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Abstract Saxon–Wilansky’s paper The equivalence of some Banach space problems con-
tains six properties equivalent to the existence of an infinite dimensional separable quotient in
a Banach space with nice simplified proofs. In the frame of uniform bounded deciding prop-
erty, we prove that for an infinite dimensional Banach space (E, ‖·‖) the following properties
are equivalents: 1) The unit sphere SE contains a dense and non uniform bounded deciding
subset. 2) The unit sphere SE contains a dense and non strong norming subset. 3) (E, ‖·‖)
admits an infinite dimensional separable quotient.

Keywords Banach space · Separable quotient problem · Strong norming subset ·
Uniform bounded deciding subset
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1 Introduction

In 1932Mazur asked whether an infinite dimensional Banach space admits an infinite dimen-
sional separable quotient. Saxon and Wilansky showed in their wonderful paper [10] six
properties equivalent to the existence of an infinite dimensional separable quotient. They
claim that most of these properties were known and they present simplified proofs to get
all equivalences. The new equivalence obtained in [10] states that an infinite dimensional
Banach space has a separable quotient if and only if it has a dense non-barrelled subspace.

B S. López-Alfonso
salloal@csa.upv.es

S. Moll
sanmollp@mat.upv.es

1 Depto. Construcciones Arquitectónicas, Universitat Politècnica de València, E-46022 Valencia,
Spain

2 Depto. de Matemática Aplicada, Universitat Politècnica de València, E-46022 Valencia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-018-0543-7&domain=pdf


S. López-Alfonso, S. Moll

In this paper we present a direct proof of this equivalence in the context of uniform bounded
deciding sets introduced in [2] (see Proposition 1 and Theorem 1).

For this paper to be selfcontained we give some properties of uniform bounded deciding
subsets of a normed space in Sect. 2. In Sect. 3 we introduce the strong norming property
and we prove its equivalence with the uniform bounded deciding property (Proposition 4).

Finally, in the last section we present a direct proof of the characterization of the existence
of an infinite dimensional separable quotient in terms of uniform bounded deciding subsets.

2 Uniform bounded deciding sets

Unless otherwise stated we will suppose that each subspace F of a normed space (E, ‖·‖) is
endowed with the induced norm, denoted by ‖·‖, that the norm of the dual space (E∗, ‖·‖) is
the polar norm and that the scalar field isR orC. BE (0, 1) := {x ∈ E : ‖x‖ � 1} is the closed
unit ball of center 0 and radius 1. The unit sphere of center 0 is SE := {x ∈ E : ‖x‖ = 1}.
Definition 1 A subset C of a normed space (E, ‖·‖) is a uniform bounded deciding set (in
brief ubd set) if each C-pointwise bounded subset M of the dual space (E∗, ‖·‖) is norm
bounded, i.e.,

sup
f ∈M

| f (x)| < ∞, ∀x ∈ C �⇒ sup
f ∈M

‖ f ‖ = sup
f ∈M

x∈BE (0,1)

| f (x)| < ∞.

The norm bounded condition of M may be replaced by M is uniformly bounded in a
bounded neighborhood of zero.

Example 1 By the Banach–Steinhaus theorem the unit sphere SE of a Banach space (E, ‖·‖)
is an ubd set. If (E, ‖·‖) is a reflexive Banach space then the set of exposed points is an ubd
set [3], hence the set of extreme points of a reflexive Banach space E is an ubd set.

Example 2 Let A be an algebra of subsets of a set Ω and let (L(A ), ‖·‖) be the linear span
of the characteristiques functions eA, A ∈ A . The dual of (L(A ), ‖·‖) with the polar norm
is isomorphically isometric to the normed space (ba(A ), ‖·‖) of bounded finitely additive
measures with the variation norm. By the isomorphismwe identify eachmeasureμ ∈ ba(A )

with the linear form defined on L(A ), named also by μ, such that μ(eA) := μ(A).
A subset B of the algebra A has Nikodym property ([8] and [12]) if for each subset M

of (ba(A ), ‖·‖)
sup
μ∈M

|μ(A)| < ∞, ∀A ∈ B �⇒ sup
μ∈M
A∈A

|μ(A)| < ∞.

By [11, Propositions 1 and 2] we have

sup
A∈A

|μ(A)| � ‖μ‖ = sup
g∈BL(A )(0,1)

|μ(g)| � 4 sup
A∈A

|μ(A)| ,

hence a subset B of the algebra A has Nikodym property if and only if

sup
μ∈M

|μ(eA)| < ∞, ∀A ∈ B �⇒ sup
μ∈M

g∈BL(A )(0,1)

|μ(g)| < ∞.

This prove that a subset B of the algebra A has Nikodym property if and only if the set of
characteristiques functions {eA : A ∈ B} is an ubd subset of (L(A ), ‖·‖). In [6,8,12] there
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are examples of algebras A of subsets of a set Ω that have Nikodym property and then the
set {eA : A ∈ A } is an ubd subset of (L(A ), ‖·‖).
Example 3 The classical Nikodym–Grothendieck theorem states that each σ -á lgebra A of
subsets of a set Ω has Nikodym property. Valdivia proves in [11] that if {An1 : n1 ∈ N}
is an increasing covering of a σ -algebra A then there exists a natural number m1 such that
Am1 has Nikodym property; this property is named strong Nykodym property in [4] and [5],
where additionally it is proved that if {An1,n2,··· ,n p : ni ∈ N, i ∈ N} is an increasing web of a
σ -álgebra A , i.e., A = ∪{An1 : n1 ∈ N} and An1,n2,··· ,n p = {An1,n2,··· ,n p,n p+1 : n p+1 ∈ N}
for each (n1, n2, · · · , n p) ∈ ∪{Ns : s ∈ N}, there exists a sequence {mq : q ∈ N} such that
each Am1,m2,··· ,mq , q ∈ N, has Nikodym property. Then each set

{eA : A ∈ Am1,m2,··· ,mq },
is an ubd subset of (L(A ), ‖·‖).

From ubd definition it follows that if two subsets C and D of a normed space (E, ‖·‖)
have the same linear span then C is ubd if and only if D is ubd . In particular, for a subset C
of a normed space (E, ‖·‖) the following three conditions are equivalent:

1. C is ubd .
2. C\{0} is ubd .
3. {‖x‖−1 x : x ∈ C\{0}} is ubd .
Hence we may restrict our attention to the ubd sets that are subsets of the unit sphere

SE := {x ∈ E : ‖x‖ = 1} of a normed space (E, ‖·‖).
Note that if C is an ubd set of a normed space (E, ‖·‖) then spanC is a dense subset of

(E, ‖·‖), because if there would exists x ∈ BE (0, 1)\spanC then, byHahn–Banach theorem,
there exists fn ∈ E∗ such that fn(x) = n and fn(spanC) = {0}, for each n ∈ N. Then

sup
n∈N

| fn(x)| = 0, ∀x ∈ C and sup
n∈N

‖ fn‖ = ∞,

is a contradiction with the fact that C is an ubd set.
The following proposition gives a natural characterization of ubd sets by barrelledness.

Recall that a normed space (F, ‖·‖) is barrelled if (F, ‖·‖) verifies the Banach Steinhaus
theorem, i.e., each F pointwise bounded subset H of the dual space (F∗, ‖·‖) is norm
bounded. By polarity this property is equivalent to the fact that each absorbent, absolutely
convex and closed subset of (F, ‖·‖) is a neighborhood of zero in (F, ‖·‖). Each absorbent,
absolutely convex and closed subset of a topological vector space is called a barrel. Therefore
a normed space (F, ‖·‖) is barrelled if each barrel is neigborhood of zero.

In the proof of the next proposition wewill use the well known fact that if F := spanC is a
dense subspace of (E, ‖·‖) then themap ϕ : (E∗, ‖·‖) → (F∗, ‖·‖ )̇ defined by the restriction
to F is an isomorphism isometric. Therefore we may identify (E∗, ‖·‖) and (F∗, ‖·‖ )̇.

Proposition 1 A subset C of a normed space (E, ‖·‖) is ubd if and only if (spanC, ‖·‖) is
a dense and barrelled subspace of (E, ‖·‖).
Proof Let’s suppose that C is an ubd subset of (E, ‖·‖). Then F := spanC is a dense
subspace of (E, ‖·‖). Let ϕ : (E∗, ‖·‖) → (F∗, ‖·‖ )̇ be the restriction to F and H a subset
of F∗ pointwise bounded in C . As C is an ubd subset then ϕ−1(H) is norm bounded in
(E, ‖·‖), hence H is a norm bounded subset of (F, ‖·‖) = (spanC, ‖·‖) and we get that
(spanC, ‖·‖) is barrelled.
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To prove the converse, let us suppose that (F, ‖·‖) = (spanC, ‖·‖) is a dense and bar-
relled subspace of (E, ‖·‖). If H is a subset of (E∗, ‖·‖) pointwise bounded on C then, by
barrellednes, ϕ(H) is norm bounded in (F∗, ‖·‖). As ϕ is an isometry H is a norm bounded
subset of (E∗, ‖·‖). Therefore C is an ubd subset. ��

3 Strong norming sets

Let D be an absorbing absolutely convex subset of a normed space (E, ‖·‖). It is well known
that the Minkowski functional pD of D

pD(x) := inf{λ : λ ∈ R
+, x ∈ λD},

verfies that
{x ∈ E : pD(x) < 1} ⊂ D ⊂ {x ∈ E : pD(x) � 1}.

Hence pD defines in E a norm equivalent to ‖·‖ if and only if D is a bounded neighborhood
of (E, ‖·‖).

Recall that the polar of a subset C of (E, ‖·‖) is the set
Co := {x∗ ∈ E∗ : ∣

∣x∗(x)
∣
∣ � 1,∀x ∈ C},

and the bipolar
Coo := {x ∈ E : ∣

∣x∗(x)
∣
∣ � 1,∀x∗ ∈ Co},

verifies that Coo = abcxC , i.e., the closure of the absolutely convex hull of C , where the
absolutely convex hull of C is the set

abcxC := {Σn
i=1λi xi : xi ∈ C,Σn

i=1 |λi | � 1, n ∈ N}.
From the trivial fact that in a dual pair 〈E, E∗〉 a set is bounded if and only if its polar

is a neighborhood of 0 and from the equality Cooo = Co it follows that for a subset C of a
normed space (E, ‖·‖) the following equivalent conditions are equivalent:

1. Coo = abcxC is a bounded neighborhood of (E, ‖·‖), i.e., there exists 0 < r < R such
that

{x : x ∈ E, ‖x‖ < r} ⊂ Coo ⊂ {x : x ∈ E, ‖x‖ < R}. (1)

2. The polar set Co is a bounded neighborhood of (E∗, ‖·‖).
By polarity, this equivalence also follows by the equivalence between (1) and the next

relation (2)
{

x∗ : x∗ ∈ E,
∥
∥x∗∥∥ < R−1} ⊂ Co ⊂ {

x∗ : x∗ ∈ E∗,
∥
∥x∗∥∥ < r−1} . (2)

These properties motivated the following definition.

Definition 2 A subset C of a normed space (E, ‖·‖) is a norming set if its bipolar, Coo =
abcxC , is a bounded neighborhood of zero in (E, ‖·‖).

HenceC is norming if and only if it verifies (1) and if and only if theMinkowsky functional
pCoo is a norm equivalent to the norm of (E, ‖·‖). From the equivalence between (1) and (2)
it directly follows the next proposition.

Proposition 2 For a subset C of a normed space (E, ‖·‖) the following conditions are
equivalent:
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1. C is norming.
2. Co is norming.
3. C and Co are bounded subsets of (E, ‖·‖) and (E∗, ‖·‖), respectively.
4. Coo and Co are neighborhoods of the origin in (E, ‖·‖) and in (E∗, ‖·‖), respectively.
The next proposition proves that the projection of a norming set on the unit sphere is a

norming set.

Proposition 3 If C is a norming subset of a normed space (E, ‖·‖) then {‖x‖−1 x : x ∈
C\{0}} is a norming subset of the unit sphere SE .

Proof We may suppose that C verifies (1). Then

{x : x ∈ E, ‖x‖ < r R−1} ⊂ R−1Coo ⊂ {x : x ∈ E, ‖x‖ < 1},
hence R−1 ‖x‖ � 1, for each x ∈ Coo, and, in particular R−1 � ‖x‖−1, for each x ∈ C\{0}.
Then

R−1Coo = R−1(C\{0})oo ⊂ {‖x‖−1 x : x ∈ C\{0}}oo ⊂ {x : x ∈ E, ‖x‖ � 1},
and we get that {‖x‖−1 x : x ∈ C\{0}} is a norming subset of the unit sphere SE because:

{x : x ∈ E, ‖·‖ < r R−1} ⊂ {‖x‖−1 x : x ∈ C\{0}}oo ⊂ {x : x ∈ E, ‖·‖ � 1}.
��

Definition 3 A subset C of a normed space (E, ‖·‖) is strong norming (s-norming, in brief)
if each increasing covering (Cm)m of C contains a norming set Cn .

Each s-norming is norming, hence it is bounded and the next proposition characterizes
strong norming subsets as bounded subsets with ubd property.

Proposition 4 A subset C of a normed space (E, ‖·‖) is strong norming if and only if C is
a bounded ubd set.

Proof Let C be an s-norming subset of (E, ‖·‖). We know that C is bounded. If M is a
C-pointwise bounded subset of (E∗, ‖·‖) and

Cm := {x ∈ C : | f (x)| � m, ∀ f ∈ M},
then

m−1M ⊂ Co
m, (3)

and {Cm : m ∈ N} is an increasing covering of the s-norming set C , hence there exists Cn

that is a norming set and then, by Proposition 2, the polar set Co
n is a bounded subset of

(E∗, ‖·‖). By (3) with m = n we get that M is a bounded subset of (E∗, ‖·‖), hence C is an
ubd subset of (E, ‖·‖).

Let’s suppose that C is not a s-norming subset of (E, ‖·‖). If C is unbounded the proof is
done. Therefore we may suppose that C is a bounded set with an increasing covering (Cm)m
of non norming subsets. By Proposition 2 each Co

m is an unbounded subset of (E∗, ‖·‖),
hence there exists fm ∈ Co

m such that ‖ fm‖ > m. As the norm unbounded sequence ( fm)m
is pointwise bounded on C then C is not an ubd subset of (E, ‖·‖). ��

This Proposition implies that ifC is a non ubd subset of the unit sphere of a normed space
then C contains a non norming subset.
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4 Application: a note on the separable quotient open problem

As mentioned in the Introduction, in the next theorem we present a direct proof of the
characterization of the existence of an infinite dimensional separable quotient in a Banach
space in terms of uniform bounded deciding subsets.

Theorem 1 For an infinite dimensional Banach space (E, ‖·‖) the following properties are
equivalents:

1. (E, ‖·‖) contains a dense subspace F that is non-ubd.
2. (E, ‖·‖) admits an infinite dimensional separable quotient.

Proof Let us suppose that F is a dense and non-ubd subspace of (E, ‖·‖). Then there exists an
unbounded subset H in (E∗, ‖·‖) that is pointwise bounded in F . Hence the closed absolutely
convex set B := Ho is not neighborhood of 0 in (E, ‖·‖) and span B is dense in (E, ‖·‖),
because F ⊂ span B.

It is well known that the codimension of span B in (E, ‖·‖) cannot be countable, because
if {xn : n ∈ N} were a cobase of spanB in E then the equality

E = ∪{n abcx (B ∪ {x1, x2, . . . , xn}) : n ∈ N},
and Baire theorem imply that there exists p ∈ N such that B ∪ {x1, x2, . . . , xp} is a neigbor-
hood of 0 in (E, ‖·‖). Then B is a neighborhood of 0 in spanB. Therefore, as B is a closed
subset of (E, ‖·‖) and span B is dense in (E, ‖·‖), we get the contradiction that B would be
a neighborhood of 0 in (E, ‖·‖), which is a contradiction.

The infinite codimension of span B in E and theHahn–Banach separation theorem enables
us to obtain two sequences {xn : n ∈ N} in SE and { fn : n ∈ N} in E∗ such that:

1. fn(xn) = 1, for n � 1.
2. x1 ∈ SE\span B and xn ∈ (SE ∩ f ⊥

1 ∩ f ⊥
2 ∩· · ·∩ f ⊥

n−1)\span (B ∪ {x1, x2, · · · , xn−1}),
for n > 1.

3. | f1(x)| � 2−1, for each x ∈ B, and | fn(x + a1x1 + a2x2 + · · · + an−1xn−1)| � 2−n ,
for each x ∈ B and each |ai | � 1, 1 � i < n.

In fact, we select x1 ∈ SE\span B and apply Hahn–Banach separation theorem to {x1}
and 2B to determine f1 ∈ E∗ such that f1(x1) = 1 and | f1(v)| � 1, for each v ∈ 2B. The
first step of the inductive process is done, because

| f1(x)| � 1

2
, for each x ∈ B. (4)

Let us suppose that we have determined {xm : m < n} and { fm : m < n} for some n > 1.
As the codimension of span B in (E, ‖·‖) is infinite we may select

xn ∈
(

SE ∩ f ⊥
1 ∩ f ⊥

2 ∩ · · · ∩ f ⊥
n−1

)

\span (B ∪ {x1, x2, . . . , xn−1}) ,

and apply Hahn–Banach separation theorem to {xn} and
2n {B + a1x1 + a2x2 + · · · + an−1xn−1 : |ai | � 1, 1 � i < n} ,

to determine fn ∈ E∗ such that fn(xn) = 1 and | fn(v)| � 1, for each

v ∈ 2n {B + a1x1 + a2x2 + · · · + an−1xn−1 : |ai | � 1, 1 � i < n} .
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Then the inductive process is done because

| fn(x + a1x1 + a2x2 + · · · + an−1xn−1)| � 1

2n
, (5)

for each x ∈ B and each |ai | � 1, 1 � i < n.
Again, with a new induction, we determine for each x ∈ B a convergente seriesΣ∞

i=1ai xi ,
with |ai | � 2−i , i ∈ N, such that

x + Σ∞
i=1ai xi ∈ ∩

{

f ⊥
n : n ∈ N

}

.

In fact, from f1(x1) = 1 and (4) we deduce that

f1 (x + a1x1) = f1(x) + a1 = 0,

is verified if and only
a1 = − f1(x), with |a1| � 2−1.

Suppose that ai , 1 � i < n, has been determined such that |ai | � 2−i and

fi (x + a1x1 + · · · + ai xi ) = 0, for each i < n.

Then, from fn(xn) = 1 and (5) we deduce that the equality

fn(x + a1x1 + · · · + an−1xn−1 + anxn) = fn(x + a1x1 + · · · + an−1xn−1) + an = 0, (6)

is verified if and only if

an = − fn(x + a1x1 + · · · + an−1xn−1), with |an | � 2−n .

To finish the induction we only need to notice that by construction Σ∞
i=n+1ai xi ∈ f ⊥

n , for
each n ∈ N, hence, by (6) we deduce that

fn(x + Σ∞
i=1ai xi ) = fn(x + Σn

i=1ai xi ) + f (Σ∞
i=n+1ai xi ) = 0.

Finally, let
z p := x + Σ∞

i=p+1ai xi .

Then
∥
∥z p − x

∥
∥ � Σ∞

i=p+1 |ai | � 1

2p
⇒ x = lim

p
z p .

Let F := ⋂{ f ⊥
n : n ∈ N}. From
z p = −Σ

p
i=1ai xi + x + Σ∞

i=1ai xi ∈ span {xi , i ∈ N} + F,

we deduce that
B ⊂ span {xi , i ∈ N} + F .

This relation and the density of span B in (E, ‖·‖) imply that span{xi , i ∈ N} + F is a dense
subspace of (E, ‖·‖). Consequently, if ϕ is the quotient map of (E, ‖·‖) onto the quotient
space (E/F, ‖·‖E/F ) then (ϕ(span{xi , i ∈ N}), ‖·‖E/F ) is a separable infinite dimensional
subspace of (E/F, ‖·‖E/F ), where ‖·‖E/F is the quotient norm.

Conversely, suppose that F is a closed subspace of (E, ‖·‖) such that (E/F, ‖·‖E/F ) is a
separable infinite dimensional Banach space. Then there exists in SE a sequence {xn : n ∈ N}
of linear independent vectors such that the sum of span {xn : n ∈ N} and F is direct and
span {xn : n ∈ N} ⊕ F is dense in (E, ‖·‖). By the Hahn–Banach theorem for each n ∈ N

there exists fn ∈ E∗ such that fn(xn+1) = n ‖xn‖ and fn({x1, · · · , xn} + F) = {0}.
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Then span {xn : n ∈ N} ⊕ F is a non-ubd subset, because the norm-unbounded sequence
{ fn : n ∈ N} is pointwise bounded in span {xn : n ∈ N} ⊕ F . ��

From this theorem and Proposition 4 follows the next corollary.

Corollary 1 For an infinite dimensional Banach space (E, ‖·‖) the following properties are
equivalent:

1. The unit sphere SE contains a dense and non ubd subset.
2. The unit sphere SE contains a dense and non strong norming subset.
3. (E, ‖·‖) admits an infinite dimensional separable quotient.

A sequence (yn)n in the dual E∗ of a Banach space (E, ‖·‖) is pseudobounded if it is
point-wise bounded on a dense subspace F of E and supn ‖yn‖ = ∞ [9]. It is obvious that E∗
contains a pseudobounded sequence if and only if SE contains a dense and non ubd subset.
Therefore from last Corollary we get that an infinite dimensional Banach space (E, ‖·‖) has
an infinite dimensional separable quotient if and only if its dual E∗ contains a pseudobounded
squence. This equivalence is contained in [9, Theorem 3].

In [1, Theorem 15] is proved that every infinite dimensional dual Banach space (E∗, ‖·‖)
has an infinite dimensional separable quotient. From Theorem 1 follows that the unit sphere
SE∗ contains a non ubd subset. This result motivates the following problem.

Problem 1 Obtain a direct method to determine a dense and non ubd subset in the unit
sphere SE∗ of the dual of a Banach space (E, ‖·‖).

References

1. Argyros, S.A., Dodos, P., Kanellopoulos, V.: Unconditional families in Banach spaces. Math. Ann. 341,
15–38 (2008)

2. Fernández, J., Hui, S., Shapiro, H.: Unimodular functions and uniform boundedness. Publ. Mat. 33,
139–146 (1989)

3. Font, V.P.: On exposed and smooth points of convex bodies in Banach spaces. Bull. London Math. Soc.
28, 51–58 (1996)

4. Ka̧kol, J., López-Pellicer, M.: On Valdivia strong version of Nikodym boundedness property. J. Math.
Anal. Appl. 446, 1–17 (2017)

5. López-Alfonso, S., Mas, J., Moll, S.: Nikodym boundedness property and webs in σ -algebras. RACSAM
Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 110, 711–722 (2016)

6. López-Alfonso, S.: On Schachermayer and Valdivia results in algebras of Jordan measurable sets. RAC-
SAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 110, 799–808 (2016)

7. Nygaard, O.: A strong uniform boundedness principle in Banach spaces. Proc. Am. Math. Soc. 129,
861–863 (2001)

8. Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean
algebras. Dissertationes Math. (Rozprawy Mat.) 214, 33 (1982)
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