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Abstract

In this paper we study the dynamics of the composition operators defined
in the Schwartz space S(R) of rapidly decreasing functions. We prove that
such an operator is never supercyclic and, for monotonic symbols, it is power
bounded only in trivial cases. For a polynomial symbol ϕ of degree greater
than one we show that the operator is mean ergodic if and only if it is power
bounded and this is the case when ϕ has even degree and lacks fixed points.
We also discuss the spectrum of composition operators.
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1. Introduction and notation

We study the dynamics of composition operators defined in the Schwartz
space S(R) of smooth rapidly decreasing functions. The smooth functions
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ϕ : R→ R for which the composition operator Cϕ : S(R)→ S(R), f 7→ f ◦ϕ,
is well defined were characterized by the second and the third author in [14],
where the compactness and closed range of the operator is analyzed. In this
paper we discuss the behavior of the orbits {Cn

ϕ(f) : n ∈ N}. Dynamics
of composition operators in Banach spaces of analytic functions on the unit
disc have been broadly investigated. There are a lot of results relating the
dynamics of Cϕ to that of ϕ [12, 26]. In the last years composition operators
on spaces of smooth functions on the reals have attracted the attention of
several authors. Dynamics on the space of real analytic functions is analyzed
by Bonet and Domański in [8, 9]. More recently, Kennesey, Wengenroth and
Przestacki have investigated composition operators on the space C∞(R) of
smooth functions on R (see [20, 22, 23, 24]). The dynamics of composition
operators on C∞(R) has been studied in [25].

In [16] it is proved that S(R) admits continuous linear operators for which
every nonzero vector is hypercyclic. In Section 2 we prove that composition
operators on the Schwartz class cannot provide these kind of examples, since
they are neither hypercyclic nor supercyclic. We recall that an operator T
on a locally convex space (lcs) is said to be hypercyclic if there exist a dense
orbit O(T, x) := {T n(x) : n ∈ N}. The operator is supercyclic if there exists
x ∈ X such that the projective orbit KO(T, x) = {λT n(x) : λ ∈ K, n ∈ N}
is dense. It follows from the definition that only separable spaces support
supercyclic operators. There is a vast literature studying hypercyclicity and
supercyclicity in concrete operators defined on Banach or Fréchet spaces (see
the monographies [3, 19]).

An operator T : X → X is said to be power bounded if {T n : n ∈ N} is
an equicontinuous set. If X is a Fréchet space then T is power bounded if
and only if {T n(x) : n ∈ N} is bounded for each x ∈ X. A closely related
concept to power boundedness is that of mean ergodicity. Given T ∈ L(X),
the Cesàro means of T are defined as T[n] =

∑n
k=1 T

k/n. T is said to be mean
ergodic when T[n] converges to an operator P , which is always a projection,
in the strong operator topology, i.e. if (T[n](x)) is convergent to P (x) for

each x ∈ X. Clearly, if T is mean ergodic then limn→∞
Tn(x)
n

= 0 for each
x ∈ E. The operator is called uniformly mean ergodic if this convergence
happens uniformly on bounded sets, that is (T[n]) is convergent to P in Lb(X).
When X is a Banach space this means that the convergence happens in the
operator norm topology. If X is reflexive then each power bounded operator
is mean ergodic. The result was proved by Lorch [21] for reflexive Banach
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spaces extending the classical Von Neumann mean ergodic theorem valid for
unitary operators defined on a Hilbert space. Albanese, Bonet and Ricker [1]
showed that the result remains true if X is a Fréchet space. Moreover, if X is
Montel, i.e. barrelled and such that closed and bounded subsets are compact,
it follows that mean ergodicity and uniform mean ergodicity are equivalent
concepts. Power boundedness and mean ergodicity are mainly studied as a
theoretical tool for analizing the structure of Banach spaces. For example,
Fonf, Lin and Wojstaycyck proved in [13] that if X is a Banach space which
has Schauder basis and it is not reflexive then there exists an operator which
is power bounded but not mean ergodic. In the last years, power boundedness
and mean ergodicity have been studied by several authors from a dynamical
point of view, mainly in spaces of analytic functions [5, 6, 7, 10]. Roughly
speaking, power boundedness and mean ergodicity are related to small orbits,
and hyperciclicity and superciclicity to big orbits. This size classification is
of course relative. If T is power bounded then T cannot be hypercyclic, but
T could be supercyclic. Beltrán-Meneu provides in [4] an example suggested
by Peris of a hypercyclic operator which is also mean ergodic.

We prove that for an increasing symbol ϕ other than the identity the
operator Cϕ is not power bounded on the Schwartz class. For a decreasing
symbol ϕ the operator Cϕ is power bounded if and only if it is mean ergodic
and this only happens when ϕ◦ϕ is the identity. We completely characterize
those polynomials ϕ for which Cϕ is mean ergodic or power bounded. This
is the content of Theorem 3.11.

Section 4 deals with the spectrum and pointwise spectrum of composi-
tion operators. For injective symbols, the pointwise spectrum is completely
characterized in Propositions 4.2 and 4.3. It turns out that, for injective sym-
bols, the pointwise spectrum is empty or reduces to {1} (in case the symbol
is increasing) or to {−1, 1} (if the symbol is decreasing). The behavior is
completely different for non-injective symbols as Example 3 shows, where a
composition operator is provided whose pointwise spectrum coincides with
the open unit disc. We prove that the spectrum of a mean ergodic compo-
sition operator is always contained in the closed unit disc (Corollary 4.5).
Concrete examples are given were the spectrum coincides with the open unit
disc, the unit circle or C \ {0}. The spectrum of composition operators in
spaces of analytic functions has been recently considered by many authors
(see for instance [11, 15, 18]).

Let X(R) be a locally convex space of functions defined on R. Then
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ϕ : R → R is said to be a symbol for X(R) if Cϕ, f 7→ f ◦ ϕ, maps X(R)
continuously into itself.

Recall that S(R) consists of those smooth functions f : R→ C with the
property that

πn(f) := sup
x∈R

sup
1≤j≤n

(1 + |x|2)n|f (j)(x)| <∞

for each n ∈ N. S(R) is a Fréchet Montel space when endowed with the
topology generated by the sequence of seminorms (πn)n∈N .

We state below the characterization of the symbols for S(R).

Theorem 1.1 ([14]). A function ϕ ∈ C∞(R) is a symbol for S(R) if and
only if the following conditions are satisfied:

(i) For all j ∈ N0 there exist C, p > 0 such that

|ϕ(j)(x)| ≤ C(1 + |ϕ(x)|2)p

for every x ∈ R.

(ii) There exists k > 0 such that |ϕ(x)| ≥ |x|1/k for all |x| ≥ k.

It follows that every symbol ϕ for S(R) goes to infinity as |x| goes to
infinity.

From now on ϕn = ϕ ◦ . . . ◦ϕ denotes the n-th iteration of ϕ. In the case
that ϕ is a bijection we also write ϕ−n = ϕ−1 ◦ . . . ◦ ϕ−1.

2. Supercyclicity of the composition operator

The composition operators on S(R) are never hyperciclic. In fact, for
every symbol ϕ and for every f ∈ S(R) all the functions in the orbit

O(Cϕ, f) = {f ◦ ϕn : n ∈ N}

have the range contained in the bounded set f(R). Therefore no orbit can be
dense. The aim of this section is to check that composition operators are not
supercyclic. In what follows we will use the following result due to Bayart
and Matheron ([3, Prop I.26]) relating supercyclicity to hypercyclicity: if T is
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a supercyclic operator on X and the pointwise spectrum σp(T
∗) of T ∗ is non

empty then σp(T
∗) = {λ}, λ 6= 0, and there is a closed hyperplane X0 ⊂ X

such that λ−1 · T|X0 : X0 → X0 is hyperciclic.
A continuous function ϕ : R→ R is said to be proper if ϕ−1([−M,M ]) is

bounded in R for each M > 0. Let C0(R) be the Banach space of continuous
functions on R which vanish at infinity endowed with the ‖ · ‖∞-topology,
and let D(R) be the space of compactly supported smooth functions endowed
with its natural locally convex topology. It is well known that the inclusions
D(R) ↪→ S(R) ↪→ C0(R) are continuous and have dense range. According
to condition (ii) in Theorem 1.1 the symbols for S(R) are smooth proper
functions, which are precisely the symbols for the composition operators on
D(R). Continuous proper functions form the set of symbols for composition
operators on C0(R).

Theorem 2.1. Let ϕ : R→ R be a proper continuous function. Then

Cϕ : C0(R)→ C0(R)

is not supercyclic. If in addition X is a lcs, X ↪→ C0(R) is continuously
embedded with dense range and Cϕ(X) ⊆ X, then Cϕ : X → X is not
supercyclic.

Proof. We only need to prove the first statement and we proceed by con-
tradiction. So, let us assume that Cϕ : C0(R) → C0(R) is supercyclic. If
ϕ has a fixed point x0 then δx0 is a fixed point of C∗ϕ. Here δx0 stands for
the evaluation functional at x0. By [3, Prop I.26] we get a closed hyperplane
X0 ⊂ C0(R) such that Cϕ(X0) ⊂ X0 and Cϕ : X0 → X0 is hypercyclic. Let
x ∈ R such that X0 6⊂ Kerδx and let f ∈ X0 be a hypercyclic vector. Then

{δxCϕn(f) n ∈ N } = {f (ϕn(x)) : n ∈ N}

is a bounded set. This is a contradiction with the fact that f is a hypercyclic
vector for Cϕ|X0 .

If ϕ is not injective then there are two different real numbers a, b such that,
for every f ∈ C0(R), the projective orbit KO(Cϕ, f) is contained in the proper
closed subspace {h ∈ C0(R) : h(a) = h(b)}. This is also a contradiction.

Consequently, ϕ is strictly monotone and does not have fixed points.
This forces ϕ to be increasing and ϕ(x)− x to have constant sign. The last
assertion implies that the sequence (|ϕn(x)|)n diverges to ∞ for each x ∈ R.
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From this it follows that the sequence (f (ϕn(x)))n converges to 0 for each
x ∈ R and f ∈ C0(R). Let f ∈ C0(R) be a supercyclic vector. We can
assume without loss of generality that ‖f‖∞ = 1. Since ϕ(R) = R we have
that Cϕ is an isometry in C0(R) and we get

lim
n

|〈δ0, f ◦ ϕn〉|
‖f ◦ ϕn‖∞

= lim
n
f (ϕn(0)) = 0,

a contradiction with the angle criterion for supercyclicity [3, Theorem 9.1],
since ‖δ0‖ = 1. This completes the proof of the first statement while the
second one follows from the definitions.

Corollary 2.2. (1) If ϕ is a symbol for S(R) then Cϕ : S(R) → S(R) is
not supercyclic.

(2) If ϕ is smooth and proper then Cϕ : D(R)→ D(R) is not supercyclic.

We remark that in case of non injective symbols we even have that the
composition operator is not cyclic, i.e. the image of the composition operator,
and therefore the linear span of any orbit is always contained in a proper
closed set.

3. Power bounded and mean ergodic composition operators

Once we know that composition operators on the Schwartz class cannot
have large orbits, we investigate when they are power bounded or mean
ergodic. We recall that every power bounded operator on a Fréchet-Montel
space is uniformly mean ergodic.

3.1. Some necessary conditions on mean ergodicity

Lemma 3.1. (a) If there exist an unbounded sequence (xn)n such that
(ϕn(xn))n is bounded then Cϕ is not power bounded.

(b) If |xn|k ≥ n for some k ∈ N and (ϕn(xn))n is bounded then Cϕ is not
mean ergodic.

Proof. Let us assume that |ϕn(xn)| ≤M for every n ∈ N and take f ∈ S(R)
such that f = 1 on [−M,M ].

(a) If (xn)n is unbounded, then

sup
n∈N

(1 + |xn|) · |Cϕnf (xn)| =∞
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and (Cϕnf)n is unbounded.

(b) The hypothesis implies that

(1 + |xn|)k ·
|f (ϕn(xn))|

n
= (1 + |xn|)k ·

|Cϕnf(xn)|
n

does not converge to 0. Hence,
(
1
n
Cϕnf

)
n

does not converge to 0 and, conse-
quently, Cϕ is not mean ergodic.

Corollary 3.2. If ϕ is a symbol for S(R) with ϕ(R) = R and there exists
δ > 0 such that |ϕ(x)− x| > δ for all x ∈ R then Cϕ is not mean ergodic.

Proof. We consider only the case ϕ(x) − x > δ. Iterating this condition
we get ϕn > ϕn−1 + δ, hence ϕn(x) > x + nδ for all x ∈ R. Therefore,
ϕn(x) = 0 implies x ≤ −nδ. From ϕn(R) = R we get a sequence (xn)n
satisfying ϕn(xn) = 0 and |xn|2 > n for n large enough. The conclusion
follows from Lemma 3.1 (b).

For increasing symbols without fixed points, the hypothesis in the previ-
ous result can be relaxed.

Corollary 3.3. Let ϕ be a strictly increasing symbol without fixed points.
If there exists x0 such that ϕ(x)− x > δ for all x ≤ x0 then Cϕ is not mean
ergodic. This is the case if ϕ(x) > x for every x ∈ R and ϕ′(x) ≤ 1 for every
x ≤ x0.

Proof. As ϕ has no fixed points, we must have ϕ(t) > t, or equivalently,
ϕ−1(t) < t, for every t ∈ R. Then, xn := ϕ−n(x0) < x0, and therefore, xn <
xn−1− δ for all n ∈ N, hence xn < x0− nδ, and we can argue as in Corollary
3.2. Let us now assume ϕ′(x) ≤ 1 for every x ≤ x0 and ϕ(x0) > x0. Then
ϕ(x)− x is decreasing in (−∞, x0] and hence, taking δ := (ϕ(x0)− x0) > 0,
we have ϕ(x) ≥ x+ δ for each x ≤ x0.

A similar result holds if there exists x0 such that x− ϕ(x) > δ for every
x ≥ x0. In particular, if x > ϕ(x) for every x ∈ R and ϕ′(x) ≤ 1 for all
x ≥ x0 then Cϕ is not mean ergodic.

From now on, when Cϕ is mean ergodic we will put

Pf = lim
n→∞

1

n

n∑
k=1

Cϕnf.
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Proposition 3.4. Let ϕ be a symbol with a bounded orbit. Assume that
there exists k > 0 such that (ϕn(x))n is unbounded for each |x| ≥ k. Then
Cϕ is not mean ergodic.

Proof. Let us assume that Cϕ is mean ergodic. Then, as P is a continuous

operator and limn
Cϕn+1 (f)

n
= 0, we have that Cϕ(Pf) = Pf, for each f ∈

S(R).
By hypothesis the set A := {x ∈ R : (ϕn(x))n is bounded} is non-empty

and bounded. Take b := sup{|x| : x ∈ A}, and select a sequence xk ∈ A
converging to b (or to −b). Observe that, for n, k ∈ N, ϕn(xk) ∈ A ⊂ [−b, b],
whereas (ϕn(x))n is unbounded when |x| > b. Then, if f ∈ S(R), f ≡ 1 in
[−b, b] (observe that we do not assume b > 0), we have

Pf(b) = lim
k
Pf(xk) = 1.

On the other hand, Cϕ(Pf) = Pf implies Pf (ϕn(x)) = Pf(x) for all x ∈ R
and every n ∈ N. Then, Pf(x) = 0 if the orbit (ϕn(x))n is unbounded, in
particular Pf(x) = 0 when |x| > b, a contradiction.

Now we concentrate on monotone symbols. For f ∈ S(R) we will use the
convention f(+∞) = f(−∞) = 0.

Lemma 3.5. Let ϕ be an increasing symbol. Then, for every x ∈ R there
exists

ϕ∗(x) = lim
n→∞

ϕn(x) ∈ R = R ∪ {±∞} .

If Cϕ is mean ergodic then

f ◦ ϕ∗ ∈ S(R) ∀ f ∈ S(R).

Proof. Given x ∈ R, as ϕ is increasing, the orbit (ϕn(x))n is an increasing
(resp. decreasing) sequence if ϕ(x) ≥ x (resp. ϕ(x) < x) and therefore
convergent in R. Let us now assume that Cϕ is mean ergodic. Then, for
every f ∈ S(R) we have Pf ∈ S(R), but

(Pf) (x) = lim
n→∞

1

n

n∑
k=1

f (ϕn(x)) = f (ϕ∗(x)) ,

from where the conclusion follows.
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Proposition 3.6. Let ϕ be an increasing symbol with some fixed point.
Then either ϕ(x) = x for every x ∈ R or Cϕ is not mean ergodic.

Proof. Let us denote

F = {x ∈ R : ϕ(x) = x} ,

which by hypothesis is not empty. Let us assume that F 6= R. We now
distinguish three cases.

(a) F is bounded above. Let x0 be the maximum of F. Then, either (a1)
ϕ(x) > x for every x > x0 or (a2) ϕ(x) < x for every x > x0. If (a1) holds
then ϕ∗(x) = +∞ for every x > x0 and

f (ϕ∗(x)) = 0 ∀x > x0 while f (ϕ∗(x0)) = f(x0)

for every f ∈ S(R). In case (a2) holds then

f (ϕ∗(x)) = f(x0) ∀x ≥ x0, ∀ f ∈ S(R).

In both cases, choosing f ∈ S(R) with f(x0) 6= 0 we see that f ◦ ϕ∗ /∈ S(R),
and Cϕ is not mean ergodic.

(b) F is bounded below. We proceed as in case (a) to get a contradiction.
(c) F is neither bounded above nor bounded below. Then there are two

fixed points x0 < y0 such that

(x0, y0) ∩ F = ∅.

Then ϕ∗(x0) = x0 and ϕ∗(y0) = y0. On the other hand, either (c1) ϕ∗(x) = x0
for every x ∈ (x0, y0) or (c2) ϕ∗(x) = y0 for every x ∈ (x0, y0). If (c1) holds
then

f (ϕ∗(x)) = f(x0) ∀x ∈ [x0, y0) while f (ϕ∗(y0)) = f(y0)

for every f ∈ S(R). Hence, taking f ∈ S(R) with f(x0) 6= f(y0), f ◦ ϕ∗ /∈
S(R), and Cϕ is not mean ergodic. A similar argument works on case (c2).

Proposition 3.7. Let ϕ be a decreasing symbol. Then either ϕ2(x) = x for
every x ∈ R or Cϕ is not mean ergodic.

Proof. If ϕ2(x) = x for every x ∈ R, the orbit O(Cϕ, f) reduces to {f, f◦ϕ}
for every f ∈ S(R), hence Cϕ is power bounded.
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Let us assume that Cϕ is mean ergodic and let λ be the unique fixed point
of ϕ. We note that ϕ2 is increasing and that it may have many fixed points.
We observe that if a > λ is a fixed point of ϕ2 then also ϕ(a) is a fixed point
of ϕ2 and ϕ(a) < λ. Therefore to show that ϕ2(x) = x for every x ∈ R it is
enough to prove that

F := {a ≥ λ : ϕ2(a) = a}

coincides with [λ,+∞). We proceed by contradiction .
(a) If F is bounded above, let x0 be the maximum of F. Then, either (a1)

ϕ2(x) > x for every x > x0 or (a2) ϕ2(x) < x for every x > x0. If (a1) holds
then

lim
n→∞

ϕ2n(x) = +∞, lim
n→∞

ϕ2n+1(x) = −∞,

from where it follows that

lim
n→∞

f (ϕn(x)) = 0 ∀x > x0,

and thus Pf |(x0,+∞) ≡ 0 while

Pf(x0) =
f(x0) + f (ϕ(x0))

2
.

for every f ∈ S(R). If instead (a2) holds then

lim
n→∞

ϕ2n(x) = x0, lim
n→∞

ϕ2n+1(x) = ϕ(x0),

from where

Pf(x) =
f(x0) + f (ϕ(x0))

2
∀x > x0

for every f ∈ S(R). In any case, taking a function f ∈ S(R) with f(x0) +
f (ϕ(x0)) 6= 0 we run into a contradiction.

(b) Let us assume now that F is not bounded above but F 6= [λ,+∞).
Then there are λ ≤ a < b two consecutive fixed points of ϕ2. In the case
ϕ2(x) > x for every x ∈ (a, b) we obtain

lim
n→∞

ϕ2n(x) = b, lim
n→∞

ϕ2n+1(x) = ϕ(b),

so

Pf(x) =
f(b) + f (ϕ(b))

2
∀x ∈ (a, b),
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while

Pf(a) =
f(a) + f (ϕ(a))

2
.

This is a contradiction since ϕ(a) 6= b. In the case ϕ2(x) > x a similar
argument gives a contradiction. Consequently ϕ2(x) = x for every x ≥ λ.

We illustrate below the fact that, besides the trivial case ϕ(x) = −x,
there are many more decreasing symbols satisfying ϕ2(x) = x.

Example 1. Let f ∈ C∞(R) be an even function with |f ′(x)| ≤ a < 1
for every x ∈ R and whose derivatives have polynomial growth. Then the
equation

x+ y = f(x− y)

defines a decreasing symbol y = ϕ(x) such that ϕ (ϕ(x)) = x.

Proof. We first observe that g(x) = f(x)− x is a strictly decreasing func-
tion. Moreover, since |f(x)| ≤ |f(0)|+ a |x| ,

lim
x→+∞

g(x) = −∞, lim
x→−∞

g(x) = +∞.

We claim that for every x ∈ R there is a unique solution y = ϕ(x) of the
equation x+ y = f(x− y). In fact, it is enough to take y = u+ x where u is
the unique solution of f(u)−u = 2x. An application of the implicit function
theorem gives that ϕ ∈ C∞(R).

We now check that ϕ (ϕ(x)) = x. To this end we denote x = ϕ(x) and
observe that

x+ x = f (x− x) = f (x− x) ,

which implies ϕ (x) = x. From

x+ ϕ(x) = f (ϕ(x)− x) (1)

we get
1 + ϕ′(x) = f ′ (ϕ(x)− x) · (ϕ′(x)− 1)

and
−2

1− a
< ϕ′(x) =

−1− f ′ (ϕ(x)− x)

1− f ′ (ϕ(x)− x)
< 0.

In particular ϕ′ is bounded.
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To finish, we show that ϕ is a symbol for S(R).

(i) We have

|x| − |ϕ(x)| ≤ |x+ ϕ(x)| = |f (ϕ(x)− x)|

≤ |f(0)|+ a |ϕ(x)− x|

≤ |f(0)|+ a |ϕ(x)|+ a |x| ,

from where it follows that there is ε > 0 such that

|ϕ(x)| ≥ ε |x| ∀ |x| ≥ ε−1.

(ii) Fix n ≥ 2 and apply Faà di Bruno formula to (1). Then we obtain

ϕ(n)(x) =
∑ n!

k1! . . . kn!
f (k) (ϕ(x)− x)

(
ϕ′(x)− 1

1!

)k1
. . .

(
ϕ(n)(x)

n!

)kn
where the sum is extended over all (k1, . . . , kn) ∈ Nn

0 such that k1 + 2k2 +
. . .+ nkn = n and k := k1 + . . .+ kn. Then

ϕ(n)(x) = f ′ (ϕ(x)− x) · ϕ(n)(x) + gn(x),

where gn(x) is a sum involving products of terms of the form f (k) (ϕ(x)− x)
and ϕ(m)(x) and m < n. This permits to use an induction argument to
conclude that, for every n ∈ N there are Cn > 0 and pn ∈ N such that∣∣ϕ(n)(x)

∣∣ ≤ Cn (1 + |ϕ′(x)|)pn .

Since ϕ′ is bounded we conclude.

We see below that for monotonic symbols power boundedness is equivalent
to periodicity of the composition operator.

Theorem 3.8. Let ϕ be a monotonic symbol

(a) If ϕ is increasing then Cϕ is power bounded if and only if ϕ(x) = x for
each x ∈ R.

(b) If ϕ is decreasing then Cϕ is power bounded if and only if Cϕ is mean
ergodic if and only if ϕ2(x) = x for each x ∈ R.
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Proof. We get (b) as a direct consequence of Proposition 3.7.
To prove (a) we observe that by Proposition 3.6, if ϕ is an increasing

symbol which is not the identity and has at least one fixed point, then Cϕ
is not mean ergodic, and consequently Cϕ is not power bounded. If ϕ does
not have a fixed point we can assume, without loss of generality, ϕ(x) > x
for every x ∈ R. Since ϕ(R) = R, for every n ∈ N there exists xn ∈ R such
that ϕn(xn) = 0. From ϕn+1(xn) > ϕ(0) > 0 and ϕn+1(xn+1) = 0 we get
xn+1 < xn. Moreover, (xn)n is unbounded. In fact, for every a ∈ R we have
limn→∞ ϕn(a) = +∞, hence xn ≤ a for n large enough. We conclude that
the operator Cϕ is not power bounded as a consequence of Lemma 3.1.

Remark 1. As a consequence of Corollary 3.3, the unique case of monotonic
symbols for which we cannot assure that the corresponding composition op-
erators are mean ergodic or not is that of increasing symbols without fixed
points that approach asymptotically to y = x as x goes to −∞ (in the case
ϕ(x) > x) or to +∞ (if ϕ(x) < x). We do not know if Cϕ is mean ergodic
for ϕ(x) = x + e−x

2
. On the other hand, for this ϕ, Cϕ is mean ergodic on

C0(R). In fact, it is power bounded on C0(R) and it is easy to see that for
every continuous and compactly supported f one has

lim
N→∞

1

N

N∑
n=1

Cϕnf = 0.

3.2. Characterization of power boundedness

Our next result shows that Cϕ is power bounded if the sequence of symbols
{ϕn : n ∈ N} satisfies uniformly the conditions in Theorem 1.1.

Proposition 3.9. For a symbol ϕ the composition operator Cϕ is power
bounded if and only if the following statements hold

(i) For all j ∈ N0 there exist C, p > 0 such that∣∣(ϕn)(j)(x)
∣∣ ≤ C(1 + ϕn(x)2)p

for every x ∈ R and every n ∈ N.

(ii) There exists k > 0 such that |ϕn(x)| ≥ |x|1/k for all |x| ≥ k and every
n ∈ N.
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Proof. Proceeding as in the proof of [14, Theorem 2.3] we obtain the suf-
ficiency of conditions (i) and (ii).

Assume now that Cϕ is power bounded. If (ii) fails, for each k we find
`k ∈ N and yk ∈ R with |yk| > k such that

|ϕ`k(yk)|k < |yk|.

As every ϕn is a symbol, we may proceed inductively using Theorem 1.1(ii)
and the fact above to find strictly increasing sequences (kj)j and (nj)j in N
and a sequence (xj)j in R such that |xj| > kj for which

|ϕnj
(xj)|kj < |xj|.

By Lemma 3.1 (a), the sequence (ϕnj
(xj))j is unbounded, hence, passing to

a subsequence, we may assume that

|ϕnj+1
(xj+1)| > 1 + |ϕnj

(xj)|.

Taking ρ ∈ D (−1/2, 1/2) with ρ(0) = 1, the function

f(x) :=
∞∑
j=1

1

(1 + |ϕnj
(xj)|2)kj

ρ(x− ϕnj
(xj)),

belongs to S(R), and

(1 + |xj|)3|Cnj
ϕ f(xj)| & 1 + |xj|,

a contradiction.
To prove that (i) holds, we proceed again by contradiction. Therefore,

we assume that there is n ∈ N such that for every j we find `j and xj with

|(ϕ`j)(n)(xj)| > j(1 + |ϕ`j(xj)|2)j.

We can assume that either n = 1 or there are p and C with

|(ϕ`)(i)(x)| ≤ C(1 + |ϕ`(x)|2)p, (2)

for all x ∈ R, all ` ∈ N and 1 ≤ i < n. Now, if the sequence (ϕ`j(xj))j is
unbounded we can assume, passing to a subsequence if necessary, that

|ϕ`j+1
(xj+1)| > 1 + |ϕ`j(xj)|.

14



We take ρ ∈ D (−1/2, 1/2) with ρ′(0) = 1 and ρ(j)(0) = 0 for 2 ≤ j ≤ n, and
define

f(x) :=
∞∑
j=1

1

(1 + |ϕ`j(xj)|2)j
ρ(x− ϕ`j(xj)).

Then, f ∈ S(R), and by Faà di Bruno formula,

∣∣∣(Cϕ`j
(f))(n)(xj)

∣∣∣ =

∣∣∣∣∣ρ′(0)(ϕ`j)
(n)(xj)|

(1 + (ϕ`j(xj))
2)j

∣∣∣∣∣ > j,

a contradiction. Hence, the sequence (ϕ`j(xj))j is bounded and, passing to
a subsequence, we may assume that it converges to some y0 ∈ R. If we take,
f ∈ S(R), with f ′(y0) = 1, then for j big enough we have f ′(ϕ`j(xj)) > 1/2.
By Faà de Bruno formula and (2),(

Cϕ`j
f
)(n)

(xj) = (ϕ`j)
(n)(xj)f

′(ϕ`j(xj)) + Aj,

where (Aj)j is a bounded sequence, hence
(

(Cϕ`j
f)(n)(xj)

)
j

is unbounded, a

contradiction.

Example 2. Let ϕ(x) =
√
x2 + 1. Then Cϕ is power bounded.

Proof. The iterates of the symbol are given by ϕn(x) =
√
x2 + n, hence

ϕn(x) > |x| for every x ∈ R and condition (ii) is fulfilled. To check condition
(i) we see that for every j ∈ N there is C > 0 such that for each n ∈ N∣∣(ϕn)(j)(x)

∣∣ ≤ Cϕn(x).

In fact, it is easy to see that |(ϕn)(k)(x)| ≤ 1 for k = 1, 2, and every n.
For k ≥ 3, by Faà de Bruno formula, for every x ∈ R,∣∣(ϕn)(k)(x)

∣∣ =
∑ k!

j1!j2!
Cj1+j2(x

2 + n)−(j1+j2)+
1
2 |x|j1 ≤ Dkϕn(x),

where the sum is extended over all (j1, j2) ∈ N2
0 such that j1 + 2j2 = k.

Our next aim is to characterize those polynomials ϕ with the property
that Cϕ is mean ergodic.
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Remark 2. Let ϕ(x) = ax + b be given. Then Cϕ is mean ergodic if and
only if ϕ(x) = x or ϕ(x) = −x + b. In fact, let us assume that a > 0 and
Cϕ is mean ergodic. From Proposition 3.6 we have that a = 1. Now, from
ϕn(−nb) = 0 and Lemma 3.1(b) we conclude b = 0. In the case that a < 0
we apply Proposition 3.7.

The next lemma provides information on the behavior of the iterates of
polynomials with even degree and without fixed points.

Lemma 3.10. Let ϕ be a polynomial of even degree without fixed points.
Then there is N ∈ N such that ψ = ϕN has neither zeros nor fixed points.
Moreover, for every K > 0 there is m0 ∈ N such that

|ψm+1(t)| ≥ K (ψm(t))2 ∀m ≥ m0, ∀t ∈ R.

Proof. We assume that ϕ(t) > t for every t ∈ R and put Φ(t) = ϕ(t) − t.
Since

lim
t→−∞

Φ(t) = lim
t→+∞

Φ(t) = +∞

then there is a > 0 such that Φ(t) ≥ a for every t ∈ R. An induction argument
then gives

ϕn(t) ≥ t+ na

for every n ∈ N and t ∈ R. Consequently

ϕn(t) = ϕn−1 (ϕ(t)) ≥ ϕ(t) + (n− 1)a ≥ ϕ(t0) + (n− 1)a

where ϕ(t0) is the minimum of ϕ. Hence, for N big enough the iterate ψ = ϕN
is a polynomial of even degree greater than 4 without zeros nor fixed points.

Let us now fixK > 0 and observe that there is b > 0 such that ψ(s) ≥ Ks2

whenever s ≥ b. We choose m0 so that

ψm(t) ≥ b

for all t ∈ R and for all m ≥ m0. Then

ψm+1(t) = ψ (ψm(t)) ≥ K (ψm(t))2 .

The case ϕ(t) < t for every t ∈ R is treated in a similar way.
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Theorem 3.11. Let ϕ be a polynomial with degree greater than or equal
to two. Then, the following are equivalent:

(1) Cϕ is power bounded.

(2) Cϕ is mean ergodic.

(3) The degree of ϕ is even and it has no fixed points.

Proof. (2)⇒ (3). We assume that Cϕ is mean ergodic but ϕ has some fixed
point. Then there is at least one point with bounded orbit. Moreover, since
ϕ is a polynomial of degree greater than or equal to two we may find K > 0
such that |t| > K implies |ϕ(t)| > 2|t|, hence (|ϕn(t)|)n goes to infinity for
|t| > K. According to Proposition 3.4 Cϕ is not mean ergodic, which is a
contradiction. As every polynomial with odd degree greater than one has at
least a fixed point, the proof is complete.

(3) ⇒ (1). We first observe that Cϕ is power bounded if and only if
there is N such that CN

ϕ is power bounded. So, after replacing ϕ by ϕN for
appropriate N we can assume, without loss of generality, that ϕ has neither
zeros nor fixed points and enjoy the additional property that |ϕ(t)| ≥ 1 and
for every K > 0 there is m0 ∈ N such that

|ϕm+1(t)| ≥ K (ϕm(t))2 ∀m ≥ m0, ∀t ∈ R

(see Lemma 3.10). Condition (ii) in Proposition 3.9 is automatically satisfied.
As ϕ is a polynomial which does not vanish, there is C ≥ 1 such that

|ϕ(j)(t)| ≤ C|ϕ(t)| for every t ∈ R and j ∈ N. Let us write

Cn = C
∑ 1

k1! . . . kn!

where the sum is extended to all multi-indices such that

k1 + 2k2 + . . .+ nkn = n.

We may find an increasing sequence (mn) of natural numbers with the prop-
erty that

|ϕm+1(t)| ≥ Cn (ϕm(t))2 ∀m ≥ mn, ∀t ∈ R.

We claim that there is Bn > Cn such that for m ≥ mn, and n ∈ N,∣∣∣∣(ϕm)(n)(t)

n!

∣∣∣∣ ≤ Bn
n |ϕm(t)|2n (3)
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for every t ∈ R. First, for n = 1 we take B1 such that the previous inequality
is satisfied for m = m1. Now, assuming that the inequality holds for n = 1
and some m ≥ m1 we obtain∣∣∣∣ (ϕm+1)

′(t)

(ϕm+1(t))2

∣∣∣∣ =
|ϕ′(ϕm(t)) · (ϕm)′(t)|

|ϕm+1(t)|2
≤ C|ϕm+1(t)|B1|ϕm(t)|2

|ϕm+1(t)|2

= CB1
|ϕm(t)|2

|ϕm+1(t)|
≤ B1.

Consequently (3) holds for n = 1 and m ≥ m1. We now take p ≥ 2 and
assume that (3) holds for n = 1, . . . , p− 1. We take

Bp > max{Cp, B1, . . . , Bp−1}

such that ∣∣(ϕmp)(j)(t)
∣∣ ≤ Bj

p

(
ϕmp(t)

)2j
for every j ∈ N and t ∈ R. This selection can be done since ϕmp is a poly-
nomial. In particular, condition (3) holds for n = p and m = mp. Now, we
assume that condition (3) holds for n = p and some m ≥ mp. According to
our induction hypothesis, the condition is also satisfied for this m and every
derivative or order less than p. Recall that

1

p!

∣∣(ϕm+1)
(p)(t)

∣∣ ≤∑ 1

k1! . . . km!
|ϕ(k)(ϕm(t))|

∏
j

(
|(ϕm)(j)(t)|

j!

)kj

≤
∑ 1

k1! . . . km!
C|ϕ(ϕm(t))|

∏
j

(
B
jkj
j · (ϕm(t))2jkj

)
,

where the sum is extended to all multi-indices such that

k1 + 2k2 + . . .+ pkp = p.

Then ∣∣∣∣ (ϕm+1)
(p)(t)

p!(ϕm+1(t))2p

∣∣∣∣ ≤ Cp|ϕm+1(t)|Bp
p

|ϕm(t)|2p

|ϕm+1(t)|2p

= CpB
p
p

|ϕm(t)|2p

|ϕm+1(t)|2p−1
≤ Bp

p .
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The last inequality follows from the fact that |ϕm+1(t)| ≥ Cp (ϕm(t))2 and
|ϕm(t)| ≥ 1. The claim is proved. Now it easily follows condition (i) in
Proposition 3.9. Hence Cϕ is power bounded.

Corollary 3.12. Let ϕ be a polynomial with degree greater than one. Then,
the following are equivalent:

(1) Cϕ is power bounded.

(2) Cϕ is mean ergodic.

(3) (Cϕnf)n converges to zero as n goes to infinity for every f ∈ S(R).

Proof. It suffices to show (1)⇒ (3). It follows from the proof of Theorem
3.11 that there is N ∈ N such that (ϕNk(t))k goes to infinity for every t ∈ R.
Since every orbit of Cϕ is relatively compact we easily conclude.

Next result can be proved with the same ideas of Theorem 3.11 but it is
technically more difficult.

Theorem 3.13. Let ϕ be a polynomial of even degree without fixed points.
If ϕ is bounded below and ψ := eϕ then Cψ is power bounded.

4. Spectra of composition operators

In what follows D will always denote the open unit disc in C. We recall
that σp(Cϕ) is the set of all eigenvalues of Cϕ and σ(Cϕ) is the spectrum of
Cϕ, that is the set of all λ ∈ C such that Cϕ − λId : S(R)→ S(R) does not
admit a continuous linear inverse.

Proposition 4.1. For every symbol ϕ we have σp(Cϕ) ⊂ D. If all the orbits
of ϕ are unbounded then σp(Cϕ) ⊂ D.

Proof. Take f ∈ S(R) \ {0} and λ ∈ C such that Cϕ(f) = λf and fix
t0 ∈ R with the property that f(t0) 6= 0. From the identity

f (ϕn(t0)) = λnf(t0)

we deduce that (λn)n∈N is a bounded sequence, from where the conclusion
follows. In the case that (ϕn(t0))n∈N is unbounded we can take a subsequence
(ϕnk

(t0))k diverging to infinity, hence

lim
k→∞

f (ϕnk
(t0)) = 0,

and |λ| < 1.
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In the case that the symbol is injective, more can be said.

Proposition 4.2. Let ϕ be an strictly increasing symbol for S(R). Then

(a) σp (Cϕ) ⊂ {1} .

(b) σp (Cϕ) = {1} if and only if the set {t : ϕ(t) = t} has interior points.

Proof. (a) Let λ ∈ C and f ∈ S(R) \ {0} be given such that Cϕ(f) = λf.
Since ϕ : R → R is a bijection then λ 6= 0. Denote ψ = ϕ−1, fix t ∈ R with
f(t) 6= 0 and observe that

f (ϕn(t)) = λnf(t) and f (ψn(t)) = λ−nf(t)

for every t ∈ R. Since the orbits (ϕn(t))n and (ψn(t))n are monotone and
convergent in R ∪ {±∞} and f is continuous and vanishes at infinity we
conclude that both sequences (λn)n and (λ−n)n are convergent. Hence λ = 1.

(b) Let us first assume that f ∈ S(R) \ {0} and Cϕ(f) = f. Take I = (a, b)
with the property that f ′(t) 6= 0 for every t ∈ I. We now show that ϕ(t) = t
for every t ∈ I. Otherwise, there are t ∈ I and ε > 0 such that ϕ(s) − s
has constant sign in the interval J = (t − ε, t + ε) ⊂ I. All the sequences
(ϕn(s))n , s ∈ J, are monotone and convergent to the same point in R∪{±∞} .
From the identity f (ϕn(s)) = f(s) for every n ∈ N and s ∈ J we deduce,
after taking limits as n goes to infinity, that f is constant in J, which is a
contradiction.

Let us now assume that there is an open interval I = (a, b) such that
ϕ(t) = t whenever t ∈ I. Then every f ∈ D(a, b) satisfies Cϕ(f) = f. This
follows from the fact that ϕ (R \ I) = R \ I.

Proposition 4.3. Let ϕ be an strictly decreasing symbol for S(R). Then,
the following are equivalent

(a) σp (Cϕ) 6= ∅.

(b) The set {t : ϕ2(t) = t} has interior points.

(c) σp (Cϕ) = {−1, 1} .
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Proof. (a)⇒ (b) ϕ2 is an strictly increasing symbol for S(R) and σp (Cϕ2) 6=
∅. Now we apply Proposition 4.2.

(b) ⇒ (c) From Proposition 4.2 we have σp (Cϕ2) ⊂ {1}, hence σp (Cϕ) ⊂
{−1, 1}. Let (a, b) be an open interval such that ϕ2(t) = t for every t ∈ (a, b).
Fix t0 ∈ (a, b) with ϕ(t0) 6= t0 (note that ϕ has exactly one fixed point)
and choose ε > 0 with the property that I = (t0 − ε, t0 + ε) ⊂ (a, b) and
the distance between the open intervals I and J = ϕ(I) is strictly positive.
We observe that ϕ(J) = I. Now, for λ ∈ {−1, 1} , choose an arbitrary g ∈
D(J), g 6= 0, and define h ∈ D(I) by

λh (t) = g (ϕ(t)) , t ∈ I.

Finally we consider the function f ∈ S(R) defined by f = g on J, f = h on
I and f = 0 elsewhere. From the definition of h and the fact that λ−1 = λ
we obtain f (ϕ(t)) = λf(t) for every t ∈ R.

In the case that the symbol is not injective the situation can be completely
different, as the following example shows.

Example 3. Let ϕ(x) =
√
x2 + 1. Then

σp(Cϕ) = D.

Proof. The iterates of the symbol are given by

ϕn(x) =
√
x2 + n.

Since all the orbits of ϕ are unbounded we can apply Proposition 4.1 to con-
clude σp(Cϕ) ⊂ D. Hence it suffices to show that D ⊂ σp(Cϕ). For convenience
we denote ϕ0(x) = x. Take I = (x0, y0) =

(
1
4
, 1
2

)
and observe that

ϕn(I) = (xn, yn) where 0 < x0 < y0 < x1 < y1 < x2 < y2 < . . .

We now fix λ ∈ C with |λ| < 1 and take a test function ψ ∈ D(I). For x ≥ 0
we define

f(x) = λn
(
ψ ◦ (ϕn)−1

)
(x) if x ∈ ϕn(I) (n = 0, 1, 2, . . .)

and

f(x) = 0 in the case that x ≥ 0, x /∈
∞⋃
n=0

ϕn(I).
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We observe that f(x) = 0 for every x in a neighborhood of the points
{xn, yn}∞n=0 . Finally we extend f to the negative real numbers by f(−x) =
f(x). Then f is an smooth function. Our aim is to check that

(a) f ∈ S(R) and (b) Cϕ(f) = λf.

(a) f ∈ S(R). Since (1 + x2)k ≤
(
n+ 5

4

)k
for every x ∈ ϕn(I) and

lim
n→∞

λn
(
n+

5

4

)k
= 0

we conclude that
sup
x∈R

(
1 + x2

)k |f(x)| <∞.

In order to control the derivatives of f, we observe that

(ϕn)−1 (x) = g(x2 − n), x ∈ ϕn(I),

where g(t) =
√
t. According to Faà di Bruno formula(

(ϕn)−1
)(j)

(x) =
∑

j1+2j2=j

j!

j1!j2!
g(j1+j2)(x2 − n) (2x)j1 .

For every k ∈ R there is Ck > 0 such that∣∣g(k)(x2 − n)
∣∣ ≤ Ck ∀x ∈ ϕn(I), n ∈ N.

This is so because x ∈ ϕn(I) implies x2 − n ∈
(

1
16
, 1
4

)
. Consequently, there

are constants Bj so that∣∣∣((ϕn)−1
)(j)

(x)
∣∣∣ ≤ Bj |x|j ∀x ∈

∞⋃
n=0

ϕn(I).

Now, a new application of Faà di Bruno formula permits us to conclude that

sup
x∈R

(
1 + x2

)k ∣∣f (n)(x)
∣∣ <∞ ∀k, n ∈ N.

(b) To check Cϕ(f) = λf it suffices to show that f (ϕ(x)) = λf(x) for
every x ≥ 0. We distinguish two cases. If x ∈ ϕn(I) then ϕ(x) ∈ ϕn+1(I)
and

f (ϕ(x)) = λn+1
(
ψ ◦

(
ϕn+1

)−1)
(ϕ(x)) = λn+1

(
ψ ◦ (ϕn)−1

)
(x) = λf(x).

22



On the other hand

x /∈
∞⋃
n=0

ϕn(I)⇒ ϕ(x) /∈
∞⋃
n=0

ϕn(I),

from where it follows f (ϕ(x)) = f(x) = 0. Here we are using that ϕ is
injective in (0,∞) and ϕ(x) /∈ I for every x ∈ R.

Proposition 4.4. Let E be a Fréchet space and T : E → E a continuous
and linear operator. We assume that for every x ∈ E and for every continuous
seminorm p on E there is ` ∈ N such that p (T n(x)) = O(n`) as n → ∞.
Then T − λI is surjective for every λ ∈ C with |λ| > 1.

Proof. For every x ∈ E, we consider

y := −
∞∑
n=0

1

λn+1
T n(x).

The hypothesis on T implies the absolute convergence of the previous series
and it is easy to check that Ty − λy = x.

The next result should be compared with [2, Proposition 8]. However we
must observe that the Fréchet space S(R) does not satisfy the hypothesis in
the mentioned result.

Corollary 4.5. If Cϕ : S(R)→ S(R) is mean ergodic then σ(Cϕ) ⊂ D.

Proof. Since T = Cϕ is mean ergodic then
(
1
n
T nf

)
n

converges to zero for
every f ∈ S(R). In particular, for every continuous seminorm p on S(R) and
for every f ∈ S(R) we have p (T nf) = O(n) as n → ∞. Now it suffices to
apply Propositions 4.1 and 4.4.

We recall that every power bounded operator on a Fréchet Montel space
is mean ergodic.

Corollary 4.6. If Cϕ : S(R) → S(R) is power bounded and, for some 1 <
p <∞,

sup
x∈R

∞∑
n=1

1

(1 + |ϕn(x)|)p
<∞

then σ(Cϕ) ⊂ D.
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Proof. Since Cϕ is power bounded, all the symbols (ϕn) satisfy the symbol
conditions in a uniform way (see Proposition 3.9). That is, (i) there exist
k > 0 such that |ϕn(x)|k ≥ |x| whenever |x| ≥ k and (ii) for every ` ∈ N
there are constants m` and C` such that∣∣∣(ϕn)(`) (x)

∣∣∣ ≤ C` (1 + |ϕn(x)|)m` ∀x ∈ R.

From Corollary 4.5 we have σ(Cϕ) ⊂ D. Hence we only need to check that the
operator Cϕ−λI is an isomorphism whenever |λ| = 1. In fact, the hypothesis
imply that the series

f := −
∞∑
n=0

1

λn+1
g (ϕn(·))

is convergent for every g ∈ S(R) and Cϕ(f) − λf = g. On the other hand,
since all the orbits of ϕ are unbounded we can apply Proposition 4.1 to get
that Cϕ − λI is also injective.

The hypothesis of Corollary 4.6 are satisfied in the case that ϕ(x) =√
x2 + 1. Combining Example 3 and Corollary 4.6 we get the following

Example 4. Let ϕ(x) =
√
x2 + 1. Then

σ(Cϕ) = σp(Cϕ) = D.

The following example uses the Zak transform, a tool coming from time-
frequency analysis that has shown to be very useful to characterize the spec-
trum of frame operators in some special cases. The Zak transform of a
function f ∈ L1(R) is defined by

Zf(x, ω) =
∑
k∈Z

f(x− k)e2πikω.

It turns out that Zf ∈ L1([0, 1]2) and∫ 1

0

Zf(x, ω)e−2πixωdx = f̂(ω) a.e ω ∈ R. (4)

If f ∈ S(R) then Zf is a continuous funtion on R2 and the identity (4) hods
for every ω ∈ R. See [17, Section 8.1] for details.
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Example 5. Let ϕ(x) = x+ 1. Then σp(Cϕ) = ∅ while

σ(Cϕ) = {λ ∈ C : |λ| = 1} .

Proof. According to Proposition 4.2 we have σp(Cϕ) = ∅. Hence, we have
to show that Cϕ − λI is surjective if and only if |λ| 6= 1.

(a) We first discuss the case |λ| > 1. For every ` ∈ N we consider the
continuous seminorm

p`(h) := sup
x∈R

sup
0≤k≤`

(1 + x2)`
∣∣h(k)(x)

∣∣ , h ∈ S(R).

We will check that the hypothesis in Proposition 4.4 are satisfied. To this
end, given x ∈ R and n ∈ N we consider the following cases:

(i) |x+ n| ≥ |x|
2
. Then (1 + x2)` ≤ 4` (1 + (x+ n)2)

`
and(

1 + x2
)` ∣∣f (k)(x+ n)

∣∣ ≤ 4`p`(f) ∀ 0 ≤ k ≤ `.

(ii) |x+ n| < |x|
2
. Then x < 0 and |x| − n < |x|

2
, hence |x| < 2n and(

1 + x2
)` ∣∣f (k)(x+ n)

∣∣ ≤ (1 + 4n2
)`
p`(f) ∀ 0 ≤ k ≤ `.

Consequently

p` (Cϕnf) ≤
(
1 + 4n2

)`
p`(f) ∀n ∈ N.

We can apply Proposition 4.4 to conclude that Cϕ−λI is surjective whenever
|λ| > 1.

(b) We now consider the case |λ| < 1. We observe that C−1ϕ = Cψ where
ψ(x) = x− 1. The same argument as in (a) shows that

0 < |λ| < 1⇒ 1

λ
/∈ σ(Cψ)⇒ λ /∈ σ(Cϕ).

(c) We assume that Cϕ − λI is surjective for some λ = e2πiω, ω ∈ R. We
now fix g ∈ S(R) and take f ∈ S(R) such that Cϕf = λf + g. Then

Cϕnf = λnf +
n−1∑
k=0

λn−1−kCk
ϕg ∀ n ∈ N.
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That is,

f(x+ n) = λnf(x) +
n−1∑
k=0

λn−1−kg(x+ k)

or, equivalently,

f(x) = λnf(x− n) +
n∑
k=1

λk−1g(x− k).

We take limits as n → ∞ (with x fixed) in the two previous identities and
obtain

f(x) = −1

λ

∞∑
k=0

1

λk
g(x+ k)

and also

f(x) =
1

λ

∞∑
k=1

λkg(x− k).

Consequently ∑
k∈Z

λkg(x− k) = 0 ∀ x ∈ R.

This means that the Zak transform satisfies

Zg(x, ω) = 0 for every x ∈ R and g ∈ S(R).

Since ∫ 1

0

Zg(x, ω)e−2πixω dx = ĝ(ω)

we get a contradiction.

Example 6. Let ϕ(x) = ax where a 6= 0 and |a| 6= 1. Then

σ(Cϕ) = C \ {0} .

Proof. Since (Cϕ)−1 = Cψ for ψ(x) = a−1x then it suffices to consider the
case |a| > 1. We will show that Cϕ−λI is not surjective for every λ 6= 0. We
distinguish two cases.
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(a) We first consider |λ| ≥ 1 and assume that f(ax) = λf(x) + g(x),
where f, g ∈ S(R). Then, an iterative argument gives

f(anx) = λn

(
f(x) +

1

λ

n−1∑
k=0

1

λk
g(akx)

)
.

For x 6= 0 we can take limits as n→∞ and obtain

f(x) = −1

λ

∞∑
k=0

1

λk
g(akx).

From ∣∣g(akx)
∣∣ ≤ C

1 + x2a2k

we deduce that the previous series converges absolutely and uniformly on
{x ∈ R : |x| ≥ ε} for every ε > 0. A similar argument permits to conclude
that the formal derivatives of the series converge absolutely and uniformly
on {x ∈ R : |x| ≥ ε} . Consequently, for every x 6= 0 and j ∈ N,

f (j)(x) = −1

λ

∞∑
k=0

(
aj

λ

)k
g(j)(akx).

We now fix j ∈ N such that ∣∣∣∣ajλ
∣∣∣∣ > 1.

We take a test function Φ such that Φ = 1 on [−1, 1] and Φ(x) = 0 for
|x| ≥ |a|. Then

g(x) =
xj

j!
Φ(x)

is a function in the Schwartz class such that g(j) = 1 on [−1, 1] and g(j) = 0
for |x| ≥ |a|. If f ∈ S(R) satisfies Cϕf = λf + g then, for xm = a−m we have

f (j)(xm) = −1

λ

m∑
k=0

(
aj

λ

)k
.

Hence f (j) is unbounded in any neighborhood of the origin, which is a con-
tradiction.
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(b) Let λ 6= 0, |λ| < 1 and assume that f(ax) = λf(x) + g(x). Then, an
iterative argument gives

f(x) = λnf
( x
an

)
+

1

λ

n∑
k=1

λkg
( x
ak

)
.

After taking limits as n→∞ we get

f(x) =
1

λ

∞∑
k=1

λkg
( x
ak

)
∀x ∈ R.

We now take g ∈ S(R) such that g(x) = 1 for x ∈ [−1, 1] and g(x) = 0 for
|x| ≥ |a|. If f ∈ S(R) satisfies Cϕf = λf + g then, for every m ∈ N,

f(am) =
1

λ

∞∑
k=m

λk =
λm−1

1− λ
.

Take j ∈ N such that |λaj| > 1. Then

|am|j · |f(am)| ≥ |λaj|m

|λ(1− λ)|
,

which is unbounded as m→∞. This is a contradiction with f ∈ S(R).

In the case ϕ(x) = −x we have σ(Cϕ) = σp (Cϕ) = {−1, 1} .
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(2014), Art. ID 179027, 16 pp.

[3] F. Bayart, E. Matheron; Dinamics of linear operators, Cambridge Uni-
versity Press, 2009.

[4] M.J. Beltrán, Operators on weighted spaces of holomorphic functions,
Thesis, 2014.

28
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