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1. INTRODUCTION 

Since the origin of the FEM in the field of the structural analysis, as in other fields, 
singularities due to discontinuities in the boundary conditions or abrupt changes in the 
boundary shape have been a problem to solve. The crack-tip and inner corners are two 
well-known examples of singularities and non-smooth solutions in structural problems. 

Usually, to achieve an acceptable accuracy in this kind of problems, the local 
refinement around the singularity is employed. However, the rate of convergence and 
the solution’s accuracy is not reasonable [10].  

Isoparametric FEM is the most popular method. Software as Ansys, Hypermesh, 
Abaqus, Apex, etc. are based in low-order isoparametric FEM. That is due to the easy 
and reduce cost to implementation the isoparametric FEM compared to other methods. 

However, some fields like scattering or fluid dynamics need to use high-order 
methods and represent the geometry with high accuracy. This suppose a problem for 
the isoparametric FEM. The use of high-order FEM will increase computational cost, if 
the mesh size keeps. So, to not increase the computing time the elements size in the 
high-order mesh will be bigger than the elements size used in the low-order mesh [11]. 
Nonetheless, a coarse mesh leads to represent the geometry with not reasonable 
accuracy. Due to that, in the last decades many researches have been developing FEM 
methods that allows use high-order elements and represents with an acceptable 
accuracy the geometry of the problem without a high computational cost. 

The used of high-order curved elements, called the p-version of FEM (p-FEM) [10], 
allows to obtain an exact boundary description without mesh refinement for high-order 
elements. However, p-FEM approximates the solution in reference element because 
define the polynomial interpolation in local coordinates (reference element) as the 
isoparametric FEM that implies a loss of consistency cause a local interpolation of 
degree p > 1 not correspond to polynomial interpolation in Cartesian coordinates [11].  

Another FE methodologies have been assessed in order to solve this loss of 
consistency for p > 1. The Cartesian FEM doesn’t use a reference element and defines 
the polynomial basis functions for the approximation of the solution directly in the 
physical space in Cartesian coordinates. Thus, each element needs a specific shape 
functions and quadratures for the numerical integration because there isn’t a reference 
element and isoparametric transformation. That suppose an extra computational cost 
that is justified by the improved accuracy. 

Then, NURBS Enhanced Finite Element Method (NEFEM) [9, 12] is developed in 
order to avoid geometric representation problems and loss of consistency due to 
isoparametric transformation. NEFEM represent the exact geometry of the problem by 
means of NURBS. Due to that, the elements’ shape in contact with domain boundaries 
is defined with this kind of curves which use is extended in the industry. Moreover, in 
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NEFEM the polynomial basis functions are defined in Cartesian coordinates as occurs 
in Cartesian FEM. Thus, algorithms to build quadrature and shape functions for NEFEM 
elements have been developed in order to apply the NEFEM. 

NEFEM allows to solve problems with high accuracy using coarse meshes and high-
order elements, as it has been demonstrated in [9]. Nevertheless, NEFEM is not able to 
obtain a reasonable accuracy for problems in which the solution is non-smooth.  

These problems that presents non-smooth solutions are not only in NEFEM. Due to 
that, some methods have been developed in order to avoid the refinement around the 
singularity to achieve a satisfactory accuracy.  

In a field as numerical methods, improve the accuracy of solutions and reduce 
computing’s times are main goals. There are many studies to pursue these aims and the 
main goal of this thesis is assess a method to solve singularity problems to determinate 
whether can be applied with NEFEM together. 

1.1. Objectives and overview 

This thesis focuses on assess a method which achieve reasonable accuracy for non-
smooth solutions without mesh refinement. At this moment, NEFEM is not able to obtain 
reasonable accuracy for non-smooth solutions. Due to this fact, method that is capable 
to solve this kind of problems integrated in NEFEM would be an upgrade. And fields in 
which NEFEM would be an adequate option to apply would grow up. 

The Integrated Singular Basis Function Method has been assessed. This method 
has been tested in order to known its accuracy to solve problems with non-smooth 
solutions in boundaries. A main goal of this thesis is evaluate the performance of the 
ISBFM in problems in which the use of NEFEM is considered adequate. 

For this purpose, the following steps have been followed. 

1. Development of FEM code in Matlab. As ISBFM is based on add the singular 
local solution to the ordinary basis functions, the first step has been developed 
a traditional Isoparametric FEM code. Verify the code before introduce the 
ISBFM was the first goal. In this step, singularities in the domain have not been 
introduced yet. Section 2 is devoted to the presentation of FEM. Weak 
formulation, shape functions and quadratures for this method have been 
detailed. The employ of Lagrange multipliers to impose the Dirichlet boundary 
conditions are introduced in this section. Besides, the difference among low 
order FEM, high order FEM and NEFEM have been shown. 
 

2. Implementation the ISBFM in the FEM code developed. After verify that FEM 
code developed works properly, the ISBFM has been added to code. Weak 
formulation, shape functions and for ISBFM are shown in section 3. Moreover, 
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the numerical integration has been studied because singular functions appears 
in the formulation. The expansion of the linear system of equations introduced 
in section 2 due to the singular basis functions added is assessed in section 3. 
In this section the difference between traditional FEM and ISBFM can be 
observed. Otherwise, the effect of the employ of blending functions in order to 
smooth the influence of the singular basis functions in regions away from the 
singular point is studied. 

 
3. Test the code to understand the ISBFM performance. In [1, 2] the ISBFM is 

developed to be employed using low order basis functions. Moreover, in both 
examples, crack-tip [1] and inner corner [2], the singularity coincides with a node. 
However, NEFEM used high order basis functions and the singular point location 
usually will not be coincident with a node. Due to that, the influence of the 
singular point location has been assessed as well the performance of the ISBFM 
with high order ordinary basis functions. Besides, crack-tip and inner corner are 
problems in which the boundaries conditions alongside the singularity’s 
boundary are homogeneous. Nevertheless, the performance of ISBFM in 
problems in which this boundary conditions are not true is unknown. Due to that, 
the code developed has been tested in order to know the performance the 
ISBFM in anyone case, even in which boundary conditions are not 
homogeneous alongside singularity’s boundary. In section Results4 the results 
of this tests are shown. 

 
4. Determine whether ISBFM integrated in NEFEM will be valid for obtain non-

smooth solutions with reasonable accuracy. There are different treatments 
to solve non-smooth solutions due to singularities in boundaries. Through the 
thesis, the performance of one of these methods (ISBFM) has been studied in 
order to determine whether NEFEM would be able to employ it to improve the 
accuracy obtained by NEFEM in this kind of singular problems in which the 
solution is non-smooth. Results obtained are shown in section 4. Finally, in 
section 5 is explained whether ISBFM is a valid method to integrate in NEFEM.  

1.2. State of art 

Problems that contain singularities which lead to non-smooth solution have been 
focussed by researchers in the last decades. These kind of problem suppose a challenge 
for the classical FE method considering that achieve an acceptable accuracy is not easy 
and it can need a high computational cost. Some methods to solve problems that present 
singularities are exposed next. 

Among the methods that focus the problems with singularities on of them is the hp-
FEM for singular perturbations [6, 7]. As it has been commented before, the accuracy of 
solution can be increased by two ways: refining the mesh and increasing the order of 
elements. This method applied both techniques near the singular points to improve the 
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accuracy of the approximated solution [8]. Thus, only the areas near to singular point on 
the boundaries are affected by this method, whereas the solution on the rest of the 
domain is computed by classical FEM. 

Another example of this methods is the Integrated Singular Basis Function Method 
(ISBFM) [1, 2] which propose add the terms from the singular local solution to the 
ordinary basis functions in the FEM solution. The ISBFM developed by Lorraine G. 
Olson, Georgios C. Georgiou, and William W. Schultz in 1991 [1] is focused in problems 
in which the boundaries conditions alongside the singularity’s boundary are 
homogeneous (crack-tip and inner corner). However, there are problems in which the 
solution around a singularity is non-smooth and the boundary conditions alongside the 
singularity’s boundary are not homogeneous. And the performance of ISBFM for these 
problems is unknown.  

On the other hand, the weak formulation showed in [1] is based in a simplified 
problem without body forces and traction forces. Besides, the method tested in [1, 2] 
used quadratic ordinary basis functions, meanwhile the performance of method using 
high-order elements is not showed. 

Moreover, in the studies that have been done [1, 2] the singularity match with a node. 
Nonetheless, in some FE method like NEFEM the singularity could no match with node. 
So, the ISBFM performance when singularity doesn’t match with a node is unknown too. 

Other method employed to avoid singularities in the problem’s solution is the 
Generalized Finite Element Method (GFEM) [4] which is based on the enrichment of the 
local basis functions in order to ensure a good local approximation. This method 
approximate the solution of a boundary value problem. Uses local spaces consisting of 
functions with the property that functions can accurately approximate the solution. Then 
a partition of unity is used to pasting these spaces together to form a good subspace 
approximation to ensure a good global solution approximated.  

The Extended Finite Element Method [3, 5] is based on GFEM and the partition of 
unity method. This method extend the enrichment of the solution space with 
discontinuous functions. Thus, only nodes affected by the singularity are enriched. This 
method is usually used to solve problems such as crack propagation.  
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2. HIGH-ORDER FEM 

The use of the technique of numerical analysis known as the Finite Element Method 
(FEM) has been popularized in the las decades thanks to the use of computers.  

This technique allows solving common problems in engineering fields as mechanical 
problems, thermal, wave propagation, etc. These involve the integration of complex 
system of partial differential equations (PDE’s), which until then were unapproachable, 
except in very simply cases. To solve these systems the MEF convert PDE system into 
another system of algebraic equations, whose resolutions by computers is relatively 
simply. However, this change induce errors that must been assumed. 

Initially, a domain formed by an infinite number of points, is replaced by a domain 
formed by a finite number of points. This process is called spatial discretization and 
results in a mesh formed by elements and nodes. 

On the domain, there are some governing equations that describes the behaviour of 
the physical phenomenon (mechanical equilibrium, heat transfer, etc.). As it happens in 
the analytical solutions, there is only one unique solution. Due to that some boundary 
conditions have to be imposed. 

The unknown function (temperature, displacements, etc.) can be interpolated by 
means of the points obtained in the spatial discretization (usually matched with nodes) 
on which elementary basis functions are supported, called shape functions. These 
functions usually are polynomials. Moreover, FEM usually employs an isoparametric 
transformation which consists in transform each element of the mesh into a reference 
element build previously in order to use the same shape functions in whole domain. 
When these reference elements are used the method is called isoparametric FEM. The 
weak form of the governing equation allows to obtain the algebraic equation system 
mentioned before which will be solved after the boundary conditions have been imposed. 
That system is computed for each element of mesh and then it is assembled into the 
global system. 

The weak form of the governing equations obtained induce errors. The shape 
functions used usually are polynomials functions which are not capable to represents the 
exact solution. Moreover, the spatial discretization don’t represents the exact geometry 
of the problem. Due to these errors, mesh refinement (increase the number of elements 
that compose the domain) and increase the order of shape functions are methods used 
to improve the accuracy of solution. The second method, increase the order of shape 
functions, presents a higher convergence [10].  

In this section it has been explained how to obtain the equation system to solve a 
PDE problem applying the isoparametric FEM. 
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2.1. FEM model problem 

The partial differential equation considered to solve by FEM is a Poisson problem 
which is shown in (1). Problem is considered in a domain Ω ∈ R2 whose boundary is 
partitioned as ∂Ω = ГD ∪ ГN with ГD ∩ ГN ≠ 0. 

−∆u = f   in     Ω 

u = uD  on    ΓD 

∇u · n = t  on    ΓN 

(1) 

The partial differential equation introduce in (1) corresponds to the strong form of 
the problem. To solve it by FEM is required to transform it to the weak form as is 
explained in [13]. Equation (1) has been employed as model problem to develop the 
following sections: 

• In section 2.2 the steps to obtain the weak form are exposed. Meanwhile, in 
section 0 the spatial discretization, including shape functions and numerical 
integration, is presented.  

• In section 3 is explained the ISBFM following the same steps followed in 
section 2 in order to note the difference between both methods. 

2.2. FEM weak formulation 

The first step to obtain the weak formulation is to transform the exact solution into 
an approximate solution as it is shown in equation (2): 

u(x, y, z) = �uj · Nj(x, y, z)
n

j=1

 (2) 

Note that if the approximated functions form a complete set and n =  ∞ , the 
approximated solution will converge to the exact solution.  

As it is explained in [13], multiplying the PDE by a test function ϕ and applying the 
divergence theorem leads to the weak formulation for the Poisson problem that is shown 
in equation (3): 
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�∇ϕ · ∇u · dΩ
 

Ω
= � ϕ · f · dΩ + � ϕ · t · dΓN

 

ΓN

 

Ω
 (3) 

Dirichlet boundary conditions have been imposed into the approximated solution. In 
spite of that, they can be imposed by Lagrande multipliers as is explained in [14]. It will 
be useful to apply in section 3.2. 

Then, equation (3) becomes into equations (4) and (5) after the essential boundary 
conditions are introduced employing Lagrange multipliers: 

�∇ϕ · ∇u · dΩ
 

Ω
+ � ω · λ · dΓD

 

ΓD
= � ϕ · f · dΩ + � ϕ · t · dΓN

 

ΓN

 

Ω
 (4) 

� ω · u · dΓD
 

ΓD
= � ω · uD · dΓD

 

ΓD
 (5) 

2.3. Spatial discretization 

After weak formulation has been obtained it’s time to introduce the spatial 
discretization. Then, applying the Galerkin method [13], introducing the approximation of 
the solution in equation (2) and introducing the Lagrange multipliers as expanded in 
terms of basis functions, equations (4) and (5) leads to the following system of equations 
(6) and (7): 

���∇Ni · ∇Nj · dΩ
 

Ω
�

n

j=1

· uj + ��� Ni · Nj
λ · dΓD

 

ΓD
� · λj

nλ

j=1

 

= � Ni · f · dΩ + � Ni · t · dΓN
 

ΓN

 

Ω
      for i = 1, 2, 3 … n 

(6) 

��� Ni
λ · Nj · dΓD

 

ΓD
� · uj

n

j=1

= � Ni
λ · uD · dΓD

 

ΓD
      for i = 1, 2, 3 … nλ (7) 

Note that n is the number of nodes in the domain and nλ is the number of nodes on 
the Dirichlet boundaries.  
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The elementary functions used to introduce the Lagrange multipliers can be the 
same basis functions used in equation (2). 

The system of equations (6) and (7) can be written in compact form as it is shown in 
(8): 

� K MK
MK′ 0 � · �U

Λ
� = � F

Fλ
� (8) 

The matrices and vectors that are shown in (8) are the global matrices and vectors. 
They should be computed by assembling the elemental contributions which are shown 
in (9), (10), (11) and (12):  

(K)ije = � ∇Ni · ∇Nj · dΩ
 

Ω𝑒𝑒
   K of dimension n · n (9) 

(MK)ije = � Ni · Nj
λ · dΓD

 

∂Ω𝑒𝑒∩ΓD
   MK of dimension n · n𝜆𝜆 (10) 

(F)ie = � Ni · f · dΩ + � Ni · t · dΓN
 

∂Ω𝑒𝑒∩ΓN

 

Ω𝑒𝑒
   F of dimension n · 1 (11) 

(Fλ)ie = � Ni
λ · uD · dΓD

 

∂Ω𝑒𝑒∩ΓD
   Fλ of dimension n𝜆𝜆 · 1 (12) 

Shape functions 

Shape functions are used to approximate the solution as it’s shown in equation (2). 
They have to be stablished for each element, but isoparametric FEM is based on the use 
of reference elements thus shape functions are only computed for the reference 
elements. Due to that, it is necessary to make a transformation for each element in the 
mesh to the reference element as it is shown in Figure 1. Therefore, the real element is 
defined, as equation (13) shows, by the coordinates of its nodes and the interpolation 
made. It is possible to employ different shape functions for the interpolation of coordinate 
nodes (13) and for the interpolation of approximated solution (2). However, the same 
nodes (isoparametric elements) and the same shape functions are usually used. 
Furthermore, it is necessary that the interpolation present continuity C0 between 
elements, in order to achieve convergence. 
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Figure 1. Reference element and real element [17] 

x = �Nj(ξ,η, τ) · xj
n

j=1

 

y = �Nj(ξ,η, τ) · yj
n

j=1

 

z = �Nj(ξ,η, τ) · zj
n

j=1

 

(13) 

From equation (2) can be deduced that each shape function has value one in its 
associated node and zero in the rest as it is shown in equation (14). 

Nj(xi, yi, zi) = �1  𝑖𝑖𝑖𝑖  𝑖𝑖 = 𝑗𝑗
0  𝑖𝑖𝑖𝑖  𝑖𝑖 ≠ 𝑗𝑗 

(14) 

It is necessary that in each border of the element the interpolation depends 
exclusively on the shape functions of nodes belong to such border. Thus, the shape 
function associated with a node have to be null in the borders in which that node is not 
there.  

Once the characteristics of the shape functions have been stablished, it is able to 
obtain the shape functions for an element. Then, considering a one-dimensional element 
defined by a number of nodes q, it can be defined the Lagrange polynomial associated 
with the node I as it is shown in equation (15). 
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𝐿𝐿𝐼𝐼
𝑞𝑞−1(𝜂𝜂) =

(𝑥𝑥 − 𝑥𝑥1) … (𝑥𝑥 − 𝑥𝑥𝐼𝐼−1)(𝑥𝑥 − 𝑥𝑥𝐼𝐼+1) … �𝑥𝑥 − 𝑥𝑥𝑞𝑞�
(𝑥𝑥𝐼𝐼 − 𝑥𝑥1) … (𝑥𝑥𝐼𝐼 − 𝑥𝑥𝐼𝐼−1)(𝑥𝑥𝐼𝐼 − 𝑥𝑥𝐼𝐼+1) … �𝑥𝑥𝐼𝐼 − 𝑥𝑥𝑞𝑞�

 (15) 

These polynomials (15) meet the necessary conditions defined for the shape 
functions. Then, shape functions for one-dimensional elements are Lagrange 
polynomials as it is shown in equation (16). 

𝑁𝑁𝐼𝐼(𝜂𝜂) = 𝐿𝐿𝐼𝐼
𝑞𝑞−1(𝜂𝜂) (16) 

For quadrilateral and hexahedron elements their shape functions are made in base 
on Lagrange multipliers. This kind of elements, called Lagrange elements [17], has 
arranged the nodes (in contours and interior) in a regular mesh. Shape functions for 
quadrilateral and hexahedrons elements are defined as it is shown in equation (17) and 
equation (18) respectively. 

𝑁𝑁𝐼𝐼𝐼𝐼(𝜂𝜂, 𝜉𝜉) = 𝐿𝐿𝐼𝐼
𝑞𝑞−1(𝜂𝜂) · 𝐿𝐿𝐼𝐼

𝑞𝑞−1(𝜉𝜉) (17) 

𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼(𝜂𝜂, 𝜉𝜉, 𝜏𝜏) = 𝐿𝐿𝐼𝐼
𝑞𝑞−1(𝜂𝜂) · 𝐿𝐿𝐼𝐼

𝑞𝑞−1(𝜉𝜉) · 𝐿𝐿𝐼𝐼
𝑞𝑞−1(𝜏𝜏) (18) 

Other shape functions can be made without use Lagrange polynomials. However, 
the shape functions of the Lagrange elements are easy to formulate and they have been 
used in this thesis in order to simplify the FEM code developed.  

The one-dimensional reference element is defined in [-1 1] and has the nodes 
distributed uniformly. Reference element is defined in [-1 1] because it will be useful in 
order to compute the integrals by numerical integration as it will explained in section 
Numerical integration. 

The integrals shown in equations (9), (10), (11) and (12) are computed in each 
element of mesh. When the transformation to the reference element is done it is 
necessary change the integral’s domain as it is shown in equation (19). 

� 𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑎𝑎

𝑏𝑏
· dΩ = � 𝑖𝑖(ξ, η, τ)

1

−1
· |J| · dξdηdτ (19) 

Remark that Jacobian determinant is used to accommodate for the change 
coordinates as a multiplicative factor within the integral. The Jacobian matrix (20) is 
formed by all first-order partial derivatives of functions showed in equation (13). 
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J =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥
𝜕𝜕𝜉𝜉

𝜕𝜕𝑦𝑦
𝜕𝜕𝜉𝜉

𝜕𝜕𝑧𝑧
𝜕𝜕𝜉𝜉

𝜕𝜕𝑥𝑥
𝜕𝜕𝜂𝜂

𝜕𝜕𝑦𝑦
𝜕𝜕𝜂𝜂

𝜕𝜕𝑧𝑧
𝜕𝜕𝜂𝜂

𝜕𝜕𝑥𝑥
𝜕𝜕𝜏𝜏

𝜕𝜕𝑦𝑦
𝜕𝜕𝜏𝜏

𝜕𝜕𝑧𝑧
𝜕𝜕𝜏𝜏⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (20) 

Numerical integration 

The elemental matrices and vectors shown in (9), (10), (11) and (12) requires to 
compute of integrals in the domain and in the boundaries. The FEM programs have to 
solve them automatically, then numerical integration is the employed option.  

Equation (21) shows that the integral of a function can be approximated as the sum 
of the evaluation of the function in a set of point multiplied by the associated weights. 

� 𝑖𝑖(x) · dx ≈�𝑖𝑖(xi)
n

i=1

b

a
· wi (21) 

A set of points and their associated weights is called a quadrature. In the 
isoparametric FEM is usually used the Gauss-Legendre quadrature which provide the 
minimum number of points to obtain the exact integration of polynomials up to a certain 
degree. Gauss-Legendre quadratures allows to exactly integrate all polynomials of 
degree p ≤ 2 · n − 1 where n is the number of points. How to obtain the quadratures 
for different degrees is explained in [15, 16]. 

Gauss-Legendre quadratures are frequently used. Due to that, these quadratures 
can be find in books or tables and they are usually given for the interval [1 -1] as the 
shape functions exposed in section Shape functions. 
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3. INTEGRATED SINGULAR BASIS FUNCTION METHOD 
(ISBFM). 

The method proposed by Lorraine G. Olson, Georgios C. Georgiou, and William W. 
Schultz [1] has been assessed in order to solve problems that contain non-smooth 
singularities. The method proposed in [1] is adequate to solve problems in which the 
boundary conditions alongside the singularity’s boundary are homogeneous. Besides, 
the formulation developed in [1] is based on a specific problem which no contains body 
forces, any traction forces and Neumann conditions are null in whole domain. 
Furthermore, the singularity’s location match with a node and elements use are not high-
order elements. 

On the other hand, NEFEM tries to solve any kind of problem and then the 
conclusion obtained from [1] are not enough. Therefore, in this thesis it has been taken 
the main ideas proposed in [1] and they have been applied to Poisson problem defined 
in equation (1). 

The main ideas that have been taken from [1] in order to do this thesis are: 

• Divide the problem’s solution that is calculated by FE method is two parts, 
one is the ordinary solution obtained by FEM and the other part satisfy the 
asymptotic solution and Laplace equation. Thus, equation (22) replaces 
equation (2). Due to that the method is called Integrated Singular Basis 
Function Method. 

u = ur + us ≈� ur
j · Nr

j + �us
j · Ns

j
ns

j=1

nr

j=1

 (22) 

Note that the terms in equation (22) are: 

o 𝑢𝑢𝑟𝑟
𝑗𝑗 are the terms of regular solution. 

o 𝑁𝑁𝑟𝑟
𝑗𝑗 are the shape functions explained in section 0 

o 𝑛𝑛𝑟𝑟 is the number of nodes. 

o 𝑢𝑢𝑠𝑠
𝑗𝑗 are the terms of asymptotic solution. 

o 𝑁𝑁𝑠𝑠
𝑗𝑗 are the shape functions used to expand the asymptotic solution. 

o 𝑛𝑛𝑠𝑠 is the number of singular shape functions added. 
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• The shape functions used to expand the asymptotic solutions are defines by 
equation (23). 

Ns
j = r(2j−1)/2 · cos ��

2j − 1
2

� · θ�   for j = 1, 2, 3 … ns (23) 

Terms r and θ are the polar coordinates centred at the singular point. 

Figure 2 shows the equation (23) for j = 1. 

 
Figure 2. Singular function 

 

Note that equation (23) satisfies: 

o Laplace equation. ∆Ns
j = 0. 

o The boundary conditions due to the asymptotic solution along the 
boundary segments adjacent to the singular points are 
homogeneous. 

Therefore, once the new equation to obtain the approximated solution by FEM has 
been established (22), the next step is update the strong form of the Poisson’s problem 
defined in equation (1) (section 3.1). After that, the weak formulation and the spatial 
discretization will be developed again according to the new strong form in section 3.2 
and in section 0 respectively. Moreover, section 3.4 is focussed in the numerical 
integration due to the singular functions that have appeared. Finally, in section 3.5 
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blending functions are assessed in order to reduce the influence of singular functions in 
far areas from the singularity. 

3.1. ISBFM Model problem 

The equation (1) becomes to equation (24) after separate the problem’s solution in 
two parts as it is indicate in equation (22). 

−∆ur = f   in     Ω 

u = uD − us  on    ΓD 

∇u · n = t − ∇us · n  on    ΓN 

(24) 

Furthermore, it is known that us satisfies the boundary conditions along the 

segments adjacent to the singular point. And writing ΓD = ΓDr + ΓDs and ΓN = ΓNr + ΓNs  the 
strong form of the Poisson’s problem becomes into equation (25). 

−∆ur = f   in     Ω 

ur = uD  on    ΓDs 

ur = uD − us  on    ΓDr 

∇ur · n = t  on    ΓNs 

∇ur · n = t − ∇us · n  on    ΓNr  

(25) 

3.2. ISBFM weak formulation 

As it has done in section 2.2, multiplying the PDE by attest function ϕ and applying 
the divergence theorem leads to the weak formulation for the Poisson’s problem that it 
is shown in equation (26).  

�∇ϕ · ∇ur · dΩ
 

Ω
− � ϕ · ∇ur · n · dΓN

 

ΓN
= �ϕ · f · dΩ

 

Ω
 (26) 
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On the other hand, the Neumann’s integral can be written in other terms, then 
equation (26) becomes into equation (27). 

�∇ϕ · ∇ur · dΩ
 

Ω
+ � ϕ · ∇us · n · dΓN

 

ΓN
r

= �ϕ · f · dΩ +
 

Ω
� ϕ · t · dΓN

 

ΓN
 (27) 

Alternatively, the divergence theorem can be applied to the first domain integral as 
it is shown in equation (28). It avoids the need to compute singular functions in the 
domain Ω in case the test functions are replaced by the singular shape functions (23). In 
section 3.4 it has focussed on the integration of singular functions. 

�∇ϕ · ∇ur · dΩ
 

Ω
= −�∆ϕ · ur · dΩ

 

Ω
+ � �∇ϕ · n� · ur · dΓN

 

ΓN
 

+� �∇ϕ · n� · ur · dΓD
 

ΓD
 

(28) 

Applying the divergence theorem, equation (29) has been obtained.  

−�∆ϕ · ur · dΩ
 

Ω
+ � �∇ϕ · n� · ur · dΓN

 

ΓN
+ � ϕ · �∇us · n� · dΓN

 

ΓN
r

 

−� �∇ϕ · n� · us · dΓD
 

ΓD
r

= �ϕ · f · dΩ +
 

Ω
� ϕ · t · dΓN

 

ΓN
 

−� �∇ϕ · n� · uD · dΓD
 

ΓD
 

(29) 

Note that in equation (29) is not possible to apply essential boundary conditions 
directly due to us values in whole domain are unknown. Thus, it is necessary to impose 
them by Lagrange multipliers as it has been explained in section 2.2. Due to that, 
equations (27) and (29) are expanded, each one, into two equations. 

Then, equation (27) becomes into equations (30) and (31). 
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�∇ϕ · ∇ur · dΩ
 

Ω
+ � ϕ · �∇us · n� · dΓN +

 

ΓN
r

� ω · λ · dΓD
 

ΓD

= � ϕ · f · dΩ + � ϕ · t · dΓN
 

ΓN

 

Ω
 

(30) 

� ω · ur · dΓD
 

ΓD
+ � ω · us · dΓD

 

ΓD
= � ω · uD · dΓD

 

ΓD
 (31) 

and equation (29) becomes into equations (32) and again (31). 

−�∆ϕ · ur · dΩ
 

Ω
+ � �∇ϕ · n� · ur · dΓN

 

ΓN
+ � ϕ · �∇us · n� · dΓN

 

ΓN
r

 

−� �∇ϕ · n� · us · dΓD
 

ΓD
r

+ � ω · λ · dΓD =
 

ΓD
 

�ϕ · f · dΩ +
 

Ω
� ϕ · t · dΓN

 

ΓN
− � �∇ϕ · n� · uD · dΓD

 

ΓD
 

(32) 

Thus, there are two weak formulations that defines the Poisson’s problem (25) and 
one extra equation (31) in order to impose elementary conditions using Lagrange 
multipliers. 

3.3. ISBFM spatial discretization 

To establish the equation system to solve it is necessary to apply the Galerkin 
method and introduce the approximation solution defined in equation (22). This 
approximation is defined by two parts, the FE solution and the asymptotic singular 
solution. At this time, Galerkin method is applied by parts too. 

On the one hand, Galerkin method is applied for the FE solution and the 
approximations of ur and us are introduced in equations (30) and (31). Thus, chasing 
the space of test functions to be the same as the space of shape functions defined in 
section Shape functions. 

On the other hand, Galerkin method is applied for the asymptotic singular solution 
and the approximations of ur and us are introduced in equations (32) and (31).Thus, 
chasing the space of test functions to be the same as the space of singular shape 
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functions defined in equation (23). Note that the integral of domain in equation (32) will 

be null due to ∆Ns
j = 0. 

The system of equation obtained is shown in equations (33), (34) and (35). 

���∇Nr
i · ∇Nr

j · dΩ
 

Ω
�

nr

j=1

· ur
j + ��� Nr

i · �∇Ns
j · n� · dΓN

 

ΓN
r

�
ns

j=1

· us
j  

+��� Nr
i · Nλ

j · dΓD
 

ΓD
� · λj

nλ

j=1

= � Nr
i · f · dΩ + � Nr

i · t · dΓN
 

ΓN

 

Ω
 

for i = 1, 2, 3 … nr 

(33) 

 

��� �∇Ns
i · n� · Nr

j · dΓN
 

ΓN
r

�
nr

j=1

· ur
j + ��� Ns

i · �∇Ns
j · n� · dΓN

 

ΓN
r

ns

j=1

 

−� �∇Ns
i · n� · Ns

j · dΓD
 

ΓD
r

� · us
j + ��� Ns

i · Nλ
j · dΓD

 

ΓD
� · λj

nλ

j=1

 

= � Ns
i · f · dΩ + � Ns

i · t · dΓN
 

ΓN

 

Ω
− � �∇Ns

i · n� · uD · dΓD
 

ΓD
 

for i = 1, 2, 3 … ns 

(34) 

��� Nλ
i · Nr

j · dΓD
 

ΓD
� · ur

j
nr

j=1

+ ��� Nλ
i · Ns

j · dΓD
 

ΓD
� · us

j
ns

j=1

 

= � Ni
λ · uD · dΓD

 

ΓD
      for i = 1, 2, 3 … n𝜆𝜆 

(35) 

Note that the discrete equation (33) has been obtained from equation (30) whereas 
the discrete equation (34) has been obtained from equation (32). And finally, the discrete 
equation (35) has been obtained from equation (31). 
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As it has been done in section 2.2, the system of equations (33), (34) and (35) can 
be written in compact form as it is shown in (36). 

�
K KC MK

KC′ C MC
MK′ MC′ 0

� · �
Ur

Us
Λ
� = �

Fr
Fs
Fλ

� (36) 

The equation system shown in (36) include the matrix and vectors of equation 
system (8). The new terms that turn up are due to the asymptotic solution added to the 
approximation of solution defined in equation (22). Each matrix and vector should be 

computed by assembling the elemental contributions. Matrix K, matrix MK, vector Fr 
and vector Fλ have been defined previously in equations (9), (10), (11) and (12) 

respectively. Remark that u solution calculated in (8) correspond to the FE solution ur 
in (36). 

Whereas the other terms of (36) are defined in equations (37), (38), (39) and (40). 

(KC)ije = � Nr
i · �∇Ns

j · n� · dΓN
 

∂Ωe∩ΓN
r

   KC of dimension nr · ns (37) 

(C)ije = � Ns
i · �∇Ns

j · n� · dΓN − � �∇Ns
i · n� · Ns

j · dΓD
 

∂Ωe∩ΓD
r

 

∂Ωe∩ΓN
r

    

C of dimension ns · ns 

(38) 

(MC)ije = � Ns
i · Nj

λ · dΓD
 

∂Ω𝑒𝑒∩ΓD
   MC of dimension ns · nλ (39) 

(Fs)ie = � Ns
i · f · dΩ + � Ns

i · t · dΓN
 

∂Ω𝑒𝑒∩ΓN

 

Ω𝑒𝑒
   

−� �∇Ns
i · n� · uD · dΓD

 

∂Ω𝑒𝑒∩ΓD
 Fs of dimension ns · 1 

(40) 

Note that in equation (40) there is an integral with a singular function. This kind of 
integral has been studied in section 3.4. 



19 
 

3.4. Numerical integration for singular functions 

The method proposed in [1] doesn’t need other quadratures than Gauss-Legendre 
quadrature that has been exposed in section 0. That is due to it is not necessary to 
compute any integral with singular function because the boundary conditions in 
segments adjacent to singularity are homogeneous. Thus in equation (40) there isn’t an 
integral with singular function because the domain change from ∂Ω𝑒𝑒 ∩ ΓD to ∂Ωe ∩ ΓDr. 
Moreover, equation (29) is obtained in order to avoid the integral with singular function 
in the whole domain Ω. 

However whether the problem to solve is a general case like it has been defined in 
this thesis, it’s necessary to compute an integral with singular functions. That suppose 
an increment of computational cost due to the need of use specific quadratures with high 
number of points to integrate singular functions. Thus, it have been proposed two 
options: use specific quadratures for singular functions or change the problem to obtain 
homogeneous boundary conditions in the segments adjacent to singularity. 

Quadratures for singular functions 

The need of compute integrals with singular functions appears in several problems. 
As a consequence of that, many researches have been worked in many ways to solve 
it. Most of them are focussed in build quadratures with a high number of points around 
the singularity, two examples are shown in [18] and [19]. 

However, quadratures for NEFEM elements are not easy to make as it is shown in 
[9, 12]. Thus, the algorithms proposed to make them should be updated in order to 
include a method which can solve integrals with singular functions.  

In this thesis, the goal to achieve is know the performance of ISBFM in a general 
case. Then, special quadratures for singular functions have not implemented in the code 
developed in order to solve the integrals with singular functions, but the number of points 
of Gauss-Legendre quadratures used have been increased considerably. This is 
because to assess the ISBFM’s performance are not necessary this kind of quadratures, 
whereas quadratures for singular functions and NEFEM deserve a specific research way. 

Avoid the integrals with singular functions 

The integral with a singular function appears in equation (40). That can be avoid if 
the integral’s domain is changed from ∂Ω𝑒𝑒 ∩ ΓD to ∂Ωe ∩ ΓDr. Thus, it is necessary to 
change the problem definition (25) in order to make ur = 0 on ΓDs. To achieve it, it has 

been defined an expanded ur∗ as it is shown in equation (41). 

ur∗  = ur − uD� (41) 
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Where uD� is define in (42). 

uD� = � uDΓD
s

    (42) 

As a consequence of that, the problem defines in (25) becomes into (43). This 

change allows to have ur = 0 on ΓDs, but the vector Fr and the vector Fs that have been 
defined previously in (11) and (40) have become into (44) and (45). 

−∆ur = f − ∆uD�   in     Ω 

ur = 0  on    ΓDs 

ur = (uD − uD�) − us  on    ΓDr 

∇ur · n = �t − ∇uD� · n�  on    ΓNs 

∇ur · n = �t − ∇uD� · n� − ∇us · n  on    ΓNr  

(43) 

(Fr)ie = � Nr
i · (f − ∆uD�) · dΩ

 

Ωe
  + � Nr

i · �t − ∇uD� · n� · dΓN
 

∂Ωe∩ΓN
  

 F of dimension nr · 1 

(44) 

(Fs)ie = � Ns
i · (f − ∆uD�) · dΩ + � Ns

i · �t − ∇uD� · n� · dΓN
 

∂Ω𝑒𝑒∩ΓN

 

Ω𝑒𝑒
   

−� �∇Ns
i · n� · uD · dΓD

 

∂Ωe∩ΓD
r

 Fs of dimension ns · 1 

(45) 

Remark that this change maybe is not possible to apply in all cases. Because of that 
the first option, introduce specific quadratures for singular functions, is a better option. 
On the other hand, the most common problems with singularities in mechanical 
engineering are the crack-tip and inner corner problems. Both problems, have 
homogeneous boundary conditions along the segments adjacent the singularity, thus ur 
and ∇ur · n are null in ΓDs and ΓNs respectively. 
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3.5. Blending functions 

Solve the equation system defined in (36) entail an extra computational cost. Due to 
that, in [1] it is proposed the use of blending functions in order to restrict the influence of 
singularity in the whole domain. The blending functions determines the area which is 
affected by singularity and reduce the singularity’s effect with the distance to singularity.  

However, it has been demonstrated in [1] that the use of blending functions leads to 
a loss of accuracy. Nevertheless, the effect of used blending functions and high-order 
elements has not been assessed. Thus, in this thesis the effect of blending functions has 
been studied for low and high-order elements. Two blending functions proposed in [1] 
have been used and they are shown in equations (46) and (47). 

W1 =
1

R3 · (r − R)2 · (2r + R) (46) 

W2 = �1 −
x2

R2� · �1 −
y2

R2� (47) 

Note that R determines the limit of the singularity effect. Thus, when a blending 
functions is applied the equation (23) that defines the singular shape functions becomes 
to equation (48).  

Ns
j = Wi · r(2j−1)/2 · cos ��

2j − 1
2

� · θ�   for j = 1, 2, 3 … ns (48) 

In Figure 3 is shown the equation (46) with R = 32. It can be appreciated that the 
start and the end of function shown in Figure 3 is smooth in order to reduce the effects 
of blending function in this areas. Note that the derivate of function defined in (46) for 
r = 0 and r= R is null. 



22 
 

 
Figure 3. Blending function W1 with R = 32. 
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4. RESULTS 

Once the equation system to solve problems with non-smooth solutions by FEM has 
been established in (36) and Matlab code has been developed, it has been proceed to 
test the ISBFM. Three different problems have been used in order to test the ISBFM 
code developed in order to know its performance. 

• First, the isoparametric FEM code have been tested. To do that, the method 
of manufactured solution have been employed. This method consists in 
impose an analytical solution known and obtain the strong form of the 
problem from this. So, the analytical solution is shown in (49) and the strong 
form of the problem is shown in (50). 

u = cos(2 · x + y) in     Ω (49) 

−∆ur = −5 · cos(2 · x + y)   in     Ω 

u = cos(2 · x + y)  on    ΓD 

∇u · n = [−2 · 𝑠𝑠𝑖𝑖𝑛𝑛(2 · x + y),−𝑠𝑠𝑖𝑖𝑛𝑛(2 · x + y)] · n  on    ΓN 

(50) 

Figure 4 shows the analytical solution defined in (49). 

 
Figure 4. FEM problem 
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• The second step has been introduce a singularity in the solution 
manufactured, the singularity has been located in [0.5 0]. To do that, the 
equation defined in (23) has been added to the solution (51). The strong 
form of the problem is shown in (52). 

u = 𝑢𝑢𝑟𝑟 + 𝑢𝑢𝑠𝑠 = cos(2 · x + y) + �Ns
j

𝑛𝑛𝑠𝑠

𝑗𝑗=1

 in     Ω (51) 

−∆ur = −5 · cos(2 · x + y)   in     Ω 

ur = cos(2 · x + y)  on    ΓDs 

ur = cos(2 · x + y) − us  on    ΓDr 

∇ur · n = [−2 · 𝑠𝑠𝑖𝑖𝑛𝑛(2 · x + y),−𝑠𝑠𝑖𝑖𝑛𝑛(2 · x + y)] · n  on    ΓNs 

∇ur · n = [−2 · 𝑠𝑠𝑖𝑖𝑛𝑛(2 · x + y),−𝑠𝑠𝑖𝑖𝑛𝑛(2 · x + y)] · n − ∇us · n 

on    ΓNr    

(52) 

Figure 5 shows the analytical solution defined in (51) for j = 1. 

 
Figure 5. ISBFM problem 
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Note that this problem have to be solved using special numerical integration 
for singular functions as it has been explained in section Quadratures for 
singular functions. It isn’t possible to modify the problem as it is proposed 
in section Avoid the integrals with singular functions because if it is done, 
the problem would become into (53) and solve these problem doesn’t have 
a sense. 

−∆ur =   in     Ω 

ur = 0  on    ΓDs 

ur = −us  on    ΓDr 

∇ur · n = 0 on    ΓNs 

∇ur · n = −∇us · n on    ΓNr    

(53) 

Due to the problem exposed in (53) doesn’t have sense, and the goal of 
this thesis it’s evaluate the ISBFM formulation, the problem exposed in (52) 
has solved by two ways: 

o Using a high number of points in the numerical integration with 
Gauss-Legendre quadrature. 

o Applying j > 2 in equation (23) to avoid the singular function. These 
problem allows to test the formulation implemented. 

• Finally, the Motz problem proposed in [1] has been solved, in spite of this 
problem is a specific case. Figure 6. Motz problem shows the problem. 

 
Figure 6. Motz problem 

By other hand, the following tests have been done in order to evaluate the ISBFM 
formulation implemented in the code that has been developed. 



26 
 

• Mesh convergence for the following problems  

o Test the FE code. Problem (50) is solved 

o Test the ISBFM code. Problem (52) is solved. The singular functions 
added to the analytical solutions are the same singular functions 
used in the FE analysis.  

o Test the ISBFM code. Problem (52) is solved. The singular functions 
added to the analytical solutions are different singular functions than 
singular functions used in the FE analysis. 

• The numerical integration for singular functions. It has been studied the 
convergence of solution when it’s necessary to compute an integral with 
singular function 

• The effect of the number of singular functions used in the FE analysis is 
assessed. 

• The blending functions effect is studied too. The blending function distance 
effect is assessed. 

All of this test have been done using lineal elements and elements with p > 2 in 
order to know the performance of ISBFM for high order elements. 

4.1. Mesh convergence 

FEM convergence 

The Matlab code developed is able to solve problems applying the isoparametric 
FEM. Figure 7 shows the mesh convergence in which the error is defined in norm L2. the 
problem defined in equation (50) has been solved for different element sizes and different 
element orders. 

The error in norm L2 is defined in equation (54). 

‖e‖𝐿𝐿2(Ω) = �� (𝑢𝑢 − 𝑢𝑢)2
 

Ω
𝑑𝑑Ω (54) 

Note that in equation (54) 𝑢𝑢 is the analytical solution of the problem manufactured 

defined in equation (49) and 𝑢𝑢 is the solution obtained by FEM.  

In a square domain of unity length the following element sizes (p) and element orders 
(h) have been applied: 
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• p = 1   and   h = 2−i   for   i = 1, 2, … 5 

• p = 2   and   h = 2−i   for   i = 1, 2, … 5 

• p = 3   and   h = 2−i   for  i = 1, 2, … 5 

• p = 4   and   h = 2−i   for   i = 1, 2, … 4 

• p = 5   and   h = 2−i   for   i = 1, 2, 3 

 
Figure 7. FEM mesh convergence 

As it explained in [11] the logarithm of the error L2 of solution obtained by FEM 
decrease with slope p + 1 when the mesh is refined (log10(h)). In Figure 7 each straight 
line corresponds to the error in norm L2 for each element order employed. And the 
gradient of each straight line decrease as it expected. Thus, the Matlab code has been 
implemented correctly. 

ISBFM convergence 

 After the isoparametric FEM formulation implemented in the code has been verified 
it has done a similar test to validate the ISBFM formulation implemented. To do that, the 
problem shown in (52) has been solved. In this case, j > 2 for the solution defined in (51) 
in order to avoid the singular functions in the integrals to compute. This function has been 
applied around a point located in [0.5 0]. In the solution defined in (51) the equation that 

defines the singular shape functions (23) is included, then if the function Ns
j  in the 
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analytical solution and function Ns
j  add to the ISBFM equation system (36) are equal the 

error in L2 should be the same error obtained for the previous problem.  

So, in Figure 8 is shown the error in norm L2 for the element size and element order 

employed previously. Besides 4 functions Ns
j  have been added for j = 1, 2, 3, 4. Any 

blending function has been applied. 

 
Figure 8. ISBFM mesh convergence. 𝑁𝑁𝑠𝑠

𝑗𝑗used are equal. 

Figure 7 and Figure 8 show that the error obtained for both problems is the same 
value. That means the ISBFM formulation has been implemented adequately because 

the method can reach the FEM solution whether the shape functions Ns
j  employed are 

the same functions Ns
j  added to the analytical solution. 

The isoparametric FEM and the ISBFM formulations implemented in the Matlab 
code have been verified. However, in several cases the solution is completely unknown, 
then the second case has been solve but the functions added in the analytical solution 
and the functions added in the ISBFM equation system are different. 

• Ns
j   for  j = 1, 2, 3, 4 added to analytical solution. 

• Ns
j   for  j = 5, 6, 7, 8 added to ISBFM equation system. 

The error in norm L2 expected for this problem should be higher due to the ISBFM 

can’t be reach the exact solution of the functions Ns
j  added to the analytical solution. 

Figure 9 shows the error in norm L2 for the third problem computed. 
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Figure 9. ISBFM mesh convergence. 𝑁𝑁𝑠𝑠

𝑗𝑗used are different. 

The error L2 increase in Figure 9 as it was expected. The difference between Figure 
9 and Figure 8 is a consequence of the equation system can’t reach the exact solution 

due to the functions Ns
j  added to the analytical solution are different than the functions 

Ns
j  employed in the ISBFM formulation. 

Motz problem convergence 

The ISBFM formulation has been tested employing the method of manufactured 
solution without singular functions. Then, to test the Matlab code developed in a case 
with singularity and without the need to apply special quadratures for singular functions 
the Motz problem presented in [1] and shown in Figure 3 has been solved. The analytical 
solution is unknown for this problem, then an element size of 2−5 and elements of order 
5 have been used to take it as the reference solution in order to compute the error in 
norm L2. Figure 10 shows the convergence of error for this problem. 

In Figure 10 can be appreciated that the convergence of error is similar to the 
problems solved before. Each straight line corresponds to each element order employed 
to compute the problem and the gradient of each line is p + 1 approximately as it was 

expected. Note that the line of p = 2 doesn’t present the slope farer to p + 1 (2,68). 

That can be due to numerical errors because the rest of lines are near to p + 1. 
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Figure 10. Motz problem mesh convergence. 

In spite of the problems solved in ISBFM convergence don’t contain singular 
functions, the formulation implemented to compute the solution was equal than 
formulation use to compute the Motz problem. Then, the results obtained in this section 
validate the ISBFM formulation developed that has been implemented in the Matlab code 
to verify it. 

4.2. Numerical integration 

The Gauss-Legendre quadratures can integrate exactly polynomial functions. 
However, the shape functions defined in equation (23) are not polynomial. As a 
consequence of that, it has been assessed the number of points are needed in order to 
compute this kind of functions with high accuracy.  

The shape functions defined in (23) can be singular functions or non-singular 
functions. That depends on the value of j in equation (23). Whether j > 1 there isn’t any 
integral with singular functions. Thus, Gauss-Legendre quadratures are viable to apply. 

However, for j = 1, integrals on segments adjacent to singular point can’t be 

computed as the others due to the derivate of shape function Ns
j  is a singular function. 

In a consequence a special quadrature or a high number of points of Gauss-Legendre 
quadrature is needed as it has been exposed in section 3.4.  

Due to that, the problem defined in equation (52) has been solved employing 
different values of j for the analytical solution exposed in (51). Then, the problem defined 
in (52) have been solved including singular functions and without singular functions. 
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Non-singular functions 

The equation defined in (23) is the product of a square root and a cosine function. 
Then the Gauss-Legendre quadrature can’t integrate exactly them. But, if a reasonable 
number of points is employed the integration will have a high accuracy. The first case 
solved in section ISBFM convergence has been solved employing different number of 
points (n) to define the Gauss-Legendre quadrature. Then, for p = 4 has been employed 
the number of point defined in equation (55). 

n ≥
p + 1

2
+ Pe   for   Pe = 2,3,4,5  (55) 

Note that it has been computed the problem until Pe = 9 but there isn’t appear any 

improvement from Pe = 4. 

Figure 11 shows the effect of number of integration points employed to solve the 
problem.  

 
Figure 11. Effect of integration point’s number. Non-singular functions 

As it is shown in Figure 11, to solve the problem proposed it’s recommended use 4 
or more points extra (Pe). If it is used less than 4 point extra in order to compute the 
integral with the function defined in equation (23) the solution obtained will be less 
accuracy.  

Note that the extra points added to compute the integrals depends on the elements 
order and the value of j employed in equation (23). 
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Singular functions 

In section Quadratures for singular functions it has been exposed how to compute 
integrals with singular functions. Any special quadrature has been implemented in the 
Matlab code developed, nonetheless the way chosen to compute this integrals is use a 
high number of points used in Gauss-Legendre quadrature.  

In the previous tests done it wasn’t necessary compute integrals with singular 
functions. But, in a general case it can be necessary to do it. Because of that, the 
following problem, which include integrals with singular functions, have been computed 
employing a different number of points used in Gauss-Legendre quadrature. 

• The strong form of the problem is defined in equation (52). 

• The analytical solution is defined in (51) for j = 1. The singular functions 
used in ISBFM formulation is the same. 

• The element order employed is 1. 

• The problem has been computed using two different number of point (n) for 

the Gauss-Legendre quadrature: n = 8 and n = 95. 

Figure 12 shows the convergence of error for the different number of points used. 
For a reasonable number (8) when there isn’t singular functions isn’t enough to compute 
this functions. Whereas, when a high number of points it’s used (95) the convergence is 
adequate, since the gradient of the straight line is p + 1. 

 
Figure 12. Effect of integration point’s number. Singular functions 
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Figure 13 and Figure 14 show the error L2 in the domain for the problem computed 
with a mesh 32x32 elements. Note that for both problems the error is focussed in the 
singular point located in [0.5 0]. Nevertheless, the error obtained in the problem 
computed for n = 95 is lower.  

As a consequence of the results shown in Figure 12, Figure 13 and Figure 14 it is 
evident that the problems in which it’s necessary to solve integrals with singular functions 
the formulation proposed in section 3 is valid too.  

 
Figure 13. Error L2 in the domain for n=95. 

 
Figure 14. Error L2 in the domain for n=8. 
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4.3. Singular functions added 

In section ISBFM convergence it has been demonstrated that if singular functions 
employed in the ISBFM formulation are equal to the singular functions that are part in 
the analytical solution, the error obtained applying ISBFM formulation would be the error 
that corresponds to the isoparametric FEM calculation. But, usually the singular functions 
employed in ISBFM are not going to be equal to singular functions of solution. So, two 
similar test have been done in order to know the effect in the solution obtained when the 
number of singular functions defined in (23) are employed in the ISBFM formulation.  

On the one hand, it has been solved the problem exposed in section ISBFM 
convergence using elements of order 1. The solution have 4 singular function defined in 
(23). Whereas the number of singular functions added to the ISBFM formulation goes 
from 1 to 4. This functions added to the ISBFM formulation are the same functions that 
are in the analytical solution. Figure 15 shows how the error change when singular 
functions are added to the ISBFM formulation. 

It can be appreciated in Figure 15 that high number of singular functions employed 
in the ISBFM formulation improve a bit the accuracy of solution. At the moment in singular 
functions used in both equations are equal the improvement is bigger. Note that the 
difference between line ns = 4 is the same difference between the straight lines for p =
1 in Figure 8 and in Figure 9. 

 
Figure 15. Effect of number of singular functions added. 𝑁𝑁𝑠𝑠

𝑗𝑗used are equal. 

On the other hand, the objective of the other test done is the same, but in this case 
the singular functions employed in the ISBFM formulation are different than singular 
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functions included in the analytical solution. In this test, the element order has been 
changed to 4. Figure 16 shows the convergence of error for this problem. 

  
Figure 16. Effect of number of singular functions added. 𝑁𝑁𝑠𝑠

𝑗𝑗used are different. 

Note in Figure 16 that the effect of number of singular functions employed in the 
ISBFM formulation have been reduced respect the previous test. In this case, in which 
singular functions don’t match, add a high number of them doesn’t lead to a reasonable 
high accuracy. That is due to the high order elements in FEM reach a high accuracy too. 
Then, a low number of singular function is enough in order to obtain an acceptable 
accuracy. 

4.4. Blending effect 

In section 3.5 the blending functions have been introduced. The goal of these 
functions is reduce the computational cost. That is achieved due to the blending functions 
limits the area where the singular functions implemented in the ISBFM formulation have 
effect. However, the use of them leads to a loss of accuracy in the solution. The blending 
function (46) and (47) defined in section 3.5 have been assessed and the results 
obtained are shown in section Blending function 1 and in section Blending function 2 
respectively. 

Blending function 1 

The first blending function defined in equation (46) has been assessed employing 
elements of order 1 and 3. The conditions of the problem are: 
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• 2 singular functions employed. Same functions for the ISBFM formulation 
and the analytical solution. 

• Singular point located in [0.5 0]. 

• Value of R used for p = 1:  R = 2i   for   i = 1, 2, … 5 

• Value of R used for p = 3:  R = 2i   for   i = 2, 4, 6, 8, 10 

Figure 22 and Figure 23 show the effect of blending function for the problem exposed 
employing two different element order. It can be appreciated that the effect of blending 
function is considerable. Note that the domain of the problem is small [1 1] and due to 
that the blending function has produce a high effect.  

In both figures can be observed that the convergence of error starts like the no-
blending solution but change to become stuck. That is due to the solution goes from to 
the ISBFM solution to the FEM solution and the last one has a higher error. Because of 
that, when the R is increased the value of error where is stuck is lower. Moreover, the 
increment of element order leads to a high loss of accuracy.  

 

 
Figure 17. Blending function 1 effect. Element order is 1. 
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Figure 18. Blending function 1 effect. Element order is 3. 

On the other hand, Figure 19 shows how the error is stuck when R is increased. The 

error for the most refined mesh of each R value has been compared front to R values. 

 
Figure 19. Blending function 1 error front R value. 

Figure 19 shows that the error is reduce 2 order of magnitude when the value of R 
is increased one order of magnitude for an element size: h → ∞. In case the error 
obtained using a blending function match with the error obtained without use it, increase 
value of R doesn’t have any effect. 
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Blending function 2 

The second blending function defined in equation (47) has been assessed 
employing elements of order 3. The conditions of the problem are the same than used 
before. This second blending function have been assessed in order to know the 
difference between them. 

Figure 20 shows the effect of blending function defined in (47). As it has been 
concluded in [1], the second blending function presents a better performance. The value 
of error in which the solution is stuck is lower as it is shown in Figure 21 too. As it 
happened in the previous problem, the error decrease twice when the R increase once. 

As it was expected, the application of blending functions leads to a loss of accuracy. 
Due to that, the use of this kind of functions depends on the problem and the ratio 
accuracy - computational cost. 

 
Figure 20. Blending function 2 effect. Element order is 3. 
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Figure 21. Blending function 2 error front R value. 

4.5. Node and singularity placement 

The singularity in all tests that have been done was located in [0.5 0]. However, the 
singularity placement maybe doesn’t match with a node, overall if it would be applied in 
NEFEM. Because of that, it has been tested the effect of location of singular point. As it 
has been previously, this test have been done for two different element order, in this 
case for p = 1 and p = 4. Besides, the singular functions employed in the ISBFM 
formulation are different that singular functions that are included in the analytical solution. 
In this case, the singular functions employed are: 

• Singular functions introduced in the ISBFM formulation are defined in 
equation (23) for j = 3, 4. 

• Singular functions that are included in the analytical solution are defined in 
equation (23) for j = 2, 3. 

Then, the locations of singular point that have been assessed are the following: 

• Singular point located at [0.5 0]. 

• Singular point located at [1 0]. 

• Singular point located at [0.1 0]. 

• Singular point located at [0.25 0]. 

• Singular point located at [1/3 0]. 
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Figure 22 shows that the location of singularity doesn’t have effect in the solution 
obtained. It is necessary remark two points. 

• It has been applied the manufactured method, then the singularity 
placement is located perfectly and the boundary conditions are well-known.  

• Furthermore, the singularity placement doesn’t match with a node in all 
meshes generated for each location of singularity. 

On the other hand, Figure 23 shows that the effect of singularity placement in the 
solution is null. Moreover, in this case the mesh has been kept and the order of element 
increased, then more nodes match with the location of singularity than in the previous 
test. 

 

 
Figure 22. Effect of singularity placement. Elements of order 1. 
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Figure 23. Effect of singularity placement. Elements of order 4. 

Remark that the exact location of singularity doesn’t affect to formulation developed 
in section 3.3. The integrals defined in that section in order to compute the ISBFM are 
affected by the boundaries adjacent to the singular point, but not by the exact location of 
singularity. Because of that, the results obtained in this two test are reasonable. 

In Figure 24 and Figure 25 are shown the two possible cases. In Figure 24 the 
singular point math with a node, whereas in Figure 25 the singular point doesn’t match 
with a node. 

In Figure 24 the element order is 1, employing a mesh 6x6 in the domain [1 1] and 
the singular point is located in [1/3 0]. 
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Figure 24. Singular point matchs with a node 

In Figure 25 the element order is 1, employing a mesh 8x8 in the domain [1 1] and 
the singular point is located in [1/3 0]. 

 
Figure 25. Singular point doesn’t match with a node 
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5. CONCLUSIONS 

The ISBFM formulation proposed in [1] have been expanded in order to solve any 
kind of problem in which appears a singularity. The formulation proposed in section 3 
have been validate by the test exposed in section 4. The most relevant conclusions 
obtained are summarized next: 

• ISBFM applied for general cases. The tests done in section 4 show that 
the convergence error presents a slope p + 1 as it was expected [11]. The 
ISBFM formulation preserving the formulation of isoparametric FEM. Due to 
that, the error obtained is a sum of errors of both methods. And then it can 
be deduce that the weak formulation presented in section 3.2 can be applied 
with isoparametric FEM or with other FE method. 

• Integration of singular functions. As it was predicted in section 3.4 the 
apparition of integrals with singular functions will need a different numerical 
integration than it has been defined in section Numerical integration. The 
test done in section 4.2 bear out that it is necessary to use special 
quadratures to compute this kind of integrals in order to achieve an 
adequate convergence of error. 

• Number of singular functions employed. Employ a low number of 
singular functions (23) in the ISBFM formulation it’s enough to reach an 
acceptable accuracy. In section 4.3 it’s shown that there isn’t a reasonable 
accuracy improvement when the number of singular functions employed is 
increased.  

If the singular functions used in the ISBFM formulation were the same 
singular functions which defines the singularity, the error due to ISBFM 
would be null. Nevertheless, this scenario is not frequent. 

• Blending functions effect. In section 3.5 the blending functions have been 
introduced. The goal of this functions is reduce the computational cost. 
However, as it has been deduced in [1], the use of this functions lead to a 
loss of accuracy. Moreover, when the elements order is increased, this loss 
is greater.  

• Singularity location. In the example presented in [1] the singularity location 
match with a node. Nonetheless, in some problems the placement of 
singularity can no match with a node, for example whether NEFEM is 
applied. Because of that, the section 4.5 has been focussed in test the effect 
of singularity location and the results obtained have evidenced that it isn’t 
necessary that singularity location match with a node. 

• High-order elements effect. The perks of use high-order elements in 
isoparametric FEM are preserved in the ISBFM formulation proposed. 
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Besides, the use of high order elements leads to reduce more the small 
effect of number of singular functions used. On the other hand, the use of 
blending functions and high-order elements together entails a higher loss of 
accuracy as it has shown in section 4.4.  

To conclude, the ISBFM weak formulation proposed in section 3.2 allows to solve 
problems which presents singularities, reaching an acceptable accuracy, without the 
necessity to refine the mesh, it isn’t necessary that singular location match with a node 
and the use of high-order elements is worth. However, in some many cases it will have 
to apply specific quadratures for singular functions. Due to that, the method proposed 
can be a good option to use with NEFEM at the same time. 
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6. FUTURE DEVELOPMENTS 

Along this thesis ISBFM has been assessed in order to know its performance in 
problems in which NEFEM would be applied. That is not enough to determinate that 
ISBFM is the option to apply in NEFEM to solve problems in which the solution is non-
smooth due to singularities. Thus, some researches lines are still open: 

• Numerical integration. As it has been commented in section 3.4 some kind 
of problems can’t be solved properly using Gauss-Lagendre quadratures. In 
case the boundaries conditions alongside the singularity’s boundary can’t 
be homogeneous it is necessary to apply specific quadratures to integrate 
singular functions. Then, the integration of this kind of integrals in NEFEM 
deserves more attention in order to evaluate whether ISBFM could be 
applied in this situation.  

• Test ISBFM and NEFEM together. The ISBFM’s performance have been 
tested in the isoparametric FEM code developed on purpose. Thus, test it in 
the NEFEM will validate the results obtained in this thesis. 

• Assess other methods. In this thesis only one method to solve problems 
with singularities have been studied. Nevertheless, other methods, like 
GFEM/XFEM [3], have been developed in the last decades to solve this kind 
of problems. So, it is worth to assess other methods in order to compare 
among them. Thus, it will help to choose the method that fits better with 
NEFEM. 
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