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Abstract

In this paper, a new model for processing colour images is presented. A graph
is built for each image pixel taking into account some constraints on links. Each
pixel is characterized depending on the features of its related graph, which allows
to process it appropriately. As an example, we provide a characterization of each
pixel based on the link cardinality of its connected component. This feature enables
us to properly distinguish flat image regions respect to edge and detail regions.
According to this, we have designed a hybrid filter for colour image smoothing. It
combines a filter able to properly process flat image regions with another one that is
more appropriate for details and texture. Experimental results show that our model
performs appropriately. We also see that our proposed filter is competitive with
respect to state-of-the-art methods. It is close closer to the corresponding optimal
switching filter respect to other analogous hybrid method.
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1 Introduction

Image denoising is a topic that has been extensively studied in computer vi-
sion and digital image processing fields. The denoising (or filtering) step is
essential for almost every computer vision system because noise can signifi-
cantly affect the visual quality of images, as well as the performance of most
image processing tasks. Also, in the last years the use of colour images has
gained much attention within the computer vision field and therefore colour
image denoising has become an important research topic [1].

Among the different sources of noise in digital imaging, probably the most
common one is the so-called thermal noise, which is due to CCD sensor mal-
function. This kind of noise is modeled as an additive white Gaussian noise.
So that, the presence of thermal (or Gaussian) noise can be simulated by
adding random values from a zero-mean Gaussian distribution to the original
values of each image channel independently. The standard deviation σ of the
Gaussian distribution characterizes the noise intensity [2]. Many methods for
reducing image Gaussian noise in colour images have been proposed in the
literature. We will review some of them.

The earliest approaches for Gaussian noise smoothing were based on linear
approaches. These methods, such as the Arithmetic Mean Filter (AMF), see
for instance [2], are able to suppress noise because they take advantage of its
zero-mean property. However, they tend to blur edges and texture significantly.
This fact motivated the development of many nonlinear methods that try
to overcome these drawbacks by detecting image edges and details. This is
intended for smoothing there less than in the rest of the image.

Within nonlinear methods, many of them use averaging to take advantage of
the zero-mean property of the noise. This class includes the well-known Bilat-
eral Filter (BF) [6] and its variants [7]-[11]. Besides, in [12,13] the authors use
an averaging operation which is restricted to the (fuzzy) peer group members
for each image pixel. Other methods are developed using fuzzy logic or soft
switching methods, such as those in [14]-[23]. Several methods based on dif-
ferent optimizations of weighted averaging are proposed in [24]-[27]. Another
important family of filters are partition based filters [27]-[29], that classify each
pixel to be processed into several signal activity categories which, in turn, are
associated to appropriate processing methods. Other filters follow a regular-
ization approach [30]-[40] based on the minimization of appropriate energy
functions by means of Partial Differential Equations (PDEs). Wavelet theory
has also been used to design image filtering methods [41]-[50]. The combi-
nation of collaborative non-local means and wavelet filtering is proposed in
[51,52], and a method using the wavelet transformation and data regulariza-
tion is proposed in [53]. Other recent methods make use of a combination of
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image analysis techniques for image segmentation followed by an appropri-
ate smoothing of each image region [54]-[56]. More recently, methods using
graph modeling colour images have provided competitive filtering solutions as
[57,58].

Despite that many works have consider this question up to date, the problem
remains open. Recently, very few works have been published (just 2 articles
[58,40] in prestigious journals in four years, 2013-2016). This is due, in part, to
new image models being needed to develop new filtering solutions. Therefore,
in this paper we propose a new model for colour images which is based on graph
theory and vector processing. In the model, a local graph is built for each image
pixel taking into account some constraints on links. Each pixel is characterized
depending on the features of its related graph so that it can be properly
processed. As an application of the model, we provide a characterization of
each pixel based on the link cardinality of its connected component. This
feature is able to properly distinguish flat image regions respect to edge and
detail regions. According to this characterization, we have designed a hybrid
filter for colour image smoothing that combines a filter able to properly process
flat image regions with another one more appropriate for details and texture.
This approach follows the methodology in [23,57]. The experimental results
show that the proposed filter is competitive with analogous filters and closer
to the corresponding optimal soft-switching filter.

The paper is organized as follows: Section 2 described the local graph model
for colour images, Section 3 details the pixel characterization, and Section 4
introduces the hybrid filter. Finally, experimental results and conclusions are
given in Sections 5 and 6, respectively.

2 Image model based on local graphs

A graph G is defined as a finite nonempty set V (G) of objects called vertices
and a set L(G) of unordered pairs of distinct vertices of G which, in order
to avoid confusion with the image processing terminology, we will call links
instead of edges, as it is common practice. Two vertices u and v joined by
a link (u, v) are said to be adjacent. When each link (u, v) has an associated
value w(u, v), we say that the graph is weighted.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and L(H) ⊆ L(G). A
walk W from a node v0 to a node vl in a graph is a sequence of vertices say
v0, v1, . . . , vl where (vi−1, vi) ∈ L(G), 0 < i ≤ l . A graph is connected if for
every pair vi, vj of distinct vertices there is a walk from vi to vj.

A connected component of a nondirected graph G is a connected subgraph H
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Fig. 1. Example of 3x3 window in an image (left) and its associated graph with all
the links (center), and with the links lower than the threshold U (right) that is GF0 .

of G such that there is not a connected subgraph of G that contains H strictly.

For a colour image F, which is represented in the RGB colour space, we build
a graph-based model for each pixel in F. In doing so, we take the neighbours
around each image pixel F0 in a window centered on it of size N × N where
N = 2n + 1 and n = 1, 2, . . .. The rest of the neighbour pixels in the window
are denoted as Fi, i = 1, . . . , N2−1. The central pixel F0 is in turn defined by
the tern (FR

0 , F
G
0 , F

B
0 ) of its three RGB colour components. In the following

we will use n = 1 as it is common practice in colour image filtering.

Given a pixel F0, we define a local weighted graph GF0 where V (GF0) =
{Fi, i = 0, . . . , N2 − 1} and L(GF0) = {(Fi,Fj), i 6= j, ||Fi − Fj||2 < U}.
That is, a link exists between pixel Fi and Fj, i 6= j, if the euclidean distance
between their colour vectors is lower than a certain threshold U . If such a
link exists, its weight is w(Fi,Fj) = ||Fi − Fj||2, where || · || stands for the
Euclidean norm, see the example in Figure 1.

The value of U critically influences the structure of each local graph since it
determines the connected component of GF0 that contains the node F0, noted
as HF0 . This connected component will play an important role in order to
classify the different regions of the image into flat or detail/texture regions.
We will discuss extensively the adjustment of the threshold U in the following
section. Our global image model is the composition of all local graphs that
characterize each image pixel.

3 A characterization of colour image pixels for smoothing

As an example of application of our model we aim to develop a procedure for
smoothing colour images. To this end, it is critical to distinguish flat image
regions in front of edges and details. This is because optimal smoothing needs
to process differently flat regions, where smoothing can be more aggressive,
from texture and detail regions, where smoothing should be done with special
care. So, we need to devise a characterization based on our model to make
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(a) Lenna (b) Parrots (c) Statue (d) Peppers

Fig. 2. Set of training images

Fig. 3. Grayscale image where intensity of each pixel is proportional to
card(L(HF0)).

such a classification.

We have seen that the feature that better characterizes whether a pixel F0

belongs to a flat or edge/detail region is the cardinal of the links set of its con-
nected component, card(L(HF0)). Lower cardinality is associated to texture,
edges and details whereas higher values correspond to flat image regions, as
we can see if we compare the images in Figure 3, that were created assigning
grayscale image levels proportional to card(L(HF0)), with the corresponding
original images in Figure 3, that were created assigning grayscale image levels
proportional to card(L(HF0)), with the corresponding original images shown
in Figure 2.

However, for this characterization to be as accurate as possible it is critical to
properly set the value of U for each input image. We have applied a method
for this as follows.

3.1 Adjustment of U parameter

The role of U is to avoid that very different pixels in the image were connected.
In the context of image smoothing, we have to find a setting that is robust
to the presence of noise or at least we need to adapt it to the density of
contaminating noise. Given that the feature that better characterizes whether
a pixel F0 belongs to a flat or detail region is card(L(HF0)), we focus the
adjustment of U to maximize the correlation between card(L(HF0)) and the
presence of edges/texture.

Therefore, we first have taken the four training colour images in Figure 2 and
for each of them we have obtained a groundtruth image of edges by means
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Fig. 4. Scheme of the method for set the optimal threshold U

Fig. 5. NMI as a function of U for Parrots with different levels of noise

of the fuzzy edge detection method [64] as it is implemented in MATLAB c©

R2016b.

Secondly, for each noise free training image we have computed the value of
U that maximizes the images mutual information (NMI) [62,63] between the
grayscale image obtained with the card(L(HF0)) of each pixel and the corre-
sponding groundtruth image of the first step. Then, using each optimal value
of U and the values card(L(HF0)) we obtain four edge/texture reference im-
ages that we use in the next step.

Thirdly, since our method will process noisy images with unknown noise vari-
ance, it would be desirable to have robustness against noise or at least adap-
tiveness to noise. So that, we have contaminated the training colour images
with different densities of additive white Gaussian noise (σ ∈ {10, 20, 30})
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Fig. 6. Regression bewteen the estimation of the noise and the optimal threshold

according to the model in [2]. For each of the 12 noisy images we obtain the
value of U that maximizes the NMI between the grayscale image obtained with
the card(L(HF0)) of each pixel and the corresponding edge/texture reference
image of the second step. It can be seen in Figure 5 that the higher the image
noise is, the greater the optimal threshold is, too. Finally, we have conducted
a linear regression analysis over all optimal U to be able to appropriately set
U for any input image. We have also used an estimation of the standard devi-
ation of the noise, σ̂, in the input image, which is obtained using the method
in [61] (we average the estimate in each of the RGB channels). The regression,
that can be seen graphically in Figure 6, concludes that we can safely set U
as

U = 4.59σ̂ + 11.16, (1)

given that correlation coefficient r equals 0.9187. The scheme in Figure 4
summarizes the procedure applied.

4 Proposed hybrid smoothing method

Recent smoothing methods commonly present the drawback that, as the higher
the noise in the image is, the more confused is the noise in homogeneous re-
gions with the image structure that should be preserved. So that, it cannot
be properly reduced.

There are some filtering structures more suitable for smoothing, and others
more powerful for preserving borders. We take, for instance, one filter of each
type: AMF to process image flat regions and the nonlinear method called
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Fuzzy Noise Reduction Method (FNRM) [15] FNRM for the rest of the image.
We propose to combine them following the reasoning in [57].

The switching between AMF and FNRM is performed in a soft fashion so
that when the class of the image pixel is not clearly determined the results of
both methods are combined. The proposed filter follows the idea behind the
Soft-Switching Graph Denoising (SSGD) method in [57], but using our new
model and characterization based on card(L(HF0)). In addition, notice that
although we have used the AMF and FNRM, any other methods can be used
within the same structure and analogous improvements are expected.

The combination of the aforementioned methods is performed as follows: Let
us consider a pixel F0. Since L(HF0) is a connected component of GF0 , the

parameter card(L(HF0)) takes discrete values, between 0 and
(
N2

2

)
. In our

case N = 3 and

card(L(HF0)) ∈ {0, . . . , 36}, (2)

We classify the image pixels of any image into one of these 37 different cate-
gories, one for each admissible value of card(L(HF0)). In this way, we build
β = {β1, . . . , β37}, with 0 ≤ βi ≤ 1. If card(L(HF0)) = i − 1, we make F0 in
correspondence with βi. These values β′is shall determine the soft-switching
between AMF and FNRM to process each image pixel.

This new method will be called a Soft-Switching Local Graph Denoising method
(SSLGD). For each image pixel F0, if card(L(HF0)) = i, the output of SSLGD
is

SSLGDout(F0) = (1− βi)AMFout(F0) + βiFNRMout(F0) (3)

where βi ∈ [0, 1].

Notice that when βi = 1 the SSLGD method behaves as the FNRM , and
when βi = 0 it coincides with the AMF . Thus, the value of βi should depend
on the nature of the pixel under process. Therefore, if the pixel F0 belongs to
an homogeneous region of the image βi should be large (close to 1), otherwise,
βi should be lower (close to 0).

In this method it is critical to find a setting for the values βi in equation (3) in
order to obtain the better combination between AMF and FNRM. To do it we
use the ascending gradient method for maximizing the Peak Signal to Noise
Ratio (PSNR) [2] between the filter output and the original noise free image.
In this optimization we have used as initial vector B0 = (β0

i ), where β0
i = 1,

and a step δ = 0.05. We find the optimization for the 4 training images each of
them contaminated with 3 different densities of noise (σ ∈ {10, 20, 30}) which
provides 12 optimized sets of βi’s.
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Now, by using these sets we compute three default sets of β = (βi)1≤i≤37’s,
one for low noise (β10, σ = 10), another for medium noise (β20, σ = 20) and a
third one for high noise (β30, σ = 30). To process an input image where noise
is unknown we use the noise estimation σ̂ and we choose among β10, β20, β30

the set with superscript closest to σ̂, that we call it now β̄. The choice of
β̄ for each image is determined by the noise estimation. In this sense, if the
estimation of noise level is the same for two images, they will be processed
analogously, but two images having the same real noise level may have different
estimation of noise. As we have said before, the noise is unknown in general,
thus using a noise estimator provide us a more realistic and robust approach
when processing any image.

Although it is true that using more images makes better the learning, the
inclusion of more images will adjust the values in a unnecessary precision
since the step of βs in the optimization is δ= 0.05 and then the differences
in the ranges in which we move are imperceptible. For this reason and taking
into account that our goal is to find an appropriate general robust setting that
could be used to process any unknown image, we consider four images, with
different structures that provide us enough information for set the beta values
in a general way.

Notice that we have chosen a window size 3× 3. According to previous works
[65,66], using N > 3 results in higher noise smoothing capability but much
more blurred images that make increasing the window not a good choice in
general. If the interest is to increase noise reduction capability, it has been
reported to be a much better choice to apply several iterations of the same
method, that is, filtering the output image again and again until convergence
is reached.

5 Experimental results

In this section, we compare the performance of the SSLGD filter respect to
other filters with the aim of validating the parameter settings. In Figure 7,
we show the validation set of images. We have added Gaussian noise with
standard deviations σ ∈ {10, 20, 30} to them, obtaining an experimental set
of 12 images.

We process all 12 images with SSLGD using two different parameter setting
for U and β: one with the optimal settings for the particular image and noise
Uop, βop which we denote by SSLGDUop,βop , and another with the estimated Ue
and β̄ which we denote by SSLGDUe,β̄. We compare the performance for the
experimental set of images with respect to the methods AMF, FNRM, and
SSGD, which is a method following the same structure of SSLGD. In addition,
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(a) Micro (b) Pills (c) Window (d) img58

Fig. 7. Images used for the validation.

we compare with the optimal hybrid method associated to SSLGD and SSGD
that we call Optimal Soft Switching (OSS), and which is defined as the best
combination between AMF and FNRM, defined for each pixel F0 by:

OSSout(F0) = αiAMFout(F0) + (1− αi)FNRMout(F0) αi ∈ [0, 1] (4)

where αi = argmin[0,1]||F0 − OSSout(F0)||, i ∈ {0, 1, . . . , 36} can be easily
derived analytically if the original image F is known.

As figures of merit for objective evaluation we have used the PSNR, SSIM
[60], and the Fuzzy Colour Structural Similarity [59], denoted by FCSS. These
latter two methods have proved to correlate with human perception better
than PSNR.
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σ 10 20 30

PSNR FCSS SSIM PSNR FCSS SSIM PSNR FCSS SSIM

Micro

AMF 28.430 0.890 0.775 27.147 0.889 0.694 25.580 0.884 0.606

FNRM 31.334 0.943 0.866 27.964 0.925 0.741 25.216 0.902 0.617

SSGD 31.34 0.943 0.867 28.06 0.925 0.746 25.63 0.907 0.634

SSLGDβop,Uop 31.34 0.943 0.867 28.36 0.920 0.752 26.05 0.908 0.648

SSLGDβ̄,Ue 31.154 0.936 0.865 28.333 0.918 0.754 26.097 0.907 0.65

OSS 32.218 0.95 0.891 29.788 0.942 0.810 27.638 0.933 0.728

Pills

AMF 25.913 0.888 0.885 25.211 0.882 0.856 24.139 0.874 0.809

FNRM 32.417 0.944 0.962 28.143 0.919 0.901 25.138 0.891 0.825

SSGD 32.62 0.945 0.966 28.89 0.925 0.921 26.59 0.907 0.862

SSLGDβop,Uop 32.69 0.946 0.967 28.97 0.926 0.923 26.28 0.909 0.864

SSLGDβ̄,Ue 32.26 0.943 0.965 28.70 0.923 0.919 26.14 0.907 0.860

OSS 34.433 0.961 0.978 30.81 0.947 0.948 28.07 0.933 0.903

Window

AMF 22.36 0.832 0.715 22.00 0.834 0.689 21.42 0.833 0.650

FNRM 31.13 0.930 0.946 27.46 0.912 0.878 24.59 0.889 0.802

SSGD 31.14 0.929 0.94 27.4 0.91 0.873 24.65 0.892 0.8

SSLGDβop,Uop 31.21 0.931 0.951 27.67 0.916 0.889 24.96 0.897 0.815

SSLGDβ̄,Ue 30.34 0.92 0.95 26.93 0.906 0.879 24.47 0.888 0.792

OSS 32.87 0.946 0.965 29.59 0.936 0.925 27.05 0.925 0.7877

img58

AMF 27.78 0.912 0.831 26.58 0.908 0.746 25.29 0.898 0.659

FNRM 33.06 0.946 0.904 28.32 0.911 0.750 25.28 0.869 0.622

SSGD 33.24 0.958 0.905 29.38 0.931 0.77 26.69 0.911 0.67

SSLGDβop,Uop 33.45 0.947 0.9156 29.42 0.93 0.804 26.77 0.911 0.70

SSLGDβ̄,Ue 33.04 0.946 0.899 28.68 0.922 0.74 25.90 0.889 0.599

OSS 35.27 0.962 0.946 31.16 0.949 0.861 28.56 0.936 0.780

Table 1: Results in terms of PSNR, SSIM and FCSS of the validation set.

σ 10 20 30

PSNR SSIM PSNR SSIM PSNR SSIM

Window
SSGD 36.78 0.989 33.55 0.972 31.67 0.949

SSLGDβ̄,Ue 37.66 0.989 33.64 0.971 31.11 0.951

img58
SSGD 39.51 0.977 36.88 0.965 33.96 0.945

SSLGDβ̄,Ue 40.33 0.982 35.04 0.941 31.74 0.900

Micro
SSGD 40.60 0.982 35.18 0.945 33.62 0.915

SSLGDβ̄,Ue 41.86 0.983 37.83 0.967 35.42 0.948

Pills
SSGD 38.44 0.991 35.27 0.983 33.02 0.974

SSLGDβ̄,Ue 39.83 0.992 36.44 0.985 34.123 0.978

Table 2: Results in terms of PSNR and SSIM comparing with OSS

From the results in Table 1 we can see that both in terms of PSNR, FCSS
and SSIM the performance of SSLGDβ̄,Ue is very close to SSLGDβop,Uop . This
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means that the methods for parameter setting are performing appropriately.
Also, we see that the performance of our method is competitive with SSGD
and both SSGD and SSLGD are a little bit below OSS, which implies that
the proposed method is competitive with respect to state-of-the-art methods.

To see which of SSGD or SSLGD is closer to the optimal OSS we have also
computed the PSNR and SSIM for SSGD and SSLGD with respect to OSS.
These results are shown in Table 5, where we can see that SSLGD is close to
the optimal OSS, which is a strong point for our method and the model behind
it. We consider that this comparation is more important than the one in Table
1, since the original image is irretrievable and OSS image is the maximum to
what can be reached with this kind of hybrid filter.

In Figure 8 we can see the qualitative results of AMF, FNRM, SSGD and the
new proposed filter SSLGD. They have been applied separately to the set of
validation images with standard deviation σ = 20.

As it can be seen, on the one hand AMF smooths the noise fine but it blurs
the image. On the other hand, we can see how in all the cases FNRM does
not blur the image. However, it does not remove so much noise. SSGD im-
proves this drawback combining both methods and achieving a good denoising
without blurring the image. Finally, our propose method follows the line of
SSGD, being very close to it. The differences between both methods can be
appreciated in detail regions such as the blinds of Window, or the edges of the
capsules of Pills.

Although the result of SSLGD is close to SSGD, it can be seen more globally as
the result of SSLGD is closer to OSS image than the SSGD, what is the most
important for us, being especially appreciated in the homogeneous regions.

5.1 Computational Complexity

We will analyze the computational complexity of the proposed method and
SSGD for each pixel of the image. The number of operations for each pixel
depends on the window NxN considered, a total of N2 pixels in the win-
dow. Since both methods depend on two basic generic filters, one for homo-
geneous regions and other for borders regions, we will focus on the complex-
ity of SSLGD and SSGD. We denote the computational complexity of the
homegeneous-regions and detail-regions generic filters as H(N2) and E(N2),
respectively.

In the proposed method, for each pixel we have to compute the distance be-

tween the central pixel and its neighbours, that is to say, a total of N2(N2−1)
2

distances, which means 9N2(N2−1)
2

distances in total. Once the distances are cal-
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Fig. 8. Filtered image: first row the original images blurred with Gaussian noise
with σ = 20, second row the filtered images using AMF, third row using FNRM,
the fourth row with SSGD,the fifth row with SSGLD and finally OSS images.

culated, we compare all of them with the fixed threshold in order to compute

card(L(HF0)). This would amount to a total of N2(N2−1)
2

comparisons. In this

way, we have a total of 10N2(N2−1)
2

comparisons. The value of card(L(HF0))
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allows us to choose the corresponding β for combine appropriately the based
filters. Thus SSLGD needs a number of operations of order O(N2) +H(N2) +
E(N2).

SSGD filter, as SSLGD do, needs to compute the distances between the cen-

tral pixel and its neighbours (9N2(N2−1)
2

operations). Kruskal algorithm, whose
computational cost is O (N2 log(N2)), is applied twice in order to compute the
maximum and minimum spanning tree by considering the mentioned distance.
Minimum spanning tree’s weight allows to compute the coefficient that will be
used in the linear combination of the generic filters. The computational com-
plexity of this method is therefore of order O(N2 log(N2)) +H(N2) +E(N2).

The proposed SSLGD method is computationally more efficient than SSGD.
SSLGD has the advantage of having fixed parameters beta for processing the
pixels. In contrast, SSGD performs all the soft switching mechanism com-
pletely for every pixel, which increases the number of operations and the com-
putational time.

6 Conclusions

In this paper, we have presented a new model based on local graphs for low
level image processing. In the model, each pixel is associated to a graph whose
features allow to characterize it. We show an application of the model for
Gaussian noise smoothing which is based on using each pixel graph to decide
whether a pixel belongs to a flat region or not. The model allows to distinguish
appropriately flat regions and border regions in an image even in the presence
of noise. Related to this classification a soft-switching filter is built by using
a filter with good smooth capability in flat regions and another to smooth
border regions. Also, parameters of the method have been analyzed and it has
been proposed how to set them automatically for any input image, so that the
filter is very easy to use.

Performance of the new proposed method, SSLGD, in terms of PSNR, SSIM
and FCSS shows that it is competitive with respect to state-of-the-art meth-
ods, decreasing the computational complexity thanks to the global charac-
terization of the parameters, which allows us to reduce the computational
cost. Also, objective comparison with respect to the corresponding optimal
hybrid filter claims that our method is closer to the optimal than another
soft-switching filter with the same structure.
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