Table of Contents

Acknowledgement .. I

Resumen Español .. III

Nederlandse samenvatting .. V

Resum en Valencià ... VII

English summary .. IX

1. Introduction .. 1
 1.1. Problem Statement 1
 1.2. Motivation and Objectives 3
 1.3. Structure of the Thesis 4

2. Background .. 7
 2.1. Vehicular Networks & ITS 7
 2.1.1. Communication in Vehicular Networks 8
 2.1.1.1. DSRC/WAVE 8
 2.1.1.2. Cellular Networks 9
 2.1.1.3. WLAN ... 10
 2.1.1.4. WiMAX/802.16e 11
 2.1.2. Routing in Vehicular Ad-Hoc Networks 11
 2.1.2.1. Source-Routing-Based Protocols 12
 2.1.2.2. Geographic-Routing-Based Protocols 14
 2.1.2.3. Trajectory-Based Protocols 15
 2.2. Vehicular Network Applications 16
 2.2.1. Safety-Related Applications 17
 2.2.1.1. Vehicle diagnostics and maintenance 17
 2.2.1.2. Intersection collision avoidance 17
 2.2.1.3. Public safety 18
 2.2.1.4. Sign extension 19
 2.2.1.5. Vehicle cooperation 20
 2.2.2. Emerging Vehicular Applications 22
 2.2.2.1. Data Source 23
 2.2.2.2. Data Consumer 24
Table of Contents

2.2.2.3. Data Producer/Consumer .. 24
2.2.3. Smartphone-based Applications 27

3. Preliminary Contributions ... 29
3.1. V2X Communication in Europe 29
3.1.1. Contribution I: GRCBox ... 31
3.1.1.1. Architecture .. 32
3.1.1.2. Implementation .. 35
3.1.1.3. Use case and Performance Analysis 38
3.1.1.4. Conclusion: GRCBox ... 42
3.1.1.1. Contribution II: Messiah 43
3.1.2.1. Features of the Messiah Application 45
3.1.2.1. Implementation Details of Messiah 50
3.1.2.1. Prototype Deployment and Evaluation 54
3.1.1.1. Conclusion: Messiah ... 56
3.1.1.2. Contribution III: Forward Collision Warning 56
3.1.2.2. Application Features .. 57
3.1.2.2. Functional Details of the Application 59
3.1.2.2. Results .. 63
3.1.2.2. Conclusion: Forward Collision Warning 72

4. EYES: The Video Overtaking Aid 73
4.1. Application Overview .. 75
4.2. Implementation Details ... 77
4.2.1. The Video Server and Client 77
4.2.2. Validity Check .. 81
4.2.2.1. Same Direction Test ... 81
4.2.2.2. Ahead Test .. 82
4.2.2.3. Same Lane Test .. 82
4.2.3. Video Transmission .. 85
4.2.4. Creating the vehicular network 87
4.3. Application Validation ... 89
4.3.1. Laboratory Evaluation ... 89
4.3.1.1. Video Quality Experiments 90
4.3.2. Application Delay Experiments 92
4.3.2.1. Chosen Video Settings 96
4.3.3. Outdoor tests ... 96
4.3.3.1. Same Direction Test ... 96
4.3.3.2. Ahead Test .. 99
4.3.3.3. Same Lane Test .. 101
4.4. Conclusions .. 105
5. **Overall Conclusion**
5.1. Summary of contributions .. 107
5.2. Future work .. 109
5.3. Publications .. 111
5.3.1. Journals ... 111
5.3.2. Conferences .. 111
5.3.3. Others: Demo ... 112
List of Figures

1.1. Top ten causes of death among people aged 15–29 years, 2012 [1]. 2
1.2. Number of road traffic deaths per year, worldwide [1]. 2

2.2. Layered architecture of the WAVE standard [3]. 9
2.3. Scenario where EEBL might come in handy [4] 21

3.1. The idea behind the GRCBox 32
3.2. The GRCBox .. 33
3.3. How an application connects making use of the GRCBox 39
3.4. Throughput offered by the GRCBox 42
3.6. The Device working in “Civil Mode” 47
3.7. The Device working in “Administrative Mode” 49
3.8. Architecture of the Messiah Application 51
3.9. Contents of messages used by the Messiah Application 52
3.10. Message generation and sending in Messiah 53
3.11. Receiving and forwarding of messages 55
3.12. Packet loss with distance using the Messiah application ... 56
3.13. Experimental setup when testing our application 58
3.14. Structure of the packets used in our FCW application 59
3.15. Same Direction Test ... 61
3.16. Refraction by convex lens when the object is beyond $2f$ 62
3.17. Time taken to process images of different resolutions by different devices ... 65
3.18. Plate processing time with Moto-G3 for different Joint Photographic Experts Group (JPEG) qualities 66
3.19. Accuracy of plate recognition for different JPEG qualities .. 67
3.20. Accuracy of plate recognition under different lighting conditions 67
3.21. Route-I without many curves 69
3.22. Route-II with some curves and turns 70
3.23. Results of the Same Direction Test 71
3.24. Accuracy of the recognised plates for varying distances during daytime, in scenarios involving motion 71
4.1. Functional overview of the application - Step one. 76
4.2. Functional overview of the application - Step two. 76
4.3. Functional overview of the application - Step three. 77
4.4. State diagram of the Server and Client. 78
4.5. Same Direction Test. ... 82
4.6. Ahead Test. .. 82
4.7. Importance of the Same Lane Test. 83
4.8. Same Lane Test. .. 83
4.9. Limits of the Same Lane Test 84
4.10. Theoretical analysis of the Same Lane Test 84
4.11. The video transmission process: client-server message exchanges. 86
4.12. Our application working together with GRCBox. 87
4.13. The experiments with EYES in real scenario. 88
4.14. Variation of Peak Signal-to-Noise Ratio (PSNR) with Packet loss for H.264 and Motion JPEG (MJPEG) 90
4.15. Variation of Structural SIMilarity (SSIM) with Packet loss for H.264 and MJPEG. .. 91
4.16. Error due to delay. ... 92
4.17. Variation of throughput with JPEG quality for a 10 Frames Per Second (FPS) MJPEG video. 93
4.18. The delay comparisons for 320x240 MJPEG and H.264 video streams. 94
4.19. The delay comparisons for 640x480 MJPEG and H.264 video streams. 95
4.20. The delay comparisons for 1280x720 MJPEG and H.264 video streams. .. 95
4.21. Results of the Same Direction Test when both the vehicles were moving on the same lane and direction. 97
4.22. Angles measured by the Same Direction Test when both the vehicles were moving on the same lane and direction. 98
4.23. Definition of d_t and d_c 98
4.24. Results of the Same Direction Test grouped according to the ratio of d_t/d_c when the vehicles are travelling in the same direction. 99
4.25. Angles measured by the Same Direction Test grouped according to the ratio of d_t/d_c when the vehicles are travelling in the same direction. .. 100
4.26. Result from experiments with the Ahead Test when one vehicle is ahead of the other. .. 100
4.27. Result from experiments with the Ahead Test grouped according to the ratio of d_t/d_c when one vehicle is ahead of the other. 101
4.28. Result from experiments with the Same Lane Test when both vehicles were on the same lane. 102
4.29. Result from experiments with the Same Lane Test grouped according to the ratio of d_t/d_c when both vehicles were on the same lane. 103
4.30. Result from experiments with the Same Lane Test when vehicles were travelling on different lanes. 104
4.31. Result from experiments with the Same Lane Test grouped according to the ratio of d_t/d_c when vehicles were on separate lanes. . . 104
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>GRCBox Representational State Transfer (REST) Application Programming Interface (API)</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>GRCBox Client Library</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>GRCBox control delay</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>GRCBox hop delay</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of actual distance with calculations using equation (3.5)</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Messages exchanged between the Server and Client</td>
<td>80</td>
</tr>
</tbody>
</table>