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ABSTRACT 
 
Nowadays, there is growing interest in controlling and reducing the amount of water lost 
through leakage in water supply systems (WSSs). Leakage is, in fact, one of the biggest 
problems faced by the managers of these utilities. This work addresses the problem of 
leakage in WSSs by using GPR (Ground Penetrating Radar) as a non-destructive method. The 
main objective is to identify and extract features from GPR images such as leaks and 
components in a controlled laboratory condition by a methodology based on second order 
statistical parameters and, using the obtained features, to create 3D models that allows quick 
visualization of components and leaks in WSSs from GPR image analysis and subsequent 
interpretation. This methodology has been used before in other fields and provided 
promising results. The results obtained with the proposed methodology are presented, 
analyzed, interpreted and compared with the results obtained by using a well-established 
multi-agent based methodology. These results show that the variance filter is capable of 
highlighting the characteristics of components and anomalies, in an intuitive manner, 
which can be identified by non-highly qualified personnel, using the 3D models we 
develop. This research intends to pave the way towards future intelligent detection 
systems that enable the automatic detection of leaks in WSSs. 

 
Keywords: Variance filters, GPR images, non-destructive methods, water leaks, water 
supply systems 
 
 
1. INTRODUCTION 

In the last years, water leaks have taken a leading role in the management of urban water 
supply systems (WSSs) because leakage represents a serious problem that severely affects 
WSS utilities and, ultimately, water consumers. According to several reports, a substantial 
amount of water gets lost through leaks in WSSs (Martini et al., 2015; Nasirian et al., 2013). 
For example, the World Bank in partnership with the International Water Association states 
that in developing countries, in a coarse manner, 45 million cubic meters of water are lost 
daily. This, in economic terms, can be valued over US$3 billion per year. This amount 
decreases in more developed countries (World Bank, 2016). To face this problem, it is crucial 
to implement actions to detect, locate and control leaks in water networks. 



2 

Leaks in WSSs not only represent a high percentage of quality water loss, but also reduce 
system efficiency, put water quality at risk, and produce economic cost increase for the 
utility. To overcome efficiently this problem, early detection of anomalies and precise 
location of the flaws are deemed necessary. To serve this purpose, the most common methods 
are the acoustic method (Brennan et al., 2008; Hunaidi et al., 2004; Juliano et al., 2013), 
infrared thermography (Atef et al., 2016; Fahmy and Moselhi, 2010), gas trace test and 
ground penetrating radar (GPR) (Demerci et al., 2012; Dong et al., 2011; Lee and Oh, 2018). 
Among them, GPR is one of the most effective tools for the characterization of ground 
conditions in urban areas (Hong et al. 2018), thus, in particular, making it easier water 
network inspection by demarking in GPR images (radargrams) contrasts between leaked 
water and the surrounding ground derived from their dielectric characteristics (Crocco et al., 
2010). This is the reason why, in the last years, GPR use has been extended to various 
subsurface geophysical investigations, particularly at shallow depths (Shaikh et al. 2018; Lai 
et al., 2018). GPR is an easily applied and fast methodology; however, the images obtained 
are not easy to interpret (Ayala-Cabrera et al., 2011; Gerlitz et al., 1993; Thomson et al. 
2009). It is necessary an adequate treatment of the images by applying different processes 
and filters (Santos and Teixeira, 2017; Xue et al., 2017) that help the visualization of the 
sought characteristics (buried pipes and water leaks, in our case). Accordingly, works such as 
Stampolidis et al. (2003), use GPR image processing by low-band filters to identify leaks in 
PVC urban pipelines; Hasan (2012) and Hyun et al. (2007) perform background extraction 
and image filtering of GPR images, respectively; furthermore, Simi et al. (2008) uses the 
Hough transform to locate hyperbolas in GPR images; Tavera (2008) uses the Hilbert and 
Fourier transforms; and Ayala-Cabrera et al. (2011) applies a multi-agent methodology for 
similar purposes, just to name a few. All of them show varied efficiency for locating buried 
objects and specific damages in networks by applying adequate processing methodologies to 
GPR images. 
 
However, most of these works are based only on the location and interpretation of the 
hyperbolas generated either in raw or pre-processed images. For that reason, this work focus 
on the evaluation of the viability of identifying and extracting morphological characteristics 
(contours, patterns, etc.) corresponding to a water leak from a PVC pipe under laboratory 
controlled conditions. In this framework, recent laboratory assays and water leak image 
processing contributions, such as Lai et al. (2016) on GPR image pattern detection, or Ocaña-
Levario et al. (2015) and Ayala-Cabrera et al. (2013a) by using Multi-Agent-Based 
Simulation (MABS) for GPR image pre-processing, can be quoted. In this work, the proposed 
methodology uses second order statistical (variance filter) parameters to highlight features of 
interest, such as, objects (pipes) and leaks, which help improve their posterior feature 
extraction. Enhanced visualization is obtained from more differentiated contrasts, which, in 
addition, is independent of the direction of the prospection with respect to the location of the 
element of interest. These advantages are highlighted after comparison with the MABS 
methodology, a well-stablished visualization technique. The main objective of this process is 
to extract leak characteristics from GPR images using a variance filter, and then create 3D 
models for better understanding WSS buried elements. In future works we expect to use the 
variance filter-extracted characteristics as inputs for intelligent detection systems, allowing 
automatic leak detection, and ultimately, to improve efficiency in urban water management. 
 
Related to the employed approach in this document, we have to quote recent researches like 
Fabijariska (2011), which uses a variance filter to determine contour locations in synthetic 
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and real images, and Sarwas and Skoneczny (2015), which tries various variance filters to 
locate objects in RGB images. These two investigations show a promising use of variance 
filters, which are evaluated as a simple filter in RGB images.  
 
In this work we prove that the variance filter overcomes the traditional scope based in 
boundary detection on GPR images, in a manner that the hyperbolas that are shown in GPR 
images as components can now be shown with differentiated shapes in the results obtained. 
As a consequence, it can be concluded that variance filters help the identification of WSS 
components and leaks, thus allowing the detection of contrasts between the various material 
borders within an image.  

This paper is organized as follows. In the first section, we have presented a brief introduction 
to the subject and reviewed relevant literature. The second section is dedicated to the 
characteristics of the tests performed. The third section shows the proposed methodology 
based on a variance filter. The analysis and results of processed GPR images with the 
variance filter are presented in the fourth section. Next, the fifth section presents a 
comparison analysis between the results obtained by the proposed methodology (variance 
filter) and the results obtained by a multi-agent based system. The sixth section presents 3D 
models obtained by both methods to ease interpretation. Finally, a section of conclusions 
closes the document. 

2. CASE STUDY – ASSAY CONFIGURATION 

In this section, the laboratory assay configuration used to obtain the GPR images is presented. 
The proposed assay configuration is presented in Figure 2.1. 

 

Figure 2.1. Assay configuration: (a) Buried pipe (black), (b) polypropylene plate (light blue) 
- GPR antenna of 1.5 GHz, (c) data sampling configuration 

For the ensemble of tests, a 1.00×1.00×0.60-meter wooden tank was employed, thus 
emulating a land plot. Inside the tank a 0.95-meter-long and 0.10-meter diameter PVC pipe 
was buried in dry soil. It is important to say that the pipe was connected on both ends by two 
hose pieces, allowing introduction and extraction of water in and out of the system. Finally, 
to simulate a pipe break, the PVC pipe was drilled in the center. The pipe was covered with 
dry soil once placed inside the tank. On top of the tank a polypropylene plate was placed to 
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improve data acquisition. This configuration had also been used in other laboratory tests 
(Ayala-Cabrera et al.; 2013a; Ocaña-Levario, 2014) employing various pipe materials. It is 
worth mentioning that in both cases the location of the leak was inferred after a hard work of 
interpretation developed by experts in image analysis. The plate had 12 traces (slices), 6 
parallel to the X axis (P1 to P6) and 6 parallel to the Y axis (P7 to P12), equally spaced, with 
separation 0.20 meters, thus producing a sampling mesh in which the GPR antenna was slid 
to capture data. This configuration was intended to ease the fieldwork of operators in 
capturing the information.  

The GPR equipment used for the assays corresponds to a 1.5 GHz central frequency 
monostatic antenna, with parameters 120 traces/s, 512 data/trace and 20 s/512 data. The 
antenna selection was performed given the required soil penetration characteristics, taking 
also into consideration the shallowness of real pipelines buried in water supply systems 
(Ayala-Cabrera et al., 2013b). 

Additionally, to compare between normal operation conditions of the pipe and a leakage 
condition, this work proposes two scenarios. The first scenario was performed without water 
inside the pipe (no leak case); in the second scenario, the pipe was filled with water, which 
was leaking through the drilled hole.  

3. PROPOSED METHODOLOGY – VARIANCE FILTER 

The proposed methodology for leak boundary identification and extraction from GPR images 
is presented in this section. First the variance filter is introduced, then the methodology 
applied to the images is described. 

Variance filter. The basic principle of the variance filter consists in calculating the variance 
around each pixel of the image with size m×n, m being the number of rows in the image and 
n the number of columns; this notation is used throughout this document. First, the window 
size s×o (number of pixels to work with) is defined. Then, an iterative process starts, which 
uses the variance filter formulation described by (Fabijańska, 2011): 

ത௜௝ݑ  ൌ
ଵ

௡
∑ ௜௝ݑ
௡
௜ୀଵ ;  (1) 

௜௝ߪ 
ଶ ൌ ଵ

௡
∑ ൫ݑ௜௝ െ ത௜௝൯ݑ

ଶ௡
௜ୀଵ . (2) 

In each step, the mean is first estimated for the chosen window. This mean is defined by 
equation (1), which uses the size of our window and the pixel values of the image. Next, the 
variance, is calculated by (2), with the pixels inside the selected window and the value 
obtained in equation (1); the result is associated to the center pixel of the window in the new 
image; this is repeated for all pixels of the image. By doing this, a new image is obtained. 
Notice that the new image is of size (m-(s-1))×(n-(o-1)). 

The proposed methodology for leak boundary identification and extraction from GPR images 
is presented in this section. Figure 3.1 shows the process, which consists of the following 
steps: a) get the raw input image, b) apply the variance filter to obtained GPR images, c) 
smooth the filtered images, d) identify range objects of interest by binarization, and e) obtain 
the contour of the selected groups. Next, this methodology is concisely described. 
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Afterwards, in section six we explain how relevant patterns are extracted to create a 3D 
model. 

 

Figure 3.1 Methodology: (a) Raw input image, (b) variance filter image, (c) smoothed image, 
(d) binarized image and (e) processed image 

Raw image. Is the GPR image obtained from laboratory surveys that will be used as input for 
the successive process.  

Variance filter image. The variance filter is applied to the raw image. In our case, the 
window size proposed is 3×1. At this point, it is important to note that the window size was 
selected after having performed several tests with different configurations. After having tried 
window sizes of 5×5, 4×4, 3×3, 3×2, 5×1, 4×1, and 3×1, in 3 different images, the window 
size of 3×1 resulted the configuration that better improves image visualization while avoiding 
over-smoothing. In the next step, the variance filter image is processed for a visual analysis, 
to discover characteristics that give relevant information related to pipe location and/or leak.  

Smoothed image. Noise from the variance filtering process in variance filter image is 
removed by using the median filter implemented in Matlab’s function medfilt1 (Matlab, 
2012; Pratt, 2007). The function medfilt1 applies an n-th order one-dimensional median filter 
to each row of the image. The application of this function helps thresholding the image and 
also highlights the area of interest. Once cleaned the image noise (Belotti et al. 2002; 
Harrison, 2005; Nagashree et al., 2014; Singh and Nene, 2013), we obtain a smoothed image. 

Binarization. Over the smoothed image, an iterative segmentation is done, based on the 
selection of one or more ranges ([min max]). Ranges are selected manually by choosing the 
minimum and maximum values that enhance visualization and selection of the characteristics 
of the objects as well as the anomalies. As a result of the selection of ranges, a binarized 
matrix is obtained. The smoothed and binarized images have the same dimensions.  
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Processed image (contour selection). In the binarized image, boundary detection is obtained 
using the Moore’s neighbor algorithm modified by Jacob Eliosoff (González, 2004). This 
algorithm is implemented in Matlab’s bwboundaries function (Matlab, 2012). The 
bwboundaries function traces the exterior boundaries of objects, as well as boundaries of 
holes inside these objects, in the binarized image. Next, the selected contours for the images 
in both scenarios are compared; this results in an easy way to identify the boundaries 
belonging to the pipe and those belonging to the wet area created by the leak. 

  

4.  ANALYSIS OF RESULTS – VARIANCE FILTER 

In this section, the results after applying the proposed methodology, as well as their 
interpretation, are shown. It is important to say that in this section the word slice is used to 
denote the GPR images, as they are sections in depth of the inspected ground. The GPR 
images are named transversal slices if the image was obtained from a prospection transversal 
to the pipe. Similarly, for longitudinal GPR prospections we speak of longitudinal slices. 
First, we show the transversal slices for the first scenario, followed by the longitudinal slices 
for the first scenario. Next, for the second scenario both transversal and longitudinal slices, in 
this order, are also shown. 

4.1. First scenario – Transversal slices 

Figure 4.1a shows raw slices; there is evident difficulty to locate characteristics that confirm 
the presence of some object or anomaly; nevertheless, by analyzing the slices in detail, the 
hyperbolas obtained after moving the antenna transversally to the buried pipe can be 
identified. Hyperbolas are found between 200 and 250 samples (depth) showing the presence 
of the pipe. The raw images show diagonal lines crossing through and intersecting in the 
middle of each image approximately; these lines are signal reflections created by the tank 
walls, generating noise on the images. In slice P4 a couple of additional hyperbolas 
(anomalies) are shown. These anomalies can cause confusion in posterior analyses, since they 
could be mistaken for the leak if not considered in the starting analysis. These hyperbolas 
cannot be caused by the leak since no water has been introduced to the system yet (first 
scenario). 

Figure 4.1b shows the slices obtained after the variance filtering process; curve-shaped 
ensembles that match the location of the hyperbolas in the raw images between 200 and 250 
samples approximately can be observed. Also, in all of the images, around 175 samples a 
clear contrast in the images can be found; this contrast denotes the surface of the ground 
inside the tank. In slices P3 to P5 the shapes that appear in the images are very similar, 
having 3 to 4 curves that create a circular shape. This does not occur in slice P1 because of 
the hose that is connected to the pipe; the presence of this hose, which feeds the system with 
water, also affects slice P2 and slightly P6. It is important to mention that slice P4 still has the 
anomaly visible to the right of the ensemble of curves that are considered to be the pipe. 
Finally, Figure 4.1c shows the contour selection of the shapes in each image. 
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Figure 4.1 a) Raw images, b) variance filter images, and c) binarized images 

4.2. First scenario – Longitudinal slices 

In these images the longitudinal layout of the pipe is visible. Normally, experts first locate the 
pipe by looking for hyperbolas in transversal slices. However, in these images it is shown that 
it is possible to locate the pipe from longitudinal slices. 

Figure 4.2a shows the raw images. In the slices the diagonal lines resulting from the reflected 
signal produced by the tank wall are visible, similar to the slices in figure 4.1a. Also, as in 
figure 4.1a, it is difficult to identify the presence of the pipe; however, when looking closely 
and comparing the slices, slice P4 shows a couple of parallel lines, which are demarked 
slightly; these lines correspond to the pipe located between 200 and 250 samples. In a 
prospection longitudinal to the buried pipe it is a harder task to find the pipe if compared to a 
prospection transversal to the pipe since no hyperbolas appear in the raw images; as in this 
case, the pipe is shown as various parallel lines, that can be easily mistaken or overlooked. 
Figure 4.2b shows the slices once finished the variance filter process; the presence of the pipe 
in slice P4, between 200 and 250 samples can be clearly seen. Pipe top and bottom 
boundaries are highlighted, being, then, easier to detect. Finally, figure 4.2c shows the 
binarized slices and the shapes selected. Only slice P4 has a shape to locate the pipe; in all the 
other slices there is nothing to remark. 
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Figure 4.2 a) Raw image, b) variance filter images, and c) binarized images 

 

4.3. Second scenario – Transversal slices 

In Figure 4.3a the raw slices for the second scenario are shown. First, in slices P1 and P6 a 
vertical distortion caused by the water present in the system can be observed. In slice P1 this 
distortion is due to water entering the system and in P6 it is caused by water leaving the 
system. In slices P2 and P5 hyperbolas are demarked around 200 and 250 samples, being 
clearly visible when compared with their corresponding slices in Figure 4.1a. In slice P3 a 
slightly demarked hyperbola can be located around 200 and 250 samples and, over it, a 
bigger hyperbola that contains the former; this is due to the anomaly produced by the 
presence of water leaking out of the pipe. Slice P4 shows a hyperbola between 200 and 250 
samples and, to its right, a couple of hyperbolas, which were also present in Figure 4.1a; the 
difference now is that in slice P4 of Figure 4.3a it is possible to detect a thin hyperbola over 
the couple of hyperbolas detected previously, this suggesting the presence of water. Also the 
hyperbolas caused by the pipe show a distortion due to the water leaking out of the pipe. 

In Figure 4.3b the slices obtained after the variance filter are shown. The filter casts new 
relevant results, allowing obtaining previously not visible characteristics when compared 
with raw slices. The first slice, P1, shows clearly the hose that allows water to enter the 
system. The hose is located vertically around 150 to 225 samples approximately and, next to 
it, a circular shape is demarked. The circular shape corresponds to the pipe and it is located 
between samples 225 and 300; the same occurs in slice P6 for water leaving the tank. In 
slices P2 and P5 a well defined ensemble of 3 hyperbolas can be identified; this shows the 
water contained in the pipe. Slices P3 and P4 denote the presence of water leaking; to the left 
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the shapes that belong to the pipe and to the right the shapes that belong to the zone where the 
leak is located can be observed. 

Finally, Figure 4.3c shows the binarized images, as well as the shapes and boundaries 
selected that match the pipe and the leak. 

 

Figure 4.3 a) Raw images, b) variance filter images, and c) binarized images 

4.4. Second scenario – Longitudinal slices 

The raw longitudinal slices for this scenario are shown in Figure 4.4a. We remember that 
these slices were taken with a leak present in the system. In slice P3 a slight perturbation in 
the shape of a hyperbola located around 200 samples depth approximately is observed. Also, 
in slice P4, two parallel lines that correspond to the pipe can be seen; these lines are cut in the 
middle of the image and join together to form an X, and, over it, a hyperbola is located 
showing the presence of the leak. The precise location of the leak, as well as the wet area 
around the leak can also be detected. Figure 4.4b shows the images resulting of applying the 
variance filter; in this figure, the visualization of the pipe and the leak is clearer than before: 
slice P3 has a dark mark between samples 175 and 250 and fits the observed wet soil caused 
by water leaking out of the pipe. Slice P4 shows the pipe filled with water; it is now clearer 
than before to observe the area were the leak is located, the reach of the leak, and the pipe 
itself. The pipe is located between samples 200 and 250, and the wet zone (affected by the 
leak) is easily identifiable in the center of the image between samples 125 and 275. Finally, 
Figure 4.4c shows the binarized slices as well as the respective boundaries of the objects. 
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Figure 4.4 a) Raw images, b) variance filter images, and c) binarized images 

The previously shown images show relevant information that allows locating the pipe and the 
anomalies present in the GPR images, a leak in our case. The variance filter provides an easy 
way to detect, locate and extract characteristics of the images. 

 

5.  COMPARISON ANALYSIS USING A MULTI-AGENT BASED METHOD  

In this section, a comparison analysis between the obtained results using the variance filter 
and the MABS preprocessing algorithm is presented. The final objective is to highlight each 
method characteristics, which help GPR image analysis, making it easier the visualization 
and identification of anomalies in the images, in a clearer and easier way. To this aim, the 
basic principles of the algorithm are shown, as well as a comparison analysis between the 
obtained images with each method. 

5.1 Pre-processing algorithm with multi-agent systems 

The pre-processing of GPR images used in this section was proposed by Ayala-Cabrera et al. 
(2013b) and was termed an agent race. The algorithm is developed in Matlab, is based on 
game theory and uses the multi-agent paradigm (Shoham et al., 2009). The input to this 
algorithm is the raw GPR image (radargram) of the GPR prospection, which consists of an 
m×n-sized matrix. The n traces, of length m, that are generated are used in this work as 
parallel tracks for the n-agents to run. The race is an endurance test for the competing agents, 
the prize for each agent being a movement step for each effort performed. Those efforts are 
based on wave amplitude value changes in each column of the matrix (radargram). The agent 
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race includes two phases: a) warming-up and b) competition. The race takes a total time 
tt = tw + tr = m, tw being the warming-up time and tr the competition time. The 
displacements of the agents during time tr are conditioned by the trend change of the wave 
amplitude on the trace that is being run. The race ends when time tt has elapsed, and the race 
winner is the agent who has obtained the largest displacement during this time. The output 
(output A) of this process consists of an m1×n matrix, m1 being the maximum number of 
displacements. Columns in this matrix describe the movement of the agents related to the 
competition. In this work, the movements obtained by the agents are called time lines. On 
each time line, the time obtained in the competition by each agent is sorted by increasing 
values, indexed from 1 on, giving equal indexes to equal times. These time lines are later 
normalized, obtaining Output B, which is the matrix used to compare later on. Figure 5.1 
shows visually the latter. 
 

 
Figure 5.1 Scheme for the agent-race algorithm (Ayala-Cabrera et al., 2013b) 

5.2 Comparison and image analysis 

In the following sub-paragraphs, the comparisons between the variance filter and MABS 
resulting images presented. For the first scenario (subsections 5.2.1 and 5.2.2), transversal 
and longitudinal slices are shown in Figures 5.2 and 5.3 respectively. Additionally, for the 
second scenario (subsections 5.2.3 and 5.2.4), the transversal and longitudinal slices for both 
methods are shown in Figures 5.4 and 5.5. 
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5.2.1 First scenario comparison - Transversal slices 

Figure 5.2a shows the slices using the MABS algorithm. In the slices, it is possible to observe 
the presence of an elliptic formation between time lines 10 and 20 and between 0.5 and 0.6m 
in the sense of the x axis; the presence of this elliptical formation corresponds approximately 
to the place where the PVC pipe is buried. Additionally, the color intensity of the ellipse is 
stronger in the center of the ellipse and vanishes close to its border; this characteristic favors 
the location of the pipe. Moreover, slices P1a and P6a show additional formation above the 
ellipse: the shape of the formation is triangular and is located at time line 5 approximately; 
this corresponds to the input and output hoses. This has to be highlighted since this formation 
is not easily detected in the variance filter processed slices (b). However, in contrast, in the 
variance filter processed slices it is easier to locate the pipe. The shapes obtained with each 
method are different. The pipe shape is identified by ensembles of hyperbolas in the variance 
filter slices (b), while in the MABS (a) the pipe is shown by ellipses. Nonetheless, the 
difficulty in identifying and locating shapes in the slices (a) is harder because the image 
composition produces some confusion among shapes in the slice. 

 
 

Figure 5.2. (a) MABS pre-processed images and (b) variance filter images 

5.2.2 First scenario comparison - Longitudinal slices 

Figure 5.3 shows the slices longitudinal to the pipe. Focusing first on the slices (a), it can be 
observed that each slice is different, but nothing particular can be seen at first look. However, 
if a detailed analysis is performed, in slice P4a, between time lines 10 and 20, intense yellow 
linear formations can be seen that are not present in any other slice. This formation 
corresponds to the upper and lower boundaries of the buried pipe. In contrast, focusing now 
on slices (b), it is possible to identify with certain ease the pipe in slice P4b; this is because 
the high variance value allows this zone to be brighter, improving a fast pipe location. 



13 

 
 

Figure 5.3. (a) MABS pre-processed images and (b) variance filter images 

5.2.3 Second scenario comparison - Transversal slices  

 
Figure 5.4. (a) MABS pre-processed images and (b) Variance filter images 

Figure 5.4 shows the transversal slices of the second scenario, a scenario in which the pipe is 
leaking. By analyzing the slices in figure 5.4a, it is observable that the ellipse previously 
detected in the Figure 5.2a has higher color intensity because of the water present in the 
system. 

In figure 5.4b it is possible to observe that the hyperbolas are closer and tighter between 
them, changing its shape slightly when comparing with the slices shown in Figure 5.2b.  

In figure 5.4, in slices P1a and P6a, the input hose and the output hose, respectively, can be 
observed as an increase of color intensity because of the water passing through. When 
compared with slices P1b and P6b, the hose is shown connected to the main PVC pipe as an 
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ensemble of hyperbolas, improving the image analysis, as it reflects how it is connected in 
reality.  

Finally, slices P3a and P4a show an ellipse of lower color intensity (blue) over the ellipses 
identified as the pipe; this matches the wet area caused by the leak, showing that the leak is 
above the buried pipe. Opposite to those slices, slices (b), especially P3b and P4b show that 
the wet area extends through the right to the top of the buried pipe. 

5.2.4 Second scenario comparison - Longitudinal slices 

In Figure 5.5, the longitudinal slices that show the water leaking out of the pipe are presented. 
Starting with the analysis of slices (a), the characteristics of these slices are very different as 
well as the color intensity. However, looking closer to slices P3a and P4a, it is possible to 
highlight ellipses appearing between time lines 5 and 15, the biggest being the ellipse of slice 
P4a, which matches where the leak is located. Slices (b) allow identifying easily the zones 
affected by the leak, which are shown in slices P3b and P4b. Additionally, slices (b) favor the 
visualization of the pipe itself; this helps the accurate location of the leak.  

 
 

Figure 5.5. (a) MABS pre-processed images and (b) variance filter images 

Finally, from this comparison analysis, we can conclude that both methods are efficient, 
easily applicable, and allow extracting buried pipe characteristics and also anomalies present 
underground, such as water leaks. The MABS algorithm favors to obtain shapes that are 
similar to the pipe shape, but has an inherent difficulty because of image composition and 
colors. This may introduce confusion when interpretation is done. And even more, if the 
studied area composition is unknown, misinterpretation can occur with relatively ease. In its 
turn, variance filtering has an advantage over the previously mentioned method, because 
variance filtering allows highlighting pipe characteristics or leaks making them visible at first 
look, being also easily identifiable. Other advantage is that the pipe can be located 
transversally (usual appearance of hyperbolas) or longitudinally. Finally, the slices processed 
using the variance filter reduce confusion because the contrast between values can highlight 
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better some characteristics. For example, higher values correspond to brighter areas (pipe), 
while lower values are darker on the image (leak). 

It must be stated clearly that this work has been developed under controlled laboratory 
conditions, which benefits feature identification. 

 

6. 3D MODEL COMPARISON 

Various techniques are used in GPR subsurface target reconstruction (Zhou et al., 2016). In 
this section, a 3D model is created to improve comprehension and visualization of the results 
of both methods. The 3D model is built by merging contours, first placing the extracted 
contours in their corresponding slice spatial coordinates and then applying Matlab3D 
delaunay function (Matlab, 2012), which creates a 2-D Delaunay triangulation of the points 
(x,y), where x and y are column-vectors. The procedure is analogue as the one shown by 
Ayala-Cabrera et al. (2014). 

 
 

Figure 6.1. 3D Models: (a) 3D model obtained from variance filter images and (b) 3D 
model obtained from MABS pre-processed images 

To complete the comparison between both methods, Figure 6.1 shows the 3D models 
obtained from each method. Figure 6.1a shows the 3D model obtained from the images after 
application of the variance filter, and Figure 6.1b is the 3D model from the MABS pre-
processed images. By comparing both models, a slight difference can be noticed. It can be 
observed that in Figure 6.1b the pipe is rounder that the one in Figure 6.1a. This is because of 
the elliptical shapes found in the MABS pre-processed images, favoring a shape that is more 
similar to the real pipe. Also there is a big difference when looking at the wet area volume of 
each model. Figure 6.1a has a wider and scattered shape moving away from the pipe to the X 
axis; in contrast, Figure 6.1b shows a more concentrated volume located over the pipe.  



16 

Finally, in spite of the differences, both models are very approximate to the reality because 
both allow locating the leak precisely. We have to observe, however, that a suitable 3D 
representation depends on the correct interpretation and the forms found in the GPR images. 

 

7. CONCLUSIONS  

GPR is a potentially powerful tool to obtain valuable information for the location of leaks in 
water supply systems. This document applies a methodology based on a variance filter to 
facilitate the display of features that are not reflected in the raw images, thus facilitating the 
interpretation work for non-highly skilled personnel in GPR data handling. 

The benefits of this process are the following. First, the variance filter is an easy-to-apply 
filter that produces images that help identify the contrast between the different materials 
present in the image and the objects that are being studied. This improves a precise location 
of the leak, and also the extraction of contours corresponding to the wet zone caused by water 
leakage. Also the pipe is easily located. Using this information, it is possible to create 3D 
models to help visualize and understand the phenomenon. Additionally, this filter allows 
locating the pipe irrespective of the direction (transverse or longitudinal) it is located with 
respect to the GPR prospection, while in other methods this is not so obvious. 

Moreover, a comparison with a the MABS method for GPR image analysis is performed. 
This method is also used for leak identification over the images by close examination of the 
shapes that produces. The MABS has the ability to show elliptical shapes that are similar to 
the buried pipe, in places where the variance filter shows an ensemble of hyperbolas, that 
altogether has a circular shape. The MABS detects the input and output hoses as well as the 
variance filter, but the way to show the hose is different: for the MABS technique, a 
triangular shape, and for the variance filter, a long and thin succession of hyperbolas. 
However, the image composition of the MABS method may cause confusion and trigger 
inaccurate conclusions if not suitably interpreted. Even so, if both methods are used together, 
richer information can be obtained from a single GPR image, as in the case of detection of a 
leak and its behavior.  

When compared both 3D models, the MABS algorithm shows a rounder shape, but the leak is 
more consistent in the variance filter 3D model. However, in contrast, the pipe form is not as 
round as in MABS. In both cases, pipe and leak can be clearly shown. 

Finally, the contours obtained in this process are intended to serve as a basis for training 
intelligent data classification systems that are able to detect the contours automatically and 
allow the ultimate objective of generating models that facilitate the understanding of leaks in 
WSSs. The authors are currently working in this line of research. 
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