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Abstract 

 

In Polyethylene Terephthalate's (PET)’s recycling processes, separation from Polyvinyl 

Chloride (PVC) is of prior relevance due to its toxicity, which degrades the final quality 

of recycled PET. Moreover, the potential presence of some polymers in mixed plastics 

(such as PVC in PET) is a key aspect for the use of recycled plastic in products such as 

medical equipment, toys or food packaging.  

 

Many works have dealt with plastic classification by hyperspectral imaging, although 

only some of them have been directly focused on PET sorting and very few on its 

separation from PVC. These works use different classification models and pre-

processing techniques and show their performance for the problem at hand. 
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However, still, there is a lack of methodology to address the goal of comparing and 

finding the best model and pre-processing technique. Thus, this paper presents a Design 

of Experiments (DoE)-based methodology for comparing and selecting, for the problem 

at hand, the best preprocessing technique as well as the best latent variable-based and/or 

artificial intelligence classification method, when using NIR hyperspectral images. 

 

Keywords: multivariate image analysis (MIA), classification, pre-processing, design of 

experiments, hyperspectral images. 

 

1 INTRODUCTION 

 

Recycling is becoming more and more relevant in Europe. In [1], the last version of the 

report, is stated: “In 2014, 25.8 million tonnes of post-consumer plastics waste ended up 

in the waste upstream. 69.2% was recovered through recycling (29.7%) and energy 

recovery (39.5%) processes, while 30.8% still went to landfill… Recycling is the 

preferred option for plastics waste.” 

 

Within all the different types of plastic, Polyethylene terephthalate (PET) is a key type 

of plastic, since it is widely used in the production of medical equipment, toys, beverage 

containers and food storage packages [2]. PET presents great advantages, e.g. keeping 

its chemical and physical properties, which makes PET the first choice among other 

plastics. In return, Polyvinyl Chloride (PVC) is a thermoplastic polymer mainly used to 

produce floors, coverings, window frames, cable insulation, etc. [3], and can be found 

as part of plastic waste in recycling plants.  

 

Separation of PET from PVC is of primary importance because the latter may generate 

environmentally hazardous chlorinated compounds that might be risky for humans. This 

separation is usually carried out manually or taking on complicated mechanical 

processes because their density is higher than 1 g/cm
3
 (PET usually ranges from 1.33 to 

1.37 g/cm
3 
and PVC ranges from 1.10 to 1.60 g/cm

3
), and PET melting point (250-

260ºC) is also higher than PVC (140-160ºC) [3]. This way, classification with 

traditional methods remains a challenge. 
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One way to overcome this problem is to implement computer vision systems (100% 

inspection) able to detect and eliminate the PVC from the line. However, RGB cameras 

are not able to discriminate between PET and PVC. Since these chemical compounds 

are spectrally different, one possible solution is to use hyperspectral cameras (NIR 

hyperspectral cameras in this case). Hyperspectral imaging allows overcoming most of 

the problems linked to plastic separation, such as moisture, plastics densities, or 

additives in separation by flotation and density, among others [3].  

 

There is a vast amount of companies worldwide aimed at recycling PET by already 

using hyperspectral machinery with near infrared (NIR) and Raman images, together 

with multivariate models implemented. Many works have dealt with plastic 

classification by hyperspectral imaging [4, 5], although only some of them have 

specially focused on with PET sorting [3, 6-12] and very few with its separation from 

PVC [3]. 

 

Hyperspectral images are usually analyzed by means of multivariate image analysis 

(MIA) [13, 14] techniques. When working in the pixel domain, MIA can perform 

different tasks by using different models and related approaches: descriptive analysis or 

statistical process control by using e.g. principal component analysis (PCA) [15, 16], 

resolution by using multivariate curve resolution (MCR) [17, 18], prediction by using 

partial least squares (PLS) [19-22], or classification (as in this case) by using partial 

least squares - discriminant analysis (PLS-DA) [23] or soft independent modeling of 

class analogy (SIMCA) [24], among others; by properly unfolding the image [13].  

 

Multivariate statistical and data mining techniques are available when trying to perform 

classification. Moreover, when dealing with chemical information, different pre-

processing techniques can be applied. This paper proposes a Design of Experiments 

(DoE)-based methodology [25], as a sort of optimization tool for optimal model/pre-

processing selection, for the problem at hand. The classification techniques and pre-

processing methods have been chosen according to their use in the identification and 

selection in the plastic field: classical pre-treatments are multiplicative scatter correction 

[26], standard normal variate [26], and Savitzky-Golay [27, 28] method; whereas most 

employed classification technique in MIA and in chemometrics in general (also for 

plastic separation) is PLS-DA [2, 8-11]. In this case classification methods from 
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classical statistics such as principal component multimonial logistic regression 

(PCMLR) [29] in one hand, and from artificial intelligence such as nearest centroid [30] 

and classification tree [31-32] on the other, have been used for comparison purposes 

with PLS-DA.  

 

In Section 2, the data set used, as well as the hyperspectral pre-processing techniques 

and classification methods compared are introduced. In Section 3, the procedure applied 

is presented, and in Section 4 the results of the comparative study are presented. Finally, 

Section 5 presents an illustration case, and Section 6 summarizes the conclusions. 

 

2 MATERIALS AND METHODS 

2.1 Data set 

 

The data set used consists of a total of 16 images, collected from plastic compounds 

(PVC and PET) from a recycling company. These compounds were previously collected 

and tested in order to check that they were indeed the compounds under study, 

afterwards selecting regions of interest (ROI’s) for creating the classification models. 

Two different types of PVC were analysed attending to their different spectra. The 

absorbance spectra have been represented in Figure 1. 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

The equipment used in this work was composed by a XEVA-FPA-1.7-320 (XenICs, 

Belgium) matrix camera equipped with an InGaAs sensor with a resolution of 320 × 

256 pixels, a pixel size of 30 µm and a special optics for the 50 mm Near Infra Red 

(NIR) [33-36]. This camera has an ImSpector N17E (Specim, Finland) coupled 

spectrograph which, by means of a prism, decomposes a line of 320 pixels wide in 256 

lines corresponding to the individual wavelengths between 900 and 1700 nm (each one 

approximately 3.2 nm). This means that each image acquired with this camera is 

composed of 256 lines that correspond to the same line of the scene but in all the 

wavelengths. To obtain sample images in the laboratory, a Mirror Scanner (Specim, 

Finland) was used.  
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In order to have a visual reference of the analysed pieces, Figure 2 shows an example of 

RGB image of the samples analyzed. 

[INSERT FIGURE 2 ABOUT HERE] 

 

This way, the final images consist of a three-dimensional structure of 711 (refers to the 

pixels kept during the advance of the scan line camera) times 161 pixels (from pixel 80 

to 240 of the total of 320, since only the central area of the image is analyzed due to the 

fact that the peripheral part is just background), and 256 wavelengths (admissible by the 

camera). In order to analyze the images by MIA, it is necessary to unfold them, 

considering the pixels as observations, and the wavelengths as variables. This is because 

we do not want to characterize the image in general, but each of the pixels in the image; 

thus following a MIA pixel-based approach [13, 14]. This way, a final X matrix is 

obtained, with 711x161 pixels (in rows) and 256 wavelengths (in columns) (Fig. 3). 

 

[INSERT FIGURE 3 ABOUT HERE] 

 

2.2 Methods 

 

In this work, pixels of an image have to be classified into one of the following four 

classes: PVC, transparent PVC, PET and Background. In order to achieve it, different 

classification methods and pre-processing techniques were studied under a Full 

Factorial Design [25]. 

2.2.1 Pre-processing techniques 

 

Pre-processing techniques are used to prepare the data set before the application of each 

model. The election of the appropriate pre-processing method chosen must be always 

carefully considered. In fact, this election is usually more relevant than the classification 

prediction analysis used [36]. For this reason, some usual methods in NIR spectroscopy 

like standard normal variate (SNV) [26], multiplicative scatter correction (MSC) [26] 

and Savitzky-Golay (SG) [27, 28] derivatives have been checked; as well as the option 

of directly using raw data (RD, after being transformed to absorbance units). In the case 

of MSC, the different pure spectra related to each pure chemical compound (or 

background) have been used as a reference, as well as the mean spectrum from the 

training set; in order to check for different performances. It must be noted, however, 
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that this last pre-processing approach has practical problems in this type of 

classification tasks, due to the fact that when performing on-line measurements and 

predictions/classifications, a continuous recalibration of the MSC should be carried out 

[37].  

 

These raw data (absorbance raw data) were obtained in a two-step procedure. First step 

consists of transforming, for each wavelength λ, the intensities iλ into reflectance 

values, r, using black (ib) and white (iw) references taken with the camera: 

�� = 100 × �� − �	�
�
� − �	� 		(1)	

The second step consists in obtaining the absorbance values, a, from the reflectance:  

�� = ����� ×
��
100			(2) 

From these absorbance values, aλ, the different pre-processing techniques were applied, 

for comparison purposes.  

 

2.2.2 Classification models 

 

In this work, the following statistical and data mining classification methods: PLS-DA, 

nearest centroid, classification tree and principal component multinomial logistic 

regression have been compared.  

 

2.2.2.1 PLS-DA 

 

Partial Least Squares (PLS) [19-22] is a projection to latent structures model that 

explains the relationship between two sets of variables X and Y, as well as the 

variability in both X and Y, by maximizing the covariance between their internal latent 

structures.  

 

PLS-DA [23] is the extension of PLS for classification purposes. The only difference 

between them is the type of response Y, which in this case is formed by as many binary 

variables (known as dummy variables) as classes to be separated. This way, the Y 

matrix is formed by as many columns as classes we have, and by many rows as pixels. 

If a pixel belongs to a particular class, it is assigned the value 1 for that class and 0 for 
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the rest of classes. Once these new variables have been defined, a test matrix (X) is 

projected by multiplying it by the estimated coefficients of the PLS model. Finally, by 

projecting any new testing image onto the PLS-DA model, its prediction with respect to 

each class is obtained; every pixel of this new image is assigned to the class for which 

such a prediction is the highest, if the residual sum of squares in the X space is below a 

predefined threshold. 

 

2.2.2.2 Classification tree 

 

A classification tree (CT) [31, 32] is a supervised learning tool consisting of a hierarchy 

of logical tests on some explanatory variables. 

 

In the classification trees, training data from previously classified individuals are used 

and all possible binary cuts of each predictor (variables) are examined by constructing 

the complete tree at all levels. CT [31] begins by searching the data for the best splitter 

available, testing each predictor attribute value pair for its goodness of split [38, 39]. 

Which variable to use at each splitting node is determined by some measure of impurity, 

e.g. Gini index (used in this work), entropy or misclassification error [38]. 

 

Once the complete tree is built, the best level (tree pruning) is selected using an 

optimization criterion. In this work, the pruning criterion used was to determine the 

classification error for each level, which is obtained by cross validation. Afterwards, the 

level where the classification error was minimum was selected: within each level, the 

rate of correctly classified individuals in each class and the error are computed, stopping 

when the error increases. This means that if the classification error is higher at the next 

level than the previous level one, the pruning is carried out at the level where the 

classification error is smaller. It should be noted that another stop criterion was 

established, consisting on stopping the growth of the tree when the node is pure (i.e. 

when it only contains observations of one class). 

 

2.2.2.3 Principal Component Multinomial Logistic Regression  
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Principal Component multinomial logistic regression (PCMLR) [29] consists of first 

applying the Principal Component Analysis (PCA) [9] technique, afterwards building a 

multinomial logistic regression [40] model on the PCA scores. It was decided to work 

with these PCA latent variables (scores) to avoid the ill-conditioning problems due to 

the high correlation between wavelengths, hence obtaining orthogonal and 

approximately normally distributed latent variables that fulfil the model assumptions. 

 

Assuming K=4 classes (PVC, transparent PVC, PET and Background) of the variable y, 

there are πk membership probabilities (one for each class) that satisfy: 

��� = 1			(6)
�

 

From this point, for some Type I risk α (0.05 in this case) the parameters of the 

regression model are estimated, selecting those whose p-value is lower than α, in a 

backward elimination procedure. Thus, the regression model is applied, using only the 

parameters that fulfil the aforementioned premise, obtaining the class probabilities from 

the following expressions. Finally, the class whose membership probability is the 

highest is assigned to each pixel. 

 

�� =
�����

1 + ∑ ���� !"��#�
														(7) 

�% =
����&

1 + ∑ ���� !"��#�
							(8) 

�( =
����)

1 + ∑ ���� !"��#�
																(9) 

�+ =
1

1 + ∑ ���� !"��#�
			(10) 

 

where 1 makes reference to PVC class, 2 refers to transparent PVC, class 3 refers to 

PET class and 4 refers to Background class. On the other hand, t is the scores vector and 

ββββ is the regression coefficients vector. 

 

2.2.2.4 Nearest Centroid 
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Nearest centroid (NC) method [30] is a nonparametric classification tool usually 

exploited for pattern recognition purposes. Unlabelled pixels are classified as belonging 

to the category whose distance (euclidean distance in this work) is minimum to the 

centroid of each class (class mean row vector). In contrast to the rest of methods, NC 

does not need training data. 

 

2.2.3 Figures of merit 

 

Once the different models were applied, the classification performance of each method 

was quantified, obtaining true positives (number of pixels of the image correctly 

identified as belonging to the category, TP), false positives (number of pixels of the 

image mistakenly identified as belonging to the category, FP), true negatives (number 

of pixels of the image correctly identified as not belonging to the category, TN) and 

false negatives (number of pixels of the image mistakenly identified as not belonging to 

the category, FN). Based on them, the figure-of-merit used in this work, the F-score, 

defined in terms of recall and precision, was calculated. 

 

Recall is the ratio of a number of observations (pixels in this case) correctly classified 

(TP) in relation to a number of all correct pixels (TP+FN) (eq. 11). This measure, also 

known as true positive rate or sensitivity, provides information about classifier´s 

performance with respect to false negatives.  

 

,�-���.,0 =
12.,0

12.,0 + 34.,0 			(11) 

 

Precision is the ratio of the number of observations (pixels in this case) correctly 

classified (TP) with respect to all pixels classified as positive (TP+FP) (eq. 12). This 

index gives information about its performance with respect to false positives.  

 

2��-�5��6.,0 =
12.,0

12.,0 + 32.,0 		(12) 

 

From recall and precision, F-score is computed as indicated in eq. 13: 
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3 − 5-���.,0 = 2 × 7��-�5��6.,0 ×	��-���.,07��-�5��6.,0 + ��-���.,0 			(13) 

∀6 = 1,2, … ,4																∀< = 1,2, … ,7 
 

where n corresponds to the model applied (PLS-DA=1, CT=2, PCMLR=3, NC=4) and z 

corresponds to the pre-processing type (RD=1, SNV=2, SG=3, MSC(PVC as 

reference)=4, MSC(transparent PVC as reference)=5, MSC(PET as reference)=6, 

MSC(Background as reference)=7, MSC(Mean spectrum)=8). Note that F-score is 

maximum when all pixels are correctly classified (no false positives nor false 

negatives). 

 

3 PROCEDURE 

 

The procedure carried out is the following: 

 

1) Select pixels of each of the four classes (PVC, transparent PVC, PET and 

Background) and build data matrix X. 

2) Data matrix X is divided into 10 clusters. Each cluster has roughly equal size 

and roughly the same class proportions, in order to avoid any bias to any of the 

classes. This way, applying a leave-one-block-out iteration procedure, we end up 

with 10 different training and validation data sets, using at each iteration 90% of 

the data for training and 10% for validation.  

3) For each iteration: 

a. Apply the different types of pre-processing: Raw, SNV, SG and MSC. 

b. Build the model with the training data set. 

c. Obtain the different performance measures of each classification models 

(TP, TN, FP, FN, precision, recall, F-score) for each class, with the 

validation set. 

4) Apply Analysis of Variance (ANOVA) [19] with the aim of assessing for 

possible statistical significant differences with respect to the mean of the F-

scores, taking as factors the type of pre-processing, the classified model used, 

the class of chemical compound and the cluster of the cross-validation round 

(used as a blocking factor). 

Page 10 of 28

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

11 

 

4 RESULTS 

 

Results provided by each of the treatments of the complete factorial design are 

presented in Tables 1 to 4, for each of the four classes analysed: PVC, transparent PVC, 

PET and Background. 
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Table 1. Global TP, TN, FP, FN, precision, recall, F-score for PVC class. 

Method TP TN FP FN PRECISION RECALL F-SCORE 

PLS-DA with raw data 1000 3000 0 0 1,0000 1,0000 1,0000 

PLS-DA with SNV 999 3000 0 1 1,0000 0,9990 0,9995 

PLS-DA with S-G 961 2995 5 39 0,9948 0,9610 0,9776 

PLS-DA with MSC (ref PVC) 990 2356 644 10 0,6059 0,9900 0,7517 

PLS-DA with MSC  

(ref PVCtrans) 820 1015 1985 180 0,2923 0,8200 0,4310 

PLS-DA with MSC (ref PET) 833 1321 1679 167 0,3316 0,8330 0,4744 

PLS-DA with MSC  

(ref background) 896 1124 1876 104 0,3232 0,8960 0,4751 

PLS-DA with MSC  

(ref mean spectrum) 917 1057 1943 83 0,3206 0,9170 0,4751 

Class tree with raw data 997 2995 5 3 0,9950 0,9970 0,9960 

Class tree with SNV 1000 3000 0 0 1,0000 1,0000 1,0000 

Class tree with S-G 922 2939 61 78 0,9379 0,9220 0,9299 

Class tree with MSC (ref PVC) 1000 3000 0 0 1,0000 1,0000 1,0000 

Class tree with MSC  

(ref PVCtrans) 999 3000 0 1 1,0000 0,9990 0,9995 

Class tree with MSC (ref PET) 999 2999 1 1 0,9990 0,9990 0,9990 

Class tree with MSC  

(ref background) 1000 3000 0 0 1,0000 1,0000 1,0000 

Class tree with MSC  

(ref mean spectrum) 999 3000 0 1 1,0000 0,9990 0,9995 

PCMLR with raw data 480 2537 463 520 0,5090 0,4800 0,4941 

PCMLR with SNV 527 2655 345 473 0,6044 0,5270 0,5630 

PCMLR with S-G 496 2273 727 504 0,4056 0,4960 0,4462 

PCMLR with MSC (ref PVC) 983 2654 346 17 0,7397 0,9830 0,8441 

PCMLR with MSC  

(ref PVCtrans) 370 1764 1236 630 0,2304 0,3700 0,2840 

PCMLR with MSC (ref PET) 73 2675 325 927 0,1834 0,0730 0,1044 

PCMLR with MSC  

(ref background) 95 2999 1 905 0,9896 0,0950 0,1734 

PCMLR with MSC  

(ref mean spectrum) 302 2289 711 698 0,2981 0,3020 0,3000 

Nearest Centroid with raw data 722 2672 328 278 0,6876 0,7220 0,7044 

Nearest Centroid with SNV 901 3000 0 99 1,0000 0,9010 0,9479 

Nearest Centroid with S-G 652 2475 525 348 0,5540 0,6520 0,5990 

Nearest Centroid with MSC  

(ref PVC) 1000 1513 1487 0 0,4021 1,0000 0,5736 

Nearest Centroid with MSC  

(ref PVCtrans) 188 3000 0 812 1,0000 0,1880 0,3165 

Nearest Centroid with MSC  

(ref PET) 14 3000 0 986 1,0000 0,0140 0,0276 

Nearest Centroid with MSC  

(ref background) 190 3000 0 810 1,0000 0,1900 0,3193 

Nearest Centroid with MSC  

(ref mean spectrum) 588 3000 0 412 1,0000 0,5880 0,7406 
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Table 2. Global TP, TN, FP, FN, precision, recall, F-score for Transparent PVC class. 

Method TP TN FP FN PRECISION RECALL F-SCORE 

PLS-DA with raw data 999 2997 3 1 0,9970 0,9990 0,9980 

PLS-DA with SNV 977 3000 0 23 1,0000 0,9770 0,9884 

PLS-DA with S-G 961 2996 4 39 0,9959 0,9610 0,9781 

PLS-DA with MSC (ref PVC) 999 2914 86 1 0,9207 0,9990 0,9583 

PLS-DA with MSC  

(ref PVCtrans) 0 3000 0 1000 0,0000 0,0000 0,0000 

PLS-DA with MSC (ref PET) 93 2988 12 907 0,8857 0,0930 0,1683 

PLS-DA with MSC  

(ref background) 29 2990 10 971 0,7436 0,0290 0,0558 

PLS-DA with MSC  

(ref mean spectrum) 8 3000 0 992 1,0000 0,0080 0,0159 

Class tree with raw data 992 2992 8 8 0,9920 0,9920 0,9920 

Class tree with SNV 996 2995 5 4 0,9950 0,9960 0,9955 

Class tree with S-G 909 2935 65 91 0,9333 0,9090 0,9210 

Class tree with MSC (ref PVC) 990 2993 7 10 0,9930 0,9900 0,9915 

Class tree with MSC  

(ref PVCtrans) 995 2996 4 5 0,9960 0,9950 0,9955 

Class tree with MSC (ref PET) 997 2993 7 3 0,9930 0,9970 0,9950 

Class tree with MSC  

(ref background) 995 2996 4 5 0,9960 0,9950 0,9955 

Class tree with MSC  

(ref mean spectrum) 994 2996 4 6 0,9960 0,9940 0,9950 

PCMLR with raw data 574 2668 332 426 0,6336 0,5740 0,6023 

PCMLR with SNV 337 2206 794 663 0,2980 0,3370 0,3163 

PCMLR with S-G 545 2504 496 455 0,5235 0,5450 0,5341 

PCMLR with MSC (ref PVC) 100 1465 1535 900 0,0612 0,1000 0,0759 

PCMLR with MSC  

(ref PVCtrans) 750 1476 1524 250 0,3298 0,7500 0,4582 

PCMLR with MSC (ref PET) 333 1156 1844 667 0,1530 0,3330 0,2096 

PCMLR with MSC  

(ref background) 10 2344 656 990 0,0150 0,0100 0,0120 

PCMLR with MSC  

(ref mean spectrum) 200 1359 1641 800 0,1086 0,2000 0,1408 

Nearest Centroid with raw data 1000 2667 333 0 0,7502 1,0000 0,8573 

Nearest Centroid with SNV 948 2987 13 52 0,9865 0,9480 0,9669 

Nearest Centroid with S-G 675 2688 312 325 0,6839 0,6750 0,6794 

Nearest Centroid with MSC 

(ref PVC) 907 2394 606 93 0,5995 0,9070 0,7218 

Nearest Centroid with MSC  

(ref PVCtrans) 1000 953 2047 0 0,3282 1,0000 0,4942 

Nearest Centroid with MSC  

(ref PET) 16 2673 327 984 0,0466 0,0160 0,0238 

Nearest Centroid with MSC  

(ref background) 0 2999 1 1000 0,0000 0,0000 0,0000 

Nearest Centroid with MSC  

(ref mean spectrum) 927 2973 27 73 0,9717 0,9270 0,9488 
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Table 3. Global TP, TN, FP, FN, precision, recall, F-score for PET class. 

 

Method TP TN FP FN PRECISION RECALL F-SCORE 

PLS-DA with raw data 996 2994 6 4 0,9940 0,9960 0,9950 

PLS-DA with SNV 999 2991 9 1 0,9911 0,9990 0,9950 

PLS-DA with S-G 984 2993 7 16 0,9929 0,9840 0,9884 

PLS-DA with MSC (ref PVC) 339 2520 480 661 0,4139 0,3390 0,3727 

PLS-DA with MSC  

(ref PVCtrans) 1000 2861 139 0 0,8780 1,0000 0,9350 

PLS-DA with MSC (ref PET) 999 2700 300 1 0,7691 0,9990 0,8691 

PLS-DA with MSC  

(ref background) 999 2814 186 1 0,8430 0,9990 0,9144 

PLS-DA with MSC  

(ref mean spectrum) 1000 2851 149 0 0,8703 1,0000 0,9307 

Class tree with raw data 998 2998 2 2 0,9980 0,9980 0,9980 

Class tree with SNV 999 2996 4 1 0,9960 0,9990 0,9975 

Class tree with S-G 983 2982 18 17 0,9820 0,9830 0,9825 

Class tree with MSC (ref PVC) 998 2992 8 2 0,9920 0,9980 0,9950 

Class tree with MSC  

(ref PVCtrans) 1000 2994 6 0 0,9940 1,0000 0,9970 

Class tree with MSC (ref PET) 996 2996 4 4 0,9960 0,9960 0,9960 

Class tree with MSC  

(ref background) 997 2996 4 3 0,9960 0,9970 0,9965 

Class tree with MSC  

(ref mean spectrum) 997 2998 2 3 0,9980 0,9970 0,9975 

PCMLR with raw data 265 2116 884 735 0,2306 0,2650 0,2466 

PCMLR with SNV 570 2524 476 430 0,5449 0,5700 0,5572 

PCMLR with S-G 471 2395 605 529 0,4377 0,4710 0,4538 

PCMLR with MSC (ref PVC) 107 2976 24 893 0,8168 0,1070 0,1892 

PCMLR with MSC  

(ref PVCtrans) 0 2894 106 1000 0,0000 0,0000 0,0000 

PCMLR with MSC (ref PET) 2 2442 558 998 0,0036 0,0020 0,0026 

PCMLR with MSC  

(ref background) 0 923 2077 1000 0,0000 0,0000 0,0000 

PCMLR with MSC  

(ref mean spectrum) 209 2850 150 791 0,5822 0,2090 0,3076 

Nearest Centroid with raw data 761 2896 104 239 0,8798 0,7610 0,8161 

Nearest Centroid with SNV 952 2999 1 48 0,9990 0,9520 0,9749 

Nearest Centroid with S-G 757 2986 14 243 0,9818 0,7570 0,8549 

Nearest Centroid with MSC 

(ref PVC) 0 3000 0 1000 0,0000 0,0000 0,0000 

Nearest Centroid with MSC  

(ref PVCtrans) 327 2628 372 673 0,4678 0,3270 0,3849 

Nearest Centroid with MSC  

(ref PET) 1000 2346 654 0 0,6046 1,0000 0,7536 

Nearest Centroid with MSC  

(ref background) 443 2759 241 557 0,6477 0,4430 0,5261 

Nearest Centroid with MSC  

(ref mean spectrum) 606 2955 45 394 0,9309 0,6060 0,7341 

 

 

Page 14 of 28

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

15 

Table 4. Global TP, TN, FP, FN, precision, recall, F-score for Background class. 

Method TP TN FP FN PRECISION RECALL F-SCORE 

PLS-DA with raw data 990 2995 5 10 0,9950 0,9900 0,9925 

PLS-DA with SNV 990 2975 25 10 0,9754 0,9900 0,9826 

PLS-DA with S-G 988 2909 91 12 0,9157 0,9880 0,9505 

PLS-DA with MSC (ref PVC) 324 2862 138 676 0,7013 0,3240 0,4432 

PLS-DA with MSC (ref 

PVCtrans) 3 2947 53 997 0,0536 0,0030 0,0057 

PLS-DA with MSC (ref PET) 11 2927 73 989 0,1310 0,0110 0,0203 

PLS-DA with MSC (ref 

background) 0 2996 4 1000 0,0000 0,0000 0,0000 

PLS-DA with MSC (ref mean 

spectrum) 31 2696 304 969 0,0925 0,0310 0,0464 

Class tree with raw data 987 2989 11 13 0,9890 0,9870 0,9880 

Class tree with SNV 991 2995 5 9 0,9950 0,9910 0,9930 

Class tree with S-G 898 2856 144 102 0,8618 0,8980 0,8795 

Class tree with MSC (ref PVC) 986 2989 11 14 0,9890 0,9860 0,9875 

Class tree with MSC (ref 

PVCtrans) 991 2995 5 9 0,9950 0,9910 0,9930 

Class tree with MSC (ref PET) 989 2993 7 11 0,9930 0,9890 0,9910 

Class tree with MSC (ref 

background) 990 2994 6 10 0,9940 0,9900 0,9920 

Class tree with MSC (ref mean 

spectrum) 993 2996 4 7 0,9960 0,9930 0,9945 

PCMLR with raw data 423 2421 579 577 0,4222 0,4230 0,4226 

PCMLR with SNV 262 2311 689 738 0,2755 0,2620 0,2686 

PCMLR with S-G 298 2638 362 702 0,4515 0,2980 0,3590 

PCMLR with MSC (ref PVC) 5 2100 900 995 0,0055 0,0050 0,0052 

PCMLR with MSC (ref 

PVCtrans) 0 2986 14 1000 0,0000 0,0000 0,0000 

PCMLR with MSC (ref PET) 0 2135 865 1000 0,0000 0,0000 0,0000 

PCMLR with MSC (ref 

background) 68 1907 1093 932 0,0586 0,0680 0,0629 

PCMLR with MSC (ref mean 

spectrum) 81 2054 946 919 0,0789 0,0810 0,0799 

Nearest Centroid with raw data 339 2587 413 661 0,4508 0,3390 0,3870 

Nearest Centroid with SNV 999 2814 186 1 0,8430 0,9990 0,9144 

Nearest Centroid with S-G 565 2499 501 435 0,5300 0,5650 0,5470 

Nearest Centroid with MSC 

(ref PVC) 0 3000 0 1000 0,0000 0,0000 0,0000 

Nearest Centroid with MSC 

(ref PVCtrans) 0 2934 66 1000 0,0000 0,0000 0,0000 

Nearest Centroid with MSC 

(ref PET) 992 2003 997 8 0,4987 0,9920 0,6638 

Nearest Centroid with MSC 

(ref background) 1000 875 2125 0 0,3200 1,0000 0,4848 

Nearest Centroid with MSC 

(ref mean spectrum) 1000 2200 800 0 0,5556 1,0000 0,7143 
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These results were analyzed by means of ANalysis Of VAriance (ANOVA) in order to 

determine which model and pre-processing techniques were able to make a better 

classification of the plastic compounds analyzed, in terms of F-score.  

 

Furthermore, a correspondence analysis (CA) [41] was performed on the contingency 

tables derived from the previous results for each class, in terms of true positives, true 

negatives, false positives and false negatives; for the different methodologies applied. 

CA is conceptually similar to PCA but it is proposed for categorical data processing 

[30]. 

 

Table 5 shows the ANOVA results. Out of the statistically significant factors (p-

value<0.05), the relevant ones are the type of pre-processing technique as well as the 

model used. It should be noted that cluster was used as a blocking factor and class was 

used to select the best model and type of pre-processing for classifying of each chemical 

compound (PVC, transparent PVC, PET and Background). The least significant 

difference (LSD) intervals are presented in Fig. 4, a), b), c), and d), showing up the best 

models for each chemical compound (as well as background) and pre-processing 

technique.  

 

For PVC, CT for all pre-processings (MSC regardless of the reference used, RD, SG 

and SNV) presented the best and equivalent results, non-statistically different from 

PLS-DA for RD, SG and SNV. NC also showed equivalent F-scores (from a statistically 

point of view) but only for MSC1 and SNV. For transparent PVC, again CT provided 

the best and equivalent results, to those from PLS-DA for MSC1, RD, SG and SNV. In 

this case, NC raised equivalent performances for MSC2-5 and SNV.  

 

For PET, CT was statistically equivalent to PLS-DA in all pre-processings but for 

MSC1. NC showed non-statistically different results for MSC3, SG and SNV. Finally, 

for the background, CT provided the best and equivalent results regardless of the pre-

processing technique applied, only equalled by PLS-DA when using RD, SG or SNV 

pre-processings. 

 

So, in general, the best models were the Classification Trees (regardless of type of pre-

processing) and PLS-DA (for RD, SNV and SG pre-processing), whereas the worst 
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model was PCMLR. NC showed more variability in general, being equivalent 

depending on the type of chemical compound and pre-processing technique applied. It 

should be pointed out that MSC pre-processing was excluded from subsequent CA 

analyses because it provided a high variability in the ANOVA results, depending on the 

reference spectrum taken into account, which hampered choosing the best model. 

 

Figure 5, a) to d) shows the correspondence analysis (CA) results for the different 

classes. The best methods for the segmentation of each of the classes, i.e. those located 

in the TP/TN quadrant were the same as those obtained in ANOVA. For PVC, CT and 

PLS-DA provide the best models, regardless of the pre-processing applied; joint to NC-

SNV. For transparent PVC, exactly the same conclusions could be extracted. However, 

if one was specially interested in maximizing the TN rate, NC with SG or RD should be 

selected. Finally, for PET and for Background, as well as for PVC and transparent PVC, 

again CT and PLS-DA provide the best models, regardless of the pre-processing 

applied; joint to NC-SNV.  

 

So again, in general, CT (no matter the pre-processing method) and PLS-DA (for RD, 

SNV and SG pre-processing) were the best options. The benefit of CA with respect to 

ANOVA, however, is that CA allows choosing each of them attending to the prior 

relevance given to each of the TP, TN, FP or FN parameters (as shown in the case of 

NC for maximizing the TN rate). 

 

Page 17 of 28

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

18 

Table 5: Analysis of Variance.  

Source                  Sum Sq.   d.f.   Mean Sq.     F      p-value 

--------------------------------------------------------------------- 

  model                    71.483      3   23.8277    600.11   0      

  preprocessing            14.156      7    2.0222     50.93   0      

  class                     3.684      3    1.2281     30.93   0      

  cluster                   0.952      9    0.1057      2.66   0.0047 

  model*preprocessing      19.633     21    0.9349     23.55   0      

  model*class               8.443      9    0.9382     23.63   0      

  model*cluster             2.663     27    0.0986      2.48   0.0001 

  preprocessing*class       6.066     21    0.2889      7.28   0      

  preprocessing*cluster     2.359     63    0.0374      0.94   0.6032 

  class*cluster             0.377     27    0.014       0.35   0.9992  

  Error                    43.24    1089    0.0397                     

  Total                   173.057   1279                              

 

 

 

[INSERT FIGURE 4 ABOUT HERE] 

 

[INSERT FIGURE 5 ABOUT HERE] 

 

5 ILLUSTRATION CASE 

 

Finally, some ROI’s of images of plastic compounds (PVC and PET) extracted from 

Fig. 2 were projected for the best methods chosen in Section 4 (CT and PLS-DA). 

Results are shown in Figure 6. Pixel assignation was carried out in the following way: 

• 1 if the pixel was classified as PVC (blue color). 

• 2 if the pixel was classified as transparent PVC (light blue color). 

• 3 if the pixel was classified as PET (yellow color). 

• 4 if the pixel was classified as Background (brown color). 

 

[INSERT FIGURE 6 ABOUT HERE] 

 

It should be noted that each pixel could only be assigned to one of the mentioned 

classes. Results are quite good. Moreover, despite of the non-statistically significant 
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differences between CT and PLS-DA (when discarding MSC), it seems that PLS-DA is 

less noisy than CT. 

 

6 CONCLUSIONS 

 

This work provides a methodology, based on a DoE framework, for choosing the best 

classification technique/s and pre-processing methodologies for impurities detection in 

PET recycling.  

 

In the particular problem treated in this paper, the application of the proposed DoE-

based methodology allows concluding that for the two best classification models (PLS-

DA and CT) out of the four compared, raw data (RD) provides comparable results to 

those provided by SNV and SG pre-processing, in terms of statistical significance. For 

this reason, being it the fastest pre-processing method (since no correction of the 

spectrum is necessary), it could be selected as the most appropriate in this case. This is 

also in accordance to previous works with hyperspectral imagery [42]. MSC was 

discarded since it provided very different results depending on the reference spectrum 

used. Furthermore, CA allowed to specifically recognizing in a very simple and 

graphical way those strategies providing the higher average rates of TP, FP, FN, and 

TN; and even selecting the model and pre-processing technique attending to a special 

focus on TN or TP. 

 

This way, multivariate image analysis (MIA), regardless of the final classification 

model used, provides real and feasible solutions to a possible automation of the PET 

recycling process. 
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Figure 2. RGB images from PVC and PET to observe the difference between them. Left: 

PVC and transparent PVC flakes. Right: PET flakes. 
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 Figure 3. Unfolded Image. This figure displays the transformation from 3-D vector to matrix (2-D vector). 

Each image obtained at a certain wavelength will be arranged as a column vector in the new matrix. 
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a) b) 

c) d) 

Figure 4: 95% least significant difference intervals from ANOVA on F-score values for: a) PVC, b) transparent PVC, c) 

PET and d) Background classes. This interaction plot makes reference to model and preprocessing data. The methods 

were Partial Least Squares-Discriminant Analysis (PLS-DA), Classification trees (CT), Principal Component 

Multinomial Logistic Regression (PCMLR) and Nearest Centroid (NC). The preprocessing techniques were Raw Data 

(RD), Standard Normal Variate (SNV), Savitzky-Golay (SG) and Multiplicative Scatter Correction: MSC1 (PVC), MSC2 

(Transparent PVC), MSC3 (PET), MSC4 (Background), MSC5(Mean spectrum). 

Fisher LSD  for PVC class

Preprocessing

0

0,2

0,4

0,6

0,8

1

1,2

F
-s

co
re

MSC1 MSC2 MSC3 MSC4 MSC5 RD SG SNV

Model

CT

NC

PCMLR

PLS-DA

Fisher LSD  for  transparent PVC class

Preprocessing

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

F
-s

co
re

MSC1 MSC2 MSC3 MSC4 MSC5 RD SG SNV

Model

CT

NC

PCMLR

PLS-DA

Fisher LSD  for PET class

Preprocessing

0

0,2

0,4

0,6

0,8

1

1,2

F
-s

co
re

MSC1 MSC2 MSC3 MSC4 MSC5 RD SG SNV

Model

CT

NC

PCMLR

PLS-DA

Fisher LSD  for background class

Preprocessing

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

F
-s

co
re

MSC1 MSC2 MSC3 MSC4 MSC5 RD SG SNV

Model

CT

NC

PCMLR

PLS-DA

Page 26 of 28

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

a) b) 

c) d) 

Figure 5: Correspondence analysis for a) PVC, b) transparent PVC, c) PET and d) Background classes. The methods 

were Partial Least Squares-Discriminant Analysis (PLSDA), Classification trees (CT), Principal Component 

Multinomial Logistic Regression (PCMLR) and Nearest Centroid (NC). The preprocessing techniques were Raw Data 

(RD), Standard Normal Variate (SNV) and Savitzky-Golay (SG). EV refers to Explained Variance, TP to true positives, 

FP to false positives, TN to true negatives and FN to false negatives. 
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Figure 6: Classification images from CT (up) and PLS-DA (down). Left: piece of pipe made up of 

PVC, middle: transparent PVC label, and right: packaging of PET. 
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