the horizon line in the 

collinearity system, and then projecting the image on a georeferenced plane (RMSE 

estimated at less than 1.54 m for georectified images). The inclusion of these 

equations in the system offers security and a greater margin of action for the 

degrees of freedom of the adjustment and depending on the estimated parameters. 

The accuracy of C-Pro is evaluated on various beaches by comparing the shoreline 

with other lines simultaneously obtained using more precise instruments such as 

GPS-RTK. The average error obtained and its standard deviation is 0.15 ±1.05 m. 



 

 
viii 

Other objectives derive from the photogrammetric work and include 

analyzing new methods and procedural solutions for obtaining beach information 

from terrestrial photos. An approach with C-Pro is presented that converts images 

from recreational video cameras into quantitative coastal data of great utility for 

extracting the hydrodynamic characteristics of the incident waves on a specific 

beach and for morphodynamic studies. A methodological solution that formalizes 

a coastal monitoring project that uses citizen participation is also investigated and 

proposed. Despite the challenges of working with photos acquired with different 

mobile phones, the results obtained faithfully recreate the sedimentary changes on 

the analyzed beaches (RMSE less than 1.4 m in the camera nearfield – and ranging 

between 2.6-3.9 m on coastal stretches spanning up to 1 km). Other image 

processing techniques for obtaining 3D information from the beach intertidal zone 

are also analyzed. 

On the other hand, the evaluation and improvement of various 

methodological procedures that efficiently obtain the shoreline with sub-pixel 

accuracy from medium resolution satellite images are discussed. Overcoming the 

spatial resolution limitation (20-30 m) of the images captured by Landsat (5, 7 and 

8) and Sentinel 2 satellites opens a new scenario by enabling the use of this huge 

database of free images that are available worldwide for multiple studies and at 

different scales (depending on the magnitude of the phenomenon or change 

studied). With regard to coastal monitoring, all the evaluations start by asking 

whether the shoreline deduced from the satellite images on a natural beach is 

coincident with the water line measured in the field or identified in a high 

resolution photograph. It is at this point where synergy with the C-Pro 

photogrammetric tool has enabled a rigorous evaluation of the sub-pixel extraction 

methodology (described in previous works by the same research group in which 

this doctoral thesis has been developed) and the consequent implementation of 

improvements addressing the weaknesses found. 

One of these weaknesses derives from the significant effect that the 

location of the initial approximated shoreline at pixel level has on the algorithm. 

To solve the problem, a new algorithmic solution is presented which, unlike the 

previous solution, seeks the sub-pixel shoreline detection by adjusting a two-

dimensional polynomial function defined on a set of pixels that adapts according 

to the type of radiometric image change. An evaluation of the precision of this new 

methodology shows a clear improvement compared to the original solution. 

Likewise, the use of C-Pro and dozens of video-derived shorelines as precise 

reference data has enabled testing the traditional algorithmic solution by applying 

parameters that modify the size of the analyzed kernel, the polynomial degree of 

the adjustment, or the spectral range of the analyzed image. This has made it 

possible to define an optimal application solution with much more accurate results 



 

 ix 

(3.57 m and 3.01 m for Landsat 8 and Sentinel 2, respectively) than those described 

until now. Once an optimal solution is found, an action protocol is proposed for 

this algorithmic basis − developed within a system called SHOREX (Shoreline 

Extraction) – that automatically extracts shorelines on a massive scale and ensures 

the operability of the developed processes. 

This work brings satellite image processing and photogrammetric 

solutions to scientists, engineers, and coastal managers by providing results that 

demonstrate the usefulness of these viable and low-cost techniques for coastal 

monitoring. Existing and freely accessible public information (satellite images, 

video-derived data, or crowd-sourced photographs) can be converted into high 

quality data for monitoring morphological changes on beaches and thus help 

achieve a sustainable management of coastal resources. 
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Resumen 

Las playas son ambientes ecológicos sumamente valiosos donde a lo largo de una 

frágil franja de transición converge el entorno terrestre y el medio marino. Durante 

el último siglo, el desarrollo de la industria turística ha convertido estos espacios 

costeros en un recurso social y económico prácticamente a escala global. Desde 

entonces y cada vez más, la mejora en la comprensión de los procesos físicos que 

ocurren en la zona costera es un asunto de máxima importancia. Para abordar una 

planificación coherente de la gestión costera se requiere tomar en consideración el 

dinamismo de los diferentes cambios morfológicos que caracterizan estos 

ambientes. Por ello, conocer y cuantificar las tendencias evolutivas costeras es 

esencial para comprender la complejidad de los fenómenos que allí se producen a 

distintas escalas espaciales y temporales. Diversos análisis evolutivos, y con un 

grado apropiado de precisión, permitirán detallar el tipo de cambio, reconocer sus 

factores condicionantes, y evaluar sus consecuencias ambientales y 

socioeconómicas. 

El límite tierra-agua varía en función de la posición del nivel del mar y de 

la forma del perfil de playa que continuamente queda modelado por las olas 

incidentes. Intentar modelizar la respuesta de un paisaje tan voluble 

geomorfológicamente como las playas requiere disponer de múltiples medidas 

registradas con suficiente precisión para poder reconocer su respuesta frente a la 

acción de los distintos agentes geomórficos. Para ello resulta esencial disponer de 

diferentes sistemas de monitorización capaces de registrar de forma sistemática la 

línea de costa con exactitud y efectividad. Se requieren nuevos métodos y 

herramientas informáticas que permitan capturar, caracterizar y analizar 

eficientemente la información con el objeto de obtener indicadores con 

significación geomorfológica de calidad. En esto radica el objetivo de la presente 

tesis doctoral, centrándose en el desarrollo de herramientas y procedimientos 

eficientes para la monitorización costera mediante el uso de imágenes satelitales y 

fotografías terrestres. 

Por un lado, se describen las ecuaciones y el proceso de implementación 

de una nueva metodología fotogramétrica versátil denominada C-Pro (Coastal 

Projector). Con ella se podrán georreferenciar imágenes provenientes de cualquier 

sistema de video monitorización salvando los rígidos requerimientos 

fotogramétricos que muchos de estos conocidos sistemas exigen para funcionar. El 

riguroso proceso de resección espacial de la cámara se logra incluyendo en el 

sistema de colinealidad la condición geométrica de la línea del horizonte, para 

posteriormente realizar la proyección de la imagen sobre un plano 

georreferenciado (RMSE inferior a 1,54 m estimado para las imágenes 
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georectificadas). La inclusión de estas ecuaciones en el sistema ofrece seguridad y 

un margen mayor de actuación referente a los grados de libertad del ajuste y en 

función de los parámetros a estimar. La exactitud de C-Pro se evalúa en diferentes 

playas, comparando la línea de costa obtenida frente a otras líneas medidas 

simultáneamente con instrumental más preciso como el GPS-RTK. El error medio 

obtenido y su desviación típica es de 0,15 ±1,05 m. 

Otros objetivos particulares se derivan del trabajo fotogramétrico, 

analizando nuevos métodos y soluciones procedimentales para obtener 

información de playas a partir de fotos terrestres. Inicialmente se presenta el modo 

de proceder con C-Pro para convertir imágenes de videocámaras recreativas en 

datos costeros cuantitativos de gran utilidad para extraer las características 

hidrodinámicas del oleaje incidente en una playa concreta y hacer frente a estudios 

morfodinámicos. También se investiga y propone una solución metodológica que 

formaliza un proyecto de monitorización costera mediante participación ciudadana. 

Haciendo frente a los desafíos propios de trabajar con fotos adquiridas con 

diferentes teléfonos móviles, los resultados obtenidos fielmente reconstruyen los 

cambios sedimentarios acaecidos en las playas analizadas (RMSE inferior a 1,4 m 

en campo cercano, y oscilando entre 2,6 y 3,9 m en tramos costeros de hasta 1 km 

de longitud). Otras técnicas de procesamiento de imagen son analizadas para 

obtener información 3D de la zona intermareal de la playa. 

Por otro lado, se muestra la evaluación y mejora de diferentes 

procedimientos metodológicos que logran obtener eficientemente la línea de costa 

con precisión sub-píxel, a partir de imágenes de satélite de media resolución. 

Conseguir superar la limitación de la resolución espacial (20-30 m) que presentan 

las imágenes capturadas por los satélites Landsat (5, 7 y 8) y Sentinel 2 abrirá, sin 

lugar a dudas, un nuevo escenario que permitirá utilizar esta ingente base de datos 

de imágenes gratuitas y disponibles a nivel mundial para múltiples estudios y a 

diferentes escalas −según la magnitud del fenómeno o el cambio a analizar. 

Respecto a la monitorización costera, todas las evaluaciones realizadas parten de 

preguntarse si la línea de costa deducida de las imágenes satelitales sobre una playa 

natural es o no coincidente con la línea de agua que pueda ser medida en campo o 

identificada en una fotografía de mayor resolución. Es en este punto donde la 

sinergia con la herramienta fotogramétrica C-Pro ha permitido una evaluación 

rigurosa de la metodología de extracción sub-píxel (descrita en trabajos anteriores 

por el mismo grupo de investigación en el que se desarrolla esta tesis doctoral), y la 

consecuente implementación de mejoras para subsanar las debilidades encontradas. 

Una de ellas se deriva de la significativa afección que supone para el 

algoritmo la localización de la línea de costa a nivel pixel utilizada como 

aproximación inicial. Para resolver este problema se presenta una solución 
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algorítmica nueva que, a diferencia de la solución anterior, busca la detección de la 

línea de costa sub-píxel mediante el ajuste de una función polinómica 

bidimensional definida sobre un soporte de píxeles adaptable al tipo de cambio 

radiométrico de la imagen. La evaluación de las precisiones con esta nueva 

metodología evidencia una clara mejora frente a la solución original. Asimismo, 

disponer de decenas de líneas de costa derivadas de video monitorización como 

datos precisos de referencia, y gracias a disponer de C-Pro, ha permitido testear la 

solución algorítmica tradicional mediante la aplicación de diferentes parámetros –

modificando el tamaño del vecindario de análisis, el grado de ajuste del polinomio 

o el rango espectral de la imagen analizada. Con esto se ha podido definir una 

solución óptima de aplicación con resultados sustancialmente más precisos (3,57 m 

y 3,01 m para Landsat 8 y Sentinel 2 respectivamente) que los descritos hasta 

ahora. Una vez hallada una solución óptima, sobre esta base algorítmica se 

propone un protocolo de actuación −desarrollado dentro de un sistema completo 

que se denomina SHOREX (Shoreline Extraction)− el cual está en disposición de 

extraer automáticamente líneas de costa de forma masiva, asegurando así la 

operatividad de los procesos desarrollados. 

El presente trabajo aporta soluciones de procesamiento de imágenes de 

satélite y fotogramétricas a científicos, ingenieros y gestores costeros, 

proporcionando resultados que evidencian la gran utilidad de estas técnicas viables 

y de bajo coste para la monitorización costera. Mediante ellas se puede convertir 

información pública existente y de libre acceso (imágenes satelitales, datos de video 

cámaras o fotografías de la ciudadanía) en datos de alta calidad para el monitoreo 

de los cambios morfológicos de las playas, y lograr así una consiguiente gestión 

sostenible de los recursos costeros. 

  



 

 
xiv 

  



 

 xv 

Resum 

Les platges són ambients ecològics summament valuosos on al llarg d'una feble 

franja de transició convergeix l'entorn terrestre i el medi marí. En l'últim segle, el 

desenvolupament de la indústria turística ha convertit aquests espais costaners en 

un recurs social i econòmic pràcticament a escala global. Des de llavors i cada 

vegada més, la millora en la comprensió dels processos físics que ocorren en la 

zona costanera és un assumpte de màxima importància. Per a abordar una 

planificació coherent de la gestió costanera es requereix prendre en consideració el 

dinamisme dels diferents canvis morfològics que caracteritzen aquests ambients. 

Per això, conèixer i quantificar les tendències evolutives costaneres és essencial per 

a comprendre la complexitat dels fenòmens que allí es produeixen a diferents 

escales espacials i temporals. Diverses anàlisis evolutives, i amb un grau apropiat de 

precisió, permetran detallar el tipus de canvi, reconèixer els seus factors 

condicionants, i avaluar les seues conseqüències ambientals i socioeconòmiques. 

El límit terra-aigua varia en funció de la posició del nivell del mar i de la 

forma del perfil de platja que contínuament queda modelat per les ones incidents. 

Intentar modelitzar la resposta d'un paisatge tan voluble geomorfològicament com 

les platges requereix disposar de múltiples mesures registrades amb suficient 

precisió per poder reconèixer la seua resposta enfront de l'acció dels diferents 

agents geomòrfics. Per tant, resulta essencial disposar de diferents sistemes de 

monitoratge capaços de registrar de forma sistemàtica la línia de costa amb 

exactitud i efectivitat. Es requereixen nous mètodes i eines informàtiques que 

permeten capturar, caracteritzar i analitzar eficientment la informació a fi 

d'obtindre indicadors amb significació geomorfològica de qualitat. En això radica 

l'objectiu de la present tesi doctoral, que es centra en el desenvolupament d'eines i 

procediments eficients per al monitoratge costaner mitjançant l'ús d'imatges de 

satèl·lit i fotografies terrestres. 

D'una banda, es descriuen les equacions i el procés d'implementació d'una 

nova metodologia fotogramètrica versàtil denominada C-Pro (Coastal Projector). 

Amb ella es podran georeferenciar imatges provinents de qualsevol sistema de 

videomonitorització salvant els rígids requeriments fotogramètrics que molts 

d’aquests coneguts sistemes exigeixen per funcionar. El rigorós procés de resecció 

espacial de la càmera s'aconsegueix incloent en el sistema de colinearitat la condició 

geomètrica de la línia de l'horitzó, per a posteriorment realitzar la projecció de la 

imatge sobre un pla georeferenciat (RMSE inferior a 1,54 m estimat per a les 

imatges georectificades). La inclusió d'aquestes equacions en el sistema ofereix 

seguretat i un marge major d'actuació referent als graus de llibertat de l'ajust i en 

funció dels paràmetres a estimar. L’exactitud de C-Pro s'avalua en diferents platges, 

comparant la línia de costa obtinguda enfront d'altres línies mesurades 
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simultàniament amb instrumental de major precisió com el GPS-RTK. L'error 

mitjà obtingut i la seua desviació típica és de 0,15 ±1,05 m. 

Altres objectius particulars es deriven del treball fotogramètric, analitzant 

nous mètodes i solucions procedimentals per obtindre informació de platges a 

partir de fotos terrestres. Inicialment es presenta la forma de procedir amb C-Pro 

per a convertir imatges de vídeo amb càmeres recreatives en dades costaneres 

quantitatives de gran utilitat per a extraure les característiques hidrodinàmiques de 

l'onatge incident en una platja concreta i fer front a estudis morfodinàmics. També 

s'investiga i proposa una solució metodològica que formalitza un projecte de 

monitorització costaner mitjançant participació ciutadana. Fent front als reptes 

propis de treballar amb fotos adquirides amb diferents telèfons mòbils, els resultats 

obtinguts fidelment reconstrueixen els canvis sedimentaris esdevinguts a les platges 

analitzades (RMSE inferior a 1,4 m en proximitat, i oscil·lant entre 2,6 i 3,9 m en 

trams costaners de fins a 1 km de longitud). Altres tècniques de processament 

d'imatge són analitzades per a obtindre informació 3D de la zona intermareal de la 

platja. 

D'altra banda, es mostra l'avaluació i la millora de diferents procediments 

metodològics que aconsegueixen obtindre eficientment la línia de costa amb 

precisió subpíxel, a partir d'imatges de satèl·lit de mitjana resolució. Aconseguir 

superar la limitació de la resolució espacial (20-30 m) que presenten les imatges 

capturades pels satèl·lits Landsat (5, 7 i 8) i Sentinel 2 obrirà, sens cap dubte, un 

nou escenari que permetrà utilitzar aquesta ingent base de dades d'imatges gratuïtes 

i disponibles a nivell mundial per a múltiples estudis i a diferents nivells escalars 

−segons la magnitud del fenomen o el canvi a analitzar. A nivell de monitoratge 

costaner, totes les avaluacions realitzades parteixen de preguntar-se si la línia de 

costa deduïda de les imatges de satèl·lit sobre una platja natural és o no coincident 

amb la línia d'aigua que puga ser mesurada en camp o identificada en una 

fotografia de major resolució. És en aquest punt on la sinergia amb l'eina 

fotogramètrica C-Pro ha permés una avaluació rigorosa de la metodologia 

d'extracció subpíxel (descrita en treballs anteriors pel mateix grup d'investigació en 

el qual es desenvolupa aquesta tesi doctoral), i la conseqüent implementació de 

millores per a esmenar les debilitats trobades. 

Una d'elles es deriva de la significativa afecció que suposa per a l'algoritme 

la localització de la línia de costa a nivell píxel utilitzada com a aproximació inicial. 

Per a resoldre aquest problema es presenta una solució algorítmica nova que, a 

diferència de la solució anterior, busca la detecció de la línia de costa subpíxel 

mitjançant l'ajust d'una funció polinòmica bidimensional definida sobre un suport 

de píxels adaptable al tipus de variació radiomètrica de la imatge. L'avaluació de les 

precisions amb aquesta nova metodologia evidència una clara millora enfront de la 
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solució original. Així mateix, disposar de desenes de línies de costa derivades de 

videomonitorització com a dades precises de referència, i gràcies a disposar de C-

Pro, ha permés testar la solució algorítmica tradicional mitjançant l'aplicació de 

diferents paràmetres –modificant la grandària del veïnat d'anàlisi, el grau d'ajust del 

polinomi o el rang espectral de la imatge analitzada. Amb això s'ha pogut definir 

una solució òptima d'aplicació amb resultats substancialment més precisos (3,57 m 

i 3,01 m per a Landsat 8 i Sentinel 2, respectivament) que els descrits fins ara. Una 

vegada trobada la solució òptima, sobre aquesta base algorítmica es proposa un 

protocol d'actuació −desenvolupat dins d'un sistema complet que es denomina 

SHOREX (Shoreline Extraction)− el qual es troba en disposició d'extraure 

automàticament línies de costa de forma massiva, assegurant així l'operativitat dels 

processos desenvolupats. 

El present treball aporta solucions de processament d’imatges de satèl·lit i 

fotogramètriques a científics, enginyers, polítics i gestors costaners, proporcionant 

resultats que evidencien la gran utilitat d’aquestes tècniques factibles i de baix cost 

per a la monitorització costanera. Mitjançant aquestes es pot convertir informació 

pública existent i de lliure accés (imatges de satèl·lit, dades de videocàmeres o 

fotografies de la ciutadania) en dades d'alta qualitat per al monitoratge dels canvis 

morfològics de les platges, i aconseguir així una consegüent gestió sostenible dels 

recursos costaners. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover photo of Chapter 1: 
Whitehaven Beach, Whitsunday Island, Australia (taken Sept. 2017) 
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1.1. BACKGROUND AND RESEARCH JUSTIFICATION 

Coastal areas have been occupied and used by humans since ancient times. These 
narrow transition areas that connect terrestrial and marine environments are our 
planet’s most productive and valued ecosystems (Crossland et al., 2005). Only the 
8% of the earth's surface corresponds to coastal areas, but 40% of the world 
population live within 100 km of a coastal zone, and 60% of the world’s major 
cities are located there (Nicholls et al., 2007). 

Within coastal areas, the close relationships between humans and coastal 
resources intensifies the urgent questions of limits and equilibrium, sustainability, 
and development (Baztan et al., 2015). Beaches began to be the subject of global 
economic exploitation in the last century, both from an urban point of view and 
from the generation of economic resources, mainly due to the development of 
tourism. Turism now accounts for approximately 14.9% of the gross domestic 

product (GDP) in Spain, with more than 82 million visitors in 2017 −according to 
the annual report of the World Travel & Tourism Council. 

It is therefore essential to improve our understanding of the physical 
processes occurring in coastal zones. Understanding the response of beaches to 
different spatial and time scales is a priority for the proper management of this 
essential resource. Multiple efforts have faced the inherent problems of the 
shoreline by establishing the rates of erosion or accretion during a limited time 
interval by analyzing conditioning factors and evaluating the environmental and 
socioeconomic consequences of changes. 

Coastal changes are qualified as problematic when they have negative 
implications on the resources and uses of coastal space and affect socio-economic 
interests and natural values. Retrospective studies aimed at trend and evolutionary 
analysis of coasts may be of great importance for competently facing the imminent 
threat of climate change. An average rise in sea level (relative to 1986-2005) of 
between 26 and 77 cm is estimated by the end of the 21st century (IPCC, 2018). 
Moreover, multiple challenges and problems on the coast are associated with 
human interventions that are affecting littoral dynamics and fluvial systems as 
these are the main sources of sediment discharge (Sanjaume and Pardo-Pascual, 
2005). 

Modeling the response of the shoreline to the effects of waves and sea 
level variation, especially on unstable coasts such as sedimentary beaches, enables 
an evaluation of coastal recession and migration from the shoreline to the 
continent in broad time scales. However, the complexity of the phenomena and 
processes that interact on the land-sea interface (atmospheric, hydrodynamic and 
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sedimentary processes) make it an oscillating event that produces both advances 
and setbacks in the position of this line. The land-water limit varies depending on 
the position of the sea level and the shape of the beach profile as continuously 
modeled by incident waves. Therefore, since the beach is a space that is profoundly 
dynamic, it is necessary to discern between those changes related to meteorological 
processes − with seasonal or oscillating rhythms throughout the year or a more 
random behavior – and those changes that show a tendency of progressive or 
continuous change lasting over time (Kraus et al., 1991). 

The first occurs in the short-term at a monthly scale (Jiménez et al., 1997). 
These are the result of storms and make it possible to recognize the usual 
functioning of the coastal system (meaning the morphological beach response to 
wave forcing). The imbalance of masses caused by the different types of breakers 
when the waves dissipate their energy in the coastal area can be seen in the 
enormous wear and remobilizing of sediments to which beaches are exposed. 
These areas shape flexible systems capable of adapting to changing energy 
situations by natural modification of their morphology. Coastal storms are 
paradigmatic: precise information is required to verify storm magnitude and its 
impact on beaches in order to manage these spaces. The amplitude of the affected 
areas and the changing conditions of the sea in time and space require tools to 
capture accurate information in multiple places and varying times. Determining 
and geopositioning the real scope of waves during storms must be part of the basic 
support in determining the limit of the maritime-terrestrial domain according to 
the provisions of the Spanish Royal Decree 876/2014 of 10 October. 

With regard to progressive or persistent changes in time, and extending 
the analysis over much longer periods (decades), the existence of evolutionary 
trends is associated with changes in sediment availability on beaches – and this 
implies erosion (loss of beach width) or accumulation (gain) events. Among the 
changes resulting from successive mobilizations in a predominant direction, three 
fundamental types of change are classified according to their affection scale 
(Pardo-Pascual et al., 2008): 

- Local and fast alterations of the sedimentary contribution in the coastal system 
by the interposition of artificial obstacles (breakwaters, ports, etc.) to the 
longitudinal transport of sediments. These suppose a significant advance or 
retreat of the shoreline that can be evaluated with evolutionary studies. 

- Regional and long-term alterations due to changes in the sediment arrival regime 
(retention of fluvial sediments by reservoirs). They are not related to direct 
anthropogenic mediation, and their effect is perceived over large areas and during 
long periods. 

- Alterations linked to global variations in sea level on a scale of millions of years 
whose effect is accelerated by climate change and implies general changes. 
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Security and coherence in coastal management is complicated by the 
confluence of different complex processes. For this reason, understanding and 
quantifying coastal trends is essential for detecting their magnitude and causes – 
and offering real solutions. To detail the type of change and its causes, 
evolutionary analysis at different spatial and temporal scales and with an 
appropriate degree of precision is necessary (Carter, 1988; Kraus et al., 1991; 
Cowell & Thom, 1994; Pye & Blott, 2008). 

A deepening at different levels of the evolutionary analysis of a landscape 
as geomorphologically voluble as coastal areas is obviously important. Technical 
advances play a decisive role by enabling the definition of the changes with 
precision and effectiveness. For many years, there was no a specific and valid 
methodology to facilitate the arduous task of defining the shoreline, obviating the 
technical limitations and avoiding the assumption of futile simplifications. 

Advances in the acquisition methods of topographic data offer new tools 
for the automated and precise extraction of the coastline and the carrying out 
monitoring work at different times. Improvements in the global positioning 
systems in kinematic mode and real time (RTK-GPS), LIDAR (light detection and 
wanging) and terrestrial laser scanner have been decisive. However, these methods 
present a drawback: they are very expensive when used for analyzing long coastal 
sectors with high temporal resolution. 

Fortunately, the use of satellite imagery overcomes this problem as these 
platforms cover wide areas of land with a relatively high temporal frequency 
(Palomar-Vázquez et al., 2018a). We can cite the case of a Landsat platform 
operating since March 1984. Over 30 million images have been downloaded since 
2008 and these systems have contributed enormously to developing several fields 
of research, such as natural resource management, forestry, ecology, or climate 
change (Hermosilla et al., 2019; Luijendijk et al., 2018; Pekel et al., 2016). Recently, 
in 2015, the European Space Agency (ESA) launched the Sentinel program, which 
offers free images covering the all of the Earth at 20 m resolution (Sentinel-2). If 
both Landsat and Sentinel missions are joined, we can analyze long sectors of the 
coast with a high combined revisit time (16 days with Landsat and 10 or 5 days 
with Sentinel-2). This is, without doubt, the world’s main territorial image database, 
and means a real revolution in terms of availability of information on the Earth’s 
surface. However, a weakness is that their coarse spatial resolutions (20-30 m) 
make it necessary to solve the problem of determining with sufficient precision the 
position of the shore. The working precisions must be in accordance with the 
magnitude of the change to be detected. 

An algorithm developed by the CGAT-UPV research group extracts the 
shoreline from mid-resolution images at sub-pixel level (Ruiz et al., 2007, Pardo-
Pascual et al., 2012, Almonacid-Caballer, 2014). Based on the different spectral 
responses in the infrared band of water and land, the method starts with the initial 
extraction of an approximate shoreline at pixel level and continues searching for 



Photogrammetry and image processing techniques for beach monitoring 

 

 24 

the sub-pixel shoreline in the surroundings of this first line. The algorithm carries 
out a resampling of the satellite image to work at sub-pixel level. In a given 
neighborhood of the new resampled image on the initial approximate shore, a 
fifth-degree polynomial is adjusted and the shoreline position is found where the 
Laplacian of this fitted polynomial is null and the gradient maximum (Rodríguez et 
al., 2009). Repeating successively the process along the initial shore, the shoreline is 
defined at sub-pixel level with an average error (assessed in breakwaters) of 
approximately 5 m. To reach these accuracies it is important to first guarantee a 
correct sub-pixel georeferencing of the satellite images by applying a local 
upsampling of the Fourier transform around the correlation peak, named LUFT 
(Guizar-Sicairos et al., 2008; Wang et al., 2011). Almonacid-Caballer et al. (2017) 
proved the effectiveness of this approach by considerably improving the accuracy 
of shoreline definition in 47 images from Landsat 7. These shoreline extraction and 
registration procedures constituted the joint workflow referred to in Pardo-Pascual 
et al., 2012 and Almonacid-Caballer, 2014. 

Knowing the potential of using satellite images for beach monitoring at 
large temporal and spatial scales, the current doctoral thesis − within the CGAT 
research group − has been assessing the former algorithm in various natural 
beaches along the Valencian and Balearic coasts, and exploring and developing 
new methodological and procedural solutions to achieve the highest possible 
accuracy and efficiency. The challenge of evaluating the algorithm in natural 
beaches instead of fixed breakwaters lies in the complexity itself of the shoreline 
phenomenon. Therefore, other assessments approaches had to be analyzed.  

Shore-based coastal video monitoring has been proven over the last three 
decades as a cost-efficient and high-quality data collection tool to support coastal 
scientists and engineers (Holman et al., 1993, Holman & Stanley, 2007). Despite 
the lower spatial coverage, video monitoring technique enable a high-frequency 
analysis of hydro- and mophodynamic processes on beaches. Different video 
monitoring solutions such as the ARGUS (Davidson et al., 2007), SIRENA (Nieto 
et al., 2010) and COSMOS (Taborda & Silva, 2012) systems systematically and 
continuously record numerous actions happening in a specific coastal segment, 
analyzing and quantifying their evolution. However, the functional application of 
dedicated video systems and related infrastructures is limited by installation-related 
issues.  

The development of versatile and portable photogrammetric tools that, in 
a simple way and using conventional cameras (not necessarily mounted on fixed 
systems nor intended for that purpose), accurately recreate the shoreline position 
at the instant when the photograph was captured is essential. Such tools would 
easily allow an accurate recording of the shoreline position at a coastal segment 
(and at the time of interest) by taking advantage of the numerous touristic or 
recreational webcams operating along the coast. Only in Spain, we find many of 
them (https://www.skylinewebcams.com/es/webcam/espana and 
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https://valenciasurf.com/webcams-surf). In this way, it would be possible to 
exploit existing data acquisition infrastructures for quantitative coastal studies. 
These online cameras remotely provide visual information of sea state to surf users 
and stream coastal images worldwide daily. Their exploitation would be an 
attractive solution for supporting coastal monitoring and coastal management 
(Andriolo, 2018). Alternatively, the growth of smartphone technology means that 
mobile camera lenses are now offer sufficient resolution and quality for coastal 
imaging applications. Community beach monitoring programs based entirely on 
smartphone images contributed by citizens are also making their way into the field 
of beach monitoring. The availabily of photogrammetric solutions adaptable to 
different devices opens possibilities for monitoring coastal dynamics. In addition, it 
makes it possible to acquire accurate shorelines to use as reference data for the 
evaluation of other shorelines obtained from satellite images. 

The joint use of accurate shorelines obtained from video and satellite data 
opens a key scenario to advance the algorithmic solutions proposed until now in 
the inner algorithm and its procedural application. The algorithmic basis of Pardo-
Pascual et al. (2012) and Almonacid-Caballer (2014) is interesting, but new 
possibilities that minimize its weaknesses must be explored and its real utility in 
natural environments, such as beaches where the shoreline is seen as a blurred 
border, must be evaluated. It is essential to know to what extent the type of land-
water boundary influences image radiometry, and consequently, the accuracy of the 
shoreline definition. While in the breakwaters − where the former algorithm was 
developed − the border falls suddenly from the surface up to more than 2 m 
depth, in natural beaches it follows a gentle gradient seaward. Additionally, in 
sedimentary beaches, the sand is wetted by the waves and this can introduce 
substantial doubts in the shoreline definition. Foam in the breaking zone can add 
further doubts. 

The possibility of using all of this shoreline data (including mid-resolution 
satellite images, video or standard cameras, and smartphones) enables addressing 
the morphodynamic characterization of the beaches and short, medium, and long-
term evolutionary analysis from a new perspective. Likewise, this will contribute to 
the modelling of the beach responses to the action of the natural agents that 
control it and open a linkage with well-known shoreline evolution models widely 
used in coastal engineering to anticipate future scenarios.  

Until now, cross-shore evolution model applications have been reduced to 
target study sites where high-resolution data (needed for calibration and validation) 
is available. However, new photogrammetry and image processing techniques to 
obtain multiple high accuracy shoreline data – such as those explored in the 
current doctoral thesis – can offer a promising future for beach monitoring. 

Highlighting the challenges facing seashore zones around the world will 
facilitate the proposal of goals for the sustainable management of coastal 
resources.  



Photogrammetry and image processing techniques for beach monitoring 

 

 26 

 

1.2. AIMS AND OBJECTIVES 

The general objective of the research presented in this thesis is the development of 
effective tools and procedures for coastal monitoring using satellite images and 
terrestrial photography. This objective is part of the research experience of the 
group in which the doctoral candidate forms part and partly emerges from a 
previous thesis (Almonacid-Caballer, 2014) that developed an algorithm to obtain 
the shoreline with sub-pixel accuracy from Landsat images (as mentioned in the 
previous section). The objective of the present thesis arises from the need to 
evaluate and improve this algorithm in natural sedimentary beaches and adapt it 
for use with images from new satellites such as Sentinel-2, as well as to create a 
coastal monitoring procedure using low-cost photogrammetric techniques. 

Since this is the first large methodological block of the doctoral thesis, the 
development of a photogrammetric tool (C-Pro) capable of georeferencing images 
from any type of video-monitoring system to obtain the shoreline accurately and 
effectively was required (Chapter 2). The simultaneous work between the 
shorelines obtained from the satellite and those derived from the photographs 
(Chapter 4) was indispensable for evaluating the accuracy of the satellite extraction 
algorithm (Almonacid-Caballer, 2014), and the subsequent planning and 
development of improvements in its sub-pixel methodology for the second block 
of the thesis. Chapter 3 presents an improvement focused on the inner core of the 
sub-pixel algorithm while Section 4.3 discusses an improvement more geared 
towards tool efficiency and the robustness of the entire workflow.  
 

Simultaneously with the design of new methodologies, the sub-pixel 
detection tool (first termed SHOREX in Palomar-Vázquez et al. 2018a) has 
continued to be evaluated and calibrated in other environments in works that 
demonstrated the potential of these satellite-derived shorelines (SDS) for 
improving our understanding of physical coastal processes (Chapter 4). Likewise, 
Section 4.4 exemplifies how SDS data can also be used to calibrate and validate an 
equilibrium shoreline evolution model that describes beach response according to 
wave forcing and coastal morphodynamics and predicts upcoming situations. 
 

Concurrently, other objectives have been derived from the 
photogrammetric work such as: the operational use of online streaming video 
cameras as coastal research tools for hydrodynamic characterisation and 
morphodynamic studies; the development of citizen beach monitoring 
programmes using smartphones; and the establishment of a procedure to acquire 
SfM-3D models of the intertidal beach zone (Chapter 5). 
 

The following hypotheses and their associated working objectives are 
proposed: 
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Hypothesis 1: Photogrammetry can deliver shoreline positions with sufficient 
accuracy even when photogrammetric requirements are not optimal or available.  
Objective 1: Development of a tool capable of precisely projecting a coastal 
photograph regardless of the difficulties to facilitate applicability on beaches. 
 
Hypothesis 2: The importance of coastal monitoring at large temporal and spatial 
scales using satellite imagery is leading to constant improvements in the accuracy 
and efficiency of shoreline detection algorithms at sub-pixel level. Therefore, 
potential improvements in the intrinsic of Almonacid-Caballer (2014) methodology 
should be investigated. 
Objective 2: Design a method to untie the algorithm from input line inaccuracies 
and external factors so that its reliability does not depend on them.  
Objective 3: Design a method that works with mathematical interpolators without 
altering the original data. 
 
Hypothesis 3: Some coastal monitoring analyses are being carried out from mid-

resolution satellite imagery and using the SHOREX system. However, on natural 

beaches, establishing the accuracy of the obtained shoreline is not a trivial matter 

and requires reliable reference data against which to make an evaluation. A 

profound assessment is needed. 

Objective 4: Assess the potential of SDS as coastal evolution indicators. 

Objective 5: Evaluate SDS accuracy against high-precision data obtained at the 

specific moment of satellite passage. 

Objective 6: Develop a robust protocol for obtaining accurate SDS on large 

temporal and spatial scales with the necessary algorithmic improvements. 

 

Hypothesis 4: Video monitoring devices record multiple images of the beach from 

which coastal information can be obtained. 

Objective 7: Obtain metrics and coastal indicators from the efficient processing of 

surfcam images that capture and transmit information live on the internet. 

Objective 8: Obtain precise shoreline data using photographs acquired by citizens 

and through social networks. 

Objective 9: Obtain 3D models that recreate beach morphodynamics. 

 

1.3. DOCUMENT STRUCTURE 

This document is divided into six chapters, the present one being an introduction 
to the state of the art and a presentation of the topics discussed in detail in the 
following four chapters (from 2 to 5). These are composed of edited versions of 
seven international scientific publications (four published, one accepted and two 
under review) and one published conference paper, including results obtained and 
their interpretation. Finally, Chapter 6 contains the overall conclusions of the 
thesis and different lines of future research derived from the work carried out. 
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Figure 1.2 summarizes the structure of the thesis. As Section 1.1 has 
already mentioned, the current thesis is preceded by Almonacid-Caballer, 2014 − 
another thesis developed within the same research group. However, the thesis 
concerning us is based on two clearly differentiated but interacting groups of 
techniques for beach monitoring in the area of photogrammetry and remote 
sensing (image processing). Following the planned objectives, the advance has 
been synchronous throughout and both branches obtain partial results in 
publications as shown by Fig. 1.2. The thesis structure is organized with the aim of 
presenting first in Chapters 2 and 3 the new algorithmic solutions for both 
photogrammetry (Chapter 2) and remote sensing (Chapter 3) subject areas. These 
are two core contributions developed essentially by the doctoral candidate with the 
supervision of her advisors. 

Chapter 2 describes a methodological protocol to project a terrestrial 
photograph of a coastal area – or whatever indicator is contained on it – in a 
georeferenced plane taking advantage of the terrestrial horizon as a geometric key 
within the collinearity adjustment system. The procedure is implemented in a tool 
called the Coastal Projector (C-Pro) whose versatility enables the efficient use of 
recreational cameras for obtaining quantitative coastline data. 

Chapter 3 presents a new procedure for the detection of the instantaneous 
shoreline at sub-pixel level from mid-resolution satellite images. The potential of 
the methodology lies in the iterative selection of a set of pixels with maximum 
radiometric variation, and the adjustment of an interpolator polynomial that 
models this land-water surface. This was an improvement derived from the 
resulting assessments of the Almonacid-Caballer (2014) algorithm in natural 
beaches – which are discussed in Sections 4.1 and 4.2. While this improvement was 
being developed, the need to continue obtaining SDS in a massive an efficient way 
led the research group to continue testing other approaches and eventually led to 
the work in Section 4.3 (refer below to the sequential diagram for a better 
understanding). 

Chapter 4 focuses on the evaluation of using the Pardo-Pascual et al., 
(2012) and Almonacid-Caballer (2014) algorithmic solution on beaches. 
Consequently, its improvement and development as a broad tool capable of being 
used massively and efficiently has been gradually shown. Therefore, this chapter is 
a chronological overview through the various evaluations carried out of the former 
algorithm (Sections 4.1 and 4.2) and the consequent improvements that led to the 
current SHOREX system (Section 4.3). The chapter starts with Section 4.1 
evaluating – with high-precision data – the potential of a set of SDS from Landsat 
images to characterise the evolution of beaches in the medium and long-term. 
Therefore, the concept of annual mean shoreline was presented as an indicator of 
coastal evolution in the medium term. Section 4.2 examines other extracted SDS, 
this time evaluating their precision as instantaneous lines in another temporary 
period. Following this line of analysis, Section 4.3 presents a protocol for the 
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precise definition of shorelines on a large spatial and temporal scale and makes 
some improvements focused on the efficiency of the complete shoreline extraction 
workflow. The results of Sections 4.2 and 4.3 were obtained once the C-Pro was 
already available, this being an essential tool in the evaluation of SDS accuracy. 

Chapter 5 takes advantage of the possibilities that the development of 
photogrammetric solutions contribute to the recognition of beach characteristics. 
Thus, this chapter combines different methods and photogrammetric processes to 
obtain beach information from terrestrial photos. Section 5.1 presents the modus 
operandi with C-Pro to convert Surfcam images into quantitative coastal data. 
Section 5.2 proposes a new effective procedure of coastal monitoring through 
citizen participation to collect the data by facing the multiple challenges that it 
entails, while Section 5.3 evaluates 3D intertidal zone information obtained from a 
set of simple photographs and image processing techniques. 

Chapter 6 resumes the global vision of the thesis, highlighting the main 
contributions achieved and setting the new horizon, as well as outlining the 
coming research. 

 

Fig. 1.2. Chronological diagram of the research activity. 
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of the Universitat Politècnica de València, Spain. 
 
Chapter 2: 
 

 Sánchez-García, E., Balaguer-Beser, A., Pardo-Pascual, J.E. (2017). C-Pro: 
A Coastal Projector monitoring system using terrestrial photogrammetry with a 
geometric horizon constraint. ISPRS Journal of Photogrammetry & Remote Sensing, 128: 
255-273, https://doi.org/10.1016/j.isprsjprs.2017.03.023 (Impact factor 2017: 
5.994). 

 
Chapter 3: 

 

 Sánchez-García, E., Balaguer-Beser, A., Almonacid-Caballer, J., Pardo-
Pascual, J.E. (under review in ISPRS Journal of Photogrammetry & Remote Sensing). A 
new adaptive image interpolation method to define the shoreline at sub-pixel level. 
 

These two previous works are core contributions of the thesis developed 
essentially by the doctoral candidate and supervised by her advisors. Dr. 
Almonacid also contributed in the second work with a critical review. 
 
Chapter 4: 
 

 Almonacid-Caballer, J., Sánchez-García, E., Pardo-Pascual, J.E., Balaguer-
Beser, A., Palomar-Vázquez, J. (2016). Evaluation of annual mean shoreline 
position deduced from Landsat imagery as a mid-term coastal evolution indicator. 
Marine Geology, 372: 79-88, https://doi.org/10.1016/j.margeo.2015.12.015 (Impact 
factor 2016: 3.572). 
 
This consists of the first evaluation work of the SDS product carried out on 
natural beaches by the CGAT group. The PhD was responsible for data analysis by 
making comparisons with a set of highly accurate shorelines and took part in the 
writing of the research contribution.  
 

 Pardo-Pascual, J.E., Sánchez-García, E., Almonacid-Caballer, J., Palomar-
Vázquez, J., Priego de los Santos, E., Fernández-Sarría, A., Balaguer-Beser, A. 
(2018). Assessing the accuracy of automatically extracted shorelines on microtidal 
beaches from Landsat 7, Landsat 8 and Sentinel-2 imagery. Remote Sensing, 10 (2), 
326, https://doi.org/10.3390/rs10020326 (Impact factor 2017: 3.406). 
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Second evaluation of the SDS product on natural beaches but this time discussing 
instantaneousness value in greater depth by comparing coincident reference data. 
The enormous potential of C-Pro was clearly appreciated through this work by 
recognizing not only the shoreline border, but also offering useful information of 
the sea state and beach characteristics when the satellite image was captured. For 
this contribution, the PhD was in charge of the entire photogrammetric procedure 
to accurately obtain the reference photo-derived shorelines with C-Pro. She also 
participated in the fieldwork campaigns, the validation analysis, and writing and 
review of the final document. 
 

 Sánchez-García, E., Palomar-Vázquez, J., Pardo-Pascual, J.E., Almonacid-
Caballer, J., Cabezas-Rabadán, C., Gómez-Pujol, L. (under review in Coastal 
Engineering). An efficient protocol for accurate and massive shoreline definition 
from mid-resolution satellite imagery. 
 

Third evaluation of the SDS algorithm together with the presentation of a new 
procedural solution to improve accuracy and effectiveness. The assessment was 
made in a different sedimentary beach where the existence of a fixed video camara 
enabled obtaining valuable reference data (again with C-Pro). Several researchers 
developed this work and the PhD candidate carried out the basic management and 
was responsible for the final draft. 
 
Chapter 5: 
 

 Andriolo, U., Sánchez-García, E., Taborda, R. (2019). Operational use of 
surfcam online streaming images for coastal morphodynamic studies. Remote 
Sensing, 11 (1), 78, https://doi.org/10.3390/rs11010078 (Impact factor 2017: 
3.406). 
 
This work derives directly from the first PhD stay in Lisbon (09-12/2015) where 
Rui Taborda was responsible at the host institution. The collaboration was very 
important in the completion of Andriolo’s thesis. The candidate’s PhD work 
consisted in applying her knowledge about photogrammetric techniques and 
applying C-Pro to multiple surfcam images and on a miscellany of situations and 
requirements. Later, different coastal indicators would be derived from the 
georectified images for coastal morphodynamic studies as Andriolo, 2018 showed. 
She participated together with Andriolo in the development of the analyses, the 
writing and the review of the derived contribution. See the “Research Activity” 
section –at the end of the current document– for other conference papers derived 
from this close collaboration.  
 

 Harley, M., Kinsela, M., Sánchez-García, E., Vos, K. (2019). Shoreline 
change mapping using crowd-sourced smartphone images. Coastal Engineering. 
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This work arises from the third PhD stay in Sydney (09-12/2017) where Mitch 
Harley was responsible at the host institution. The PhD student joined the new 
CoastSnap team –a citizen science initiative for beach monitoring that had been 
started only few months earlier by Dr. Harley and Dr. Kinsela. The PhD candidate 
was responsible for carrying out the entire image processing analyses and 
procedural tests with the set of smartphone images acquired from community 
participation. The derived results enabled establishing the more appropriate 
CoastSnap protocol to follow henceforth. Additionally, the contribution was also 
essential in the writing and the review of the manuscript. 

 

 Sánchez-García, E., Balaguer-Beser, A., Taborda, R., Pardo-Pascual, J.E, 
(2016). Modelling landscape morphodynamics by terrestrial photogrammetry: an 
application to beach and fluvial systems. International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, XLI-B8: 1175-1182, 
https://doi.org/10.5194/isprs-archives-XLI-B8-1175-2016. 
 
This work is a contribution to the thesis developed by the doctoral candidate and 
supervised by her advisors and Dr. Rui Taborda (since some data comes from the 
PhD stay in Lisbon). 
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This chapter describes a methodological protocol to project a terrestrial 
photograph of a coastal area – or whatever indicator is contained on it – in a 
georeferenced plane considering the terrestrial horizon as a geometric key. This 
feature, which appears in many beach photos, helps in camera repositioning and 
serves as a constraint in collinearity adjustment. This procedure is implemented in 
a tool called the Coastal Projector (C-Pro) that is based on Matlab and adapts its 
methodology in accordance with the input data and the available parameters of the 
acquisition system. The method has been tested in three coastal areas to assess the 
influence that the horizon constraint presents in the results by comparing the 
obtained shoreline against other lines measured using RTK-GPS. The proposed 
methodology increases the reliability and efficient use of existing recreational 
cameras (with non-optimal requirements, unknown image calibration, and at 
elevations lower than 7 m) to provide quantitative coastal data.  

The applicability of C-Pro has been a key issue in carrying out most of the 
processes that shape the present doctoral thesis. Its application as an evaluator tool 
for other less precise data is implicit in Chapter 4. However, its use as a coastal 
monitoring tool per se to derive morphodynamic and coastal hydrodynamic 
indicators from images is discussed in Chapter 5. 
 
2.1. INTRODUCTION 

A proper management and planning of coastal areas is governed by an accurate 
understanding of these fragile and dynamic environments at different spatial and 
temporal scales. Modelling the coastline response to the effect of waves and sea 
level variation, especially in significantly unstable coasts such as sedimentary 
beaches, enables the evaluation of coastal retreat and coastline migration on large 
temporal scales. However, the complexity of the phenomena and processes that 
interact on the land-sea interface, makes this a deeply dynamic space in its form 
and arrangement (Boak and Turner, 2005). It is necessary to distinguish between 
oscillatory short-term effects and other long-term changes – and so monitoring 
changes at different temporal scales is helpful in a decision-making process 
involving environmental values and socioeconomic interests. 

The spatial resolution and high temporal frequency achieved by terrestrial 
photogrammetric techniques have overcome the accuracy of other techniques in 
the field of monitoring. Techniques such as Airborne Light Detection and Ranging 
(LiDAR), Terrestrial Laser Scanner (TLS) and Global Positioning Systems in Real-
Time Kinematic (RTK-GPS) define the shoreline and model the beach area with 
accuracy and reliability despite tedious fieldwork and costs. However, the high 
periodicity required to monitor dynamics in natural spaces is causing these 
techniques to be set aside. Conversely, remote sensing techniques are being used to 
establish and quantify erosion or accretion rates on beaches and the results are 
sufficiently accurate – in the order of several meters – to help in our understanding 
and prediction of long-term worldwide coastal evolution (Almonacid-Caballer et 



Photogrammetry and image processing techniques for beach monitoring 

 

 38 

al., 2016). Nevertheless, its potential is reduced for local studies and short-term 
changes where video monitoring systems are consolidated as the current 
benchmark. 

Terrestrial photogrammetric systems enable a systematic and continuous recording 
of the different actions that take place in a specific coastal area. For instance, the 
local and rapid changes that occur during storms. Some institutions have realized 
the need to establish a proper and integrated coastal zone management and various 
video monitoring systems have been installed. The Argus system was the first 
developed for coastal research (Holman et al., 1993) and was validated and widely 
used worldwide (Holman and Stanley, 2007). Following the same principles, other 
coastal imaging systems were implemented. Archetti et al. (2008) made a 
comparative study of four fixed-camera systems: Erdman (1998); Kosta (2006); 
Horus (2007); and Beachkeeper (Brignone et al., 2012). Moreover, various works 
(Jiménez et al., 2007; Davidson et al., 2007; Aarninkhof et al., 2003) widely 
recognize the success of video systems for coastal research and shoreline 
monitoring through video-derived coastal indicators. Recent developments have 
emerged that access the digital image data from non-expert systems and regardless 
of the camera technology (e.g., Taborda & Silva, 2012; Kim et al., 2013). 

Existing coastal imaging systems are ready focused and dedicated for a specific 
application and this leads to some economic and positioning limitations. The 
accurate measurement of shorelines, sand bars, beach widths, and many other 
indicators is easy to accomplish using fixed cameras covering wide fields of view 
and located on high elevation beach-front buildings. However, these optimal 
requirements are unusual on most beaches around the world and so other 
approaches are being investigated. 

Many recreational video-cameras are currently operating on the coastline and 
sending considerable data over the internet - as well as a small number of systems 
designed by coastal managers in specific areas to control storm events. Most of this 
data is captured by Surfcam stations whose main qualitative objective is to observe 
breaking waves. As expected, the camera requirements are not optimal for 
quantitative measurements as they are low-angle and single cameras mounted on 
low beachfront buildings and pointing nearly horizontal toward the waves. Making 
the most of all the data from such shoreline monitoring cameras is the challenge 
tackled in this chapter and complementing other works (Bracs et al., 2016) where 
the potential of Surfcam data has already been proven through applying various 
solutions. 

We propose a rigorous methodology – implemented in a coastal projector tool 
known as C-Pro – that overcomes the photogrammetric difficulties and non-
optimal conditions that are sometimes found in beach photographs. The main goal 
is to use the terrestrial horizon as a photogrammetric constraint included in the 
collinearity system to achieve a precise repositioning of the camera (Sánchez-
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García et al., 2015b). Van Den Heuvel (1998) already advanced the benefits of 
using geometric constraints for object reconstruction. When using a simple non-
metric camera looking horizontally towards the coastline and from any elevation –
even from the ground where there is no other option– the horizon constraint helps 
the image spatial resection system to converge on a precise solution that is valid for 
coastal monitoring. Moreover, because of the field of view, most of the photos 
only show sand and water, and this makes it difficult to acquire ground control 
points (GCP) with a suitable distribution to transform image information into real 
world coordinates. Reducing the number of initial unknown parameters by adding 
horizon equations would be a great advantage in providing stability to the 
mathematical system (Oreifej et al., 2011). 

Some works that use Surfcam online streaming images for measuring wave runup 
and intertidal beach topography (Andriolo et al., 2016a-b; Andriolo, 2018) are 
already taking advantage of C-Pro rectification methodology as the horizon 
constraint is the key to achieving image calibration and a precise repositioning of 
the camera. 

In this chapter, Section 2.2 describes the mathematical formulas necessary to 
incorporate horizon information in a monitoring system using terrestrial 
photogrammetry. Section 2.3 presents the different methodological steps 
depending on the number of parameters initially known, access to camera 
calibration, knowledge of the initial location of the camera, or number of available 
GCPs. Finally, Section 2.4 shows the results obtained after camera repositioning 
and image rectification processes and shows the considerable advantages of 
incorporating the horizon constraint. 

 
2.2. HORIZON CONSTRAINT 

The methodology of terrestrial photogrammetry described in this chapter is 
designed for use in coastal imaging systems where the horizon is an element of the 
photo (meaning the separation between sea and sky). This section describes some 
mathematical tools that take advantage of the information provided by the horizon 
line and are useful for the new coastal projector monitoring system (C-Pro), 
explained in Section 2.3. 

2.2.1. Image orientation using the horizon 

The calculation of the image orientation with respect to the object space is made 

through three rotations and three corresponding angles that transform image data 

into real-world coordinates: 𝜔 ∈ [−𝜋, 𝜋], 𝜑 ∈ [−𝜋/2, 𝜋/2], 𝜅 ∈ [−𝜋, 𝜋]. By means of 

this procedure, the vectors of the reference system in the object space become 

these same vectors in the image space. The following matrix defines this process: 
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𝑅𝜅𝜑𝜔 = 𝑅𝜅𝑅𝜑𝑅𝜔 = (
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)(
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𝑠𝑖𝑛𝜔

 
0

−𝑠𝑖𝑛𝜔
𝑐𝑜𝑠𝜔

) (2.1) 

𝑅𝜅𝜑𝜔 consists of the product between an initial rotation matrix in the Z axis, later 

in Y axis, and finally in the X axis. Thus, (X, Y, Z) coordinates of a point in the 

object reference system focused on the main point of the image can be calculated 

by knowing its associated coordinates (x, y, z) in the image reference system 

through these equations: 

(
𝑋
𝑌
𝑍
) = 𝑅𝜅𝜑𝜔 (

𝑥
𝑦
𝑧
) → (

𝑋
𝑌
𝑍
) =

(

𝑐𝑜𝑠𝜅 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜅 𝑠𝑖𝑛𝜔 𝑠𝑖𝑛𝜑 − 𝑠𝑖𝑛𝜅 𝑐𝑜𝑠𝜔 𝑐𝑜𝑠𝜅 𝑐𝑜𝑠𝜔 𝑠𝑖𝑛𝜑 + 𝑠𝑖𝑛𝜅 𝑠𝑖𝑛𝜔
𝑠𝑖𝑛𝜅 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜅 𝑠𝑖𝑛𝜔 𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝜅 cos𝜔 𝑠𝑖𝑛𝜅 𝑐𝑜𝑠𝜔 𝑠𝑖𝑛𝜑 − 𝑐𝑜𝑠𝜅 𝑠𝑖𝑛𝜔
−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜔 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜔 

) (
𝑥
𝑦
𝑧
) (2.2) 

In the following paragraphs the (x, y, z) coordinates in the image space are referred 

to as the principal point 𝑜 = (𝑥0, 𝑦0) and to simplify formulas in this section, its 

coordinates are assumed as zero  𝑜 = (0,0). To develop (2.2), both the object 
coordinates and the image coordinates – originally defined from the upper left 
corner of the image – are translated by establishing its origin in the principal point. 
However, there are other rotational angles relating both image and object 
coordinates such as described by Dai et al., 2011 and Rodríguez et al., 2008. We are 
going to use several of these ideas to define the equations of change between 
reference systems (2.2) through new angles defining that matrix. 

The definition of these angles is based on the approximation of the Earth’s curved 
horizon as a straight line in the image plane. Two alternatives for the determination 
of that straight line are proposed in this chapter by marking two vanishing points 
in the image that are as distant as possible; A = (xa, ya), B = (xb, yb), and fulfil that 
xa < xb. In this chapter, the horizon points have been marked manually to ensure 
that they do not become an added source of error in the methodological 
assessment. 

Case a) (two points) The horizon curve is approximated through the line joining 
both A and B points (colored red in Fig. 2.1B). 

Case b) (three points) If A and B points are far enough apart, it is possible to find 
a third point C = (xc, yc). These three points define a circumference and we 
compute P as the point where the minimum distance is reached between the 
circumference and the principal point of the image plane. The tangent line to the 
circumference at such point P then approximates the real curved horizon (shown 
in green in Fig. 2.1B). 

Note that the horizon approximation with three points is the most realistic. 
However, it is very sensitive and strongly dependent on the horizon extension seen 
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in the image. If the three points responsible for forming the circumference are too 
close to each other due to the reduced horizon extension, it will not be reliable and 
we should proceed using the methodology with two points described in case a). In 
the results section, the influence of this horizon requirement is analyzed. 

 
Fig. 2.1. Image orientation: A) changing the coordinate system in the image space where 

the angle ψ is defined; and B) representation of both horizon approximations: shown as 
a red line following case a) with two points, and in green for case b) with three points. 
The principal point (𝑥0, 𝑦0) locates in (0,0). 

Therefore, considering some of the above procedures, the horizon curve is finally 
approximated through a straight line. Assuring the consistency of a semi-automatic 
process, we need to have control over the correct order in the manual input of the 
image coordinates verifying that xa<xc< xb (see Fig. 2.1A). Moreover, these should 

verify that in the ABC triangle, the C internal angle ranges ]0, 𝜋[. 

To define the new rotation angles from the calculated horizon line –widely known 
as roll and pitch angles (Oreifej et al., 2011) – it must be remembered that such a 
horizon line is parallel to both the object plane (defined by the XY-plane of the 
object space) and the image plane where it is placed. Therefore, we can use the 
horizon line as the rotational axis of the image plane for image orientation 
(Rodríguez et al., 2008). Thus, the (x, y, z)-image coordinate system rotates into the 
(X,Y,Z)-object coordinate system through the three following sequential steps. 

Step 1: 𝑣⃗𝐴𝐵 is considered as the perpendicular vector to the straight line 
connecting A and B points in which the second coordinate is positive. We then 
compute ψ as the angle formed between such a vector and the vertical vector (0,1) 
– that is the complementary one of the roll angle used in Cornall and Egan (2004). 
The definition of ψ will change in accordance with the horizon approximation: 
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Case a) (two points) Being the horizon the straight line defined by the 
points A and B then 𝑣⃗𝐴𝐵 = (𝑦𝑎 − 𝑦𝑏 , 𝑥𝑏 − 𝑥𝑎), and the angle ψ may be defined as: 

ψ = arctan((𝑦𝑎 − 𝑦𝑏)/(𝑥𝑏 − 𝑥𝑎))  ∈ ] −𝜋/2, 𝜋/2[, being xa < xb   (2.3) 

Case b) (three points) approaching the horizon through the tangent line to 

the circumference passing through the points A, B and C then 𝑣⃗𝐴𝐵 is the direction 
of the line which connects the center of this circumference with the principal point 

𝑜 = (0,0) of the image plane. Consequently, 𝑣⃗𝐴𝐵 = (cx, cy) if cy > 0  or 𝑣⃗𝐴𝐵 =

(−cx, −cy) if cy < 0, where (cx, cy) are the coordinates of the circumference center 

in the image plane with respect to the principal point. This center is previously 
obtained as the intersection point between the line perpendicular to the segment 
AC that passes through its midpoint and the line perpendicular to the segment CB 
through its midpoint. Finally, the angle ψ is defined as: 

ψ = arctan(−cx/−cy) = arctan(cx/cy) ∈ ] −𝜋/2, 𝜋/2[, 𝑖𝑓 𝑐𝑦 ≠ 0   (2.4) 

In formula (2.4) it is assumed that the principal point is closer to the horizon than 

the ABC circumference center. Moreover, ψ has the following definition in the 

cases in which cy could be equal to 0: 

{
 𝑖𝑓 cy = 0 𝑎𝑛𝑑 cx < 0 →  ψ = 𝜋/2   

𝑖𝑓 cy = 0 𝑎𝑛𝑑 cx > 0 → ψ = −𝜋/2 
  (2.5) 

The xyz-system rotates a clockwise angle (−ψ) in the plane z=0, so the new x’ axis 
will be parallel to the horizon line (see Fig. 2.1A). The coordinates of any point in 
the xyz-system are related with the x’y’z’-system by: 

(
𝑥
𝑦
𝑧
) = (

cos (−ψ)

sin (−ψ)

0

 
– 𝑠𝑖𝑛(−ψ)

cos (−ψ)

0

 
0
0
1
)(

𝑥′

𝑦′

𝑧′
) = (

cos (ψ)

−sin (ψ)

0

 
𝑠𝑖𝑛(ψ)

cos (ψ)

0

 
0
0
1
)(

𝑥′

𝑦′

𝑧′
) = 𝑅ψ (

𝑥′

𝑦′

𝑧′
) (2.6) 

In this first step the rotation angle (−ψ) does not consider the position of the 
horizon line with respect to the x-axis. Formulas (2.3), (2.4) and (2.5) only take into 
account the orientation of the vector perpendicular to the horizon line with respect 
to the y-vector direction. For this reason, in the next step we will consider the 
dhorizon sign, which represents the minimal distance in the image plane from the 
principal point to the approached horizon line. Thus, dhorizon could have a negative 
sign if the closest point of the horizon line to the principal point has a negative y-
coordinate. Again, as expected, calculation of dhorizon depends on the horizon 
approximation as follows: 

Case a) (two points) Following this first approximation, the minimal distance 
between the principal point and the horizon line is: 

dℎ𝑜𝑟𝑖𝑧𝑜𝑛 =
𝑦𝑎 𝑥𝑏 − 𝑦𝑏 𝑥𝑎 

√(𝑥𝑏 − 𝑥𝑎 )
2 + (𝑦𝑏 − 𝑦𝑎)

2
   (2.7) 
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Case b) (three points) However, in this other case, the minimal distance will be 

calculated as: |𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛| = r − √cx2 + cy2 , being r the radius of the ABC horizon 

circumference. It should be remembered that given the characteristics of the 
horizon, we can assume – without loss of generality – that the principal point is 

within the circumference. Therefore, the sign of 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is calculated as follows: 

{
 

 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = r − √cx
2 + cy

2 > 0 𝑖𝑓 cy < 0

𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = √cx
2 + cy

2 − 𝑟 < 0 𝑖𝑓 cy > 0

   (2.8) 

In cases where cy = 0 then: 

{
  𝑖𝑓 cy = 0 𝑎𝑛𝑑 cx < 0 →  𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = r − |cx| > 0  

𝑖𝑓 cy = 0 𝑎𝑛𝑑 cx > 0 → 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = |cx| − 𝑟 < 0
  (2.9) 

Moreover, both procedures enable calculating the coordinates of the horizon point 

P (xP, yP) in the image plane (see Fig. 2.1B) centered at principal point 𝑜 = (0,0) 
as: 

{
𝑥𝑃 = 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 ∗ sin(ψ)

𝑦𝑃 = 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 ∗ cos(ψ)
   (2.10) 

It is necessary to consider in (2.10) the appropriate sign of 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛 as explained 
above. The observed horizon line could then be indicated in the photos as Fig. 
2.1A shows. 

Step 2: Once the x’ axis is positioned parallel to the horizon line, the image plane 
must be oriented parallel to the object plane by means of another rotation 

angle (– ξ) – that is the complementary one of the pitch angle defined in 

Schwendeman and Thomson (2015). The x’y’z’-coordinate system rotates a 

clockwise angle (– ξ) to generate an x’’y’’z’’-coordinate system, being x’’=x’ and 
z’’=Z (the elevation coordinate). Thus, in this step the image orients around the x’ 
axis, keeping this parallel to the horizon line and positioning the y’-axis on a plane 
which passes through the principal point and is parallel to the object plane (XY) 

(see Fig. 2.2). In this way, (-ξ) coincides with the angle formed between y*’ axis 

(whose origin is 𝐶𝑐 and is parallel to y’) and a plane parallel to the terrain pointing 
to infinity (y*’’). 

We consider the vector 𝑣⃗ perpendicular to the object plane whose origin is the 

optical center of the camera. The ξ angle (represented in Fig. 2.2) then coincides 

with the angle formed between such vector 𝑣⃗ and the vector perpendicular to the 

y’-axis that goes from the camera’s centre 𝐶𝑐 to the principal point o. 
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In the triangle formed by 𝐶𝑐, 𝑜  and 𝑃 (the point where the minimum distance 

between the principal point and the horizon line is reached), the angle 𝐶𝑐̂  can be 
calculated as:  

𝐶𝑐̂ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛/𝑓) ∈ ]−
𝜋

2
,
𝜋

2
[   (𝐴. 11) 

being f the positive value of the camera focal length which coincides with the 

distance between 𝐶𝑐   and 𝑜. We note that the meaning of that angle is from the 

vector 𝐶𝑐  𝑜 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  to 𝐶𝑐  𝑃 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and its sign coincides with 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛, distance as defined by 
formulas (2.7)-(2.9) and which can be positive or negative. 

 

Fig. 2.2. Spatial orientation of the image with the graphical definition of angle ξ. 

Naturally, the scope of our vision to the horizon will depend on the height (𝑍𝐶𝐶 ) at 

which the observer is located, as well as the existent geographic features in front of 
our view. It is known that the field of view of the ground surface extends from the 
observer’s feet to the horizon (Ooi et al., 2001) establishing a trigonometric 
relationship where an object at infinity is seen as uppermost. Knowing the 

elevation of the camera 𝑍𝐶𝐶 > 0, and being 𝑅𝑡 the approximate radius of the 
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Earth (6371 Km), we can then compute an approximation to the geographical 
distance D between the observer and the horizon by means of the formula:  

𝐷 = +√(𝑍𝐶𝐶 + 𝑅𝑡)
2
− 𝑅𝑡

2 > 0  (2.12) 

When sitting on the beach, facing the sea, and looking one-meter above the water, 
the horizon will be distinguished within D=3.57 km. However, this observed 
distance will increase - although disproportionally – as height increases. 

The next step is to compute the angle 𝛽 between 𝑣⃗ vector and the line between the 
observer and the horizon. To achieve this we take into account the refraction and 
terrestrial sphericity correction (1 mm of error in 100 m of distance). However, 
sometimes when the observer’s elevation is low, this correction becomes irrelevant. 

The formula to calculate angle 𝛽 is: 

𝛽 = 𝑎𝑟𝑐𝑐𝑜 𝑠 (
𝑍𝐶𝐶 + 0.42 ∗ 𝐷

2/𝑅𝑡

𝐷
) ∈ ]0,

𝜋

2
[   (2.13) 

Therefore: 

ξ = 𝛽 − 𝐶𝑐̂ = 𝑎𝑟𝑐𝑐𝑜 𝑠 (
𝑍𝐶𝐶 + 0.42 ∗

𝐷2

𝑅𝑡
𝐷

) − 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑓
)   (2.14) 

If 𝐶𝑐̂ > 0, ξ definition must be ξ = (𝛽 − 𝐶𝑐̂) > 0, verifying ξ ∈ ]0, 𝜋[. The 

extreme interval values (ξ = 0 & ξ = π) are impossible values because the image 
plane would be parallel to the object plane – as happens in a vertical photo – 
where the horizon cannot be seen. 

After computing ξ by means of (2.14), the x’y’z’-system rotates the clockwise 

angle(−ξ) about the x’ axis to generate an x’’y’’z’’-coordinate system. The 
coordinates of any point in the x’y’z’-system can be calculated from the x’’y’’z’’-
system by: 

(
𝑥′

𝑦′

𝑧′
) = (

1
0
0
 

0
cos (−ξ)

sin (−ξ)
 

0
– 𝑠𝑖𝑛(−ξ)

cos (−ξ)
)(

𝑥′′

𝑦′′

𝑧′′

)

= (
1
0
0
 

0
cos (ξ)

−sin (ξ)
 

0
𝑠𝑖𝑛(ξ)

cos (ξ)
)(

𝑥′′

𝑦′′

𝑧′′
) = 𝑅ξ (

𝑥′′

𝑦′′

𝑧′′
) (2.15) 

Step 3: The third and last angle (𝜆) of the Euler triad is the azimuth and this 
positions the coordinate axis (x’’, y’’, z’’) regarding the real terrain coordinates and 
around the z’’=Z axis. 
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(
𝑥′′

𝑦′′

𝑧′′
) = (

cos (𝜆)

−sin (𝜆)

0

 
𝑠𝑖𝑛(𝜆)

cos (𝜆)

0

 
0
0
1
)(

𝑋
𝑌
𝑍
) = 𝑅𝜆 (

𝑋
𝑌
𝑍
) (2.16) 

Summarizing, these three new angles are responsible for carrying out the 
transformation between the image vectors and the terrain vectors with an initial 
rotation in the image plane around the focal axis, a second rotation turning on the 
x’’ axis, and the final rotation again around the Z axis:  

(
x
y
z
) = RψRξRλ (

X
Y
Z
) = (

cos (ψ)
−sin(ψ)

0

 
sin(ψ)
cos (ψ)
0

 
0
0
1
)(

1
0
0
 

0
cos (ξ)
−sin(ξ)

 

0
sin(ξ)
cos (ξ)

)(
cos (λ)
−sin(λ)

0

 
sin(λ)
cos (λ)
0

 
0
0
1
)(

X
Y
Z
) 

 

Finally, the rotation matrix can produce the change of coordinates since the image 

to the terrain reference systems is 𝑅𝜆𝜉𝜓 = (𝑅𝜓𝑅𝜉𝑅𝜆)
𝑇: 

(
X
Y
Z
) = (

cos λ cosψ − sinλ cosξ sin ψ −sinλ cosξ  cosψ − cosλ sinψ sin ξ sin λ
sin λ cosψ +cosλ cosξ sin ψ cosλ  cosξ cosψ − sin λ  sinψ −sin ξ cos λ 

sin ξ sin ψ cosψ sinξ cosξ
) (
x
y
z
) 

(2.17) 
 

2.2.2. Obtaining the horizon constraint 

Equating the two rotation matrices 𝑅𝜆𝜉𝜓 and 𝑅𝜅𝜑𝜔, which describe the change of 

coordinate systems (2.2) and (2.17), it is possible to build the following horizon 

constraint equations. These will relate 𝜓  and 𝜉  angles – defined by means of (2.3) 

to (2.5) and (2.14) – with the three known angular external orientation parameters 

(EOP), {𝜔, 𝜑, 𝜅 }:  
cos (𝜉) = cos(𝜑) cos(𝜔)  (2.18) 

cos(𝜓) sin (𝜉) = cos(𝜑) sin(𝜔) (2.19) 

sin(𝜓) sin(𝜉) = −sin (𝜑)  (2.20) 

 

Because ψ ∈ [−𝜋/2, 𝜋/2], ξ ∈ ]0, 𝜋[ and 𝜑 ∈ [−𝜋/2, 𝜋/2] then cos(𝜓) ≥ 0, 
sin(𝜉)>0 and cos(𝜑)≥0. Consequently, by using equation (2.19) we may conclude 

that sin(𝜔)≥0, and so 𝜔 𝜖 [0, 𝜋]. When  𝜓 ∈ ] − 𝜋/2, 𝜋/2[  then cos(𝜓)>0 and it 

is possible to confirm that 𝜑 ∈ ] − 𝜋/2, 𝜋/2[ and 𝜔 ∈ ]0, 𝜋[. Moreover, we 

notice that 𝜓 = ±𝜋/2 only in cases when we apply equation (2.5) for computing 

𝜓. In those cases: 

𝜓 =
𝜋

2
→ 

{
 
 

 
 𝜑 = −ξ,   𝜔 = 0 𝑖𝑓 𝜉 ∈ ]0,

𝜋

2
[ 

𝜑 = ξ − π,   𝜔 = 𝜋 𝑖𝑓 𝜉 ∈ ]
𝜋

2
, 𝜋[

𝜑 = −
𝜋

2
, 𝜔 𝑢𝑛𝑘𝑛𝑜𝑤𝑛  𝑖𝑓 𝜉 =

𝜋

2
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and 𝜓 =
−𝜋

2
→ 

{
 
 

 
 𝜑 = ξ,   𝜔 = 0 𝑖𝑓 𝜉 ∈ ]0,

𝜋

2
[ 

𝜑 = ξ −
π

2
,   𝜔 = 𝜋 𝑖𝑓 𝜉 ∈ ]

𝜋

2
, 𝜋[

𝜑 =
𝜋

2
, 𝜔 𝑢𝑛𝑘𝑛𝑜𝑤𝑛  𝑖𝑓 𝜉 =

𝜋

2

 

Thus, without loss of generality, in the following steps we will assume that 

𝜓 ∈ ] − 𝜋/2, 𝜋/2[, 𝜑 ∈ ] − 𝜋/2, 𝜋/2[ and 𝜔 ∈ ]0, 𝜋[. Equation (2.20) tells us 

that sin(𝜓) and sin(𝜑) have different signs and so: 

𝜑 ∈ ]0, 𝜋/2[, If 𝜓 ∈ ] − 𝜋/2, 0[

𝜑 ∈ ] − 𝜋/2, 0[, If 𝜓 ∈ ]0, 𝜋/2[

𝜑 = 0, If 𝜓 = 0
}        (2.21) 

However, we can distinguish three different situations in accordance with equation 
(2.18): 

𝜔 ∈ ]0, 𝜋/2[, If 𝜉 ∈ ]0, 𝜋/2[ 

𝜔 ∈ ]𝜋/2, 𝜋[, If 𝜉 ∈ ]𝜋/2, 𝜋[

𝜔 = 𝜋/2, If 𝜉 = 𝜋/2 
}        (2.22) 

Joining (2.19) and (2.20) and considering that 𝜑 ∈] − 𝜋/2, 𝜋/2[ and 𝜔 𝜖 ]0, 𝜋[, 
equations (2.18)-(2.20) lead to the following equation system: 

 
cos (𝜉) = cos(𝜑) cos(𝜔)

tan(𝜓) =
−sin (𝜑)

cos(𝜑)sin (𝜔)

} (2.23) 

being cos(𝜑) sin(𝜔) >0 and 𝜓 and 𝜉 the horizon angles defined by means of (2.3)-
(2.5) and (2.14) respectively. Thus, the resulting horizon equations expressed in 

terms of ω and φ  parameters are: 

{
arccos(cos (φ)cos(ω)) =  ξ ϵ ]0, π[       → arccos(cos (φ)cos(ω)) − ξ = 0

arctan (
−sin (φ)

cos (φ)sin(ω)
) =  ψ ϵ ] − 𝜋/2, 𝜋/2[  → arctan (

−sin (φ)

cos (φ)sin(ω)
) − ψ = 0

    (2.24) 

 

2.2.3. Obtaining from the horizon an initial solution of the camera 
orientation parameters  

We can use (2.23) to find an initial estimation of the angles {ω, 𝜑} that define the 
orientation of the càmera in (2.1). If we compute the solution of the system (2.23), 
we obtain: 

𝑠𝑖𝑛2(𝜑) =
1 − cos2(ξ)

1 +
1

tan2(𝜓)
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Moreover, it is important to avoid numerical errors when tan(𝜓) is close to zero 

due to 1/tan (𝜓)2~∞ so we use the following expression to compute 𝜑: 

𝑠𝑖𝑛2(𝜑) =
1 − cos2(ξ)

tan2(𝜓) + 1
tan2(𝜓)

=
tan2(𝜓) sin2(ξ)

tan2(𝜓) + 1
    (2.25) 

Because 0≤sin2(ξ)≤1, we then confirm that 0 ≤
tan2(𝜓) sin2(ξ)

tan2(𝜓)+1
≤ 1, having finally 

defined the next mathematical expression for angle 𝜑: 

sin(𝜑) = ±√
tan2(𝜓) sin2(ξ)

tan2(𝜓)+1
= ±√sin2(ξ) sin2(𝜓) = ± |sin(ξ) sin (𝜓)|  (2.26) 

Focusing on to the first equation of (2.21), the angle 𝜔  can be expressed as: 

cos(𝜔) = ±√
cos2(ξ)(tan2(𝜓)+1)

1+cos2(ξ) tan2(𝜓)
= ±

|cos (ξ)|

√cos2(𝜓) + cos2(ξ) sin2(𝜓)
 (2.27) 

Taking into account the relations between {𝜔,𝜑} and {𝜓, ξ} proven in (2.21) and 
(2.22), the next formulas involve all the possible situations in which these two 
angles can interact in terrestrial photography: 

{
𝜑 = −arcsin (sin(ξ) sin(𝜓));  𝜑 ϵ ] − 𝜋/2, 𝜋/2[ 

𝜔 =   + arccos (
cos(ξ)

+√cos2(𝜓)+cos2(ξ) sin2(𝜓)
) ;  𝜔 ϵ ]0, π[

  (2.28) 

Furthermore, regarding the initial value for the third angle 𝜅, this can be 
approximated in accordance with the direction in which the photo is pointing. The 
methodology implemented in C-Pro allows the user to choose the quadrant 
between cardinal points where the principal camera axis seems to point and 

associates that with a proposed angular value. Therefore, angle 𝜅 is initialized as: 

{

𝑖𝑓 𝑝ℎ𝑜𝑡𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑁𝑜𝑟𝑡ℎ 𝑎𝑛𝑑 𝐸𝑎𝑠𝑡 →  𝜅 = −𝜋/4 ; 
𝑖𝑓 𝑝ℎ𝑜𝑡𝑜 𝑝𝑜𝑖𝑛𝑡𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑜𝑢𝑡ℎ 𝑎𝑛𝑑 𝐸𝑎𝑠𝑡 →  𝜅 = −3𝜋/4 ; 
𝑖𝑓 𝑝ℎ𝑜𝑡𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑁𝑜𝑟𝑡ℎ 𝑎𝑛𝑑 𝑊𝑒𝑠𝑡 →  𝜅 = 𝜋/4 ; 
𝑖𝑓 𝑝ℎ𝑜𝑡𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑜𝑢𝑡ℎ 𝑎𝑛𝑑 𝑊𝑒𝑠𝑡 →  𝜅 = 3𝜋/4 ; 

   (2.29) 

 
2.3. METHODOLOGY 
 
2.3.1. A photogrammetric system 
 
The analytical method consists of three main processes: calibration and image 
correction; repositioning of the camera; and image rectification. The followed 
protocol establishes a strong and rigorous geometric connection between both 
terrestrial and image spaces with the implementation of the horizon constraint in 
the collinearity system (described in Section 2.2). Moreover, the tool will compute 
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the adjustment adapting to different situations depending on the number of 
initially known and unknown external and internal orientation parameters. 
 
2.3.1.1. Camera calibration and image correction 
 
In photogrammetry, the extraction of metric information requires a precise 
knowledge of the internal orientation parameters (IOP) –principal point 

coordinates o=(𝑥0, 𝑦0) and focal length (f)– and the distortion coefficients of the 
non-metric camera lens (assuming rectangular pixels skew factor is generally 
negligible). A camera acquires images composed of pixels where each pixel 
captures light traveling along the projection of a 3D ray. The projection rays in 
principle can be placed arbitrarily assuming the absence of a functional relationship 
between the projection rays and the pixels directed by the intrinsic parameters. 
Thus, the calibration is described in accordance with the coordinates of these rays 
(given in the local coordinate system) and the correspondence between the rays 
and pixels. After such calibration, each ray of the bundle passes correctly through 
the optical center. 
 
In the present work, as we had access to the cameras, an a-priori laboratory study 
of the acquisition system itself was made. It is known that self-calibration can 
improve the accuracy of non-metric cameras (Chandler et al., 2005). This shows 
the potential that cheap cameras have for measuring surfaces when the lens model 
has been considered and a correct calibration of the intrinsic camera parameters 
has been made. 
 
The calibration involves applying the Matlab camera calibration toolbox of 
Bouguet (2015). This calibration tool works with a series of images on a pattern 
like a checkerboard with the camera focused to infinity and taking the photos from 
different points of view and changing orientation and position. The IOP are 
estimated by an initial approach linearizing the equations and a least squares 
adjustment. These parameters are generally invariant and unique for each camera 
under similar conditions (Holland et al., 1997). Removing the induced effects of 
these intrinsic camera parameters, the image is corrected and undistorted by the 
empirical inverse model for compensating lens distortions proposed by Heikkila 
and Silvén, 1997. After the image correction, a correct geometric relation between 
the image and terrain systems will exist and the center of the undistorted image will 
coincide with the center of the original image – and will be consistent with the 
formulas shown in the following sections. 

 
2.3.1.2. Camera repositioning 

The process of determining the orientation parameters is understood as spatial 
resection and is considered as a particularization of a photogrammetric 
triangulation for a simple image. The six EOP recreates the moment in which a 
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photo is taken and defines the object coordinates of the camera center 

{X𝐶𝐶 , Y𝐶𝐶 , Z𝐶𝐶}, and its orientation angles {ω,φ, κ}. Thus, it is necessary to 

establish a strong and effective relation between the terrain and the image spaces 
before using the photos for photogrammetric purposes. 

The protocol carried out in the present work to calculate the orientation 
parameters follows one of two methodologies - depending on the number of 
available GCPs (three being the minimum). 
 
Direct Linear Transformation 
 
Direct linear transformation (DLT) (Abdel-Aziz and Karara, 1971) is the most 
widely user linear camera calibration method because of its simplicity (Bacakoglu 
and Kamel, 1997). DLT does not require initial knowledge of the approximate 
orientation parameters because these are implicit in the 11 transformation 
parameters. DLT theoretically adapts better to specific tasks, especially to close 
range photogrammetry – which differs from our goals in coastal areas -. However, 
inside our protocol, DLT usefully provides the initial approximated values for 
those unknown EOP in which the collinearity least squares fitting needs input data 
to start. A great benefit of the DLT method is its linear quality regarding numerical 
problems that could appear and we must be careful when the control points are 
coplanar because then the 11 transformation parameters cease to be independent.  
 
One control point with known terrain coordinates (X, Y, Z) and its corresponding 
image coordinates (x, y) generates two linear equations which are expressed by the 
following system of linear equations: 

(
𝑋
0
 
𝑌
0
 
𝑍
0
 1
 0
 
0
𝑋
 
0
𝑌
 
0
𝑍
 
0
1
 
−𝑥𝑋
−𝑦𝑋

 
−𝑥𝑌
−𝑦𝑌

 
−𝑥𝑍
−𝑦𝑍

) 𝐿 = (
𝑥
𝑦)   → 𝐴 𝐿 = (

𝑥
𝑦)     (2.30) 

being 𝐿 = (𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝐿6, 𝐿7, 𝐿8, 𝐿9, 𝐿10, 𝐿11)
𝑇 . An overdetermined set of 

linear equations: 𝑀 𝐿 = 𝑁 is obtained by applying (2.30) for a minimum of six 
GCPs. We can then obtain L using the least square method so that: 
 

𝐿 = (𝑀𝑇𝑀)−1𝑀𝑇𝑁                         (2.31) 

The current relation between these 11 DLT parameters, 𝐿, and the other 9 

(internal and external camera parameters) of the collinearity equations is well-

known. Changing an n-dimensional space to another n-dimensional space requires 

maintaining the number of parameters to preserve consistency between the spaces. 

Therefore, this work has implemented an affine transformation – including two 

additional parameters that are a scale factor and a value of perpendicularity (h, d). 

The determination of these 11 independent orientation parameters – five internal 

(x0, y0, f, h, d) and six external {Xo, Yo, Zo, ω, φ, κ} parameters – from the DLT 

parameters is achieved with the formulation described in Seedahmed and Habib, 
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2002. Nevertheless, as is known, the resulting parameters will be just an initial 

approximation. If it is possible to establish the internal parameters as a result of the 

camera calibration, or if the camera position is available, then it would be 

preferable to use these. Moreover, when the horizon appears in the photo, the 

values obtained by DLT will not be used as initials, because we would prefer those 

obtained by (2.28) and (2.29) as section 2.4 proves. 

 
Refinement process by collinearity 

To guarantee a strong relationship between terrain and image spaces, an iterative 
adjustment system must be carried out to obtain the parameters that recreate the 
time of the shoot as faithfully as possible. This point of the mathematical process 
is where it is necessary to introduce a geometric constraint to add methodological 
rigor. Photographs of a beach area usually present homogeneous characteristics 
that hinder a proper distribution of the GCPs. However, the horizon curve is an 
essential strategic element. In this locus, all vanishing points of the image converge 
and therefore it acts as if we had a set of control points at infinity. Thus, having the 
horizon mathematically characterized and relating it to the EOP by means of 
(2.24), our methodological protocol proposes the inclusion of these novel 
constraints in the adjustment to obtain a much more accurate solution. 

All iterative adjustment starts from an initial approximate solution of all the 
parameters. The prior values for the internal parameters can correspond with those 
obtained by DLT, or by the camera calibration process. Depending on the 
reliability of these initial parameters, the collinearity will then be resolved and so 
free all the parameters if they are from DLT, or freeing only six because the IOP 
will remain fixed (providing they are produced after calibration and are accurate 
enough).  

The initial camera position coordinates are obtained by the camera user, but in 

cases where this is not possible they are approximated by the DLT method. When 

the horizon appears in the image, initial orientation parameters,{ω,φ, κ}, are 

computed by means of (2.28) and (2.29). In other cases, those values are also 

obtained by the DLT. 

The resolution of the spatial resection by the collinearity condition is carried out 
developing the classical non-linear equations of the central projection for each 
GCP that may be expressed by:  

 

𝑥 − 𝑥0 + 𝑓
𝑚11(𝑋 − X𝐶𝐶) +𝑚12(𝑌 − 𝑌𝐶𝐶) + 𝑚13(𝑍 − Z𝐶𝐶)

𝑚31(𝑋 − X𝐶𝐶) + 𝑚32(𝑌 − 𝑌𝐶𝐶) + 𝑚33(𝑍 − Z𝐶𝐶)
= 0

𝑦 − 𝑦0 + 𝑓
𝑚21(𝑋 − X𝐶𝐶) +𝑚22(𝑌 − 𝑌𝐶𝐶) + 𝑚23(𝑍 − Z𝐶𝐶)

𝑚31(𝑋 − X𝐶𝐶) +𝑚32(𝑌 − 𝑌𝐶𝐶) + 𝑚33(𝑍 − Z𝐶𝐶)
= 0

}
 
 

 
 

           (2.32) 
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which relates the position of the GCP, (X,Y,Z), in the object space of the position 

of its image point (x,y) in the image plane, being {𝑥0, 𝑦0} the principal point 

coordinates in the image plane, {X𝐶𝐶 , 𝑌𝐶𝐶 , Z𝐶𝐶} the location in the object space of 

the camera center, 𝑓 the positive focal length and M= 𝑅𝜅𝜑𝜔
𝑇 the transposition of 

the rotation matrix defined in (2.1), whose expression has been used in (2.2). 

Assuming that we know the coordinates (X,Y,Z) and (x,y) of a GCP, we define the 
following functions: 

𝐹𝑥(ω, φ, κ, X𝐶𝐶 , Y𝐶𝐶 , Z𝐶𝐶 , 𝑥0, 𝑦0, f) = 𝑥 − 𝑥0 + 𝑓
𝑚11(𝑋 − X𝐶𝐶) + 𝑚12(𝑌 − 𝑌𝐶𝐶) + 𝑚13(𝑍 − Z𝐶𝐶)

𝑚31(𝑋 − X𝐶𝐶) + 𝑚32(𝑌 − 𝑌𝐶𝐶) + 𝑚33(𝑍 − Z𝐶𝐶)

𝐹𝑦(ω, φ, κ, X𝐶𝐶 , Y𝐶𝐶 , Z𝐶𝐶 , 𝑥0, 𝑦0, f) = 𝑦 − 𝑦0 + 𝑓
𝑚21(𝑋 − X𝐶𝐶) + 𝑚22(𝑌 − 𝑌𝐶𝐶) + 𝑚23(𝑍 − Z𝐶𝐶)

𝑚31(𝑋 − X𝐶𝐶) + 𝑚32(𝑌 − 𝑌𝐶𝐶) + 𝑚33(𝑍 − Z𝐶𝐶)}
 
 

 
 

(2.33) 

A linearization process of (2.33) must be carried out before obtaining a 
simultaneous solution of the equations (2.32) while considering several GCPs. 
Thus, by linearizing equations (2.32) in accordance with the Taylor series of (2.33) 
and depreciating the infinitesimals of the second order we obtain the next formulas 
for each GCP: 

(
𝐹𝑥
𝐹𝑦
)
0

+ (

𝜕𝐹𝑥

𝜕𝜔
  

𝜕𝐹𝑦
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𝜕𝐹𝑦
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𝜕𝐹𝑥

𝜕𝑋𝑜
  

𝜕𝐹𝑦

𝜕𝑋𝑜

𝜕𝐹𝑥

𝜕𝑌𝑜
  

𝜕𝐹𝑦

𝜕𝑌𝑜

𝜕𝐹𝑥

𝜕𝑍𝑜
  

𝜕𝐹𝑦

𝜕𝑍𝑜

|

𝜕𝐹𝑥

𝜕𝑥0
 

𝜕𝐹𝑦

𝜕𝑥0

𝜕𝐹𝑥

𝜕𝑦0
 
𝜕𝐹𝑥

𝜕𝑓

 
𝜕𝐹𝑦

𝜕𝑦0
 
𝜕𝐹𝑦

𝜕𝑓

)

0

(

 
 
 
 
 
 
 

𝑑𝜔
𝑑𝜑
𝑑𝜅
𝑑X𝐶𝐶
𝑑𝑌𝐶𝐶
dZ𝐶𝐶

𝑑𝑥0
𝑑𝑦0
𝑑𝑓 )

 
 
 
 
 
 
 

= (
0
0
) (2.34) 

where the subscript zero indicates that the 𝐹𝑥 and 𝐹𝑦 functions (defined by means 

of (2.33)) and partial derivatives (Jacobian matrix) are particularized for the initial 
approximate values of the parameters for each GCP.  

In this chapter, we propose to include the geometric horizon constraint in the 
refinement adjustment (2.34), using the mathematical procedure described in 
Section 2.2. Thus, we consider equations (2.24) and we define the following 
functions: 

 FHξ(ω, φ) = arccos(cos (φ)cos(ω)) − ξ

 FHψ(ω, φ) = arctan (
−sin (φ)

cos (φ)sin(ω)
) − ψ

}     

considering that ψ and ξ are defined constants, respectively, by means of (2.3)-(2.5) 
and (2.14), using the horizon information through the marked points A, B, and C 
in the image. Thus, we add to the collinearity system (2.34) these two new 
linearized equations: 
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(
 FHξ
 FHψ

)
0

+

(

 
 

𝜕 FHξ

𝜕𝜔

𝜕 FHξ

𝜕𝜑
0 0 0 0 0 0 0

𝜕 FHψ

𝜕𝜔

𝜕 FHψ

𝜕𝜑
0 0 0 0 0 0 0

)

 
 

0

(

 
 
 
 
 
 
 

𝑑𝜔
𝑑𝜑
𝑑𝜅
𝑑X𝐶𝐶
𝑑𝑌𝐶𝐶
dZ𝐶𝐶

𝑑𝑥0
𝑑𝑦0
𝑑𝑓 )

 
 
 
 
 
 
 

= (
0
0
)     (2.35) 

If the IOP have been computed by calibration, the refinement process only aims to 

obtain the correction for the six EOP {𝑑𝜔, 𝑑𝜑, 𝑑𝜅, 𝑑X𝐶𝐶 , 𝑑𝑌𝐶𝐶 , dZ𝐶𝐶}. By 

applying collinearity with a minimum of three GCP, a system formed by those 
classical collinearity equations (2.34) together with (2.35) will then be solved. 

However, if the correction of the three IOP {𝑑𝑥0, 𝑑𝑦0, 𝑑𝑓} also needs to be 
computed, then the tool will solve collinearity for nine parameters requiring at least 
four GCP. This case occurs when the IOP come from DLT. The whole spatial 
resection system formed by the above expressions (2.34-2.35) will be expressed as, 

B (dP) = K                              (2.36) 

being: 

𝑑𝑃 = (𝑑𝜔, 𝑑𝜑, 𝑑𝜅, 𝑑X𝐶𝐶 , 𝑑𝑌𝐶𝐶 , dZ𝐶𝐶)
𝑇
 or 

𝑑𝑃 = (𝑑𝜔, 𝑑𝜑, 𝑑𝜅, 𝑑X𝐶𝐶 , 𝑑𝑌𝐶𝐶 , dZ𝐶𝐶 , 𝑑𝑥0, 𝑑𝑦0, 𝑑𝑓)
𝑇
 

considering the appropriate number of GCP for each of the situations commented 
above. System (2.36) will be resolved by the weighted least square method whose 
solution gives us the parameter correction: 

𝑑𝑃 = (𝐵𝑇𝑊𝐵)−1𝐵𝑇𝑊𝐾                        (2.37) 

where 𝑊 is a diagonal weight matrix. The weight assigned to the classical 
collinearity equations (2.34) is the same for all, but can vary depending on the 
reliability associated by the user with each of the GCP. As equations (2.35) should 
act as a constraint to the fitting, the weights assigned to these equations in our 
methodology are much higher than those used for the equations related to GCP 
(2.34). We will study the influence of those weights in Section 4. As a consequence, 
an accurate determination of the initial points to form the horizon approximation 
is important. In the results section, some performances analyze how the weight of 
the horizon equations influence in the resection adjustment. 

We will consider an iterative process solving each step of the system (2.36) 
considering the parameters computed with the correction of the above iteration. 

Thus, in (2.36) B and K are defined in the k-iteration (𝑘 ≥ 1) using the solution 
obtained in the (k-1)-iteration so: 



Photogrammetry and image processing techniques for beach monitoring 

 

 54 

(𝜔𝑘 , 𝜑𝑘 , 𝜅𝑘, 𝑋𝐶𝐶
𝑘, 𝑌𝐶𝐶

𝑘, 𝑍𝐶𝐶
𝑘, 𝑥0

𝑘, 𝑦0
𝑘, 𝑓𝑘)=

(
𝜔𝑘−1 + 𝑑𝜔𝑘−1, 𝜑𝑘−1 + 𝑑𝜑𝑘−1, 𝜅𝑘−1 + 𝑑𝜅𝑘−1, 𝑋𝐶𝐶

𝑘−1 + 𝑑𝑋𝐶𝐶
𝑘−1, 𝑌𝐶𝐶

𝑘−1 + 𝑑𝑌𝐶𝐶
𝑘−1,

𝑍𝐶𝐶
𝑘−1 + 𝑑𝑍𝐶𝐶

𝑘−1, 𝑥0
𝑘−1 + 𝑑𝑥0

𝑘−1, 𝑦0
𝑘−1 + 𝑑𝑦0

𝑘−1, 𝑓𝑘−1 + 𝑑𝑓𝑘−1
) 

(2.38) 

That process finishes when each of the correction parameters becomes 
insignificant (the established threshold is equal to 10−10).  

To establish the convergence of the system, at the beginning of the k-iteration, 

(𝑘 ≥ 1), the C-Pro tool will color in green the calculated image coordinates of the 
GCP by computing (x,y) by means of the collinearity equations (2.32), considering 
the parameters obtained using (2.38) and the (X,Y) coordinates of each GCP. 
Moreover, the horizon line will be approximated using the following equation: 

𝑦 = 𝑦0
𝑘 + 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑘 cos(ψ𝑐𝑎𝑙𝑐
k ) − tan(ψ𝑐𝑎𝑙𝑐

k ) (𝑥 − 𝑥0
𝑘−𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑘 sin(ψ𝑐𝑎𝑙𝑐
k ))       (2.39) 

where: 

𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝑘 = −𝑓𝑘 ∗ 𝑡𝑎𝑛 (𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠(𝜑𝑘) 𝑐𝑜𝑠(𝜔𝑘)) − 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑍𝐶𝐶
𝑘+0.42∗

(𝐷𝑘)2

𝑅𝑡

𝐷𝑘
)  ) (2.40) 

being 𝐷𝑘 defined by means of (2.12) and Z𝐶𝐶
k defined by (2.38); and: 

ψ𝑐𝑎𝑙𝑐
k = arctan (

−sin (φk)

cos (φk)sin(ωk)
)     (2.41) 

Thus, the horizon line is recomputed in each iteration with the newest parameters 
until the adjustment process ends. 

 
2.3.1.3. Image rectification and data extraction 

Once the repositioning camera has been fruitfully achieved, the rectification 
process can be done. In our tool, the user can choose whether to project a piece of 
the image or just an element contained therein over a specific plane with a known 
ZT value. 
 
Choosing the first option, the tool detects the image limits in terrain coordinates 
and a georeferenced grid is created for a specific pixel size on the specific ZT. Each 
pixel is then filled by an image intensity value through inverse mapping techniques 
and using the nearest neighbor interpolation method. In this case, the final product 
is a rectified georeferenced image (Tiff World File) used by standard GIS 
applications. 
 
Nevertheless, by following the second option, the user can digitalize a specific 
feature of interest as a coastal indicator – such as an established shoreline, the 
landward edge, the foredune toe, the cliff top – or just upload a file with the image 
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coordinates that the C-Pro tool is expected to project. This coordinate rectification 
is then either done by collinearity equations (2.32) or by the DLT – both methods 
lead to the same solution. In the last case, we have to convert the camera’s internal 
and external parameters to the characteristic’s 11 transformation parameters of 
DLT which satisfy equations (2.30). From the DLT equations we can obtain the 
planimetric terrain coordinates (X, Y) projecting the image coordinates (x, y) of the 
indicator of interest on a specific ZT, considering the next linear equation system 
(2.42). 

{
(𝐿5 − 𝐿9𝑦)𝑋 + (𝐿6 − 𝐿10𝑦)𝑌 = (𝐿11𝑦 − 𝐿7)𝑍𝑇 + 𝑦 − 𝐿8  

(𝐿1 − 𝐿9𝑥)𝑋 + (𝐿2 − 𝐿10𝑥)𝑌 = (𝐿11𝑥 − 𝐿3)𝑍𝑇 + 𝑥 − 𝐿4
                      (2.42) 

It is interesting to note the importance of the ZT projection value because only the 
points located at this same elevation will be projected at the correct place. The 
remainder points will be displaced unless we project the photography over a digital 
terrain model supporting each pixel of the image with its associate altitudinal value. 
In this chapter the photographs are projected above the mean sea level (ZT=MSL) 
because the key image feature to be correctly georeferenced is the shoreline. 
However, in order to know the errors of the image rectification process, some 
terrain points have been projected over its associated altimetric coordinate 
(measured by RTK-GPS) and assessed its positional accuracy by solving (2.44). 

 
2.3.2. Practical implementation of C-Pro 

This section shows the main steps in the implementation of the C-Pro. 

Step 1: Calibration and image correction. 

1a) With calibrated IOP: If we have access to the cameras then we compute the 

IOP – principal point coordinates O=(𝑥0, 𝑦0) and focal length (f) – by image 
calibration. With unknown IOP: In the other cases, having at least six GCPs, the 
system calculates an IOP estimation by direct linear transformation (DLT). 

1b) The image is corrected and undistorted by the empirical inverse model for 
compensating lens distortion described in Bouguet (2015). 

Step 2: Repositioning of the camera through the spatial resection process.  

2a) Initial camera position {X𝐶𝐶 , 𝑌𝐶𝐶 , Z𝐶𝐶} is estimated by the user. However, when 

it is not possible, C-Pro will offer a first approximation of this through the DLT 
method (Section 2.3.1.2). 

2b) With horizon constraint (with HC): If the horizon appears in the image 

then, angle ψ is defined by means of (2.3) (case two points) or (2.4)-(2.5) (case 

three points). Moreover, ξ is computed using (2.14) through the marked horizon 
points in the image and considering the focal length (f) obtained in step 1 and the 
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camera center elevation Z𝐶𝐶  defined in 2a). {ω,φ, κ} are then computed by means 

of (2.28) and (2.29). Without horizon constraint (without HC): in cases where 

the horizon equation is not available, {ω,φ, κ} are estimated by the DLT. 

2c) C-Pro calculates the final EOP through an iterative weighted least squares 
fitting (2.37) over the linearized collinearity equations (2.34) (two equations for 
each GCP), which starts with the parameters defined in 2b) and finishes when each 

of the correction parameters become less than 10−10. The weight assigned to 
those equations is equal to 1, but can vary depending on the reliability associated 
by the user to each of the GCP. Moreover, in the cases with horizon constraint, 
the linearized horizon equations (2.35) are added with an associated weight of 

1012 to solve the photo geometry (2.34). The system will be resolved and freeing 
all parameters if the IOP in step 1 proceeds from DLT (with unknown IOP), or 
freeing only six of them when the IOP remains fixed by considering that they are 
computed in step 1 (with calibrated IOP). 

2d) To discover how the convergence of the system is progressing, C-Pro colors 
green (at the end of each iteration) the calculated image coordinates of the GCP by 
computing (x,y) by means of the collinearity equations (2.32) and considering the 
parameters obtained using (2.38). Moreover, the horizon line is also colored in 
green considering equation (2.39). 

Step 3: Image rectification 

3a) To project a piece of the image on a specific plane with a known ZT value, a 
georeferenced grid is created and each pixel is filled with an image intensity value 
through inverse mapping techniques and using the nearest neighbor interpolation 
method. 

3b) Collinearity equations (2.32) or the DLT equations given in (2.42) will be used 
to project an element contained in the image on a plane with a constant ZT 
coordinate. In the case of shoreline rectification, the MSL value is used as ZT. 
 
2.4. TESTING OF THE HORIZON CONSTRAINT AND C-PRO 
SOFTWARE 

Assessing the protocol proposed in this chapter, the following subsections show 
the benefits achieved by including the horizon constraint in the spatial resection 
process. 

The analyses are carried out in the three coastal areas described in this section and 
working with specific photogrammetry conditions that must be solved. The tests 
are made with non-fixed cameras. Therefore, in the first step of C-Pro, the IOP of 
the acquisition system were obtained through image calibration (Bouguet, 2015). 
However, some of the results of this section will be obtained when considering the 
IOP as unknown to prove that C-Pro also works accurately in such cases. 
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2.4.1. Data and study area 

The analyses are carried out in three coastal areas (Fig. 2.3). Two are in the region 
of Valencia on the Mediterranean coast (Spain) and are long micro-tidal beaches 
(tide regime is less than 0.18 m) with low and sandy coastlines and a wide shoal. 
Patacona beach and El Saler beach are popular with tourists and have suffered a 
marked erosion in recent decades due to sand retention by the jetties of the port of 
Valencia – north of El Saler beach – that interrupts the littoral drift (Sánchez-
García et al., 2015a). The third study area is Magoito beach, located in Sintra, on 
the Atlantic coast of Portugal. This is a mesotidal beach (tide range between 2 and 
3 m) with a long stretch of golden sand dotted with numerous rocks and imposing 
cliffs that rise from the beach. 

 

Fig. 2.3. Location map of the three study coastal areas. 

A photogrammetric analysis in the study area was carried out by simple non-fixed 
cameras. In the Valencian beaches the images were taken with a digital single-lens 
reflex camera (SONY DSLR-A330) whereas a Mobotix MX-M12D camera was 
used at Magoito. The zoom lens is fixed to infinity and care was taken to ensure 
that the photos do not blur. Furthermore, to achieve the different assessments 
shown in this chapter, it was necessary to ensure that the terrestrial horizon 
appears in the photo, at least partly, as well as a minimum of six non-coplanar 
GCPs that are well spread out and clearly and unequivocally displayed (Sánchez-
García et al., 2016). These theoretical conditions hardly ever occur because of the 
homogeneous media found on beaches, where most of the photo shows water and 
sand. Moreover, because GCPs generally cover a very small part of the whole 
picture, infinite control points representing the terrestrial horizon and located far 
from the camera help resolve the photogrammetric problem. 
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Concerning RTK-GPS data, existing terrain points were measured accurately in 
several previous field campaigns and acted as GCPs by solving the geometry of the 
photo through the link between image and terrain systems – or only as checkpoints 
for assessing the solvency of that photogrammetric solution and image 
rectification. The stability of these points was ensured during all the evaluation 
process. The camera coordinates were also acquired by GPS to subsequently 
measure the error obtained in camera positioning. The planimetric coordinates 
(XY) and orthometric altitudes (Z) are accurate to less than 2 cm in planimetry and 
within 4 cm in altimetry (referenced respectively in the UTM projection – GRS80 
– and the EGM08 geoid model). 

Magoito beach is a study area with good characteristics for the usual 
photogrammetry requirements. It was possible to locate the camera in a high place 
– an elevation of 35.6 m –, where a broad view of the beach area is seen and the 
horizon covers the entire width of the image (see Fig. 2.4). Moreover, during low 
tide it was possible to obtain 28 GPS points by taking advantage of some rocky 
elements that remained in sight. The distribution of these points through the target 
area – in this case generally centered in front of the camera – will condition the 
significance of the positional error, as we will see in the results section when we 
must distinguish between both longitudinal and cross-shore components of error. 
 

 

Fig. 2.4. Photo taken on Magoito beach at low tide. The GPS points (GCP and 
checkpoints) are shown in red. 

Secondly, the coastal photos at El Saler beach were taken from two non-fixed 
camera positions at the top of a 43 m high building but separated from the shore 
by around 230 m (a park with protected coastal dunes being between the building 
and the coast). Consequently, the shoreline is partially hidden in the photos. We 
call the shots CS or CN depending on the camera location on the south or north 
side of the building from where three and four photographs were taken 
respectively each day. From a specific position, the photos were taken sequentially 
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turning from north to south and numbering them by order. CN1 and CS1 photos 
capture almost the same target area but from another camera position. Moreover, 
depending on the photo orientation, the extent of horizon seen in the photos 
changes and we will analyze this in the results section to establish how this 
influences the horizon approximation formulas. Differences regarding the extent 
of the horizon are obvious in Fig. 2.5 depending on the existence of elements that 
hide it – such as the Port of Valencia in the northern part (CN1) and, to a lesser 
extent, the Cullera headland to the south (CS3). GPS points were measured along 
the entire area (about one kilometer long) and these points were included in photos 
that took advantage of fixed elements – outside the beach area – such as parking 
borders and pedestrian walkways. 

The photogrammetric field campaigns were made during two days, 25 May and 17 
June 2016, when the land-water border was measured (using RTK-GPS to record 
automatic coordinates every second). The availability of this data enables us to 
make comparisons with other digitized shorelines for the resulting and rectified 
photos and assess accuracy. 

 

Fig. 2.5. Three examples of photos at El Saler beach taken from different camera 

position on 17 June 2016; the first photo from the north camera (NC) and the other two 
from the south camera (CS). Distribution of the GPS points in the area is dotted in red 
and the horizon line is shown in blue. CN1 is an example of where the horizon formulas 
are obtained by two points, while CS2 and CS3 are obtained by three points. 

Finally, the third study area is Patacona beach where an additional longshore 
assessment was made on 22 September 2015. The photogrammetric procedure was 
performed twice – from same camera position but at different elevations – 
pointing north and south (changing the camera position). Taking advantage of a 

gangway near the shore, the photos were taken using a tripod (𝑍𝐶𝐶=4.7 m) to hold 

the spatial resection of the camera.  However, photos were then carefully taken 

from a handheld camera at the top of a stepladder (𝑍𝐶𝐶=6.8 m). Consequently, we 

have different solutions of the camera spatial resection for each image. Given the 
absence of fixed elements in the beach area, several surveying rods were used as 
GCPs (black points on the map and photos in Fig. 2.6), producing a maximum of 
six and nine GCPs respectively for the northern and southern photos. 

http://www.linguee.es/ingles-espanol/traduccion/pedestrian+walkway.html
http://www.linguee.es/ingles-espanol/traduccion/digitized.html
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Fig. 2.6. Mapping GPS data (GCPs and shoreline checkpoints) and two examples of 

photos acquired for the assessment at Patacona beach. This figure shows the procedure 
carried out where each shot is performed at the same time as the GPS trackers (three 
for the north and two for the south) record shoreline positions (checkpoints tagged and 
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numbered) and subsequently evaluated on the rectified photos. The extension of a 
usable horizon is marked with a blue line. Grid coordinates: GCS_ETRS89 UTM30N. 

 
The main goal of the experiment carried out in this area was to understand the 
functioning of our methodology when camera elevation is reduced. Moreover, to 
measure the longshore error after image rectification, a field campaign took a set of 
photos coincident in time with the data acquisition every 20 m for two or three 
GPS trackers. These devices were separated some 2 m apart and measured moving 
checkpoints for a distance of 280 m from the camera. We had to establish a 
distance limit because of the subsequent difficulties in the detection of those 
checkpoints in the image. Fig. 2.6 exemplifies the experiment performed showing a 
photo of the north beach and of the south beach where respectively the positions 
(checkpoints) of three and two GPS trackers are detected. We can also see that the 
horizon appears in less than half the image and so the horizon approximation 
formula uses two points. 

2.4.2. Improvement of camera positioning by adding the horizon constraint 
regardless of whether IOP is known or not 

The aim of this subsection is to establish the improvements and differences 
achieved by the influence of the horizon constraint in the spatial resection 
procedure (results of step 2c). For this reason, the resulting performances are 
achieved by applying C-Pro in various ways, that is, setting and not setting the IOP 
(depending on whether these are considered as unknown or known) and with and 
without including the horizon equations in the fitting.  

Validating the final EOP for each test at Magoito and Patacona beaches, Table 2.1 
summarizes the differences between these resulting camera coordinates against 
those accurately measured by GPS. To clarify, the camera positioning error (CPE) 
is:  

𝐶𝑃𝐸 = √(𝑋𝐶𝑐𝐺𝑃𝑆 − 𝑋𝐶𝑐)
2
+ (𝑌𝐶𝑐𝐺𝑃𝑆 − 𝑌𝐶𝑐)

2
+ (𝑍𝐶𝑐𝐺𝑃𝑆 − 𝑍𝐶𝑐)

2
           (2.43) 

being {X𝐶𝐶 , 𝑌𝐶𝐶 , Z𝐶𝐶} and {𝑋𝐶𝑐𝐺𝑃𝑆 , 𝑌𝐶𝑐𝐺𝑃𝑆 , 𝑍𝐶𝑐𝐺𝑃𝑆} the camera position coordinates 

obtained by C-Pro and RTK-GPS techniques respectively. 

It is observed that when the camera elevation is higher – as occurs in Magoito with 
a camera elevation of 35.6 m in comparison with the elevation of Patacona that 
ranges from 4.7 or 6.8 m – the uncertainty of the IOP causes system inconsistency 
and overstated positioning error. Results of Table 2.1 reveal the usefulness of the 
horizon constraint in step 2 of C-Pro. For both cases, with calibrated and 
unknown IOP, the horizon improves the convergence. However, it is in this last 
case when it becomes even more necessary to use the horizon to obtain a usable 
camera position. Regarding the differences between both horizon approximations, 
the Magoito beach image has a full view of the horizon (Fig. 2.4) and the 
approximation achieved by three points forming a circumference leads to slightly 
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better results. At Patacona beach, the horizon curve is built from only two points 
because the horizon is just seen in half of the photo (Fig. 2.5) and, consequently, 
its definition using three nearby points would not be rigorous. 

  CPE (m) 

  
Without horizon 

constraint 

With horizon constraint 

  
Case two 

points 
Case three 

points 

Magoito 
beach 

With calibrated 
IOP 

1.517 1.037 0.972 

With unknown 
IOP 

19.780 1.848 1.827 

Patacona 
beach 

With calibrated 
IOP 

0.847 0.566 - 

With unknown 
IOP 

3.395 0.742 - 

Table 2.1. CPE (m) achieved using (2.43) at Magoito and Patacona beaches. Errors are 

obtained by comparing the camera position coordinates calculated by C-Pro against 
those measured by GPS. Results for Patacona beach are the average values in each 
assessment from all errors shown in Fig. 4. 

 

Fig. 2.7. CPE obtained using (2.43) for 25 different performances and calculated 

following four different procedures for Patacona beach. Green indicates the use of the 
horizon constraint in the adjustment, whereas blue represents its absence. Moreover, the 
asterisks represent those results where the adjustment is made using free IOP and the 
dots where IOP are obtained by camera calibration. 

Figure 2.7 shows the results obtained for the 25 performances at Patacona beach 
where the least squares solution from step 2 of C-Pro has converged. CPE verifies 
the usefulness of including the horizon constraints (2.28)-(2.29) and (2.35) to 
obtain an accurate solution for the camera location regardless of whether the IOP 
are known by calibration or not. It is noteworthy that in most cases when the IOP 
are unknown, the system solution does not converge unless we introduce the 
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equations of the horizon constraint. In other cases, although the system converges, 
the achieved solution is not useful and the horizon equations help to obtain it with 
greater accuracy with errors of within 2 m in camera position (results of s4 in Fig. 
2.7). 

Therefore, thanks to the methodology implemented in this chapter, and despite 
photogrammetry weaknesses when the IOP are unknown, spatial resection of C-
Pro achieves accuracies that are in the range of those obtained when all the 
parameters are under control – an average CPE of 0.742 m versus 0.566 m 
respectively. However, the magnitude of this error is going to be strongly related 
with other conditioning factors. The main factors are: the GCP distribution; the 
degree of success produced during the detection in the photo of GCPs and 
horizon points; and the difficulties in image geometry. 

 

Fig. 2.8. Examples of the system convergence for two performances carried out at 

Magoito (A and B) and Patacona (C and D) beaches. The observed GCP positions and 
the observed horizon are shown in red respectively by points and a dashed line – 
adjustment input data – whereas the calculated position of these features (system 
solution after the iterative process) is shown in green by crosses for GCP and a dotted 
line for the horizon. A) and C) Wrong resulting convergence achieved without including 
the horizon constraint in the adjustment (the observed horizon is not involved); B) and D) 
Best convergence reached using the horizon as a system constraint (both with unknown 
IOP). 
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It is difficult to compute the error made in calculating the angular 

parameters {ω,φ, κ}. Nevertheless, the quality of these can be analyzed through 
the location of the control points and the horizon line after applying step 2d) of C-
Pro, as Fig. 2.8 shows at Magoito and Patacona beaches. Carrying out the spatial 
resection with unknown IOP, Figs. 2.7A and C show that in the adjustment made 
without including the horizon constraint, the resulting camera orientation is 
mistaken despite the convergence (the green line is wrongly indicating the 
calculated horizon direction). However, the resulting camera angles are more 
accurate when the horizon constraint is included in the adjustment that defines a 
correct horizon line. Thus, in this last case, both observed and calculated horizon 
lines – shown respectively in red and green in Figs. 2.7B and D – indicate an 
equivalent direction of the horizon. 

The next assessment is made to discover in more detail the way in which the 
system is converging into a specific solution in accordance with to the weight 
assigned in the two horizon equations of (2.35). The system is then solved several 
times for the same example – using the same photo and its associated GCP file – 
and adding weight each time to the horizon equations. The usefulness of the 
horizon constraint will be studied in Fig. 2.9 by analyzing the CPE of seven photos 
from Patacona beach. These seven cases show, even when horizon equations are 
not intervening (cases with a weight equal to zero), that the system always 
converges in a solution for the spatial resection even when the IOP are unknown.  

 

Fig. 2.9. CPE (m) obtained with C-Pro in seven different photos from Patacona beach 

are consistent with the assigned weight value in the two horizon equations of (3). The 
elevation of the camera ranges between 4.69 m and 6.81 m. 

However, the achieved CPE decreases as the horizon equations gain more weight 
(see Fig. 2.9). This is evidenced in those cases where the adjustment has been 
carried out with nine free parameters (examples with unknown IOP) and because 
the horizon constraint has not considered that the CPE are higher than 2 m. 
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Additionally, in these cases it is interesting to note that the minor CPE occurs for 
horizon weights equal to 102 and 104. This improvement in the accuracy of the 
camera coordinates happens while the solution for the rest of the parameters 
(three camera angles and IOP) worsens. The system is less stable when the IOP are 
unknown and cannot find a valid solution for the entire set of parameters until the 
weight of the horizon increases. 

The CPE remains unchangeable from a weight equal to 1012 for both horizon 
equations although it is almost stabilized from using a weight equal to 108. Thus, 
horizon equations will be added in the adjustment in step 2c) of C-Pro with a 
designated weight equal to 1012 and can be modified by the user. 
 
2.4.3. Usefulness and differences between both horizon approximations 

After checking the improvement achieved by introducing the horizon constraint in 
the spatial resection process, it is important to establish the quality of the two 
horizon approaches developed in this chapter. Therefore, this section analyzes 
their potential and limitations when these geometric equations are constraining the 
fitting. With regards to the definition of the horizon equations, it is expected that 
the correct choice of one or another approach (with two or three points) was 
conditioned by the percentage of horizon that appears in the photo.  

The acquisition of a large set of photos for two days at El Saler beach with 
different percentages of horizon contained on the photographs enables us to 
analyze the error achieved in the spatial resection solution depending on the 
horizon approximation used during the process. Assessments are made by 
following the methodological protocol considering the IOP as unknown. 
Summarizing the results (see Table 2.2), we observe unacceptable results regardless 
of the camera location, and regardless of whether the camera is pointing north 
(CNi) or south (CSi), when the horizon constraint is not considered because the 
fitting does not converge (or it converges on a wrong solution). 

The errors in the camera repositioning for both days indicate that the horizon 
approach obtained by three points leads to better results unless the horizon covers 
less than 62% of the photo area – as occurred in both CN1 and CS1 photos where 
the horizon remain partially hidden by the Port of Valencia (see example in Fig. 
2.5). Predictably, the horizon approach calculated by three points is more realistic, 
but is also more sensitive and requires a significant distance between points to 
define a descriptive horizon circumference. In general, when the horizon just 
appears in a proportion less than 75% of the photo, the approximation must be 
defined by two points. 

Representing the results graphically in Fig. 2.10, the pattern followed by the CPE 
repeats for both studied days. The most rigorous solutions for the spatial resection 
process are achieved by using the horizon approximation with three points, with 
smaller errors in the camera positioning until the percentage of the apparent 
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horizon in the photo exceeds a specific limit as occurs in CN1 and CS1 (small 
circles). It is in these cases when the pattern of error reverses and the errors caused 
by using the approximation with two points becomes smaller. 

  
Without horizon 
constraint 

With horizon 
constraint % Horizon seen 

in the photo 
  

Two 
points 

Three 
points 

25 May 
2016 

CN1 Without convergence 0.139 0.930 51.5 

 CN2 15.029 1.478 1.359 100 

 CN3 Without convergence 0.956 0.826 100 

 CN4 6.854 0.635 0.393 90 

 CS1 15.118 0.568 1.105 61.7 

 CS2 3.839 0.976 0.896 100 

 CS3 2.769 2.041 1.891 89 

17 June 
2016 

CN1 Without convergence 0.114 1.460 51.5 

 CN2 17.516 2.164 2.010 100 

 CN3 Without convergence 1.092 0.872 100 

 CN4 6.332 0.586 0.491 90 

 CS1 12.989 1.472 2.198 61.7 

 CS2 1.649 0.729 0.669 100 

 CS3 12.05 1.616 1.077 89 

Average  9.414 1.227 1.048  

Table 2.2. CPE (m) obtained without known IOP in various cases, with or without the 

horizon constraint at El Saler beach. Horizon is approximated using two or three image 
points, respectively. Last column shows the percentage of the horizon visible in the 
image and not hidden behind other elements. CNi and CSi indicate respectively north 
and south – depending on where the camera points. 

 

Fig. 2.10. CPE (m) obtained by using the two horizon approximations in seven 

photographs from El Saler beach and for two different days. Blue represents the results 
achieved by using the two point horizon approximation (case a), and red indicates those 
obtained by the horizon approximation defined with three points (case b). The circle size 
increases with the proportion of horizon visible in the photo. 
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Moreover, by calculating the differences between the CPE obtained by using both 
horizon approximations we realize that the negative values correspond with those 
cases where the horizon is scarce in the photo. A clear relation exists when 

comparing these differences against the percentage of horizon, reaching 𝑅2 =
79.72%  in the linear fit (Fig. 2.11) and 𝑅2 = 90.25% by fitting a second order 
polynomial model. 

 

Fig. 2.11. CPE of Fig. 2.10 as a function of the proportion of horizon seen in the photo. 

With regards to the conclusions obtained through these experiments, it is easy to 
know why at Magoito beach (where the photos contain a full view of the horizon) 
the approximation achieved by three points led to slightly better results as seen in 
Table 2.1. Two-point horizon approximation was used at Patacona beach because 
the horizon appeared in less than half of the image. 
 

2.4.4. Analysis of errors after the image rectification process 

The final accuracy of the system depends on many factors. This subsection is 
focused on managing the errors related to the image rectification process through 
the implementation of a rigorous algorithm (after step 3). To assess the overall 
positional accuracy for the rectified images in the three study areas, several terrain 
points – those not used to solve the geometry and termed checkpoints – were 
computed solving (2.42) and comparing their projected computed coordinates 

(𝑋, 𝑌) against GPS coordinates after step 3 of C-Pro. Formula (2.44) calculates 
this error (which is composed by both cross-shore and longshore components). 

Positional 𝑒𝑟𝑟𝑜𝑟 = √(𝑋𝐺𝑃𝑆 − 𝑋)2 + (𝑌𝐺𝑃𝑆 − 𝑌)2           (2.44) 

Moreover, regarding the camera position and the focal length, the pixel footprint 
will be calculated to obtain the dimension of each pixel in the terrain space. 
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The first analysis was made at Magoito beach using the orientation parameters 
achieved in the best case with calibrated IOP and the horizon constraint 
approximated by three points (see Table 2.1). Despite the 0.97 m of error recorded 
in the camera repositioning, the checkpoints – 65 to 98 m distant from the camera 
– are positioned with an average accuracy of 0.201 m. Moreover, Fig. 2.12 shows a 
slight relation between each positional error and the distance to the camera 
because of the perpendicular GCPs distribution relative to the camera position 
(remember Fig. 2.4 in the data section). 

 

Fig. 2.12. Scatter plot that relates the behavior of the positional errors in the checkpoints 

at Magoito beach relative to their distance from the camera.  

The error is dominated by the cross-shore component through the target area and, 
as expected, is closely related with a pixel footprint smaller than 0.5 m. 

The second experiment at El Saler beach (see Table 2.2) also includes a study of 
projected errors in the checkpoints using the horizon approximation in the spatial 
resection system with unknown IOP. It is important to remember that the photos 
will be different every day because we are not working with a fixed camera. As a 
result, the GCPs image coordinates, the resulting spatial resection, and the final 
image rectification, will change.  

Figure 2.13 shows that differences between averages of positional errors using 
each of the two horizon approximations are smaller than 0.1 m. Again, the results 
indicate that in most cases, those errors are lower when the horizon constraint is 
obtained following the approximation with three points. If the horizon visibility 
requirements are overtaken, we should then follow the methodology where the 
horizon curve is approximated as the tangent line to a circumference. Furthermore, 
Fig. 2.13 proves an increasing trend of the positional errors with respect to the 
camera distance. However, up to a distance of 200 m, errors in the checkpoints 
respond to a similar behavior for both horizon approximations. Considering only 
the points with distances to the camera of less than 200 m, the average positional 
error for the 25 May is equal to 0.286 m using the horizon approximation with two 
points and 0.283 m using the three-point approximation. For the 17 June, both 
results are equal to 0.275 m and 0.273 m, respectively. However, from 200 m to 
610 m, the differences in the positional errors obtained for each horizon approach 
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become more apparent. The averaged results verify the success of the horizon 
approximation with three points with values equal to 0.793 m and 1.140 m, 
respectively for 25 May and 17 June, meanwhile using only two points, those 
values reach, in the same checkpoints, 1.170 m and 1.670 m respectively. 

 

Fig. 2.13. Variation of the positional accuracy (m) with distance from the camera at El 

Saler beach depending on the horizon approximations (two or three points) used for 
spatial resection. The rectification process has been made for the seven different photos 
in each of the two days described in Table 2.2 considering unknown IOP.  

Furthermore, it is important to establish the differences in magnitude between 
both cross-shore and longshore error components (see Fig. 2.14) depending on the 
phenomenon analyzed. For instance, when the photos are used to extract 
longitudinal coastal features such as the land-water border, the positional accuracy 
will be dominated by the cross-shore component. Comparing a surveyed RTK-
GPS shoreline and another obtained from the rectified images as illustrated in Fig. 
2.15 – projected on the corresponding sea level elevation – the root mean square 
error (RMSE) was 1.482 m and 1.645 m for 25 May and 17 June respectively. 
These encouraging results are in line with other similar works such as Taborda & 
Silva (2012) where the swash line position is rectified with an RMSE of 1.4 m, and 
Bracs et al. (2016) where the surfcam-derived shorelines are calibrated against 
Argus shorelines with an error less than 1.9 m. 

For the last analysis, at Patacona beach, the evaluation of the image rectification 
process was made by checking the coordinates of several measured terrain points 
to thoroughly analyze the longitudinal component of error (longshore positional 
accuracy). The acquisition process measuring points by progressively moving the 
GPS trackers towards the shoreline while each photo was taken is explained in the 
data section. Furthermore, this data is used to continue with the analysis of errors 
depending on the spatial resection adjustment carried out (cases s1 to s4) and 
which is expected to be in line with the CPE previously shown in Table 2.1. 
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Fig. 2.14. Cross-shore and longshore errors for data used in Fig. 2.13 at El Saler beach. 

The errors are obtained when carrying out the best spatial resection solution obtained in 
each case. 

When the adjustment was computed by just six free parameters (data pointed in 
Fig. 2.17), the average error was 2.48 m or 4.29 m depending on whether the 
horizon constraint was considered (s2) or not (s1). The horizon approximation has 
been computed with only two points as in Fig. 2.16. Moreover, when the IOP are 
unknown (data dashed in Fig. 2.17), the errors were worse and reached 3.91 m 
with horizon constraint (s4) and 5.69 m without (s3). These higher magnitudes of 
error, compared with those obtained in the above two beaches, are consequences 
of the low-elevation cameras (only 4.7 m to 6.8 m high) and the pixel rectification 
error associated with obliquity. This fact greatly complicates the detection of the 
checkpoints in the photography with clarity being rapidly lost with distance. These 
difficulties are also linked with the limitations of the camera optics. An initial study 
analyzing both cross-shore and longshore errors (see Fig. 2.16) indicates that some 
problems in the manual detection of the checkpoints are expected – with errors in 
their real positions because of visual obstructions such as beach berms. This fact is 
very influential in longshore error as it is more sensitive to the distance from the 
camera and where a single pixel at 200 m distance means 1 m of error in the 
geographic space. However, the valid magnitudes for the cross-shore components 
indicate the ability and solvency of the methodology for detecting coastal 
indicators. 

The next analysis focuses just on those points located less than 200 m from the 
camera, discarding the others as reliable for computing the overall error. By 
averaging these selected points, we obtain positional accuracies reaching 1.68 m 
when the image rectification is computed following s2, 2.86 m with s1, 2.91 m with 
s4, and 4.56 m in the worst case through s3. 
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Fig. 2.15. Projection map with the rectified photos of 25 May 2016 for El Saler beach 

shown over an orthophoto taken from 2010 PNOA sources. The four different shots are 
obtained from the CN position (north camera). It is important to know that the projection 



Photogrammetry and image processing techniques for beach monitoring 

 

 72 

is made at 0.129 m above mean sea level – as near in time with the photos as possible – 
whereas the RTK-GPS shoreline (green line) has an average elevation of 0.11 m. Grid 
coordinates: GCS_ETRS89 UTM30N. 

 
Fig. 2.16. Cross-shore and longshore positional accuracies after the rectification 

procedure (calibrated IOP & with HC) obtained for some GPS points measured on the 
shoreline at Patacona beach. 

 
Fig. 2.17. Variation of the positional error with distance from the camera depending on 

the methodological process carried out. We detected points in 25 photos at Patacona 
beach (spatial resection was already analyzed in Fig. 2.7). Remember that the photos 
were taken with low-elevation cameras that range from 4.7 m to 6.8 m high. 

Results verify that despite not knowing the IOP, similar averaged errors obtained 
for s1 and s4 mean that the use of the horizon constraint provides solutions as 
valid as those obtained when the initial parameters are calibrated. Moreover, we 
realize in Fig. 2.17 that positional errors have a strong dependence on camera 
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distance. Longitudinal errors grow excessively when the horizon constraint is not 

included (R2 =55.59%) whereas its use slows this fact (R2 = 25.15%) by leading 
the rectified image to a proper alignment. 
 

2.5. DISCUSSION AND CONCLUSIONS 

This chapter has described a new coastal projector monitoring system called C-Pro 
which uses terrestrial photogrammetry to project a photograph in a georeferenced 
plane. The main novelty, compared with other methods previously described in the 
literature, lies in the definition of a mathematical formulation that incorporates 
information provided by the location of the horizon curve in the image. For this, 
the roll and pitch rotation angles have been computed from an approximation of 
the horizon curve to define the transformation from image vectors to terrain 
vectors. This describes the change between coordinate reference systems: from 
object space to image space. The relationship between these rotation angles and 
the EOP of the camera leads to the horizon equations. Thus, an initial solution of 
these angular parameters can be obtained from horizon equations, which are also 
used in the repositioning process of the camera as constraints providing two 
degrees of freedom. Oreifej et al. (2011) already exploited the horizon line in terms 
of providing a unique unambiguous solution for recovering the UAV camera 
motion. 

C-Pro has been applied to three different coastal areas using two cameras located 
at several elevations ranging from 4.7 m (Patacona beach) to 43 m (El Saler beach). 
Results have shown the improvement that occurs in estimating the camera 
positioning when adding the horizon constraints, especially in the case of using 
cameras with unknown IOP. Sometimes, the iterative least squares fitting – over 
the linearized collinearity equations – does not converge unless the horizon 
constraints are used. In other cases, although the system converges, the achieved 
solution is not useful and the horizon equations help reduce errors in camera 
positioning and angular parameters {ω,φ,κ}. The quality of the spatial resection has 
also been analyzed by coloring the resulting image location of the control points 
and the horizon line using the calculated parameters after each iteration. Errors are 
smaller when weights assigned to horizon constraints in that refinement process 
are much higher than those given in equations associated with GCPs.  

Image coordinates of three points are used to approximate the horizon curve. 
However, results have shown that a horizon approach with two points is more 
accurate in situations in which only a part of the horizon is seen in the image. The 
horizon approach calculated by three points is more realistic but is more sensitive 
and requires a significant distance between points to define a descriptive horizon 
circumference.  

Some terrain points with known GPS coordinates, which have not been involved 
in the setting as GCPs, were also computed with C-Pro to assess the overall 
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positional accuracy over the rectified images in the three coastal areas. At Magoito 
beach, the checkpoints situated less than 65 m from the camera were positioned 
with an averaged accuracy of 0.2007 m. Moreover, errors were less than 0.5 m for 
points located within 100 m of the camera. Those errors of projection were 
obtained after placing the camera with an elevation of 35.6 m, using C-Pro with 
calibrated IOP, and approximating the horizon constraint with three points.  

Errors at checkpoints increase slightly when the IOP are unknown as is assessed in 
El Saler beach where the camera was located at the top of a building 43 m high. 
However, acceptable results are obtained by considering the horizon 
approximation in the spatial resection system, computed following the 
approximation with three points. Those results have been obtained with a non-
fixed camera taking 14 photos in two days. Consequently, as the GCPs image 
coordinates will change, the resulting spatial resection will also differ for every 
photo. Considering the checkpoints whose distances to the camera were less than 
200 m, the average error was equal to 0.283 m on the first day and 0.273 m on the 
second day.  

At Patacona beach, the camera is located at an elevation ranging between 4.7 and 
6.8 m. In this case, we analyze the longshore error through an experiment 
measuring shoreline points until a distance of less than 200 m from the camera is 
found that is considered as reliable for computing that error. Positional accuracies 
reached an average positional error equal to 1.68 m when the image rectification 
was computed using calibrated IOP and 2.91 m when considering unknown IOP. 
The horizon approximation with two points was used in these cases because the 
horizon appeared in less than half of the image. Thus, the use of the horizon 
constraint has enabled us to obtain valid solutions even in cases when it is not 
possible to obtain the IOP by camera calibration (or other complicated 
photogrammetric conditions such as low camera elevations were present). 

The methodology developed in this work enables accurately projecting a coastal 
photograph – or any element detected in it – on a georeferenced plane, even if the 
photo was taken by a camera with unknown IOP and located at a less than 7 m 
high. Encouraging results (similar to those obtained by Taborda & Silva, 2012) 
which are able to define the shoreline with an RMSE of less than 1.5 m. Its 
implementation in C-Pro, through formulas detailed in this chapter, makes it a 
robust and low-cost tool that can work with any photograph taken by a 
conventional camera of a coastal segment with the horizon included. In this 
chapter, the horizon points have been marked manually but future works applying 
C-Pro may use techniques that automatically track the horizon (Bracs et al., 2016; 
Oreifej et al., 2011). 

The application of C-Pro will produce valuable scientific information from 
numerous cameras and video cameras located along coastlines worldwide. 
Although in principle these recreational cameras were set for other non-metric 
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goals (refer to Section 5.1), they can now also be useful for measuring beach 
indicators for better planning and managing coastal resources. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover photo of Chapter 3: 
Praia da Nazaré, Nazaré, Lisbon (taken Dec. 2015) 
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This chapter presents a new methodological process for detecting the 
instantaneous land-water border at sub-pixel level from mid-resolution satellite 
images (30 m/pixel) that are freely available worldwide. The new method is based 
on using an iterative procedure to compute Laplacian roots of a polynomial surface 
that represents the radiometric response of a set of pixels. The method uses a first 
approximation of the shoreline at pixel level (initial pixels) and selects a set of 
neighboring pixels to be part of the analysis window. This adaptive window 
collects those stencils in which the maximum radiometric variations are found by 
using the information given by divided differences. Therefore, the land-water 
surface is computed by a piecewise interpolating polynomial that models the strong 
radiometric changes between both interfaces. The assessment is tested on two 
coastal areas to analyze how their inherent differences may affect the method. A 
total of 17 Landsat 7 and 8 imagery (L7 and L8) were used to extract the shorelines 
and compare them against other highly accurate lines that act as references. 
Accurate quantitative coastal data from the satellite images is obtained with a mean 
horizontal error of 4.38±5.66 m and 1.79±2.78 m respectively for L7 and L8. Prior 
methodologies to reach the sub-pixel shoreline are analyzed and the results verify 
the solvency of the one proposed. 

 
3.1. INTRODUCTION 
 

Coastal areas are a point of interest from several perspectives. Environmentally, 
these are the main spaces in which land, sea, and air interact. Socially, these are 
places of settlement, leisure, and economic activity. Obviously, the sustainable and 
safe use of these spaces requires knowledge of their natural functioning. Acquiring 
this knowledge from biologists, geomorphologists, engineers, and managers 
involves the acquisition of information that requires coastal mapping techniques 
(Graham et al., 2003). The type of data and processing reflects the purpose 
(Szmytkiewicz et al., 2000). 
 
In coastal mapping there is a clear distinction between three-dimensional and two-
dimensional information. Three-dimensional information is usually obtained via 
GNSS or LiDAR techniques and enables the analysis of changes in shape and 
volume on beaches. These techniques offer high precision but are expensive and 
so they are only used when the need is great. Two-dimensional information is less 
complete (Moore et al., 2006). However, as the most widespread recent mapping 
techniques are focused on those that minimize acquisition costs, video monitoring 
and the use of satellite images remain as useful resources for mapping shorelines in 
planimetry. Video monitoring cameras offer a high temporal resolution and are 
widely used for coastal research and video-derived coastal indicators (Davidson et 
al., 2007; Aarninkhof et al., 2003) in a limited space (Andriolo et al., 2019; Sánchez-
García et al., 2017; Holman and Stanley, 2007). Satellite images offer wide 
geographical coverage with a specific temporal and spatial resolution for each 
sensor (Sagar et al., 2017; Luijendijk et al., 2018). The turning point came when the 
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United States Geological Service released its archive of Landsat scenes (USGS, 
2008). The European Space Agency (ESA) followed the same policy and offers the 
Sentinel-2 scenes free of charge. Landsat and Sentinel-2 make up a synergistic 
system of global monitoring in which every place on the planet is revisited each 2.9 
days on average (Li and Roy, 2017). 2D and 3D techniques are not exclusionary 
and using 2D high-frequency data to decide the most efficient moment to take the 
3D data may be a clear case of synergy.  
 
Boak and Turner (2005) describe 44 different interpretations of the concept of 
“shoreline” in relation with different fields of study. In the present chapter, we 
focus on mapping shorelines from satellite imagery (concretely from Landsat data) 
so the indicator chosen is the instantaneous water line for each satellite capture 
moment. In addition, two technical questions may be mentioned: the inherent 
limitation of Landsat spatial resolution since working at pixel level beach changes 
can only be detected if they exceed the pixel size (Gens, 2010), and the importance 
of a clear and efficient workflow to manage a big amount of data. Overcoming the 
problem of the pixel geometric resolution is the main but not the only technical 
problem when creating a complete workflow from the image acquisition and the 
final shoreline. Liu et al. (2011) made a homogenization of the studies by 
compiling a set of shoreline extraction strategies applied to different resources 
(LiDAR, radar, aerial and satellite images) and created an adaptable software for 
deducing the shore position (an extension for ArcGIS named 
“ShorelineExtractor”). This work created a framework in which, technical 
researches could be implemented to update different internal processes while the 
own tool can be applied for any other final-user intention (coastal management, 
geomorphology, etc.). 
 
The present chapter is based on a similar framework and background. Almonacid-
Caballer (2014) developed a workflow, initially described in Ruiz et al. (2007) and 
Pardo-Pascual et al. (2012), to obtain sub-pixel precision shorelines from Landsat 
images. This last procedure has been used for some applied studies, using two 
different software implementations. During the first implementation, this was used 
to map the impact of a storm along 100 km of beaches in the Gulf of Valencia and 
the subsequent recovery (Pardo-Pascual et al., 2014). Obtaining accurate shorelines 
is crucial in the use of the Landsat series for mapping the past with a coastal 
evolution indicator (Almonacid-Caballer et al., 2016; Sánchez-García et al., 2015). 
While the initial implementation of that methodology (Pardo-Pascual et al., 2012, 
Almonacid-Caballer, 2014) was evaluated on some rigid seawalls, in Pardo-Pascual 
et al. (2018) the same methodology was assessed on natural beaches −since the 
goal is having a tool to obtain satellite-derived shorelines (SDS) for subsequent 
geomorphological and management works. Along the publications in which this 
workflow has been used, the implementation of the workflow has changed from 
Matlab and IDL to Python as presented in Palomar-Vázquez et al. (2018). This last 
complete shoreline extraction and management tool compiles the improvements 
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required along the mentioned studies and includes: (1) management processes such 
as downloading the images, project structure and data storage; (2) the intrinsic 
technical core (discussed in Almonacid-Caballer, 2014) which includes (a) 
obtaining the initial shoreline (through threshold or external shoreline), (b) the 
sub-pixel geo-registration that ensures no more than 3 meters of misalignment 
between images (Almonacid-Caballer et al, 2017), and (c) the sub-pixel shoreline 
definition itself; finally (3) different filtering techniques to obtain a neat final 
shoreline. All these modifications have sought to improve efficiency but have not 
focused on solving some of the limitations that the basis of the shoreline 
extraction algorithm presents. 
 
In this regard, the current work focus on (2)(c), defining a new methodological 
improvement in the sub-pixel refinement (within the mentioned intrinsic technical 
core) carried out around an initial pixel-level shoreline. To overcome the restriction 
of coarse spatial resolution, different procedures have sought to increase accuracy 
at sub-pixel level (Liu et al., 2016). Liu et al. (2017a) compared three main 
processing options in which an original Landsat 8 (L8) was processed (30 m/pixel) 
by being pansharpened with its panchromatic band (15 m/pixel) and then with the 
same band upsampled to 7.5 m/pixel. Liu et al. (2017b) pansharpened Landsat 7 
(L7) and L8 multispectral bands and, after several segmentation steps, looked for 
the sub-pixel shoreline using a variation of marching squares with a linear 
interpolation (MSI) approach as proposed by Cipolletti et al. (2012). In Pardo-
Pascual et al. (2012) an infra-red Landsat band was binarized for land-water 
surfaces by analyzing the histogram of each scene. The edge-pixels between both 
areas were considered for the pixel-level shoreline and, around each of these pixels, 
a kernel of 7x7 pixels was used to reach the sub-pixel. The shoreline was then 
obtained as the Laplacian roots of an interpolation surface defined over such 
kernel. The justification for the kernel size is found in Almonacid-Caballer (2014) 
where it is shown that large kernels are necessary to ensure that the real shoreline 
position is inside. To start the process, obtaining the initial pixel-level shoreline 
using a single threshold for a complete scene may be a weakness. Liu and Jezek 
(2004) discuss that the gradient between land and water can substantially affect 
edge detection when thresholding detection is used. A single threshold for the 
whole image is a problem and they propose an adaptive thresholding technique. 
Moreover, Almonacid-Caballer (2014) proved that an automatic threshold 
obtained by intersection of Gaussian curves in bimodal histograms does not match 
with those photo-interpreted manually. Of course, if the study area is small and 
homogenous, this is not significant –as is remarked in Liu et al. (2017b).  
 
Following the analyzed sub-pixel methodology in Almonacid-Caballer (2014), the 
digital numbers (DN) of the 7x7 kernel around each pixel of the pixel-level 
shoreline were fitted with a 2D polynomial expression. The polynomial expression 
was introduced as a complete fifth-degree polynomial whose terms reach all the 
combinations of x5 and y5 and imply fitting 36 polynomial parameters. Although 49 
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equations could be enough, the polynomial was sometimes unstable and produced 
shapes that were too irregular. Fewer degrees may have been more robust –but a 
third-degree for the 7x7 kernel produced a surface that was too smooth and 
inaccurate for drawing the land-water inflection. To add robustness, the kernel was 
upsampled x4 to 28x28 pixels and each was given an equation for the least squares 
adjustment. In subsequent applications of this methodology, some shoreline points 
had to be filtered because the size of the kernel caused some inflections far from 
the reference shoreline (Pardo-Pascual et al., 2014). At the same time, given the 
size of the kernel, long beaches with a small curvature were necessary to achieve 
good results. This may be a limiting factor when working near the gaps in L7 
images (Almonacid-Caballer et al., 2013). Moreover, changes in the DN on the 
land zone produced small displacements in the resultant shorelines –as was 
analyzed in Pardo-Pascual et al. (2012). Particularly, this limited when the 
algorithm applied to beaches embedded between natural or artificial structures as 
groins. 
 
Hermosilla et al. (2008) described a super-resolution/hyper-resolution process or 
sub-pixel edge detection through an image interpolation operator to obtain a finer 
grid of pixels. While Almonacid-Caballer (2014) worked with a 7x7 kernel 
upsampled by cubic convolution, Hermosilla et al. (2008) showed that the centered 
cubic interpolation method produced well defined edges but geometrically 
displaced with respect to their position in the reference image. To solve this 
problem a fourth-order non-linear interpolation procedure based on an essentially 
non-oscillatory (ENO) methodology was discussed. Harten et al. (1987) had 
already introduced this in fluid dynamic applications to avoid non-physical 
oscillations in the simulation of convection-dominated flows. Shu and Osher 
(1988) made it more efficient and used it for sub-pixel interpolation in curve 
evolution problems. The ENO interpolation method selects the polynomial 
stencils according to the DN variation around each pixel by using the divided 
differences of the data as a measure of smoothness. An adaptive window around 
each pixel is used to define a support window for the 2D piecewise reconstruction 
of point values that avoids high gradient regions whenever possible (Capilla and 
Balaguer, 2013; Balaguer and Conde, 2005). The reconstruction scheme selects an 
interpolating support window whose solution is the smoothest in the sense of 
divided differences. After an image interpolation to obtain a finer grid of pixels, 
the Canny edge detection algorithm is applied to obtain edges at a sub-pixel level.  
 
The current chapter looks for the opposite of the ENO method to detect the 
shoreline because edges are calculated using the Laplacian of the interpolation 
surface. Thus, the support window of that polynomial must contain the zone with 
the maximum gradient of the solution and this is chosen by an automatic process. 
The first novelty of the proposed method with respect to Pardo-Pascual et al. 
(2012) and Almonacid-Caballer (2014) focuses on the procedure for exploring the 
initial pixels and finding the optimal pixel neighbors for the 2D surface adjustment. 



NOVEL SUB-PIXEL SHORELINE SOLUTION FROM SATELLITE IMAGES 

 

 83 

This sweep enables the algorithm to fix a lack of precision on the initial pixel-level 
shoreline. In addition, it expects to solve part of the limitations described by 
Pardo-Pascual et al. (2012) on beaches segmented by groins. Secondly, Lagrange 
interpolation is used to recreate the land-water surface instead of the known least 
squares method (LSM). However, both polynomial functions are compared by 
using different degree and support windows (the selection of pixels to be used in 
the adjustment). Finally, no upsampling technique is applied on the initial image. 
Using the Lagrange solution, it is not necessary to increase the number of 
equations and the surface is formed with the raw DN. Therefore, the objective of 
this chapter is to propose a new image interpolation method to define the 
shoreline at sub-pixel level –an issue of great value for coastal management. 
Adding this to the refinement step inside the whole shoreline extraction workflow 
implemented by Palomar-Vázquez et al. (2018), will lead to a more robust solution 
in the definition of the sub-pixel shoreline. Unlike the original solution, the 
concept of kernel is changed now to an adaptive window that locally finds the 
position of the maximum land-water change. From that position, smaller windows 
are used and evaluated. While upsampling is avoided, the Lagrange polynomial 
(Lgr) is used to gain robustness using a non-homogeneous system with a single 
solution and raw pixel data. 
 
In this chapter, Section 3.2 presents the data of the study areas used to carry out 
the assessments and comparisons of the shoreline sub-pixel methodologies. 
Section 3.3 explains in detail the methodological steps of the new proposed sub-
pixel shoreline solution. Section 3.4 describes the fundamentals of other 
methodologies used in the chapter to compare. Section 3.5 shows the results 
obtained by the various methodologies and the advantages achieved in the accurate 
detection of the shoreline with the proposed solution. Finally, discussion and 
conclusions are presented respectively in Sections 3.6 and 3.7. 

 

3.2. DATA OF THE STUDY AREAS 
 
A set of 17 sub-pixel shorelines and their respective highly accurate reference lines 
(measured –depending on the study site– by GPS techniques or digitalizing) has 
served to evaluate the different sub-pixel techniques from Landsat images. Both 
types of data represent the instantaneous water line in the same space-time. The 
procedure to assess our final sub-pixel shorelines consists in calculating the 
minimum distance between the solution of each shoreline point and the closest 
respective point of the reference shoreline for each date. The computed distances 
are a measure of the error committed in each extracted shoreline given that the 
reference lines accurately describe the ground truth at the study sites. Positive and 
negative distances indicate that the resulting sub-pixel shoreline is biased seaward 
or landward respectively. 
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The 17 analyzed shorelines range between May and October of 2016. Fig. 3.1 
describes the temporal distribution of the data. In seven of these days the shoreline 
is obtained from L8 images and in the other ten days from L7 – both with a pixel 
size of 30 m. It is known that L7 images are affected by the failure of the Landsat 
Scan Line Corrector (SLC-off error) and the images have data gaps. Therefore, the 
shoreline extracted is discontinuous with segments approximately 600 m in length 
and 500 m gaps (NASA, 2009). The assessments in this chapter have been made 
using the Landsat SWIR1 infrared band – corresponding to the L7 (band 5) and L8 
(band 6) – because this approach led to the most accurate and robust sub-pixel 
shorelines in previous works (Pardo-Pascual et al., 2018 and Almonacid-Caballer et 
al., 2016). The different spectral response of water and land in the infrared bands is 
the basic principle underlying the shoreline search. 

 

Fig. 3.1. Temporal distribution of the data used during a five-month study (May to 

October 2016) when shoreline GPS measurements were also carried out. Seventeen 
Landsat scenes were used to extract the sub-pixel shorelines. 

The assessments are made in two different coastal areas in the region of Valencia 
on the Mediterranean coast of Spain. The first area, in El Saler beach, is a long 
micro-tidal beach with a low and sandy shoreline 1.5 km long. This beach has 
suffered marked erosion (Sánchez-García et al., 2015; Pardo-Pascual and 
Sanjaume, 2019) in recent decades because the port of Valencia (six kms to the 
north) acts as a sand retention barrier. In this area, the 17 reference lines used to 
validate the sub-pixel shorelines were measured by recording automatic 
coordinates for every second of the land-water border that the waves left behind 
using RTK-GPS (estimated accuracy of 3-5 cm) when the satellite captured the 
data. The second area is formed by the eastern jetties of the port of Valencia that 
exceed more than 3 km in length. This port area remains intact throughout the 
study period. Thus, the same reference shoreline was used for all the dates 
obtained by digitalizing a 0.25 m/pixel PNOA orthophoto from the year 2015. 

 
3.3. NEW SUB-PIXEL METHODOLOGICAL SOLUTION 
 
The method described in this work start from a rough shoreline at the pixel level 
for each of the Landsat scenes that defines the set of initial pixels where the 
analysis starts. Note that this initial line can be obtained in various ways such as the 
thresholds implemented in Kelly and Gontz (2018), Xu (2018), Sagar et al. (2017) 
or Shrivakshan & Chandrasekar (2012). Any other accessible line can also be used 



NOVEL SUB-PIXEL SHORELINE SOLUTION FROM SATELLITE IMAGES 

 

 85 

(such as the shoreline provided by the Instituto Hidrográfico de la Marina for the 
Spanish territory) but usually these are biased in a magnitude about one Landsat 
pixel (25 - 35 m). Hence working with adaptable neighborhoods may be very 
useful. 

In this chapter, a thresholding initial shoreline is used following the bimodal nature 
of the histogram of an infrared band when water and land are both present 
(Almonacid-Caballer, 2014). The chosen threshold is unique for the whole scene 
and the line may displace seaward or landward depending on the selection process. 
This vagueness is irrelevant because the proposed sub-pixel method is intended to 
manage this effect. In fact, to enhance this, an experiment deliberately biases the 
initial line by using a wrong initial shore to show the robustness of the 
methodology. 

Moreover, it is important to note that the satellite imagery has a potential error in 
its georeferencing that will directly affect the positioning of the shoreline when 
comparing these against the GPS lines (as shown in Almonacid-Caballer et al., 
2017). Thus, a preliminary process has been implemented to georeference the 
Landsat images by computing the Fourier cross-correlation through a PNOA 
orthophoto of the study site. Once this error has been minimized to less than 0.1 
pixels, we consider it as negligible. 

3.3.1. A new method to define an adaptive window for shoreline location 
using divided differences 

Given a pixel that contains a part of the initial shoreline and whose center has the 

coordinates (𝑥𝑖, 𝑦𝑗), the sub-pixel shoreline is calculated through a curve that 

approaches around that pixel. Moreover, the method has to be sufficiently robust 
that if the true shoreline does not pass within that pixel and it passes through 
neighboring pixels then it will be able to calculate the sub-pixel shoreline where 
appropriate. Therefore, the potential shoreline solution can be found in the pixel 

(𝑥𝑖, 𝑦𝑗) and the analysis window around that pixel. The method described 

hereafter computes a two-dimensional polynomial expression around each pixel-
level shoreline. From this expression, the shoreline is assumed to be on the 
inflexion line with the largest gradient. As it is obtained mathematically, so a sub-
pixel precision is reached. This involves creating a window around each pixel that 
contains the shoreline and, the divided differences are used for that purpose. 

Divided differences are normally linked to the Newton interpolation method. 
Given a set of “d+1” points (xi, gi) from i=0 to i=d, it is known that there is only 
one polynomial of degree less than or equal to “d” that passes through those 
points. Newton proposed a method in which the polynomial had the following 
form: 
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𝑃(𝑥) = 𝒈𝟎 + 𝐺[𝑥0, 𝑥1](𝑥 − 𝑥0) + 𝐺[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯

+ 𝐺[𝑥0, ⋯ , 𝑥𝑑]∏(𝑥 − 𝑥𝑘)

𝑑−1

𝑘=0

 
(3.1) 

It can be seen that g0 and the different terms G[x0,…] are numbers that multiply 

∏ (𝑥 − 𝑥𝑘)
𝑑−1
𝑘=0 , term that gives the powers of x in order to define the polynomial. 

To calculate these parameters, a table of forward divided differences such as in 
Table 3.1 is calculated from the set of points. 

X G 
First order 
differences 

Second order differences  
(𝑑 − 1)𝑡ℎ 

order 

𝑥0 𝑔0     

𝑥1 𝑔1 
𝐺[𝑥0, 𝑥1]

=
𝑔1 − 𝑔0
𝑥1 − 𝑥0

 
   

𝑥2 𝑔2 
𝐺[𝑥1, 𝑥2]

=
𝑔2 − 𝑔1
𝑥2 − 𝑥1

 
𝐺[𝑥0, 𝑥1, 𝑥2] =

𝐺[𝑥1, 𝑥2] − 𝐺[𝑥0, 𝑥1]

𝑥2 − 𝑥0
   

𝑥3 𝑔3 
𝐺[𝑥2, 𝑥3]

=
𝑔3 − 𝑔2
𝑥3 − 𝑥2

 
𝐺[𝑥1, 𝑥2,𝑥3] =

𝐺[𝑥2, 𝑥3] − 𝐺[𝑥1, 𝑥2]

𝑥3 − 𝑥1
 …  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑥𝑑 𝑔𝑑 
𝐺[𝑥𝑑−1, 𝑥𝑑]

=
𝑔𝑑 − 𝑔𝑑−1
𝑥𝑑 − 𝑥𝑑−1

 

𝐺[𝑥𝑑−2, 𝑥𝑑−1, 𝑥𝑑]

=
𝐺[𝑥𝑑−1, 𝑥𝑑] − 𝐺[𝑥𝑑−2, 𝑥𝑑−1]

𝑥𝑑 − 𝑥𝑑−2
 

… 𝐺[𝑥0, ⋯ , 𝑥𝑑] 

Table 3.1. Forward divided differences table using set of points (xi, gi) from i=0 to i=d. 

Kth order differences refer to the forward divided differences using (k+1) 
successive points. For the sake of simplicity, in the following we refer to divided 
differences considering the smallest index and the number of points within. 
Somehow, each divided difference means a new term must be included in the 
polynomial. For example, the line that joins the first two points follows the 
expression: 

𝐺(𝑥) = 𝒈𝟎 + 𝐺[𝑥0, 𝑥1](𝑥 − 𝑥0) (3.2) 

The slope between both points is equal to the first divided difference 𝐺[𝑥0, 𝑥1]. 
From that point, if a second degree (related to curvature) is needed, a non-zero 

value will appear at the second order divided differences column: 𝐺[𝑥0, 𝑥1, 𝑥2]. 

In this work, the table of divided differences is not used to create the interpolating 
polynomial but to find the best stencil that detects the transition between land and 
sea. Fig. 3.2 shows an example using DN in a set of nine pixels in which the 
shoreline is located. A profile with y=constant is considered so that X-values are 
pixel coordinates and G represents the DN at each pixel. To show the effect of the 
DN values, X-coordinates are transformed to a scale between 1 and 9. A pixel with 
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X=5 is the initial shoreline pixel. The objective for this example is to locate the 
best stencil of four points around that initial shoreline pixel to fit a third-degree 
polynomial. In the case of a fifth-degree polynomial, we would have to look for 
stencils with six pixels. For this, an iterative procedure is used, comparing in each 
step the absolute value of the divided difference in the stencil formed after adding 
a point to the left or one pixel to the right of the previous stencil.  

Thus, in each column we only compare the absolute value of the divided 
differences marked in red in Fig. 3.2A. First, row numbers 5 and 6 in the column 
of the first order differences are compared − they mean the slope on the stencils 
{4,5} (0.091) and {5,6} (0.142). The divided difference of the largest module is 
chosen (which is the row number 6) as we are looking for the biggest gradient 
around the initial point. Row numbers 6 and 7 (of the first and second columns 
correspondingly) are then compared. They mean the weight of needing a second 
term of the polynomial at the stencils {4,5,6} and {5,6,7} respectively. This time 
the divided difference of the largest module corresponds to row number 7. Finally, 
in the column of the third order differences, row numbers 7 and 8 are compared. 
They correspond to a third term of the polynomial at the stencils {4,5,6,7} and 
{5,6,7,8}. This third divided difference chooses the row 7 (which is calculated over 
the stencil formed by the {4,5,6,7} X-values) as the best stencil to define the 
interpolating polynomial around the initial shoreline pixel (X=5) drawn in Fig. 
3.2B. 

A     B 

X G 
First order  
differences 

Second order  
differences 

Third order  
differences 

  

1 0.256 
   

2 0.253 0.003 
  

3 0.283 0.030 0.0165 
 

4 0.347 0.064 0.017 0.00017 

5 0.256 0.091 0.0775 0.0315 

6 0.114 0.142 0.0255 0.0173 

7 0.098 0.016 0.0630 0.0295 

8 0.095 0.003 0.0065 0.01883 

9 0.094 0.001 0.001 0.00183 

Fig. 3.2. (A) example using absolute values of a divided differences table and with X=5 

as the initial shoreline pixel. Values in red are compared in the iterative procedure 
explained in detail in Section 3.3.2 to calculate the stencil for the interpolating 
polynomial, choosing in each column the maximum for such red values. (B) interpolating 
polynomial using the selected four-pixel stencil. 
 

This idea is extended to two dimensions. Once the pixel-level shoreline is located, 
the main direction is known. In the data in this chapter, the beach follows a north-
south direction, and this is the first direction to be analyzed. Throughout it, the 
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divided differences are used to select the stencil but with the constraint that the 
initial pixel will never be located at an extreme of the stencil. Once this stencil is 
found (in blue in Fig. 3.3), the same process is repeated in the perpendicular 
direction and for each of the pixels selected previously (in orange in Fig. 3.3). Fig. 
3.3 shows how for the same initial pixel, in a coast with a north-south main 
direction, an initial stencil is found (in blue) of four or six pixels (Fig. 3.3A and 
3.3B respectively) by using divided differences in the Y-coordinate.  

Perpendicularly to each pixel of this initial stencil, the divided differences are used 
again at their perpendicular directions resulting the stencils marked in orange. In 
this particular case, the resulting windows in Fig. 3.3A and 3.3B will be used for 
computing respectively a third or a fifth-degree two-dimensional polynomial. It 
must be noticed that those windows are asymmetric because it is impossible the 
initial pixel to be in the middle of the window having considered an even number 
of pixels in each direction. Moreover, as stated previously, none of the pixels in the 
first stencil, colored in blue, can be located at an extreme edge of its particular 
stencil. 

 

Fig. 3.3. Examples of the adaptive analysis window corresponding to the initial shoreline 

pixel (𝑥𝑖 , 𝑦𝑗) marked with a white cross and shown over a part of an SWIR1 band-L7 

image taken on 14 September 2016. The remaining pixel centers of the rough initial 
shoreline at pixel level are marked with white dots. This line crosses the analysis window 
from north to south along the Y-axis. The analysis of divided differences is made on the 
pixels contained within the discontinuous 9x9 white square. The window in (A) is 
composed of a set of 16 pixels (four points each direction) used in a third-degree 2D 
interpolation, and in (B) by 36 pixels (six points each direction) used in a fifth-degree 2D 
interpolation. The selected set of pixels along the Y-axis and X-axis is bounded in blue 
and orange respectively. 

 
Small changes in the DNs of the image for a fixed value of Y, as happens in Fig. 
3.4 in two consecutive profiles, can lead a very different set of X-axis points being 
chosen to form the analysis window. This is the advantage of an adaptive window 
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because otherwise when using a fixed and symmetric window around the initial 
shoreline pixel such as Almonacid-Caballer (2014), those pixels near the maximum 
radiometric difference for each single Y-profile cannot be considered. Thus, the 
interpolating polynomial will pass through those pixels determining the accurate 
sub-pixel shoreline where the maximum gradient module is reached. As expected 
and shown in Fig. 3.4, this inflection point will be fairly close to the X-value of the 
initial shoreline pixel. 

 

Fig. 3.4. Two different fifth-degree interpolating polynomials (blue curves) can be seen 

with the choice of the six-pixel set of Fig. 3.3B (bounded in orange) corresponding to the 
profiles y=𝑦𝑗+1 in (A) and y=𝑦𝑗+2 in (B). Both profiles are indicated with an arrow in Fig. 

3.3B. Red dots represent the nine DNs of the entire profile intervening in the search for 
the set with the maximum radiometric variation in the X-axis (from land to sea pixels). 
The initial shoreline pixel is in fifth position (red dash). For simplicity, X-coordinates are 
transformed to a scale of between 1 and 9. 

 
Although this work considers 2D polynomials of third and fifth-degree, the 
following procedure may be applied to obtain a general polynomial considering 

“𝑑” as the polynomial degree. Being (𝑥𝑖, 𝑦𝑗) the initial shoreline pixel center, the 

analysis window to define the two-dimensional 𝑑-degree interpolating polynomial 

is formed by 𝑚 = (𝑑 + 1)2 number of pixels. Therefore, such adaptive window is 
found with the following conditions: 
 

1. The points {(𝑥𝑖, 𝑦𝑗−1), (𝑥𝑖, 𝑦𝑗), (𝑥𝑖, 𝑦𝑗+1)} must be included since we 

estimate that the shoreline passes through the pixel centered in (𝑥𝑖 , 𝑦𝑗) or nearby. 

This pixel is not expected to be in a corner of the window in the direction of the 
Y-axis when the maximum radiometric variation occurs. 
2. A new pixel is added to the previous pixels in the Y-direction by choosing 
between the two contiguous neighbors, and so after the incorporation of the new 
pixel, the maximum radiometric variation takes place in the chosen stencil. Thus, 
we choose between one of these two sets of points 

{(𝑥𝑖, 𝑦𝑗−2), (𝑥𝑖 , 𝑦𝑗−1), (𝑥𝑖, 𝑦𝑗), (𝑥𝑖, 𝑦𝑗+1)}  or 

{(𝑥𝑖, 𝑦𝑗−1), (𝑥𝑖 , 𝑦𝑗), (𝑥𝑖, 𝑦𝑗+1), (𝑥𝑖, 𝑦𝑗+2)} by selecting the set that responds to the 
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maximum fourth-order divided difference in absolute values. We then denote by 

𝑗𝑚𝑖𝑛 ∈ {𝑗 − 2, 𝑗 − 1} the smallest index of the Y-coordinate. 

3. A similar procedure is applied with higher interpolation orders. If 𝑑 > 3 
then the stencil is formed by an iterative process that begins with these points 

{(𝑥𝑖, 𝑦𝑗𝑚𝑖𝑛), (𝑥𝑖, 𝑦𝑗𝑚𝑖𝑛+1), (𝑥𝑖, 𝑦𝑗𝑚𝑖𝑛+2), (𝑥𝑖, 𝑦𝑗𝑚𝑖𝑛+3)}. A new one is then added 

to the stencil (until reaching the 𝑑 + 1 set of points) by choosing between the two 
contiguous neighbors, so that the new stencil leads to the maximum variation 
linked to the maximum divided difference absolute value. 

4. For each fixed value of 𝑦 = 𝑦𝑚 ∈ {𝑦𝑗𝑚𝑖𝑛 , 𝑦𝑗𝑚𝑖𝑛+1, 𝑦𝑗𝑚𝑖𝑛+2, ⋯ , 𝑦𝑗𝑚𝑖𝑛+𝑑}, 
the stencil now has to be constructed in the X-direction through an iterative 

process starting with the point (𝑥𝑖, 𝑦𝑚) and until reaching the 𝑑 + 1 set of points. 
The choice is made again between the two contiguous neighbors when looking for 
the maximum divided difference absolute value. 
 

3.3.2. Definition of the polynomial surface in Lagrange form 

Considering “𝑑” as the polynomial degree, once each adaptive window is found 
around each initial pixel, the two-dimensional polynomial that fits the DN values 
must be found – being the polynomial degree greater than two (d>2). This 
polynomial, with (d+1)2 number of terms, will follow the next form: 

𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺) = 𝒄𝟎,𝟎 + 𝒄𝟏,𝟎𝑥 + 𝒄𝟎,𝟏𝑦 + 𝒄𝟐,𝟎𝑥
2 + 𝒄𝟎,𝟐𝑦

2 + 𝒄𝟏,𝟏𝑥𝑦 + ⋯+ 𝒄𝒅,𝒅𝑥
𝑑𝑦𝑑 (3.3) 

where the DN of each pixel (G) is function of the pixel coordinates (x,y). 
 
The Lagrange solution follows a similar approach as when obtaining the window in 
Section 3.3.1 because it is close to its definition. It is made in two steps that give 
two parts of the polynomial. When looking for the window, the process began by 
obtaining the initial stencil at the main direction of the initial shoreline (blue stencil 
in Fig. 3.3). In the given examples it was along Y-axis – assuming that the beach 
follows a north-south direction. That stencil is used to create the first part of the 
Lagrange polynomial as follows: 
 
(A) Interpolation in the Y-coordinate 
 
(A1) Initially, given the set of discrete values {𝐺(𝑥𝑖 , 𝑦𝑚): 𝑗 − 1 ≤ 𝑚 ≤ 𝑗 + 1} that 

represent the DN values in the set of three pixels{(𝑥𝑖 , 𝑦𝑗−1), (𝑥𝑖 , 𝑦𝑗), (𝑥𝑖 , 𝑦𝑗+1)}, we define 

𝑗𝑚𝑖𝑛
(2)

= 𝑗 − 1. 

(A2) The two following third-order divided differences of the function 𝐺(𝑥𝑖 , 𝑦𝑚) are 

computed considering that 𝑥 = 𝑥𝑖 : 

𝑎𝑖,𝑗
(3)
= 𝐺 [𝑦

𝑗𝑚𝑖𝑛
(2) , ⋯ , 𝑦

𝑗𝑚𝑖𝑛
(2)

+3
]|
𝑥=𝑥𝑖

,      𝑏𝑖,𝑗
(3)
= 𝐺 [𝑦

𝑗𝑚𝑖𝑛
(2)

−1
, ⋯ , 𝑦

𝑗𝑚𝑖𝑛
(2)

+2
]|
𝑥=𝑥𝑖
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From the two possible candidate points, the point with the highest divided difference value 

will be added to the stencil and used to create the interpolating polynomial of degree 𝑑 =
3. In this way: 

(a) If  |𝑎𝑖,𝑗
(3)
| ≤ |𝑏𝑖,𝑗

(3)
|, then: 𝑗𝑚𝑖𝑛

(3)
= 𝑗𝑚𝑖𝑛

(2)
− 1 = 𝑗 − 2 

(b) If  |𝑎𝑖,𝑗
(3)
| > |𝑏𝑖,𝑗

(3)
|, then: 𝑗𝑚𝑖𝑛

(3)
= 𝑗𝑚𝑖𝑛

(2)
= 𝑗 − 1 

The choice will then be made between the following two sets of values from the Landsat 

image: {{𝑔𝑖,𝑗−2, 𝑔𝑖,𝑗−1, 𝑔𝑖,𝑗, 𝑔𝑖,𝑗+1}, {𝑔𝑖,𝑗−1, 𝑔𝑖,𝑗 , 𝑔𝑖,𝑗+1, 𝑔𝑖,𝑗+2}} 

(A3) If 𝑑 > 3 or each 𝑛 ∈ {4,⋯ , 𝑑}, the following two nth-order divided differences of 

the function 𝐺(𝑥𝑖 , 𝑦𝑚)  are computed: 

𝑎𝑖,𝑗
(𝑛)

= 𝐺 [𝑦
𝑗𝑚𝑖𝑛
(𝑛−1) , ⋯ , 𝑦

𝑗𝑚𝑖𝑛
(𝑛−1)

+𝑛
]|
𝑥=𝑥𝑖

,      𝑏𝑖,𝑗
(𝑛)
= 𝐺 [𝑦

𝑗𝑚𝑖𝑛
(𝑛−1)

−1
, ⋯ , 𝑦

𝑗𝑚𝑖𝑛
(𝑛−1)

+𝑛−1
]|
𝑥=𝑥𝑖

 

In this way: 

(a) If  |𝑎𝑖,𝑗
(𝑛)
| ≤ |𝑏𝑖,𝑗

(𝑛)
|, then     𝑗𝑚𝑖𝑛

(𝑛)
= 𝑗𝑚𝑖𝑛

(𝑛−1)
− 1 

(b) If  |𝑎𝑖,𝑗
(𝑛)
| > |𝑏𝑖,𝑗

(𝑛)
|, then     𝑗𝑚𝑖𝑛

(𝑛)
= 𝑗𝑚𝑖𝑛

(𝑛−1)
 

In the end: 𝑗𝑚𝑖𝑛 = 𝑗𝑚𝑖𝑛
(𝑑)
 𝑎𝑛𝑑 polynomial 𝑃𝑖,𝑗(𝑦; 𝐺) may be expressed in a Lagrange form 

as: 

𝑃𝑖,𝑗(𝑦; 𝐺) = ∑ 𝑔𝑖,𝑚 ( ∏
(𝑦 − 𝑦𝑙)

(𝑦𝑚 − 𝑦𝑙)

𝑗𝑚𝑖𝑛+𝑑

𝑙=𝑗𝑚𝑖𝑛 ,𝑙≠𝑚

)

𝑗𝑚𝑖𝑛+𝑑

𝑚=𝑗𝑚𝑖𝑛

    (3.4) 

For example if 𝑑 = 5 then 𝑗𝑚𝑖𝑛 ∈ {𝑗 − 4, 𝑗 − 3, 𝑗 − 2, 𝑗 − 1} and in the Y-direction we 
choose one set of DNs between the following: 

{

{𝑔𝑖,𝑗−4, 𝑔𝑖,𝑗−3, 𝑔𝑖,𝑗−2, 𝑔𝑖,𝑗−1, 𝑔𝑖,𝑗 , 𝑔𝑖,𝑗+1}, {𝑔𝑖,𝑗−3, 𝑔𝑖,𝑗−2, 𝑔𝑖,𝑗−1, 𝑔𝑖,𝑗 , 𝑔𝑖,𝑗+1, 𝑔𝑖,𝑗+2},

{𝑔𝑖,𝑗−2, 𝑔𝑖,𝑗−1, 𝑔𝑖,𝑗, 𝑔𝑖,𝑗+1, 𝑔𝑖,𝑗+2, 𝑔𝑖,𝑗+3},

{𝑔𝑖,𝑗−1, 𝑔𝑖,𝑗, 𝑔𝑖,𝑗+1, 𝑔𝑖,𝑗+2, 𝑔𝑖,𝑗+3, 𝑔𝑖,𝑗+4}

} 

The value of each DN is given by means of 𝑔𝑖,𝑚 in (3.4). In this case, as the initial 

stencil takes only values of an specified column i, it remains constant and m moves 

along the column coordinates from the minimum row 𝑗𝑚𝑖𝑛 near to j (the initial 

row of the stencil) to 𝑗𝑚𝑖𝑛 + 𝑑, in order to get the degree of the wanted 

polynomial that decides the size of the window. It means l from 𝑗𝑚𝑖𝑛 to 𝑗𝑚𝑖𝑛 + 𝑑 

are the rows values of the stencil and 𝑦𝑙 are their coordinates. Then, 𝑃𝑖,𝑗(𝑦; 𝐺) 
defined in (3.4) gives a polynomial only dependent on y. 
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The same way as each horizontal stencil was obtained around the initial vertical 
stencil (Fig. 3.3). Each one of those stencils (reliant on the y=ym profile 
considered) can give a new Lagrange polynomial only dependent on x as follows: 
 
(B) Interpolation in the X-coordinate 
 

Considering a fixed value of 𝑦 = 𝑦𝑚 ∈ {𝑦𝑗𝑚𝑖𝑛 , 𝑦𝑗𝑚𝑖𝑛+1, 𝑦𝑗𝑚𝑖𝑛+2,⋯ , 𝑦𝑗𝑚𝑖𝑛+𝑑} we 

define the minimum index in the X-coordinate, 𝑖𝑚𝑖𝑛,𝑚, using the following 

iterative process: 
 
(B1)  

(B1.1) If 𝑑 = 3 then initially, 𝑖𝑚𝑖𝑛,𝑚
(0)

= 𝑖  is considered. In this case, the pixel (𝑥𝑖 , 𝑦𝑗) 

may be at the end of the window in the direction of the X-axis if it this where the 
maximum variation of the shoreline occurs. This assumption ensures that the sub-pixel 
shoreline can be correctly defined despite the initial shoreline pixel –around which the 
analysis is being made− being displaced towards the sea or land by up to three pixels 
(an equivalent distance of 90 m when working with Landsat images). 

For 𝑛 ∈ {1,2}, 𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

   is supposed to be known. The two following nth-order divided 

differences are then computed: 

𝑎𝑖,𝑚
(𝑛)

= 𝐺 [𝑥
𝑖𝑚𝑖𝑛,𝑚
(𝑛−1) , ⋯ , 𝑥

𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

+𝑛
]|
𝑦=𝑦𝑚

,  𝑏𝑖,𝑚
(𝑛)
= 𝐺 [𝑥

𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

−1
, ⋯ , 𝑥

𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

+𝑛−1
]|
𝑦=𝑦𝑚

 

(a) If  |𝑎𝑖,𝑚
(𝑛)
| ≤ |𝑏𝑖,𝑚

(𝑛)
|, then: 𝑖𝑚𝑖𝑛,𝑚

(𝑛)
= 𝑖𝑚𝑖𝑛,𝑚

(𝑛−1)
− 1 

(b) If  |𝑎𝑖,𝑚
(𝑛)
| > |𝑏𝑖,𝑚

(𝑛)
|, then: 𝑖𝑚𝑖𝑛,𝑚

(𝑛)
= 𝑖𝑚𝑖𝑛,𝑚

(𝑛−1)
 

(B1.2) If 𝑑 > 3 then 𝑖𝑚𝑖𝑛,𝑚
(2)

= 𝑖 − 1, considering the following pixels 

{(𝑥𝑖−1, 𝑦𝑚), (𝑥𝑖 , 𝑦𝑚), (𝑥𝑖+1, 𝑦𝑚)} 

(B2) For each 𝑛 ∈ {3,⋯ , 𝑑}, 𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

 is supposed to be known and the two following nth-

order divided differences are then computed: 

𝑎𝑖,𝑚
(𝑛)

= 𝐺 [𝑥
𝑖𝑚𝑖𝑛,𝑚
(𝑛−1) , ⋯ , 𝑥

𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

+𝑛
]|
𝑦=𝑦𝑚

,  𝑏𝑖,𝑚
(𝑛)

= 𝐺 [𝑥
𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

−1
, ⋯ , 𝑥

𝑖𝑚𝑖𝑛,𝑚
(𝑛−1)

+𝑛−1
]|
𝑦=𝑦𝑚

 

(a) If  |𝑎𝑖,𝑚
(𝑛)
| ≤ |𝑏𝑖,𝑚

(𝑛)
|, then: 𝑖𝑚𝑖𝑛,𝑚

(𝑛)
= 𝑖𝑚𝑖𝑛,𝑚

(𝑛−1)
− 1 

(b) If  |𝑎𝑖,𝑚
(𝑛)
| > |𝑏𝑖,𝑚

(𝑛)
|, then: 𝑖𝑚𝑖𝑛,𝑚

(𝑛)
= 𝑖𝑚𝑖𝑛,𝑚

(𝑛−1)
 

In the end: 𝑖𝑚𝑖𝑛,𝑚 = 𝑖𝑚𝑖𝑛,𝑚
(𝑑)

. For each y= 𝑦𝑚 ∈ {𝑦𝑗𝑚𝑖𝑛 , 𝑦𝑗𝑚𝑖𝑛+1, 𝑦𝑗𝑚𝑖𝑛+2, 𝑦𝑗𝑚𝑖𝑛+𝑑} we 

define the following d-degree interpolating polynomial that interpolates along the X-axis 

considering the stencil  { 𝑥𝑖𝑚𝑖𝑛,𝑚 , ⋯ , 𝑥𝑖𝑚𝑖𝑛,𝑚+𝑑}: 
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𝑄𝑖,𝑚(𝑥; 𝐺) = ∑ 𝑔𝑘,𝑚 ( ∏
(𝑥 − 𝑥𝑛)

(𝑥𝑘 − 𝑥𝑛)

𝑖𝑚𝑖𝑛,𝑚+𝑑

𝑛=𝑖𝑚𝑖𝑛,𝑚,𝑛≠𝑘

)

𝑖𝑚𝑖𝑛,𝑚+𝑑

𝑘=𝑖𝑚𝑖𝑛,𝑚

  (3.5) 

𝑄𝑖,𝑚(𝑥; 𝐺) is the unique one-dimensional d-degree polynomial that interpolates the 

function 𝐺(𝑥, 𝑦𝑚) at point 𝑥, using the stencil {𝑥𝑖𝑚𝑖𝑛,𝑚 , ⋯ , 𝑥𝑖𝑚𝑖𝑛,𝑚+𝑑} formed by (𝑑 + 1) 

successive points that include 𝑥𝑖 . An example of such an adaptive window is shown in Fig. 
3.4A and 3.4B where for each Y-line a different set of X-coordinates has been selected. 

Combining the one-dimensional polynomials defined by (3.4) and (3.5) we obtain 
the following two-dimensional polynomial (Balaguer et al., 2001): 

𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺) = (𝑃 ⊗ 𝑄)𝑖,𝑗(𝑥, 𝑦; 𝐺) = 𝑃𝑖,𝑗 (𝑦; 𝑄𝑖,𝑚(𝑥; 𝐺))

= ∑ ∑ 𝑔𝑘,𝑚 ( ∏
(𝑥 − 𝑥𝑛)

(𝑥𝑘 − 𝑥𝑛)

𝑖𝑚𝑖𝑛,𝑚+𝑑

𝑛=𝑖𝑚𝑖𝑛,𝑚,𝑛≠𝑘

)

𝑖𝑚𝑖𝑛,𝑚+𝑑

𝑘=𝑖𝑚𝑖𝑛,𝑚

( ∏
(𝑦 − 𝑦𝑙)

(𝑦𝑚 − 𝑦𝑙)

𝑗𝑚𝑖𝑛+𝑑

𝑙=𝑗𝑚𝑖𝑛 ,𝑙≠𝑚

)

𝑗𝑚𝑖𝑛+𝑑

𝑚=𝑗𝑚𝑖𝑛

   (3.6) 

This polynomial 𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺) may be applied in the adaptive window defined by 

pixels whose centers are: 

{(𝑥𝑘 , 𝑦𝑚): 𝑚 ∈ {𝑗𝑚𝑖𝑛 , ⋯ , 𝑗𝑚𝑖𝑛 + 𝑑}, 𝑘 ∈ {𝑖𝑚𝑖𝑛,𝑚, ⋯ , 𝑖𝑚𝑖𝑛,𝑚 + 𝑑}}      (3.7) 

It can be seen that the value of 𝑗𝑚𝑖𝑛 only depends on the 𝑗 value of the initial pixel; 

while the values of 𝑖𝑚𝑖𝑛,𝑚 depend on the 𝑦𝑚 line. 

 
3.3.3. Process to obtain the sub-pixel inflexion line 

Starting from the Lagrange 2D interpolating polynomials 𝑅3,𝑖,𝑗(𝑥, 𝑦; 𝐺) or 

𝑅5,𝑖,𝑗(𝑥, 𝑦; 𝐺) (3.6) considering that d=3 or d=5, then the sub-pixel shoreline is 

calculated using the roots of the Laplacian of these polynomials: 

∇2𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺) =
𝜕2𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺)

𝜕𝑥2
+
𝜕2𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺)

𝜕𝑦2
, 𝑓𝑜𝑟 𝑑 = 3, 𝑜𝑟 𝑑 = 5  (3.8) 

And so shorelines are computed by solving the equation (Laplacian equal to cero): 

∇2𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺) = 0   (3.9) 

The intersection between the Laplacian and the plane z = 0 within each analysis 
window offers different candidate curves as a solution. Given a constant Y-value, 
there are several values of X for which equation (3.9) is fulfilled as Fig. 3.5 shows. 
The candidate whose polynomial gradient module is maximum (3.10) will define 
the sub-pixel shoreline position for each Y-profile. 
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𝑀𝑎𝑥 {√(
𝜕𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺)

𝜕𝑥
)

2

+ (
𝜕𝑅𝑑,𝑖,𝑗(𝑥, 𝑦; 𝐺)

𝜕𝑦
)

2

}    (3.10) 

In addition, it was assessed that the calculated shoreline approximated better to the 
true reference shoreline nearer the initial pixel than in those further away – 
although the polynomial surface was obtained by adjusting across the entire 
analysis window (see example in Fig. 3.5A). Therefore, the sub-pixel shoreline 
solution to keep for the final result is one of the central Y pixels, leaving aside the 
two pixels at the extremes where the adjustment may crash due to the irregularity 
of the neighborhood. 

 

Fig. 3.5. ∇2𝑅5,𝑖,𝑗(𝑥, 𝑦; 𝐺) corresponding to the analysis window shown in Fig. 3.3B. (A) 

shows the intersections between ∇2𝑅5,𝑖,𝑗(𝑥, 𝑦; 𝐺) surface and the plane z = 0 and which 

are colored in ocher and blue colors respectively. The initial shoreline pixel (𝑖 = 0, 𝑗 = 0) 
is marked by a brown square partially hidden under the plane z = 0; and the GPS or true 
shoreline is the black line crossing from north to south. (B) shows the Laplacian for two 

particular Y-profiles (y= 𝑦𝑗  and y = 𝑦𝑗+1) and the intersections with the X-axis – shoreline 

candidate points. 

 
Moreover, the procedure for obtaining the shoreline position is achieved by 
dividing its Y-coordinate every 1/4 pixel and then by looking for each sub-pixel 
shoreline point. For example, a profile is taken every 7.5 meters of distance in the 
case of Landsat images with a pixel size of 30 meters. Thereby, the shoreline 
solution equals the density of points obtained with the Almonacid-Caballer (2014) 
solution where each pixel of the window had been upsampled in a refined mesh 
computed with a cubic convolution operator. Other ways to densify may be carried 
out for other purposes. 
 
Once the sub-pixel shoreline points are obtained for all the analysis windows (as 
many as initial shoreline pixels), each Y-value will then be several X-solutions due 
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to the overlap between windows. For example, the window that serves as the 

support for the stencil of the interpolating polynomial 𝑅5,𝑖,𝑗(𝑥, 𝑦; 𝐺) overlaps with 

the window of 𝑅5,𝑖,𝑗−1(𝑥, 𝑦; 𝐺). Therefore, the final solution for each fixed Y-

value is calculated as the average of all the approximate sub-pixel shoreline points 
obtained through the different initial pixels. Other works such as Pardo-Pascual et 
al. (2018), calculate this average by weighing each solution point according to its 
distance from the initial pixel (which consequently reduces the RMSE). However, 
the current work does not deal with this question as it is focused on assessing 
exclusively the inner technical core of the sub-pixel methodology (step 2 (c) 
exposed in Section 3.1). So, once tested the improvement in the raw results 
achieved with the new methodology, subsequent procedures of filtering could be 
added as in former works to gain precision. At this point, we have a set of unique 

points (𝑥𝑘 , 𝑦𝑚) that define the position of the shoreline. 
 
The use of an adaptive window in which the initial shoreline pixel is not in the 
center of the same may cause an excessive curvature in the calculated shoreline as 
seen in Fig. 3.6A which oscillates around the true shoreline. This happens to a 
lesser extent in the case of applying the Almonacid-Caballer (2014) solution which 
uses the LSM on a 7x7 upsampled window centered in the initial pixel, as we can 
see in Fig. 3.6B. For this reason, at the end of the sub-pixel calculation process 
described in this chapter (termed aLgr), a smoothening is applied to the set of sub-

pixel shoreline points (𝑥𝑘 , 𝑦𝑚) by using the RLOESS technique (Press and 
Teukolsky, 1990) in function of the percentage of solution points per window. 

 
3.4. TESTING THE NEW SOLUTION. COMPARISON WITH OTHER 
INTERPOLATION TECHNIQUES 
 
Pardo-Pascual et al. 2018 −coming from Almonacid-Caballer, 2014 methodology− 
uses a fifth-degree polynomial expression computed using the LSM and a stencil 
formed with an upsampled 7x7 fixed and symmetric window around the initial 
shoreline pixel (see Fig. 3.6B). Conversely, the great novelty of this chapter is in 
changing the concept of kernel through the implementation of a smaller adaptive 
window defined on the pixel-level shoreline that can collect combinations of 16 or 
36 pixels (stencils of four or six pixels in each direction) with greater radiometric 
variations. An adaptive window may select the stencils with which it is constructed 
to search for the land-water line. This idea assumes that the separation between 
water and land occurs where the infrared intensity gradient is maximum. 
Therefore, the shape of the window (see Fig. 3.6A or 3.3B) may be completely 
irregular, or even square, if the choice defines it (Fig. 3.3A), but it cannot be 
centered and symmetric with respect to the initial pixel using an even number of 
pixels. 

 



Photogrammetry and image processing techniques for beach monitoring 

 

 96 

Fig. 3.6. Sub-pixel shoreline obtained using various methodologies (described next in 

Table 3.2) on the 8 October 2016 at El Saler beach and compared with the true shoreline 
measured by GPS. (A) shows the sub-pixel shoreline solution obtained using successive 
adaptive windows around each initial shoreline pixel; while (B) uses fixed and 
symmetrical windows to make the adjustment. (A) also maps an unfinished solution 
(prior to the smoothening step; aLgr50) that illustrates the curvature effect produced by 
working with non-centered windows. As an example, a particular adaptive window in (A) 
and fixed in (B) are bounded in white and both pertain to the initial pixel highlighted in 
pink. The grid coordinates are: GCS_ETRS89 UTM31N. (For an interpretation of the 
color references in this figure legend, the reader is referred to the web version of this 
article). 
 
Different methodological guidelines are analyzed in order to compare the new sub-
pixel solution against that used in the technical core of Pardo-Pascual et al. 2018. 
The analysis window is centered and fixed (symmetric window) around each initial 

pixel (𝑥𝑖 , 𝑦𝑗); or dynamic and non-centered (adaptive window) and in which case 

all the pixels must be chosen. In addition, a comparative analysis is made that 
depends on the calculation technique for the polynomial surface, its associated 
degree, and the corresponding size of the pixel window. To summarize the 
methodological sub-pixel shoreline solutions –either as a new proposal or as a 
solution for comparison− the following nomenclatures are shown in Table 3.2. 

Notice that the solutions applying least squares use a refined mesh to give 
sufficient equations to the least squares system. sLSM solution is the same as in 
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Pardo-Pascual et al. 2018 but this time showing the results without implementing 
any weighted average to get the final shoreline because solutions want to be 
compared unprocessed to faithfully appreciate the differences arising only from the 
sub-pixel method. Once the window is defined, it can be represented by a 2D 
polynomial surface solved by least squares using an overdetermined system 
(aLSM3 and aLSM5), or by Lagrange using a non-homogeneous system with a 
single solution (aLgr3 and aLgr5) and raw pixel data as the current chapter 
proposes. In addition, it is possible to compare aLgr against aLSM or sLSM 
solutions, as the smoothening carried out in the first solution may equal the cubic 
convolution process when obtaining the refined mesh in the last two. 

    Number of pixels /window 
 

Method Window 
Polynomial 

method 
Degree 

Original 
resolution 

Upsampled 
Polynomial 

terms 

sLSM3 symmetric LSM 3 
7x7 pixels 28x28 pixels 

16 

sLSM5 symmetric LSM 5 36 

aLSM3 adaptive LSM 3 16 pixels 256 pixels 16 

aLSM5 adaptive LSM 5 36 pixels 576 pixels 36 

aLgr3 adaptive Lgr 3 16 pixels - 16 

aLgr5 adaptive Lgr 5 36 pixels - 36 

Table 3.2. The main characteristics of the sub-pixel methodological solutions analyzed. 

The last two correspond to the proposed methodology. In the polynomial method, LSM 
means the least squares method and Lgr the Lagrange polynomial. 

 
3.5. RESULTS 
 
This section presents the results of the new algorithmic solution (aLgr) for 
obtaining an accurate sub-pixel shoreline regardless of the veracity of an initial 
pixel-level shoreline. The assessment is completed by comparing this against aLSM 
and sLSM solutions to show both the importance of the use of the adaptive 
window and the improvement produced by the Lagrange polynomial interpolation 
method. Two different series of results are provided –those obtained on a sandy 
beach and on a port area– and their organization in the following assessments 
itemizes the methodological differences and improvements in detail. 

3.5.1 Adaptive versus fixed search window 

The opening assessment evidences the first challenge of the proposed 
methodology when working with an adaptive window –meaning the interpolation 
window defined on the pixel-level shoreline (see Section 3.3.1). 

The two sets of shorelines compared in this section (aLSM versus sLSM) only 
differ in the window of pixels chosen to adjust the polynomial surface using least 
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squares (see Table 3.2). sLSM uses a 7x7 symmetric window whatever the 
polynomial degree (3 or 5) is used. aLSM uses an adaptive window (defined 
according to A.4 formula) with 16 pixels when looking for third-degree and 36 
pixels for fifth-degree. Whatever is the window these solutions follow the same 
logic: upsampling the kernel and resolution by least squares. A comparative 
analysis between the shorelines obtained from L7 and L8 images as well as the 
accuracy per zone is summarized in Table 3.3 –results concerning the aLgr solution 
will be analyzed in the following Section 3.5.2. 

  sLSM3 aLSM3 aLgr3 sLSM5 aLSM5 aLgr5 

Beach 

area 

L8 8.63±4.17 3.48±3.19 2.01±2.87 5.35±3.80 5.26±3.38 1.79±2.78 

L7 9.09±8.25 5.79±9.98 4.46±5.06 6.83±6.58 6.18±6.52 4.38±5.66 

All 
µ±σ: 8.89±7.04 4.50±7.60 3.45±4.16 6.00±6.17 5.98±5.53 3.31±4.47 

RMSE: 11.33 8.83 5.40 8.60 8.14 5.56 

Port 

area 

L8 0.19±13.73 1.58±7.58 0.75±6.09 0.16±10.56 -1.06±9.54 1.23±5.62 

L7 3.29±14.98 1.42±11.07 2.77±7.89 0.95±12.78 0.83±11.46 2.05±8.16 

All 
µ±σ: 1.74±14.39 1.96±9.12 1.75±7.11 0.71±11.57 -1.22±10.3 1.62±6.97 

RMSE: 14.49 9.32 7.32 11.59 10.40 7.16 

Table 3.3. Average (µ), standard deviation (σ) and RMSE values (in meters) describing 

the precision of different sub-pixel shoreline solutions (of Table 3.2) for the 17 analyzed 
days (seven L8 and ten L7 images). 

Shoreline errors are larger for L7 because, as expected, the SLC-error and 
consequent data gaps existing on these images sometimes confuse the adjustment 
surface and cause unrealistic spikes at the ends (as Fig. 3.7 shows). The adaptive 
window does not have enough pixels with values to adapt to the maximum 
gradient direction around the ends of each L7 shoreline stretched between the gaps 
(even with the refined mesh). 

Results in the beach area indicate that although shorelines are biased seaward, the 
use of an adaptive window significantly reduces this trend and the shoreline is 
defined with a mean horizontal error (µ±σ) of 4.50±7.6 m and 5.98±5.53 m by 
adjusting respectively a third (aLSM3) or fifth-degree (aLSM5) polynomial. In the 
port area, the RMSEs are generally worse because the standard deviations are 
greater and show a very heterogeneous error distribution that causes a flattening of 
their histogram. This fact responds to the greater radiometric variation found in 
the terrestrial part of the port area than in the sandy beach site where the numbers 
remain more homogeneous –as anticipated Pardo-Pascual et al. (2018). Moreover, 
many negative errors indicate a slight landward bias of the shoreline and affect the 
average error by reducing it to values near zero. 

The freedom to work with adaptive windows ensure that these recreate the 
location with the maximum radiometric variations. Consequently, the search for 
the sub-pixel shoreline position will be made in the optimal neighborhood, 
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improving the accuracy of the results. However, the second challenge of the 
proposed methodology is analyzed in next section. 

 
Fig. 3.7. Local examples of the sub-pixel shoreline solution for 14 September 2016 

following the aLSM5 method in both study areas: El Saler beach (A) and the port of 
Valencia (B). The shoreline solution is mapped above its corresponding L7 image 
(SWIR1 band) and compared with the true shoreline used as reference –as measured by 
GPS when the satellite passed overhead in (A) and digitalized over a high-resolution 
orthophoto in (B). The grid coordinates are: GCS_ETRS89 UTM31N. 

 
3.5.2. Benefits of the complete solution through the Lagrange interpolator 
polynomial 

Working with the discussed adaptive window, this section evaluates the solvency 
of the complete sub-pixel shoreline solution (aLgr) –performed with the Lagrange 
interpolator polynomial as described Section 3.3.2– by comparing against the least 
squares solution (aLSM). The mathematical difference between both is based on 
the fact that least squares uses the window with the DNs previously upsampled in 
a refined mesh whereas Lagrange uses the raw values to carry out the adjustment. 
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Therefore, Lagrange polynomial coincides in the center of each pixel with the real 
DN of the image while LSM computes the polynomial that passes closest to the 
interpolated values. 

Looking at the differences between aLSM and aLgr solutions (see errors in Table 
3.3) reveals that the shoreline is more accurate and precise when choosing the 
second option. This shoreline solution, independently of the calculated polynomial 
degree, has an overall seaward bias of less than 3.5 m in the beach area and less 
than 1.8 m in the port area. Moreover, 2.5 m of RMSE difference between both 
solutions is found in all cases and, the histogram of the aLgr shoreline errors show 
a more marked symmetry than the rest (the highest relative frequency is found 
within the 0-5 m interval) thus evidencing the precision and robustness of the new 
sub-pixel solution. Differences between the errors when working with L8 or L7 
data are again noticeable with a bias of 1.79±2.78 m and 4.38±5.66 m respectively 
for aLgr5; and of 2.01±2.87 m and 4.46±5.06 m respectively for aLgr3. Large 
errors of L7 cause a general increase in the RMSE of all methods. 

According to Fisher’s least significant difference (LSD) procedure (Milliken & 
Johnson, 1992), the multiple comparison technique determines that aLgr and 
aLSM methodologies work differently –and so their mean shoreline errors are 
significantly different with a 95% confidence. See that Fig. 3.8 clearly differences 
these two families of data: aLgr0 and aLgr (pre- and post-smoothing) vs. aLSM. 
Therefore, this test also proves that the smoothening proposed in the last step of 
our methodology (aLgr) –described in Section 3.3.3−, far from changing the 
meaning of the sample, significantly reduces the variability of the data by removing 
outliers –same effect achieved when upsampling with cubic convolution in aLSM 
and sLSM solutions. Before the smoothening step, the mean shoreline error in the 
beach area was 3.00±7.34 m with a fifth-degree (aLgr50) and 3.18±7.78 m with a 
third-degree (aLgr30). This was followed by 3.31±4.47 m and 3.45±4.16 m for the 
fifth and third-degree solutions respectively (aLgr5 and aLgr3). These results 
−summarized in Fig. 3.8− confirm the usefulness of the smoothening step to 
reduce the standard deviation of the errors without altering the meaning of the 
mean error. 

 

 

 

 

 

 

Fig. 3.8. Mean-value chart with the Fisher LSD intervals at the 95 % confidence level in 

Fisher’s test. The sub-pixel shoreline errors shown correspond to the aLgr0 (prior to the 
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smoothening step), aLSM solutions, and aLgr (which is highlighted in bold for being the 
proposed methodology) by using a third or a fifth-degree in the polynomial solution. 
These latter solutions are mapped in Fig. 3.6 for a specific day. 

 

3.5.3 Resistance of the methodology against not accurate initial shoreline 

This section evaluates how the sub-pixel techniques deal with the vagueness of the 
initial shoreline at pixel level so that final accuracy is not affected. To carry out this 
assessment, the input shoreline is displaced one pixel landward and seaward from 
its original location and the different sub-pixel shoreline solutions are obtained to 
evaluate how these would fix the deviation. 

Despite the fact that the initial pixel is expected to be too coarse and does not 
contain the real shoreline, the sLSM results indicate that the fixed 7x7 kernel is 
extensive enough to cover several pixels of land and water but not equitably. The 
inflection point of each polynomial surface defining the shoreline may be 
ambiguous in this scenario. Moreover, and as the large errors in Fig. 3.9 show, it 
seems that the third-degree adjustment surface (sLSM3) cannot faithfully represent 
the complexity of the terrain and is less successful in defining the shoreline when 
just comparing maximum and minimum relatives. Using a fifth-degree polynomial 
(sLSM5) the sub-pixel shoreline is a little better but still inaccurate with an RMSE 
of 6.72 m and 11.4 m –depending on whether the rough shoreline pixel was 
displaced seaward or landward. Almonacid-Caballer (2014) or Pardo-Pascual et al. 
(2018) methodology had not been tested yet coming from a mistaken initial pixel-
level shoreline. Nevertheless, the sLSM observations here analyzed are in 
agreement with its implicit notions where the 7x7 kernel intended to ensure that 
the inflexion shoreline was captured around the initial pixel-level solution, and the 
fifth polynomial degree had enough curvatures to draw the reality of the kernel. 

Proceeding with the results of the methodological proposal of this chapter, Fig. 3.9 
shows first how the choice of an adaptive window with the aLSM solution helps in 
the search for an accurate shoreline when the initial pixels are wrong. The 
polynomial surface adapted to these nominated pixels more accurately represents 
reality. Then, this approach –plus the use of Lagrange with the raw data– leads to 
an accurate shoreline biased 2.85±3.98 m for S_aLgr5 and 4.07±4.01 m for 
L_aLgr5, starting accordingly with a seaward or a landward initial shore. The 
histograms of Fig. 3.9 clearly manifest, from right to left, the advances achieved –
after implementing each methodological step– until reach the complete solution 
(results highlighted in green color). Separating the previous errors as they come 
from L8 and L7 images, we got respectively a mean horizontal error of 1.42±2.62 
m and 3.85±4.94 m for S_aLgr5 and of 2.53±2.64 m and 5.14±4.96 m for 
L_aLgr5. 
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Fig. 3.9. Histograms representing the density function of the sub-pixel shoreline errors in 

the beach area depending on the bias of the pixel-level shoreline –seaward (A) or 
landward (B)– and the methodology used. A normal density function using the average 
(µ) and the standard deviation (σ) of the data is also considered by leaving underneath a 
total area of one. 

Note that despite the less accurate sLSM solutions these seem to improve if the 
input pixel-level shoreline biased seaward (1.23±6.6 m vs. 9.67±6.05 m –overall 
mean horizontal errors of S_sLSM5 and L_sLSM5 solutions). This means that the 
initial pixels are located in the sea, and consequently, more pixels with radiometric 
values close to zero correspond to sea levels. The adjustments carried out and 
mapped in Fig. 3.10 for 2 June 2016, prove that generally in each profile along the 
X-axis from land to sea where there is more water than land pixels, the inflection 
point-potential shoreline solution is found first (Fig. 3.10A). Conversely, in a 
profile with more land than water pixels, the sequence of high radiometric values 
delays the fall in the adjustment polynomial moving the shoreline solution 
seawards (Fig. 3.10B). However, as expected, when using the proposed aLgr 
method the differences between both solutions –biased seaward and landward– are 
minor because the adaptive window matches the correct proportion of land and 
sea pixels in any case and the shoreline is more accurately defined (also confirmed 
seeing Fig. 3.12). In particular for 2 June 2016, S_sLSM5 and L_sLSM5 solutions 
define the shoreline with a bias of -0.65±3.71 m and 7.51±3.54 m; while S_aLgr5 
and L_aLgr5 solutions define it within 0.88±1.96 m and 2.28±2.17 m respectively. 

 
3.6. DISCUSSION 
 
Assuming that the shoreline is the inflexion line between the brighter and darker 
(land and water) pixels in the infrared bands, one of the main problems in the 
refinement process is the accuracy of the initial pixel-level shoreline from which 
the refinement starts. At the same time, even when that line is properly located, a 
fixed kernel around a specific pixel may not be the best to obtain the sub-pixel 
land-water inflexion (for example in diagonal shorelines or irregular landforms 
such as groins). The methodological solution described in this chapter is thought 
to deal with both problems. While to date, squared and symmetric kernels around 
the initial solution were used, it has been shown how to apply the concept of 
divided differences to obtain worthwhile asymmetric and adaptive windows. 

By separately analyzing every step of the new sub-pixel solution, the usefulness of 
the method is evaluated. Firstly, in Section 3.5.1, the wisdom of using an adaptive 
window is assessed by comparing the aLSM and sLSM solutions (which only differ 
in the window of pixels chosen to adjust the polynomial surface using least 
squares). Results in the beach area indicate that simply by using an adaptive 
window instead of a fixed window, the shoreline is defined more accurately (refer 
to Table 3.3). Through the aLSM5 solution it is achieved a mean horizontal error 
of 5.26±3.38 m and 6.18±6.52 m respectively for L8 and L7; while through sLSM5 
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solution the mean errors are 5.35±3.8 m and 6.83±6.58 m respectively for L8 and 
L7. Differences between these last errors and those of Pardo-Pascual et al. (2018) –
where it was estimated a mean error of 6.5±3.1 m for L8 and 5.05±5.7 m for L7– 
are due to the last steps of filtering have been omitted in the solutions of the 
current chapter. 

 

Fig. 3.10. Map with sub-pixel shoreline solutions for 2 June 2016 of El Saler beach 

shown over the corresponding L8 (SWIR1 band) image. These are compared with the 
GPS shoreline representing the same instantaneous water line. The sub-pixel 
methodological process starts from an initial shore (whose pixels are tagged in yellow) 
biased seaward (A) and landward (B). The grid coordinates are: GCS_ETRS89 
UTM31N. 

On the other hand, the results achieved for the port area behave differently and 
show a large variability in shoreline error due to the DN heterogeneity of the 
terrestrial part. However, this consequence is reduced with the adaptive solution as 
Table 3.3 presented. Mention that in order to reduce the RMSE in obtaining the 
shoreline, Pardo-Pascual et al. (2012) used a polynomial radiometric correction 
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(PRC) trained and evaluated in three particular seawalls, achieving a decrease in 
RMSE that ranged between 4.59 to 5.47 m. The relation obtained between the 
radiometric response around the coastline and its bias was not strong (R2=0.45) 
but the little effect was noticeable at this level. However, later Pardo-Pascual et al. 
(2018) refuted it by proving that such a correction was not valid for other sites, so 
this has not been applied in the results of current chapter. 

Secondly, the advantage of using the Lagrange interpolator polynomial with the 
original DN values (aLgr) compared to least squares in a refined mesh (aLSM) has 
also been proved in Section 3.5.2. The sub-pixel shoreline is more accurate and 
precise when using the new methodology reaching the RMSE of 5.4 m and 5.56 m 
(with aLgr3 and aLgr5) instead of the 8.83 m and 8.14 m of RMSE obtained with 
aLSM3 and aLSM5. Working without altering the original image is a positive point 
because uncontrolled upsampling can lead to problems and generate outliers. 
Moreover, computation without upsampling is made using a non-homogeneous 
system with a single solution. 

For both study areas, the results generally show a more accurate shoreline using a 
fifth-degree polynomial (Table 3.3). It seems that the polynomial surface with a 
large window of 36 pixels more faithfully represents the reality in our study sites 
and adjusts better. However, this is very dependent on the coastal morphology 
(beach width, sand color, vegetation near the beach, etc.) which affects the 
radiometric response. The analysis window and adjustment degree is expected to 
be lower as the dimensions of the beach are smaller –so that the method does not 
become confused with the radiometry of non-beach elements. Otherwise, if the 
pixels of the initial shoreline at pixel level are not accurate enough, a small analysis 
window may not cover an extension of water and land that is representative 
enough to carry out the adjustment when searching for an accurate sub-pixel 
shoreline. 

The least (sLSM5) and the most (aLgr5) accurate methodologies of those analyzed 
are mapped for two particular dates and compared against their reference GPS 
shorelines in Fig. 3.11. Using the aLgr5 solution, the shoreline is precisely defined 
with an average error of 1.54± 2.59 m and 3.97± 2.73 m for both 18 and 9 June 
2016 respectively. Note that GPS and sub-pixel shorelines in Fig. 3.11 move in the 
same direction between dates. 

Other experiments made in the chapter and summarized in Fig. 3.12 prove how 
the proposed methodology enables accurately establishing the sub-pixel shoreline 
even starting the process from a rough pixel-level shoreline wrongly biased 
landward or seaward. Figure 3.12A show how converging solutions are obtained 
for any initial pixel shoreline and for each particular analyzed day. The sub-pixel 
shorelines define with a RMSE of 4.89 m (S_aLgr5) and 5.71 m (L_aLgr5) by 
starting with a seaward and landward biased initial shores (as already advanced Fig. 
3.9) –results in line with the 5.56 m of RMSE obtained when starting with a 
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centered line supposedly located in the correct place. However, if the sub-pixel 
refinement is attempted with fixed windows as in Pardo-Pascual et al. (2018), the 
final solution will be very conditioned by the precision of the pixel-level shoreline 
leading to inaccurate results like Fig 3.12B presents. 

 
Fig. 3.11. Coastal segment of El Saler beach where different shoreline solutions are 

shown for 9 and 18 June in red and blue respectively. The GPS shorelines are 
represented with lines and the sub-pixel shoreline solutions with dots (sLSM5 and the 
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aLgr5). Solutions painted on an orthophoto taken from 2015 PNOA sources. The grid 
coordinates are: GCS_ETRS89 UTM30N. 

One of the problems posed by Pardo-Pascual et al. (2012) –with same 
methodological premises as sLSM solution–, is the difficulty of defining the 
shoreline where the coast presents sudden inflections as happens on beaches 
segmented by groins (sLSM5 solution in Fig. 3.13 exemplifies this distorting 
effect). Thus, in order to know how the aLgr proposed algorithmic solution 
responds to this, an additional test is carried out on a beach of such characteristics 
–south and contiguous to the port of Valencia. Results prove that this 
methodology clearly reduces the effect of the inflection by avoiding significant 
errors next to the base of the groin. 

 
Fig. 3.12. Mean shoreline error obtained for the 17 analyzed days in the beach area by 

applying both aLgr and sLSM solutions respectively in A and B (accurate and inaccurate 
results). Small crosses and circles as markers represent L7 and L8 data accordingly. 
The three sub-pixel shoreline shown have been obtained with the initial pixel-level shore 
centered (aLgr5 and sLSM5), biased Seaward (S_aLgr5 and S_sLSM5), and Landward 
(L_aLgr5 and L_sLSM5). 

 

Fig. 3.13. Map of a groin area with different sub-pixel shoreline solutions obtained for 2 

June 2016 displayed on its corresponding L8 image on the left, and on a generic 
orthophoto (2015 PNOA sources) on the right. The grid coordinates are: GCS_ETRS89 
UTM31N. 
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3.7. CONCLUSIONS 
 
This chapter has described a new methodology to search for the sub-pixel 
shoreline from freely available mid-resolution satellite images. A valuable solution 
to provide accurate coastal information for the improved planning and 
management of worldwide coastal resources. 

The main novelty, compared with other methods previously described in the 
literature, lies in the definition of an adaptive mathematical window where an 
algorithm looks for reaching the sub-pixel accuracy by collecting the set of points 
with the maximum radiometric variation. The proposed method does not alter the 
original image and works with the raw image data to recreate the land-water 
surface through the Lagrange interpolation polynomial. It focuses on the sub-pixel 
refinement process carried out on a pixel-level shoreline −obtained from the image 
in various ways or be any available line− whose reliability will not condition the 
precision of the final sub-pixel solution. The objective is then to obtain a two-
dimensional piecewise interpolating polynomial around each of its pixels. The 
shoreline is assumed to be in the inflexion line with the largest gradient, and so 
sub-pixel precision is obtained mathematically. In contrast to other sub-pixel 
methodologies (Pardo-Pascual et al., 2018) where the support window of the 
polynomial is understood as a fixed squared and symmetric kernel around each 
pixel, the concept in this work has changed. A new asymmetric solution is 
described based on the concept of divided differences to find the land-water 
transition. The adaptive window then collects combinations of 16 or 36 pixels with 
the greatest radiometric variations for interpolating (depending on the polynomial 
degree). Once the window is defined, the 2D polynomial surface is solved by the 
Lagrange interpolating polynomial and its Laplacian roots are calculated to obtain 
the sub-pixel shoreline points. The compilation of all the sub-pixel solutions for 
each particular kernel leads to the resulting shorelines analyzed in this chapter 
(solutions shown without any weighting average or filtering techniques applied). 

The 2D polynomial expression could also be obtained by using least squares. Third 
and fifth degree polynomials have been used with a previous kernel upsampling to 
increase the number of equations in the least squares system. However, it has been 
shown that, avoiding the upsampling drives to more precise and less biased results. 
At the same time, the adaptive kernel lets to work with the exact number of pixels 
needed to fit the 2D polynomials. In these cases, not only least squares can be used 
and the 2D Lagrange interpolator polynomial has been proposed.  

The new methodology (aLgr) has been applied to two very different coastal areas 
(a sandy beach and a segment of the port of Valencia) to analyze how their 
inherent differences may affect the method. A set of 17 Landsat images (L7 and 
L8) was used to extract the shoreline. Results have shown the improvement that 
occurs in estimating the positioning of the sub-pixel shoreline when using the 
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proposed solution, especially in the challenging case of starting with a biased initial 
pixel-level shoreline. Using the ideas of former methodologies −through the 
sLSM5 solution− the shoreline was defined with a mean horizontal error not 
better than 6.0±6.17 m for the beach and 0.71±11.57 m for the port. However, 
better accuracies are achieved applying the proposed methodology with errors of 
3.31±4.47 m and 1.62±6.97 m in those same sites respectively. In particular, and 
disaggregating these last results for L8 and L7, the error is respectively 1.79±2.78 
m and 4.38±5.66 m in the beach area, and 1.23±5.62 m and 2.05±8.16 m in the 
port area. Even more, differences between methodologies exaggerate when the 
sub-pixel search starts from an initial biased pixel-level shoreline. In these cases, 
the sLSM5 method is unable to reach a RMSE below the 6.72 m, while the aLgr5 
method defines the shoreline with a RMSE of 5.71 m (3.65 m for L8 and 7.14 m 
for L7) and 4.89 m (2.98 m for L8 and 6.26 m for L7) depending on whether the 
initial shore was landward or seaward biased. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover photo of Chapter 4: 
Jervis Bay, Australia (taken Dec. 2017) 
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This chapter summarizes the complete journey through the research history of the 
doctoral student and CGAT research group to which she belongs. 

Within the research background of the CGAT group and within the 

project entitled “Monitoring coastal changes using remote sensing to mitigate the impacts of 

climate change” the doctoral student has been working in recent years on the search 

for solutions and techniques to further improve shoreline detection from satellite 

imagery. The algorithm of shoreline extration presented in Pardo-Pascual et al. 

(2012) and thoroughly described in Almonacid-Caballer 2014 needed to be tested 

in other environments outside the comfort area (as were the breakwaters). 

However, assessing the algorithm in other coastal areas such as beaches led to 

many challenges. In dynamic environments such as beaches, the definition of a 

border as the shoreline was not a trivial issue and even less so when working from 

mid-resolution satellite images. However, its achievement would be very promising 

for coastal monitoring and planning. 

The first issue to solve when evaluating the algorithm is to establish which 
real phenomenon is being detected as a shoreline within the transition zone 
between land and sea (Do et al., 2019). Pardo-Pascual et al. (2012) analyzed the 
results of some 45 images in different artificially stabilized coastal segments. In 
these places, the impact of wave runup is null because the land-water limit and the 
wet line are coincident, which is not true in the case of the beaches. Therefore, it is 
pertinent to ask whether the deduced waterfront from Landsat images for 
sedimentary beaches is coincident with a shoreline measured in the field or from 
high-resolution images – and if its use provides information with the same validity 
for describing medium and long-term evolutionary trends (Sánchez-García et al., 
2015a). 

Achieving this, and given that reference data simultaneous with Landsat (5, 
7 and 8) images was not initially available, the first study in Section 4.1 (published 
in Marine Geology, 2016) focused on the comparison of an annual mean shoreline 
with the two sources of data (high precision and Landsat imagery between the 
years 2005 and 2010) over an area with almost no tides. The basic assumption 
underlying this proposal is that as a generic rule, intra-annual shoreline variations 
oscillate around an average position that would be the most significant when trying 
to set trends. Oscillations around that average shoreline are then understood as the 
effect of short-term changes, while alterations obey changes in the global 
sedimentary balance of the analyzed beach segment. By testing the accuracy from 
these extracted annual mean shorelines, the potential of using Landsat imagery as a 
new source for describing decadal or mid-term changes in beaches was verified. A 
previous work (Sánchez-García et al., 2015a) had already tested the grade of 
similarity between these Landsat and high-precision data. Several statistical tests 
indicated that both sources provided similar information regarding annual mean 
shorelines. 
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Continuing with the evaluation but now aiming at the instantaneousness 
of the shoreline, the work presented in Section 4.2 was performed (published in 
Remote Sensing, 2018). Some field campaigns were carried out and accurate records 
were registered describing the state of the sea at the same instant as the Landsat (7 
and 8) and Sentinel 2 images were acquired. The reference data was obtained using 
differential GNSS surveys and terrestrial photogrammetry techniques through the 
C-Pro monitoring system described in Chapter 2. A set of 21 sub-pixel shorelines 
and their respective high precision lines served for a six-month evaluation in 2016. 
Sentinel 2 was launched in 2015 and some of its images were added to the 
shoreline extraction process for this work. Therefore, this is the first evalution of 
the Pardo-Pascual et al., 2012 and Almonacid-Caballer, 2014 shoreline extraction 
algorithm on natural beaches. The derived results enabled testing this initial 
methodology and analyzing the factors that were affecting the accuracy of the 
extracted shoreline. 

At this point, the potential of the satellite-derived shorelines (SDS) had 
been already asessed in microtidal areas, but this research focussed on the 
efficiency of the tool when applied to a massive set of images and with the future 
goal of being useful on a large spatial scale and with various tidal regimes. 

An integrated shoreline extraction system called SHOREX − already 
referenced in Chapter 3 − was able to include all the phases within a production 
pipeline (Palomar-Vázquez et al., 2018a). The work presented in Section 4.3 
(recently finished; Sánchez-García et al., under review) continues being an evaluation 
of 91 SDS with other high-resolution shorelines obtained simultaneously through 
video monitoring on a different sedimentary beach. However, this time, the main 
objective is to identify the combination of parameters under which the algorithm 
produces the best results and define an automatic shoreline extraction protocol. To 
increase the efficiency of the process, the idea of producing the initial pixel-level 
shoreline (around which is performed the search for the sub-pixel) has changed. 
Despite using an initial rough shoreline for each satellite image using threshold 
techniques − as in Pardo-Pascual et al. (2012) to Pardo-Pascual et al. (2018) − the 
idea now is to use a unique digitalized or available pixel-level shoreline for the 
whole set of temporal images of an area. The main goal consists in releasing the 
sub-pixel accuracy of the final shoreline from the inaccuracy of the initial pixel-
level shoreline. 

In this regards, Section 4.3 presents an efficient self-contained workflow 
ensuring a suitable kernel (neighborhood) to represent the land-water interface, 
and then defining the shoreline with the maximum precision through a smaller 
kernel. The different evaluations carried out in the study area have shown that by 
working with small neighborhoods, the algorithm is generally less confused with 
the remaining elements of the terrain and produces better shoreline accuracies. 
However, small neighborhoods first require guaranteeing that the searched 
transition zone between land and sea is correctly located within them. 
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The various improvements developed in the intrinsics of the SHOREX 
algorithm focused on offering a solution through a dynamic and adaptive 
neighborhood as described in Chapter 3, and with the performance of an iterative 
solution with the most suitable parameters as presented in Section 4.3 (within 
Chapter 4). Both solutions have been explored separately throughout this 
document to test how each contributes to SDS accuracy. 
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4.1. EVALUATION OF ANNUAL MEAN SHORELINE POSITION 

DEDUCED FROM LANDSAT IMAGERY AS A MID-TERM 
COASTAL EVOLUTION INDICATOR 

 
The shoreline is a useful indicator of mid-term coastal evolution. Every shoreline is 
affected by instantaneous sea-level, the length of the runup, and beach profile 
changes. In this work, annual mean shorelines are evaluated in a manner that 
avoids these effects by averaging the instantaneous shoreline positions registered 
during the same year. A set of 270 shorelines obtained from Landsat imagery 
between 2000 and 2014, using the method described in Pardo-Pascual et al. (2012), 
have been used. It has been shown that the use of annual mean shorelines enables 
the same rate of change to be obtained as when using all the shorelines, but that 
the data is simpler to manage and more useful when visualising local changes. It 
has also been shown that annual mean shorelines largely remove the short-term 
variability, and are therefore useful for analyzing mid-term trend quantifications. In 
addition, we propose a methodology for annual mean shorelines, obtained from 
Landsat imagery, that minimises the effects of sea-level variation on the shoreline 
positions. Both shorelines –instantaneous and mean annual– appear to be about 4 
or 5 m seaward from those obtained using more precise sources. 

4.1.1. Introduction 

Decadal or mid-term beach changes – decades to centuries – are strongly related to 
variations in storm intensities, longshore sediment transport patterns, as well as 
changes in beach and dune sediment budgets (Carter, 1988; Kraus et al., 1991; 
Cowell and Thom, 1994; Sanjaume and Pardo-Pascual, 2001; Davidson-Arnott, 
2010). However, these changes are often difficult to quantify using changes in the 
shoreline because there are too many short-term variations related with water level 
variation, runup dimensions, and seasonal beach profile variations (Moore, 2000; 
Boak and Tunner, 2005). Even in microtidal coasts, the shoreline position obtained 
using various tools (such as aerial photographs, satellite imagery, RTK-GPS, video-
monitoring, and LiDAR) is not necessarily the most representative for measuring 
mid-term evolution. Trend evolution during decades is often masked by 
considerable variability that follows a cyclical dynamic (annual, or storm/calm 
periods). To correctly define the mid-term trend it is necessary to obtain sufficient 
samples of shorelines during a sufficient number of years. This task is usually 
difficult because there are insufficient sets of aerial photographs or other surveys. 
The use of mid-resolution satellite images with high frequency revisit times could 
be a good solution; however, excessively coarse pixels prevent the accurate 
definition of shoreline positions when quantifying beach changes (Gens, 2010). 
Pardo-Pascual et al. (2012) and Almonacid-Caballer (2014) proposed a 
methodology to extract shoreline positions from Landsat (5, 7 and 8) imagery (30 
m/pixel) with RMSE values of about 5 m. This accuracy has been tested 
comparing 116 Landsat extracted shorelines with two shoreline segments on 
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seawalls in the Spanish Mediterranean (a micro-tidal area). In this case, it was easy 
to define the shoreline position because the coastlines do not change over time.  

However, on natural beaches, the wet zone can be several metres wide and thus 
the Landsat shoreline precision for seawalls is not necessarily the same as for 
beaches. Moreover, on seawall coastal segments, the water depth suddenly falls 
near the shoreline, whereas on natural beaches the depth drops more gradually. As 
a consequence of deep water near to the coast, there is a foam fringe associated 
with the breaker zone which is close to the coastline and narrower in seawall zones 
than in natural beaches. Unfortunately, no accurate surveying measurements were 
made when the Landsat images were registered. Thus on natural beaches, we could 
only check several Landsat shorelines with other nearly co-incident (in time) high 
precision shorelines. 

Another question regards shoreline validity as a trend indicator. Shorelines – 
understood as waterline borders – are inaccurate indicators of coastal changes 
because they are strongly influenced by sea-level variations (Moore, 2000; Boak 
and Turner, 2005; Del Rio and Gracia, 2013). Some authors (Stockdon et al., 2002; 
Ruggiero et al., 2005, Moore et al., 2006; List et al., 2006) suggest that a good 
solution could be to define a datum-based shoreline, taking 3D data as a basic 
topographic source and using the contour line that defines the local position of 
mean high water as a reference. Farris and List (2007) and Psuty and Silveira (2011) 
used this solution to successfully monitor coastal changes. However, when using 
shorelines extracted from Landsat imagery it is not possible to obtain this datum-
based shoreline because no 3D data coincides with the captured images. This fact 
means that the shoreline variation between nearby dates was sometimes very large 
due to small water level changes after the beach profile was flattened by storm 
waves (Pardo-Pascual et al., 2014). Some works (Robertson et al., 2007) 
demonstrate that a shoreline change (even working with datum-based shorelines) is 
sometimes due to small changes in the nearshore microforms rather than real 
sedimentary changes. Therefore, it seems clear that we cannot guarantee a correct 
definition of mid-term beach evolution unless we use a sufficient number of 
shoreline positions. 

Taking all these appreciations into account, we can ask if the shorelines extracted 
from Landsat imagery are useful for quantifying the evolution of beaches on a 
mid-term scale. This could be important because, in contrast to other data sources, 
using Landsat data it is possible to obtain many shorelines for each year from 1984 
to the present.  

The availability of many shoreline positions during one year reduces the risk that 
the position set is unduly biased by the factors affecting the intra-annual variability. 
However, it is difficult to perform evolutionary analyses using many lines because 
it is difficult to recognise the magnitude of the changes when using the traditional 
techniques of map line overlays (Fig. 4.1). To improve the efficiency of the 
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analytical process we propose deducing the average shoreline position for a year 
and so minimising the beach profile cycle changes and the sea-level variations.  

 

Fig. 4.1. On the 2008 orthophotograph from the PNOA (National Aerial 

Orthophotography Plan) some 118 shorelines acquired by Landsat between 2005 and 
2010 have been drawn. A different colour has been assigned to each annual set of 
shorelines. As the maximum change recorded during these six years was about 30 m it 
is impossible to measure the changes over time. 

Therefore, the main objective of this work is to evaluate if the annual mean 
shoreline position extracted from Landsat imagery is a good indicator of beach 
mean position and can provide significant data to quantify the mid-term beach 
trend. As an initial test to estimate the precision of Landsat shorelines on natural 
beaches, some Landsat shorelines were compared to other shorelines registered 
using very high precision methods surveyed at near the same time. A comparison 
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was then made to see if the use of annual mean shorelines enables the deduction of 
similar trend evolution values, as when using Landsat shorelines acquired during 
the period 2000 to 2014. An assessment was then made for testing whether the 
annual mean Landsat shorelines are sufficiently precise to define mid-term 
evolution. That is quite difficult because there is no ‘true measure’ of the mid-term 
evolution. In order to make a test, the annual mean Landsat shorelines were 
compared with the mean annual shorelines obtained using data acquired from 
more accurate tools, specifically several RTK-GPS and LiDAR surveys made on a 
segment of a beach (9 km long) that has been monitored over a period of six years 
(2005 to 2010). Likewise, the importance of providing information about beach 
slope and sea-level position at the moment when Landsat images were acquired 
was assessed when attempting to correctly define the mid-term coastal trend 
evolution. 
 
4.1.2. Evaluation area 

The test was carried out on a 9 km stretch of sandy beach at El Saler (Valencia, 
Spain) located on the beach barrier that closes a lagoon (the ‘Albufera’ of Valencia) 
just south of the Port of Valencia jetties (Fig. 4.2) (Sanjaume et al., 1996). The test 
area is formed of sandy beaches (average grain size of 0.21 mm) alongside a dune 
field (data obtained in summer 2007). 

This coast is microtidal as the average astronomical tidal range is less than 20 cm, 
but the water level position can change more than 70 cm when affected by 
meteorological factors. In fact, the maximum sea-level variability recorded from 
1993 to 2013 by the Port of Valencia tide-gauge was1.32 m (REDMAR, 2014). The 
wave regime is characterised by low waves (average significant wave height is 0.7 
m) and short periods (average peak wave period is 4.2 s). However, wave height 
during storms can reach 5 m and the peak period may extend to 15 s (Pardo-
Pascual et al., 2014). As in many other parts of the Gulf of Valencia, Saler beach 
has a strong littoral drift that usually causes a significant southerly sand transport. 
The construction of the port of Valencia at the end of 18th century and successive 
extensions of its jetties caused a massive erosion south of the jetties as the port 
structures act as an absolute sediment trap (Sanjaume and Pardo-Pascual, 2005). 
The erosive impact of the port has gradually been shifting to the south and it is 
currently mainly affecting the central part of our study area (Pardo-Pascual et al., 
2011). 

4.1.3. Data 

To evaluate if annual average shorelines obtained from Landsat imagery can 
characterise the mid-term trend evolution of a beach it is necessary to: 
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(a) provide a sufficient number of Landsat shorelines (LS) and a sufficient number 
of shorelines from a more accurate source (high precision shoreline - HPS); and 
(b) calculate the annual average shoreline. 

Fig. 4.2. Studied area. 

 

4.1.3.1. Shoreline acquisition  

A total of (i) 270 Landsat shorelines (LS) acquired between 2000 and 2014 (Fig. 
4.3) were used; and (ii) 17 shoreline positions obtained from RTK-GPS and 
LiDAR surveys (HPS). In addition (iii) two shorelines from two QuickBird images 
and another shoreline obtained from an ortophotography were used to provide 
other types of high precision shorelines. 

(i) The LS are produced from images registered by TM (Landsat 5), ETM+ 
(Landsat 7), and OLI (Landsat 8) sensors between 2000 and 2014 using the 
algorithm proposed by Pardo-Pascual et al. (2012) and Almonacid-Caballer (2014). 
All the Landsat images were downloaded from the USGS archive 
(http://earthexplorer.usgs.gov/). Landsat 7 imagery, affected by SLC-error, was 
processed in anticipation of a level of precision better than 5.1 m RMSE 
(Almonacid-Caballer et al., 2013). Therefore, the shoreline extracted from Landsat 

http://earthexplorer.usgs.gov/
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7 is not a continuous line and is formed of segments approximately 600 m in 
length with 500 m gaps. 

 

Fig. 4.3. Bars indicate the number of shorelines extracted from Landsat images. Landsat 

5 and 7 were used until 2011, but in November 2011 Landsat 5 failed and only Landsat 7 
remained available. Landsat 8 was successfully launched in February 2013 and since 
then images acquired from Landsat 7 and 8 were used. 

(ii) HPS were obtained between 2005 and 2010 as a part of a programme of 
morphodynamic beach monitoring at Saler (Pardo-Pascual, et al., 2011) using 
RTK-GPS and LiDAR surveys. The RTK-GPS surveys were performed using an 
all-terrain vehicle that moves over the beach (Pardo-Pascual et al., 2005). Three 
surveys were derived from LiDAR surveys (June 2005, December 2007, and 
August 2009). A semi-regular schedule followed (middle winter, spring, and 
autumn) and only one survey was registered during the summer (August 2009). 
Every survey datum was recorded on the ETRS89 reference system, in UTM 
projection coordinates, and the altitudes referenced to EGM08-REDNAP, the 
Spanish official datum. 

The waterline (WL-HPS) obtained from the RTK-GPS surveys was defined as the 
sea beach boundary and was established during fieldwork by the coordinates 
acquired with the location of the waterline. In the LiDAR survey, the waterline was 
described by finding the lowest contour line in a generated DEM from LiDAR 
data that followed a clear alongshore direction (i.e. a line that did not close on 
itself). Fig. 4.4 enables a comparison of the temporal distribution of different types 
of managed shorelines acquired between 2005 and 2010 – and the data is analyzed 
below. 

(iii) To evaluate the similarity between the shorelines obtained from Landsat 
imagery and those from very high resolution sources, it has been used an 
orthophotography (0.5 m resolution) was taken (20 June 2008) six days after a 
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Landsat image –and two QuickBird images (0.6 m pixel size in panchromatic band 
and 2.4 m in multispectral bands) were acquired on 17 November 2004 and 18 
June 2005, one day before the next Landsat images. The shoreline was drawn 
directly from the orthophoto. The method used to extract the shoreline from QB 
(Fig. 4.5) is described in detail in Pardo-Pascual et al. (2008). The process begins by 
fusing the panchromatic and multispectral bands (using a 0.6 pixel size image). The 
maximum likelihood classification technique was then applied, and finally, the 
results were generalised to extract the bare sand. The coastal border of the bare 
sand defines the coastline. 

 

Fig. 4.4. The graph shows the temporal distribution for each analyzed year of each type 

of shoreline and reveals that during some years (i.e. 2006) the LS were mainly 
concentrated in the summer months, just when there was no HPS. By contrast, there is a 
high level of coincidence between LS and HPS for the year 2009.  

 
Fig. 4.5. The method followed to automatically extract the coastline from QB images: 1) 

fusion of panchromatic and multispectral bands to obtain an image with 0.6 m pixel 
resolution and spectral richness; 2) supervised classification (maximum likelihood 
method) of existing covers in the area (water, bare sand, vegetation, etc.); 3) filtering and 
binarisation to individualise the bare sand; 4) definition of shoreline, assuming the 
coastal border of the bare sand as the coast.  

 

1 2 3 4 
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4.1.3.2. Extraction of the mean annual shorelines 

Once the shorelines have been obtained, the annual average shoreline for each data 
type is calculated. This task was performed using the Digital Shoreline Analysis 
System, DSAS (Thieler et al., 2009). Using this software, the intersections between 
each coastline for each transect were obtained (394 transects, one each 25 m) and 
the coordinates (x, y) of the annual average position and standard deviation were 
calculated. These coordinates were then connected by a line that defines the annual 
average shoreline. 

Although the tidal range of the studied area is very low, it is clear that small water-
level changes could produce strong horizontal changes in the shore position 
(Pardo-Pascual, et al., 2014). Therefore, it is important to evaluate how the 
different sea-level positions at the moment when the images were acquired affect 
the annual mean shoreline position. A method to estimate partially corrected sea-
level shorelines acquired from Landsat images has been designed and compared 
with the other shorelines acquired with high precision methods between 2005 and 
2010 (the years when high precision data was available). 

Altimetric positions near the shore can be used to avoid the influence of sea-level 
changes. In this work, contour lines 1 m above sea-level were used because this 
altitude was not reached in the studied area during the analyzed period. This 
altitude was selected because the maximum elevation registered as shoreline using 
HP techniques (RTK-GPS and LiDAR) was 0.85 m. Therefore, in order to take 
into account every registered datum we have displaced the reference shoreline to 1 
m above sea-level. The newly obtained lines were defined as a 1 m contour-line 
(1m-cl). This new line is not a shoreline – although it is close to the shoreline. 
However, we use this line to assess how much the sea-level variations influence the 
mid-term trend shoreline changes. 

An alternative datum would have been roughly MHW (mean high water), so that 
the defined height for the shoreline was actively worked by the water during part 
of each tidal cycle. The MHW for the Valencia tide gauge is 0.249 m above the sea-
level datum and referred to as the altitudinal datum (EGM08-REDNAP). For 
using this type of register it would be necessary to have this position measured in 
each of the high precision surveys. However, this elevation value of 0.249 m was 
superseded in all 16 surveys with the exception of one survey on March 2005. If 
the position of the MHW had been adopted, virtually all high precision coastlines 
would have large gaps for not being able to extrapolate them to a lower elevation 
(no DEM data below the waterline). Therefore, an evaluation of the expected 
improvements of working with shorelines corrected by sea-level would have been 
impossible. Since the lowest level recorded, common in all the sections and 
analyzed data was 0.8412 m, and given the proximity of this altitudinal position to 
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a height of 1 meter, it was decided to adopt the isohypse of 1 m as a reference for 
comparing the coastline positions. 

It was easy to obtain this 1m-cl from high precision data (1mcl-HP) by using the 
DEM from surveyed data. The real 1 m above sea-level contour line was then 
used. Obtaining this same line from Landsat shorelines (1mcl-L) is more difficult 
because no three-dimensional data is associated with each recorded image. 
However, an estimation of the 1mcl -L was made. The mean slope for a year-long 
period was calculated using regular transects separated by segments of 25 m (using 
the 3D data from RTK-GPS and LiDAR surveys). Using approximate data of the 
beach slope for each 25 m length, the sea-level position on the official datum 
(measured at the tide-gauge of the Port of Valencia) was taken at the time each 
Landsat image was adquired. By establishing the shoreline position (waterline), its 
height (sea-level position), and estimated slope, it was possible to calculate the 1 m 
above sea-level position for each transect. Obviously, these 1mcl-L were only an 
approximation of real 1 m shorelines because they were not obtained from 
altimetric data and so combine some control parameters that affect the datum-
based position.  

The definition of the slope of the beach used in 1mcl-L shorelines is a key issue 
because we do not have this information at the same time instant the Landsat 
image was taken, and its value changes over time. Thus, we used the mean slope 
values obtained from three or four real measurements made during each year and it 
is very difficult to assess how much error this value may include. To estimate the 
magnitude of the variability of the beach slope on each analyzed transect the 
standard deviation of the slope was measured (Fig. 4.6) taking into account the 17 
DEM measured between March 2005 and November 2010. Values oscillate 
between 0.75º and 2.8º with 1.5º as the mean standard deviation. 

 

Fig. 4.6. Variability of slope measured by standard deviation of 17 surveys on the 

studied area between March 2005 and November 2010 using high precision techniques 
(RTK-GPS, LiDAR). 
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To assess as an approximation of how much the 1mcl-L can be displaced by the 
slope change, a graph was made (Fig. 4.7) comparing this effect using the mean 
slope of the analyzed beaches (3.65º) and increasing or decreasing it with the mean 
standard deviation of these slopes (1.5º). If the sea-level changes were 0.2 m (mean 
daily variability), the maximum displacement in the 1mcl-L would be 3.3 m (which 
can be considered a small difference). Obviously, much greater sea-level changes, 
or greater differences in the slope, will produce greater offsets. However, in our 
study, to explore if we can minimise the sea-level changes through the mean annual 
shoreline position, it seems reasonable to use the proposed method. 

 

Fig. 4.7. Effect on the 1 m contour line obtained from Landsat shorelines using different 

slopes and sea-level changes. In this case, the slope used was the mean slope obtained 
in the studied area during all the surveys, with increases or decreases of these values in 
accordance with the standard deviation.  

Once these shorelines were modified, four sets of ‘shorelines’ were provided: 
waterline high precision, WL-HPS; waterline Landsat, WL-LS; 1m-cl from high 
precision data (1mcl-HP); and 1m-cl from Landsat (1mcl-L). The average shoreline 
was calculated for each year for each data type. 
 
4.1.4. Results and discussion 

4.1.4.1. Estimating precision of Landsat shorelines on natural beaches 

The main drawback for testing the accuracy of Landsat shorelines in our study area 
is that we do not have precise measurements of shorelines temporally coincident 
with the captured images. However, we can use 12 Landsat images captured close 
to the dates when the high precision shorelines were acquired. We want to 
approximately estimate if the precision of Landsat shorelines measured on natural 
beaches is about 5 m RMSE and practically null bias, as has been proven in Pardo-
Pascual (2012) on three artificial coastal segments. For this purpose, we compared 
a set of 12 shorelines acquired using more precise sources (orthophotos, Quickbird 
images, and RTK-GPS surveys) with the Landsat shorelines closest in time. In 
every case, the sea-level position between those dates had not changed more than 
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10 cm and the significant wave height was always lower than 1 m. The original 
Landsat shorelines were obtained as points separated each 7.5 m, and so the 
closest distance to the reference shoreline obtained from the high precision 
sources was measured. Some basic statistics were then calculated (Table 4.1). 

Landsat 
date 

HP date 
difference 

days 
Type of HP 

source 
Mean or 
bias (m) 

Standard 
deviation (m) 

11/16/04 11/17/04 -1 QB image -0.22 6.61 

06/19/05 06/18/05 1 QB image 7.26 4.86 

05/16/10 05/15/10 1 GPS 2.33 5.27 

11/16/10 11/15/10 1 GPS 5.86 4.6 

01/17/07 01/15/07 2 GPS 4.19 4.49 

10/29/09 11/02/09 -4 GPS 4.21 4.31 

10/29/06 10/25/06 4 GPS 5.17 5 

06/26/08 06/20/08 6 Orthophotography 5.84 4.77 

08/18/09 08/24/09 -6 LiDAR 5.97 5.78 

01/21/09 01/15/09 6 GPS 9.14 6.24 

05/06/09 05/15/09 -9 GPS 6.78 5.16 

02/10/10 02/01/10 9 GPS 0.22 5.31 

Table 4.1. Mean and standard deviation of the distances between each Landsat 

shoreline and the high precision data closest in time, computed at points separated each 
7.5 m. Positive distances indicate that Landsat shoreline is placed seaward. 

The mean error obtained was 4.7 m meaning that the Landsat shorelines are placed 
slightly seaward of the high precision shorelines. It is difficult to evaluate if the 
observed seaward bias (about 5 m) is mostly due to the accuracy of Landsat 
shorelines, or if this magnitude is strongly affected by very short-term shoreline 
displacements associated with runup, water level, or another factor. The average 
standard deviation obtained was 5.2 m, which is very close to the RMSE values 
estimated by Pardo-Pascual et al. (2012) on sea walls. These results seem to 
confirm that the precision of Landsat shorelines in natural beaches is similar to 
that estimated in artificial coastal segments, but its actual position is slightly 
displaced toward the sea. 
 
4.1.4.2. Using Landsat annual mean shoreline versus all shoreline data 

A key issue is to establish whether the mean annual shorelines could be a good 
surrogate for all shorelines extracted from Landsat imagery. Obviously, it is easier 
to analyze 15 shorelines (one per year between 2000 and 2014) than 270 shorelines. 
However, equivalent outcomes must be obtained from both sets of shorelines. To 
make an evaluation, a linear regression of shoreline positions versus time (Fig. 4.8) 
has been calculated for each transect (using DSAS utilities). The straight slope 
defines linear regression rate (LRR), i.e. change rate measured in m-yr. 
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Fig. 4.8. Example of linear regression calculation on a given transect using (a) all 270 

shorelines; and (b) only annual mean shorelines. 

By comparing the LRR obtained using 270 Landsat shorelines with the LRR 
obtained using 15 annual mean shorelines (Fig. 4.9) it can be deduced that there is 
a strong and direct relationship (r2 = 0.987). This relationship means that the 
annual mean shoreline position can be used as input data in order to quantify the 
beach change trends with the same precision as using all the shorelines.  

The use of fewer shorelines implies easier management and a clearer interpretation 
of the changes (Fig. 4.10). If we make a comparison with Fig. 4.1 it is obvious that 
it is easier to understand geomorphic dynamics using mean annual shorelines than 
all shorelines. 
 
4.1.4.3. Taking into account changes in sea-level 

Another important issue is to assess the extent to which variations in sea-level 
using Landsat shorelines can affect the detection of the most accurate mid-term 
trend evolution. The next analysis is to discover if the annual mean 1mcl-L 
obtained from Landsat is really a worthy shoreline indicator, similar to a datum-
based shoreline and, obviously, if the use of 1mcl-L significantly improves the mid-
term change quantification. To assess this, the similarities and differences between 
waterline and 1mcl for a given year were analyzed using both types of data (HP 
and LS) for the years that were available. Table 4.2 shows a statistical summary of 
these differences and similarities. 
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Year 
HP shorelines 

 
LANDSAT shorelines 

RANGE (m) MEAN (m) r2 RANGE (m) MEAN (m) r2 

2005 16.73 12.62 0.85  26.98 14.18 0.79 

2006 21.13 8.76 0.91  20.74 10.17 0.95 

2007 14.12 13.63 0.92  17.42 13.23 0.87 

2009 17.19 10.55 0.87  19.37 12.66 0.88 

2010 26.62 14.69 0.78  17.98 13.98 0.89 

Table 4.2. Basic statistics obtained in comparison with the waterline and 1mcl using HP 

and Landsat shorelines. Range describes the maximum difference in meters, mean 
shows the average of those differences for all the data (positive values indicate that the 
waterline is located seaward of 1mcl shorelines). The r

2
 coefficient is used as a shape 

similarity parameter of waterline and 1mcl. 

 

Fig. 4.9. Scatter plot showing the LRR in each transect (394 transects) in the study area 

obtained by all the Landsat shorelines and that obtained by annual mean shorelines. 

(i) The differences between the waterline and 1mcl are always positive (12.4 m on 
average) because 1mcl are positioned landward at 1 m above sea-level. Mean 
horizontal differences in the position acquired using HP and Landsat sources are 
quite similar (mean absolute difference is only 1.23 m), which indicates that the 
method applied to deduce 1mcl from Landsat sources displaces these lines by a 
very similar magnitude to that obtained using HP sources – and therefore, we can 
deduce that the method applied to obtain 1mcl from Landsat imagery is working in 
a good direction. 
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Fig. 4.10. The 2008 orthophotograph from the PNOA clearly reveals the beach evolution 

during the six years analyzed. It seems clear that after a slight accumulation there was 
coastal erosion between 2005 and 2008. 

(ii) The shape of the waterline and 1mcl measured with the r2 (coefficient of the 
distances of each transect to baseline for both types of shorelines – waterline and 
1mcl) are very similar: r2 between 0.78 and 0.95 (both comparing HPS and LS but 
not for the same years). In fact, in 2005 the LS had the lowest relationship between 
waterline and 1mcl (0.79); whereas HPS was 0.85. Why is it that in some years the 
1 m contour line and waterline annual mean shorelines basically have the same 
shape (although displaced a few meters) yet differ greatly in other years? The 
reason is probably the annual variability of the shorelines. To confirm this, the 
standard deviation of the shorelines each year (Table 4.3) was calculated and this 
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value was compared with the shape similarity parameter (r2 of Table 4.2). Fig. 4.11 
shows a negative relationship between the mean standard deviation of the 
waterline shoreline (Table 4.3) and the r2 coefficient between waterline and 1mcl 
(Table 4.2). In other words, if there is high shoreline variability during a year, then 
the mean annual WL-LS could be quite different to 1mcl-L. This suggests the need 
to use 1mcl-L where there is high shoreline variability (very gentle slope and/or 
high sea-level variability). However, it is important to remember that 1mcl-L is 
only a rough approximation of the real positioning of the 1 m beach contourline at 
the moment when the Landsat image was recorded, and perhaps for this reason 
the improvement associated with its use is limited. In fact, the standard deviation 
of shorelines shown in the analysis using 1mcl-L diminished by very small 
magnitudes (Table 4.3). 

Therefore, the analyzed results suggest that the 1mcl-L slightly improves the 
variability associated with sea-level changes; but these do not completely resolve 
this limitation. The limited improvement shown using 1mcl-L is probably because 
the slope data used is insufficiently precise. Moreover, given the low variability of 
sea-level in the studied microtidal zone (the maximum range in sea-level position 
among the 107 images used was 0.5 m) the slope data becomes overly relevant. 
However, it is expected that in meso and macrotidal areas, where sea-level changes 
in much greater magnitudes, the influence of the slope will be less lesser than sea-
level variations, and therefore, the improvement associated with the use of the 
1mcl-L will be substantially greater. 

 

Fig. 4.11. Relationship between mean standard deviation of WL-LS (m) per year (Table 

4.3) and similarly shaped parameters (r
2
) between Landsat waterlines and 1mcl-L (Table 

4.2). 
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Year 

Mean standard 
deviation of 

Waterline Landsat 
shorelines (m) 

Mean standard 
deviation of 1 m 

contour line 
shorelines (m) 

Standard 
deviation of sea 

level position (m) 

Mean beach 
slope 

(degrees) 

2005 9.79 8.87 0.114 3.75 

2006 6.10 5.76 0.074 4.66 

2007 7.86 7.66 0.095 4.11 

2009 6.36 6.18 0.085 4.06 

2010 7.10 6.75 0.088 3.74 

Table 4.3. Mean standard deviation of Landsat shorelines and standard deviation of sea-

level position when Landsat images were acquired. Mean beach slope covers all 
transect slope measurements when HPS data was acquired and averaged for each year. 

 
4.1.4.4. Main controls of the intra-annual variability of the shoreline position 

The annual mean shoreline (both waterline and 1mcl) is a statistical convention 
designed to improve the detection of mid-term changes. To decide if this average 
position is useful for this objective, the variability of the shorelines over the years 
has been related with factors that act on short-term variations. Table 4.3 shows 
that the mean standard deviation of the Landsat shoreline differs for each studied 
year (oscillating between 6 m and 10 m and always larger when we use waterline 
rather than 1mcl-L, as has been explained above). The magnitude of mean 
standard deviations of waterlines is strongly related (r2= 0.96) with the standard 
deviation of sea-level when the images were acquired (Table 4.3). The largest mean 
variability of the shorelines occurred in 2005, as did the largest sea-level variation 
in the Landsat images. Therefore, as expected, variations in the sea-level when 
obtaining Landsat images have effects on the derived annual shorelines and their 
variability. 

Beach slope could also be an important factor in explaining annual shoreline 
variability; in fact, a negative linear relationship between mean standard deviation 
of WL-LS (and also 1mcl-L) and mean beach slope (r2=0.4) was found – indicating 
that flatter beaches are more variable. Apparently, this relation is not too strong, 
but it is important if we remember that the mean beach slope is deduced from the 
three or four slopes measured each year when HPS data was acquired, and 
therefore this information was not coincident with Landsat image records. 
Obviously, annual shoreline variability could be related with other factors that act 
on short-term shoreline changes – but these were impossible to measure, such as 
wave runup length, and sedimentary beach profile changes (associated with 
seasonal wave dynamics and storm conditions). 

However, the relationship between the two factors that are being tested (sea-level 
variation and beach slope) suggests that annual average shoreline is a position 
partially free from the largest part of short-term variability, and therefore, useful 
for analyzing mid-term trend quantification.  
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4.1.4.5. Similarity between different high precision shorelines and Landsat 
annual mean shorelines  

As there is no secure reference to contrast the annual average shoreline, we 
compare Landsat and high precision lines in order to recognise the differences that 
exist between them. HPS have as a main limitation a reduced number of lines for 
each year, while LS are less accurate. 

The results of this comparison are shown in Table 4.4. The mean difference using 
waterlines was 4.9m (±3.86 m) and using 1mcl was 4.13 m (± 4.15 m). A positive 
sign indicates that LS lay seaward from HPS. These values are quite similar to 
those obtained in a previous section when we compared different Landsat 
shorelines with very close high precision shorelines (Table 4.1). As explained 
above, after analyzing only 12 shorelines, a bias toward sea of 4.7 m (± 2.78 m) 
was found. It is interesting to check this bias with the results obtained by García-
Rubio et al. (2015) who found for a shoreline extracted from Spot images a 
seaward displacement of 5.6 m relative to a GNSS shoreline registered on the same 
day (with a 5 hour delay) as the Spot image. García-Rubio et al. related this bias 
with the decrease of the near infrared (NIR) intensity with depth – as has already 
been argued by Lafon et al. (2002) and White and El-Asmar (1999). 

Year 

1 m contour-line shorelines  Landsat shorelines 

Std 
(m) 

Mean 
(m) 

r2 
% 

seaward 
 

Std 
(m) 

Mean 
(m) 

r2 
% 

seaward 

2005 6.2 2.7 0.55 73.71  5.48 4.21 0.65 82.96 

2006 3.54 6.54 0.8 95.9  3.84 7.96 0.79 96.95 

2007 3.9 4.52 0.79 87.89  3.18 4.09 0.85 89.06 

2009 3.82 2.24 0.81 70.26  3.33 4.3 0.85 89.37 

2010 3.27 4.66 0.91 91.26  3.48 3.96 0.88 86.51 

Table 4.4. Statistical summary of differences between annual means of HPS and annual 

means of LS, obtained from 1mcl and waterlines. The determination (r
2
) coefficient was 

obtained comparing annual mean distances to baseline in each transect from Landsat 
and high precision data. 

To measure the shape similarity between the Landsat and HP annual shorelines 
means, each annual mean distance along each transect to the baseline was 
compared by fitting the data to a linear regression. The values of r2, in 1 mcl 
shorelines, range from 0.55 to 0.91 (Table 4.4) and in waterline shorelines from 
0.65 to 0.88. 

Which factors affect the differences? Are these real differences or they biased by 
the data being compared? 
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(i) Partial differences could be related with the accuracy of the Landsat 
shoreline extraction method (5 m RMSE). However, this cannot 
explain mean bias toward the sea. 

(ii) The beach slope seems to influence these differences. Fig. 4.12 shows 
the measured differences between the annual average 1mcl-HP and 
1mcl-L and the beach slope in each transect. To detect more clearly 
this relationship, the mean slope was calculated for sets of data 
grouped in bins defined by 1 m differences between the 1mcl-HP and 
the 1mcl-L shown as large points (Fig. 4.12). There is a weak relation 
in which seaward displacement of Landsat shorelines increases when 
the beach slope increases. What could be the reason for this response? 
Probably, shorelines in flatter beach segments are more variable 
during the year than steeper segments (Fig. 4.13). Moreover, as many 
more LS than HP have been used, it is therefore more likely that 
seaward shoreline positions will be found. 

(iii) The HPS were not registered during the summer (with one exception 
– August 2009) while 36% of LS were captured during the summer. A 
previous study carried out in the study zone indicates that these 
beaches increase the volume of sand during summer (Pardo-Pascual, 
et al., 2011). Therefore, it is likely that the HP annual mean shorelines 
(without summer registers) will be landward of the real annual average 
shoreline position. 

The measured bias toward the sea when comparing the HPS and LS should be 
tempered by the fact that the effect that produces the bulk of the HPS did not 
include summer data. However, the predominance of this bias, even in data from 
2009 (which includes summer HP) and the coincidence with the analysis of 
individual shorelines, and with observations by other authors (García-Rubio et al., 
2015), suggests that the bias is real and that shorelines extracted from Landsat are 
between 4 and 5 m offshore from the line defined as the water’s edge. Therefore, 
as mean annual Landsat shorelines are arranged very near to those obtained by 
more accurate surveying methods, is clear that they can be used as source data to 
perform an analysis of mid-term evolution. 
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Fig. 4.12. The graph shows the difference between annual means of 1mcl acquired 

using high precision and Landsat sources versus beach slope. The small points indicate 
the relationship in each transect measured over each of the five analyzed years. The 
large points show where the mean slope has been calculated for sets of data grouped in 
bins defined by 1 m differences between the 1mcl-HP and 1mcl-L. 

Fig. 4.13. Relationship between annual shoreline variability (measured using standard 

deviation) and beach slope using 1mcl-HP and 1mcl-L. The large points summarise the 
mean annual shoreline variability by bins of 0.5º beach slope. 

 
4.1.5. Conclusions 

In this work we propose using annual mean shorelines obtained from numerous 
shoreline positions acquired automatically from Landsat imagery (satellites 5, 7 and 
8) and employing methods and tools described in Pardo-Pascual et al. (2012) and 
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Almonacid-Caballer (2014) to characterise mid-term changes on long segments of 
beaches. This enables the use of hundreds of shorelines to solve the little 
significance problem that very few shorelines may have, as Robertson et al. (2007) 
pointed out. Moreover, the length of the Landsat imagery series (30 years) is long 
enough to measure mid-term changes. 

Change rates obtained using annual mean shorelines are basically the same using all 
shorelines, but management is easier. Moreover, the use of annual mean shorelines 
enables a more clearly geomorphological analysis using shorelines overlaid on 
orthophotographs. The use of these mean shorelines does not imply renouncing 
the use of each instantaneous shoreline obtained from each Landsat image, but this 
approach does make it easier to interpret changes. 

Landsat shorelines, as with any kind of shoreline, are affected by sea-level 
variations. A method to deduce a line that partially minimises this effect is 
proposed. The proposed solution uses a surrogate element rather than the more 
commonly employed datum-based shoreline when there is no available 
topographic data coincident with the time the images were recorded. However, 
applying this approach in a microtidal zone means the observed improvement is 
very limited –partially due to the low sea-level. In meso and macrotidal 
environments, where sea-level can vary by two or more meters, the 
implementation of the suggested solution may offer a significant improvement that 
minimises the variability. Real beach slope data registered at the same time as the 
Landsat images are not available for the study site and the period analyzed. 
However, when the variability of the slope is not too exaggerated, partial 
correction of the effect of changes in sea-level will substantially improve the 
position of the shoreline. Therefore, the deduction of the annual average shoreline 
position will be more accurate for defining mid-term trends. Consequently, the 
convenience of using this approach can be seen – especially on beaches with very 
gentle slopes and high sea-level variability.  

In summary, the use of annual average positions aims to minimise the weight of 
short-term coastal changes associated with sea-level variations, the length of wave 
runup, sedimentary seasonal changes in the beach profile, or coastal storms. The 
relationship between annual variability and annual sea-level variation with beach 
slope suggests that annual average shoreline is a position partially freed from the 
largest part of short-term variability, and therefore, useful for analyzing mid-term 
trend quantifications. 

Another issue is to establish if the method proposed by Pardo-Pascual et al. (2012) 
and Almonacid-Caballer (2014) works correctly on natural beaches. For this 
assessment it would be necessary to find accurate records taken at the same time as 
each Landsat image – and this has not been possible. The work of García-Rubio et 
al. (2015) finds that the line obtained using NIR images was an average of 5.6 m 
offshore. Here, we have compared both the annual mean position of the lines 



VALIDATING THE SHORELINE EXTRACTION SYSTEM 

 

 137 

acquired from Landsat imagery against the annual mean shorelines obtained using 
more accurate systems – as well as instantaneous shorelines obtained from Landsat 
and, others acquired with more precise techniques a few days before or later. In 
both cases, the Landsat shorelines are biased from HPS towards the sea by around 
4 to 5 m: 4.7 meters for instantaneous shorelines and 4.9 m for mean annual 
shorelines (4.1 m using the 1 m contour line position). However, part of these 
deviations may be explained by the seasonal variation of the analyzed beaches 
(usually being wider in the summer). As 36% of the Landsat shorelines were 
acquired in summer and only one of the HPS, it is possible that the deviation may 
be something less than 4 m. In any case, the offshore displacement of the water's 
edge is less than the expected deviation using the method applied for the coastline 
extraction (about 5 m). 

Hence, the results obtained suggest the possibility of using Landsat imagery as a 
new source for describing mid-term changes in beaches – and being much more 
useful if this analysis is performed using annual mean shorelines obtained by tens 
of Landsat shorelines acquired in the same year. 
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4.2. ASSESSING THE ACCURACY OF AUTOMATICALLY 

EXTRACTED SHORELINES ON MICROTIDAL BEACHES 
FROM LANDSAT 7, LANDSAT 8 & SENTINEL-2 IMAGERY 

This work evaluates the accuracy of shoreline positions obtained from the infrared 
(IR) bands of Landsat 7, Landsat 8, and Sentinel-2 imagery on natural beaches. A 
workflow for sub-pixel shoreline extraction, already tested on seawalls, is used. The 
present work analyzes the behavior of that workflow and resultant shorelines on a 
micro-tidal (<20cm) sandy beach and makes a comparison with other more 
accurate sets of shorelines. These other sets were obtained using differential GNSS 
surveys and terrestrial photogrammetry techniques through the C-Pro monitoring 
system. A set of 21 sub-pixel shorelines and their respective high precision lines 
served for the evaluation. The results prove that NIR bands can easily confuse the 
shoreline with whitewater, whereas SWIR bands are more reliable in this respect. 
Moreover, it verifies that shorelines obtained from bands 11 and 12 of Sentinel-2 
are very similar to those obtained with bands 6 and 7 of Landsat 8 (-0.75 ±2.5 m, 
negative sign indicate landward bias). The variability of the brightness in the 
terrestrial zone influences shoreline detection: brighter zones cause a small 
landward bias. A relation between the swell and shoreline accuracy is found, mainly 
identified in images obtained from Landsat 8 and Sentinel-2. On natural beaches, 
the mean shoreline error varies with the type of image used. After analyzing the 
whole set of shorelines detected from Landsat 7, we conclude that the mean 
horizontal error is 4.63 m (±6.55 m) and 5.50 m (±4.86 m), respectively, for high 
and low gain images. For the Landsat 8 and Sentinel-2 shorelines, the mean error 
reaches 3.06 m (±5.79 m). 

4.2.1. Introduction 

The shoreline is a morphological feature that is often used to understand how 
beach systems work and how their development is affected by mid-long-term 
processes. However, the definition of shoreline may be difficult as many different 
indicators are used in the bibliography, especially in macro-tidal coasts (Boak & 
Turner, 2005). While the land-water line has been used in micro-tidal zones, the 
dry/wet sand line has been used in the macro-tidal area (understanding it as the 
shoreline for the last highest tidal position). Traditionally, the main data source for 
shoreline acquisition has been aerial imagery (Ford, 2013; Jones et al., 2009; 
Morton et al., 2004). However, some authors (Stockdon et al., 2002; Ruggiero et 
al., 2005; Moore et al., 2006; List et al., 2006) have criticized this shoreline because 
it may be affected by the sea level. They prefer to use the ishohypse at the highest 
tidal position (datum based shoreline) as it would be more reliable for beach profile 
changes. This 3D information is normally obtained by GNSS mapping (Global 
Navigation Satellite System) (Pardo-Pascual et al., 2005; Psuty & Silvera, 2011), 
LiDAR (White & Wang, 2003; Shrestha et al., 2005; Gares et al., 2006; Smeeckaert 
et al., 2013) or TLS (Terrestrial Laser Scanner) (Hobbs et al., 2010). These 3D 
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resources may offer high accuracy data: up to 5 cm (horizontal and vertical) on 
differential GNSS surveys; and up to 10 cm (horizontal) and 20 cm (vertical) 
depending on each LiDAR flight demands. Nevertheless, mapping hundreds of 
kilometers at a high frequency may be difficult. 

Although 3D data offers more complete information, other works show that 2D 
sources are also useful. Video-monitoring techniques (Holman & Stanley, 2007; 
Davidson et al., 2007; Archetti et al., 2008), given that they can record the 
shoreline with high frequency, are useful in dynamic areas such as sandy beaches 
(the variability of the beach and the most landward shoreline position during a 
storm can be obtained almost in real time). The mean shoreline position may be 
calculated on an hourly, daily, or weekly bases for trend studies. The main 
constraint for video-monitorization is that it only works with very limited spaces, 
normally urban beaches where a camera can be installed on a building. To cover 
wider areas (hundreds of kilometers), both optical (Maiti & Bhattacharya, 2009; 
Vandebroek et al., 2017) and radar (Mann & Westphal, 2014) satellite imagery are 
used – but these techniques remain limited by the temporal frequency of satellite 
observations. This lack of frequency may cause problems when measuring natural 
beaches, as the shoreline position may be so affected by the sea level that its 
position loses geomorphological meaning. However, compiling tens of 
instantaneous shorelines during a specific time period may be useful for estimating 
mean shoreline positions and trends during the medium and long-term 
(Almonacid-Caballer et al., 2016). 

Landsat is one of the most used satellite imagery options, especially since the 
USGS announced in 2008 that the images would be freely available. New research 
became possible as, through Landsat 5, 7 and 8 (with a revisit period of 16 days), 
dozens of images may be obtained for the same place during a year. Furthermore, 
historical series are available as Landsat 5 has been recording data from 1984 to 
2011, Landsat 7 from 1999, and Landsat 8 from 2013. Following the same free 
availability criteria, since June 2015, the ESA (European Space Agency) satellite 
Sentinel-2A has been capturing images with a higher spatial and temporal 
resolution than Landsat 8. Working together with its newest twin Sentinel-2B – 
launched in March 2017 – the frequency of Sentinel-2 image registration has 
increased to five days (and even two or three days in medium latitudes). The 
combination of Landsat 8, Sentinel-2A, and Sentinel-2B provides a global median 
average revisit interval of 2.9 days (Li & Roy, 2017). 

Figure 4.14 shows a comparison between Landsat (7 and 8) and Sentinel-2. 
Specifically, it shows the spectral and spatial information of ETM+ (Enhanced 
Thematic Mapper Plus), OLI (Operational Land Imager), and MSI (MultiSpectral 
Instrument) sensors, belonging to Landsat 7, Landsat 8, and Sentinel-2A satellites, 
respectively. The NIR (near infrared) region between Landsat 8 (band 5) and 
Sentinel-2A (band 8A) are similar, but differ significantly to band 4 in Landsat 7 
(with a very much greater bandwidth). The same occurs in SWIR (short wave 



VALIDATING THE SHORELINE EXTRACTION SYSTEM 

 

 141 

infraRed), where bands 6 and 7 from Landsat 8 are very similar to bands 11 and 12 
from Sentinel-2A, while bands 5 and 7 from Landsat 7 have greater bandwidth. 

 

Fig. 4.14. Spatial resolution and spectral range occupied by Landsat (7 and 8) and 

Sentinel-2 bands in the optical spectral region. 

Common characteristics between Landsat (7 and 8) and Sentinel-2 justify 
researching workflows that may be used equivalently. The differences must be 
taken into account when a workflow results in different outcomes. These data 
sources represent an opportunity to improve our understanding of coastal 
dynamics worldwide (including beach trend evolution, local beach changes, coastal 
storm impact evaluation and recovery beach processes, re-nourishment 
monitoring, and assessments of the effects of coastal infrastructures). 

The main limitation of using Landsat and Sentinel 2 imagery is that their 20 m or 
30 m spatial resolutions may be insufficient for the task. Although they have been 
used to quantify changes in very dynamic areas such as deltas (Ryu et al., 2002; 
Ekercin, 2007, Yu & Hu, 2011; Quang Tuan et al., 2017), or water bodies (Ouma 
& Tateishi, 2006; Hui et al., 2008; Feyisa et al., 2014; Choung & Jo, 2015), the pixel 
size limitation must be overcome for tasks needing more detail. 

Obtaining sub-pixel shorelines requires solving two tasks: (i) mapping the shoreline 
with greater accuracy than the pixel size; and (ii) ensuring a geolocation that is also 
finer than the pixel size. The first step is processed into the space of the same 
image, while the second needs a reference image. This registration is needed if 
several shorelines are to be compared, if the images are to be used for a trend 
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study, or if a shoreline must be evaluated with a reference line mapped using more 
accurate techniques. 

The most common extraction techniques for sub-pixel shorelines involve soft 
classification and super-resolution mapping (Foody et al., 2005; Muslim et al., 
2006; Liu et al., 2016). These techniques try to discover the land-water edge within 
each pixel but have some constraints derived from the level of resampling which 
could cause problems in connections and a lack of smoothness in the final 
delineated line. Li et al. (2015) propose integrating back-propagation neural 
networks and genetic algorithms to achieve a super-resolution mapping of flooded 
wetland. Li et al. (2016) describe a multiple super-resolution mapping method, 
obtaining results that are more accurate than those obtained using an individual 
method. Shi et al. (2017) propose a method that combines multiple super-
resolution realizations obtained using the indicator-geostatistics based method. Liu 
et al. (2017b) propose a method to obtain a super-resolution shoreline based on a 
segmentation method previously proposed by Cipolleti et al. (2012). In this 
method, after obtaining an initial shoreline by applying a thresholding 
classification, the most probable line position within a 2x2 kernel is assessed. A 
similar proposal was applied by Ruiz et al. (2007) being later modified and assessed 
by Pardo-Pascual et al. (2012), as well as being improved by Almonacid-Caballer 
(2014). The algorithm starts with the detection of a pixel level shoreline and, by 
fitting a 5th-degree polynomial function around each of these pixels, detects the 
inflexion line where the shoreline is expected to be. This is the methodology 
followed in this work. 

Although both Landsat and Sentinel-2 scenes are georeferenced, small 
inconsistencies in the geolocation of the processed images from USGS and ESA 
can worsen the accuracy of results. The quality requirements of L1T Landsat 8 
data include a geolocation uncertainty of less than 12 m of circular error for the 
OLI spectral bands (Iron et al., 2012). These products have improved their 
geometric accuracy with respect to previous products because the Landsat 8 sensor 
has a fully operational onboard global positioning system (GPS) for directly 
measuring exterior orientation, rather than inferring it from ground control 
systems – as happened with previous Landsat geolocation algorithms (Roy et al., 
2014). For Sentinel-2, the geolocation accuracy regarding multi-temporal 
registration has been established at 1.2 pixels (Clerc, 2017). Almonacid-Caballer et 
al. (2017) demonstrate that the sub-pixel registration improves the final location of 
each shoreline: 47 shorelines from Landsat 7 were analyzed, starting from an initial 
mean error of 12.9 (±15.33) m to 3.75 (±7.01) m after sub-pixel georeferencing. 
For image registration, a local upsampling of the Fourier transform is followed 
around the correlation peak, named LUFT (Guizar-Sicairos et al., 2008; Wang et 
al., 2011). It is demonstrated that applying LUFT on 30 m/pixel images leads to a 
maximum of 3 m of registration error when each satellite image is matched with a 
high-resolution orthophotoimage (0.5m/pixel). 
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The shoreline extraction and registration joint workflow (Pardo-Pascual et al., 
2012; Almonacid-Caballer, 2014) was assessed on fixed line sections of several 
seawalls along the coast. These studies revealed that the land cover distribution 
was affecting the final shoreline position by biasing it. This bias or error was 
modeled using least squares in function of the mean and standard deviation of the 
pixel values surrounding each point of the shoreline. Using these model 
(polynomial radiometric correction or PRC), a given point of the shoreline could 
be refined in function of the digital values of its neighboring pixels. A final 
evaluation relative to the seawalls (Almonacid-Caballer, 2014) shows that the 
standard deviations were: Landsat 5: 5.68 m (NIR) 5.39 m (SWIR1) and 6.08 m 
(SWIR2); Landsat 7: 5.20 m (NIR), 5.13 m (SWIR1) and 5.37 m (SWIR2); and 
Landsat 8: 4.77 m (NIR), 4.80 m (SWIR1) and 5.18 m (SWIR2).  

As mentioned earlier, the main goal of this type of work is the study of beach 
dynamics. The three-step workflow described (sub-pixel extraction, LUFT 
georeferencing, and PRC) has already been used in several tasks: storm impact on 
beach studies (Pardo-Pascual et al., 2014); coastal evolution studies (Sánchez-
García et al., 2015); or annual mean shoreline extraction (Almonacid-Caballer et al., 
2016). These studies characterize beach trends on a specific micro-tidal (up to 20 
cm) area. While these studies assume the standard deviation already assessed in 
previous works, the same behavior of the shorelines on seawalls and natural 
beaches cannot be expected. An evaluation on sandy beaches is therefore needed. 
While the line along a seawall remains constant, the accuracy of shorelines on 
natural beaches may be affected by the circumstances of that instant: (i) the slope 
in natural beaches is lower than for seawalls; (ii) the water is shallower in beaches 
and deeper in seawalls; (iii) a slight beach slope along with energetic conditions can 
cause a wide surf zone where we often find water with rough patterns or even 
whitewater; and (iv) a wide wet zone may also affect the outcome of the workflow 
as it defines a different wet/dry line. Assessing instantaneous shorelines requires 
knowing the exact position of the shore, the wave conditions, and the appearance 
of the beach when each satellite captures an image. This implies the need to 
measure the land-water line in detail using sufficiently precise techniques, and 
having a system for visualizing the coast. Photographing the shoreline when the 
satellite is passing overhead enables the state of the sea to be registered (swell, 
whitewater, wet surface on the beach) and provides sufficient detail on the state of 
the coast at that moment. 

The main goal of this work is to assess the accuracy of instantaneous shorelines – 
understood as the land-water boundary— on natural sandy beaches from satellite 
images produced by Landsat 7, Landsat 8, and Sentinel-2. A reference area along 
the dike of the port of Valencia is taken as a fixed reference for each date to 
corroborate the accuracy reached on seawalls in previous evaluations (Almonacid-
Caballer, 2014). Once it is ensured, the behavior on a natural beach will be used to 
analyze the instantaneous factors that may affect shoreline accuracy. Specific 
points to analyze are the differing behaviors of each sensor/band, and the factors 
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related with the appearance of the beach that can influence the accuracy of the 
extracted shorelines. 

 
4.2.2. Study areas 

The study areas are located along the Valencian coast (Spanish Mediterranean). 
This coast is a micro-tidal area with a tidal oscillation of less than 0.2 m 
(REDMAR, 2014) and medium-sized waves: the significant wave height averages 
0.7 m, and the mean wave period reaches 4.2 seconds (Almonacid-Caballer et al., 
2016). 

Two specific study area were chosen: a natural beach located in El Saler (6 km 
south of Valencia city); and a dike in the port of Valencia (Fig. 4.15). Although the 
main objective of this work is to assess the accuracy of different shorelines 
acquired on sandy beaches, it is worthwhile making a comparison with the 
accuracy obtained for a static coast (such as a port dike). As the two studied areas 
are quite close to each other, it can be accepted that wave conditions are the same. 
Therefore, the differences between both zones are exclusively morphological. 

 

Fig. 4.15. Zones chosen for quality assessment of the extracted shorelines. (1) The 

sandy beach at El Saler, and (2) part of a dike in the port of Valencia. 

The site at El Saler site is a dissipative sandy beach segment 1450 m long. It has a 
mean slope of 3.65° (Almonacid-Caballer et al., 2016) where we can usually find a 
small submarine sand bar close to the shore, not always well developed. The beach 
along the monitoring zone is about 30 m wide and there is a narrow dune line that 
is covered in poor vegetation. 

The 800 m long dike in the southern segment of the Port of Valencia is used as the 
second study area for assessing shoreline extraction accuracy. The water depth is 
11.6 m and there is a sharp line between land and water. 
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4.2.3. Materials and methods 

The proposed workflow enables a sub-pixel shoreline to be obtained from IR 
bands. It is mainly focused on mid-resolution images, such as those from the 
Landsat or Sentinel-2 platforms. The evaluation of those shorelines needs another 
more accurate shoreline measurement to serve as a reference. Moreover, at a 
certain point, the dynamic reality of some coastal spaces, such as sandy beaches, 
makes necessary some meta-information about the state of the coastal waves at the 
time of image acquisition. Meta-information – sea wave conditions – will be used 
to process the data and understand the results. 

4.2.3.1. Shoreline extraction from mid-resolution satellite imagery 

The algorithm is based on the spectral difference that water and land reveal in the 
infrared bands. Water absorbs most infrared radiation and appears darker than 
land. This behavior is used to determine, through the next four steps (Fig. 3), 
where the change between these two zones occurs. 

 

Fig. 4.16. Current workflow of the process. 

(1) Coarse pixel-level shoreline. If the analyzed image contains approximately 50% 
water and 50% land, its histogram shows two peaks: a narrow and high peak at low 
digital levels that reveals the main part of the water pixels (low and very 
homogeneous digital levels); while remaining pixels describe a curve spread along 
the histogram. By fitting a bi-Gaussian function (that fits one Gaussian curve to 
each of those peaks/curves), an initial threshold is obtained at the intersection of 
these two curves. This threshold can be refined manually and serves to binarize the 
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image into land and water. Through a morphological filtering of the binarized 
image, a pixel level shoreline is obtained. 

(2) Sub-pixel shoreline. Based on the work of Almonacid-Caballer, 2014, a 7x7 
pixel neighborhood around each coarse shoreline pixel is taken. The digital levels 
(DL) of each neighborhood are fitted by least squares with a polynomial function, 
DL = f(x,y). The shoreline is understood as the inflection between land and water. 
Mathematically, the shoreline is the line in which the Laplacian of that fitted 
surface is equal to zero. Given that this is done on the polynomial function, the 
inflection points are not limited to pixel precision. Four points per pixel are used 
to materialize this mathematical line, and this implies that the points of the 
shorelines have 7.5, 5, and 2.5 m of spacing for resolutions of 30, 20, and 10 
m/pixel respectively. The obtained result is a set of points (x,y) following the 
inflection line. 

(3) Sub-pixel registering process. The available Landsat (7 and 8) and Sentinel-2 
images are already georeferenced, so it is expected that no more than small x,y 
translations are needed to refine the registration between images. The cross 
correlation (CC) theory works on shifting one or two-dimensional signals and its 
usage for image registering processes is well known. For this reason, CC is the 
most suitable algorithm for this case. To reach sub-pixel registering precision, the 
LUFT has been used. This approach makes use of the Fourier transform through 
matrix multiplication to upsample only the part of the CC matrix that defines the 
x,y displacements between two images. In Almonacid-Caballer et al, 2017 it is 
proven that using LUFT, for phase correlation, achieves less than 3 m of 
registering error for Landsat resolution (less than 0.1 pixel). For this work – given 
that reference and warp images must be the same size – the same high resolution 
orthophoto (0.25 m/pixel) has been resampled to 30, 20, and 10 m/pixel of 
resolution as references for registering all the images. 

(4) Polynomial radiometric correction (PRC). In Pardo-Pascual et al. (2012) and 
Almonacid-Caballer (2014), it was observed that the heterogeneity of the land pixel 
values affected the sub-pixel shoreline. A statistical relation was obtained between 
the heterogeneity of the neighboring pixel function and the geometric error of 
each point. The mean and standard deviation of each 7x7 pixel neighborhood then 
gave – using a fitted polynomial expression – a displacement in meters to refine 
the shoreline position located in the middle of that specific neighborhood. The 
coefficients of the PRC were calculated only for the IR bands of Landsat (5, 7 and 
8), but not for Sentinel-2, and in consequence, these images cannot be corrected by 
PRC. 

This workflow has been applied to 21 scenes taken by ETM+ (Landsat 7), OLI 
(Landsat 8), and MSI (Sentinel-2) sensors between May and November 2016. The 
images are cloud-free on the studied zone. Landsat 7 gives the images in high 
(L7H) or low gain (L7L) and this will lead to different considerations. The 
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shorelines have been extracted from the available near and short-wave infrared 
bands, NIR, SWIR 1 and SWIR 2 (Fig. 4.14). 

The images were taken around summer 2016 (Fig. 4.17). Most of the Landsat 8 
images were taken before the summer, while all the Sentinel-2 images were taken 
afterwards. Landsat 7 images are more randomly distributed. Analyzing the 
metadata, the satellite acquisition can be scheduled. The start-stop acquisition time 
of Landsat 8 and Landsat 7 scenes are 10:43:20–10:43:52 a.m. and 10:45:22–
10:45:49 a.m. (UTC time). This interval moves slightly some seconds. The 
acquisition time for Sentinel is less clear as start-stop acquisition time is 10:54:28–
11:07:02 a.m. However, in our beaches, this interval does not imply any tidal effect. 

 
Fig. 4.17. Temporal distribution of the 21 scenes acquired from three satellite platforms. 

Note that on 8 October 2016 the study zones were registered both by Landsat 8 and 
Sentinel-2 with only 18 minutes of difference. 

4.2.3.2. Reference data for high precision shorelines 

The reference data is crucial. In stable zones, such as ports or seawalls, this is not a 
problem because the shoreline is not expected to move and the same reference line 
(in this case, a shoreline digitized in a 0.25 m/pixel orthophotograph) can be used 
for all the dates. However, this becomes more difficult in unstable zones such as 
sandy beaches. The shorelines in natural spaces are constantly moving, and this 
forces the field reference shoreline to be taken at the same time as the satellite 
image. This frees the shorelines evaluation from any tidal influence. 

For this research, the reference shorelines are located on El Saler beach using two 
methodologies: 

(i) Accurate topographic differential GNSS measurements were taken. The land-
water boundary is measured by storing coordinates every second with an estimated 
accuracy of 3-5 cm (Prochniewicz et al., 2016; Paziewski & Wielgosz, 2017). 

(ii) A terrestrial photogrammetric perspective was used and photographs were 
taken from a building near the reference area. The photos were taken with a digital 
reflex camera (SONY DSLR-A330) and processed with C-Pro, a coastal projector 
monitoring system (Sánchez-García et al., 2017). C-Pro uses GCPs and the horizon 
constraint to compute the photo resection process. The image can then be 

Temporal distribution of used satellite images

20/May 9/Jun 29/Jun 19/Jul 8/Aug 28/Aug 17/Sep 7/Oct 27/Oct 16/Nov

Landsat 7-H Landsat 7-L Landsat 8 Sentinel 2
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projected on a digital elevation model (DEM) or a specific plane. For this work, 
the mean sea level (MSL) is obtained instantaneously from the sea level gauge in 
the port of Valencia, located 8.5 km from the study area. This level has been used 
to establish the specific elevation value to project each image and resolve the 
instantaneous shoreline. 

Both sets of data are useful in a synergistic way. The terrestrial photographs were 
taken at the moment when it was expected that the satellites acquired the image – 
although both moments may not be perfectly coincident. The GPS-shoreline is 
measured at a moment near the satellite image acquisition. Each GPS point is 
taken at the instantaneous land-water limit (which is constantly moving as it is a 
natural beach). Horizontally, the difference between these photographic and GPS- 
shorelines was measured and a mean error of 0.15 (±1.05) m was obtained. 
Vertically, comparing the mean elevation value of the GPS-shoreline and the MSL 
value, we computed a mean difference (|ZMSL- ZGPS-line|) of 0.067 m for all 
days. In consequence, photographic and GPS shorelines can be considered 
coincident, while the very small distance between them serves to indicate the 
magnitude of the natural shoreline movement for each date. Moreover, the 
terrestrial images offer additional environmental information (for example, the 
existence of whitewater that can affect the shorelines obtained). 

Therefore, for the analysis carried out in the present work, the satellite shorelines 
were compared with either GPS-shorelines or photo-shorelines. We chose to use 
the GPS-shoreline except when this information was unavailable – and we then 
used the digitized shoreline from rectified photos (Fig. 4.18). 

In addition, some meta-data (such as significant wave height and peak wave 
period) was taken from the oceanographic buoy in front of the Port of Valencia. 

4.2.3.3. Shoreline accuracy assessment methodology 

As each sub-pixel shoreline is integrated by points, the distance from those points 
to their respective reference line is a measure of the error committed. The 
distances have been stipulated positive seawards and negative landwards. The 
mean error indicates the bias of the satellite shorelines, while the standard 
deviation must be understood as the variability of the shoreline at the image 
registration moment. As mentioned before, the reference line is taken at the time 
when the satellite is expected to register the scene and so avoids the effect of the 
tide in our study. 

4.2.4. Results 

Subsequently, the PRC (polynomial radiometric correction) effect and accuracies 
per date and sensors are shown. Within each, the accuracies on the beach 
shorelines are compared with those obtained at the dike of the port of Valencia. 
The differences in the errors observed on the beach compared with those 
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measured at the port dike enable us to recognize the particular effect that the type 
of shoreline (sandy beach with a gentle slope / rigid shoreline with a steep slope) 
has on the correct determination of the shoreline position. 

4.2.4.1. Assessing how PRC is working on sandy beaches 

The original workflow was used on the Landsat series. However, it had to be 
checked whether the PRC model –fit in seawalls (Pardo-Pascual et al., 2012; 
Almonacid-Caballer, 2014)- also improves the accuracy of the shoreline positions 
in other areas. Consequently, the first question to answer is if these models can be 
extrapolated to natural spaces where different pixel levels and behaviors are 
expected. To answer this point, PRC-refined and non-refined shorelines were 
compared on beach and port zones (see Table 4.5). 

  Band  

 NIR SWIR 1 SWIR 2 
Zone 

Sensor 
Beach Port Beach Port Beach Port 

L7H (prc) 11.1 ± 9.2 3.5 ± 9.0 6.9 ± 12.0 4.1 ± 12.1 12.1 ± 18.9 3.0± 10.3 
L7H 8.7 ± 7.5 2.4 ± 8.2 4.6 ± 6.5 4.1 ± 7.5 6.0 ± 6.7 1.2 ± 7.5 

L7L (prc) 7.7 ± 6.3 2.8 ± 10.0 3.9 ± 6.0 3.8 ± 11.4 6.6 ± 5.9 7.2 ± 12.7 
L7L 7.5 ± 5.6 2.7 ± 6.5 5.5 ± 4.9 4.9 ± 6.5 7.4 ± 4.7 3.9 ± 5.1 

L8 (prc) 2.1 ± 6.2 0.7 ± 8.6 4.5 ± 8.9 5.2 ± 9.6 6.2 ± 8.1 4.6 ± 6.3 
L8 6.7 ± 3.7 3.0 ± 6.7 6.5 ± 3.1 5.5 ± 6.7 8.2 ± 3.0 4.4 ± 5.0 

Table 4.5. Mean error (bias) and standard deviation in meters of shoreline positions 

acquired while alternatively applying and not applying PRC in two zones. 

A comparison between PRC-corrected and uncorrected shorelines shows that 
PRC-correction only reduces the bias in 50% of the cases – while it increases 
standard deviation in all cases. It can be considered that the PRC deduced in 
previous studies needs to be updated or, at least, cannot be extrapolated directly to 
other areas. Since there is no PRC available for Sentinel-2 shorelines, the exposed 
workflow will only be used until step 3 (geo-referenced shorelines). 
 
4.2.4.2. Shoreline errors by sensor and date 

Although the mean global error and standard deviation of the errors (Table 4.5) 
could be good indicators of bias and precision, each shoreline may be affected by 
instantaneous environmental factors such as wave conditions in the image 
acquisition moment, coastal slope, and so on. It is necessary to assess how these 
instantaneous factors affect the location of each shoreline. We show results 
measured for each date and zone (beach and port). 
 
4.2.4.2.1. Errors on Landsat 7 shorelines 
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Tables 4.6 and 4.7 show a higher seaward bias for the beach than for the port. It 
can be seen in the port zone that the deviation values are smaller than the bias. 
This ensures that the real land-water shorelines are mostly located in the deviation 
range of each shoreline. The bias is more commonly observed on Landsat 7-H 
(high gain) than on Landsat 7-L (low gain) shorelines. Given that this happens for 
the port, the cause may be different types of algorithmic behavior for each type of 
image. 
 

 Zone 

 Beach Port Beach Port Beach Port 
Date 
Band 

2016/07/19 2016/09/14 2016/10/07 

NIR 9.6 ± 2.7 -1.3 ± 7.9 6.4 ± 5.5 3.1 ± 5.8 12.5 ± 7.2 3.5 ± 6.6 
SWIR1 4.5 ± 3.0 -0.9 ± 6.7 5.7 ± 11.2 5.1 ± 2.9 5.4 ± 5.4 2.8 ± 5.3 
SWIR2 6.3 ± 3.2 -1.8 ± 4.5 6.2 ± 4.1 3.3 ± 4.4 5.3 ± 5.4 0.9 ± 5.6 

Table 4.6. Mean error (bias) and standard deviation in meters of shoreline positions for 

each zone (beach and port) and three available dates of Landsat 7 with high gain. 

 
4.2.4.2.2. Landsat 8 shoreline errors 

The results obtained from Landsat 8 shorelines (Table 4.8) show that for some 
dates, in contrast to what happens with Landsat 7 shorelines, the seaward bias is 
lower than at the port. The shorelines at the port zone are mapped seawards, but 
within a magnitude of less than 5 m for almost all cases. However, the bias at the 
beach zones behaves heterogeneously. It is clear that deviations at the port zone 
are always higher than at the beach zone. This shows that the shoreline extraction 
at the beach seems to be coherent – but the algorithm detects a shoreline that is 
naturally different from the port zone. 

To understand the environmental factors surrounding the sub-pixel shorelines, a 
visual analysis is useful. From the information provided in the land photographs 
taken when the satellite captured the data, we can relate the shoreline positioning 
errors with the state of the sea. Fig. 4.18 shows six days when Landsat 8 passed 
over the study area. The figure represents, for each day, the shoreline defined by 
three different methods: a shoreline acquired by digitizing over the rectified 
photos; the GPS-shoreline measured in the field; and the Landsat shoreline. 

As the resulting errors have already revealed in Table 4.8, we can now visualize 
how the Landsat shorelines tend to move seawards. In addition, we can see that 
for these cases (Landsat 8 - band 6) satellite shorelines are unaffected by higher 
waves – and the shorelines with the greatest error on the beach (9 and 25 June) are 
generated when images show an apparently calm sea with few ripples (as the figure 
shows). 
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      Zone      

 Beach Port Beach Port Beach Port Beach Port Beach Port Beach Port 
Date 
Band 

2016/05/25 2016/06/01 2016/06/10 2016/07/28 2016/09/21 2016/09/30 

NIR 
11.6 ± 

3.4 
2.9 ± 
3.5 

5.2 ± 
5.2 

-0.4 ± 
8.3 

9.8 ± 5.2 
4.0 ± 
3.3 

9.5 ± 
5.3 

6.6 ± 
7.6 

3.3 ± 
3.7 

0.2 ± 
6.5 

6.4 ± 
3.2 

3.9 ± 
4.9 

SWIR1 8.1 ± 3.4 
3.9 ± 
5.0 

5.2 ± 
3.3 

1.2 ± 
8.2 

10.6 ± 
6.0 

5.6 ± 
3.9 

7.2 ± 
4.4 

7.2 ± 
6.5 

2.1 ± 
2.9 

4.5 ± 
7.9 

5.2 ± 
3.2 

5.1 ± 
4.6 

SWIR2 9.6 ± 3.6 
4.4 ± 
4.1 

7.1 ± 
3.4 

2.4 ± 
5.1 

10.8 ± 
5.8 

4.7 ± 
4.1 

9.1 ± 
4.0 

5.3 ± 
4.5 

3.7 ± 
3.5 

3.0 ± 
6.8 

6.7 ± 
3.8 

2.5 ± 
4.3 

Table 4.7. Mean error (bias) and standard deviation in meters of shoreline positions on each zone (beach and port) and six available dates 
of Landsat 7 with low gain. 

 

       Zone       

 Beach Port Beach Port Beach Port Beach Port Beach Port Beach Port Beach Port 
Date 
Band 

2016/05/24 2016/06/02 2016/06/09 2016/06/18 2016/06/25 2016/09/06 2016/10/08 

NIR 
8.2 ± 
3.0 

2.3 ± 
7.9 

2.3 ± 
2.4 

2.8 ± 
4.8 

10.1 ± 
3.2 

5.3 ± 
8.5 

8.6 ± 
5.1 

- 
11.2 ± 

2.9 
2.9 ± 
7.0 

1.2 ± 
4.6 

2.5 ± 
5.5 

4.4 ± 
3.7 

2.4 ± 
5.4 

SWIR1 
7.9 ± 
2.5 

5.4 ± 
8.2 

2.6 ± 
2.3 

4.2 ± 
5.1 

9.8 ± 
2.6 

7.2 ± 
8.3 

3.4 ± 
3.2 

- 
10.0 ± 

2.8 
6.7 ± 
7.3 

0.8 ± 
5.1 

4.8 ± 
5.3 

1.7 ± 
2.8 

4.9 ± 
4.7 

SWIR2 
9.2 ± 
2.3 

4.6 ± 
5.4 

4.3 ± 
2.5 

3.7 ± 
4.0 

10.9 ± 
2.7 

5.7 ± 
5.8 

4.6 ± 
2.9 

- 
11.3 ± 

2.9 
4.4 ± 
5.1 

2.7 ± 
4.8 

4.2 ± 
4.8 

2.7 ± 
2.8 

4.0 ± 
4.8 

Table 4.8. Mean error (bias) and standard deviation in meters at the beach and port zones obtained for each data and standard deviation in 

the same places using Landsat 8 images. There is no data available for the port zone on 18 June because it was cloudy. 
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Fig. 4.18. The same 2010 PNOA orthophoto is used in the six maps simply as a 

basemap. Above it, the projection of the terrestrial photos of six different days for El 
Saler beach is shown. Their projection is made at the mean sea level value for each 
date. Note that the camera is not fixed, and the different extension covered by the photos 
is a consequence of the hand-selected region projected. Each map shows the GPS-line, 
the digitalised-line (almost coincident between them) and the satellite shoreline. 

 
4.2.4.2.3. Errors of Sentinel-2 shorelines 

Table 4.9 contains the statistics for the Sentinel-2 shorelines. The most remarkable 
aspect in this table are the results for 17 November 2016 where the bias and 
standard deviation of the NIR band shorelines reach values of around 50 m. Fig. 
4.19 shows that the detected lines for those bands are a real boundary between the 
whitewater patches and the water. This image best shows how whitewater can 
affect the shorelines. This effect can be considered as an error given that this is not 
the expected line – but it is a real, natural, and possible line. However, SWIR-band 
shorelines seem to be more robust when faced by this type of natural confusion. 
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    Zone    

 Beach Port Beach Port Beach Port Beach Port 
Date 
Band 

2016/09/08 2016/10/08 2016/11/07 2016/11/17 

NIR 
10 

-3.6 ± 
6.2 

4.6 ± 
2.2 

-1.8 ± 
2.0 

4.7 ± 
2.8 

-1.6 ± 
1.7 

7.0 ± 
3.2 

50.6 ± 
30.6 

9.9 ± 
3.3 

NIR 
20 

3.5 
±3.2 

2.4 ± 
4.3 

2.2 ± 
3.2 

1.7 ± 
6.6 

2.6 ± 
2.3 

6.7 ± 
5.2 

47.8 ± 
34.1 

11.5 ± 
7.5 

SWIR1 
-1.5 ± 

2.1 
2.9 ± 
4.2 

-2.8 ± 
2.0 

3.6 ± 
3.7 

-2.0 ± 
2.3 

5.0 ± 
5.0 

-5.9 ± 
2.7 

3.1 ± 
4.7 

SWIR2 
-1.2 ± 

2.2 
2.3 ± 
3.9 

-2.2 ± 
2.3 

3.2 ± 
2.9 

-2.0 ± 
2.1 

4.5 ± 
3.3 

-6.5 ± 
2.7 

1.4 ± 
3.9 

Table 4.9. Mean error (bias) and standard deviation in meters at the beach and port 

zones for each data using Sentinel-2 images. 

 

 

Fig. 4.19. Sections of: (A) El Saler beach and (C) the port zone in a 10 m pixel size 

image in the NIR band (band 8) of Sentinel-2 acquired on 17 November 2016. (B) shows 
two photos for this day rectified by C-Pro over an orthophoto taken from 2010 PNOA 
sources (used simply as a basemap). The reference shoreline position acquired using 
differential GNSS appears in green, and the automatically detected satellite shoreline in 
red. (A) shows how the shoreline has been erroneously detected as the whitewater 
border. In the case of the port (C), where there is no whitewater due to the greater water 
depth, and the shorelines are correctly detected. 

 
The Sentinel-2 shorelines show a specific behavior: a landward bias for the SWIR 
bands. Apart from the whitewater effect, all the shorelines move equivalently 
landward. It may be seen at the low range of their mean distances. The low 
standard deviation implies robustness and the fact that the algorithm is probably 
locating the shoreline, but with a still unexplained bias. The environmental and 
specific circumstances of each scene must be used again to understand this effect. 

http://www.linguee.es/ingles-espanol/traduccion/erroneously.html
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4.2.5. Discussion 

The standard deviations in the port zone resumed in Tables 4.6 to 4.9 behave 
similarly to those obtained in previous evaluations on seawalls. Some standard 
deviations exceptionally reach up to 8.5 m. However, we understand this as 
occasional behavior, while the standard deviation average is up to 6.08 meters. The 
worst standard deviation is at seawalls when analyzing a large set of images 
(Almonacid-Caballer, 2014). 

The first question, also related with those exceptional deviations, is related with the 
PRC – the last step of the workflow. Pardo-Pascual et al. (2012) and Almonacid-
Caballer (2014) observed that the digital levels of the pixels neighboring each 
shoreline point influenced its position. It was observed that brighter land pixels 
forced the shoreline to move landwards. From that point, a mathematical 
expression could be fitted to obtain the bias (error compared with a reference) of 
each point – depending on the mean and standard deviations of neighboring pixel 
values. That adjustment leads to the PRC expressions (different for each Landsat). 
It has been demonstrated in previous sections that this PRC cannot be 
extrapolated to beaches (or an update would be necessary). Consequently, PRC has 
not been applied here and the effect of the bias due to reflectance may be observed 
(Fig. 4.20). 
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Fig. 4.20. The blue line is the high-resolution mapped shoreline and the dark blue points 

represent the sub-pixel shoreline. The base image on the left is Landsat 8. The base 
image on the right is the 2010 PNOA orthophoto. Higher and lower reflectance pushes 
the shorelines landwards or seawards respectively. 
 

In the northern zone of Fig. 4.20, a brighter segment moves the shoreline points 
landwards, while darker pixels in the southern zone move them seawards. In each 
of these parts, the points move as a block, not randomly. If each were analyzed 
separately, a different bias but very similar deviation would be found. As all of the 
port zone is analyzed together, a higher standard deviation is obtained. In contrast 
to the port, there are no differentiating behaviors at the beach where the land pixel 
values remain more constant. This is why the standard deviation is larger at the 
port zone than at the beach (Tables 4.6 to 4.9). 

 

Fig. 4.21. Map shows differences between shorelines for Landsat 8 and Sentinel-2 with 

a few minutes of difference. Negative values indicate that Landsat 8 is displaced 
landwards with respect to Sentinel-2, while positive values imply seaward bias. Details A 
and B show the influence of the width of the beach in the shoreline positions due to the 
differing spatial resolutions of these two types of images. 

A comparative analysis between the shorelines obtained from Sentinel-2 and 
Landsat 8 images on 8 October 2016 was carried out to discover how surface 
brightness variations affect the position of the shoreline. To achieve this, two 
coastal segments were analyzed: one 3.5 km long and located to the north of the 
port of Valencia, and another measuring 8.5 km to the south (see Fig. 4.21).  

An initial shoreline was obtained using a kernel of 7 x 7 pixels. This kernel covers a 
wider area for Landsat 8 than Sentinel-2 due to the pixel resolutions. The 
comparison between both resulting shorelines (Landsat 8 compared to Sentinel-2) 
shows that the Landsat shoreline bias is 2.17±3.38 m seawards on average. 
However, Fig. 4.21 shows a landwards bias at the site north of the port (Fig. 
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4.21A) and seawards at the southern site (Fig. 4.21B). The main difference between 
both zones is the beach width. The northern site is a very wide beach, and 
consequently, the analyzed kernel will contain very bright pixels corresponding to 
the beach sand. The beach at the southern site is about 30 m wide with a dune 
strip covered in spots of vegetation. Given that Landsat 8 covers a wider area of 
analysis than Sentinel-2, it captures more vegetation surface (darker than the beach 
response). This fact supports the idea that when a darker neighborhood is 
analyzed, it displaces the shoreline offshore. 

A second analysis was carried out to examine a neighborhood that covers the same 
zone (swath) for both types of satellite images. Thus, a 7 x 7 pixel kernel was used 
for Sentinel 2 images (covering a 140 m swath) and 5 x 5 pixel for Landsat 8 
images (covering 150 m). The shoreline differences in this case decrease to -0.75 
±2.5 m, and reinforce the idea that differing pixel brightnesses in the terrestrial 
zone influence the location of the shoreline. Although Landsat 8 and Sentinel-2 
have different relative spectral response functions (RSRF) (Mandanici & Bitelli, 
2016), the small differences found between their shorelines suggest that they are 
equivalent and can be used together in subsequent analyzes. 

Other aspects may affect shoreline extraction. One of these aspects may be the 
resampling with which Landsat and Sentinel-2 pixels are interpolated during the 
terrain correction. Cubic convolution is currently used by USGS and ESA, and as a 
result, each pixel may be ‘contaminated’ by neighboring pixels. However, using 
other interpolation methods such as nearest neighbor, produces worse shorelines 
because they cause unrealistic jumps and toothed forms. 

The distances of the satellite shoreline points compared with their references at the 
beach zone show low standard deviations. This means that each shoreline moves 
as a block from the reference. The reference shoreline is representing the land-
water boundary, but the satellite sub-pixel shoreline is not identifying exactly the 
same line (depending on the environmental situation). Table 4.10 joins the mean 
errors (by date) and some variables of the state of the sea, such as significant wave 
height (H1/3), peak wave period (Tp), and the runup value (R2%) calculated by 
the Stockdon et al., 2006 formula: 
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Where the wavelength has been calculated by L=(gTp2)/2π and the slope (βf) has 
been estimated as a constant, 0.063. The mean slope value of the zone is deduced 
in Almonacid-Caballer et al., 2016. 
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Mean error (m) by 

spectral band 
Wave data and other parameters 

Date 
Type of 
image 

NIR 
SWIR-

1 
SWIR-

2 
H1/3 Tp L H/L R2% 

24-May Landsat 8 8.20 7.89 9.18 0.32 3.96 8.77 0.04 0.10 

25-May Landsat 7-L 11.64 8.08 9.56 0.50 5.40 11.96 0.04 0.13 

1-Jun Landsat 7-L 5.22 5.18 7.11 0.30 3.79 8.39 0.04 0.09 

2-Jun Landsat 8 2.30 2.55 4.28 0.16 3.40 7.53 0.02 0.07 

9-Jun Landsat 8 10.13 9.79 10.87 0.26 2.95 6.53 0.04 0.08 

10-Jun Landsat 7-L 9.75 10.55 10.79 0.28 3.79 8.39 0.03 0.09 

17-Jun Landsat 7-H 5.25 3.70 4.39 0.12 2.13 4.72 0.03 0.06 

18-Jun Landsat 8 8.58 3.36 4.60 0.74 4.61 10.21 0.07 0.15 

25-Jun Landsat 8 11.18 10.00 11.25 0.36 2.92 6.47 0.06 0.09 

19-Jul Landsat 7-H 9.60 4.46 6.28 0.47 5.88 13.02 0.04 0.13 

28-Jul Landsat 7-L 9.46 7.18 9.07 0.47 5.76 12.76 0.04 0.13 

6-Sep Landsat 8 1.19 0.79 2.67 0.55 6.94 15.37 0.04 0.15 

8-Sep Sentinel-2 3.52 -1.52 -1.15 0.72 7.62 16.88 0.04 0.18 

14-Sep Landsat 7-H 6.43 5.74 6.16 0.38 2.65 5.87 0.06 0.09 

21-Sep Landsat 7-L 3.34 2.14 3.73 0.26 4.35 9.63 0.03 0.09 

30-Sep Landsat 7-L 6.39 5.22 6.66 0.53 5.38 11.92 0.04 0.13 

7-Oct Landsat 7-H 12.47 5.35 5.27 0.51 4.47 9.90 0.05 0.12 

8-Oct Landsat 8 4.41 1.73 2.70 0.47 7.84 17.36 0.03 0.15 

8-Oct Sentinel-2 2.21 -2.79 -2.19 0.47 7.84 17.36 0.03 0.15 

7-Nov Sentinel-2 2.62 -2.03 -1.97 0.42 6.14 13.60 0.03 0.13 

17-Nov Sentinel-2 47.71 -5.87 -6.47 0.89 8.96 19.84 0.04 0.22 

Table 4.10. Mean errors (in meters) obtained in the beach zone with different types of 

spectral bands and wave conditions at the instant when images were acquired. 

One of the most disturbance-causing effects in the beach zones is the presence of 
whitewater. A clear whitewater patch is seen in the Sentinel-2 scene of 17 
November 2016 (Fig. 4.19). The highest wave height of the series occurs on this 
day (Table 4.10 and Fig. 4.19B). The worst effect takes place in the NIR band. In 
this case, the workflow deduces the shoreline at the whitewater-water boundary, 
but this does not happen with the SWIR bands. Nevertheless, the terrestrial 
photographs (taken at the same time as the satellite passes overhead) show other 
days with whitewater patches next to the beach, and this does not seem to cause 
much effect on the algorithm (Fig. 4.18). The workflow may register different 
boundaries depending on the way the whitewater is detected in each band, and the 
size of the whitewater patch. It was proven via field measurements (Whitlock et al., 
1982; Koepke, 1984; Frouin et al., 1996) that the reflectance of the whitewater 



Photogrammetry and image processing techniques for beach monitoring 

 

 158 

decreases for larger wavelengths. This implies NIR bands are more sensitive to 
whitewater than SWIR bands – as has been observed in this work. 

The characteristics of the waves are environmental variables that may potentially 
affect shoreline accuracy. Fig. 4.22A shows a relation (r2= 0.77) between Sentinel-
2 and Landsat 8 shoreline bias (with SWIR-2 shorelines) with the sea wavelength. 
Larger wavelengths move the shorelines landward, something that sounds natural 
given that larger wavelengths also move the wet zone landward. This could be 
related with the runup – however, the correlation (Fig. 4.22B) with the shoreline 
bias decreases slightly (r2= 0.69). This may be affected by the runup calculation 
following the Stockdon equation (where a single slope value is used implying a 
simplification of reality). These correlations are also high (r2= 0.77 for wavelength 
and r2= 0.68 for the runup) when analyzing SWIR-1 shorelines. Even though 
these are clear correlations, causal factors cannot be specified. The runup may lead 
to wide wet zones, while the movement of the waves may darken the radiometric 
response next to the beach. This correlation between bias and sea wavelength does 
not appear clearly on Landsat 7 shorelines, probably due to the different spectral 
window for Landsat 8 and Sentinel-2. 

A) Relationship of error in shorelines acquired 
from L8 and S2 and wave length 

B) Relationship of error in shorelines acquired 
from L8 and S2 and run-up 

 

Fig. 4.22. Inverse relationship between error in the mean shoreline position using 
Landsat 8 and Sentinel-2 images (SWIR 2) and wavelength and run-up. 

Finally, Table 4.11 sums up the mean bias, standard deviation and RMSE of the 
errors for the whole set of shorelines (distinguishing between sensors and zones). 
Only the SWIR bands that work best are shown (the NIR band may be greatly 
affected by whitewater). The mean values and standard deviations of each 
shoreline have been weighted with their own standard deviations in order not to 
lose the real uncertainties. As can be seen, we have joined statistics of Landsat 8 
and Sentinel-2. The equivalent results of their shorelines taken on the same day, 
their similar spectral SWIR windows, and how they similarly correlate with the sea 
wavelength, mean that we may accept that both are showing the same reality. 
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 Beach Port 

 SWIR-1 SWIR-2 SWIR-1 SWIR-2 

 μ±σ RMSE μ±σ RMSE μ±σ RMSE μ±σ RMSE 

L7H 4.6±6.5 8.0 6.0±6.7 9.0 4.1±7.5 8.5 1.2±7.5 7.6 

L7L 5.5±4.9 7.4 7.4±4.7 8.8 4.9±6.5 8.1 3.9±5.1 6.4 

L8 + S-2 3.1±5.8 6.6 4.0±6.0 7.2 4.5±6.0 7.5 3.7±4.6 5.9 

Table 4.11. Overall accuracy assessment of the shorelines (in meters). 

For the three sets of images used (L7H, L7L and Landsat 8 + Sentinel-2) it can be 
observed that mean seaward bias is greater at the beach than at the port. The 
Landsat 8 + Sentinel-2 set is the least biased and this is related with sea wave 
conditions. The differing behavior among the three sets may be due to the 
different spectral resolution at the IR bands (differences between ETM+ and OLI 
or MSI sensors), or due to their respective radiometric resolution (8 or 12 bits). 
Although both bands offer similar accuracy, the SWIR 1 band has less bias and 
deviation at the beach than at the port separately for each date. 

It is important to note that the achieved bias, precision and accuracy are in line 
with those obtained in other recent studies. In García-Rubio et al., 2015, Progreso 
beach (8 km long) in Yucatán (Mexico) was analyzed by extracting the shoreline 
from the NIR band of a Spot 5 satellite image (10 m/pixel). The shoreline was 
obtained after georeferencing and binarizing the image with a non-supervised 
classification, and is compared with a GPS-shoreline. As a result, the Spot 
shoreline bias is 5.6 ± 1.37 m seawards and up to 7 m.  

Working with Landsat 5 and 7 data, Almonacid-Caballer et al., 2016 estimated a 
mean annual shoreline position that was slightly biased seawards by around 3 to 5 
m. It is worth noting that this work applied a previous image geo-referenced 
correction at sub-pixel level using the LUFT method (Guizar-Sicairos et al., 2008; 
Wang et al., 2011). 

In Liu et al., 2017b the shoreline position is analyzed at Narrabeen-Collaroy beach 
in Australia (as obtained from a complete Landsat set between 1987 and 2016). 
The reference data consisted of five topographic profiles along the entire shoreline. 
Each profile gave a shoreline point which is compared with the respective Landsat 
shoreline intersection. The authors reached an overall mean bias close to 0 but 
with an RMSE (root mean squared error) of 10 m. No image registering process 
was mentioned and this would probably have enabled better results (as is shown in 
Almonacid-Caballer et al., 2017). Another factor is that the RMSE results from 
several profiles and time series imply an effect for the instantaneous position of the 
waves. Dissipative wave behavior and the difference in spectral responses due to 
the water depth were also commented on, as well as the difficulties in evaluating 
natural beaches. 
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Consequently, despite being affected by all the analyzed factors, the sub-pixel 
shorelines obtained in the present work behave equally, or better, than in other 
studies. However, each individual shoreline of dynamic spaces showed higher 
deviations and, in agreement with the references, may be affected by the described 
environmental factors, and perhaps by other factors still undiscovered. More 
assorted analyses in other beaches, and under differing environmental conditions, 
would be useful for a reevaluation. 
 
4.2.6. Conclusions 

The accuracy of the sub-pixel shorelines on natural beaches obtained by the 
proposed workflow was analyzed. It must be first mentioned that the original 
workflow (Pardo-Pascual et al., 2012; Almonacid-Caballer, 2014) was slightly 
modified. Images and shorelines were registered and extracted at sub-pixel level –
but not corrected by the influence of various bright land pixels along the shoreline. 
To assess them, a comparison for land-water shorelines (measured via terrestrial 
photogrammetry and GNSS) was made. This comparison confirms that satellite 
shorelines define the land-water boundary with sub-pixel accuracy (Table 4.11). 
The main conclusions are: 

- SWIR-1 bands, in all satellite sensor systems, offer the most accurate and 
robust sub-pixel shorelines on our study area. This result is a starting point 
that can be extrapolated to other similar areas and studies. 

- Shorelines obtained from the NIR band have usually been accurate, but 
have shown to be more affected by whitewater and foam. 

- Shorelines extracted from Landsat 8 and Sentinel 2 show similar 
disturbances for environmental factors, brightness of the land zone, and 
wavelength of the incident waves. 

- The brightness of the land pixels surrounding the shoreline seems to 
affect the detected shoreline moving it landwards as the brightness of the 
pixels increase. This behavior appears clearer at the port area. It was seen 
in previous publications although modelling it has not been possible. 

- A relationship between the bias of the shorelines—obtained from the 
SWIR-1 band of Landsat 8 and Sentinel-2—and the wavelengths of the 
sea waves is found. It suggests, even with the scarcity of data, that the 
state of the sea affects the extracted sub-pixel shorelines. 
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4.3. AN EFFICIENT PROTOCOL FOR ACCURATE AND MASSIVE 

SHORELINE DEFINITION FROM MID-RESOLUTION 
SATELLITE IMAGERY 

Satellite images can constitute a useful source of information for coastal 
monitoring as long as it is possible to manage them in an efficient way and derive 
precise indicators of the state of the beaches. In the present work, SHOREX 
system is employed for managing and processing Landsat 8 and Sentinel 2 images 
to automatically define the instantaneous shoreline position at sub-pixel level. 
Between the years 2013 and 2017, 91 satellite-derived shorelines (SDS) were 
assessed by comparing with other high-resolution shorelines obtained 
simultaneously through video-monitoring. The analysis allowed identifying the 
combination of parameters to perform the extraction algorithm with the highest 
accuracy. Furthermore, an efficient self-contained workflow is proposed untying 
the accuracy of the final shoreline from input line inaccuracies and external factors. 
Through an iterative procedure, it ensures firstly a suitable kernel of analysis 
representing the land-water interface to get, afterward, the definition of the 
shoreline with high precision below the 3 m of RMSE. 

4.3.1. Introduction 

Beaches are spaces of great environmental and recreational importance for coastal 
societies. The knowledge of their state and morphological changes, such as 
shoreline monitoring, is of special interest for the subsequent management of the 
coast (Mills et al., 2005, Esteves et al., 2009, Addo et al., 2011, Alharbi et al., 2017). 
In order to meet control and management needs, data collection must offer 
enough accuracy and frequency. Among the methods traditionally used, 
photointerpretation is limited to provide data at specific times (Ford, 2013; Jones 
et al., 2009; Morton et al., 2004; Pajak & Leatherman, 2002). Similarly, more 
modern and continuous video-based techniques are limited to a local scale 
(Aarninkhof et al., 2003; Davidson et al., 2007; Taborda & Silva, 2012; Brignone et 
al., 2012; Simarro et al., 2017; Sánchez-García et al., 2017), while DGPS requires 
arduous in situ data acquisition (Pardo-Pascual et al., 2005; Psuty & Silveira, 2011). 

Alternatively, satellite images can provide information of the entire planet with a 
high temporal frequency. In 2008, NASA released the images of the Landsat 
platform (16 days of revisit time) free of charge. Similarly, the European Spatial 
Agency (ESA) is providing the Sentinel-2 satellite images (5 to 10 days of revisit 
time). Nowadays, considering both platforms together, there is a global average 
revisit interval of 2.9 days (Li & Roy, 2017). Thus, there is a new scenario where 
the shoreline position may potentially be defined in tens of different dates 
throughout the year in broad coastal segments. This type of data would make it 
possible to characterize short-term coastal processes such as the effect of storms 
and their subsequent recovery over time, or the impact of artificial beach 
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nourishments (Cabezas-Rabadán et al., 2018). However, in order to take advantage 
of these images it is necessary to: (i) define the shoreline position with enough 
accuracy for recognizing subtle changes, and (ii) have a sufficiently efficient and 
automated system to define the shorelines of all the images acquired by the 
satellites in a low time consumption process. 

Near and medium infrared bands have been commonly used to detect the interface 
between water and land (Frazier & Page, 2000; Ryu et al., 2002; Yamano et al., 
2006; Maiti & Bhattacharya, 2009). Similarly, alternative strategies have been 
proposed such as combining bands for obtaining indexes (Ouma & Tateishi, 2006, 
Choung & Jo, 2015). Among these indexes, the first and most used is the 
Normalized Difference Water Index (NDWI) that combines the green band with 
the near-infrared band using the zero value as a threshold for the difference 
between the dry sand and wet ocean surface (McFeeters, 1996). Xu (2018) 
proposed the Modified Normalized Difference Water Index (MNDWI), which 
replaces the near infrared band with the SWIR 1. Subsequently, new proposals 
have appeared such as the Automated Water Extraction Index (AWEI), which 
combines different bands of the visible and near and medium infrared but applying 
different weights to each band (Feyisa et al., 2014). These automatic water 
classifications have always encountered problems according to the index employed, 
as well as to the specific threshold chosen that varies with the different scenes and 
places (Ji et al., 2009). On the other hand, these indexes often confuse water zones 
with low albedo covers (Feyisa et al., 2014). Therefore, there is no clear consensus 
on which index works best as most authors focus on the correct performance of 
the index in their area of study. Rokni et al. (2014) evaluated multiple indexes to 
estimate surface changes in Lake Urmia (Iran) and found that the best solution 
came from a new approach based on the main components of NDWI. More 
recently, Hagenaars et al. (2018) used the NDWI to automate the shoreline 
definition, although in this case, grouping the water spots into a single large unit 
associated with the sea and separating it from the land. 

In the attempt to automatically define the shoreline from mid-resolution satellite 
images using the raw infrared bands, the strategies appear divided in those working 
on a pixel scale, and those trying to improve the precision beyond the pixel size 
(sub-pixel or super-resolution). In the first case, the location of the shoreline is 
determined by an optimal threshold (Aedla et al., 2015; Quang Tuan et al., 2017), 
as well as by the selection of optimal bands and a subsequent classification (Li & 
Damen, 2010; García-Rubio et al., 2015). However, detailed coastal analyses would 
require the definition of the shoreline at sub-pixel level, improving the excessively 
coarse spatial resolution of the input satellite images. A few works have proposed 
algorithms in order to overcome that restriction (Foody et al., 2005; Zhang & 
Chen, 2010; Li & Gong, 2016, Li et al., 2015; Liu et al., 2017a). Nevertheless, most 
of these solutions focus on the algorithm basics, but without proposing any 
specific method to ensure a sufficiently robust georeferencing. This is a key issue 
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considering that NASA and ESA images show an excessive uncertainty in 
geolocation. Landsat 8 L1T products require an uncertainty lower than 12 m (Iron 
et al., 2012) while with regard to the multi-temporal registration, the geolocation 
accuracy has been previously established in 1.2 pixels, i.e. 24 m (Clerc, 2017). 
Hence, automatic co-registration methods appear as necessary in order to ensure a 
minimum error. Almonacid-Caballer et al. (2017) proposed employing the Local 
Upsampling Fourier Transform, LUFT algorithm (previously described by Guizar-
Sicarios et al., 2008 and Wang et al., 2011), as a useful tool for this purpose since it 
ensures an error below 1/10 of the pixel resolution. 

The methodology initially proposed in Pardo-Pascual et al. (2012) and later 
improved in Almonacid-Caballer (2014), includes both an automatic shoreline 
extraction algorithm and an automatic co-registration system, both at sub-pixel 
level. This algorithm, which works on the near- and mid-infrared spectral band, is a 
potentially usable methodological solution to automatically extract multiple 
shorelines as Pardo-Pascual et al. (2018) assessed. For each image, the method 
follows three essential steps (i) approximate location of the shoreline at pixel level 
based on threshold techniques; (ii) automatic sub-pixel definition based on the 
location of maximum gradient points. They are obtained adjusting a polynomial 
function to the digital levels of a 7 x 7 kernel (neighborhood of analysis) around 
each pixel of the approximate line and subsequently detecting the position where 
the Laplacian is null; and (iii) geometric correction based on LUFT. Results 
showed on rigid coasts -seawalls- an RMSE close to 5 m (Pardo-Pascual et al., 
2012), while on microtidal sandy beaches the values were somewhat higher: 6.6 m 
for Landsat 8 (L8) and Sentinel 2 (S2) images and slightly worse for Landsat 7 
(Pardo-Pascual et al., 2018), always registering a clear bias towards the sea. This 
bias was previously detected by comparing the shorelines obtained from Landsat 5 
and 7 images against others acquired with more precise systems such as DGPS and 
LiDAR (Almonacid-Caballer et al., 2016). Pardo-Pascual et al. (2018) and 
Hagenaars et al. (2018) also found that the accuracy may be strongly influenced by 
wave conditions as the foam of the breaking waves and the wave period. 

It was thought that the persistence of this bias could be minimized by working 
with smaller kernels. However, at once, the inaccuracy of the initial approximate 
shoreline defined by threshold techniques (step i) required sufficiently large 
analysis kernels to ensure that in step ii the real shoreline was contained. Moreover, 
the use of threshold techniques impeded a complete automation of the process. 
Considering the variability of elements existing in the marine area, it is very 
difficult to find a single proper threshold for every image as Liu et al. (2011) and 
Almonacid-Caballer (2014) previously stated. 

Therefore, although the methodological basis described in Pardo-Pascual et al. 
(2018) is a good starting point, it cannot be considered as an efficient solution for 
working with large sets of satellite images. For that purpose, Palomar-Vázquez et 
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al., (2018a, b), proposed the replacement of the pixel level lines defined by 
threshold techniques by using a unique approximate shoreline to proceed with step 
ii for the whole set of images. The approximate line can be then obtained either 
from a pre-existing cartographic source or from a coarse photo-interpretation on 
an orthophoto close in time to the studied period. It increases the efficiency of the 
overall process by excluding the single step that required user intervention. This 
modification allows designing an automatic shoreline extraction system, which we 
have called SHOREX (Shoreline Extraction). This system may work completely 
automatically and it offers the necessary efficiency to supply updated shorelines 
from the images systematically acquired by the satellites L8 and S2. 

The accuracy of the final sub-pixel shoreline is related both to the size of the 
kernel of analysis and to the degree of the adjusted polynomial (step ii). Although 
remaining uncertain, the approximate shoreline obtained according to the new 
workflow is expected to be more robust and may allow a reduction of the kernel of 
analysis. This modification, in turn, would allow changing the degree of the 
adjusted polynomial, potentially offering higher accuracies when determining the 
shoreline position. At this point, it seems also necessary to re-evaluate the data 
sources to be used as input for the SHOREX process. Infrared bands (NIR, 
SWIR1, SWIR2) must obviously be tested but also the performance of the NDWI 
index proposed in the literature. 

The use of an approximate line to start the process presents certain challenges to 
be solved. If this line was excessively displaced with respect to the real shoreline − 
either because of a wrong delineation or because there have been significant 
changes between the acquisition dates of the approximate line and the satellite 
image − when using a small analysis kernel the system may not find the real land-
water limit. Therefore, it would be very useful to analyze the effect that an 
inadequate displacement of the approximate line can have on the system, as well as 
to propose possible solutions to provide methodological robustness. 

This work aims to present SHOREX as an efficient and completely automatic 
shoreline extraction system from mid-resolution satellite imagery. The optimum 
combination of parameters of the extraction algorithm for achieving the highest 
accuracy is identified (kernel size and polynomial degree), as well as an assessment 
of the results when using as input different bands or indexes. It is also intended to 
evaluate whether the position of the approximated line introduced as input affects 
the precision of the final sub-pixel shoreline. Once the optimum parameters and 
input data have been determined, the aim is to define an operative and self-reliant 
shoreline extraction protocol from L8 and S2 images. The solution releases the 
demands on the initial solution and makes it more robust against external factors. 
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4.3.2. Study areas 

Cala Millor is a semi-embayed microtidal sandy beach, 1.7 km in length, located on 
the northeastern coast of Mallorca (Balearic Islands, Western Mediterranean –see 
Fig. 4.23). Well-sorted medium to coarse biogenic carbonate sand characterizes the 
beach bottom from shoreline to 6 m in depth (Gómez-Pujol et al., 2007). Seawards 
from this point, the endemic Posidonia oceanica seagrass meadow carpets the 
bottom (Infantes et al., 2012). This is an intermediate beach with a highly dynamic 
configuration of sinuous-parallel bars and troughs, presenting intense variation in 
the bathymetry and shoreline position related to sandbar movement (Álvarez-
Ellacuría et al., 2011; Gómez-Pujol et al., 2011). 

Tides are almost negligible with a spring tidal range below 0.25 m, although 
changes in atmospheric pressure and wind stress can account for a considerable 
portion of sea level fluctuations (Gomis et al., 2012). The Balearic Sea, the most 
western basin of the Mediterranean Sea, is a semi-enclosed and calm sea with a 
relatively moderate wave condition. The beach is open to the east and, due to the 
embayment configuration; it is well exposed to waves from the NNE to the SE 
(Enríquez et al., 2017). Significant wave height (Hs) at deep waters is usually below 
0.9 with the peak period (Tp) between 4 and 7 s. However, frequent storms 
account for 2% of the time and increase Hs up to 5 m with Tp higher than 10 s, 
with a return period of 1.5 years (Tintoré et al., 2009). 

 

Fig. 4.23. Location map of the study area in the Balearic Islands (Western 
Mediterranean). 

This beach is an important tourist resort of the eastern coast of Mallorca with 
more than 60000 visitors during the summer period and a long history of sand 
nourishment and coastal management approaches (Tintoré et al., 2009). Since 
November 2010 the Balearic Islands Coastal Observing and Forecasting Systems 
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(SOCIB) has been monitoring Cala Millor by means of coastal video-monitoring 
and seasonal beach profiling and an annual bathymetry and sediment sampling 
(Tintoré et al., 2013). 
 
4.3.3. Materials and methods 

The whole set of satellite-derived shorelines (SDS) resulting of applying SHOREX 
through the different combination of parameters (kernel size, polynomial degree 
and input band) were assessed by comparing them against other more accurate 
shorelines. The latter were obtained from images captured by the SIRENA video-
monitoring system (Nieto et al., 2010) and being later, processed and converted to 
georectifed images by applying C-Pro (Sánchez-García et al., 2017). The 
assessment includes data of 91 instants registered with both satellite and video 
sources (from 12 June 2013 to 23 May 2017) over almost 4 years (Fig. 4.24). 

 

Fig. 4.24. Temporal distribution of the 91 satellite images (L8 and S2) and the 

simultaneous 85 video-camera data used for the assessment. The discrepancy in the 
number of data between satellite and video is because there are 6 days with images of 
both satellites. 
 
4.3.3.1. Reference data from video-monitoring 

The shore-based video system (SIRENA), part of the SOCIB program, is equipped 
with some CCD cameras covering and monitoring continuously the whole view of 
the beach site in Cala Millor from an elevation of 46.5 m. Fig. 4.25 presents the 
field of view covered by the four cameras used for the study. The remote station 
stores hourly images with a resolution of 1280 x 960 pixels, with a frequency of 7-5 
fps during a roughly 10-minute span. This way, mean images (widely known as 
Timex images) are generated showing the patterns of high-frequency variability. In 
this work, 85 timex at 10 am (UTC time) for each camera −closest time to the 
satellite passage− are selected as reference data to assess the SDS. 

Before georectifying the video-camera images, other pre-processing tasks are 
required to ensure their quality such as distortion corrections and the registering 
between images due to obvious camera displacements over time. Ten ground 
control points (GCPs) for each photographic shot were measured by the SOCIB 
to have control of the video-monitoring system. 
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Fig. 4.25. Timex images of 7/02/2014 at 10 am UTM time and acquired from left to right 

by C1, C2, C4 and C5 cameras. 

Firstly, the correction of the distortions inherent to each camera device is 
overcome by using the Camera Calibration Toolbox (Bouguet et al., 2015), which 
allows the calibration parameters to undistort the images that mainly suffered from 
radial and tangential distortion. The image coordinates of the GCPs also had to be 
transformed since they were identified on the distorted image. 

Secondly, in order to check the displacement between images over time, a set of 
stable and recognizable points available in the two images are identified (buildings, 
windows, contours of distant mountains, etc.). Then, the same points located at 
the control image are found in the rest of the images through a cross-correlation 
search process. The homologous points are used to derive the affine 
transformation parameters through least squares. However, the main part of the 
correction corresponds to a translation in both x and y-axis of the image space as 
figures 4.26A and 4.26B evidence. The standard deviation estimator of the least 
square adjustment is known for each image and, in average for the whole set of 
photos and the four cameras, is 0.56 pixels and 0.65 pixels along the x and y-axis 
respectively. 

Most of the measured displacements over the period range in the x-axis within ±3 
pixels for the four cameras as Fig. 4.26A shows. However, C1 reaches an extreme 
displacement in the x-axis up to -112.29 pixels in February 2017, and C5 moves in 
the opposite direction up to 11.82 pixels from September 2016 (see that both data 
sets disappear from the graph area). Some of these changes have a progressive 
character as exemplifies C1 but others are sudden such as those occurred in C2 
between January and February 2017 (outside the graphic representation scale). 

Regarding the general movement occurred in the y-axis, Fig. 4.26B describes clear 
differences regarding the stability of the four cameras. Again the ones of the edges 
are the most unstable as C1 exemplifies reaching up to -76 pixels displaced when 
something occurred in the episode of February 2017 and until it was settled in 
April 2017 (extreme errors that do not appear in Fig. 4.26B but are displayed on 
purpose in Fig. 4.27). The overall correction values in y-axis indicate that cameras 
clearly nod over time. 

This pre-processing analysis justifies the different georeferencing campaigns 
throughout the years done by the SOCIB group in order to calibrate and continue 
using their video-monitoring system despite the setbacks. However, in this work, 
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we bet to overcome the problem of the camera displacements by registering every 
photo against a control image that we choose on 11/06/2014 for being when the 
closest georeferencing campaign regarding of the 4-year study period was done. 

 

Fig. 4.26. Displacement occurred in the positioning of the four cameras (C1, C2, C4 and 

C5) during the study period along the x-axis in Fig. 4.26A, and along the y-axis in 4B. 
The graphic representation scale collects the most of the results but note that there are 
extreme values going out of it. 

 
Once the registration process is done, the GCPs, corresponding with non-fixed 
points identified for their associated field campaign, can be manually identified 
only once in the control image −with expected errors within the pixel level. Thus, 
the camera intrinsic and extrinsic parameters are determined in one go and the 
georectification for the whole set of images over the 4-year study is carried out 
using C-Pro tool. 
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Fig. 4.27. Displacement occurred in C1 between two dates: top panels represent the 

images registered on 02/08/2015, and bottom panels represent the images on 
11/03/2017 (19 months later). Fig. 4.27A, on the left, shows the raw images stored by 
SIRENA. After registering them against the control image on 11/06/2014, the 
displacement is quantified in 0.6 and -1.95 pixels in the x and y-axis for the top-left 
image, and -111.12 and -65.79 pixels in the x and y-axis for the bottom-left image. Fig. 
4.27B, on the right, shows the images after the registration process (free of 
displacements), where a certain pixel for the whole set of images will correspond over 
time with the same terrain value. 

Note that the spatial resolution of the georectified image is a limitation to consider. 
Despite the proper elevation of the camera above 40 m sea level, and with a focal 
length ranging for the four cameras between 5060 to 1332 pixels, the pixel 
resolution at 1 km would range 0.2 m to 0.7 m in the cross-shore footprint 
component and 4.2 m to 15 m in the long-shore component. Large focal lengths 
lead to better resolutions and the obtained values are in line with Holman & 
Stanley (2007). 

The photos are projected above a sea level value obtained from the tide gauges 
closest to Cala Millor (Sa Rapita, Pollença and Andratx – see 
‘http://www.socib.eu/?seccion=observingFacilities&facility=mooring’). 
Combining these three tide data gauges and for each particular date, the available 
sea level data was averaged out the 10 minutes coincident with the register of the 
timex image. The accuracy reached for the resection process was assessed by 
projecting 43 GCPs over its particular elevation value as Fig. 4.28 shows, and 
getting an RMSE of 1.54 m. 

http://www.socib.eu/?seccion=observingFacilities&facility=mooring
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To end the process, the shoreline is digitalized from the georectified timex images 
as that feature designing the land-water edge between both interfaces (Fig. 4.28 
exemplifies this procedure). The resulting 85 video-derived shorelines will act as a 
reference to assess the ones obtained from satellite imagery. 

 

Fig. 4.28. Projection map with the georectified photos of 7/02/2014 (corresponding 

oblique photos of Fig. 4.25) for Cala Millor beach shown over an orthophoto taken from 
2010 PNOA sources (Spanish National Program for Aerial Orthophoto). The map shows 
the digitalized shoreline (red line) and the projection error calculated on the GCPs. The 
projection is made above the sea level value as near in time with the photos as possible. 
Grid coordinates: GCS_ETRS89 UTM31N. 

 
4.3.3.2. Shoreline definition from Landsat 8 and Sentinel 2 imagery 

The definition of the SDS was carried out with SHOREX from mid-resolution 
satellite images. It is a shoreline extraction system that includes as its core the 
algorithmic solution for the extraction with sub-pixel precision proposed in Pardo-
Pascual et al. (2012) and Almonacid-Caballer (2014). Surrounding it, a workflow 
has been developed in order to integrate and automatize all the necessary 
operations to efficiently manage a large volume of raw data: the satellite images of 
L8 and S2 with a resolution of 30 m and 20 m respectively. 

A set of separated tools have been integrated within a single Python framework, 
following the workflow of Fig. 4.29 and previously described in Palomar-Vázquez 
et al. (2018 a, b). The first phase, downloading the bands of interest, is carried out 
free of charge from Amazon for L8 and COPERNICUS server for S2. These 
servers provide API methods which allow the download of a massive number of 
images with a high degree of flexibility and automation. Thus, by means of using a 
scripting language like Python, it is possible to individually download the required 
bands for a specific project. The second phase, the preprocessing, prepares each 
band for the analysis. For this purpose, several tasks are included: image format 
conversion, clipping each scene in smaller tiles (to improve the storing and shorten 
the time processing), TOA (top of atmosphere) reflectance conversion, cloud 
filtering for discarding useless images, and band sub-pixel georeferencing 
according to the method proposed by Guizar-Sicairos et al., 2008 and modified by 
Almonacid-Caballer et al. (2017) to work as phase-correlation. The last phase, the 
processing, consists of the definition of the shoreline position at sub-pixel level. It 
needs as input both the pre-processed band to be analyzed and an initial 
approximate shoreline in raster format. For every single pixel of the initial 
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shoreline, SHOREX performs a kernel analysis where detect the shoreline position 
at sub-pixel level. It is important to emphasize that this approximate line is used to 
process all bands and dates so decreasing the processing time, instead of using a 
manual thresholding process for every band as previous works did (Almonacid-
Caballer et al., 2016, Pardo-Pascual et al., 2018). Moreover, a suitable value 
selection in the parameters controlling the algorithm, such as the kernel size and 
the degree of the surface polynomial function, is essential for a correct 
determination of the shoreline position. Fig. 4.30 exemplifies the procedure carried 
out by the algorithm in the search for the sub-pixel shoreline in a particular 7x7 
kernel and through a fifth-degree polynomial surface. 

 

Fig. 4.29. The workflow consists of three phases: (1) downloading, (2) pre-processing 

and (3) processing, being the first step the most time-consuming. 

Once the shoreline points have been obtained as Fig. 4.30e shows, it is possible 
that several outliers appear (for instance, due to the presence of buildings or 
vegetation near to the beach). In order to avoid them, a point filtering method has 
been implemented based on the minimum spanning tree algorithm (MST) 
(Graham & Hell, 1985). In this way, the MST is computed for the shoreline points 
and, subsequently, those of the longest path are selected, as they potentially belong 
to the shoreline as Fig. 4.31 shows. The result is a shapefile with the SDS in either 
points or polyline format. 

 



Photogrammetry and image processing techniques for beach monitoring 

 

 174 

 

Fig. 4.30. Core algorithm of SHOREX. a) Band SWIR1 of S2 for the study area; b) initial 

approximate line (in white color) and a7x7 kernel of analysis (yellow color); c) 3D display 
of the kernel values; d) 3D display of the resampled kernel values; e) fifth-degree 
polynomial surface fitted to the resampled values with the extracted sub-pixel shoreline. 
 

4.3.3.3. Accuracy tests 

At this point, different sets of shorelines were obtained from L8 and S2 imagery by 
modifying the parameters of the methodology of extraction. For each combination 
of parameters, the accuracy of the 91 SDS was defined by comparing their position 
with the associated reference lines simultaneously obtained from video-monitoring. 
For each set of results, containing shorelines from different dates, the mean 
displacement, the standard deviation, and RMSE were calculated, and they were 
used to assess the accuracy of each combination of parameters. Positive and 
negative differences mean that the SDS is displaced seawards and landwards 
respectively. 
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Fig. 4.31. Example of applying the MST process in the final step of SHOREX algorithm 

to remove outlier points from the SDS. The longest path of the MST (A.3 solution) will 
shape the sub-pixel shoreline. 

 

-Test 1: Combination of different kernels, degree of the polynomial and 
input bands 

The first test consists of finding the combination of parameters and inputs to the 
shoreline extraction process that offers a higher accuracy. As the position of the 
final sub-pixel shoreline is related both to the degree of the adjusted polynomial 
and to the size of the analyzed kernel, these parameters have been modified in the 
extraction process. With this purpose, 84 different combinations for the extraction 
were tested over 91 images, 39 for L8 and 52 for S2 images as Table 4.12 
summarizes. 

Platform Number 
of dates 

Processed bands Degrees Kernels of analysis 
(pixels) 

L8 39 NIR, SWIR1,SWIR2, NDWI 3,4,5 3X3, 5X5, 7X7 

S2 52 NIR, SWIR1,SWIR2, NDWI 3,4,5 3X3, 5X5, 7X7, 11X11 

Table 4.12. Combination of parameters for test 1. 

With regard to the kernel, the maximum size used for L8 was 7x7 (210 x 210 m), 
while the maximum kernel for S2 images was 11x11 (220 x 220 m). This decision 
was taken in order to cover an equivalent surface in both types of images 
considering the different spatial resolutions. 
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Similarly, the input data sources were re-evaluated. The infrared bands (NIR, 
SWIR1, SWIR2) that have offered the best results in previous studies (Pardo-
Pascual et al., 2018) were tested. At the same time, the performance of the index 
NDWI was also assessed to know if it could provide good results as it is presented 
in the literature as an adequate solution (Rokni et al., 2014; Hagenaars et al., 2018). 

-Test 2: Assessing the effects caused by an inaccurate input shoreline 

The robustness of the system was checked when employing an approximate pixel 
level line excessively displaced from the position of the real shoreline. In order to 
do this, the approximate line was synthetically shifted one pixel to each side 
(landward and seaward), and the positions of the resulting shorelines were 
analyzed. 

The proposal of an iterative process when facing an eventual inaccurate pixel level 
shoreline is assessed. This way, the accuracy of the final shoreline is untied from 
previous matters. In order to ensure that the appropriate pixels cover the land-
water surface, a larger kernel is initially suggested for the analysis to proceed 
afterward with the second extraction process (refining) through a smaller kernel 
with which to achieve the sub-pixel precision. The extracted shoreline in the first 
iteration is the one used as input for the second one. It will be analyzed if the result 
of this latter iteration is convergent with the solution obtained when using an 
appropriate approximate line since the first moment. 
 
4.3.4. Results 
 
4.3.4.1. Combination of different kernels, polynomial degree and input 
bands 

Test 1 attempts to determine the best combination of parameters to extract the 
most accurate sub-pixel shoreline, assuming that the initial approximate line is 
accurate enough to be contained in the analysis kernels. Every combination of 
parameters for each processed band and platform is assessed. Fig. 4.32A 
summarizes the mean and the standard deviation values achieved by working with 
39 images of L8, and 52 images of S2. Firstly, it is possible to observe that the 
NDWI band generally offers worse results than the pure bands, considering both 
the mean and the standard deviation. At the same time, when analyzing the RMSE 
value resulting from each combination of parameters (Table 4.13) it is easier to 
confirm that the best results are achieved by using for L8, the SWIR1 band, a 3x3 
kernel and a third-degree polynomial (an RMSE of 3.57 m for L8 and 3.01 m for 
S2). Similarly, for S2 the best choice comes from the SWIR1 band and a third-
degree polynomial but with a 5x5 kernel (equivalent solution according to the 
differences in spatial resolution). Working with these combinations of parameters, 
the algorithm is able to define the shoreline with an error of 0.07±3.57 m for L8 
and 1.33±2.7 m for S2 (see Fig. 4.32A). 
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  LANDSAT 8 SENTINEL 2 

Bands Degree\kernel 3 5 7 3 5 7 11 

 
NIR 

3 3.82 15.18 19.39 7.26 7.99 7.33 13.05 

4 11.29 17.78 18.07 3.71 8.22 8.27 16.44 

5 12.96 18.52 18.06 3.69 4.57 9.65 29.97 

 
SWIR1 

3 3.57 6.23 11.57 7.13 3.01 10.59 10.96 

4 11.51 8.52 15.84 3.25 3.93 8.57 16.09 

5 13.16 6.20 18.69 3.11 6.84 3.64 23.76 

 
SWIR2 

3 3.69 14.83 12.02 7.14 3.14 10.47 11.73 

4 11.52 8.38 15.59 7.66 4.70 10.54 18.70 

5 13.28 6.40 13.93 9.75 7.25 4.08 25.10 

 
NDWI 

3 12.62 8.81 9.71 7.07 7.90 7.70 11.37 

4 15.67 15.05 17.45 8.83 12.24 13.62 16.50 

5 15.23 16.42 16.15 8.36 9.60 10.60 17.00 

Table 4.13. RMSE values (in meters) resulting from applying SHOREX for the 84 

different combinations of parameters (36 and 48 solutions for L8 and S2 respectively). 
The values in bold highlight the best solutions. 

 
4.3.4.2. Synthetic displacement of the approximate line 

The previous test determines the best combination of parameters assuming an 
initial approximate line of good quality. Nevertheless, it is essential to define to 
which extent a displacement of the initial line affects the resultant shoreline. 
Therefore, test 2 consists on repeating test 1 but synthetically shifting the initial 
approximate line one pixel to each side of its original position −meaning 30 m of 
displacement in L8 and 20 m in S2. Figures 4.32 and 4.33 represent the accuracy 
results when applying a displacement both landwards and seawards. 
 
After a first analysis, it is possible to realize that the displacement of the initial 
approximate line, both seawards and landwards (figures 4.32B and C respectively), 
affects the accuracy of the extracted shoreline increasing the errors considerably. 
That is especially remarkable for L8 with the displacement seawards (red tones in 
Fig. 4.32B) showing higher errors −for almost all the combinations− that even 
exceed the pixel size. This fact is because the spatial resolution along with an 
excessive displacement causes that most of the pixels contained in the analyzed 
kernel are water so the algorithm is not able to properly detect the shoreline. On 
the other hand, also for S2 but especially for L8, it is observed that the landward 
displacement tend to cause higher values of dispersion. In this case, that is due to 
the presence of other elements apart from the beach surface, as vegetation or 
buildings, which produce a high level of heterogeneity affecting the sensitivity of 
the algorithm. 
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Fig. 4.32. Results showing the accuracy (mean and standard deviations values in 

meters) for all the 84 different combinations analyzed changing the kernel size (K), 
polynomial degree (D) and input sensor Band. The experiment is done with the 39 
images of L8, and 52 images of S2. By order, the results are obtained by using as input 
shoreline: an accurate one (Fig. 4.32A), and displacing it synthetically seawards (Fig. 
4.32B) or landwards (Fig. 4.32C). Color scale represents the magnitude of the errors. 

 
Looking at the solutions obtained in figures 4.32B and 4.32C for the combination 
of parameters stablished as the best one in previous section 4.1 (SWIR1 band, a 
third-degree for the polynomial adjustment and a kernel size of 3 and 5 for L8 and 
S2 respectively), seems clear that conversely with a displaced initial line, these 
would be completely unsuitable. Working with an initial shore displaced seawards, 
the shoreline is wrongly detected with an error of 16.82±7.78 m for L8 and -
0.21±19.82 m for S2, and likewise, when the initial shore is displaced landward, the 
errors reach 3.47 ±17.13 m for L8 and 5.04±14.09 m for S2.  

The results confirm that the goodness of the initial line affects directly to the 
quality of the extracted shorelines being necessary to find a strategy which 
minimizes this effect as the next section presents. 
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4.3.4.3. Iterative extraction procedure 

According to the previous results, working with large kernels seems an adequate 
strategy to avoid effects of eventual displacements and inaccuracies of the 
approximate line (refer to columns with large kernels in Fig. 4.32B and C). On the 
contrary, in order to obtain shorelines with the highest possible accuracy, it is more 
logical working with smaller kernels as Fig. 4.32A described when the search 
surface is in the right place. 

Hence, to combine the best features of each type of kernels, we propose an 
iterative strategy where using an initial rough shoreline the algorithm is run with a 
large kernel in the first iteration. Then, the extracted shoreline is taken as input for 
the second iteration in which a smaller kernel is applied. Proceeding this way, it is 
expected to minimize the effects that a possible inaccurate initial line could have 
on the search for the sub-pixel shoreline. 

At this point, the first question is about how to decide the optimum values of the 
kernel and the polynomial degree to carry out each iteration. Table 4.13 had 
already found the best combination of parameters when the accuracy of initial 
shoreline is sufficient and so equals now the refining process to follow in the 
second iteration. Figure 4.33 compiles the RMSE values of the final resulting SDS 
obtained by using the three different starting lines and for each of the 84 
combinations analyzed (36 for L8 and 48 for S2 carried out in Test 1 and Test 2). 

 

Fig. 4.33. Accuracy expressed in RMSE values for each combination of parameters in 

the x-axis (results of Test 1 and 2). The B-D-K initials means by order: input Band, 
polynomial Degree and Kernel size. Red circles represent the combination with best 
global behavior for all series despite the accuracy of the initial line, whereas blue circles 
represent the best combination in absolute terms (best sub-pixel solution). 

In this sense, for L8, the combination of SWIR1 band, K=5 and D=5 presents the 
best results regardless the inaccuracy of the initial shoreline used (red circle) 
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assuring that the algorithm locates the shoreline in its correct position. In fact, the 
three solutions almost converge in the same value. Then, once this is correctly 
approximated, the combination of SWIR1 band, K=3 and D=3 achieves to define 
the shoreline with the maximum accuracy (blue circle) as Table 4.13 also exposed. 
Equivalent solutions were obtained from the images of S2 where their higher 
spatial resolution leads to using a larger but equivalent kernel. Therefore, the best 
global combination is SWIR1 band, K=7 and D=5 and the very best of the three 
series is SWIR1 band, K=5 and D=3. In this sense, these combinations are the 
ones proposed to be used in the iterative strategy as performs Fig. 4.34. 

 

Fig. 4.34. Results for the iteration strategy performed for 12/06/2013 and 30/07/2015 in 
figures 4.34A and B respectively. 

From the analysis of all this data, we can observe in Fig. 4.34 that the iterative 
procedure works properly in this area and the results converge with very similar 
RMSE values regardless of the approximate line used as input. The accuracies of 
the final sub-pixel shorelines reached in second iteration (orange boxes) are almost 
the same indifferently from working with an accurate initial shoreline or a 
displaced one (differences between solutions of 17 cm for 12/06/2013 in Fig. 
4.34A, and up to 13 cm for 30/07/2015 in Fig. 4.34B). However, it is relevant to 
notice that stopping after the first iteration (blue boxes) the found shorelines 
would be wrongly detected with errors around the 5 m when the initial shore is 
displaced landward or seaward. Additionally, it is also important to realize that 
even working with an accurate approximate line, the location of the resulting 
shoreline is improved by about 50 cm after the second iteration (refer to left results 
of figures 4.34A and B). 

Finally, in order to analyze the behavior of the algorithm when running the first 
iteration with a kernel even larger, another experiment was performed changing 
the initial conditions only for the first iteration to K=7 for L8 and K=11 for S2 
(Fig. 4.35). The parameters for the second iteration remain the same.  
 
Results show that the improvement of the iterative proposal is even more 
remarkable when using larger kernels in the first iteration. This enforces the idea of 
using the iteration and ensures that regardless the inaccuracy of the initial 
shoreline, the algorithm is able to relocate the shoreline to their correct place 
through the initial iteration and define it accurately through the second one. Fig. 
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4.35 indicates that large kernels lead to wrong sub-pixel shoreline locations for the 
three used input lines (blue boxes in figures 4.35A and B) with RMSE values 
between 4.33 m and 8.75 m. However, the second iteration with small kernels is 
more than capable of obtaining an accurate SDS with an RMSE around 2.6 m (in 
line with the results got in Fig. 4.34). 

 

Fig. 4.35. Results for the iteration strategy as in Fig. 4.34 but running SHOREX with 
larger kernel size for the first iteration. 

 
4.3.5. Discussion 

This work proposes an efficient protocol for the automatic extraction of shorelines 
after developing several methodological improvements over previous works 
(Pardo-Pascual et al., 2012, Almonacid-Caballer, 2014). On the one hand, the use 
of a single approximate shoreline as input is key for reducing processing times by 
avoiding threshold methods. It enables the complete automation of the process 
eluding the only step that required user intervention. Moreover, this step was 
susceptible to generate discontinuities and uncertainties at the pixel level. On the 
other hand, the method presents an improvement in robustness by incorporating 
an iterative extraction step, shifting from larger to smaller kernels. This change 
assures high precisions in the detection of the final shoreline even with an 
approximate input line eventually displaced. These improvements result in a 
workflow efficient enough to cope successfully with the definition of shorelines at 
the same rate as the L8 and S2 images are acquired. 

The implementation of the entire workflow within a single integrated system is also 
essential for gaining efficiency. SHOREX has been conceived as a complete 
system that includes all the necessary phases to obtain the final sub-pixel SDS: 
image download, subdivision into manageable spatial units and homogenization of 
their characteristics, supervision of cloud coverage, sub-pixel georeferencing, sub-
pixel extraction of the shoreline to point format, elimination of outliers and 
transformation of the result into linear format. Currently, all these processes can be 
performed automatically (with the exception of the optional cloud checking, with a 
user-friendly visualization tool completely integrated into the process). 
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The efficiency of the extraction protocol and its limiting factors had been 
previously analyzed. Palomar-Vázquez et al. (2018a) evaluated the time 
consumption of the workflow by performing a single extraction (without 
additional iterations, accepting the accuracy of the approximate line). The time 
invested in extracting all the shorelines along one year in a 22.7 km segment of the 
Mediterranean coast was calculated. For this purpose, 81 images of satellite S2 and 
23 of L8 were initially downloaded but only 28 images of S2 and 14 of L8 were 
finally used (as they were free of clouds) leading to the definition of 42 shorelines. 
The process required 4h 34 minutes, of which 83% was used to download and 
homogenize the images (assign TIFF format and TOA values) and 17% for 
processing. This showed, in line with works in other coastal sectors (Palomar-
Vázquez et al., 2018b), that downloading is the most time-consuming phase, 
without constituting a limiting element for defining the shorelines that can 
potentially be obtained from the L8 and S2 imagery. 

The accuracy and precision of the obtained shorelines is a second key aspect in 
order to determine their usefulness in coastal change studies. However, to carry 
out a thorough assessment is not simple and relatively few studies have made a 
metric evaluation of the errors. This is largely due to the difficulty of recording the 
shoreline position with sufficient precision at the same time the image is captured 
by satellite, as the shore varies continuously due to waves, water level and 
alterations in the beach profile. 

In the present work, the availability of continuous records of images of specific 
beach segments taken by a video-monitoring system made it possible to employ 
these data as reference values of the real position of the shoreline. The monitoring 
system managed by SOCIB, together with the versatile photogrammetric tool C-
Pro (Sánchez-García et al., 2017) have allowed the obtaining of georectified images 
of the coastal area at the same instants when the S2 and L8 images were acquired. 
The geometric accuracy of these georectified images has been estimated using the 
ground coordinates of 43 GCPs with a 1.54 m RMSE. However, the precision of 
the digitalized shoreline on these images was also conditioned to the criterion and 
audacity of the interpreter himself, as well as the indeterminacy of the spatial 
resolution of the georectified image. At a distance of 650 m and for the worst 
cases, working with a focal of 1332 pixels, the cross and long size of the pixel 
footprint have been 0.45 m and 6.36 m respectively. Despite these errors, the 
video-derived shorelines are amply valid to use as reference data. Pardo-Pascual, et 
al., 2018 already proved the quality of these video-derived shorelines obtained with 
C-Pro in a sector of the Valencian coast. Comparing these against other high 
accurate shorelines measured by GPS −at the same instant as the photos were 
taken−, the trivial and encouraging mean error reached was 0.15 ±1.05 m. 

In the present work, the large number of evaluations carried out (91) ensures that 
the images have been recorded with very diverse sea states, giving a high 
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robustness to the results. The different combinations of parameters have made it 
possible to identify the one that provides the highest accuracy corresponding with: 
the use of the SWIR1 band, a third-degree to set the polynomial surface, and the 
use of a 3x3 kernel size for L8 and 5x5 for S2. In this case, the RMSE was 
remarkably low (3.57 m for L8 and 3.01 m for S2). These accuracies appear in a 
magnitude close to the inherent to the reference/video-derived data. Moreover, 
when using a more demanding quality indicator such as the 5th and 95th 
percentiles, 90% of the errors range between -5.1 to 5.9 m for L8, and -2.9 to 5.4 
m for S2. Likewise, showing the analysis for each particular date (Fig. 4.36), in the 
vast majority of cases, it has been observed that the errors were within the margins 
described. In fact, the maximum average error was 3.2 m and the minimum was -
3.7 m. The standard deviation has also been maintained for the most part at values 
close to 2.5 m. 

 

Fig. 4.36. Range of errors (mean ± standard deviation) for the 91 SDS analyzed over the 
4-year study. 

Extreme values in the standard deviation (such as 6.7 m for 21/10/2015) appeared 
on days in which wave conditions show high runup. As the instant of the capture 
of the satellite image and the video-camera did not completely coincide, a 
significant error appeared in some parts of the beach. As Fig. 4.37 shows for this 
particular day, it is interesting to observe how at the locations where the SDS is 
more distant to the video-derived shoreline (greater errors), the S2 shoreline is 
identifying a clear humidity line, probably because of getting wet very recently. It 
was precisely those days the ones that recorded the highest waves (Hs = 1.35 m, 
Tp = 9.35 sec) of the entire series. However, and despite knowing that the waves 
lead to errors in the detection of the shoreline (Hagenaars et al., 2018), in the 
current work it is found a different effect to the one observed in Pardo-Pascual et 
al. (2018). That time, with a very similar algorithmic solution and a 7x7 kernel, the 
wave conditions directly affected the shoreline bias (especially the wavelength and 
wave period). On the contrary, in this study the comparison between the errors of 
the SDS and the wave characteristics has shown a practically null relation (r2=0.044 
and r2=0.025 with respect to the wave period and, r2=0.051 and r2=0.046 with 
respect to the height of the incident waves, respectively for L8 and S2). This may 
be due to the fact that Pardo-Pascual et al., 2018 worked with thresholding initial 
shorelines which were more easily confused with other wave breaking lines and so 
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the algorithm was not able to reach a final accurate position. However, the 
methodology presented in the current work (starting with a unique approximate 
line) is being generally less influenced by these external factors or is otherwise able 
to overcome them. 

 

Fig. 4.37. Comparison of the shoreline obtained from S2 (SWIR1 band) using SHOREX 

and the video-derived shoreline for 21/10/2015, the day in which the highest waves were 
registered. 
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The results evidence a substantial improvement in the level of accuracy with 
respect to previous solutions described in the bibliography in which SDS could be 
compared with field measurements (García-Rubio et al., 2015; Liu et al., 2017b; 
Pardo-Pascual et al., 2018, Hagenaars et al., 2018; Splinter et al., 2018, Do et al., 
2019). In agreement with Almonacid-Caballer et al. (2016), Liu et al. (2017b) 
remarked that the shorelines obtained from Landsat images (using an algorithmic 
solution different from the one exposed in this work) were adequate to monitor 
the average annual behavior of the beaches, but they could be subjected to 
excessively large errors (tens of meters). Hagenaars et al. (2018) have recently 
suggested applying image composite processing −following Donchyts et al., 2016 
technique− to a sequence of images in order to obtain a single image that 
minimizes the effect of bias factors. Thus, it could be accepted that with relatively 
high errors (RMSE between 6 and 15 m, depending on the method) it is possible 
to study evolutionary trends over large coastal segments (Sánchez-García et al., 
2015a; Almonacid-Caballer et al., 2016; Do et al., 2019) or even on a global scale as 
proposed Luijendijk et al., (2018). 

SHOREX system, with the methodology and accuracy here shown, resolves this 
limitation and opens up the possibility of using the SDS in analytical processes that 
require greater precision. The methodology makes it possible to offer continuous 
data throughout the year, with a high revisited frequency, of wide coastal segments, 
making it possible to derive useful indicators for coastal management as the beach 
width, as well as monitoring the beach response to nourishment projects and 
coastal storms. At the same time, the availability of accurate shoreline data could 
help to estimate volumetric changes based on certain beach profiles (Do et al., 
2019). 

This application is immediate on microtidal beaches as the wet zone is rarely very 
wide. However, in beaches with completely different tidal and wave conditions this 
solution would need to be re-evaluated. In meso or macrotidal coasts, the shoreline 
definition can be compromised in areas with very low slopes and high tidal range, 
where the intertidal space can be extended to hundreds of meters. Following the 
iterative procedure here described, the use of an approximate line makes it possible 
that the kernel of 7 x 7 pixels for the first iteration did not include the position of 
the real shoreline, making insufficient the proposed protocol with one iteration. 
The solution could come from the definition of different approximate lines 
associated with different sea levels or the performance of consecutive iterations 
starting from larger kernels of analysis. Anyways, future research is required to 
continue testing SHOREX on a wide miscellany of coastal environments and 
achieve its full automation on a large spatial scale. 
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4.3.6. Conclusions 

The present work proposes an efficient protocol for shoreline extraction from 
mid-resolution satellite images using the SHOREX system. A workflow that 
integrates all the necessary steps for an automatic definition of satellite-derived 
shorelines (SDS) at sub-pixel level has been described, increasing the efficiency of 
the extraction process as well as the accuracy. The protocol constitutes a way for 
the massive definition of shorelines at the same rate as the acquisition of satellite 
images. This is of great value for the continuous monitoring of beaches and the 
decision-making of coastal managers. 

A complete assessment with 91 different SDS over almost 4 years of study has 
been carried out in Cala Millor, a Mediterranean sandy beach. This was possible 
thanks to the availability of highly accurate shorelines from a video-monitoring 
system in the same instant the satellite images were recorded. The evaluation has 
allowed analyzing 84 different combinations of parameters for working with 
SHOREX by merging the type of input band, the kernel of analysis and 
adjustment degree. Accordingly, it was possible to establish that the combination 
leading to the best solution (an RMSE of 3.57 m for L8 and 3.01 m for S2) was 
using the SWIR1 band, a third-degree polynomial, and a 3x3 kernel size for L8 and 
5x5 for S2 (equivalent kernel according to the different spatial resolution). 
Moreover, the results showed that the accuracy of the input line strongly affects 
the final sub-pixel shoreline definition. Therefore, an iterative strategy using 
SHOREX was proposed to minimize this effect and ensuring a robust method for 
shoreline detection regardless of the reliability of the input line and external 
factors. 

The huge availability of satellite-image data worldwide together with the efficiency 
and accuracy of SHOREX creates a new scenario and an opportunity to 
understand the morphodynamics at coastal zones on different spatio-temporal 
scales. 
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4.4. OVERALL CHAPTER DISCUSSIONS AND CONCLUSIONS 

The main purpose of the numerous studies carried out around the evolution of 
coastal areas is to obtain an overview for subsequent prediction and identification 
of future actions in the context of coastal planning. In this regard, the shoreline 
extraction methodology tested in this chapter using mid-resolution images − 
Landsat (5, 7, 8) and Sentinel 2 − plays a decisive role in the accurate and effective 
detection and analysis of the magnitude of beach changes (as started Sánchez-
García et al., 2015a). Different evaluations of quality and soundness have been 
presented through different stages and during the three previous works (each 
discussed in the corresponding section of Chapter 4). 

The followed methodology comes from the solution proposed in Pardo-
Pascual et al. (2012) and Almonacid-Caballer (2014). This has been applied in 
different ways and with a clear and progressive improvement in the procedures, 
achieving the greatest precision and robustness in the final work of Section 4.3. 
However, various key conclusions are presented regarding with the best way to 
extract the shorelines and the type of application derived. 

Firstly, in Section 4.1, the value of the annual average SDS for 
evolutionary studies has been demonstrated on dynamic beaches against other 
results (between the years 2005 and 2010) obtained, prior to the PhD, from 
accurate sources but not coincident in time. Minimizing the intra-annual 
oscillations in a year and working with annual average SDS from Landsat (5, 7 & 8) 
was instrumental for assessing mid-term changes on long beach segments. Using 
annual SDS, the change rates obtained were almost the same (r2>0.98) than when 
all the set of single SDS were used but management and geomorphological analysis 
were easier, especially when working over large areas, and data may be analyzed by 
cartographic comparison. Another issue overcome in this work was establishing 
the accuracy of SDS on sedimentary beaches. As accurate records (HPS) taken at 
the same time as each Landsat image were unavailable, comparison between both 
sources of data was made using annual mean shorelines and analyzing those 
instantaneous SDS and HPS closest in time (a few days before or later). Results 
indicated that SDS defined the shorelines with a seaward bias of 4.7 m for 
instantaneous shorelines and 4.9 m for mean annual shorelines. These magnitudes 
were in line with the error found by García-Rubio et al. (2015) at Yucatan beaches 
relative to a GNSS shoreline registered on the same day (with a 5-hour delay) as 
the Spot image from which the shoreline was extracted. On the work in Section 
4.1, an estimation of the shoreline partially corrected by sea level variations was 
proposed. This was simply an approximation because the beach slope was 
estimated as an average of surveys measured at times that differed from those 
corresponding to each shoreline. Moreover, the sea level value was set with the tide 
gauge register without considering the runup associated with the incident waves. 
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However, results proved that this partial correction using “datum-based” 
shorelines enabled an accurate measurement of changes. 

Secondly, in Section 4.2 the accuracy of instantaneous shorelines was 
assessed on natural sandy beaches from satellite images produced by Landsat (7, 8) 
and Sentinel-2. The evaluation against GNSS and photo-derived shorelines enabled 
the analysis of the various instantaneous factors that may affect shoreline accuracy. 
The first issue addressed was to establish if the polynomial radiometric correction 
(PRC) fitted to seawall areas in former works (Pardo-Pascual et al., 2012) could be 
extrapolated to beaches. The original workflow was then slightly modified by 
bypassing this last step in the shoreline extraction process. The assessment carried 
out for 21 days confirmed that mean seaward bias was greater at the beach than at 
the port, and bright zones in the terrestrial area influenced shoreline detection and 
moved it landwards. The availability of coincident photo data to use as a reference 
proved that NIR bands were more easily confused with whitewater than SWIR 
bands, and this offered the most accurate and robust sub-pixel shorelines. 
However, these last SDS were also affected by the state of the sea – with a slight 
relation between shoreline bias and sea swell, and especially with wave length. The 
comparison in a particular day with shorelines from bands 11 and 12 of S2 and 
bands 6 and 7 of L8 verified their similar radiometric response with a shoreline 
difference of -0.75 ± 2.5 m. In short, it was concluded that sub-pixel SDS were a 
clearly valid source of data for detecting and quantifying beach changes – as other 
works had also shown (Liu et al., 2016). The whole set of L7 shorelines located the 
shoreline with a mean error of 4.63 m (±6.55 m) and 5.5 m (±4.86 m), for high 
and low gain images; and the L8 and S2 shorelines with an error of 3.06 m (±5.79 
m). 

In Section 4.3 it is shown how the SHOREX system mostly solved the 
problem of mid-resolution satellite images and opens the possibility of using these 
SDS in analytical processes that require greater accuracy. A wide evaluation with 91 
SDS (from L8 and S2 images) over almost four years of study, and coincident with 
video data registers, determined the best procedure to follow for detecting the 
shoreline within an RMSE of 3.5 m. This was achieved by proceeding with the 
SWIR1 band, a third-degree polynomial, and a 3x3 kernel size for L8 and 5x5 for 
S2 (equivalent kernel according to the different spatial resolution). Note that the 
image had previously been upsampled using a cubic convolution interpolation. 
Moreover, a unique initial line for the whole set of images was used (it did not 
come from thresholding techniques as prior works), and so the results seemed to 
be less influenced by external factors such as those derived from wave 
characteristics. However, an iterative strategy was proposed to avoid difficulties 
when faced by possible inaccuracies of the input line. The application was 
immediate on microtidal beaches where the wet zone was rarely very wide. 
However, in meso or macrotidal coasts, the shoreline definition could be 
compromised in areas with very low slopes and high tidal ranges, where the 
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intertidal space may be hundreds of meters wide. Even so, the described protocol 
for shoreline extraction constituted a robust approach for the massive definition of 
shorelines at the same rate as the acquisition of satellite images. An estimation of 
the tool efficiency was presented in Palomar-Vázquez et al., 2018a, where the time 
invested in extracting 104 shorelines for one year for a 22.7 km segment was 4h 34 
minutes (83% of time for downloading and homogenizing the images, and 17% for 
processing).  

Further research should continue combining the two proposed solutions 
in Chapter 3 and in Section 4.3, to continue providing methodological robustness 
regardless of beach typology and tidal conditions. 

The applicability of the SDS has already been tested using long shoreline 
datasets for the calibration and validation of equilibrium shoreline evolution 
models (Yates et al., 2009 and Jara et al., 2015; YA09 and JA15 respectively) in the 
context of cross-shore motion. This work (Jaramillo et al., under review) has been 
directly derived from the current doctoral thesis and the PhD stay made at IH 
Cantabria. Despite the importance of this work in the overall research (as it 
reinforces the quality of the techniques studied in the present doctoral thesis), this 
work does not form a part of it since it will be in another dissertation. 

Conceptually, the evolution models are based on the balance between 
destructive and constructive forces that act upon a beach. The former “YA09” is 
probably the most widely used model of this type in recent years, and the second 
“JA15” is a novel model that requires the lowest number of calibration parameters 
of all the models of the same type. The empirical nature of these requires high-
quality observational datasets to calibrate model parameters. Until now, shoreline 
positions from satellite images had been neglected because resolution was too 
coarse (10-30 m or more) and this prevented the identification of small-scale 
movements along coastlines. Thus, all the cross-shore evolution model 
applications in the literature correspond to target study sites where high-resolution 
data was available (video-camera systems or topo-bathymetric surveys). However, 
no studies have applied shoreline-position datasets from satellite imagery. 
SHOREX opens a new and promising scenario that is explored in Jaramillo et al. 
(under review) to apply these SDS as input data for shoreline evolution models. A 
comparative analysis on model calibration and validation that uses shoreline 
datasets from a video-camera system and satellite imagery was conducted. An 
initial analysis of the shoreline evolution is shown from January 2005 to March 
2007, in which video-camera and satellite data was collected to select a 
representative study period for the calibration of the equilibrium models (Fig. 
4.38). Thirteen sub-pixel shorelines were then used to evaluate Nova Icaria Beach 
(Barcelona, Spain) over a four-month period. 
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Fig. 4.38. Selection of the calibration study period. a) Shoreline position at time “S (m)” 

(in relation to a constant reference line in the backshore) that was obtained with the JA15 
model when using the parameters from Jara et al. (2015). The shaded area represents 
the selected study period for the calibration (around one month), considering the 
presence of the strongest storm during this period. The dashed lines delimit the complete 
study period where the models are validated over four months. b) Zoom of the selected 
calibration study period that shows the shoreline-position data from a video camera and 
satellite images that were processed with the SHOREX algorithm (from Jaramillo et al., 
under review). 

Despite the uncertainty of the shorelines from the SDS, the RMSE of the 
coincident positions between shoreline positions from video-camera and satellite 
data was only 2.49 m during validation. The results show that general shoreline 
advances and retreats were adequately represented by the selected models for both 
data sources. The observed and modelled shoreline positions showed fast erosion 
after major storms and relatively fast accretion during post-storm recovery for 
both models (Fig. 4.39). 

The general erosion-accretion trend was adequately represented by 
equilibrium shoreline evolution models compared to shoreline measurements at a 
qualitative and quantitative level. The resulting RMSE between the observed and 
modelled shoreline positions with both models (Table 4.14) was lower than the 
expected error of the SDS. 

This synergy between evolution models and satellite data with a sub-pixel 
acquisition method is expected to facilitate influential coastal evolutionary studies 
and improve both retrospective and future predictions. The limitation of 
temporary image data – of major importance in storm situations − will be solved 
with this type of model, and any spatial limitations will be solved by the worldwide 
availability of images. 
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Fig. 4.39. Time series of the wave energy (upper panel) and validation of the shoreline 

evolution models with shoreline-position data from a video-camera system (middle 
panel), as well as validation of the shoreline evolution models with SDS (lower panel) 
processed with the SHOREX system (from Jaramillo et al., under review). 

 

Model 

Validation with: 

Video-camera data SDS data 

RMSE (m) RMSE (m) 

YA09 1.99 2.05 

JA15 1.58 1.72 

Table 4.14. RMSE for the validation period (from Jaramillo et al., under review). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Cover photo of Chapter 5: 
Palm Beach, Sydney, Australia (taken Sept 2017) 
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This chapter delves into the photogrammetric aspect of the present thesis through 
the analysis and development of diverse methods and new techniques for beach 
monitoring. 

Regularly measuring changes in beach width and shoreline position is 
essential for understanding how environmental drivers control beach behaviour, 
and why some beaches are more resilient than others. Among remote sensing 
techniques, coastal imaging has been widely proven as a useful tool by providing 
high-resolution space and time data for the last 20 years. However, specific video 
monitoring system implementation continues being expensive in terms of 
installation and maintenance (and they are costly to upscale), so other lines must be 
investigated.  

Many beach webcams are working worldwide providing visual information 
of beach and wave conditions to beachgoers and surfers, and these would be 
useful for monitoring shoreline and intertidal beaches, incident wave 
characteristics, and even nearshore bathymetry. The first study in Section 5.1 
(published in Remote Sensing, 2019) describes various modus operandis with the C-
Pro tool (previously presented in Chapter 2) to convert Surfcam images into 
quality quantitative coastal data. Some practical methodological approaches to 
exploit these online-streamed images are assessed (one of the major challenges 
being related to the lack of knowledge of both camera position and optical 
parameters). Moreover, a further complication is encountered when there is no 
possibility of measuring the minimum required in situ ground control points to 
carry out the georectification. Acquisition through freely available web tools (such 
as Google Earth) is evaluated and presented as a feasible procedure to generate 
accurate georectified planar images with a sufficient horizontal accuracy 
compatible with that required for a quantitative analysis of coastal processes. 
Lastly, its usefulness as a fully remote shore-based observational system is shown 
by using these georectified images (snaps, timex, variance or timestack images) as 
accurate data to extract coastal indicators – and so support the characterization of 
several nearshore features and identify of shoal, surf, and swash zones. An 
application of C-Pro and online streaming surfcam data for measuring wave runup 
and intertidal beach topography is shown. Spectral analysis of images across the 
nearshore zone also produce useful insights on incident wave characteristics such 
as wave celerity and breaking height (Andriolo, 2018). 

Citizen science projects are a very inexpensive method of photographic 
monitoring through community-derived data. The growth of smartphone 
technology means that mobile camera lenses are now of sufficient resolution and 
quality for coastal imaging applications. Community beach monitoring programs 
based entirely on smartphone images contributed by citizens such as the 
CoastSnap initiative (started in May 2017) are also making their way into the field 
of beach monitoring. This project harnesses the wide availability of smartphones, 
with the duel aim of significantly expanding the spatial coverage of current 
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network of coastal monitoring and encouraging community participation in the 
data collection process. Surveyed information within the beach image − submitted 
by sharing on popular social media platforms – is subsequently used to obtain 
quantitative measurements of beach change from the community-sourced photo 
database. This information includes shoreline position, rip-channels, sandbar 
locations and subtidal bathymetry – information that is eventually returned to the 
public domain. The starting procedures and methods used in the CoastSnap 
project are presented in Section 5.2 (work published in Coastal Engineering, 2019). 
Image processing algorithms subsequently convert the community-sourced images 
to world coordinates and edge detection techniques are applied to detect and map 
the shoreline position. Successful trials of this system at two sites in southeastern 
Australia (Manly and North Narrabeen) have demonstrated strong community 
participation (1-2 images/site/day on average), as well as an ability to obtain 
shoreline information of reasonable accuracy (approx. 2-3 m cross-shore). This is 
despite the processing challenges related to these types of images, which include 
multiple camera lenses, no image calibration, relatively poor image stability, and 
low resolution. These encouraging results both in terms of quantitative shoreline 
data and community engagement has seen this network rapidly expand to multiple 
sites both inside and outside Australia (Portugal, Spain, Brazil and the UK). 

Towards the end of the chapter, Section 5.3 through the work published 
in the ISPRS Archives (2016) analyzes the potential that terrestrial photogrammetry 
has to estimate beach profiles using, in this case, the commercial Agisoft 
PhotoScan software to achieve a 3D point cloud. It is very important for 
environmental management to have tools that enable low cost modeling in a 
simple and competent way – and using terrestrial cameras instead the tedious and 
expensive fieldwork that has been carried out until now. For this work, photos 
were taken by simple and non-metric cameras, and the photograph capture 
procedure was refined depending on the studied beach morphology (two different 
coastal areas were modeled). A minimum of three GCPs was compulsory for 
georeferencing the models. However, more control points were sometimes 
required to achieve correlation in those cases limited by insufficient heterogeneity 
of colors, textures, and forms found in some natural spaces. The calibration of the 
models was made by comparison of the differences in the elevation among the 
photogrammetric point cloud and the GPS data in different beach profiles 
acquired on the same day as the photos. Furthermore, some modeling assays were 
also performed in a hydraulic pilot channel. Results denoted the potential offered 
by photogrammetry 3D modelling for monitoring sedimentary changes and natural 
events. 
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5.1. OPERATIONAL USE OF SURFCAM ONLINE STREAMING 
IMAGES FOR COASTAL MORPHODYNAMIC STUDIES  
 

Coastal video monitoring has been proven to be a valuable shore-based remote 
sensing technique to study coastal processes, as it offers the possibility of high 
frequency, continuous and autonomous observations of the coastal area. However, 
the installation of a video systems infrastructure requires economical and technical 
efforts, along with being often limited by logistical constraints. This study presents 
methodological approaches to exploit “surfcam” internet streamed images for 
quantitative scientific studies. Two different methodologies to collect the required 
Ground Control Points (GCPs), both during fieldwork and using web tool freely 
available are presented, in order to establish a rigorous geometric connection 
between terrestrial and image spaces. The application of an image projector tool 
allowed the estimation of the unknown camera parameters necessary to georectify 
the online streamed images. Three photogrammetric procedures are shown, 
distinct both in the design of the computational steps and in number of GCPs 
available to solve the spatial resection system. Results showed the feasibility of the 
methodologies to generate accurate rectified planar images, with the best 
horizontal projection accuracy of 1.3 m compatible with the one required for a 
quantitative analysis of coastal processes. The presented methodologies can turn 
“surfcam” infrastructures and any online streaming beach cam into a fully remote 
shore-based observational system, fostering the use of these freely available images 
for the study of nearshore morphodynamics. 

5.1.1. Introduction 

The coastal zone is an extremely dynamic environment where the complex 
interaction between wave action and coastal morphological processes often 
endanger human occupation and the use of the littoral. Therefore, coastal studies 
should be as comprehensive as possible, to allow the simultaneous description of 
both hydrodynamic processes and morphological features, with adequate coverage 
in spatial and temporal scales. On-ground measurements of nearshore morphology 
such as bathymetry and beach topography are usually performed by vessel-based 
or RTK-GPS instrumentations (Short and Trembanis, 2004), respectively. 
Although these conventional practices provide high spatial resolution measures, 
their repeatability and thus temporal coverage are limited by their technical, 
logistical and economical demands (Mason et al., 2000). Besides, direct 
measurements of wave properties (e.g., wave height and wave period) are 
traditionally obtained by oceanographic devices (e.g., wave gauges, pressure 
transducers, Acoustic Doppler Current Profiler etc.), whose deployment is 
operationally demanding and difficult, especially at high energy environments with 
mobile sandy bottoms.  
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As many nearshore processes have a visible signature on the sea surface, remote 
sensing has emerged in this context as a valid alternative to provide nearshore 
measurements. Among numerous remote sensing methodologies and approaches 
(e.g., aerial photography, satellite imagery, wave radar, Light Detection And 
Ranging - LiDAR), shore-based coastal video monitoring has been proved as a 
cost-efficient and high-quality data collection tool to support coastal scientists and 
engineers over the last three decades (Holman and Stanley, 2007).  

A video-monitoring station is usually composed by one (or more) video-cameras 
connected to a personal computer, which has the functions of controlling the 
optical device and storing the video acquisitions. The optical device is usually 
installed stable at an elevated position looking at the beach and the nearshore. The 
pioneer Argus monitoring program (Holman and Stanley, 2007) was the first 
scientific program to install a shore-based video monitoring system with the aim of 
supporting coastal studies through video-derived observations. The Argus system 
was developed by the Coastal Imaging Lab at the Oregon State University in the 
early 90’s, and several Argus-based video monitoring stations has been providing 
coastal image data worldwide (Holman and Stanley, 2007 and references therein). 
To 2003, approximately 30 Argus video-monitoring stations and 120 cameras were 
operating daily in 8 countries (Aarnikhoff et al., 2003). To date, around 40 Argus 
stations are still operative on the coasts of three continents. 

In the 2000’s, the expansion of commercial video systems (e.g., CoastalComs, 
www.coastalcoms.com, Erdman www.video-monitoring.com) and the 
development of dedicated image processing tools (e.g., SIRENA - Nieto et al., 
2010; COSMOS - Taborda & Silva, 2012, http://cosmos.fc.ul.pt; Beachkeeper plus 
- Brignone et al., 2012; ULISES - Simarro et al., 2017) promoted the installation of 
video monitoring stations for scientific purpose with the use of relatively cheap 
Internet Protocol (IP) video cameras to overcome the expensive installation and 
purchase of Argus system (e.g., Vousdouskas et al., 2011). Although the lower 
spatial coverage in comparison with other remote sensing technologies (e.g., 
satellite imagery, wave radar, LiDAR), shore-based video monitoring technique 
gives an excellent compromise between spatial and temporal resolutions, beneficial 
to support both short- and long-term synoptic analysis of the hydro- and 
morphodynamic processes occurring in the nearshore.  

Despite the large exploitation of coastal video stations over last decades, the use of 
online streaming web-cam for quantitative scientific studies has been weakly 
investigated. For example, coastal “surfcams” are video cameras installed at the 
coast with the main aim of remotely providing visual information of beach and sea 
state to beachgoers and surf users, streaming near-continuous video over the 
internet. The main objective of this work is to provide operational procedures for a 
research-oriented use of surfcam images.  
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The following Section 5.1.1.1 and Section 5.1.1.2 present a comprehensive 
overview of standard video image pre-processing and scientific applications of 
coastal video monitoring, in order to give a perception of the importance that such 
technique has gained in coastal studies over the last decades. Section 5.1.1.3 
describes the main issues related to the use of surfcams and underlines the specific 
objectives of this work, outlining the main methodological steps that are presented. 

5.1.1.1. Standard image rectification procedure 

In order to exploit the images acquired by a coastal video system, an accurate 
procedure must be applied to raw imagery data to obtain referenced planar images 
(Hartley and Zisserman, 2004). The camera calibration process is the procedure 
that estimates the intrinsic parameters of camera lens and sensor. The intrinsic 
camera parameters, also called Internal Orientation Parameters (IOPs), are namely 
the focal length f, the position of the principal point (uc , vc), and the distortion 
coefficients of the camera lens kj. Determination of IOPs is necessary to correct 
the image distortion inducted by the lens curvature. Conventional camera 
calibration procedure is performed using several screenshots of checkerboard 
patterns panel taken by the camera with different poses. Freely available toolboxes 
such as Camera Calibration Toolbox for Matlab (Bouget, 2007) can be extensively 
used to execute this required process and apply the correction to the images 
(Vousdoukas et al., 2011; Andriolo et al., 2018). 

The image rectification procedure transforms an undistorted oblique image into a 
plan view equivalent image, known as rectified image (Taborda & Silva, 2012). 
Given the IOPs computed by the preliminary camera calibration, standard 
photogrammetric procedures such as  the collinearity or the Direct Linear 
Transformation (DLT) methods (Holland et al., 1997; Hartley and Zisserman, 
2004), establish the relation between terrain (X,Y,Z) and image (u,v) spaces by 
determining the External camera Orientation Parameters (EOPs), namely the 
camera position XC, YC, ZC, and orientation (azimuth α; tilt τ, and roll θ). The basis 
of the spatial resection process follow the classical physical pinhole camera model 
(Fig. 5.1), which describes the mathematical relationship between the coordinates 
of a point in the 3D space (Xo, Yo, Zo) and its projection onto the image plane (uo, 
vo). 

In order to solve the collinearity equation or the DLT equation systems for the 
spatial resection geometry, it is necessary to identify on the oblique undistorted 
image a minimum of GCPs whose real-world coordinates are known. In general, a 
minimum amount of six GCPs is required. GCPs can be selected on fixed 
structure on the coast (such as breakwaters, houses, paths), can be installed in form 
of panels visible on the image (Harley et al., 2013), or can be collected by RTK-
GPS survey and later identified on the acquired image sequence. The solution of 
the equations system allows the transformation of the undistorted image into a 
planar image map, whose pixels have real-world coordinates. 

https://www.sciencedirect.com/science/article/pii/S037838390700018X#bib11
https://www.sciencedirect.com/science/article/pii/S037838390700018X#bib11
https://www.sciencedirect.com/science/article/pii/S037838390700018X#bib11
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Fig. 5.1. Geometry of space resection. Relationship between the real-world point (Xo, Yo, 

Zo), the image point (uo, vo), camera focal length f, camera optical center (Xc,Yc,Zc) and 
camera rotation angles (azimuth α; tilt τ and roll θ). Adapted from Bechle et al. (2012). 

5.1.1.2. Coastal video monitoring applications 

Video-based morphodynamic studies uses special images, namely Timex, Variance 
and Timestack, generated from the acquired and rectified image sequences. 

TIMe- EXposure images (Timex) are created by the mathematical average of single 
image intensity collected over a period of sampling (Holman and Stanley, 2007), 
usually chosen of 10 minutes. The averaging of pixel intensity smoothes out 
variations in wave dissipation and waterline oscillation on the shore, along with 
filtering out moving objects in the camera's field of view, such as ships, vehicles 
and people. The main characteristic of Timex is to underline the preferential 
location of wave breaking as white bright intensity pattern (e.g., Lippmann and 
Holman, 1989). As submerged sand bars cause preferential breakings over the bar 
crest, Timex images can be used to find the position and the long-shore 
development of submerged nearshore sand bars. This property has been exploited 
for the study of nearshore sand bar migration (e.g., Armaroli and Ciavola, 2011; 
Balouin et al., 2013; Angnuureng et al., 2017), rip currents (e.g., Turner at al., 2007; 
Orzech et al., 2010; Gallop et al., 2011; Pitman et al., 2016), and beach state 
characteristics (e.g., Ranashinke et al., 2004, Quartel et al., 2006; Ortega-Sánchez et 
al., 2008; Price and Ruessink, 2008; Masselink et al., 2014). Since on Timex the 
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swash movements on the foreshore slope are smoothed out, several algorithms 
have been proposed for shoreline detection on Timex images (e.g., Aarninkhof et 
al., 2003; Alvarez-Ellacuria et al., 2011; Osorio et al., 2012; Valentini et al., 2017b) 
and have been widely used for a long-term monitoring of shoreline change (e.g., 
Fairley et al., 2009; Ruiz de Alegria-Arzaburu and Masselink, 2010; Blossier et al., 
2017). 

Variance images are created by computing the standard deviation (and despite the 
name, not the variance) of the individual images which are collected over a period 
of sampling, as for Timex (Holman and Stanley, 2007). Variance images are bright 
on the areas with large temporal variability, while unchanged areas appear dark. 
Thus, a sandy beach is shown as dark in a Variance, while the surf zone appears 
very bright, due to the pixel intensity variation in relation to breaking waves. 
Although Argus stations and other video systems have been producing Variance 
for long time, this kind of images has been seldom used. Few examples of the use 
of Variance can be seen in Vousdoukas et al. (2011), in Simarro et al. (2015) and in 
Rigos et al. (2016), mainly regarding shoreline contour detection.  

A third kind of special image, Timestack image, is generated by sampling a single 
line of pixels from each image over the period of acquisition and concatenating 
such array of pixel according to the frame acquisition frequency. Timestack is 
therefore composed by pixel intensity time series over a given image sequence. In 
general, a video data sampling period of 10 minutes is considered, however the 
chosen time interval can vary depending on the system set up and/or on the main 
purposes of the study (e.g., from 7 mins to 34 mins in Stockdon et al., 2006; 20 
mins in Almar et al., 2011). Timestacks were originally produced with the main 
purpose of studying wave runup process on the foreshore (Aagaard and Holm, 
1989; Holland and Holman, 1993; Birkemeier et al., 1997), as the camera 
acquisitions allowed the monitoring of the high-frequency waterline oscillation on 
the beach slope. Over the last decades, Timestack images have been extensively 
applied to advance in foreshore runup knowledge (Bailey and Shand, 1994; 
Holland et al., 1995; Ruggiero et al., 2004; Vousdoukas et al., 2009; Guedes et al, 
2011a; Power et al., 2011; Senechal et al., 2011; Brinkkemper et al, 2014; Stockdon 
et al, 2014; Vousdoukas et al., 2014), to improve runup measurements (Simarro et 
al., 2015; Blenkinsopp et al., 2016; Almar et al., 2017a) and to propose new wave 
runup parameterization (Stockdon et al., 2006; Vousdoukas et al., 2012; Poate et 
al., 2016; Atkinson et al., 2017). Besides the possibility of measuring wave runup, 
Lippmann and Holman (1990) related Timestack pixel intensity to temporal series 
of water surface elevation. Exploiting such property, authors measured the wave 
period applying frequency domain analysis (Lippman and Holman, 1989; Almar, 
2009) or computing wave spectrum (Zikra et al., 2012). Another Timestack 
application resides on the measurement of wave celerity (Almar et al, 2008; Tissier 
et al., 2011; Almar et al., 2014; Postacchini and Brocchini, 2014), which allowed to 
retrieve the nearshore subtidal bathymetry through depth inversion technique 
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(Stockdon and Holman, 2000; Yoo, 2007; Almar et al., 2011; Holman et al., 2013). 
Finally, Timestack images were used to estimate wave breaking height (Gal et al., 
2011; Almar et al., 2012a; Gal et al., 2014; Robertson et al., 2015), to measure 
overwash velocity (Matias et al., 2017), and along-shore Timestacks were adopted 
to estimate longshore currents (Chickadel, 2007).  

5.1.1.3. Surfcam images  

The state of art presented in Section 5.1.1.2 emphasizes the capability of standard 
coastal video monitoring technique in quantifying a diverse range of important 
coastal processes. Therefore, it is of interest to explore the opportunities of 
potentially increasing the coastal imaging acquisition. For instance, two previous 
studies were conducted to investigate the possibility of using surfcam network for 
coastal monitoring (Mole et al., 2013; Bracs et al., 2016), however these works were 
limited to the use of a commercial software for shoreline monitoring and inshore 
wave measurements (e.g. Shand et al., 2012).  

The main purpose of this study is to present practical methodological approaches 
to accurately rectify surfcam images, in order to exploit online-streamed images for 
scientific studies. The video acquired by a surfcam at the Riberia d’Ilhas beach on 
Portuguese coast are used as case study.  

The quantitative use of surfcam recreational cameras is mostly limited by their 
logistic. Most of the installation sites of these devices are not directly accessible, as 
they are located for instance on rooftop buildings, private houses or streetlights 
posts. As a consequence, it is often not possible to perform the conventional 
camera calibration procedure described in Section 5.1.1.1, and neither to survey the 
camera position coordinates. In the context in which standard rectification process 
cannot be performed, the Coastal Projector monitoring system “C-Pro” (Sánchez-
García et al., 2017) offers a valuable computational solution to provide the missing 
photogrammetric requirements, thus to solve the spatial resection systems for 
getting precise rectified planar images.  

C-Pro adopts the terrestrial horizon visible on image as a photogrammetric 
constraint, to incorporate the two equations that describe the horizon inclination 
in the collinearity system. As working with surfcam images generally implies the 
lack of knowledge of the IOPs and EOPs, the horizon constraint reduces the 
number of unknowns in the equations system. In order to achieve an accurate 
determination of all photogrammetric parameters, C-Pro solves the linearized 
equations system with the weighted least square method, whose finest solution 
gives the IOPs and EOPs corrections after an iterative optimization. The 
minimum amount of required GCPs changes depending on the number of 
unknowns to be solved by the equations system, given that the incorporation of 
the horizon equations can also reduce the required number of GCPs.  
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This work addresses firstly the GCPs sampling problem. Besides the conventional 
in situ collection of GCPs (Section 5.1.3.3), we propose a novel method to remotely 
acquire Ground Control Points (GCPs) coordinates and elevation. The synoptic 
combination of freely-available-online tool and video technique supplies the 
required points to transform image information into real-world coordinates 
(Section 5.1.3.4). Successively, we tested C-Pro operational capability in retrieving 
the set of parameters required to perform the image rectification process. Since C-
Pro adapts its methodology in accordance with the available input dataset, three 
analytical procedures are shown (Section 5.1.3.6), distinct both in the design of the 
computational steps and in number of GCPs available to solve the spatial resection 
system. The analysis of the results focus on the accuracy achieved by the remote 
method for GCPs collection (Section 5.1.4.1) and compares the positional accuracy 
of rectified planar images generated by C-Pro through the different procedures 
(Section 5.1.4.2 and Section 5.1.4.3). A discussion of the advantages and backwards 
of the proposed solutions associated with surfcam images use and rectification is 
then presented. 

5.1.2. Study site 

The present work is supported on images acquired at the case study of Ribeira 
d’Ilhas (38°59'17.0"N, 9°25'10.4"W), a beach that develops over a rocky-shore 
platform located on the Portuguese western coast, facing North Atlantic Ocean 
(Fig. 5.2). The beach extends for about 300 m along-shore, with a NW-SE 
orientation, and it is limited southwards by a 55 m high cliff and northwards by a 
small headland. The intertidal shore platform presents a low gradient slope (tanβ = 
0.01). This site is a famous stage for many national and international surfing 
events. The collaboration with the company Surftotal 
(https://www.surftotal.com/) allowed the use of the images (Fig. 5.2c) acquired by 
a surfcam installed at the study site. 

The video station consisted in a video camera mounted on a house roof at an 
elevation of about 80 m (MSL) and about 400 m from the shoreline. The camera 
was installed in a private property which was not accessible. The camera view was 
set steady looking at the Riberia d’Ilhas shore and nearshore during two days (28 
and 29 of March 2017). 

5.1.3. Methods 

This section describes methodological steps to obtain rectified images from raw 
surfcam video acquisition. The methods differ in the sources used to retrieve the 
GCP locations, conditioning theirs reliability and number, and in the C-Pro 
methodological procedures to compute the resection parameters and generate the 
image planar map. 
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Fig. 5.2. Study site map. a) location of Ribeira d’Ilhas (circle) and Cascais tide gauge 

(diamond); b) planar map; c) surfcam image frame.  

5.1.3.1. Surfcam case study 

About 18h video bursts were retrieved from surfcam acquisition using a password-
protected Uniform Resource Locator (URL) web address supplied by Surftotal 
company. Image frames (800 x 450) were streamed online at a frequency of 15 Hz, 
however they were extracted from video burst by a dedicated Matlab-based 
algorithm at a frequency of 5 Hz, to limit data storage space and processing time. 
From a first visual analysis of the images (Fig. 5.3), the horizon line looked fairly 
straight, therefore the distortion inducted by lens curvature were considered 
negligible in this work. The whole dataset of 380,000 frames was converted in a 
sequence of 94 10-min Timex images, 52 Timex for the first day of video 
acquisitions (from 10:00 till 18:30), 42 for the second day (from 11:00 till 18:00). In 
this work, only the images from the first day of acquisition were used. 

5.1.3.2. Water level 

Five Pressure Transducers (PTs) were placed along a cross-shore transect to 
measure water level and wave properties during the two days of image acquisitions 
(Fig. 5.3). Four sensors covered a cross-shore length of about 35 m with an offset 
of around 18 m in the intertidal area. The last sensor was placed at the bottom of 
the cliff to measure swash properties during high tide. Data were acquired at 2 Hz. 
Pressure data of the most seaward PT were used as reference for water level η in 
this work. 



OTHER PHOTOGRAMMETRIC APPLICATIONS & TECHNIQUES 

 

 
209 

Time series of water level was also retrieved by the Tide Gauge (TG) of Cascais 
(38.70º N, 9.43ºW – Fig. 5.2a), available at the web site of the Portuguese General 
Direction of the Territory (DGT, ftp://ftp.dgterritorio.pt/Maregrafos/Cascais). 
This second dataset represents an alternative remote source for hydrodynamic data 
available in absence of oceanographic instrumentation in the field. 

5.1.3.3. Method 1 – In situ acquisition of GCPs 

During the first day of image acquisition, an accurate field experiment was 
conducted using RTK-GPS instrumentation. A large number of points (206) was 
surveyed in the field of view of the camera, both on the top of the cliff and on the 
rocky-shore platform. Their elevation ranged between -1.5 m and 53 m on the 
Mean Sea Level (MSL). Successively, these points were manually marked on the 
oblique surfcam images (Fig. 5.3), navigating through the image sequence and 
identifying the positions of the operator while acquiring the points with RTK-GPS 
instrumentation. Among these points, some were chosen as GCPs for solving the 
geometry of the photo, some other were used as checkpoints for assessing the 
precision of rectification process (see Section 5.1.3.6.1). Hereinafter, we refer to 
these terrain points collected by the in situ classical methodology as “Method 1”. 

 
 
Fig. 5.3. Terrain points location and related elevation (crosses), Pressure Transducers 

deployment position (PTs, white triangles) plotted on surfcam frame acquired during low 
tide. Note that colorbar elevation is comprised between -1.5 and 2 m for clarity. Surveyed 
points on cliff (gray crosses) are about 25 m high. 

 
5.1.3.4. Method 2 - Remote acquisition of GCPs 

Considering that surfcam images can be retrieved online, but the field site might 
not be easily accessible (e.g. remote site), a second method to remotely retrieve 
GCPs location was devised, based on the use of freely available web tool Google 

ftp://ftp.dgterritorio.pt/Maregrafos/Cascais
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Earth. Google Earth is the most popular computer program that renders a 3D 
representation of Earth based on satellite imagery 
(http://www.google.com/earth/download/ge/). In version 5.0, Google Earth 
introduced Historical Imagery, allowing users to navigate through historical 
satellite imagery. To date, on Google Earth location corresponding to the study 
site, images from 13 different dates are available from 2006 to 2016, and could be 
used to support the acquisition of GCPs.  

A first analysis consisted in finding distinct features which could be used as GCPs 
(Fig. 5.4), visible both on the available Google Earth images and on the surfcam 
image and. A first feasible element was identified in a big dark rock on the shore, at 
the foot of the cliff (GCP_A). This point was also well visible at the same position 
in Google Earth images from 2016, 2015 and 2014. The second point (GCP_B) 
was found ON the spike of the headland which limited the Ribeira d’Ilhas beach 
northward. The Google Earth image from 2014, which was acquired during low 
tide conditions, allowed the selection of the right position in accordance with 
surfcam image, as the headland was not covered by water. The third point 
(GCP_C) was identified on the rock that was still emerged in the surfcam image 
during high tide, when water level covered the whole rocky platform. The specific 
tidal condition coincided on the image 2015 of Google Earth, where the piece of 
the rock was also visible in the same position. 

Since the elevation data supplied by Google Earth still does not have the required 
accuracy. (e.g., Wei et al., 2018; Wang et al., 2017; El-Ashmawy, 2016; Rusly et al., 
2016; Rusly et al., 2014), the elevation of the GCPs was estimated using a 
procedure that took advantages of Timex images properties. As seen in Section 
5.1.1.2, the high-frequency swash oscillation on the beach is average out on Timex, 
therefore these images have been extensively used to identify the shoreline as land-
water interface. Here, firstly, a specific algorithm identified the shoreline contour 
(Fig. 5.5) as the cross-shore location of maximum gradient in the ratio of Red to 
Green color band on the oblique 10-minutes RGB Timex images (e.g., Smith and 
Bryan, 2007; Almar et al., 2012b), limiting the shoreline detection to the sector in 
which GCP_A, GCP_B and GCP_C were located. 

Secondly, each shoreline elevation was assumed to be equal to the tidal level 
measured from the online-retrieved TG dataset (Section 5.1.3.2) at the 
corresponding Timex production time. Fig. 5.5 shows the 32 shoreline contours 
detected over the tidal cycle, and compares the GCPs elevation surveyed from 
RTK-GPS instrumentation to give also a first visual perception of the goodness of 
fit. 

 

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Earth
https://en.wikipedia.org/wiki/Satellite_imagery
http://www.google.com/earth/download/ge/
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Fig. 5.4. GCPs identified on Google Earth maps (left column) and related points 

identified on Timex image (right column). Insets represent the magnified areas, which 
are shown by the dashed black rectangles. Red and white crosses are the GCPs 
indicated in the figure title, from Google Earth map and surfcam image, respectively. 
Black crosses recall GCPs locations.  
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Fig. 5.5. Computational example of GCPs elevation. The 32 detected shorelines are 

plotted with crosses, surveyed points intercepted by shorelines with dots, Google Earth-
derived GCPs with squares. Inset shows the tidal variation measured by TG. White 
triangle shows deployed PT location. Shorelines colors correspond to tidal elevation, 
while surveyed GCPs colors refer to field-survey elevation. 

The three identified GCPs elevation was assumed to be equal to the elevation of 
the shoreline elevation intersecting the points. GCP_A was intercepted by the 
shoreline that was marked on the Timex image produced at 14:00, corresponding 
to water level η=-0.95. GCP_B by the shoreline at η=-0.60 at 12:00. GCP_C 
elevation was instead associated to the time in which the rock was fully covered, 
corresponding at tidal level η=1.45 at 15:00. The accuracy of this procedure was 
evaluated comparing the three GCPs elevation with the closest-located terrain 
points elevation surveyed by RTK-GPS instrumentation. All GCPs coordinates 
(Table 5.1) were converted from WGS84 to the local projected coordinate system 
(ETRS 86- Portugal TM06) through freely accessible transformation codes 
available online (https://epsg.io/). Hereinafter, we refer to these remotely 
retrieved GCPs as “Method 2”. 

  Latitude Longitude North East u v Z 

GCP_A 38° 59' 18.83" 9° 25' 12.69" -74672.75 -111515.32 685 356 0.95 

GCP_B 38° 59' 22.29" 9° 25' 17.33" -74564.47 -111625.49 627 272 -0.60 

GCP_C 38° 59' 25.52" 9° 25' 23.60" -74462.72 -111774.98 523 216 1.40 

Table 5.1. Remotely-retrieved GCPs location. Latitude and Longitude refer to Google 

Earth map coordinates (WGS84), North and East to coordinates transformed to local 
system (ETRS89 - Portugal TM06). Coordinates u,v are pixel coordinates in the oblique 
surfcam image. Z refers to GCPs elevation estimated from shoreline position and 
elevation. For GCPs name and number, refer to Fig. 5.4 and Fig. 5.5. 

https://epsg.io/
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5.1.3.5. Method 2 - Camera position from web tool 

Google Earth fully integrates Google Street View, which is a tool that displays 
360° panoramic street-level photos taken by cameras mounted on automobiles 
(e.g., Anguelov et al., 2010). Images can be viewed at different scales, from many 
angles, and are navigable by arrow icons imposed on them. 

In the case study, the surfcam was installed at the last floor of a house located on 
the hill dominating the littoral. From the analysis of Google Street View (Fig. 5.6), 
camera position was found at location 38º 59’ 09.00” N, 9º 25’ 02.33” W. With the 
option “terrain” activated on Google Earth software, it was also possible to get the 
estimated elevation of the camera in 76 m.  

 

Fig. 5.6. Camera position retrieved from Google Street View. Yellow cursor indicates the 

camera  

5.1.3.6. Practical implementation of C-Pro  

This sub-section describes the methodological steps undertook by C-Pro tool to 
produce rectified planar images through the use of the GCPs collected from the 
two Methods presented in Section 5.1.3.3 and Section 5.1.3.4. The procedures 
differ in the number of available GCPs and in the amount of known and unknown 
parameters considered to compute an iterative weighted least squares fitting over 
the linearized collinearity equations. For detailed description of C-Pro 
computational steps, please refer to Sánchez-García et al. (2017).  

https://en.wikipedia.org/wiki/Google_Street_View
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The procedures are numbered following the considered GCPs for the 
computation, namely Procedure 1 and Procedure 2, recalling the methods that 
were used to retrieve the points (Section 5.1.3.3 and Section 5.1.3.4). 

Procedure 1 

Among the 206 points collected in the field by the conventional RTK-GPS survey 
(Method 1), 72 were chosen as GCPs, heterogeneously distributed on the rocky 
platform (Fig. 5.7). As the number of available GCPs was more than six, C-Pro 
tool computed firstly the eleven DLT coefficients that express the relationships 
between terrain coordinates and image space. This initial step led to first 
approximated values of focal length f and camera location (XC, YC, ZC,). The first 
estimation of the three-angle describing camera orientation (α, τ, θ) came instead 
from the horizon constraint detected on surfcam image. In the second 
computational step, the approximated values of f and EOPs were used as input 
data to complete the collinearity least squares fitting, whose iterative process 
finished when each of the correction values for the seven parameters became 
negligible. Although the high number of GCPs promoted an over-determined 
system to solve the geometry, the two extra horizon equations were included in the 
iterative process to improve the camera repositioning result. The final step 
consisted in using the optimized IOPs and EOPs to generate a geo-rectified planar 
Timex image. The image was projected on a specific plane through inverse 
mapping technique and applying the nearest neighbor interpolation method. The Z 
elevation value for the projected plane was taken equal to the tidal level at the 
correspondent image time. 

Among the 206 terrain points, the remaining 134 terrain points −not chosen as 
GCPs− were used as checkpoints (Fig. 5.7) to assess the goodness of the 
photogrammetric solution and the positional accuracy of the rectified image 
generated by C-Pro. The horizontal projection error for the 134 checkpoints was 
found firstly projecting each point on its associated altimetric Z coordinate 
(measured by RTK-GPS), finally computing the Euclidean distance between its 
projected coordinates (X,Y) and its real-world coordinates measured in the field. 
The camera location computed by C-Pro was compared to the one retrieved from 
Google Street View (Section 5.1.3.5). 

Procedure 2 

A second example of C-Pro application (Procedure 2) considered the three GCPs 
remotely-retrieved in Method 2. Here, two sub-examples of C-Pro computations 
were made.  
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Fig. 5.7. C-Pro operational procedure. Selected GCPs (colored dots according to their 

altitude value) and checkpoints (black stars) are plotted on surfcam frame acquired 
during low tide. Yellow dashed lines intersection indicates the principal point as the 
center of the image (uc, vc = 400, 225). Red dashed line shows the horizon constraint. 

In the first sub-example (Procedure 2a), C-Pro used the camera coordinates 
obtained from Google Street View as initial camera position. A first value of the 
focal length f=1500 pixels was randomly guessed, while the initial camera 
orientation (α, τ, θ) was obtained from the horizon line detected on image, as in 
Procedure 1. Because of the limited number of available GCPs, DLT method 
could not be used, therefore the computation started directly with the iterative 
least squares fitting over the linearized collinearity equations. Since the six 
collinearity equations (two for each GCP) were not enough to solve the iterative 
process and to optimize the seven guessed parameters (f, XC, YC, ZC, α, τ, θ), the 
two horizon equations were added to solve the system. Adding these two 
equations ensured a solution of the system with one Degree of Freedom (DoF), 
given that DoFs are calculated as the difference between the number of equations 
and unknowns parameters to estimate. 

The second sub-example (Procedure 2b) aimed to investigate if using the remotely-
retrieved camera position (Section 5.1.3.5) could assess a better solution. A first 
preliminary computation (Procedure 2b’) set steady and locked the remotely- 
retrieved camera location, in order to find the remaining free parameters (f, α, τ, θ) 
with four DoFs. As it is assumed that remotely-retrieved camera 3D coordinates 
are a rough approximation, a second iteration (Procedure 2b) was set to attempt an 
optimization and to minimize the misfit. Taken the preliminary results as input 
values, a second adjustment (Procedure 2b) released the camera position and fixed 
the focal length f retrieved from Procedure 2b’ in order to solve the remaining six 
external parameters (XC, YC, ZC, α, τ, θ) with two DoFs. 
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A rectified image was generated from both Procedure 2a and Procedure 2b, 
following the same methodology adopted in Procedure 1. The positional accuracy 
of the rectified images was evaluated calculating the projection error for the same 
134 checkpoints considered in Procedure 1, and therefore a direct comparison 
among the Procedures could be made. Table 5.2 resumes the details of each 
computational procedure, indicating which parameters were free to vary or have 
being considered fixed through the iterative process. 

Proc. 
GCPs IOP EOP Horizon 

constraint 
DoF 

nº source uc, vc focal Xc, Yc, Zc α, τ, θ 

1 72 field survey x o o o ✓ 139 

2a 3 remote x o o o ✓ 1 

2b' 3 remote x ↓ x o ✓ 4 

2b 3 remote x x o o ✓ 2 

Table 5.2. Details of the procedures used by C-Pro for the computations. The symbol x 

indicates the parameters considered fixed, while o those values that were refined trough 
the iterations. All procedures used the horizon constraint. DoF shows the number of 
Degree of Freedom to solve the linear collinearity system. 

5.1.4. Results 

5.1.4.1. Surfcam case study 

Fig. 5.8 shows the relation between the shoreline elevations, assumed to be at 
water level, and the RTK_GPS surveyed elevation of those points that were 
intercepted among the all 206 points. In total, 79 points were intercepted by the 
shorelines (refer to Fig. 5.5). The fully-remote Method 2 underestimated point 
elevation with a median value of 0.3 m, a Root Mean Square Error (RMSE) of 0.48 
m, and highest difference of 1 m. For completeness, Fig. 5.8 also shows the 
relation of GCPs elevation with shoreline elevation taken at the water level 
measured by the deployed PT. Using values measured in the field, the points 
elevation would have been better estimated, since median difference to surveyed 
elevations was about 0.05 m and RMSE = 0.33 m. The difference between TG and 
PT water level was almost constant for the whole considered period of 5 hours, 
when PT measured a water level higher 0.15 m than TG, difference that might be 
related to local wave setup. 

Finally, concerning the three GCPs estimated from Method 2, a direct comparison 
with RTK-GPS was not possible because these specific points were not collected 
during the field experience, as the remote method was developed successively. 
Nonetheless, their elevation was in agreement with closest surveyed GCPs 
available from in situ survey (Fig. 5.8, Right), with disparities of about -0.05 m 
(GCP_A), + 0.01 m (GCP_B) and +1 m (GCP_C). 
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Fig. 5.8. Accuracy of Method 2 in retrieving points elevation. Left: comparison between 

the shoreline elevation and the field-surveyed elevation of the specific intercepted 79 
points. Right: relation between GCPs elevation found by Method 2 and the closest point 
surveyed in the field. Dashed lines represent identity. 

5.1.4.2. Projection error 

Figure 5.9 shows the planar images produced from the three C-Pro computational 
Procedures, along with the horizontal projection error for the 134 checkpoints. 
From a first visual analysis, the projection error on the rectified Timex produced 
from Procedure 1 was appropriately sorted over the whole area, with all the points 
projected with a horizontal accuracy lower than 5 m. On the rectified Timex 
obtained from Procedure 2a, some points show higher projection error, with the 
highest bias for those points located on the cliff (projection error between 8 m and 
15 m). Finally, Procedure 2b generated a planar Timex in which projection error 
looked significant for the points located close to the waterline, while misfit for the 
checkpoints located close to the shoreline was in line with the other Procedures. 
Overall, all images generated by the three Procedures were in agreement with the 
basemap. Among all checkpoints, 119 points were located on the rocky intertidal 
platform, which is the target area for most hydrodynamic and morphological 
coastal studies (e.g., Andriolo, 2018). 

Figure 5.10 shows the statistical analysis of the positional accuracy depending on 
the projection error, limited to these 119 checkpoints, whose elevation ranged 
from -1.3 m and 3 m (MSL). From Procedure 1, the total median projection error 
was of 1.3 m, with 75% of the checkpoints position within 2 m of accuracy. 
Highest disparities were around 5 m, registered at some checkpoints points with -1 
m elevation. The error was almost constant across the whole area, and no 
significant relation was found both to camera distance and to checkpoints 
elevation. On the contrary, results from Procedure 2a showed a stronger 
correlation to camera distance, as error increased as much as checkpoints were 
farther from the camera. Total median projection bias was of 2.2 m, with 90 points 
repositioned with a misfit within the 3.75 m. Finally, the Procedure 2b showed the 
lowest projection accuracy, with a median error of 5 m and maximum error of 
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about 10 m. As previously notable in Fig. 5.9, projection error from Procedure 2b 
was strongly dependent on checkpoint location in relation both to camera position 
and to checkpoint elevation. 

 

Fig. 5.9. Rectified planar images generated by C-Pro Procedures, plotted on a basemap 

of the area with local system (ETRS89 - Portugal TM06). Images are projected with the Z 
elevation value equal to the tidal level at the corresponding image time. Colored dots 
represent the horizontal projection error of the 134 checkpoints. Colorbar scale is 
common to all images. 

5.1.4.3. Camera parameters 

Table 5.3 summarizes the values of internal and external camera parameters 
obtained from the different Procedures. Results from Procedure 1 and Procedure 
2a were similar, although the different number and sources of GCPs used for the 
procedures. Camera position was found around 9-10 m far from the remotely-
derived camera location, with major displacement along longitude (easting), at an 
elevation of about 80 m. 

Proc. 
IOP EOP 

dx dy dz Dist 
uc, vc focal X0 Y0 Z0 α τ θ 

1 
400,
225 

1488 -111278.1 -74976.8 79.5 
83
.4 

0.
4 

48.
9 

7.
6 

-
2.7 

-3.5 8.8 

2a 
400,
225 

1484 -111279.1 -74980.5 80.4 
83
.4 

0.
4 

48.
5 

8.
6 

1.1 -4.4 9.8 

2b’ 
400,
225 

1599 
(↓) 

-111270.5 -74979.4 76.0 
83
.8 

0.
4 

48.
7     

2b 
400,
225 

1599 -111272.5 -74979.3 75.5 
83
.8 

0.
4 

48.
6 

2.
0 

-
0.2 

0.5 2.1 

Table 5.3. Camera parameters results. Parameters set fixed during the iterative process 

are written in bold. Displacement to the remotely-derived camera location are is shown 
along the three relative dimensions (dx,dy,dz) and in term of Euclidean distance (Dist). 
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Fig. 5.10. Projection error obtained for the 119 checkpoints on the intertidal area. a) 

boxplot of projection errors; b) error dependence on distance from the camera (left) and 
on checkpoints elevation (right). 

On the other hand, fixing the camera position with the remotely-derived camera 
coordinates and elevation in Procedure 2b resulted in a computation of a larger 
focal length of about 110 pixels in comparison with the one obtained from 
Procedure 1 and Procedure 2a. The overestimation of the focal length might be the 
cause of the highest projection error obtained from Procedure 2b (Fig. 5.10). In 
fact, a longer focal length coupled to a lower camera elevation reproduced a 
narrower angle of view of the scene and a higher magnification of the scene. These 
might be determined the high dependence of projection error on checkpoints 
elevation and location, since points were “virtually” seen with a lower angle.  

5.1.5. Discussion 

The rectified surfcam image from Procedure 1 represents a quite satisfactory 
achievement, especially if considering the initial conditions (unknown IOPs and 
EOPs), the low image resolution (800 x 450) and the high distance between the 
camera and the GCPs (between 350 and 700 m). In addition, the (low) projection 
error was well distributed in the nearshore area. Taking in account that a high 
number of GCPs (72) were used in the iterative process, projection accuracy might 
be even improved by resampling the GCPs for a better identification in the original 
images, or by choosing a different spatial configuration of the points.  



Photogrammetry and image processing techniques for beach monitoring 

 

 220 

The results obtained from Procedure 2a were satisfactory. C-Pro tool was able to 
retrieve the same focal length and camera orientation as in Procedure 1, although 
the computation was based on just three remotely-sensed GCPs. In this 
perspective, the presented methodology to derive the GCPs coordinates from 
Google Earth and GCPs elevation from shoreline position (Method 2) appears to 
be a practical and viable solution to remotely collect the GCPs required for image 
rectification. The relative small error and the overall accordance between remotely-
derived GCPs and surveyed points (Fig. 5.8) proved the robustness of the 
proposed methodology. Alternative mapping sources are numerous (ESRI 
ArcMap), nevertheless Google Earth is distinctive in offering the easy, fast and free 
access to several images taken during different sea state conditions over the years. 
In the case study, this specific characteristic allowed to spot specific points that 
were visible during certain tidal conditions. In this work, additional GCPs could 
also be identified on the cliff and on the terrace-parking viewpoint, both on 
surfcam image and satellite images. However, these points were not considered 
suitable for the aim of this work as the elevation of area of interest was near sea 
level and the elevation of those points could not be accurately estimated remotely. 
In fact, Google Earth elevation data should be considered carefully. For example, 
the elevation on Google Earth terrain map of the three GCPs (GCP_A, GPC_B 
and GPC_C) were 9 m, 8 m and 2 m, respectively, far from the true elevation, that 
was successfully deduced from Method 2. Nevertheless, the technique of deriving 
GCPs elevation from shoreline in Method 2 was particularly effective because of 
the site-specific low gradient slope (tanβ = 0.01) of the rocky platform of Ribeira 
d’Ilhas. Here, the meso-tidal range (~2.8 m) made moving the local shoreline on a 
wide cross-shore span of about 400 m over the observed time. Alternative remote 
sensing sources for retrieving GCPs elevation are the aerial LiDAR (Wehr and 
Lohr, 1999; Vignudelli et al., 2011; Florinsky, 2016), satellite altimetry data (Fu and 
Cazenave, 2000) or Unmanned Aerial Vehicle - UAV (Turner et al., 2016a). 
However, these types of data are not always available and/or do not have the 
adequate resolution, and/or require intensive computational effort which would 
make more difficult the methodology. In addition, it should be considered that in 
case of study sites such as sandy shores, the intertidal area and emerged beach 
profile often change in shape and elevation due to the high dynamicity of sediment 
driven by wave forcing, so the use of synoptic data is advisable. In this perspective, 
future works should investigate the combined use of Google Earth, Google Street 
View and other optical sources to take advantages of site-specific presence of fixed 
elements such as coastal structures, touristic installations, urban infrastructures, 
along with geographical constraints, that can support the extraction of GCPs 
within the field of view of online-streamed images. As final remark regarding 
Method 2, the key requirement of water level was supplied by an available dataset 
retrieved online (TG). In case of absence of a proper record of data, freely 
available tide predictors can be used (e.g., https://www.wtides.com/ , 
https://www.tide-forecast.com). 

https://www.sciencedirect.com/science/article/pii/S0034425717301852#bbb0230
https://www.sciencedirect.com/science/article/pii/S0034425717301852#bbb0230
https://www.tide-forecast.com/
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The lower accuracy achieved from Procedure 2a in respect to Procedure 1 may be 
due several uncertainties added during the process. A first reason might be related 
to the small number of GCPs used for resection, as the image area was not well 
covered by the points. Secondly, the procedure of marking the GCPs, both on 
satellite image and on surfcam frame, is subjective and prune to error. Thirdly, 
shoreline elevation to estimate GCPs height was simply considered equal to tidal 
level, although previous works proved that swash excursion and wave set up 
contributions should be taken in account for assessing shoreline elevation (e.g., 
Aarnikhoff et al., 2003; Andriolo et al., 2018). This explains the closer relation 
found between GCPs elevation and water level measured by the PT in the 
nearshore (Fig. 5.8). Finally, Google Earth image horizontal resolution also has 
impact on the final result, as it can change in space and time (Potere, 2008; Yu and 
Gong, 2011).  

Computed camera positional error in relation to the remotely-derived surfcam 
location looked to be not significant in the rectification process, as C-Pro can 
compensate such error with a different estimation of the three angles (α, τ, θ) which 
describe the camera orientation. On the contrary, C-Pro results were considerably 
sensitive to camera elevation, since fixing camera elevation found from Google 
Street View in Procedure 2b led to an overestimation of the focal length and 
determined larger projection errors. The Procedure 2b test finally suggests that 
future works should not consider fix the remotely-retrieved camera position 
through the iterative process, since C-Pro performs better when all parameters are 
set free to be adjusted. 

Common to all C-Pro procedures was the fact that lens-inducted distortions have 
being considered negligible. Future works should carefully analyze image 
properties and in case taking in account the image curvature, as one preliminary C-
Pro computational step can be added to compute the distortion coefficients and 
correct the skewness of the image. In general, it should be stressed out that most 
video monitoring applications in coastal studies do not rely on absolute location 
but, instead, on relative positioning. For instance, morphological analysis (see 
Section 5.1.1.2 for a detailed video monitoring applications description) of the 
shoreline change, offshore bar migration, along with the estimation of 
hydrodynamics such as wave height, need a planar image to simply associate pixel 
features to geometry measurements, therefore the images should be appropriately 
corrected from perspective distortions and accurately rectified, but do not require a 
precise absolute positioning. For instance, Fig. 5.11 shows the comparison among 
the water breaklines detected on the planar images generated from each Procedure, 
during low tide and high tide. Breaklines were found sampling a series of cross-
shore pixel transects, and identified at the pixel with highest intensity (Armaroli 
and Ciavola, 2011; Balouin et al., 2013). Comparing the position among breaklines 
found on Timex rectified by Procedure 1 and the other two examples (Procedure 
2a and Procedure 2b), median differences were in the range of 1-2 m for both low 
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and high tide. From the analysis of the distances between breaklines obtained on 
images with same procedure, it can be seen that Procedure 1 and Procedure 2a 
were in agreement (about 1 m of difference on median value), while the distance 
was slightly shorter in Procedure 2b. For this last example, median disparity with 
the other two Procedures was about 3 m, with a maximum disparity of 11 m. 
These values represent around the 6% of the total distance calculated between 
breaklines, thus can be considered not significant for a quantitative analysis. 

 

Fig. 5.11. Above: breaklines detected on the rectified Timex images generated from the 

three presented Procedures, during low and high tide. Red dashed line shows the 
distance between breaklines found over the two tidal conditions. Below: differences 
between two breaklines detected during low and high tide for each Procedure.  

Overall, both results from Procedure 1 and Procedure 2a were in line with other 
works that used standard geo-rectification technique for coastal imagery analysis 
(SIRENA - Nieto et al., 2010; COSMOS - Taborda & Silva, 2012, 
http://cosmos.fc.ul.pt; Beachkeeper plus - Brignone et al., 2012; ULISES - 
Simarro et al., 2017), and proved the goodness of the methodological steps 
presented in this work.  

As a final remark, the C-Pro tool can also be easily implemented in the existing 
image rectification softwares. For instance, the parameters assessed by C-Pro in 
Procedure 1 were implemented in an automatic version of COSMOS software 
(Taborda & Silva, 2012) to rectify the whole image sequence obtained at Ribeira 
d’Ilhas, which was used for the development of new methodologies to estimate 
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nearshore hydrodynamic and morphology (Andriolo, 2018). Nonetheless, C-Pro is 
an independent coastal projector monitoring system that is freely available upon 
request to the authors.  

5.1.6. Conclusions 

This communication presented operational applications of C-Pro projection tool 
to obtain rectified planar images from an online streaming camera. Two examples 
to retrieve GCPs were presented. A first method used the in situ standard RTK-
GPS instrumentation for the collection of points, while a second novel 
methodology derived GCPs location and elevation coupling Google Earth 
historical images to shoreline detection on video imagery. C-Pro has been shown 
to work efficiently with both in situ and remotely-derived GCPs, estimating the 
seven unknown parameters of the camera to generate accurate georectified images. 
The median horizontal projection errors obtained by Procedure 1 and Procedure 
2a were acceptable, being of 1.3 m and 2.2 m, respectively, whereas Procedure 2b 
was less accurate with 5 m of median positional misfit. The presented procedures 
promote the use of online streaming images for the application of a coastal video 
monitoring technique, avoiding the installation of new monitoring systems. The 
methodologies give the opportunity to turn surfcam infrastructure into a fully 
remote shore-based observational system, in order to apply the video-based 
scientific techniques for improving knowledge of coastal processes. 

 

5.1.7. Annexed work: an application of C-Pro and online streaming 
surfcam data for measuring wave runup and intertidal beach 
topography (presented in X Jornadas do Mar, 2016). 

The variation of beach profile is fundamental to understand shore 
morphodynamics, while wave runup is a key parameter to evaluate coastal 
vulnerability to extreme events. In such context, this work aimed to develop and 
validate two complementary methods to video-derive wave runup measurements 
and intertidal beach topography.  

Wave runup is defined as the upper limit of wave on the beach face, and the 
leading edge of the swash is visible as wet–dry boundary on Timestacks 
(Vousdoukas et al., 2012). Coversely, shoreline position is defined by the boundary 
between water and dry sand (Boak and Turner, 2005), and its elevation on beach 
slope is considered as the sum of tidal level, wave-induced setup and swash 
induced height (Vousdoukas et al., 2011). 

Video data were obtained from a freely-available online streaming (25 frames per 
seconds) surfcam installed at Costa da Caparica using a Matlab-based algorithm 
specifically developed for the aim. The access to the installation site and the 



Photogrammetry and image processing techniques for beach monitoring 

 

 224 

technical properties of the camera were denied by the company 
(http://www.surfline.com). Thus, camera position in real-world coordinates, 
camera internal and external parameters were unknown. Usually, the camera is set 
up for mechanically rotating and zooming to show different areas of the coast at 
the 8th floor of a hotel (around 40 m over MSL). For this experimental work, it was 
considered the data acquired by the video camera between 08:30 and 14:30 on 
11/11/2015 (increasing tide), when the camera was set steady looking at the south 
part of Praia do Paraíso beach. 

RTK-GPS survey was performed to characterize the study area and to validate 
video-derived results on 12/11/2015. Four cross-shore transects were surveyed 
during low tide in order to describe the beach slope from about -1 m to about 3.5 
m, relatively to the MSL (refer to Fig. 5.16a). 39 GCPs were also collected both on 
the dry beach and on structures to cover the image. Wave data were retrieved from 
a wave model developed by the Portuguese Laboratory of Civil Engineering (wave 
height Hs was about 1.25 m), and tidal data were obtained by the Cascais tide 
gauge (-0.9 m to 1.43 m of tidal range). 

This section reports the proposed methods to: compute precise repositioning of 
the camera, and surfcam images rectification; detect wave swash and measure wave 
runup from Timestacks; and derive beach intertidal topography through 
Timestacks and Variance images. 

The outcomes provide new methods for swash zone hydro- and morphodynamic 
characterization and for studying the dynamics induced by climate changes or the 
impact of extreme events on coastal areas. 

5.1.7.1. Surfcam images rectification 

The surfcam retrieved dataset consisted in 36 10-minutes videos, successively 
converted in a sequence of 21600 images (800 x 450 pixels resolution). Timex and 
Variance images were produced over 10 minutes image sequence for the 6 
monitored hours, and using C-Pro could be rectified within an estimated 
projection error of 1.5 m. The camera repositioning error was estimated around 0.9 
m by comparing against the camera location on an orthophoto. The images were 
projected on the referenced plane identified by the 10-minutes-averaged sea level 
over the actual image sequence. Timestacks were composed by the time series of 
pixel intensity sampled along four cross-shore transects, corresponding to the four 
cross-shore profiles surveyed in the field. 

5.1.7.2. Wave runup measurements 

Swash zone can be identified on Timestack between highest brightness (breaking 
waves) and lowest value (dry beach), through computing standard deviation along 
time-axis (Simarro et al., 2015). We refer to “wave swash” for the cross-shore 
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location found on Timestacks (in pixel), to “wave runup” for the swash elevation 
after the interpolation with topographic survey (in meters). In addition, considering 
10-minutes interval, we define as “minimum swash” the minima seaward position 
reached by the waves, while as “minimum runup” the minimum height on beach 
profile. Likewise, “maximum swash” and “maximum runup” outline maximum 
shoreward position and maximum height. Finally, mean swash and mean runup 
identify the averaged position and averaged height computed among all wave 
swash and runup occurred.  

A simple method (TimeStacK Method; TSKM) based on image statistical analysis 
is proposed for automatically deriving minimum, mean and maximum (Swmin, 
Swmean, Swmax) wave swash positions on Timestack. Following Madisetti et al., 
1999, the Coefficient of Variation (CV) was introduced as the ratio of standard 

deviation (𝑠𝑖𝑚𝑔) to the mean value (𝑥̅𝑠𝑖𝑚𝑔):  𝐶𝑉 =
𝑠𝑖𝑚𝑔

𝑥̅𝑠𝑖𝑚𝑔
. 

Then, the minimum and maximum values on the detrended CVd 

(substracting 𝑥̅𝑠𝑖𝑚𝑔) correspond to the Swmax and Swmin positions, and the 

minimum value among the absolute values of CVd (CVdAbs) corresponds to the 
Swmean (Fig. 5.12). 
 
Besides, each position of discrete wave swash Sw was manually digitalized on 
Timestacks following the standard procedure reported in literature (i.e., 
Vousdoukas et al., 2012). Runup measurements (Rup) were obtained by 
interpolating swash pixel coordinates with the topographic data, both for manual 
and video techniques. The evaluation of the accuracy and goodness of the 

proposed technique (𝑒𝑠𝑤𝑎𝑠ℎ and 𝑒𝑟𝑢𝑛𝑢𝑝 errors) was carried out by comparing 

between the manual (M) and the video-derived (V) values. 

A total of 144 Timestacks were processed to automatically detect swash positions 
Sw and runup Rup as Fig. 5.13 shows. Regarding automated detection of Swmax, a 
RMSE of about 7 pixels led to a RMSE of about 0.3 m for video-derived Rupmax. 
The image processing algorithm occasionally returned rough measurements when 
human occupation on the beach affected the automated method. Worst accuracy 
was registered on steeper beach slope, where small horizontal errors determined 
greater elevation imprecision. Swmin estimations returned an RMSE of 11.4 pixels, 
while RMSE for Rupmin was 0.19 m. During low tide, Swmin identification was 
difficult due to the dark colour of saturated beach, as in Simarro et al. (2015). 
Moreover, transect length chosen for Timestack production was too short to 
entirely show the swash zone during low tide. Therefore, Swmin detection was 
affected by the lack of wave development. On the contrary, Swmin was well 
detected for higher water levels and steeper beach slope. Automated determination 
of Swmean and Rupmean showed the best accuracy, with a RMSE of 6.7 pixels and 
0.13 m, respectively. Overall, the comparison between manual and automated 
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technique for 432 Rup values (minimum, mean and maximum) resulted in an 
average RMSE of 0.184 m. 

 

Fig. 5.12. Example of TSKM procedure. a) Timestack; white rectangle indicates the zone 

between Swmin and Swmax; b) detrended CV (CoVd) and its absolute values (CoVdAbs) of 
time-axis Timestack in a). Arrows and text boxes indicate the derived swash positions 
Sw. Grey rectangle bounds the area between Swmin and Swmax. The peak around 
x=145 on CoVd plot depends on noise tipically generated by human beach occupation; c) 
beach surveyed profile corresponding to the transect covered by Timestacks. Arrows 
indicate the process for deriving Rup through Sw found by CoV analysis. (From Andriolo et 
al., 2016b). 
 

5.1.7.3. Intertidal beach topography 

Intertidal topography of the active beach profile was estimated through sequential 
combination of shoreline positions and water level over half of tidal cycle. It was 
proposed a simple method based on the assumptions that minimum runup Rupmin 
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identifies the tide water level ztide, and shoreline position (xSL) is equivalent to the 
mean swash position Swmean (Simarro et al., 2015; Huisman et al., 2011). 
Hereinafter regarding intertidal topography, we refer to “shoreline position” 
(xSL=Swmean) and to “shoreline elevation” (zSL). 

 

Fig. 5.13. Example of wave swash detection results and comparison against manually 
digitized positions. See Fig. 5.12 for Timestack details. (From Andriolo et al., 2016b). 

The Shoreline Elevation Method (SEM) was based on wave runup observed on 

images. A first estimation of beach-face slope (𝛽∗) was carried out through a linear 
fitting of Swmin elevated to ztide (Fig. 5.14a). Given the cross-shore shoreline 
position xSL, the shoreline elevation (zSL = ztide+ zSEM) was assessed multiplying the 
tangent of the fitting line by the cross-shore distance between shoreline positions 
Swmin and xSL (Fig. 5.14b). 

a) b) 

 

 

 
Fig. 5.14. Procedure to derive zSEM. a) fitting of Rupmin to estimate β*. b) computation of 

zSEM through relation of Swmin, xSL and β*. 

The intertidal topography from Timestacks was computed using manually 
identified shoreline position xSL and computed zSL. Accuracy estimation of the 

proposed technique (𝑒𝑧𝑆𝐸𝑀) was performed comparing shoreline elevations zSL 

with manual Rupmean M. Beach-face slope (𝛽) obtained by the intertidal topography 
was verified against RTK-GPS surveys. Slopes were assessed through the best 
linear fitting of shoreline elevations comprised within three different elevation 
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intervals, namely [-0.5, 2] m , [0, 2] m and [0.5, 2] m. Maximum and minimum 
errors (tangent of the slope) ranged between 0.014 and 0.003. 

Figure 5.15 shows the intertidal beach topography assessed through Timestack 

analysis. In order to evaluate the SEM accuracy, the shoreline positions xSL were 

elevated to zSL and plotted against the surveyed beach profile. The RMSE varied 

from a minimum of 0.139 m for profile 2 to a maximum of 0.193 m for profile 3. 

In general, intertidal topography carried out by SEM performed well for ztide higher 

than the Mean Sea Level (z=0), while it was overestimated for lower tide level. 

Nevertheless, errors were comparable with more sophisticated state-of-art 

shoreline elevation models (Sobral et al., 2013; Vousdoukas et al., 2011; Plant et al., 

2007; Aarninkhof et al., 2003). 

a) 

 

b) 

 
c) 

 

d) 

 

Fig. 5.15. a), b) c) d) report the produced intertidal topography for the profiles 1,2,3,4, 

respectively. Blue squares indicate shoreline derived by Shoreline Elevation Method 
(SEM). For comparison, manual Rupmean is shown in red diamonds. (From Andriolo et 
al., 2016b). 
 

Considering all the 144 measures used to assess the intertidal topography, the total 

RMSE was 0.18 m (zSL vs Rupmean M). Maximum difference was 0.45 m and the 

median value among all measures was 0.028 m. The accuracy was poorer during 

low tide, when SEM was sensitive to dissipative conditions and saturated beach. 
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The standard deviation profile of Timestack coincides with the same profile 

sampled on Variance (Simarro et al., 2015). Therefore, the same method used for 

deriving wave swash statistics on Timestack was applied to 10 parallel cross-shore 

profiles (Fig 5.16a and 5.16b) sampled on the 36 rectified Variance. For each 

profile, shoreline positions xSL and elevation zSL were automatically computed to 

carry out a Digital Elevation Model (DEM) of the monitored area (Fig. 5.16d). 

Video-derived DEM was compared to beach surface obtained by the topographic 

survey (Fig. 5.16c). Over a total area of about 11700 m2, average RMSE in 

elevation was 0.14 m, with a maximum of 0.28 m (1 m2 resolution grid). The main 

error was introduced by the inaccuracy in minimum wave swash detection during 

low tide. Nevertheless, different errors might also be induced by tidal 

measurements, imprecise underwater GPS survey, image resolution and 

repositioning error during rectification. 

a) b) 

  

c) d) 

  

Fig. 5.16. a) Original frame of 11:00:01. Coloured lines represent the 4 surveyed profiles. 

Black lines indicate the 10 profiles sampled on Variance. Dashed cyan lines delimitate 

the rectified area shown in b). Axis units are in pixels. b) rectified Timex produced by 

image sequence 11:00 ÷11:10. Coordinates in ETRS 89 –Portugal TM06 system. c) and 

d) Intertidal DEM derived respectively by RTK-GPS survey and Variance images. (From 

Andriolo et al., 2016b). 
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5.2. SHORELINE CHANGE MAPPING USING CROWD-SOURCED 
SMARTPHONE IMAGES 

Shoreline change information is critical for effective management of the coastal 
zone. This study presents a low-cost method for mapping shoreline change that 
harnesses smartphone images collected by the community and uploaded to social 
media platforms. A smartphone camera cradle installed overlooking a coastal 
region is used to constrain the crowd-sourced camera extrinsic parameters and 
accompanying signage instructs participants on how to share their image to social 
media using a site-specific hashtag identifier. Surveyed ground control points solve 
for the focal length of the smartphone lens and more-accurately resolve the camera 
extrinsic parameters. Shoreline position is subsequently mapped on georectified 
images using an edge detection technique based on the red and blue colour 
channels. A validation of the method was conducted at two sandy beaches in SE 
Australia and resulted in strong community participation (400 images submitted 
over 7 months by 198 individual contributors). Concurrent shoreline surveys using 
RTK-GNSS indicated that shoreline accuracy using this crowd-sourced approach 
is comparable to that of established coastal imaging systems, with cross-shore 
shoreline accuracy best for these two elevated validation sites (camera elevation = 
17.3 m – 27.1 m above MSL) in the camera nearfield (RMSD ≈ 1.4 m) and RMSD 
ranging between 2.6-3.9 m over coastal stretches spanning up to 1 km. Minimal 
differences in shoreline accuracy were observed between low resolution images 
characteristic of those uploaded to social media and higher resolution images 
sourced from the smartphone. The successful application of this low-cost 
approach, combined with the proliferation of smartphones and social media usage, 
open up new possibilities for crowd-sourced shoreline change mapping at suitable 
coastal locations worldwide. 

5.2.1. Introduction 

The shoreline and its surrounds is a focal point of human occupation, 
environmental biodiversity, economic activity and recreational amenity. It plays a 
vital role as a buffer separating energetic waves and elevated water levels from 
vulnerable coastal settlements. During extreme storm conditions, the shoreline can 
retreat landwards by more than 50 metres as sediment is removed from the upper 
beach and deposited offshore (e.g. Harley et al., 2017; List et al., 2006; Masselink et 
al., 2016; Sopkin et al., 2014; Thom and Hall, 1991). Over the longer-term, factors 
such as relative sea-level rise, changing wave climates and human interventions can 
result in shoreline fluctuations in the order of 100 metres (e.g. Hansen and 
Barnard, 2010; Harley et al., 2011a) and accretion or erosion trends at rates in 
excess of 10 metres/year (e.g. Luijendijk et al., 2018; Mentaschi et al., 2018). 
Continued pressure to develop in these dynamic coastal zones means that effective 
coastal management and planning is crucial, so that present and future exposure to 
coastal change is minimised (Kinsela et al., 2017; Nicholls, 2004; Wainwright et al., 
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2015). This is particularly important in light of present and projected changes in 
both extreme waves (Castelle et al., 2018; Hemer et al., 2016; Mentaschi et al., 
2017) and rising sea-levels (Church et al., 2013), which combined place great 
uncertainty in future shoreline behaviour. 

For most coastlines, limited observation data exists to provide an understanding of 
the rates and magnitudes of shoreline response due to extreme storms and longer-
term coastal processes (Barnard et al., 2015; Turner et al., 2016b). In southeastern 
Australia, for example, observation records for most beaches are limited to 
photogrammetry analyses of historical aerial photographs, which have been 
typically captured only once every several to ten years (Hanslow et al., 1997; 
Harrison et al., 2017). The sparse observation record introduces uncertainty into 
coastal management and planning strategies, because the potential influences of 
storms and subtle gradients in the coastal sediment balance on beach resilience 
remain poorly known. Frequent and long-term beach monitoring records are 
therefore needed to quantify and differentiate between seasonal to inter-decadal 
shoreline variability, and mean-trend change, at individual beaches and along 
regional coastlines (Barnard et al., 2015; Kuriyama et al., 2012; Splinter et al., 2013).  
However, the costs and logistics of regular and long-term monitoring using 
conventional survey techniques remain a prohibitive factor. 

Technological advances in survey instruments and analysis methods have led to an 
ongoing shift in shoreline monitoring from in situ measurements to remote sensing 
(Splinter et al., 2018). At the forefront of this change has been the development 
since the 1980s in optical coastal imaging techniques such as Argus (Holman and 
Stanley, 2007) and related systems (Nieto et al., 2010; Smith and Bryan, 2007; 
Taborda & Silva, 2012; Vousdoukas et al., 2012). Coastal imaging combines fixed 
video cameras and image processing methods to measure a range of nearshore 
processes, with shoreline position being a core data product because of its 
relevance as a proxy for many beach attributes (Aarninkhof et al., 2003; Harley et 
al., 2014, 2011b; Pianca et al., 2015; Plant et al., 2007; Smith and Bryan, 2007; 
Turner et al., 2004). Addressing several of the logistical demands of regular 
shoreline monitoring using conventional techniques, coastal imaging has led to the 
establishment of permanent observation stations collecting shoreline data at 
sampling frequencies that would be impractical to obtain otherwise (i.e., every 
daylight hour). Coastal imaging stations nonetheless require access to electricity 
and communications, protection from the elements and vandals, and come with 
appreciable set-up and maintenance costs. These factors have played a large part in 
limiting the comprehensive roll-out of coastal imaging networks globally, 
particularly in countries with limited resources. 

More recent advances in camera lens technology and the proliferation of consumer 
smartphones worldwide (Poushter, 2016) suggest there might be untapped 
opportunities for shoreline monitoring using crowd-sourced images. The general 
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public routinely visit beaches, carrying with them camera devices that are more 
powerful than the technology that has been successfully applied in coastal imaging 
for decades. Coupled with that, social media provides established and widely-used 
platforms (e.g. Facebook, Instagram and Twitter) for sharing and managing images 
amongst local communities or global audiences. Recognising the potential of 
smartphone images and social media, several photo-point citizen science initiatives 
have been developed that make use of crowd-sourced images taken over time at 
the same location, for monitoring various forms of environmental change (Augar 
and Fluker, 2014; Bayas et al., 2016; Droege, 2013). These photo point initiatives 
typically comprise a rudimentary camera cradle that helps control the viewpoint of 
the smartphone camera and are accompanied by instructions detailing ways to 
share the image to a centralised database. To date however, these programs have 
been limited to compiling qualitative environmental change information and do 
not make use of photogrammetry techniques for quantitative data collection. 

Compared with established coastal imaging systems, crowd-sourced shoreline 
change mapping presents a number of challenges that must be overcome in order 
to generate shoreline datasets of sufficient accuracy for coastal research and 
management applications. Established coastal imaging systems use a fixed camera 
of suitable specifications that is mounted on a stable platform of known 
coordinates. Camera intrinsic parameters (i.e., focal length, image centre and lens 
distortion properties) are carefully determined prior to camera installation using 
standard lens calibration techniques. The video camera is also usually configured to 
capture time-averaged (“timex”) images over several minutes, so the oscillatory 
influence of swash processes on the shoreline position can be accounted for, to 
identify the mean shoreline position at regular intervals over time. Because the 
camera lens and image properties are constant through time, image analysis 
techniques to detect and map beach features can be readily automated (e.g. Uunk 
et al., 2010). 

The crowd-sourced approach on the other hand comprises images collected by 
non-professionals using a broad range of smartphone camera devices. The 
platform itself may not necessarily be stable as it involves people manually 
positioning the camera in a suitable camera cradle installed at the site. To 
encourage participation, it may also be unreasonable to request participants spend 
several minutes at the site in order to derive time-averaged images, so shorelines 
may be mapped using instantaneous “snapshot” images instead. A further 
challenge is related to image resolution and image metadata (e.g. image capture 
time, camera lens model), particularly if social media platforms are used for image 
submission. This is because considerable image compression is applied by social 
media platforms prior to image upload, and standard Exif image metadata is 
removed by the platform for privacy concerns. Overcoming these challenges with 
suitable methods for managing the potential volume and diversity of crowd-



Photogrammetry and image processing techniques for beach monitoring 

 

 234 

sourced images is key to accessing a valuable new source of shoreline monitoring 
data. 

In this work we describe a new shoreline mapping approach using crowd-sourced 
images from smartphone cameras. Through the installation of simple, low-cost 
infrastructure (i.e., a stainless steel camera cradle and signage) and the use of image 
processing algorithms that address many of the challenges described above, we 
demonstrate that shoreline change mapping from crowd-sourced images is 
achievable at accuracies comparable to that of established coastal imaging systems. 
Our methods are applied at two iconic and closely located beaches in Sydney, 
Australia, where images were sourced by the community and used for shoreline 
change mapping over a seven month study period. The focus of the work is on the 
technical aspects of this shoreline mapping approach, while the appreciable 
benefits related to community involvement in the data collection process is the 
subject of ongoing research. The work is divided into five sections. In the 
following section, the study sites and methods related to image georectification, 
shoreline edge detection and shoreline validation are described. Section 5.2.3 then 
presents results of the shoreline validation and mapped shoreline data over the 
seven month study period. Section 5.2.4 discusses the advantages and challenges of 
this method and an assessment of this approach relative to other remote sensing 
techniques. Finally, some concluding remarks are provided. 

 

5.2.2. Methods 

5.2.2.1. Crowd-sourced coastal imaging stations 

The study was conducted at two open-coast sandy beaches (North Narrabeen and 
Manly Beach) located within the Sydney metropolitan area of southeastern 
Australia (Fig. 5.17). North Narrabeen Beach comprises the northern stretch of the 
3.6 km-long Narrabeen-Collaroy embayment and is bounded to the north by 
Turimetta Headland. Narrabeen-Collaroy is the location of a long-term coastal 
monitoring program, where five cross-shore transects have been surveyed on a 
monthly basis since 1976 (Turner et al., 2016). The entrance to a coastal inlet is 
also located at the northern end of the North Narrabeen site (Morris and Turner, 
2010). Manly Beach is a 1.5 km-long, embayed beach extending from North Head 
at its southern extremity to Queenscliff Headland at its northern extremity. The 
beach is a popular tourist area with approximately 2.3 million visitors annually 
(Destination NSW, 2016). Deepwater wave conditions offshore of both North 
Narrabeen and Manly are of moderate to high incident wave energy typically from 
the south-south-east direction, with an average significant wave height of 
approximately 1.6 m and 10 s peak wave period. In the nearshore (at the 10 m 
isobath), wave sheltering by the prominent southern headland at Manly means that 
average significant wave heights are approximately 0.5 m, compared to 
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approximately 1.3 m at the more-exposed North Narrabeen site. Tides along this 
stretch of coastline are semidiurnal with a spring tidal range of 1.3 m. 

Fig. 5.17. Location of the two crowd-sourced shoreline mapping stations used in this 

study. (a) The Sydney metropolitan area in southeastern Australia, including the location 
of the Sydney wave buoy used in this study; (b) the North Narrabeen site; (c) the Manly 
site. 

At each of the two sites, a stainless steel camera cradle and signage (Fig. 5.18) was 
installed to facilitate community participants in collecting images of the beach with 
their smartphones at a desired camera location (xc,yc,zc) and angle (azimuth, pitch 
and roll). The camera cradle at the North Narrabeen site was located along a 
nature trail on Turimetta Headland at an elevation of 27.1 m above mean sea level 
(MSL). This location provides a southwards (azimuth = 208° TN) aspect of the 
beach extending to a distance of approximately 1100 m alongshore, including the 
entrance to the coastal inlet in the nearfield. The pedestrian traffic along this nature 
trail was estimated at 2 passers-by every 10 minutes during daylight hours. At the 
Manly site, the camera cradle was located on a public staircase on the southern 
headland with relatively high pedestrian traffic (approximately 30 passers-by every 
10 minutes during daylight hours). This cradle was positioned at a lower elevation 
relative to the North Narrabeen site (17.3 m above MSL). This position provides a 
northwards (azimuth = 334° TN) aspect along the southern end of Manly Beach, 
extending a distance of approximately 600 m alongshore. Example smartphone 
images captured from each of the two sites as well as surveyed transects and 
shorelines used for validation (discussed further in Section 5.2.2.3) are shown in 
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Fig. 5.19. Location and participation details of the two sites are provided in Table 
5.4. 

 
Fig. 5.18. (a) The stainless steel smartphone camera cradle installed above Manly 

Beach and used to constrain the camera position, azimuth, tilt and roll of the images 
submitted by the community. (b) Accompanying instructions for uploading the image to 
social media or via email. 

Sharing of smartphone images captured by the community to a centralised 
database was undertaken using a variety of options. In the initial phase of the 
study, community participants could either upload their images to the project’s 
Facebook page (www.facebook.com/coastsnap), or by emailing them as a .jpg file 
attachment. Five months into the study (commencing 03/11/2017) the ability to 
share images was adjusted to enable participants to also upload their images to 
other popular social media platforms (Twitter, Instagram and Facebook). A site-
specific hashtag (e.g. #CoastSnapManly) was used to identify and subsequently 
download the community images on the social media platform site. A sign located 
adjacent to each camera cradle provided the relevant instructions for the 
community to share their images for shoreline change mapping purposes (Fig. 
5.18b). These instructions included stating the capture time of the image (if not 
uploading straight away) and avoiding cropping the image or using digital image 
filters (for Instagram in particular). The instruction to state the image capture time 
was necessary because of the removal of Exif image metadata by the social media 
platforms, such that the capture time taken could not be read directly from the 

http://www.facebook.com/coastsnap
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image file itself. In these cases, the image capture time was recorded as that stated 
by the participant. If no capture time was stated then the upload time was used and 
possible erroneous times flagged accordingly. 

Site North Narrabeen Manly 

Coordinates 
(151º18’29.28’’ E, 33º 42’ 

8.6’’ S) 
(151º17’26.44’’ E, 

33º47’59’’ S) 

Camera cradle elevation above MSL 27.1 m 17.3 m 

Installation date 24/05/2017 17/05/2017 

Total no. of community photos 
(until 31/12/2017) 

272 128 

Total no. of contributors (until 
31/12/2017) 

124 74 

Images per day (average) 1.23 0.56 

Images per contributor (average) 2.19 1.73 

Table 5.4. General location and participation details of the two site locations for 

community-sourced shoreline change mapping. 

Over the entire seven month study period (17/05/2017 – 31/12/2017) a total of 
400 crowd-sourced images were obtained from the two sites from 198 individuals 
(Fig. 5.20). This is equivalent to an average contribution rate of 0.89 
images/site/day and 2.02 images/individual. The majority of images (57%) were 
shared via the project’s Facebook page, with email submissions providing the 
second most common type of sharing method (40%). Instagram and Twitter 
contributions amounted only to 3% of all images, although this in part reflected 
that these sharing options were only available in the latter stage of the study, as 
well as the fact that Facebook was used as the primary mode for dissemination of 
results. Comparing the relative contributions from each of the two sites, the less-
frequented North Narrabeen site surprisingly received the majority of images 
(68%). We attribute this to the different motivations and social characteristics of 
the people frequenting each site and participating in the program, although these 
aspects are beyond the scope of this study. 
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Fig. 5.19. Example smartphone images and survey transects from the: (a,b) North 

Narrabeen site, and; (c,d) Manly site. The location of three cross-shore transects (solid 
lines) and shoreline positions (dashed lines) surveyed at each site over the seven month 
study period as part of the shoreline validation are also indicated in (a) and (c). Black 
survey transects in (b) and (d) reflect the survey corresponding to the image date (survey 
date = 10/07/2017) and grey surveys the remaining 10 validation surveys over the seven 
month study period. 

Fig. 5.20. Cumulative number of images contributed by the community at each of the two 

sites over the duration of the study period. Coincident times of RTK-GNSS validation 
surveys are also indicated. 
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5.2.2.2. Shoreline change mapping 

Shoreline change mapping from the set of crowd-sourced images was undertaken 
using two different methods (Fig. 5.21). The first method (hereafter “Method 1”) 
comprises a three-step process whereby, for each new community-contributed 
image, the image is first georectified to world coordinates by manually identifying a 
series of fixed ground control points (GCPs) located in the image field of view. 
From this georectified image, the horizontal position of the shoreline (xsl,ysl) is 
then mapped using a shoreline edge detection technique. Once a set of shorelines 
at different stages of the tide are obtained over a certain time period (in this study, 
seven months), they are corrected for tidal variations to generate time-series of 
shoreline change at a consistent elevation datum. The elevation datum used for this 
study is the 0.7 m above MSL elevation contour, corresponding to mean high 
water springs (MHWS). The image georectification, shoreline edge detection and 
tidal correction techniques are described in detail below. 

 

Fig. 5.21. Workflow of the different steps taken to map shoreline change from the crowd-

sourced smartphone images. 

Since Method 1 requires the analyst to manually identify GCPs in each of the 400 
community-contributed images, a second, more-automated method was also tested 
(“Method 2”). In this second method, the GCPs in the field of view are instead 
manually identified for a single control image only to determine the camera 
intrinsic and extrinsic parameters needed for georectification. Each subsequent 
crowd-sourced image is then registered to the control image using the auto-align 
function in the commercial software Adobe Photoshop. This software was chosen 
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as it was found to be particularly robust in registering images from a wide range of 
image resolutions, smartphone models and lighting conditions. Since the intrinsic 
and extrinsic parameters are known in the control image, the new registered image 
can subsequently be georectified to world coordinates using these estimated 
parameters. A comparison of the shoreline mapping accuracy of Methods 1 and 2 
is undertaken in Section 5.2.3. 

Image georectification 

Image georectification describes the transformation from the image plane in pixel 
coordinates (U,V) to world coordinates (x,y,z). To undertake this transformation, a 
simple pinhole camera model is assumed using a homogenous formulation 
(Hartley and Zisserman, 2004): 

[
𝑈
𝑉
1
] = 𝑃 [

𝑥
𝑦
𝑧
1

]        (5.1) 

P is a 3x4 projection matrix which is defined for the pinhole camera model as: 

𝑃 = 𝐾𝑅[ 𝐼 | − 𝐶]       (5.2) 

K is a 3x3 matrix that contains the intrinsic parameters of the camera: 

𝐾 = [
𝑓 𝑠 𝑝𝑈
0 𝛾𝑓 𝑝𝑉
0 0 1

]       (5.3) 

where f is the camera focal length, s is the skew, γ is the pixel aspect ratio and pU 
and pV are the pixel coordinates of the principal point. R is a 3x3 rotation matrix 
defined in terms of azimuth (α), tilt (t) and roll (r) of the image plane relative to 
world coordinates (refer Wolf et al., 2014). I in Eq. 5.2 is a 3x3 identity matrix and 
C is a 3x1 vector of the camera location in world coordinates (xc,yc,zc)T. 

The location of the camera (xc,yc,zc)T is fixed in this crowd-sourced monitoring set-
up by the stainless steel camera cradle at the two sites (neglecting minor variations 
in lens position between smartphone models) and can be determined by field 
survey. The number of unknowns in Eqs. 5.1-5.3 are therefore reduced to: f, s, γ, 
pU, pV, α, t and r (eight unknowns in total). To further reduce the number of 
unknowns, it is assumed that pU and pV correspond to the centre of the image 
plane, that the pixels are square (i.e., γ ≈1) and that the skew is zero (Josephson 
and Byrod, 2009). This results in a total of four unknowns, which are solved using 
non-linear least squares and at least two correspondences of GCP world and image 
coordinates. A total of seven GCPs were used for georectification at each of the 
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two sites to optimise the non-linear least squares fit. An example of the image 
georectification at the North Narrabeen site, including the location of the GCPs in 
the image, is presented in Fig. 5.22. The resolution of the georectified image is set 
to 0.5 m, which approximately equates to the minimum pixel footprint at the two 
sites (refer Section 5.2.2.3). 

 
Fig. 5.22. Example of the image georectification process from oblique smartphone 

images. (a) Oblique images at the North Narrabeen site, with the seven ground control 
points identified. (b) The same image georectified to world coordinates. 

The horizontal field of view (HFOV) of each image is calculated from the focal 
length (determined for each image in Method 1 by non-linear least squares) and the 
image size: 



Photogrammetry and image processing techniques for beach monitoring 

 

 242 

HFOV = 2 tan−1
𝑁𝑈

2𝑓
       (5.4) 

where NU is the image width and f is the focal length, both in pixels. Lens 
distortion is ignored in the georectification as modern smartphones internally 
correct for most radial distortion. This has the significant advantage that, accepting 
a certain level of inaccuracy, a lens calibration is not required. Residual lens 
distortion not corrected internally by the smartphone is reduced in the site set-up 
phase by aligning the stainless steel camera cradle so that the shoreline of interest 
corresponds with the centre of the image (i.e., away from significant lens distortion 
at the image extremities). 

Shoreline edge detection 

The shoreline can be defined in optical coastal images as the time-varying interface 
between ‘wet’ pixels representing the ocean surface and ‘dry’ pixels indicating 
beach sediments (Boak and Turner, 2005). Numerous approaches to identify the 
shoreline signature from optical images have been proposed, including: localised 
maxima in the image intensity (Plant and Holman, 1997); pixel clustering based on 
hue and intensity (Aarninkhof et al., 2003); divergences in RGB colour channels 
(Turner et al., 2004); and machine learning techniques (Hoonhout et al., 2015). 
Plant et al. (2007) compared different shoreline detection algorithms and found 
that each method was generally interchangeable, but performed optimally for the 
environmental conditions in which they were developed. Here we detect the 
shoreline edge based on the difference in the red and blue colour channels, 
hereafter Red minus Blue, or “RmB” colour space. These two colour channels 
were found from preliminary testing to display the most distinct contrasts between 
the dry sand and ocean surface at these two sites. 

A locally-adaptive thresholding algorithm is used here to determine the optimum 
image-wide contrast (RmBOPT) between the red and blue channels coinciding with 
the shoreline (Fig. 5.23). To seed this algorithm, a set of cross-shore transects 
spaced every 5 m alongshore and spanning both the beach and surf zone is first 
defined at each site. For each georectified image, pixels are sampled along these 
transects in RmB colour space (Fig. 5.23b and e) to create a bimodal distribution 
comprising the dry sand and wet ocean surface (Fig. 5.23c and f). The threshold is 
defined between the two local peaks in this bimodal distribution. Based on 
preliminary testing of traditional thresholding methods (e.g. Otsu, 1979), a more 
robust threshold for these conditions is found by weighting it towards the dry sand 
peak. This is achieved using the simple weighting formula: 

RmBOPT = 0.33(RmBWET) + 0.67(RmBDRY)    (5.5) 

where RmBWET and RmBDRY are the RmB values of the wet and dry pixel peaks in 
the bimodal distribution, respectively. The shoreline edge (xsl,ysl) is then 
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determined from this optimum threshold using a marching squares algorithm in 
RmB colour space (Cipolletti et al., 2012). Inspection of the shoreline detected by 
this method (Fig. 5.23a and d) indicates that this position roughly corresponds to 
the upper swash zone, which is later confirmed by in situ validation. 

 

Fig. 5.23. Shoreline edge detection at North Narrabeen (a,b,c) and Manly (d,e,f). (a,d) 

Pre-defined cross-shore transects (red lines) spanning the beach and surf-zone are used 
to sample the Red minus Blue (RmB) colour space (b,e). This creates an image-wide 
bimodal distribution (c,f) that is then used to determine the optimum threshold RmBOPT 
(red dashed line) for shoreline detection. Mapped shorelines from this process are 
indicated by yellow dashed lines. Note that transects are indicated only every 50 m 
alongshore for clarity. 

Tidal correction 

Similar to established coastal imaging approaches (Aarninkhof et al., 2003; Harley 
et al., 2011b; Plant et al., 2007), the elevation of the mapped shoreline Zsl is 
assumed constant alongshore. It is given here by the simple elevation model: 

Zsl  = Ztide + ΔZconst       (5.6) 

where Ztide is the astronomical tide at the time of image capture and ΔZconst is a 
constant vertical offset that takes into account characteristic wave setup at the 
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shoreline and differences between the actual and detected shoreline. Tidal 
anomalies are ignored in this elevation model as these are typically small (+/- 0.09 
m for one standard deviation) for this coastline (Turner et al., 2016b). Shoreline 
elevation changes due to varying offshore wave conditions are also ignored as, due 
to saturation of the incident swash band, these influences have been found to be 
relatively small under most conditions on this coastline (Harley et al., 2011b). 
These two assumptions have the significant advantage of removing the need for 
measured tide and wave data, which is often sparse or difficult to obtain. The 
potential for large errors resulting from these assumptions (e.g. during storm 
conditions when significant tidal anomalies and/or offshore waves may occur) are 
reduced by community images rarely being collected during extreme conditions. 
ΔZconst is determined from field survey measurements as described in Section 
5.2.2.3. 

Beach Width (BW) is defined at each cross-shore transect (refer Fig. 5.23) as the 
distance from a fixed landward benchmark in the backshore to the shoreline edge 
(xsl,ysl). Since crowd-sourced images are by their nature collected at random stages 
of the tidal cycle, a tidal correction is needed for direct comparison of BW 
collected at different tide levels. Assuming a stationary and planar beachface slope, 
this BW correction is undertaken using the equation: 

∆BW𝑡𝑖𝑑𝑒 = 
𝑍𝑠𝑙−𝑍𝑑𝑎𝑡𝑢𝑚

(𝛽𝑏𝑓)
       (5.7) 

where Zsl is the elevation of the shoreline calculated in Eq. 5.6, Zdatum is the 
shoreline elevation datum (i.e., 0.7 m above MSL) and <ßbf> is the stationary and 
planar beachface slope for the transect of interest. The tidally-corrected beach 

width (BW𝑐𝑜𝑟𝑟)  at each transect is subsequently calculated by: 

BW𝑐𝑜𝑟𝑟 = BW - ∆BW𝑡𝑖𝑑𝑒      (5.8) 

Equation 5.7 requires knowledge of the beachface slope, which is usually 
determined from in situ measurements. To avoid a reliance on in situ data, a simple 
method to estimate <ßbf> directly from the set of crowd-sourced shorelines is 
applied. This method assumes that the optimum beachface slope is that which 
minimises the variance of the tidally-corrected beach width time-series. An iterative 
procedure using Eqs. 5.7 and 5.8 thereby calculates the standard deviation of 

BW𝑐𝑜𝑟𝑟 for a range of <ßbf> (between 0.01 and 0.3, typical of a sandy beach). The 

optimum slope is then determined as that where the standard deviation of BW𝑐𝑜𝑟𝑟 
is a minimum. 

 
5.2.2.3. Validation of smartphone-derived shoreline measurements 
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Validation of the smartphone-derived shoreline measurements was undertaken by 
a series of approximately bi-weekly field surveys performed over the seven month 
study period (11 surveys in total, Fig. 5.20). The field surveys were designed to 
quantify a number of aspects related to accuracy of the smartphone-derived 
shorelines, specifically: 1) the overall shoreline accuracy and its variability 
alongshore; 2) the influence of image resolution; 3) the influence of instantaneous 
snapshot versus timex images, and; 4) the effect of the image registration 
algorithm. 

During each survey, the shoreline was measured directly by a field operator at both 
sites using RTK-GNSS (horizontal accuracy ~ 0.05 m). Shoreline measurements 
were undertaken by following the upper part of the swash zone along the beach 
within the field of view of each station (refer Fig. 5.19a and c). Simultaneously to 
these in situ shoreline measurements, a second field operator positioned at the 
camera cradle collected smartphone data (using an LG G5 model smartphone) in 
order to obtain smartphone-derived shorelines for direct comparison. These data 
consisted of 10-minute videos which were post-processed to create a set of 
snapshots sampled at different instances of swash excursions on the beach face (10 
snapshots in total for each site and field survey). Timex images were also calculated 
by averaging all video frames over the 10-minute time period. The resolution of 
these snapshot and timex images were 1920x1080 pixels (i.e., 2 MP) and are 
hereafter referred to as “HighRes” images. In order to test the effect of image 
resolution on the shoreline accuracy, these same images were down-sampled to 
lower resolution (“LowRes”) images, equivalent to the resolution (720x405 pixels, 
or 0.3 MP) of images uploaded to Facebook, Twitter or Instagram. 

In addition to shoreline measurements, three cross-shore transects spanning the 
near and farfields of each site were surveyed (North Narrabeen: transects N1, N2 
and N3, Manly: transects M1, M2 and M3). RTK-GNSS surveys along these 
transects were measured from the backshore to approximately MSL and were used 
for two validation purposes: 1) to accurately identify the cross-shore position of 
the 0.7 m elevation contour at three locations for direct comparison with corrected 
beach width time-series (Eqs. 5.7 and 5.8), and; 2) to validate beachface slope 
estimates. The location of these transects correspond to alongshore distances of 
135 m, 345 m and 530 m for N1, N2 and N3, respectively, and 40 m, 95 m and 
200 m for M1, M2 and M3, respectively (refer Fig. 5.23). These transect locations 
as well as example shoreline measurements for a survey performed on 10/7/2017 
are presented in Fig. 5.19a and c. 

Table 5.5 summarises the environmental conditions (offshore waves and 
astronomical tides) during each of the 11 field surveys. Surveys were undertaken at 
different stages of the tide and during deepwater wave conditions ranging from H0 
= 0.85 to 1.82 m. To determine the constant ΔZconst in the shoreline elevation 
model (Eq. 5.6), Fig. 5.24 indicates the alongshore-averaged shoreline elevation 
from RTK-GNSS (Zgnss) plotted against the astronomical tide (Ztide). The results 
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indicate that the shoreline elevation is typically 0.40 m above the astronomical tide 
at these two sites. An elevation model with constant vertical offset ΔZconst = 0.40 
m shows reasonable agreement to the measured shoreline elevation (R2 = 0.77), 
which was subsequently adopted for the shoreline elevation model at the two sites. 
Notably, this ΔZconst value agrees reasonably well with the estimated mean wave 
setup (<η> = 0.46 m) at the shoreline of this coastline, as calculated by (Stockdon 
et al., 2006): 

⟨η⟩ = 0.35𝛽𝑏𝑓(𝐻𝑜𝐿0)
1
2⁄       (5.9) 

where Lo is the deepwater wavelength calculated by linear wave theory (Lo = 
gTp

2/2π) and Ho, Tp and βbf are characteristic values based on the environmental 
conditions over the study period summarized in Table 2 (average Ho = 1.35 m, Tp 
= 10.3 s and βbf = 0.09). This suggests that the mean setup <η> could also 
potentially be used to estimate the constant offset in Eq. 5.6. 

 
Fig. 5.24. Alongshore-averaged shoreline elevations measured by RTK-GNSS (Zgnss) 

at the Manly and North Narrabeen sites against astronomical tide at the time of 
measurements (Ztide). The solid line represents a 0.4 m vertical offset from the 
astronomical tide and the dashed line a 1:1 relationship. 

Fig. 5.25 presents the georectified pixel footprints for both HighRes and LowRes 
images along the shoreline at both sites. At North Narrabeen (Fig. 5.25a), the pixel 
footprint for HighRes images is sub-metre in the nearfield (alongshore distance = 
0 m – 280 m, refer Figure 5.23a). The footprint then increases exponentially to 
12 m x 24 m (East/West x North/South) in the farfield (alongshore distance = 
1100 m). In contrast, the LowRes images at North Narrabeen have a sub-metre 
footprint up to only 130 m alongshore distance and increases to 32 m x 64 m in 
the farfield. At Manly (Fig. 5.25b), the georectified pixel footprint for HighRes 
images are sub-metre up to an alongshore distance of 140 m and increases 
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exponentially to 5 m x 13 m in the farfield (alongshore distance = 600 m). LowRes 
images at Manly meanwhile have a sub-metre pixel footprint up to an alongshore 
distance of 65 m and increases to 14 m x 36 m in the farfield. The overall slightly 
lower resolution of the pixel footprints for the Manly site are due to the camera 
cradle being positioned almost 10 m lower in elevation compared to the North 
Narrabeen site. 

Survey date 
H0 

(m) 
Tp 

(s) 
Dir 

(° TN) 

Tide Level 
(m above MSL) 

Beachface slope at transect 
βbf 

N M N1 N2 N3 M1 M2 M3 

30/5/2017 0.85 11.4 157 -0.11 0.15 0.13 0.15 0.09 0.06 0.07 0.07 

12/6/2017 1.32 9.9 97 -0.12 0.10 0.11 0.14 0.12 0.06 0.07 0.07 

27/6/2017 1.46 9.8 161 -0.04 0.26 0.05 0.11 0.12 0.09 0.09 0.08 

10/7/2017 0.94 13.4 166 -0.30 -0.03 0.10 0.09 0.12 0.09 0.10 0.10 

29/7/2017 1.50 9.4 165 0.15 0.37 0.04 0.05 0.16 0.08 0.08 0.08 

24/8/2017 1.82 10.1 174 -0.45 -0.20 0.03 0.04 0.09 0.07 0.07 0.08 

21/9/2017 1.74 12.4 154 -0.52 0.03 0.06 0.15 0.11 0.07 0.08 0.10 

5/10/2017 1.14 11.7 131 -0.42 -0.67 0.04 0.14 0.11 0.09 0.10 0.10 

17/10/2017 1.31 9.7 92 -0.58 -0.42 0.06 0.08 0.09 0.09 0.09 0.10 

4/11/2017 1.59 8.7 151 -0.78 -0.59 0.05 0.11 0.06 0.07 0.09 0.06 

17/11/2017 1.20 6.4 78 -0.33 -0.58 0.04 0.10 0.17 0.07 0.08 0.11 

Average 1.35 10.3 140 -0.31 -0.14 0.06 0.11 0.11 0.08 0.08 0.09 

Table 5.5. Environmental conditions during the 11 field surveys used for shoreline 

validation. Significant deepwater wave height (H0), peak wave period (Tp) and wave 
direction (Dir) were derived from the Sydney deepwater waverider buoy. Tide level refers 
to astronomical tide levels above mean sea level at the specific time of RTK-GNSS 
survey at each site (N = North Narrabeen and M = Manly). Beachface slopes are based 
on RTK-GNSS surveys at the six validation transects (North Narrabeen: N1, N2 and N3; 
Manly: M1, M2 and M3) indicated in Fig. 5.19. 
 

5.2.3. Results 

5.2.3.1. Accuracy of smartphone-derived shoreline measurements 

The dataset of simultaneous RTK-GNSS and smartphone-derived shorelines 
collected using a variety of approaches over the 11 field surveys are subjected to a 
range of analyses. To illustrate the accuracy of smartphone-derived shorelines, Fig. 
5.26 presents examples at the Manly site of shorelines derived from a set of 10 
snapshot images, a timex image and RTK-GNSS, all obtained over the same 10-
minute time period and at two different image resolutions. The figure indicates a 
strong agreement between smartphone-derived shorelines and in situ 
measurements, even when snapshot and LowRes (0.3 MP) images are used. Note 
that while shorelines are mapped on georectified images (Fig. 5.23), they are shown 
in this figure on the oblique-view images for clarity. 
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Fig. 5.25. Georectified pixel footprints for low resolution images typical of those uploaded 

to social media and high resolution images sourced directly from the smartphone. (a) 
The North Narrabeen site; (b) the Manly site. Alongshore distances at both North 
Narrabeen and Manly are indicated in Fig. 5.23. 

The cross-shore accuracy of smartphone-derived shorelines quantified using the 
entire survey dataset is summarised in Fig. 5.27. Considering shorelines mapped 
from HighRes snapshot images (a total of 110 snapshots, 10 per survey) and using 
Method 1 (i.e., manual identification of GCPs for image georectification), the mean 
cross-shore deviation between the smartphone-derived and measured shorelines is 
-1.65 m at North Narrabeen. This reflects that smartphone-derived shorelines are 
overall slightly more landward on average relative to the RTK-GNSS shorelines. 
At Manly, the mean deviation is 0.49 m, indicating slightly more seaward 
smartphone-derived shorelines on average. Distributions are shown to be normally 
distributed about this mean (Fig. 5.27a and c). The overall root mean square 
deviation (RMSD) between smartphone-derived and measured shorelines is 3.91 m 
and 2.63 m at North Narrabeen and Manly, respectively. 
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Fig. 5.26. Example smartphone-derived shorelines compared to simultaneous in situ 

RTK-GNSS measurements at the Manly site for a validation survey on 10/07/2017. (a) 
High resolution (2 MP) image; (b) low resolution (0.3 MP) image typical of images 
uploaded to Facebook, Twitter and Instagram. Yellow shorelines denote those mapped 
using instantaneous snapshot images captured over a 10-minute time period, while red 
shorelines indicate those mapped using timex images derived over the same time 
period. 

Boxplots of cross-shore deviations for four different shoreline mapping 
combinations at the two sites (including the aforementioned combination) are 
presented in Fig. 5.27b and d. Based on the same HighRes images but using 
Method 2 for shoreline mapping (i.e., image registration prior to georectification), 
the RMSD interestingly is slightly reduced to 3.60 m and 2.15 m at North 
Narrabeen and Manly, respectively. This suggests that image registration actually 
reduces uncertainty in the shoreline position to a small degree (i.e., the manual 
identification of GCPs for each image adds a small amount of shoreline 
uncertainty). Considering LowRes images and Method 1, the RMSD increases 
(although only slightly) to 3.94 m (North Narrabeen) and 2.91 m (Manly). Finally, 
shorelines were mapped using HighRes timex images (and using Method 1) instead 
of snapshot images. By removing the influence of individual swash oscillations on 
the shoreline position, the RMSD is reduced to 3.14 m and 2.14 m at North 
Narrabeen and Manly, respectively. 



Photogrammetry and image processing techniques for beach monitoring 

 

 250 

 

Fig. 5.27. Deviations between smartphone-derived shorelines (using a variety of 
mapping combinations) and shorelines measured in situ using RTK-GNSS. (a,c) 

Deviations between shorelines mapped with snapshot images using high resolution 
images and “Method 1”. (b,d) Boxplots of deviations using three other mapping 
combinations. Numbers above each boxplot coincide with the root mean square 
deviation (RMSD) for each combination. Top panels represent shoreline accuracy 
statistics at the North Narrabeen site and bottom panels at the Manly site. 

Figure 5.28 presents the alongshore variability in RMSD for both the HighRes and 
LowRes snapshot/Method 1 combinations. The results show very minor 
differences in the shoreline accuracy between the two image resolutions. This is 
despite divergences in georectified pixel footprints as the shoreline moves further 
from the camera (Fig. 5.25). Accuracy is shown to be best in the camera nearfield 
where the pixel footprint is sub-metre (minimum RMSD for the HighRes images 
= 1.44 m at an alongshore distance of 15 m for North Narrabeen and 1.35 m at an 
alongshore distance of 45 m for Manly). A slight decrease in shoreline accuracy is 
observed as the shoreline moves further from the camera stations. The lowest 
accuracy over the validation region is at an alongshore distance of 365 m for North 
Narrabeen (RMSD = 6.72 m) and at 300 m for Manly (RMSD = 3.37 m). For 
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North Narrabeen, this location does not coincide with the largest pixel footprint in 
the validation region, but is instead related to an area of complex shoreline 
morphology formation, particularly at low tides (e.g. low tide terraces, swash bars, 
rip channels). Such challenges in mapping shorelines in these more complex 
environments have also been observed in established coastal imaging systems 
(Almar et al., 2012b; Quartel et al., 2006). 

 
Fig. 5.28. Alongshore variability in root mean square deviation (RMSD) between 

smartphone-derived shorelines using both high resolution and low resolution images and 
measured shorelines using RTK-GNSS. (a) the North Narrabeen site; (b) the Manly site. 
Alongshore locations for both the North Narrabeen and Manly sites are indicated in Fig. 
5.23. 

5.2.3.2. Time-series of shoreline change over study period 

Crowd-sourced images provided by the community over the study period were 
georectified using Method 1 and mapped using the shoreline edge detection 
method described above. From the original 400 images, a total of 291 shorelines 
(equivalent to 73%) were able to be mapped using the shoreline edge detection 
technique. The remaining 27% were automatically rejected by the shoreline 
detection algorithm due to issues such as very low light, sun glare over the ocean 
surface, large shadows on the beach and participants not using the camera cradle 
for image capture. 

Statistics of extrinsic and intrinsic parameter solutions from these georectified 
images using Method 1 are summarised in Table 5.6. In terms of extrinsic 
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parameters, the azimuth, pitch and roll of the image plane relative to world 
coordinates are found to vary, due to relative differences in camera positions 
between smartphones, by 1-2° only. This highlights the success of the camera 
cradle design in largely restricting significant camera movement between crowd-
sourced images. With regards to intrinsic parameters, Fig. 5.29 presents the HFOV 
distribution for all submitted images. This distribution reveals several spikes in the 
HFOV of community-contributed images representing images with similar lens 
characteristics. Cross-referencing these HFOV values with images submitted via 
email (where the Exif metadata that includes camera model is retained) reveals that 
these spikes coincide with various popular smartphone models, such as the iPhone 
5S/SE/6 (HFOV= 60.5°, 115 images), the iPhone 7 (HFOV = 62.5°, 52 images) 
and the iPhone 5 (HFOV = 57°, 17 images). This gives us confidence that our 
methods are able to correctly estimate the HFOV solely through correspondences 
between GCP world and image coordinates and hence provide an indication of the 
likely smartphone model used. 

 
Fig. 5.29. Distribution of the Horizontal Field of View (HFOV) calculated from the 291 

community submissions georectified using ground control points identified in each 
image. Several spikes representing popular smartphone models are observed. 

The average optimum RmB threshold for shoreline mapping (RmBOPT) was found 
to be 39.4 at North Narrabeen and 25.6 at Manly. RmBOPT varied significantly 
between images, which highlights the value of using a locally-adaptive threshold 
over user-defined stationary values. The set of 291 shoreline positions and 
associated elevations (Eq. 5.6) was then tidally-corrected to the 0.7 m above MSL 
elevation datum (Eqs. 5.7 and 5.8) to create time-series of beach widths at each 
cross-shore transect. 

Beach width time-series at transects corresponding to RTK-GNSS monitoring at 
North Narrabeen (transect N2) and Manly (transect M2) are shown in Fig. 5.30. A 
smoothing spline is applied to raw data in order to reduce noise associated with 
additional uncertainties in the method (e.g. inaccurate image capture time, swash 
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oscillations and georectification uncertainties). These two time-series highlight the 
ability of the method to map the evolution of the shoreline across different sites. 
At North Narrabeen, the beach width at transect N2 is shown to increase rapidly 
in the first six weeks of the study period, from a minimum of 70 m to a maximum 
of 103 m (i.e. 33 m of beach width growth). Over the remainder of the study 
period the beach width fluctuates significantly in association with large offshore 
wave events of more than 5 m significant wave height (refer Fig. 5.30c). In 
contrast, at Manly the beach width at transect M2 is shown to slowly decrease over 
the study period, from a width of 28 m at the start of the study period to 20 m by 
the end. This is equivalent to a trend rate of 11 m/year over the study period at 
this site. We attribute these contrasting shoreline behaviours at the two nearby sites 
to the different degrees of exposure to offshore wave energy as well the fact that 
North Narrabeen is adjacent to a dynamic coastal inlet (discussed in further detail 
in Section 5.2.4). 

Site North Narrabeen Manly 

Azimuth 208.3°±1.2° 334.4°±1.5° 

Tilt 74.4°±2.6° 75.6°±1.3° 

Roll -1.7°±0.6° -0.3°±0.4° 

HFOV 61.5°±2.8° 61.9°±3.2° 

RmBOPT 39.4±20.0 25.6±15.8 

Table 5.6. Statistics of extrinsic (azimuth, tilt and roll) and intrinsic (horizontal field of 

view) image parameters as well as the optimum Red minus Blue threshold (RmBOPT) for 
shoreline edge detection, determined from the 291 shorelines georectified and mapped 
using Method 1. Numbers and range represent the mean value and +/- 1 standard 
deviation. 

 
5.2.3.3 Beachface slope estimates 

The tidal correction method adopted in this study (Section 5.2.2.2.3) means that, in 
addition to time-series of beach width, the average beachface slope can also be 
estimated from the crowd-sourced images. Fig. 5.31 presents the estimated average 
beachface slope <ßbf> from this method along the beach at each site. This is 
compared to equivalent RTK-GNSS measured slopes averaged at each validation 
transect over the 11 field surveys. At North Narrabeen the estimated average slope 
shows significant alongshore variability, with the mildest slopes at the entrance to 
the coastal inlet (minimum estimated <ßbf> = 0.05 at an alongshore distance of 
180 m) and steeper slopes as the shoreline extends away from the inlet. This agrees 
well with alongshore variability in the measured average beachface slope over the 
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same survey period. At Manly, the estimated slope is overall slightly milder than at 
North Narrabeen and more uniform alongshore (average estimated beachface 
slope: 0.05 < ßbf < 0.10). This alongshore pattern agrees well with measured 
average slopes at Manly, although there is a 10-25% underestimation of the average 
beachface slope by this method at this site. 

 
Fig. 5.30. Time-series of beach widths from the crowd-sourced data at: (a) North 

Narrabeen transect N2, and; (b) Manly transect M2 (refer to Fig. 5.19 for transect 
locations). Each time-series has been tidally corrected to the mean high water springs 
elevation contour. (c) Significant wave heights (H0) measured over the same period by 
the Sydney deepwater waverider buoy (refer to Figure 1 for buoy location). 
 

5.2.4. Discussion 

This study has demonstrated the feasibility of using smartphone images sourced 
from social media platforms and community email submissions (i.e. crowd-
sourcing) for the purpose of shoreline change mapping. Through the simple yet 
innovative installation of a stainless steel camera cradle and appropriate signage, a 
significant number of image contributions by the community (~0.89 
images/day/site on average) were able to be obtained at very little cost or 



OTHER PHOTOGRAMMETRIC APPLICATIONS & TECHNIQUES 

 

 
255 

monitoring effort. Comparisons with in situ shoreline measurements indicate that 
this method is capable of achieving reasonable shoreline accuracies across stretches 
of coastline spanning 100 m to more than 1 km. Optimum conditions in terms of 
shoreline accuracy are found in the camera nearfield and where less-complex (i.e., 
alongshore-uniform) shoreline morphology is present. In these conditions, the 
RMSD between smartphone-derived and measured shorelines is observed to be as 
low as 1.35 m. Shoreline accuracy meanwhile degrades away from the cradle 
location and in regions where more-complex low tide beach morphology develop. 

Fig. 5.31. Alongshore variability in average beachface slope estimates (grey line) at: (a) 

the North Narrabeen site; and (b) the Manly site, using the method described in Section 
5.2.2.2.3. Surveyed beachface slopes at the three transects measured by RTK-GNSS at 
each site and averaged over the 11 field surveys are shown in black (slope ranges 
represent +/- 1 standard deviation). Alongshore distances at both North Narrabeen and 
Manly are indicated in Fig. 5.23. 

A concern regarding the use of images sourced from social media platforms was 
the extent to which image resolution might restrict accurate shoreline mapping. 
Comparisons undertaken in this study however between low resolution images 
typical of those uploaded to Facebook, Twitter and Instagram and higher 
resolution images without any additional compression suggest that image 
resolution is less restrictive than expected. We attribute this in part to the stations 
being located at a reasonable elevation above the shoreline as well as having an 
alongshore, rather than cross-shore, shoreline aspect. Shorelines are two 
dimensional features that inherently display greater dependence in the alongshore 
than the cross-shore direction. The alongshore aspect from the camera cradle 
position therefore means that georectified pixel footprints are minimised in the 
cross-shore direction, where shoreline variability information is most critical. This 
can be seen in Fig. 5.25, where the east/west (approximating the cross-shore 
direction) pixel footprints are lower by at least a factor of two compared to the 
north/south (approximating the alongshore direction) footprints. This implies that 
appropriate positioning of the camera cradle is important for shoreline accuracy, 
with an alongshore aspect of the camera cradle relative to the shoreline 
recommended. 
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The frequency of image submissions from the community at the two sites is 
considered sufficient for shoreline monitoring applications at a number of 
different time-scales. For example, for long-term shoreline monitoring and 
numerical model prediction of future shoreline change, Splinter et al. (2013) found 
that at least monthly shoreline sampling frequencies were appropriate. The near-
daily image sampling obtained here is particularly valuable for adequately resolving 
the shoreline response to individual storm events, where data obtained both 
immediately prior to and following the storm is critical. An advantage of crowd-
sourced shoreline mapping is that the community can be engaged via social media 
to collect pre/post images in the event of a forecast storm. This was the case for a 
storm event that occurred between 18-22/08/2017, where a social media post was 
placed on the project Facebook page about a forecast storm that resulted in a spike 
in the number of image submissions before and after the event. In terms of longer-
term shoreline change, Fig. 5.32 shows a sequence of images (registered for ready 
comparison using Method 2 and taken at equivalent tide levels) that captures the 
evolution of the entrance to the North Narrabeen coastal inlet over the seven 
month study period. The regular community submissions recorded more than 
60 m of beach width accretion at the cross-shore transect adjacent to the inlet 
entrance. This is equivalent to an annual beach width growth rate of 80 m/year, 
suggesting that the inlet is rapidly moving towards a state of complete closure that 
is characteristic of these intermittently opening and closing inlet systems (Morris 
and Turner, 2010), but rarely recorded at such high resolution.  

Placing this crowd-sourced shoreline mapping approach in the context of other 
remote sensing methods, the cross-shore accuracy is comparable to that reported 
using established coastal imaging based on fixed camera systems (e.g. Aarninkhof 
et al., 2003; Harley et al., 2011; Pianca et al., 2015; Smith and Bryan, 2007) and 
significantly better than present satellite-derived shoreline mapping capabilities (e.g. 
García-Rubio et al., 2015; Liu et al., 2017b; Luijendijk et al., 2018; Pardo-Pascual et 
al., 2012). Where crowd-sourced shoreline mapping is particularly advantageous is 
its involvement of the community in the data collection. As outlined by Conrad 
and Hilchey (2011), this co-partnership between local communities and 
scientists/engineers/government can lead to many positive benefits, including: 
making science and engineering expertise more accessible to the public; 
encouraging greater interactions and knowledge sharing between local stakeholders 
and experts; building social capital; meeting government desires to be more 
inclusive; and leading to a greater democratisation of the decision-making process. 
Although not the focus of this work, a preliminary survey conducted of some 
participants that contributed images in this study (n = 25) provided 
overwhelmingly positive feedback. A word cloud analysis based on the open 
community responses in the survey revealed the most frequently used words were: 
“fun”, “community”, “hope”, “knowledge”, “great”, “initiative” and “research”. 
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Fig. 5.32. (a-i) Sequence of community images (all at equivalent tide levels) at North 

Narrabeen charting the rapid 60 m growth in the shoreline adjacent to the coastal inlet 
over the seven month study period. Solid and dashed black lines represent the present 
and previous shoreline at each time instance, respectively. Markers indicate the transect 
of interest used for the corresponding beach width time-series (j). Raw beach width 
measurements are tidally corrected to the mean high water springs elevation contour 
(grey crosses) and subsequently smoothed using a smoothing spline (black line). 
 

Some remaining challenges of crowd-sourced shoreline change mapping include: 1) 
the use of instantaneous snapshot images to map the shoreline; 2) the accuracy of 
the image capture time; and 3) automation of data collection. The use of 
instantaneous snapshots instead of more-robust timex images are shown in this 
study to result in a moderate (23%) decrease in shoreline accuracy at these two 
sites. This moderate decrease is considered acceptable for these two dynamic 
intermediate beach types, where the shoreline is demonstrated to fluctuate in 
excess of 50 m in the cross-shore direction. Numerous studies (e.g. Nielsen and 
Hanslow, 1991; Stockdon et al., 2006) have found that the magnitude of swash 
oscillations for given deepwater wave conditions scales well with (H0L0)1/2. Hence, 
by this relationship, sites with both 20% larger deepwater wave heights and 20% 
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longer wave periods can expect a further ~30% reduction in shoreline accuracy. 
Such a reduction might reduce the capacity of the method to detect actual 
shoreline signals against considerable measurement noise, particularly for less-
dynamic shorelines such as reflective or dissipative beach types (Wright and Short, 
1984). In these instances, we suggest the following possible adaptations to our 
approach to further reduce shoreline uncertainty: 

1) restricting shoreline mapping from the community images to wave 
conditions below a certain threshold; 
2) incorporating the use of a smartphone app capable of calculating timex 
images on-the-fly over several minutes (e.g. “Average Camera Pro” for the 
iPhone); and/or 
3) using a more complex shoreline elevation model that accounts for time-
varying wave setup and swash oscillations (e.g. Aarninkhof et al., 2003; Harley 
et al., 2011b; Plant et al., 2007). 
 

The trade-offs of these adaptations however are a reduction in available shoreline 
data, a greater reliance on field measurements and increased effort by the 
community in capturing image data. 

With regards to challenges associated with image capture time, the method is 
presently reliant on the upload time to social media unless otherwise stated by the 
participant. While only two of the 400 images in this study were manually flagged 
with very suspicious capture times (meaning that the image times appeared to be 
several hours different to when it was uploaded or stated), this issue becomes 
increasingly critical on coastlines with larger tidal ranges, where even small errors 
in image capture time can lead to poor estimates of the shoreline elevation. Finally, 
the diversity of images collected (i.e., high and low resolution images and different 
smartphone camera models) and various modes of image submission (i.e., 
Facebook, Instagram, Twitter and email) make automation of data collection a 
challenge. The successful application in this study of image registration is shown to 
remove the need for manual identification of GCPs in every single image and 
thereby improve automation. Further automation could also include: the use of 
machine learning algorithms (e.g. Lecun et al., 2015) to automatically detect false 
images; the use of the horizon edge for georectification (e.g. Sánchez-García et al., 
2017); and a customised smartphone app or web application for greater control of 
image submissions and metadata. 

5.2.5. Conclusions 

Oblique images of the coastline using fixed video systems have been used by 
coastal practitioners for decades as a means of obtaining critical information about 
dynamic shoreline processes over a range of time-scales. The proliferation in 
smartphone ownership worldwide and the corresponding abundance of images 
uploaded to social media platforms like Facebook, Twitter and Instagram suggests 
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that, with the aid of simple infrastructure installed at an appropriate location, these 
images could also be harnessed as an alternative low-cost means of obtaining 
shoreline change information. This new crowd-sourced shoreline change mapping 
approach however entails several challenges and trade-offs with respect to 
established and highly-controlled coastal imaging techniques. These challenges 
include: the use of low resolution images; images sourced from a wide range of 
different smartphone lenses of unknown intrinsic camera properties; less-stable 
repeat images; restricted abilities for time-averaging of swash oscillations on the 
shoreline; and uncertainty in image capture times. 

Our results show that, despite these various challenges, it is possible to obtain 
shoreline positions of comparable accuracy to that of established coastal imaging 
systems. This is achieved through the use of surveyed ground control points in the 
image to numerically solve for the most relevant intrinsic and extrinsic camera 
information (i.e., focal length, azimuth pitch and roll) and assisted by the internal 
correction of most radial image distortion in modern smartphone images. Image 
resolution and the use of instantaneous snapshot images for shoreline mapping are 
meanwhile shown in this study at two nearby sites in southeastern Australia (North 
Narrabeen and Manly Beach) to cause only moderate decreases in shoreline 
accuracy. Such decreases are deemed an acceptable trade-off when considering 
both the benefits of crowd-sourced data in terms of costs, logistics and community 
participation, as well as the large degree of shoreline variability typically observed 
on dynamic coastlines. This is particularly exemplified in this study at the North 
Narrabeen site, where the crowd-sourced shoreline mapping was able to capture an 
impressive 60 m growth of the shoreline in just seven months and gain rare, high-
resolution, insights into the morphodynamics of shorelines adjacent to unstable 
coastal inlets. 

The successful application of this crowd-sourced method at these two Australian 
sites opens up new possibilities for shoreline change mapping at suitable locations 
worldwide. This is especially the case for emerging and developing countries, 
where uptake of established coastal imaging systems – and methods to monitor the 
shoreline more generally – has previously been restrictive, but smartphone and 
social media usage is high (Poushter, 2016). Through a network of similar stations 
it might be possible to not only map shoreline evolution at nearby coastal locations 
(as in this study), but detect patterns in shoreline behaviour across regional 
coastlines and ocean basins. Such data could significantly expand our present 
capabilities in tracking and understanding shoreline variability and trends at a wide 
variety of spatial and temporal scales. 
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5.3. MODELLING LANDSCAPE MORPHODYNAMICS BY 
TERRESTRIAL PHOTOGRAMMETRY: AN APPLICATION TO 
BEACH AND FLUVIAL SYSTEMS 

Beach and fluvial systems are highly dynamic environments, being constantly 
modified by the action of different natural and anthropic phenomena. To 
understand their behaviour and to support a sustainable management of these 
fragile environments, it is very important to have access to cost-effective tools. 
These methods should be supported on cutting-edge technologies that allow 
monitoring the dynamics of the natural systems with high periodicity and 
repeatability at different temporal and spatial scales instead the tedious and 
expensive fieldwork that has been carried out up to date. The work herein 
presented analyzes the potential of terrestrial photogrammetry to describe beach 
morphology. Data processing and generation of high resolution 3D point clouds 
and derived DEMs is supported by the commercial Agisoft PhotoScan. Model 
validation is done by comparison of the differences in the elevation among the 
photogrammetric point cloud and the GPS data along different beach profiles. 
Results obtained denote the potential that the photogrammetry 3D modelling has 
to monitor morphological changes and natural events getting differences between 
6 and 25 cm. Furthermore, the usefulness of these techniques to control the layout 
of a fluvial system is tested by the performance of some modeling essays in a 
hydraulic pilot channel. 

 
5.3.1. Introduction 

The understanding of the unceasing dynamics in natural systems and the 
knowledge of its morphological response at different spatial and temporal scales 
might be the key for a sustainable management of the natural resources. Beaches 
and rivers are continuously suffering the impact of numberless factors that modify 
the (eco)system dynamics. Therefore, the possibility of monitoring these spaces 
will be helpful in a decision-making process which concerns not only 
environmental values but also socioeconomic interests. 

In that context, some institutions have realised the need of monitoring their 
resources, and they are carrying out more initiatives and studies to achieve it at low 
spatial and temporal scale. However, up to date, known techniques that allow a 
high accuracy monitoring are expensive and require tedious field campaigns as well 
as specialized software (James et al., 2013). Thus, despite their high accuracy, these 
techniques cannot be understood as efficient tools to monitor dynamics with the 
frequency required by natural spaces. Some examples are: the Airborne Light 
Detection and Ranging (LiDAR) and the Terrestrial Laser Scanner (TLS) that allow 
to obtain high accuracy dense point clouds; the geodetics GPS capable of defining 
a light DEM; the video imaging systems that enable to recreate the intertidal beach 
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bathymetry (Uunk et al., 2010); and the remote sensing techniques that allow an 
accurate shoreline detection (Almonacid-Caballer et al., 2016). 

Nevertheless, a relatively novel technique (Westoby et al., 2012) has overcome the 
listed inconveniences and is positioned as a pioneer in the field of monitoring. The 
terrestrial photogrammetry will be successful for small areas and high frequency. 
The method is based on Structure-from-Motion (SfM) photogrammetry coupled 
with Multi-View Stereo (MVS). Using Agisoft PhotoScan Pro and, in contrast to 
conventional photogrammetry requirements, its inner algorithms achieve an initial 
model reconstruction without need any additional camera, nor field information 
and operator intervention (Agisoft, 2014). The generated 3D point cloud is located 
in an arbitrary coordinate system that can be changed through the definition of 
GCPs whose accuracy will condition the final model errors. Moreover, it is 
possible to obtain a high resolution SfM-DEM from the 3D point cloud. 

The Agisoft PhotoScan software uses overlapped photos taken from different 
angles. However, the way in which these images are acquired can vary and be 
equally suitable to create the models. For example, Hugenholtz et al. (2013) uses a 
small unmanned aircraft system (sUAS) for geomorphological mapping, and 
Gonçalves and Henriques (2015) recreate and monitor both sand dunes and the 
beach area with an unmanned aerial vehicle (UAV). Moreover, other studies check 
that the SfM also works with aerial photos captured up to 800 m above the ground 
level (Javernick et al., 2014). Finally, some analyses using ground based 
photogrammetry have already modelled coastal environments and measured 
successfully morphological changes by SfM (Pikelj et al., 2015; Ružić, et al., 2014). 

Herein, we use terrestrial photogrammetry for monitoring morphological changes 
in beaches and fluvial systems. The main goal is to prove its potential in other 
places and scenarios (cameras at different heights, with different orientations and 
even for different camera models) and to test its quality against high accuracy GPS 
techniques. To achieve it, we study three different areas following specific 
methodologies. 

SfM photogrammetric technique is becoming also useful for accurate numerical-
experimental modelling that act as reality simulators. Thus, in the field of hydraulic 
engineering, the knowledge of sedimentary changes in narrow channels may be 
done by measurements along simple profiles (Nácher-Rodríguez et al., 2015). 
However, in complex and realistic wider pilot channels (see below) the availability 
of a 3D model will be of great importance to compute the changes and to make 
easier the analysis of the studied phenomenon. 

5.3.2. Data and study area 

Two very different coastal areas are modelled in this work. The first one (see Fig. 
5.33B) is El Saler (Valencia, Mediterranean coast, Spain), a long micro-tidal beach 
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(tide regime changes lowers than 0.18 m) where predominates the low and sandy 
coast along a wide shoal. The beach segment modeled in this work is about 100 m 
long. From a geomorphological point of view, this coastal strip has suffered strong 
erosion problems in the last decades. The erosion is related with sand retention by 
the jetties of the port of Valencia (north of El Saler beach) which interrupt the 
littoral drift (Sánchez-García et al., 2015). The second one (Fig. 5.33A) is Praia da 
Rainha (Cascais, Atlantic coast, Portugal), a mesotidal pocket beach with 
astronomical tide range between 2 or 3 m. Praia da Rainha is encased by rocky 
outcrops and baked by artificial structures, and extents about 50 m alongshore. 

With regards to the data, high precision measurements were acquired during 
several field campaigns in order to truly monitor the reliable emerged beach area. 
The use of RTK-GPS allows a 3D analysis to characterize coastal changes with 
accuracies lower than 2 cm in planimetry and within 4 cm in altimetry. The path 
followed in data collection consists in going over the beach profile in a zig-zag way 
and from west to east taking a point every two or three meters. Thereby, an 
average of 15 points each transverse profile is achieved and covering a sandy strip 
of around 45 m. The planimetric coordinates (XY) and orthometric altitudes (Z) 
are referenced respectively in the UTM projection and the EGM08.  

A set of photographs is taken at dates as most coincident in time as possible with 
the acquisition of GPS data. Therefore, on the one hand, we have a total of four 
beach measurements at El Saler beach, covering the spring months since April to 
June of 2014, specifically the days: 10th April 2014, 19th May 2014, 28th May 2014 
and 5th June 2014. Other days also were thought a priori as possible data but 
finally were barred because the meteorological factors make unable the use of 
photographs. Thus, according to the data time period, the beach will suffer a small 
wave impact designing a characteristic summer beach profile. The sediments are 
migrating onshore offering a volatile slope which will change its plain profile to 
another more inclined reaching the 3 m of difference in elevation between the 
profile endpoints. On the other hand, in Praia da Rainha the field campaign was 
carried out on 2nd October 2015 at low tide while the beach profile was 
representative of winter conditions. Therefore, along the 45 m wide beach, the 
slope reaches the 3.5 m of difference in elevation between the profile endpoints. 

In addition, the models might be georeferenced by the location of some available 
GCPs which can be displayed clearly and unequivocally on the photos. An ideal 
control point would be a unique element, static and not easily alterable. Moreover, 
the distribution of them should be well spread out, covering all the study area and 
located in different elevation planes being its proper establishment one of the most 
important steps. Nevertheless, the beaches are too homogeneous media, not 
characterized by having enough unique and unalterable features such as rocks, 
walls or other elements to use as GCPs and sometimes this fact may hinder the 
work. In these cases, conspicuous external elements should be provided to bring 
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heterogeneity to the sandy surface. This problem is obvious in El Saler beach 
where some surveying rods are used as GCP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.33. Cartography of the evaluation coastal areas. Both sites are marked in the 

location map (up to the right) by a green and red rectangle respectively in A) and B). 

Finally, some modeling essays are performed in a hydraulic pilot channel whose 
size is 4 m long, 0.6 m wide and 0.4 m depth. This work will show again how the 
SfM is able enough to create a high resolution reconstruction of the sediment on 
the riverbed before and after some morphological evolution. 

5.3.3. Methodology 

Using ground-based photography to achieve digital models by SfM 
photogrammetry it is known that the first and main important step is the 
acquisition of a competent set of photos covering the study area. Moreover, the 
quality of the photos does not matter as much as the way in which they are taken. 
In fact, the three assessments presented in this work, use simple and non-metric 
digital cameras such as a Kodak Easyshare M863 in El Saler beach, a Pentax Ricoh 

A) B) 
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WG-3 in Praia da Rainha and a Canon EOS 400D for the hydraulic pilot channel. 
Using them, the zoom lens is fixed to the infinity and taking care that the photos 
do not blur. The correct and uniform overlap about the 60% between adjacent 
photos is achieved adopting short camera baselines and never neglecting the 
convergence of shots. Furthermore, it is compulsory assure that each captured 
feature appears at least in five different photos. These considerations are common 
for the three study sites while the procedure of capturing photos is refined 
depending on the morphology and characteristics in each area. The resulting set of 
photos should cover the whole area of interest and avoid useless information that 
would add noise. 

In El Saler beach, we implement two different methodologies of taking photos (see 
Fig. 5.34) depending on the point of view (POV). The first one consists in locates 
the camera from the beach (camera elevation around the zero mean sea level), 
meanwhile in the second, the camera will be located from an existent construction 
about 6 m high next to the shore. Following the first methodology, the camera is 
pointing landward and moving longshore each half meter where three shots are 
taken every time: two shots at the head height and not perpendicular to the 
coastline but introducing a slight turn both left and right, and the third shot 
covering a central position as high as possible (see Fig. 5.34a). With regards to the 
second methodology from the construction, it will require a much lower number 
of photos to cover the same beach area due to the height difference as Fig. 5.34b 
shows. Here, the photos are taken by the same procedure but avoiding the third 
shot from each camera position. Note that for these two first tests, the whole of 
photos which take part in each model, have the same elevation meanwhile in the 
study presented below, the photos come from different elevations. 

The protocol followed at Praia da Rainha is a bit different adapting the shots to its 
pocket and encased form (Fig. 5.37 shows these camera positions). Different sets 
of photos are acquired, always more than five in each one, and taking advantage of 
the different heights from where the largest beach coverage may be seen. 
Nevertheless, the camera baseline continues around half meter.  

For the channel reconstruction in an indoor laboratory, some tests are carried out 
to know about the best procedure. It is based on making three passes of photos at 
different elevations for each side of the channel meanwhile the camera is pointing 
to the opposite. The idea consists in modifying successively the inclination of the 
camera. Therefore, a first pass is done with vertical photos taken from the channel 
height; a second pass, a bit higher, where the photos have a deviation of 40º from 
the vertical; and the highest last, with photos turned within 80º and pointing 
almost perpendicular to the riverbed.  
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Fig. 5.34. Two different 3D point clouds from El Saler beach which differ depending on 

the POV and the methodology carried out. The camera positions and the consequent 
photos are painted by blue rectangles and we appreciate in A) how the photos are taken 
from the beach, meanwhile in B) are taken from the construction. The right of the Fig. 
5.shows a photo which has taken part in each one of the left 3D point performance 
respectively, and being its camera position marked with a red rectangle. 

After the completion of the data acquisition procedure, data is processed with 
Agisoft PhotScan Pro. The software performs a bundle adjustment with the whole 
of photos and a 3D scene reconstruction with an initial sparse point that can be 
densified (Westoby et al, 2012). After that and summarizing the processes, 
manually the user locates the initial GCPs and ensures that each of them is 
properly recognized in all the photos. Finally, from the point cloud, we obtain a 
mesh generation and some rendering products as the high accuracy SfM-DEMs 
analyzed in next section. 

 

5.3.4. Results 

5.3.4.1. Assessing the photogrammetric SfM-DEMs from El Saler beach 

According to the previous methodology, we are going to analyze carefully the 
partial results. Remembering, in this study area, the 3D beach morphology is going 
to be assessed for four different days and also, each of them, since two different 
points of view with respect to the shooting process (from the construction and 
from the beach). Consequently, in this part we manage a whole of eight different 
kinds of results. 

A) 

)) 

B) 
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Once all the photos are well aligned and the preliminary simple point cloud is 
done, the next step is to ensure the accuracy achieved in the 3D point cloud. Then, 
including the GCPs in the bundle adjustment, we analyze the obtained errors 
checking their estimated positions in the point cloud against their real ones. These 
values should range within the GPS accuracies as it happens in our models having 
errors between 7 mm and 5.8 cm in the worst case. Furthermore, according to 
these GCPs errors, the program calculates the setting root mean square error 
(RMSE) which explains about the quality of the final performance. Then, Table 5.7 
shows the RMSE achieved in the bundle adjustment for each of the eight tests as 
well as other indicators which describe them. 

Table 5.7. Indicators showing the way in which the eight tests have been carried out: the 

number of photos which takes part in the matching process, the whole of points which 
form the 3D cloud, the count of GCPs used to achieve the best fitting, and the overall fit 
error. 

Results show that RMSE are similar for both methodologies. However, the effort 
needed is much lower for the first one (see the numerous camera positions in Fig. 
5.34a against those in Fig. 5.34b). The time required to take the photos as well as 
the consequent computing time is reduced and efficient enough. Thus, having an 
average around 40 photos with a correct overlap and around 5 GCP to 
georeferenced the model, we achieve a 3D point cloud compound by a whole of 
150000 points approximately and a point spacing within 0.27 m. Moreover, the 
point cloud reaches till 100 m longshore and defines a competent DEM of the 
beach. 

The evaluation of the photogrammetric results is made through the comparison 
between the SfM-DEM and the GPS data measured at the same day. 

Moreover, to avoid errors in the interpolation during the DEM construction, we 
decide to check each SfM-DEM pixel against each GPS elevation value as Fig. 5.35 
describes. This figure shows that the quality of the models measured by the 
absolute elevation differences (ZGPS - ZSfM-DEM) is generally lower than 20 cm. 
Another key issue is the spatial pattern of the error distribution. The SfM-DTM 
works almost perfectly in the entire central part of the beach while the larger errors 

POV Day nº photos 
nºpoints 

(3D cloud) 
nº GCP RMSE (m) 

From  
construction 

04/10/2014 45 159077 8 0.039 

05/19/2014 40 156608 5 0.034 

05/28/2014 36 153691 5 0.033 

06/05/2014 30 114666 5 0.043 

From 
beach 

04/10/2014 141 426433 7 0.030 

05/19/2014 162 621577 5 0.027 

05/28/2014 259 663737 6 0.046 

06/05/2014 94 137245 6 0.031 
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are concentrated along the beach profile endpoints: (i) biggest errors in the 
landward border where the beach slope increases, and (ii) many points near the 
shore with a bigger error than its neighbours. The first type of error (i) can be 
explained by the way in which these are calculated. The SfM-DEM raster format -1 
m resolution- affects to the error magnitude in steeper areas, especially if we 
consider that the landward end of beach is limited by a wall around 2 m high. The 
second type of error, that occur near the shore (ii), can be related to the fact that 
the measured GPS altitudes in wet and soft sand are less accurate, as well as related 
to the loss of information on the photographs to remain hidden behind the beach 
berm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.35. Cartography of the eight SfM-DEMs corresponding to the four studied days 

and depending on the POV. The results in a) are taken from the construction and in b) 
from the beach. The DEMs are represented by a brown colour scale which it darkens 
according to altitude. Moreover, the GPS data are shown by points whose colour 
indicates the magnitude of the differences in absolute values |ZGPS - ZSfM-DTM| ergo, 
the SfM-DEM errors. 

Table 5.8 summarizes the statistics of the eight tests performed; whose sample size 
ranges between 254 and 773 elements depending on the number of GPS 

±A) 

B) 

19th May 2014 10th April 2014 28th May 2014 5th June 2014 

 
SfM-DEM  

error (m) 

ZSfM-DEM (m) 
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Errors

Box plot of errors on may 19, 2014
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measurements. Negative values show that generally the SfM-DEM is 
overestimating the true terrain elevation values. The solvency of all SfM-DEMs is 
verified because the averages of the differences between GPS and SfM-DEM vary 
between -5.8 and -12 cm. 

POV Day Mean Std. Max Min 

From  
construc-tion 

04/10/2014 -0.073 0.110 0.762 -0.643 
05/19/2014 -0.092 0.127 0.840 -0.688 
05/28/2014 -0.091 0.113 0.260 -0.626 
06/05/2014 -0.058 0.172 0.416 -1.387 

From 
sand 

04/10/2014 -0.097 0.089 0.072 -0.548 
05/19/2014 -0.123 0.126 0.122 -0.902 
05/28/2014 -0.069 0.125 0.176 -0.709 
06/05/2014 -0.099 0.240 0.467 -1.214 

 
Table 5.8. Statistical values in meters of the differences between the SfM-DEMs 

elevation values and the GPS measurements. 

Fig. 5.36. Analysis of the distribution errors on 10
th
 April and 19th May of 2014 (both 

SfM-DEM taken from the construction). 

Error analysis also gave insights on their distribution. For example, according to 
the histogram in Fig. 5.36, we know that the whole of differences on 10th April, 
data taken from the construction, achieve a mean value of -7.3 cm and its 
distribution preserves symmetry despite having a more pointed shape than the 
normal distribution. Furthermore, we perceive how the 50% of those errors are 
between -1.1 and -1.8 cm. With regards to the box plot showed in the same Fig., 
this is now representing the error distribution on 19th May, data also taken from 
the construction. And, once again, the 50% of the errors approach the -1 cm. 

5.3.4.2. Assessing the photogrammetric SfM-DEMs from Praia da Rainha 

Processing Praia da Rainha data acquired on 2nd October 2015, also allow to get a 
competent 3D point cloud of this mesotidal pocket beach. Following the 
methodological protocol, the bundle adjustment is done by using six GCP and a 
whole number of 47 photographs taken in different sets such as we see in Fig. 
5.37. After the photo alignment, the georeferenced point cloud achieves an overall 



Photogrammetry and image processing techniques for beach monitoring 

 

 270 

root mean square error within 29 cm. This value is substantially higher than the 
GPS accuracy, consequence of the GCPs distribution on objects outside the beach 
area and being sometimes complicated their optimal detection in the photographs. 
However, the model is good enough to define the beach morphology with high 
resolution as the results show. The dense point cloud is formed by a whole of 
almost eleven millions of points spaced each 2.3 cm and covering all the intertidal 
and supratidal beach areas. 

 

 

 

 

 

 

 

Fig. 5.37. Dense point cloud and 3D reconstruction of Praia da Rainha. The blue 

rectangles represent the cameras taken by sets of photos from different positions. 

In addition, the resulting SfM-DEM is compared with six GPS profiles measured 
cross-shore (a total number of 70 GPS data values listed in Fig. 5.38). Both data 
(SfM-DEM and GPS) should be able to recreate the beach morphology in a similar 
way despite the intrinsic disparities in accuracy. Analysing statistically the 
differences between the elevation values, we achieve the results shown in Table 
5.9. 

 

Table 5.9. Statistical values in meters of the differences between the SfM-DEMs 

elevation values and the GPS measurements. 

The SfM-DEM describes the beach morphology with an average error of 25.3 ±7 
cm and ranging between 11 cm and 38 cm. Moreover, the positive values (ZGPS - 
ZSfM-DEM) explain that in this case the photogrammetric model is 
underestimating the true elevation values (Z) of the beach profile. The similitudes 
between GPS data and the SfM-DEM are evident in Fig. 5.38 and we realise how 
the differences grow shoreward in all profiles (type error (ii) explained in Section 
5.3.4.1) following a clear error pattern according to the geographical distribution. 
This fact is explained due to this zone is the most dynamic, suffering persistently 

Day Mean Std. Max Min Sample Size 

02/10/2015 0.253 0.071 0.380 0.119 70 
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the wave action as well as the accuracy losses for both data: GPS measurements 
more unstable in the wet zone, and possible losses of information in the photos by 
hiding behind the smooth berm. Moreover, checking the correlation coefficient for 
all the profiles, we confirm with a confidence of 95% that in the 99.93% of cases 
both sets of data are considered as equals; again, a very encouraging result. 

 

Fig. 5.38. Cartography of Praia da Rainha SfM-DEMs. The DEM is painted by a colour 

scale according to altitude. The GPS data are shown by points whose colour indicates 
the magnitude of the differences |ZGPS - ZSfM-DTM| in absolute values; ergo the SfM-
DEM errors. 

Finally, Fig. 5.39 shows in each different profile how the beach face slope is 
defined according to both data. We realise that the SfM-DEM values design the 
beach profiles in the same way as the GPS measurements although 
underestimating them in a range from 12 cm landward to 38 cm near the shore. 
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In this regard, we are able to guarantee that an elevation model obtained by 
photogrammetry is able to describe the beach morphology with a precision that 
matches the one that would be obtained by a GPS survey. To reach this conclusion 
has been important taking care about the proximity of photogrammetric and GPS 
data, ensuring that both sets of data provide information of similar punctual time 
values. 

 
Fig. 5.39. Different plots representing the six beach profiles measured in Praia da 

Rainha. The X axis lists the GPS measurement number and the Y axis represents the 
elevation value achieved by GPS (black line) and by SfM-DTM (asterisk symbols). 

5.3.4.3. Application of SfM photogrammetry in a pilot channel 

The previous sections have proved the potential that the SfM photogrammetry has 
to recreate efficiently the beach area. Nevertheless, these techniques also can be 
applied to monitor other dynamic environmental areas. 

One of the most immediate applications of SfM photogrammetry is the analysis of 
morphological changes because having elevation models for different days is easy 
measure the magnitude of changes. In this section we show how the 
photogrammetric models can describe extremely well the sedimentary movements 
in a riverbed. The experiment is done in a pilot channel with a constant water flow 

      ZGPS (m) 

    ZSfM-DEM (m) 
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A) 

B) 

where it aims to know the impact suffered by the sediments as a result of the 
construction of a bridge. Thus, it is created a SfM-DEM before any water flow 
proceeds through it, and another one after it. However, to achieve the best point 
cloud results, in both cases the channel had to be completely dry (emptying water) 
and taking care not to alter the shape of the sediments. 

Following a good methodology to take the photos, the SfM technique is able to 
localize the camera positions and to solve the scene geometry. In these examples, a 
total number of 76 photos are used to achieve the redundant bundle adjustment 
based on matching features and thanks to the overlap between photos. The final 
3D dense point clouds are about 690000 points spaced each 1 mm approximately. 
Moreover, the model is georeferenced in a relative coordinate system by six control 
points. These points are located in the side walls of the channel and measured with 
a flexible tape. 

Therefore, the accuracy might range around a few centimeters and in fact, the 
overall RMSE is 4.1 cm. 

After a careful treatment of both 3D point clouds, Fig. 5.40 shows the models 
before and after the water flow experiment was carried out. Despite the good 
results, it is important to comment the difficulties had with the first model (Fig. 
5.40A). These are consequence of the excessive uniformity in the photos, without 
practically homologous entities to recognize. Thus, the software has problems to 
locate the cameras in the correct place. The solution is to work with two models, 
one for each half of the channel, and then joining both. However, in Fig. 5.40B, 
the different shapes created in the sediment by the water flow help in the 
correlation process. 

 

 

 

 

 

 

Fig. 5.40. Orthogonal view of the channel 3D model at two different times. 

Subtracting both georeferenced SfM-DEMs we obtain the magnitudes of 
morphological change in relation to sediment transport (see Fig. 5.41) which range 
between almost 0 (sand motionless) and 4.47 cm. Moreover, we realise that the 
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sediment of the riverbed is following the expected behaviour relative to the 
channel amplitude and the water velocity. Considering that the water flows from 
left to right, the sediment is undermined where the channel becomes narrower 
next to the bridge brackets (with losses within 4.47 cm), and it is accumulated just 
behind them, forming mounds of sediment up to 3 cm. Additionally, these values 
have been successfully validated with some accurate measurements done in 
laboratory. 
 

 

 

 

Fig. 5.41. Representation of the differences between the SfM-DEMs shown in Fig. 5.40. 

 

5.3.5. Conclusions 

The systematic monitoring of some natural phenomena knowing its dynamism and 
behaviour is a need in the context of good management of natural resources. The 
understanding of changes and actions through a retrospective view help to have an 
overview for subsequent predictions and future actions avoiding unwanted coming 
situations. 

Working at low spatial scales and having into account that a high repeatability is a 
strong point in the monitoring of any event - for example the tracking of extreme 
storm events or close range monitoring-, the methodology carried out in this work 
is a good option to follow in the study of natural changes because its low cost, 
usefulness and few technical requirements. Two main goals have been developed 
in this work: 

i) Resulting SfM-DEMs obtained for several days and in two different study areas, 
prove the photogrammetry skills for coastal purposes. The differences range 
around an average of 6 and 12 cm for the whole of profiles along the Spanish 
microtidal beach and, within 25 cm in the Portuguese mesotidal beach. These 
errors are in line with the success got along the methodological process (GCP 
definition, camera positioning and the bundle adjustment). 

ii) On the other hand, the application of the SfM to measure sedimentary changes 
in fluvial systems. Again the results explained the sedimentary dynamics occurred 
in the riverbed and the photogrammetry overcomes other harder and more 
expensive techniques. 
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However, and despite the large benefits of the SfM photogrammetry, we want to 
remark the importance of conducting a careful methodological protocol especially 
in the process of taking photographs to achieve a good 3D model. The excessive 
uniformity found in environments such as beaches or riverbeds requires a 
systematic overlapping between photos and a brainy procedure in the positioning 
and orientation of the cameras. 

The culmination of a study as here presented, contains its full potential and 
practical use in the monitoring of confined spaces that allow the subsequent 
prediction of future situations. Reach something as tangible as the mapping of a 
coming situation, will help in the sustainable planning of the natural resources. 
New prospects and applicability must be investigated. 
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5.4. OVERALL CHAPTER CONCLUSIONS 

Beaches are dynamic spaces and their shapes and arrangements are constantly 
being modified by various natural and anthropic phenomena. For a morphological 
study it is necessary to distinguish between the changes related to weather 
conditions − with seasonal and oscillating behavioural rhythms throughout the 
year − than those showing a trend of progressive change. Photogrammetric 
techniques are a key tool for the monitoring of these natural systems with high 
periodicity and repeatability, and facilitate studies of sedimentary changes in 
various time scales. 

Highlighting the contributions in this chapter it has been proven that using 
an adequate working methodology, there are various low-cost tools that offer 
much useful information about our coasts (leaving aside the costly coastal camera 
systems established until now for this purposes). 

Firstly, Section 5.1 has reported various efforts to take advantage of 
online video streaming surfcams for supporting coastal change monitoring and 
coastal management. The adoption of the existing worldwide surfcam network 
infrastructure has been shown as an attractive solution for assessing wave runup 
measurements and intertidal beach topography, as well as other coastal 
information (Andriolo, 2018). The application of C-Pro tool − presented in 
Chapter 2 − has lead to rectified surfcam images being retrieved online with 
accuracies within 2.5 m and comparable to classic phogrammetric techniques. 
These images enable quantitative hydro- and mophodynamic analysis of the 
monitored area. The major achievement has been the possibility of using these 
remote video systems when the photogrammetric conditions are null (non-
availability of accurate control points, nor knowledge of camera parameters). These 
advanced geo-referencing techniques have facilitated the use of existing low-
elevation surfcam (or other recreational cameras such as those presented in Section 
5.2) with unknown image calibration to provide quality quantitative data. With 
networks of recreational cameras continuing to grow rapidly, such tools will very 
likely play an increasing role in expanding world-wide coastal monitoring, 
especially along more developed regions of the coastline (Splinter et al., 2018). 
Beyond testing the capability of the proposed methodology in Section 5.1 
(Andriolo et al., 2019) using remotely-derived GCPs and the horizon constraint, 
different soft-computing algorithms based on the statistical properties of 
Timestack and Variance images have also been derived and implemented to 
automate runup measurements and represent beach slope and intertidal beach 
topography. It is worth emphasizing the importance of these developed 
procedures and techniques inasmuch as dozens of coastal video systems worldwide 
have been storing these images for the last two decades. 
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Far from the logistical issues of securely housing camera and computer 

equipment related with professional imaging technology, Section 5.2 has focused 

on presenting the CoastSnap iniciative by applying the image capture and 

processing principles of established coastal camera systems to ubiquitous 

community smartphone technology. Rigid photo-point phone cradles ensured that 

every image was captured from the same position and angle, while advanced image 

processing techniques accounted for the varying lens properties of different 

smartphones and for those challenges related with sharing data on social media 

platforms. Firstly, the diversity of images collected (different resolutions and 

smartphone camera models) and various modes of image submission (Facebook, 

Instagram, Twitter and email) made automation of data collection a risky. The 

successful application in the study of image registration removed the need for 

manual identification of GCPs in every image and thereby improved automation. 

Secondly, the lack of knowledge of the camera orientation parameters (focal and 

camera rotation angles) was overcome with surveyed GCPs and assisted by the 

internal correction of most radial image distortion in modern smartphone images. 

Concerning image capture time, the method is currently reliant on the upload time 

to social media. However, this issue will become increasingly critical on coastlines 

with larger tidal ranges, where even small errors in image capture time would lead 

to poor estimates of the shoreline elevation. 

Results showed that the presented new crowd-sourced shoreline change 

mapping approach is an excellent way to map beach features and shoreline change. 

Compared with in situ shoreline measurements it was evidenced that the method is 

capable of achieving reasonable shoreline accuracies across stretches of coastline 

spanning 100 m to more than 1 km. Optimum conditions in terms of shoreline 

accuracy were found in the camera nearfield and where less-complex (i.e., 

alongshore-uniform) shoreline morphology was within an RMSD of 1.35 m. 

Moreover, the study proved that poor image resolution resulting from crowd-

sourced data is less restrictive than expected and that the use of instantaneous 

snapshot images for shoreline mapping entailed only moderate decreases in 

shoreline accuracy (about 23%). The frequency of image submissions from the 

community was considered sufficient for shoreline monitoring applications at a 

number of different time-scales – one data per month being stipulated as sufficient 

for long-term studies (Splinter et al., 2013). In the work on Section 5.2, near-daily 

image sampling was considered as particularly valuable for adequately resolving the 

shoreline response to individual storm events. Regular community submissions 

were able to record a coastal inlet at the study area with a beach width expansion 

of 60 m over the seven months of study – a phenomenon known but never 

monitored at such high resolution. Lastly, the tidal correction method adopted in 

the study enabled an accurate estimation of the average beachface slope from the 

crowd-sourced images. 
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Continuing with the evaluation of image processing techniques to obtain 

affordable beach information, the work in Section 5.3 applied different techniques 

to generate 3D models of the intertidal beach zone – this time using a set of 

photographs with different points of view. By using ground-based photography to 

achieve digital models with SfM photogrammetry, it was found that the most 

important element was the acquisition of a competent set of photos covering the 

study area (more important than the quality of the photos). The experiments in this 

work were carried out using the Agisoft PhotoScan software with 60% overlapped 

photos taken from different angles. However, the images were captured in a 

manner adapted to the morphology and characteristics of each area. The excessive 

uniformity found in environments such as beaches required a systematic 

overlapping between photos and an intelligent methodological procedure in the 

positioning and orientation of the cameras. Therefore, the main goal is to assess 

the potential in three different scenarios and conduct different methodological 

protocols – cameras at different heights, with different orientations, and even 

different camera models − against high accuracy GPS data. Resulting SfM-DEMs 

proved the photogrammetry abilities for coastal purposes with accuracies ranging 

between 6 and 25 cm – errors that may be derived from the GCP definition, 

camera positioning, and bundle adjustment. 

Working at low spatial scales and considering that a high repeatability is a 

strong point when monitoring any event, the new methodologies developed 

throughout this chapter are validated as a good option for the study of natural 

changes – because of their low cost, usefulness, and few technical requirements. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover photo of Chapter 6: 
Tallow Beach, Byron Bay, Australia (taken Oct. 2017) 
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6.1. ANSWERS TO THE ORIGINAL RESEARCH QUESTIONS 

The main purpose for which many of the evolutionary studies of coastal zones are 

carried out is to obtain an overview of their state in order to subsequently predict 

and determine future actions for good coastal planning. The study of coastal 

changes is unavoidable when it involves a set of negative implications on the 

resources and uses of the coastal space itself, affecting natural values and socio-

economic interests. The methodological procedures used play a decisive role in the 

detection and analysis of the magnitude of the changes with precision and 

effectiveness. 

The whole of this doctoral thesis has shown the capacity of 

photogrammetric and image processing techniques for coastal monitoring at 

different time and spatial scales. 

The literature review shows the potential of well-known fixed coastal 

video monitoring systems (Argus, Sirena, Cosmos, Horus) intended for site 

specific evolutionary studies. However, these systems are expensive and complex 

to maintain and present certain requirements that limit and make them difficult to 

extend to other places. Their associated software requires understanding the 

characteristics and parameters of particular cameras, as well as accurate and 

adequate terrain control points to georeference the photos. A versatile tool such as 

C-Pro (presented in Chapter 2) enables automatic georectification of any beach 

terrestrial photograph regardless of the conditions. The tool adapts its 

methodology according to the available information to achieve the best possible 

spatial resection adjustment and thus offer a suitable result − even when 

photogrammetric conditions are very poor. In addition, its robustness is largely 

due to the inclusion of two extra equations corresponding to the horizon line that 

depend on the external and internal camera orientation parameters and reduce the 

number of terrain points needed. 

The C-Pro tool is shown to be very effective for analysis and coastal 

management because of its easy acquisition, speed, low cost, and volume of data, 

and because any person with a conventional camera can take a photograph. This 

fact has been reflected throughout the thesis (especially in Chapter 4) where its 

application has enabled registering the state of the coast at a specific time and 

validating instantaneous satellite-derived shorelines (SDS) on different beaches. 

Moreover, it has been used to georeference images from recreational video 

cameras “surfcams” and so facilitate their use for scientific purposes. Its 

implementation in other novel citizen monitoring projects will also be very useful 
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since these are spreading to numerous sites and where the necessary requirements 

for traditional methods are probably unavailable (see Chapter 5). However, 

surfcams are expected to offer the worst conditions because their placement was 

planned simply to provide visual information of the beach and wave conditions for 

surfers. Therefore, even the use of remote control points obtained from Google 

Earth has been explored. 

Secondly, and encompassing larger spatial scales, it is well known that 

satellite imagery plays a decisive role. Since the USGS in 2008 and ESA in 2015 

made their database freely available, Landsat and Sentinel satellite images constitute 

the main territorial database worldwide. Bearing this in mind, the current doctoral 

thesis extensively worked on the evaluation and improvement of the Almonacid-

Caballer, 2014 algorithm. The goal was to obtain from these mid-resolution images 

multiple accurate shoreline data for trend and coastal evolution analysis. 

Throughout the thesis, the obtained results have been conditioning the 

development of the methodology, varying and adjusting to the needs of processing 

and evaluating data. Dealing with a large volume of information forced the 

development of automated modules − developed by the CGAT group − to 

minimize analysis time and facilitate its use. 

According to the tests carried out so far, a good location of the input 

shoreline at pixel level was essential for the algorithm's search window to be made 

in the right place – former thresholding techniques used to define this initial line 

were not always successful. Therefore, Chapter 3 dealt with this problem by means 

of working with a neighborhood able to adapt itself according to the image 

radiometry and improve the final sub-pixel accuracy. The transition between land 

and water was found where the maximum radiometric variation in terms of divided 

differences ocurred. The accuracy of the final sub-pixel shoreline is not 

conditioned by the precision of the input line. 

Working in parallel after the completion of the works in Sections 4.1 and 

4.2, Section 4.3 completed the evaluation by demonstrating with which parameters 

and bands or indexes of the satellite images, the algorithm (presented as 

SHOREX) achieved greatest accuracy. It was seen that the algorithm seemed more 

accurate in the final shoreline detection when working with small neighborhoods. 

However, this fact required ensuring the quality of the input line around which to 

perform the sub-pixel search. Accordingly, the use of a threshold input line per 

image was changed – this step also slowed down the process – and a unique 

digitalized or available shoreline for the whole set of images was used. While the 

reliability of the line was still uncertain, the protocol (presented in Section 4.3) 

consists of working first with large neighborhoods and ensuring that the real 

shoreline was contained, and then continuing with a second iteration where smaller 
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neighborhoods would define accurately the sub-pixel shoreline. In this case, and 

unlike Chapter 3, a centered interpolation is first used and then the least squares 

method is used to define the land-water surface over an upsampled satellite image. 

At this point, where the accuracies reached are at the level of other 

systems such as video monitoring, the SHOREX methodology is presented as very 

effective for coastal monitoring. Despite the advantages of having such a 

magnitude of data, a correct management is necessary. Hence, the idea of 

obtaining annual average lines to work in coastal evolution analysis (seen in Section 

4.1). With this, changes due to factors related to meteorological processes − with 

seasonal or oscillating rhythms throughout the year − were avoided and separated 

from those useful for long-term studies with progressive changes over time. 

Focusing on a shorter time scale, this same idea could resemble the work with 

timex images in photogrammetry whose aim was to obviate the random and 

oscillating behavior of the waves and make shoreline definition easier. 

This dissertation contains all its potential and practical utility in the 

monitoring of coastal segments to enable predictions. High-resolution coastal 

evolution models play an important role but require multiple shorelines for their 

calibration and evaluation (refer to Section 4.4). Therefore, this synergy gives rise 

to powerful coastal evolutionary studies resolving the temporal limitation of the 

images with the model, and the spatial limitation of the model with the images. 

Valuable coastal hazard maps and warning systems that are able to highlight critical 

situations may be derived. 

This research work seeks to bring the photogrammetry and remote 

sensing worlds closer to regional scientists, engineers, government and coastal 

managers by providing new evidence about the usefulness of low-cost and feasible 

techniques. These can turn existing and freely available information (satellite 

imagery, crowd-sourced data, or internet-streamed beach images) into high-quality 

data for the continuous monitoring of beaches and a consequent sustainable 

decision-making for coastal resources. In addition, using mundane information and 

involving the local community generates many benefits by making science and 

engineering expertise more accessible to the public, encouraging greater 

interactions, and knowledge sharing between local stakeholders and experts, and 

leading to a greater democratisation of decision-planning on coastal management. 

 

6.2. FURTHER RESEARCH 

 

This thesis has provided insight into the development and application of new 

photogrammetry and image processing techniques that take advantage of various 
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data for beach monitoring. However, as the assessments have been site specific, 

other obervations in diverse coastal systems are necessary in order to establish the 

weaknesses and thoroughly improve and expand the methods for any type of 

beach. 

As is well known, the relative tidal range reflects the relative importance of 

swash, surf zone, and shoaling wave processes (Masselink and Short, 1993). 

Therefore, before attempting to gain an understanding of beach processes, it is 

necessary to understand the factors acting in each study site. In this thesis, most of 

the beaches analyzed with photos have a microtidal regime (<2 m) that, in 

principle, simplifies the shoreline detection and evaluation of the changes – expect 

for the works on the Portuguese coast with a mesotidal regime (2-4 m). However, 

the interaction with other factors − such as the wave forcing − makes the 

definition of the land-water border and the association with its appropriate 

elevation value more difficult. The works carried out throughout the thesis have 

been adapted to each site. While for those Mediterranean beaches with a generally 

weak energetic swell (Valencian and Balearic coasts) shoreline detection was 

directly related with the sea level value, in beaches with stronger oceanic waves, 

such as in eastern Australia or the Portuguese beaches, it was necessary to add an 

estimated offset value because of the runup. 

The main weakness of satellite imagery is related to the physical shoreline 

that the SHOREX algorithm is detecting. Theoretically, the land-water border is 

the feature that we expect to be detected because this is the aim of the algorithm. 

However, the contact limit between emerged and oceanic surface is conditioned by 

multiple factors that affect the algorithm: such as the beach slope; extent of the 

intertidal zone; rising or ebbing tide; wave energy; maximum swash; beach width; 

as well as the beach characteristics in the dry zone. The synergy of the 

improvements developed in this doctoral thesis in the intrinsic of SHOREX 

algorithm (Chapter 3) and its usage protocol (Section 4.3) is expected to provide 

the methodological robustness needed regardless of the diverse acting factors. The 

workflow would then consist in an iterative process that firstly works with a pixel 

neighborhood that is sufficiently large but adaptable to the raw image radiometry 

in order to ensure that the searched shoreline is contained and, so that in a second 

iteration it can be precisely detected at sub-pixel level. 

Nonetheless, more evaluation analysis must be carried out by comparing 

with reference photogrammetry data obtained using C-Pro. Since February 2018, 

an assessment is underway in the microtidal coast of central Chile, specifically at 

Reñaca beach, where photographs are being systematically taken when the satellite 

image is captured (see Fig. 6.1). This work will lead SHOREX to handle strong 

swells – generated by prevailing SSW winds – that constitute a permanent source 
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of energy for coastal dynamics (Martínez et al., 2018) and will strongly modify the 

radiometry near the shoreline position. 

 

Fig. 6.1. C-Pro projection map with the 10-min Timex rectified photos (three different 

shots) of A) 30/03/2018 (at 4.088 m above Mean Sea Level, MSL), and B) 01/04/2018 

(at 4.175 m above MSL) for Reñaca beach (central Chile). GPS shorelines were 

measured to calibrate the video-derived results – obtaining an RMSE along the 1.2 km of 

2.7 m and 3.42 m respectively for A) and B) days. Grid coordinates: GCS_ETRS89 

UTM19S. 

Moreover, a collaboration with the University of Cádiz will create the 

opportunity to further explore the monitoring of a mesotidal beach with SHOREX 

(tidal range close to 4 m). The assessment will be made at Victoria beach where 

photo data captured by the Orasis video monitoring system is available. Figure 6.2 

shows an image of Victoria beach for 31/03/2016 where the wet-dry line reached 

at the previous high tide remains clearly visible. 
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Fig. 6.2. C-Pro projection map with an instantaneous photo of the southern camera of 

Horus system for 31/03/2016 at ebbing tide in Victoria beach (Cádiz, Spain). Grid 

coordinates: GCS_ETRS89 UTM29N. 

Other works in high-energy macrotidal environments have already been 

started in El Puntal beach (Bay of Santander, Spain) with up to 6 m tides. 

However, the idea of defining a shoreline must be adapted to the search for wider 

coastal descriptors. More research is needed to monitor with a certain automatism 

the huge complexity of this beach where diverse processes of wave refraction and 

breaking are interacting. The incident waves from the Cantabrian Sea and the tide 

are responsible for modeling the morphology of the beach profile and its 

morphodynamic nature. In this beach, the sedimentary gain and consequent 

formation of a well-developed finger bar system in the intertidal plain (with a 

constant slope of approximately 0.015) is a singular fact. The bar exposure time is 

conditioned by the horizontal displacement caused by the tides (between 70 and 

200 m) and they are fully emerged at low tide. The convergence of all these 

characteristics made El Puntal an unsuitable beach to carry out the evaluation of 

the shoreline detection with SHOREX. The land-water border is very confused 

and practically blurred among a thin water cover that extended over the wide 

intertidal plain. Even attempting to define the shoreline from the images of the 

available Horus video system was very difficult (see an example of two moments in 

Fig. 6.3). Only the images captured in episodes of high tide – such as Fig. 6.3A – 

offered a well-defined shoreline but data coincident with this tidal state was too 
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scarce. Therefore, the idea of assessing SHOREX by comparing a single SDS 

against its corresponding video-derived shoreline was not certain to succeed. This 

time the assessment must focus on a comparison between both methods (from 

coincident mid-resolution imagery and video data) to characterize the entire 

intertidal zone and analyze the morphodynamic evolution of the beach. To achieve 

this goal the idea is to apply SHOREX to the different infrared bands of the 

satellite and obtain some lines of the continued land-water morphological 

formations throughout the almost permanently wet intertidal zone. These same 

conceptual features are then visible on the photos and these should be digitized 

and then both resulting morphological beach-intertidal characterizations 

compared. 

A)

 
B)

 
Fig. 6.3. C-Pro projection maps with the 10-min Timex rectified photos (four different 

camera shots) of 26/06/2011 (at rising tide) and 30/09/2011 (at ebbing tide) for El Puntal 

beach shown over an orthophoto taken from 2010 PNOA sources. The projection is 

made in A) and B) respectively at 1.115 m and -1.805 m above MSL – as near in time as 

possible to the photos and satellite image. Grid coordinates: GCS_ETRS89 UTM30N. 

It is important to remember that on the projection maps only the points 

located at the projected elevation value are in the correct place. The remaining 

objects – such as sand dunes and the vegetation seen in Fig. 6.3 − are displaced 

https://www.linguee.es/ingles-espanol/traduccion/throughout.html
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unless we project the photo over a digital terrain model supporting each pixel of 

the image with its associate altitudinal value. 

For collaboration with the IH Cantabria, calibrations of the evolutionary 

models are exploring other coastal areas. A similar work to that mentioned in 

Section 4.4 (Jaramillo et al., under review) is being carried out in Cala Millor beach 

(Mallorca, Spain). The satellite-derived shorelines obtained with SHOREX along 

with others derived from video data (acquired by SIRENA and processed with C-

Pro) are being used to calibrate the Jara et al., 2015 evolutionary model between 

2013 and 2017. 

The practical utility of using C-Pro for mapping the inland wave 

penetration range during a storm, or any coastal event, is being manifested through 

collaboration with the Valencian Coastal Demarcation unit (see photos of the 

devastating storm of January 2017 in Fig. 6.4). Mapping the instantaneous 

shoreline was of singular interest to coastal managers – especially after the 

publication of the Royal Decree 876/2014 of 10 October, which stated that the 

delimitation of the maritime-terrestrial domain had to be supported by the real 

position reached during storms. Before starting the collaboration, the basic 

cameras with which the employees regularly took coastal photos were calibrated 

and several field campaigns were made to measure fixed ground control points in 

the chosen areas. Over time and as the photos are being taken and processed, the 

resulting product is being returned to the coastal managers by mapping the 

shoreline position for every moment and photographed location. In this way, 

valuable quantitative information is being added to the qualitative visual value of 

the photo itself. During a storm, the use of terrestrial photos is crucial because it is 

unlikely that satellite images coincide with the moment of the storm – and even if 

they did then the presence of clouds would make it useless. 

As a last point, it is important to mention the future coastal monitoring 

studies that the CoastSnap network is expecting to generate worldwide. This beach 

monitoring program is rapidly expanding to multiple sites within Australia where 

three sites are in full operation (Manly, North Narrabeen, Byron Bay) and 

internationally. Cascais (Portugal), Galicia (Spain), Bournemouth (UK), 

Florianópolis (Brasil) and Fiji Island have already realized the benefits of this 

shoreline variability tracking data and are supporting the initiative. With a large 

network of CoastSnap stations, it may be possible to map shoreline evolution at 

nearby coastal locations, and detect patterns in shoreline behaviour across regional 

coastlines. 
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Fig. 6.4. Example of photos taken by the Valencian Coastal Demarcation employees on 

23/01/2017. These show the damage caused by a major storm that hit the entire coast 

over the previous two days. The top photos are from the El Saler district and those below 

are from the municipality of Tavernes Blanques (all beaches to the south of the Port of 

Valencia). 
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Research activity 

 

The following references have been produced during the present investigation: 

 

INTERNATIONAL PAPERS (8) 

 
1.  ANDRIOLO, U., SÁNCHEZ-GARCÍA, E., TABORDA, R. (2019). Operational use of 

surfcam online streaming images for coastal morphodynamic studies. Remote Sensing, 11 
(1): 78, https://doi.org/10.3390/rs11010078 (Impact factor 2017: 3.406). 
 

2. HARLEY, M., KINSELA M., SÁNCHEZ-GARCÍA, E., VOS., K. (2019). Shoreline change 
mapping using crowd-sourced smartphone images. Coastal Engineering. 
 

3. SÁNCHEZ-GARCÍA, E., PALOMAR-VÁZQUEZ, J., PARDO-PASCUAL, J.E., ALMONACID-
CABALLER, J., CABEZAS-RABADÁN, C., GÓMEZ-PUJOL, L. (under review in Coastal 
Engineering). An efficient protocol for accurate and massive shoreline definition from 
mid-resolution satellite imagery. 

 
4. SÁNCHEZ-GARCÍA, E., BALAGUER-BESER, A., ALMONACID-CABALLER, J., PARDO-

PASCUAL, J.E. (under review in ISPRS Journal of Photogrammetry & Remote Sensing). A new 
adaptive image interpolation method to define the shoreline at sub-pixel level. 

 
5. JARAMILLO, C., SÁNCHEZ-GARCÍA, E., MARTÍNEZ-SÁNCHEZ, J., GONZÁLEZ, M., 

MEDINA, R., PALOMAR-VÁZQUEZ, J. (under review in Earth Surface Processes & 
Landforms). Calibration and validation of shoreline high-resolution evolution models 
using remote-sensing techniques. 

 
6. PARDO-PASCUAL, J.E., SÁNCHEZ-GARCÍA, E., ALMONACID-CABALLER, J., PALOMAR-

VÁZQUEZ, J., PRIEGO DE LOS SANTOS, E., FERNÁNDEZ-SARRÍA, A., BALAGUER-BESER, 
A. (2018). Assessing the accuracy of automatically extracted shorelines on microtidal 
beaches from Landsat 7, Landsat 8 and Sentinel-2 imagery. Remote Sensing, 10 (2): 326, 
https://doi.org/10.3390/rs10020326, (Impact factor 2017: 3.406). 

 
7. SÁNCHEZ-GARCÍA, E., BALAGUER-BESER, A., PARDO-PASCUAL, J.E. (2017). C-Pro: A 

coastal projector monitoring system using terrestrial photogrammetry with a geometric 
horizon constraint. ISPRS Journal of Photogrammetry & Remote Sensing, 128: 255-273, 
https://doi.org/10.1016/j.isprsjprs.2017.03.023, (Impact factor 2017: 5.994). 

 
8. ALMONACID-CABALLER, J., SÁNCHEZ-GARCÍA, E., PARDO-PASCUAL, J.E, BALAGUER-

BESER, A., PALOMAR-VÁZQUEZ, J. (2016). Evaluation of annual mean shoreline 
position deduced from Landsat imagery as a mid-term coastal evolution indicator. 
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Marine Geology, 372: 79-88, https://doi.org/10.1016/j.margeo.2015.12.015 (Impact 
factor 2016: 3.572). 

 

INTERNATIONAL CONFERENCE PAPERS (2) 

1 SÁNCHEZ-GARCÍA, E., BALAGUER-BESER, A., TABORDA, R., PARDO-PASCUAL, J.E, 
(2016). Modelling landscape morphodynamics by terrestrial photogrammetry: an 
application to beach and fluvial systems. The International Archives of Photogrammetry, 
Remote Sensing and Spatial Information Sciences, XLI-B8: 1175-1182, 
https://doi.org/10.5194/isprs-archives-XLI-B8-1175-2016. XXIII ISPRS Congress, 
Prague, Czech Republic. July 12-19, 2016 (Oral). 

2 SÁNCHEZ-GARCÍA, E., PARDO-PASCUAL, J.E., BALAGUER-BESER, A., ALMONACID-
CABALLER, J. (2015a). Analysis of the shoreline position extracted from Landsat TM 
and ETM+ imagery. The International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, XL-7/W3, 991-998, https://doi.org/10.5194/isprsarchives-XL-7-
W3-991-2015. 36th International Symposium on Remote Sensing of Environment 
(ISRSE), Berlin, Germany. May 11-15, 2015 (Oral). 

 

NATIONAL CONFERENCE PAPERS (7) 

1. PALOMAR-VÁZQUEZ, J., ALMONACID-CABALLER, J., PARDO-PASCUAL, J.E., SÁNCHEZ-
GARCÍA, E. (2018). SHOREX: a new tool for automatic and massive extraction of 
shorelines from Landsat and Sentinel 2 imagery. Proceedings of the 7th International 
Conference on the Application of Physical Modelling in Coastal and Port Engineering 
and Science (Coastlab18); Santander, Spain. May 22-26, 2018 (Oral). 

2. ANDRIOLO, U., AZEVEDO, A., TABORDA, R., MENDES, D., SÁNCHEZ-GARCÍA, E. 
(2018). Nearshore hydro-morphological assessment from video monitoring technique: 
application on high-energy environment. IX Symposium on the Iberian Atlantic Margin 
(MIA2018), Coimbra, Portugal. September 4-7, 2018 (Oral). ISBN: 978-989-98914-2-5; 
pp. 143-144.  

3. ANDRIOLO, U., AZEVEDO, A., TABORDA, R., MENDES, D., SÁNCHEZ-GARCÍA, E. 
(2018). Nearshore bathymetry from surfcam images: a new depth inversion technique. 
5as Jornadas de Engenharia Hidrográfica (5JEH), Lisbon, Portugal. June 19-21, 2018 
(Oral). ISBN. 978-989-705-128-9; pp. 65-68. 

4. ANDRIOLO, U., TABORDA, R., MENDES, D., SÁNCHEZ-GARCÍA, E. (2018). Measuring 
wave breaking height from video: a novel methodology applied to surfcam images. 5as 
Jornadas de Engenharia Hidrográfica (5JEH), Lisbon, Portugal. June 19-21, 2018 
(Oral). ISBN. 978-989-705-128-9; pp. 214-217. 

5. ANDRIOLO, U., TABORDA, R., SÁNCHEZ-GARCÍA, E. (2016b). Measuring wave runup 
and intertidal beach topography from online streaming surfcam. X Jornadas do Mar, 
Naval School of Lisbon. Frist Prize for the best communication in the area of 
Geography, Oceanography, Environment and Natural Science; Lisbon, Portugal. 
November 8-11, 2016 (Oral). ISBN 978-972-98098-8-0; pp. 112-121. 

6. ANDRIOLO, U., SÁNCHEZ-GARCÍA, E., TABORDA, R. (2016a). Using surfcam online 
streaming images for nearshore hydrodynamics characterization. 4as Jornadas de 
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Engenharia Hidrográfica (4JEH); Lisbon, Portugal. June 21-23, 2016 (Oral). ISBN. 978-
989-705-097-8; pp. 377-380 

7. SÁNCHEZ-GARCÍA, E., PARDO-PASCUAL, J.E., BALAGUER-BESER, A., ALMONACID-
CABALLER, J. (2015b). Monitorización de espacios costeros mediante un sistema 
fotogramétrico: C-Pro. XVI Congreso de la Asociación Española de Teledetección 
“Teledetección: Humedales y Espacios protegidos”; Sevilla, Spain. ISBN: 978-84-608-
1726-0; pp. 281-284 (Oral). 

 

CONFERENCE REPORTS (5) 
 
1. HARLEY, M., KINSELA, M., SÁNCHEZ-GARCÍA, E., VOS, K. (2018). CoastSnap: crowd-

sourced shoreline change mapping using smartphones. American Geophysical Union 
(AGU) 2018 Fall Meeting; Advancing Earth and Space Science. Washington, D.C.; 10-
14 Dec, 2018 (Oral). 

2. SÁNCHEZ-GARCÍA, E., BALAGUER-BESER, A., PARDO-PASCUAL, J.E. (2018). Un 
método de interpolación sub-píxel para la detección de la línea de costa a partir de 
imágenes de satélite. VI Jornadas de Modelización 2018. UPV, Valencia, Spain. May 24-
26, 2018 (Poster). 

3. KINSELA, M., HARLEY, M., SÁNCHEZ-GARCÍA, E., VOS, K., TAYLOR, K. (2018). 
CoastSnap: Community Beach Monitoring in Your Pocket. Australian Citizen Science 
Conference 2018. Adelaide (Australia), February 7-9, 2018 (Oral). 

4. HARLEY, M., KINSELA, M., VOS, K., SÁNCHEZ-GARCÍA, E., TAYLOR, K. (2017). 
CoastSnap: a novel community beach monitoring program using smartphones and 
coastal imaging technology. 26th Annual NSW Coastal Conference; The Next Wave. 
Conference proceedings from http://nla.gov.au/nla.obj-489814475. Port Stephens, 
NSW (Australia). November 8-10, 2017 (Oral). 

5. SÁNCHEZ-GARCÍA, E., PARDO-PASCUAL, J.E., BALAGUER-BESER, A., ALMONACID-
CABALLER, J. (2015). Development of a low cost photogrammetric tool for coastal 
monitoring and assessing the accuracy of shorelines obtained from Landsat imagery. 
36th International Symposium on Remote Sensing of Environment (ISRSE), Berlin, 
Germany. May 11-15, 2015 (Poster). 

 

SHORT STAYS IN SPAIN & FOREIGN INSTITUTIONS (5) 

 
2018 Hémera, Centro de observación de la tierra, Universidad Mayor; (Santiago de Chile)  

Invited as a PhD researcher to train and collaborate with the Hemera research group in 
order to develop a pilot project in which both universities Politècnica de València 
(UPV) and Universidad Mayor are working “Historic evolution of the Chilean coast in 
the V Region of Valparaiso”. 
Duration: Two weeks (3 Feb-18 Feb) 
Advisor: Waldo Pérez Martínez 
Financing: Start-Up Universidad Mayor, Código I-20018003 “Espacios Litorales”. 

 
2017 The Water Research Laboratory, UNSW; School of Civil and Environmental Engineering 
(Sydney, Australia)  
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Developing and testing new coastal monitoring techniques. Working on an innovative 
citizen science program for community beach monitoring using smartphone 
technology, CoastSnap: development of new algorithms for coastal monitoring. 
Duration: Three months (15 Sept-14 Dec) 
Advisor: Dr. Mitchell Harley 
Financing: “Ayudas FPU de movilidad predoctoral para la realización de estancias 
breves en centros de I+D españoles y extranjeros 2016”; Spanish Ministry of 
Education, Culture and Sport (MECD) 
Grant #: EST16/00907 
 

2016 Universidad de Cantabria, Instituto de Hidráulica Ambiental de Cantabria (Santander, Spain)  
Assessment of the shoreline position extracted from Landsat imagery using a video-
monitoring system in macro and microtidal beaches. Application to calibrate a shoreline 
evolution model. 
Duration: Three months (1 Sept-30 Nov) 
Advisor: Dr. Ernesto Mauricio González Rodríguez 
Financing: “Ayudas FPU de movilidad predoctoral para la realización de estancias 
breves en centros de I+D españoles y extranjeros 2015”; Spanish Ministry of 
Education, Culture and Sport (MECD) 
Grant #: EST15/00313 
 

2015 Faculdade de Ciências da Universidade de Lisboa (Lisboa, Portugal) 
Use of remote sensing and photogrammetric techniques applied to the study of beach 
morphodynamics. 
Duration: Three months (1 Oct-31 Dec) 
Advisor: Dr. Rui Pires de Matos Taborda 
Financing: “Becas erasmus prácticas 2015- E+”; programa SMT 15-16”; Polytechnic 
University of Valencia (UPV) 
Grant #: Exp.93286 
 

2015 Universidad de Cantabria, Instituto de Hidráulica Ambiental de Cantabria (Santander, Spain) 
Consulting data and learning of applied coastal techniques. 
Duration: 11 days (4 Sept-14 Sept)  
Advisor: Dr. Raúl Medina Santamaría 
Financing: AICO/2015/098, Valencian government (GVA). 

 


