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Abstract

Fundus images are widely used by ophthalmologists to assess the retina and
detect glaucoma, which is, according to studies from the World Health Orga-
nization (WHO), the second cause of blindness worldwide.

In this thesis, machine learning algorithms for automatic glaucoma assessment
using fundus images are studied. First, two methods for automatic segmen-
tation are proposed. The first method uses the Stochastic Watershed trans-
formation to segment the optic cup and measures clinical features such as the
Cup/Disc ratio and ISNT rule. The second method is a U-Net architecture
focused on the optic disc and optic cup segmentation task.

Secondly, automated glaucoma assessment systems using convolutional neural
networks (CNNs) are presented. In this approach, different ImageNet-trained
models are fine-tuned and used as automatic glaucoma classifiers. These new
techniques allow detecting glaucoma without previous segmentation or feature
extraction. Moreover, it improves the performance of other state-of-art works.

Thirdly, given the difficulty of getting large amounts of glaucoma-labelled im-
ages, this thesis addresses the problem of retinal image synthesis. Two differ-
ent architectures for image synthesis, the Variational Autoencoder (VAE) and
Generative Adversarial Networks (GAN) architectures, were analysed. Using
these models, synthetic images that were qualitative and quantitative analysed,
reporting state-of-the-art performance, were generated.
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Finally, an adversarial model is used to create an alternative automatic glau-
coma assessment system. In this part, a semi-supervised learning algorithm
was implemented to reach this goal.
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Resumen

Las imágenes de fondo de ojo son muy utilizadas por los oftalmólogos para la
evaluación de la retina y la detección de glaucoma. Esta patología es la segunda
causa de ceguera en el mundo, según estudios de la Organización Mundial de
la Salud (OMS).

En esta tesis doctoral, se estudian algoritmos de aprendizaje automático (ma-
chine learning) para la evaluación automática del glaucoma usando imágenes
de fondo de ojo. En primer lugar, se proponen dos métodos para la seg-
mentación automática. El primer método utiliza la transformación Watershed
Estocástica para segmentar la copa óptica y posteriormente medir caracterís-
ticas clínicas como la relación Copa/Disco y la regla ISNT. El segundo método
es una arquitectura U-Net que se usa específicamente para la segmentación del
disco óptico y la copa óptica.

A continuación, se presentan sistemas automáticos de evaluación del glaucoma
basados en redes neuronales convolucionales (CNN por sus siglas en inglés).
En este enfoque se utilizan diferentes modelos entrenados en ImageNet como
clasificadores automáticos de glaucoma, usando fine-tuning. Esta nueva téc-
nica permite detectar el glaucoma sin segmentación previa o extracción de
características. Además, este enfoque presenta una mejora considerable del
rendimiento comparado con otros trabajos del estado del arte.

En tercer lugar, dada la dificultad de obtener grandes cantidades de imágenes
etiquetadas (glaucoma/no glaucoma), esta tesis también aborda el problema
de la síntesis de imágenes de la retina. En concreto se analizaron dos arqui-
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tecturas diferentes para la síntesis de imágenes, las arquitecturas Variational
Autoencoder (VAE) y la Generative Adversarial Networks (GAN). Con estas
arquitecturas se generaron imágenes sintéticas que se analizaron cualitativa y
cuantitativamente, obteniendo un rendimiento similar a otros trabajos en la
literatura.

Finalmente, en esta tesis se plantea la utilización de un tipo de GAN (DC-
GAN) como alternativa a los sistemas automáticos de evaluación del glaucoma
presentados anteriormente. Para alcanzar este objetivo se implementó un al-
goritmo de aprendizaje semi-supervisado.
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Resum

Les imatges de fons d’ull són molt utilitzades pels oftalmòlegs per a l’avaluació
de la retina i la detecció de glaucoma. Aquesta patologia és la segona causa de
ceguesa al món, segons estudis de l’Organització Mundial de la Salut (OMS).

En aquesta tesi doctoral, s’estudien algoritmes d’aprenentatge automàtic (ma-
chine learning) per a l’avaluació automàtica del glaucoma usant imatges de
fons d’ull. En primer lloc, es proposen dos mètodes per a la segmentació au-
tomàtica. El primer mètode utilitza la transformació Watershed Estocàstica
per segmentar la copa òptica i després mesurar característiques clíniques com
la relació Copa/Disc i la regla ISNT. El segon mètode és una arquitectura
U-Net que s’usa específicament per a la segmentació del disc òptic i la copa
òptica.

A continuació, es presenten sistemes automàtics d’avaluació del glaucoma basats
en xarxes neuronals convolucionals (CNN per les sigles en anglès). En aquest
enfocament s’utilitzen diferents models entrenats en ImageNet com classifi-
cadors automàtics de glaucoma, usant fine-tuning. Aquesta nova tècnica per-
met detectar el glaucoma sense segmentació prèvia o extracció de caracterís-
tiques. A més, aquest enfocament presenta una millora considerable del rendi-
ment comparat amb altres treballs de l’estat de l’art.

En tercer lloc, donada la dificultat d’obtenir grans quantitats d’imatges eti-
quetades (glaucoma/no glaucoma), aquesta tesi també aborda el problema de
la síntesi d’imatges de la retina. En concret es van analitzar dues arquitectures
diferents per a la síntesi d’imatges, les arquitectures Variational Autoencoder
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(VAE) i la Generative adversarial Networks (GAN). Amb aquestes arquitec-
tures es van generar imatges sintètiques que es van analitzar qualitativament
i quantitativament, obtenint un rendiment similar a altres treballs a la liter-
atura.

Finalment, en aquesta tesi es planteja la utilització d’un tipus de GAN (DC-
GAN) com a alternativa als sistemes automàtics d’avaluació del glaucoma pre-
sentats anteriorment. Per assolir aquest objectiu es va implementar un algo-
ritme d’aprenentatge semi-supervisat.
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Chapter 1

Introduction

This chapter presents the motivations behind this thesis, its ob-
jectives and its main contributions. Additionally, the thesis frame-
work and the thesis outline are also presented

1.1 Motivation

Glaucoma is an irreversible neuro-degenerative eye disease that is considered
one of the main reasons of visual disability in the world (World Health Organi-
zation 2004). According to the World Health Organization (WHO), glaucoma
affects more than 65 million people around the globe (Bourne 2006). As it
may be asymptomatic, early detection and treatment are important to pre-
vent vision loss. This silent eye disease is mainly characterized by optic nerve
fibre loss and that is given by the increased intraocular pressure (IOP) and/or
loss of blood flow to the optic nerve. However, IOP measurement is found to
be neither specific nor sensitive enough to be an effective glaucoma indicator
since visual damage can be present without increased IOP. For that reason,
a comprehensive glaucoma exam should also include an analysis of the retina
using images and a field of vision test.

Fundus images are an imaging modality that is extensively used for the de-
tection of glaucoma. Its simplicity, low cost of their acquisition process and
non-invasive nature are the most important advantages. However, expert anal-
ysis of these images is expensive for large scale screening and the diagnostics
vary significantly from one physician to another. Therefore, the development
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Chapter 1. Introduction

of automatic glaucoma screening systems using fundus images are being ac-
tively explored for the scientific research community. These systems take as
input a fundus image and apply a series of computations to provide feedback
to ophthalmologists, including a labelling of the regions of interest such as the
optic disc or give a probability indicating the level of risk of the patient from
suffering glaucoma. These algorithms allow to improve accuracy in detecting
the disease and reduce the intra-expert variability.

1.2 Objectives

The main goal of this thesis is the development of new methods that help
ophthalmologists to automatically detect glaucoma by using retinal fundus
images. In particular, the main objectives of this work are:

• To study the state-of-the-art of segmentation techniques and automatic
glaucoma assessment algorithms using retinal fundus images.

• To propose new algorithms to segment and extract clinical features using
retinal fundus images with the aim of automatically detecting glaucoma.

• Development and implementation of algorithms based on machine learn-
ing and/or deep learning that help ophthalmologists to detect glaucoma
by using retinal fundus images.

1.3 Main Contributions

The main contribution of this thesis is the development of different automatic
glaucoma algorithms based on classical and deep learning techniques. Each
contribution will be described as follows:

Our first contribution is described in Section 4.1, and consists in an automatic
segmentation algorithm. Using previous optic disc segmentation, this algo-
rithm is based on the use of stochastic watershed transformation for optic cup
detection in retinal fundus images. After that, clinical indicators in the optic
nerve such as the Cup/Disc ratio (CDR), the area Cup/Disc ratio (ACDR)
and the ISNT rule, that checks the disc rim thickness, are also analysed, which
are the same clinical indicators used by experts to determine if a person has
glaucoma. This contribution is based on the following publications:

• Diaz-Pinto A, Morales S, Naranjo V, Alcocer P, Lanzagorta A. Glaucoma
Diagnosis by Means of Optic Cup Feature Analysis in Color Fundus Im-

8



1.3 Main Contributions

ages. 24th European Signal Processing Conference (EUSIPCO). August
2016.

• Diaz-Pinto A, Morales S, Naranjo V, Alcocer P, Lanzagorta A. Diagnós-
tico Automático del Glaucoma a través de la Segmentación y Análisis de
la Copa Óptica Usando Imágenes de Fondo de Ojo. XXXIV Congreso
Anual de la Sociedad Española de Ingeniería Biomédica. pp 383-386.
2016

• Vesal S, Diaz-Pinto A, Ravikumar N, Ellman S, Davari A, Maier A. Semi-
Automatic Algorithm for Breast MRI Lesion Segmentation Using Marker-
Controlled Watershed Transformation. Nuclear Science Symposium and
Medical Imaging Conference. October 2017.

• Diaz-Pinto A, Morales S, Naranjo V, Navea A. Computer-aided Glaucoma
Diagnosis using Stochastic Watershed Transformation on Single Fundus
Images. Accepted for publication at the Journal of Medical Imaging and
Health Informatics.

After a brief introduction to the CNN architectures (Section 4.2.1), our sec-
ond contribution is discussed in Section 4.2.2. We proposed a deep learning
method for optic disc and optic cup segmentation. Using the U-Net network,
we obtained competitive results that were used for the REFUGE challenge,
hosted at the MICCAI 2018 conference in conjunction with OMIA workshop.
(https://refuge.grand-challenge.org/Home/, Group name: Cvblab (Or-
lando, Fu, et al. 2019)).

Our third contribution, presented in Section 5.1, is a study of five different CNN
architectures fine-tuned for the glaucoma assessment task using fundus im-
ages. The obtained results from this work show the robustness of the proposed
method. Additionally, we present the biggest glaucoma-labelled database that
can be found in the literature.

Details of this contribution were accepted for publication as a research paper
for the BioMedical Engineering OnLine journal. This paper is titled “CNNs
for Automatic Glaucoma Assessment using Fundus Images: An Extensive Val-
idation”.

In our fourth contribution, presented in Section 5.3, we used the variational
autoencoder and a generative adversarial network to generate synthetic reti-
nal images. We quantitatively compared synthetic and real images by us-
ing the portion of vessels, optic disc and background occupied by each type
of image. For qualitative evaluation, we used a web application (https:
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Chapter 1. Introduction

//cvblab.synology.me/ganval/) in which experts were able to label the im-
ages into real or fake. Therefore, we could know how similar are the synthetic
and the real images.

This contribution is based on this paper:

• Diaz-Pinto A, Colomer A, Naranjo V, Morales S, Xu Y, Frangi A F. Reti-
nal Image Synthesis for Glaucoma Assessment using DCGAN and VAE
Models, 19th International Conference on Intelligent Data Engineering
and Automated Learning. Nov 2018. pp 224-232

The last contribution of this thesis, presented in Section 5.3, is a study of an
image synthesizer and a semi-supervised learning method for glaucoma assess-
ment using cropped retinal fundus images. These two systems were trained on
86926 retinal images cropped around the optic disc using the Deep Convolu-
tional Generative Adversarial Network (DCGAN). We qualitatively compared
the synthetic images generated by other state-of-the-art work and the real im-
ages with our synthetic images by using t-SNE plots. Moreover, a quantitative
evaluation was carried out by analyzing the structural properties of synthetic
and real images. We also compared the performance of the proposed glau-
coma classifier obtained from the semi-supervised learning method with the
state-of-the-art algorithms.

An article with all the contributions made in this chapter was accepted for
publication as a research paper for the IEEE Transactions on Medical Imaging
journal. This article is titled “Retinal Image Synthesis and Semi-supervised
Learning for Glaucoma Assessment”.

1.4 Framework

This thesis stands within the framework of the research project “Fundus image
processing for automatic screening of ophthalmological diseases - ACRIMA”
(TIN2013-46751-R). The main goal of ACRIMA is to develop an automatic
screening system for three of the most significant diseases related to perma-
nent blindness: glaucoma, diabetic retinopathy and age-related macular de-
generation. However, as previously mentioned, this thesis is focused on the
development of automatic algorithms for glaucoma detection.
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1.5 Outline

1.5 Outline

This thesis is divided into six chapters. In this chapter, we presented the
motivations behind the research involved in this thesis, the main objectives,
the main contributions, and the thesis framework.

Chapter 2 introduces the human retina anatomy, the types and the main char-
acteristics of glaucoma and finally the most used imaging modalities. We also
present the mainly used approaches for automated detection of glaucoma.

Chapter 3 presents all the public and private databases that were used to train,
validate and test the methods proposed in this thesis.

Chapter 4 presents the theory related to the methods used for optic disc and
optic cup segmentation. We present a method for optic cup segmentation
and further glaucoma classification by using the stochastic watershed transfor-
mation. Additionally, we present a brief introduction to the CNNs and a new
method based on deep learning to segment the optic disc and optic cup. Specif-
ically, we used a modified U-Net network and contrast histogram equalization
algorithm as a preprocessing technique to obtain the optic disc and optic cup
masks. Finally, results obtained from the methods used for optic disc and optic
cup segmentation are also presented. Advantages and disadvantages of each
method are also discussed.

In Chapter 5 we study deep learning techniques for glaucoma classification and
retinal images synthesis. First, we present the performance of five ImageNet-
trained convolutional neural networks (CNNs) used as glaucoma classifiers. We
analyse each CNN and its architecture and the images used for this task. Sec-
ondly, we present the theory behind the variational autoencoder (VAE) and a
generative adversarial network (GAN) to be used as retinal images synthesiz-
ers. Finally, as our last contribution, we present a retinal image synthesizer and
a semi-supervised learning algorithm for glaucoma assessment using cropped
retinal images. We also present and discuss the results obtained from these
methods in the last sections of this chapter.

Finally, we conclude the thesis presenting its main conclusions in Chapter 6.
We also provide further research lines that could be derived from our contri-
butions.
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Chapter 2

Background

This chapter presents a brief explanation about anatomical as-
pects of the human retina, the main characteristics of the glau-
coma disease, how it affects the human retina, the main imaging
modalities to analyse the retina and the state-of-the-art algorithms
developed for glaucoma assessment.

2.1 Anatomy of the Retina

The eye is a complex organ comprising a great number of structures that work
together to provide the sense of sight. It is divided into two main parts, the
anterior and the posterior part.

The anterior part is visible from outside and is composed by the cornea, the
pupil, the iris and the lens. The posterior part is composed of the vitreous
humour and a wall made up of three different layers of tissue, the fibrous
(cornea and sclera), the vascular (blood vessels) and the inner layer called the
retina (See Figure 2.1).

The retina is a thin layer of tissue that lines the back of the eye, it is approxi-
mately 0.2 mm thick, and has an area of approximately 1100 mm2. The retina
processes the information gathered by the photoreceptor cells (rods and cones)
and sends this information to the brain via the optic nerve.
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Figure 2.1: Schematic diagram of the eye. Anterior and posterior section of the eye
(Orlando 2017; Rhcastilhos and Jmarchn 2007).

The retina is anatomically composed by three main structures: the optic disc,
the vascular network, the macula and the fovea. The optic disc, also called the
optic nerve, is the cable of nerve fibres that carries the electrical signals from
the retina to the brain. Inside the optic disc is located the optic cup, which is
characterised by the brightest area in a fundus image. The vascular network is
composed by arteries and veins that supply of oxygen and food the retina. The
macula is a yellow region which is specialized in the fine detail view located in
the posterior part of the retina. The fovea, located in the centre of the macula,
is a small pit (approximately 500 µm in diameter) that contains no rods and
has the densest concentration of cones in the eye. (See Figure 2.2).

2.2 Types of Glaucoma

Glaucoma refers to a group of clinical diseases that share a common charac-
teristic, consisting of a deepening or excavation of the optic nerve head. The
main forms of glaucoma are open-angle, angle closure, and congenital glau-
coma. The open-angle glaucoma is also called primary or chronic glaucoma
because it is the most common type of glaucoma (at least 90% of all glaucoma
cases). Although the majority of open-angle glaucoma is age-related and the
risk of having glaucoma increases as we get older, this eye disease can affect
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Figure 2.2: Main structures of the retina: blood vessels, optic disc, macula and fovea.

people of all ages, even newborns. Open-angle glaucoma is caused by the slow
clogging of the drainage canals, resulting in increased eye pressure with symp-
toms and damage that are not noticed (Weinreb and Khaw 2004; Weinreb,
Aung, and Medeiros 2014). “Open-angle” means that the angle where the iris
meets the cornea is as wide and open as it should be (See Figure 2.3).
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Iris sphincter
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Figure 2.3: Schematic representation of the aqueous humor flow. The light-blue lines
represent the aqueous humor pathways and the red lines are the iridocorneal angles.

The angle closure glaucoma is a less common form of glaucoma that is caused
by blocked drainage canals, resulting in a sudden rise in intraocular pressure.
It is a type of glaucoma that presents very noticeable symptoms and damage.
It is also called acute glaucoma or narrow-angle glaucoma.
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The congenital glaucoma occurs in babies when there is incorrect or incom-
plete development of the eye’s drainage canals during the prenatal period. This
is a rare condition that may be inherited. When it is uncomplicated, micro-
surgery can often correct the structural defects. Other cases are treated with
medication and surgery.

All these forms make glaucoma the second leading cause of blindness around
the globe after cataract. This eye disease could be treated by lowering the
intraocular pressure (IOP), accomplished by daily eye drop administration,
laser treatment to the eye, or ocular surgery (Quigley 2018).

People with glaucoma will slowly lose their peripheral (side) vision and may
miss objects to the side. They seem to be looking through a tunnel. As an
example, in Figure 2.4 is possible to see the differences between people with a
normal vision and people with glaucoma.

(a) (b)

Figure 2.4: A scene as it might be viewed by a (a) person with normal vision (National
Eye Institute, NIH 2012b) and a (b) person with glaucoma (National Eye Institute, NIH
2012a).
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2.3 Imaging Technology

The most used imaging modalities to analyze the retina and make a glaucoma
assessment are fundus photograph and optical coherence tomography (OCT).
These two imaging modalities are briefly described in the following sections.

2.3.1 Fundus photographs

The fundus photograph or fundus image is acquired by a fundus camera (mydri-
atic or non-mydriatic) that has a digital camera. The digital camera operates
in the same mode as a conventional camera using an image sensor(Patton et al.
2006) (See Figure 2.5).

Fundus Image

Fundus Camera

Head Area

Figure 2.5: Fundus camera (Roletschek 2010)

A fundus photograph is used to record the appearance of a patient’s retina.
It allows to study the retina and to detect retinal diseases such as macular
degeneration, diabetic retinopathy and glaucoma. A fundus photograph could
also be used to evaluate irregularities in the fundus, to monitor the progression
of a disease and to analyse the therapeutic outcome. The acquisition process is
non-invasive and relatively easy to perform. It is the most economical imaging
modality for diagnosing retinal diseases. An example of a fundus photograph
is shown in Figure 2.2

In a fundus photograph the first plane represents the red pixel intensities,
the second plane represents the green pixel intensities and the third plane
represents the blue pixel intensities. Although many techniques use the grey-

17



Chapter 2. Background

scale image to extract features or assess images, the grey-scale image needs to
be extracted from an RGB colour image.

One of the main disadvantages of fundus photographs is that they are a 2D
projection of a 3D object (retina). Representing the retina as a 2D object using
a colour fundus image makes the automatic glaucoma assessment process par-
ticularly difficult. However, its very low cost in comparison with other imaging
modalities, make them useful for screening a large population (Abràmoff and
Niemeijer 2015).

2.3.2 Optical Coherence Tomography

Optical Coherence Tomography (OCT) has emerged in importance because of
the wide variety of information it can provide, its high resolution, and the com-
plex 3-dimensional (3D) data it is able to gather (Geitzenauer, Hitzenberger,
and U. M. Schmidt-Erfurth 2011; Wojtkowski et al. 2005). It can be used to
scan through the layers of structured transparent and translucent tissue sam-
ples such as the retina with very high axial (depth) resolution (3-20µm). In
particular, it measures the echo time delay and magnitude of backscattered or
-reflected light to build up two- and three-dimensional images with a resolution
of ∼ 20 µm (transversal) × 5 µm (axial) for commercial systems, and of 2-3
µm (isotropic) for high-end research systems (Pircher, Hitzenberger, and U.
Schmidt-Erfurth 2011).

OCT images use the backscattered light to depict variations in optical re-
flectance through the depth of the retina along a point, creating what is known
as an A-scan (Drexler and Fujimoto 2008; Schuman 2008; Arevalo, Krivoy, and
Fernandez 2009). These A-scans through the retina can be gathered linearly or
in a different scan protocol, making one cross-sectional image, which is known
as a B-scan or tomogram. A collection of parallel B-scans can be used to gather
a 3D data set as it is shown in Figure 2.6.

Nowadays, there are two OCT technologies available. The traditional time
domain optical coherence tomography (TD-OCT) and the spectral domain
OCT (SD-OCT). The TD-OCT obtains the depth information of the retina
after a longitudinal translation in time of a reference arm, meanwhile, the
SD-OCT measures the detected backscattered light as a function of optical
frequencies, allowing for imaging speeds 50 times faster than TD-OCT, and
providing a greater number of images per unit area.

While SD-OCT is the current commercially available state-of-the-art, new
OCT technologies that improve acquisition speed, axial and transverse res-
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Figure 2.6: Types of OCT images. (a) One example of an A-scan, (b) One example of a
B-scan and (c) One example of a C-scan.

olution of images are also under investigation. For example, technologies with
much higher acquisition speeds and axial resolution are the swept-source OCT
(SS-OCT), which is another Fourier domain technique for OCT and differs
from SD-OCT in the method used to rapidly acquire data (Huber, Adler, and
Fujimoto 2006; B. Liu and Brezinski 2007; Srinivasan et al. 2007; Potsaid et al.
2010; J. Zhang, Rao, and Z. Chen 2005; Choma, Hsu, and Izatt 2010), and
the Polarization-sensitive OCT (PS-OCT) technology which can detect three
parameters simultaneously: reflectivity, retardation and optic axis orientation
(Drexler and Fujimoto 2008; Gabriele et al. 2011; Pircher, Götzinger, et al.
2004; Pircher, Hitzenberger, and U. Schmidt-Erfurth 2011).

Current OCT devices

The commercialization of OCT technology was critical for its clinical accep-
tance and utilization in ophthalmology because of its high cost associated with
the development and engineering required to produce a clinical instrument
from a research prototype. Fortunately, after the first commercial OCT in-
strument (Zeiss OCT) was introduced in 1996 with an axial image resolution
of 10µm and a speed of 100 axial scans/s (A-scans), there have been significant
advances in this technology.

Currently, available SD-OCT instruments are:

• Cirrus HD-OCT (Carl Zeiss Meditec, Inc, Dublin, California)
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• Spectralis SD-OCT (Heidelberg Engineering GmbH, Heidelberg, Ger-
many)

• RTVue (Optovue, Inc, Fremont, California)

• 3D-OCT 1000/200 (Topcon Medical Systems, Inc, Paramus, New Jersey)

• Biopitgen Envisu SD-OCT (Bioptigen, Inc, Research Triangle Park, North
Carolina)

• SOCT Copernicus HR (Optopol Technology, SA, Zawiercie, Poland).
This instrument is still awaiting FDA approval.

Each instrument has unique features and software that allow not only circular
scans, line scans and macular cube-volume scans but can also include eye
tracking, optic disc parameters, deviation map, enhanced depth imaging or
anterior segment capabilities.

Although this image modality allows more accurate clinical measurements, it
is prohibitively expensive for mass screening. For that reason, all the con-
tributions of this thesis have been developed using fundus images, which are
cheaper for the examination of a large population.

2.4 Retinal Image Analysis for Automatic Glaucoma
Assessment

In this section, we summarize the most significant works in the literature for
optic disc and optic cup segmentation, as well as automatic glaucoma diagnosis
and retinal image synthesis methods.

2.4.1 Optic Disc and Optic Cup Segmentation

The detection process of glaucoma, using fundus images, usually involves the
optic disc and optic cup segmentation, which helps ophthalmologists to register
changes in the retina. For that reason, several approaches for localisation
and segmentation of the optic disc and optic cup have been presented in the
literature.

As it is mentioned in the survey made by (Mary, Rajsingh, and Naik 2016),
the current works in the literature can be divided into two main subgroups:
optic disc localisation and optic disc segmentation. Among all the optic disc
localisation methods, the most significant works are based on the highest image
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variation (Li and Chutatape 2001), optimum threshold (Lalonde, Beaulieu, and
Gagnon 2001), mask generation (Gagnon et al. 2001), principal component
analysis (PCA) (Morales, Naranjo, Angulo, et al. 2013; Li and Chutatape
2004), Hough transform (Chrástek et al. 2005) and line operator (Lu and Lim
2010; Lu 2011).

Regarding the works focused on optic disc segmentation, the more known are
based on machine learning and traditional classifiers (Parfitt, Mikelberg, and
Swindale 1995; Park and Yae 2002; Chan et al. 2002), geometric based active
contours models (Lowell et al. 2004; Li and Chutatape 2004; Joshi, Sivaswamy,
and Krishnadas 2011), level set methods (Wong et al. 2008), watershed trans-
formation (Morales, Naranjo, Angulo, et al. 2013) and deep learning (Sev-
astopolsky 2017; Maninis et al. 2016).

Once the optic disc is segmented, there are different ways to measure the
changes in it. A common way is a ratio that expresses the vertical diameter
proportion of the optic disc and the cup (Cup/Disc ratio or CDR) (See Figure
2.7(a)). For normal discs, this proportion falls in the range of 0.3 to 0.5 and
is higher than 0.5 for glaucomatous discs (Nath and Dandapat 2012). There
exist other characteristics such as the ISNT rule and the area Cup/Disc ratio or
ACDR. The ISNT rule in a healthy optic disc has a characteristic configuration
of the neuro-retinal rim; which is thickest inferiorly, followed by superiorly, then
nasally, then temporally (I >S >N >T) (Cobb 2010) (See Figure 2.7(b)). On
the other hand, the ACDR is the ratio between the area occupied by the optic
nerve and the area occupied by the cup. Therefore, CDR, ISNT rule and ACDR
are quantitative characteristics commonly used for glaucoma assessment and
can be gathered manually or by automatic algorithms.

In order to measure CDR, ACDR and ISNT rule, the first step is to segment
the optic cup. However, given that the optic cup is actually an excavation,
representing it as a 2D object using a colour fundus image makes the auto-
matic cup segmentation process particularly difficult. Different approaches
have been developed towards cup segmentation and glaucoma detection using
colour fundus images. For instance, Wong et al. and Liu et al. presented
a method to calculate the CDR after obtaining the optic cup and optic disc
masks using level-set technique (Wong et al. 2008). Wong et al. tested their
method on 104 images from the Singapore Malay Eye Study and found that
their method produced results with a variation of up to 0.2 CDR units from
the ground truth. Another approach for optic disc and optic cup segmenta-
tion is presented by Cheng et al. which developed a technique to measure the
CDR based on superpixel classification (Cheng et al. 2013). They evaluated
their method on 650 images achieving areas under the ROC curve of 0.800
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Figure 2.7: Illustration of how to measure CDR and ISNT rule. (a) CDR of a normal disc
and (b) ISNT rule of a normal disc.

and 0.822 in two databases. There is also another method proposed by Joshi
et al., which is based on anatomical evidence such as vessel bends at the cup
boundary. They localised the optic cup using the vessel geometry and circular
Hough transform obtaining a CDR error of 0.12±0.10 (Joshi, Sivaswamy, and
Krishnadas 2011). Different techniques have only been focused on optic disc
and/or cup segmentation (Morales, Naranjo, Angulo, et al. 2013; Sivaswamy
et al. 2014). In (Almazroa et al. 2015), a review of optic disc and cup segmen-
tation methodologies is presented. This review provides a flowchart for each
developed technique. It discusses the pros and cons of each optic disc and cup
segmentation method.

2.4.2 Glaucoma Classification and Retinal Image Synthesis using
Deep Learning

Important limitations of the methods that are based on handcrafted charac-
teristics (CDR, Area Cup/Disc ratio (ACDR), vessel kinks and ISNT rule) is
the significant disagreement in estimating them even between expert human
graders. For that reason, new algorithms have been focused on automatic
feature extraction such as the data-driven methods and convolutional neural
networks (CNNs).
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For instance, in the paper published by Bock, Meier, Nyúl, et al. 2010, they
proposed a data-driven method. This method is not based on accurate mea-
surements of geometric optic nerve head structures such as the CDR. Instead,
they used the idea of “Eigenimages” to extract features that are later classi-
fied by a Support Vector Machine (SVM). They evaluated their algorithm on
575 images randomly selected from the Erlangen Glaucoma Registry (EGR),
obtaining a competitive AUC of 0.88. However, the images used in their work
are private and do not allow a direct and reliable comparison with other works.

CNNs emerged as a powerful tool for image classification and semantic seg-
mentation since the ImageNet competition in 2012, in which the main goal
was to estimate the content of natural images for the purpose of automatic
annotation using a subset of the ImageNet dataset (Russakovsky et al. 2015).
Their success came through the use of GPUs, rectifiers such as ReLU, data
augmentation techniques and new regularization techniques such as Dropout
(Srivastava et al. 2014). The main power of the CNN architectures relies on
their ability to automatically extract highly discriminating features at multiple
levels of abstraction.

CNNs are designed to process data that come in form of a raw format (e.g.
images). However, training a CNN from scratch is not an easy task. They
require a huge amount of labelled data -a requirement that is difficult to meet
in the glaucoma assessment task- and high computational resources.

However, there are two alternatives to train a CNN from scratch that have
been previously applied to several medical image classification tasks. The first
alternative consists in fine-tuning a CNN that has been trained using a large
labelled dataset from a different application (e.g., ImageNet). An example
of this alternative is the work of Carneiro, Nascimento, and Bradley 2015,
where they showed that CNN models that were pre-trained on natural images,
such as the ImageNet, are useful in medical image applications, despite the
significant differences in image appearance. The study made by H. Chen et al.
2015 demonstrated that the use of a fine-tuned pre-trained CNN for localizing
standard planes in ultrasound images outperforms the state-of-the-art for the
fetal abdominal standard plane (FASP). Another example is the study made
by Tajbakhsh et al. 2016, in which they conducted a set of experiments for four
medical imaging applications showing the use of pre-trained CNN performed
as well as a CNN trained from scratch.

The second alternative consists in using an ImageNet-trained CNN as a fea-
ture extractor, where the CNN is applied to an input image and then features
are extracted from a certain hidden layer of the network. Then, the extracted
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features are used to train a new classifier such as Support Vector Machines
(SVM), Decision Trees, K-nearest-neighbor or Naive Bayes classifier. For ex-
ample, Bar et al. 2015 pre-trained CNNs that were used as a feature extractor
for chest pathology identification. Another study made by Razavian et al. 2014
showed that using features extracted from the OverFeat network and feeding
an SVM classifier, it is possible to obtain superior results compared to the
highly tuned state-of-the-art systems.

For glaucoma assessment, there are also several works in the literature that
employ CNNs. For instance, X. Chen et al. 2015 proposed and trained from
scratch a CNN architecture that contains six layers: four convolutional lay-
ers and two fully-connected layers, to automatically classify glaucomatous
fundus images. They performed the experiments on two private databases:
ORIGA-(light) which contains 650 images and SCES which contains 1676 im-
ages, achieving an AUC of 0.831 and 0.887 respectively. For ORIGA database,
they trained their CNN architecture by randomly selecting 99 images, and us-
ing the remaining 551 images for test. For SCES database, they used the 650
images from ORIGA database for training, and all the 1676 images of SCES
database for test. The main disadvantage is the unbalanced data. The ORIGA
database is comprised of 168 glaucomatous and 482 normal fundus images and
the SCES database contains 1676 fundus images of which only 46 are glau-
comatous. Another limitation of this work is that the obtained results are
difficult to reproduce because ORIGA and SCES databases are not publicly
available.

A study conducted by Alghamdi et al. 2016 makes use of eight databases (four
public and four private databases) to detect optic disc abnormality. They
developed a new approach using two CNNs: one CNN was trained to first
classify the optic disc region and the other CNN to classify the optic disc
region into normal, suspicious and abnormal classes. However, the four public
databases (DRIVE, STARE, DIARETDB1 and MESSIDOR) used in the work
of Alghamdi et al. cannot be used for glaucoma classification because they
were taken for different purposes. This means those images do not have any
glaucoma sign or do not have glaucoma annotations. The glaucoma labelled
databases they used are private and, for that reason, it is difficult to reproduce
the results presented in their work.

In the study made by Abbas 2017, he developed and implemented a system
known as Glaucoma-Deep. This system consists of an unsupervised CNN ar-
chitecture that automatically extracts features from the fundus images. Af-
terwards, it uses a deep-belief network (DBN) model to select the most dis-
criminative features. In his work, Qaisar Abbas uses four databases to test his
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method, three of them are public and one private. Although his work shows
good results (Specificity: 0.9801 and Sensitivity: 0.8450), details of the CNN
and architecture were not given.

It is worthy to mention the work made by Orlando, Prokofyeva, et al. 2017,
in which they showed how two different CNNs, OverFeat and VGG-S, could
be used as feature extractors. They also investigated how the performance of
these networks behave when Contrast-limited adaptive histogram equalization
(CLAHE) and vessels deletion are applied to the fundus images. In their
work, they used Drishti-GS1 database to test the performance of the fine-tuned
CNNs. They observed that OverFeat CNN performed better than VGG-S,
obtaining an AUC of 0.7626 and 0.7180, respectively. The main limitation
of this work is the small number of images (101 images) used to test the
performance of the CNNs. However, their method achieved a competitive
AUC score with respect to other existing strategies.

Although previous works in the literature present a great performance in glau-
coma classification task, all of them have a huge problem when trying to gen-
eralise. The number of glaucoma-labelled images available in the literature is
scarce. For these reasons, image synthesis and semi-supervised learning meth-
ods will be discussed below.

Retinal image synthesis has been a focus of the scientific community. For in-
stance, Fiorini et al. 2014 used a system that generated the retinal background
and the fovea, and another system to generate the optic disc by using a large
dictionary of patches with no vessels that are later registered. After that,
the authors developed a complementary work that is mainly focused on vessel
generation (Bonaldi et al. 2016). Although their method allows the generation
of high-quality and large resolution images, the process of concatenating the
generation of the main parts of the images is a considerable computational
complex algorithm that relies on how well the images are registered.

Another approach to retinal image synthesis is the one developed by Costa,
Galdran, M. I. Meyer, Niemeijer, et al. 2017. In their work, they trained an
adversarial method on vessel networks and their corresponding retinal fundus
images. In other words, they learned a transformation between the vessel trees
and the retinal fundus. The main limitation of their method is the dependency
of an independent algorithm to segment the vessels.

In another paper, Costa et al. presented a method which improves their pre-
vious work. Instead of learning a transformation between the vessel trees and
the corresponding retinal image, the authors used the original vessel trees to
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train an autoencoder. Then, the synthetic vessel trees are used as input to
the retinal image synthesizer (Costa, Galdran, M. I. Meyer, Abràmoff, et al.
2017).

Although the latter system proposed by Costa et al. is a substantial improve-
ment in their previous work, both methods are dependent on how well the
independent method extracts the vessels. The quality of the segmented vessel
tree will affect the synthetic vessel trees and then, the final retinal image.
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Materials

In this chapter, a description of private and public databases
used to train, validate and test the methods proposed in this thesis
are presented in this chapter.

3.1 Private Databases

ACRIMA

ACRIMA database is composed of 705 fundus images (396 glaucomatous and
309 normal images) with resolution 2048×1536 px. They are part of the
ACRIMA project and were obtained from glaucomatous and normal patients.
All patients were selected by experts based on their criteria and clinical find-
ings during the examination. Most of the fundus images from this database
were taken from the left and right eye previously dilated and centred in the
optic disc. They were captured using the Topcon TRC retinal camera and
IMAGEnetR© capture System. Images were taken with a field of view of 35o.

All images from ACRIMA database were annotated by two glaucoma experts
at the Fundación Oftalmológica del Mediterráneo (FOM) with eight years of
experience. No other clinical information was taken into account while provid-
ing labels for the images. This first version of ACRIMA database can only be
used for classification tasks because optic disc and optic cup annotations are
not provided.
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Update: ACRIMA database is now publicly available with the publication of
this article: Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi M J, Navea
A. CNNs for Automatic Glaucoma Assessment using Fundus Images: An Ex-
tensive Validation. March 2019. BioMedical Engineering OnLine journal. doi:
https://doi.org/10.1186/s12938-019-0649-y.

Autogla

Autogla is a private database provided by the FISABIO oftalmología médica
(FOM). It is composed of 83 images with resolution 3216×2136 px, containing
50 glaucomatous and 33 normal images.

12Octubre

12Octubre is a private database provided by the 12 de Octubre Hospital in
Madrid. It is composed of 53 images with resolution 768×576 px (Román
Morán et al. 2014). Additionally to the original images, this database contains
annotations for the optic disc and optic cup.

3.2 Public Databases

CHASEDB1

The CHASEDB1 database is a retinal vessel reference database acquired from
multiethnic school children (Owen et al. 2011). This database is a part of the
Child Heart and Health Study in England (CHASE), a cardiovascular health
survey in 200 primary schools in London, Birmingham, and Leicester. The
images were captured at 30o FOV with a resolution of 1280×960 px. Images of
this database are characterized by having nonuniform background illumination
and poor contrast of blood vessels as compared with the background. The 28
images that compose CHASEDB1 database are divided such that 20 images are
included in the test set and 8 images comprise the training set (Ng et al. 2014).
Database available at https://blogs.kingston.ac.uk/retinal/chasedb1/
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DRIONS-DB

DRIONS stands for Digital Retinal Images for Optic Nerve Segmentation (Car-
mona et al. 2008). It is a public database that consists of 110 colour digital
retinal images (600 x 400 px) whose optic disc is manually segmented by two
specialists. The mean age of the patients was 53.0 years (S.D. 13.05), with
46.2% male and 53.8% female and all of them were Caucasian ethnicity. 23.1%
patients had chronic simple glaucoma and 76.9% eye hypertension. Database
available at http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html

Drishti-GS1

Drishti-GS1 dataset consists of 101 retinal images (Sivaswamy et al. 2014).
It is divided into 50 training and 51 testing images and all the images have
been labelled by 4 clinical experts. The images were collected at Aravind
eye hospital which correspond to patients between 40-80 years of age with a
roughly equal number of males and females.

All images were taken centred on OD with a Field-Of-View (FOV) of 30o

and of dimensions 2896×1944 px. Clinical experts with experience of 3,5,9
and 20 years created the ground truth for the 50 training images by using a
dedicated marking tool that allows precise boundary marking. Additionally
to the original images, this database contains the ground truth represented
by a segmentation Soft Map, average OD and Cup boundaries, CDR Values,
image-level decisions which is a binary image-level decision on whether each
image is normal or glaucomatous and notching which is the decision on the
occurrence of notching in the superior, inferior, nasal, and temporal sectors,
assessed by a single expert. Database available at https://cvit.iiit.ac.
in/projects/mip/drishti-gs/mip-dataset2/Home.php

DRIVE

DRIVE stands for Digital Retinal Images for Vessel Extraction (Staal et al.
2004). It was obtained from a diabetic retinopathy screening program in The
Netherlands from subjects between 25-90 years of age. DRIVE databased is
composed of 40 images in which 33 do not show any sign of diabetic retinopathy
and 7 show signs of mild early diabetic retinopathy.

The images were acquired using a Canon CR5 non-mydriatic 3CCD camera
with a 45-degree field of view (FOV). Each image was captured using 8 bits
per colour plane at 768×584 px. The FOV of each image is circular with a
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diameter of approximately 540 pixels. For this database, a mask image that
delineates the FOV is provided.

DRIVE database was divided into a training and a test set, both containing 20
images. A single manual segmentation of the vasculature is available for the
training set and two manual segmentations for the test set. Database available
at https://www.isi.uu.nl/Research/Databases/DRIVE/

DR KAGGLE

The DR Kaggle database was presented for the Diabetic Retinopathy (DR)
Detection in Kaggle (Kaggle 2015). It is a large set of high-resolution fundus
images taken under a variety of imaging conditions and was rated by a clinician
into 5 classes:

• No DR

• Mild

• Moderate

• Severe

• Proliferative DR

As in most real-world datasets, it is possible to encounter noise in both the
images and labels. Artefacts, unfocused, underexposed, or overexposed im-
ages are founded in DR Kaggle database. It is composed of 88702 images
divided into two subsets: 35.126 images in the training set and 53.576 test
images. DR Kaggle database is available at https://www.kaggle.com/c/
diabetic-retinopathy-detection/

e-ophtha

e-ophtha is a database of colour fundus images specially designed for scientific
research in Diabetic Retinopathy (DR) containing 463 images (Decencière,
Cazuguel, et al. 2013). This database is made of two sub databases named e-
ophtha-MA (MicroAneurysms) with 148 images with microaneurysms or small
haemorrhages and 233 images with no lesion, and e-ophtha-EX (EXudates)
with 47 images with exudates and 35 images with no lesion. It was gen-
erated from the OPHDIATR© Tele-medical network for DR screening, in the
framework of the ANR-TECSAN-TELEOPHTA project funded by the French
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Research Agency (ANR). Database available at http://www.adcis.net/en/
Download-Third-Party/E-Ophtha.html

HRF

HRF stands for High-Resolution Fundus (Köhler et al. 2013). This database
contains 45 images which 15 images of healthy patients, 15 images of patients
with diabetic retinopathy and 15 images of glaucomatous patients. They were
captured by a Canon CR-1 fundus camera with a field of view of 45o with
a resolution of 3504×2336 px. Binary gold standard vessel segmentation im-
ages generated by clinicians is available for each image. Database available at
https://www5.cs.fau.de/research/data/fundus-images/

MESSIDOR

MESSIDOR stands for Methods to evaluate segmentation and indexing tech-
niques in the field of retinal ophthalmology (Decencière, X. Zhang, et al. 2014).
It is a database composed of 1200 eye fundus images acquired by 3 ophthalmo-
logic departments using a colour video 3CCD camera on a Topcon TRC NW6
non-mydriatic retinograph with a 45-degree field of view. The images were
captured using 8 bits per colour plane at 1440×960, 2240×1488 or 2304×1536
px. From the 1200 images, 800 were acquired with pupil dilation and 400
without dilation. The Retinopathy grade and the risk of macular oedema
were provided by the medical experts for each image. Database available at
http://www.adcis.net/en/Download-Third-Party/Messidor.html

ONHSD

ONHSD stands for Optic Nerve Head Segmentation Dataset (Lowell et al.
2004). It is composed of 99 fundus images taken from 50 patients. Those
patients are from various ethnic backgrounds (Asian 20%, Afro-Caribbean 16%,
Caucasian 50%, Unknown 14%). The images of this database were acquired
using a Canon CR6 45MNf fundus camera, with a field angle lens of 45o and
resolution 640×480 px. In this database, annotations of the optic discs, made
by clinical experts, are also available. Database can be downloaded from http:
//www.aldiri.info/Image%20Datasets/ONHSD.aspx
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ORIGA-light

ORIGA-light contains 650 retinal images annotated by trained professionals
from Singapore Eye Research Institute (Z. Zhang et al. 2010). It is com-
posed of 168 glaucomatous images and 482 normal images with a resolution
of 3072×2048 px. This database is widely used as a benchmark for automatic
glaucoma classification methods. Database available at http://imed.nimte.
ac.cn/en-imed-origa-650.html (Accessed: October 2017)

REFUGE

The REFUGE database is composed of 1200 retinal fundus images divided into
three subsets: training (400 images), validation (400 images) and test (400 im-
ages) (REFUGE 2018). They were acquired with two different fundus cameras:
Zeiss Visucam 500 (2124×2056 pixels) for the training set and Canon CR-2
(1634×1634 pixels) for the validation and test sets. All images are centred at
the posterior pole with both macula and optic disc. Only the training set has
glaucoma labels (40 glaucomatous images and 360 normal images).

Labels in the training set were obtained from the health records. This means,
labels were not obtained only based on fundus image, but also the OCT and
visual field. Regarding the optic disc and optic cup annotations, they were
obtained by seven independent clinical experts from Zhongshan Ophthalmic
Center, Sun Yat-sen University in China. The final reference standard was
made by merging all the seven annotations into one. REFUGE database was
made publicly available for the OMIA workshop at MICCAI2018. Database
available at https://refuge.grand-challenge.org/Home/

RIM-ONE

RIM-ONE is a set of retinal image databases for optic nerve evaluation and
glaucoma detection (Medina-Mesa et al. 2015). There are several versions of
this database: RIM-ONE v1 and RIM-ONE v3 that are composed of 455 and
159 images, respectively. These databases were created by ophthalmologists
from the Department of Ophthalmology at the Universitario de Canarias Hos-
pital in Spain. The RIM-ONE v1 dataset was labelled according to a binary
classification (healthy vs. glaucomatous), and RIM-ONE v3 was labelled as
a 3-class classification problem (healthy, suspicious and glaucoma). Addition-
ally to the images, this database contains annotations for the optic disc and
optic cup. Database available at http://medimrg.webs.ull.es/research/
retinal-imaging/rim-one/
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SASTRA

SASTRA database is composed of 40 fundus images. Eighteen images have
a resolution of 768×576 px and the other 22 have a resolution of 1504×1000
px. SASTRA database was used to validate a semi-automated method for
glaucoma detection using the CDR and the ISNT rule (Narasimhan et al. 2012).
Database obtained by emailing corresponding author knr@ece.sastra.edu.

sjchoi86-HRF

sjchoi86-HRF database (Abbas 2017; sjchoi86 2017) is composed of 601 fundus
images divided into 4 subsets: normal (300 images), glaucoma (101 images),
cataract (100 images) and retina disease (100 images). The images were cap-
tured using 8 bits per colour plane at 2592×1728, 2464×1632 or 1848×1224
px. Database available at https://github.com/sjchoi86/retina_dataset/
tree/master/dataset (Accessed: July 2017)

STARE

STARE stands for STructured Analysis of the Retina (Hoover, Kouznetsova,
and Goldbaum 2000). It is a project conceived and initiated in 1975 by Michael
Goldbaum, M.D., at the University of California, San Diego. From this project,
they created the STARE database composed of 400 images of 700×605 px
designed for blood vessel and OD segmentation. Database available at http:
//cecas.clemson.edu/~ahoover/stare/

All the previously mentioned databases are shown alphabetically ordered in
Table 3.1. For each database, the number of normal and glaucomatous images
and what databases contain optic disc and optic cup annotations are presented.

Experts of the FISABIO Oftalmología Médica (FOM) analysed the images
of the DRIVE database for glaucoma through visual inspection, and based on
their analysis they were labelled as Glaucoma or Normal. They also segmented
the optic disc and optic cup manually for the images in the HRF, RIM-ONE
v1 and Autogla databases.
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Table 3.1: Databases used to train, validate and test the proposed methods. GT stands
for Ground Truth

Database Glaucoma Normal OD/Cup GT Total

ACRIMA 396 309 No 705

Autogla 50 33 Both 83

CHASEDB1 (Owen et al. 2011) - - No 28

DRIONS-DB (Carmona et al. 2008) - - No 110

Drishti-GS1 (Sivaswamy et al. 2014) 70 31 Both (train set) 101

DRIVE (Staal et al. 2004) 20 20 Both 40

DR KAGGLE (Kaggle 2015) - - No 88702

e-ophtha (Decencière, Cazuguel, et al. 2013) - - No 463

HRF (Köhler et al. 2013) 27 18 Both 45

MESSIDOR (Decencière, X. Zhang, et al. 2014) - - No 1200

ONHSD (Lowell et al. 2004) - - Only OD 99

ORIGA-light (Z. Zhang et al. 2010) 168 482 No 650

REFUGE 40 360 Both (train set) 1200

RIM-ONE v1 (Medina-Mesa et al. 2015) 194 261 Both 455

RIM-ONE v3 (Medina-Mesa et al. 2015) 74 85 Both 159

SASTRA (Narasimhan et al. 2012) - - No 40

sjchoi86-HRF (Abbas 2017) 101 300 No 601

STARE (Hoover, Kouznetsova, and Goldbaum 2000) - - Only OD 400

12Octubre (Román Morán et al. 2014) 29 24 Both 53

1169 1923 - 95134

34



Chapter 4

Optic Disc and Optic Cup
Segmentation

The first step in most of the classical approaches for glaucoma
assessment using retinal fundus images is the segmentation of the
optic disc and optic cup. The goal of this step is to determine, as
accurate as possible, the masks for these regions of interest. These
masks are used to measure clinical features such as the Cup/Disc
ratio and the ISNT rule. This chapter presents two approaches for
addressing this step, one based on stochastic watershed transfor-
mation for optic cup segmentation and further glaucoma diagnosis
and another that makes use of a convolutional neural network for
segmenting the optic disc and optic cup.

4.1 Stochastic-watershed-based approach

This section is mainly focused on using the Stochastic Watershed transforma-
tion for the cup segmentation and further glaucoma diagnosis by measuring the
CDR, ACDR and the ISNT rule. First, the optic disc mask for each image was
obtained automatically by using the method proposed in (Morales, Naranjo,
Angulo, et al. 2013). Secondly, images are resized and cropped around the
optic disc. Thirdly, grey-scale transformation and vessel removal are necessary
steps previous to finally apply the Stochastic Watershed transformation.
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Chapter 4. Optic Disc and Optic Cup Segmentation

The flowchart of the proposed method is presented in Figure 4.1 and described
below.

Retinal Images

Preprocessing

Cup Segmentation Process

Optic Disc 
Contour 

Diagnosis Feature 
Extraction

Cup 
Adjustment

Stochastic 
Watershed

Gradient
Magnitude

Image

Image
Resize

Region of 
Interest 
(ROI)

Vessel
Removal

Colour Space
Extraction

Contrast
Adjustment

Figure 4.1: Complete block diagram of the proposed algorithm

Preprocessing

Image resize

Image resize is the first part of the preprocessing block. Due to the fact that the
images under study belong to different databases, the image size varies. This
block resizes the images to a standardized size in order to obtain comparable
results between the databases. In this work, we used the image size 768x576
px because is the lowest resolution of the images available for this method.

To resize the images, the length of the horizontal diameter of the fundus was
used as reference (X. Zhang et al. 2012). Bicubic interpolation was used for
resizing, in which the output pixel value is a weighted average of pixels in the
nearest 4-by-4 neighbourhood.
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ROI localization

After image resizing, the next step is to crop the images strategically. The
proposed method crops the original image using a bounding box of 1.2 times
the optic disc radius. An example of a cropped image is shown in Figure 4.2.

Figure 4.2: Cropped image using as reference the optic disc mask.

Vessel removal

The glaucoma disease is mainly characterized by the loss of the optic fibre
nerves and astrocytes. However, to the best of our knowledge, the vessels are
not significantly affected by this disease as it is the optic nerve. For that reason,
an important preprocessing step is to remove the vessels which do not provide
extra information for glaucoma diagnosis and can make the cup segmentation
more difficult.

A method based on mathematical morphology, curvature evaluation and the k-
means clustering algorithm was used to remove the vessels (Morales, Naranjo,
Navea, et al. 2014). Afterwards, an iterative inpainting technique (Criminisi,
Pérez, and Toyama 2004), used in photo restoration and video processing,
replaces the pixels of the vessel mask using exemplar-based synthesis. An
example of the vessel removal result is shown in Figure 4.3.
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Figure 4.3: Example of the vessel removal result. (a) Cropped and resized image, (b)
Vessel mask and (c) Inpainted image.

Component selection

After images are resized, cropped and without vessels, the components of the
colour spaces CMYK (Cyan, Magenta, Yellow, and Key (black) components),
Principal Component Analysis (PCA) (Pearson 1901), YIQ, Lab, Luv (Mus-
troph 2014) and RGB were analysed. The reason for this analysis is to check
the performance of each component in cup segmentation and choose the one
that provides optimal results.

From the analysis made by (Diaz-Pinto et al. 2016), it was found that the
components with better performance for cup segmentation were Cyan plus
Key component in CMYK, “Q” in colour space YIQ, “u” component in Luv
colour space, first component in PCA and “a” component in Lab colour space.
Additionally to their study, in this section the RGB colour space was also
analysed. Performance results of each of these components are presented in
Section 4.3.

Examples of these components are shown in Figure 4.4. In this figure, it is also
possible to see that the cup is usually darker or brighter than the other parts
of the image, which is essential for the proposed algorithm.

Contrast adjustment

It was observed that the nonuniform-contrast image through the available
databases affects the classification performance. For this reason, a contrast
adjustment is applied to the grey-scale image obtained after component selec-
tion. After obtained the grey-scale image using the colour space model, the
intensity values in that image are linearly mapped into another grey-scale im-

38



4.1 Stochastic-watershed-based approach

(a) (b) (c)

(d) (e)

Figure 4.4: Colour space components used in the proposed method. (a) C+K components
in CMYK space, (b) Q in YIQ space, (c) u in Luv space,(d) First PCA component and (e)
a component in Lab space.
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age such that 1% of pixels is saturated at low and high intensities, with the
aim of obtaining a higher difference between the intensity values in the cup
and the rest of the image. An example of this adjustment can be seen in Figure
4.5(d)

Cup segmentation

The cup segmentation block is mainly divided into 2 parts: the Stochastic
Watershed transformation and the Cup adjustment block.

Stochastic Watershed

Fundamentally, the stochastic watershed transformation is the neuralgic step
in this method. It is an improved variant of the watershed transformation.
Based on the gradient image, the watershed transformation is a segmentation
technique in which the minimum pixel values of the image represent the object
of interest and the maximum pixel values represent the separation boundaries
between objects (Beucher and F. Meyer 1992).

One problem with the watershed technique is the over-segmentation, which is
caused by the existence of numerous local minima in the image due to the pres-
ence of noise. This problem is solved with the marker-controlled watershed,
establishing the image minima artificially and defining a marker per minimum.
Internal and external markers are needed. The internal markers determine the
object of interest (optic cup) and the external markers are used to limit the
segmented area (optic disc). Although in the marker-controlled watershed
there exist several strategies to choose the most appropriate internal markers
for each case, the following strategies are the most used: internal markers are
selected based on a manual or automatic seed, uniformly selected in the image
(stratified markers) or following a non-uniform distribution that is restricted
to areas that accomplished a specific condition (regionalized random markers).
Independently on the chosen strategy, a problem of the marker-controlled wa-
tershed is the under-segmentation, which means part of the area of interest
is not detected because the existence of not enough markers representing the
entire area.

Both problems, over- and under-segmentation, are solved with the Stochas-
tic Watershed transformation. In this transformation, a given number M of
marker-controlled watershed realizations are performed selecting N regional-
ized random markers (or pseudo-random markers) in each realization. The
idea is to estimate a probability density function (pdf) for the contours of the
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image, which filter out non-significant border fluctuations. The probability
density function is computed by Parzen window method (Duda, Hart, and
Stork 1995) as follows:

pdf(x) =
1

M

M∑
i=1

(WSi(x) ∗G(x; s)) (4.1)

whereG(x; s) represents a Gaussian function of variance s2 and mean µ(µ = 0),
M represents the number of marker-controlled watershed realizations with N
regionalized random markers andWSi =WS(%)fmrki

the ith output watershed
image, being % the gradient image. Afterwards, it is necessary to perform a
last marker-controlled watershed transformation on the pdf , which defines the
resulting mask by joining all the watershed regions.

In this work, the gradient contour of the optic disc (See Figure 4.5(e)) was
used as the external marker. It is worthy to mention that the optic disc masks
used for this process were obtained from the algorithm proposed in (Morales,
Naranjo, Angulo, et al. 2013).

The used regionalized random markers are random markers whose distribution
is restricted to low-intensity or high-intensity areas depending on the colour
space used (See Figure 4.5(f)). Starting with an initial marker or seed which
is defined by the darkest or the brightest pixel that will belong to the optic
cup, the regionalized markers or internal markers are chosen by following a
Poisson distribution with variance σ2 (Angulo and Jeulin 2007). The stochastic
watershed transformation makes M marker-controlled watershed realizations
with N pseudorandom markers to finally obtain a pdf (See Figure 4.5(g)). We
say pseudorandom, instead of random markers, because they are limited by
the region of interest.

In this part, we carefully set the variance of the Poisson function that gen-
erates the pseudorandom markers, the number of pseudorandom markers and
the number of realizations. Given the small intensity variance between the
pixels in the cup, the variance σ2 was set experimentally in a small value
(σ2 = 0.0003). The algorithm was programmed to generate a minimum num-
ber of pseudorandom markers (N) of 100. This means if the initial variance
is not enough to generate 100 pseudorandom markers, the variance values in-
creases until there are at least the minimum number of markers. Another
important factor is the number of realizations (M). It was observed that 5
realizations are a good trade-off between a suitable pdf for segmentation and
a relatively low computational cost. For that reason, this factor was set at 5.
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Afterwards, an additional last marker-controlled watershed transformation on
the pdf , combined with the image gradient, was performed, which defined the
resulting mask by joining all the watershed regions (Angulo and Jeulin 2007).

% = (1− λ)%+ λpdf ; where λ = 0.5. (4.2)

In Figure 4.5, it is possible to see the optic cup segmentation process using the
stochastic watershed transformation.

Cup adjustment

The cup adjustment block improves the measure of the Cup/Disc ratio and
ISNT rule. In this block, the vertical radius of the mask obtained by the
watershed transformation is calculated, then a circle is generated with the
same vertical radius of the watershed mask and placed in the centre of the
optic disc. The main motivation for this adjustment came from the fact that
the temporal part of the optic cup is usually hidden by the vessels (Nath and
Dandapat 2012). The reason for placing this circle in the centre of the optic
disc is because the optic cup is generally located in the centre of the optic disc.

In Figure 4.5(j) an example of the cup adjustment result is shown. The black
line represents the segmentation using the proposed method based on Stochas-
tic Watershed, the white line represents the adjustment made to the segmented
cup and the yellow and blue lines identify the ground truth of the optic disc
and cup, respectively.

Glaucoma diagnosis

At this point, the cup segmentation process using Stochastic Watershed has
been shown. Next step is to use the obtained optic cup mask to measure the
CDR, ACDR and the ISNT rule and make a glaucoma assessment.

ACDR is defined as the ratio between the area occupied by the cup and the
area occupied by the optic disc. CDR is the ratio of the vertical diameter of
the cup and the vertical diameter of the optic disc (Cobb 2010). The proposed
algorithm measures the CDR by computing the diameter of the optic disc
and the cup, as the mean of the two highest vertical diameters because of the
irregular shape of the optic disc and the cup.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.5: Process of the Stochastic Watershed transformation: (a) Resized and cropped
image (ROI), (b) Image inpainting, (c) Grey-scale image (first PCA component), (d) Con-
trast adjust, (e) Gradient image, (f) Pseudo-random markers, (g) pdf of image contours, (h)
Watershed regions, (i) Final segmentation and (j) Cup adjustment (in white).
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Optimum thresholds for glaucoma diagnosis were stablished to 0.50 for the
CDR and 0.30 for ACDR (Nath and Dandapat 2012).

Regarding the ISNT rule, the horizontal and vertical thickness of the neuro-
retinal rim were measured as it was done with the CDR (by mean of the two
highest values). The horizontal thickness represents the temporal part (T)
plus the nasal part (N) of the neuro-retinal rim: HorDiam = T +N , and the
vertical thickness represents the inferior part (I) plus the superior part (S) of
the neuro-retinal rim: VerDiam = I + S. If the horizontal thickness is smaller
than the vertical thickness, the optic disc in the image follows the ISNT rule,
and then, classified as “Normal”, otherwise it is classified as “Glaucomatous”.

4.2 U-Net-based approach

4.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) were first introduced by (LeCun, Y
1989) and are biological-inspired (Hubel and Wiesel 1968) variants of Mul-
tilayer Perceptrons. Since then, they have been used in computer vision and
artificial intelligence. However, their relevance was not discovered until the Im-
ageNet competition in 2012 (http://image-net.org/challenges/LSVRC/).

CNNs are a specialized type of neural network to process data in a raw format
or grid-like topology (colour image, 2D audio spectrograms, etc). They extract
a set of highly discriminative features at multiple levels of abstraction. The first
layers of the architecture extract edges at particular orientations and locations
in the image. The middle layers detect structures composed by particular
arrangements of edges and the last layers detect more complex structures that
correspond to parts of familiar objects, or objects that are combinations of
these parts (LeCun, Bengio, and G. Hinton 2015).

A typical CNN architecture consists of a sequence of layers, and every layer
transforms its corresponding input into an output through a differentiable func-
tion. In this way, the CNN transforms the original image layer by layer from
the original pixel values to the final class scores.

Next, a brief description of the main types of layers to build CNN architectures
will be presented.

44

http://image-net.org/challenges/LSVRC/


4.2 U-Net-based approach

Convolutional layer

The convolutional layer is the main layer of a CNN. It does most of the feature
extraction in a CNN by using a set of learnable filters. These filters, composed
by a set of values, also called weights, are used to convolve across the width
and height of the input volume and compute dot products between the weights
and the input at any position (Goodfellow, Bengio, and Courville 2016). The
result of this operation is a 2-dimensional feature map for each filter used (See
Figure 4.6).

Depth

Height

Input image
Filter

Feature map

Width

1x1x1

Image 
depth

Image 
width

Image 
height

Figure 4.6: Feature map generated by one filter when applied to an input image.

Activation layer

After the feature map computation carried out by the convolutional layer, an
activation function is applied. The main objective of using the activation layer
is to introduce non-linearities, which allows representing almost any arbitrary
complex function that maps inputs to outputs in a CNN. Although there ex-
ist several activation functions, the most commonly used are the Sigmoid or
Logistic, Tanh and Rectified Linear Unit (ReLU).

The Sigmoid function is a curve of form σ(x) = 1
1+e−x . Its range is between 0

and 1 as it is shown in Figure 4.7

The Tanh function is the mathematical formula: σ(x) = 1−e−2x

1+e−2x . Its output is
zero-centred and its range is in between -1 to 1, as it is shown in Figure 4.8
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Figure 4.7: Sigmoid or logistic activation function (Sharma 2017)

Figure 4.8: Tanh activation function (Sharma 2017).

The ReLU function is the most popular of all these functions because of its
simplicity and improvement in convergence. It is defined as σ(x) = max(0, x)
and its curve can be seen in Figure 4.9

Pooling layer

The aim of using pooling layers in a CNN is to reduce the spatial size of the
feature maps. This layer reduces the number of parameters and the computa-
tion in the network, and hence, controls overfitting. The most common form is
the MAX pooling with filters of size 2×2 applied with a stride of 2. In Figure
4.10 a representation of the MAX pooling form is shown.
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Figure 4.9: ReLU activation function (Sharma 2017).
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Figure 4.10: Example of the pooling layer (Johnson and Karpathy 2017).

Fully-connected layer

Finally, the fully-connected layer is the one that takes an input volume of
activations and outputs an N-dimensional vector, where N is the number of
classes. Its outputs can be computed with simple matrix multiplication.

Although there are more types of layers such as normalisation layers, locally-
connected layer, etc, the previously described layers are the typical layers that
composed a CNN. In Figure 4.11 it is possible to see a typical architecture of
a CNN using the convolutional, activation, pooling and fully-connected layers.
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Feature maps

Input

Convolutions ConvolutionsPooling Pooling

Fully-connected

Output

Figure 4.11: Example of a CNN using the main layers above described (convolutional,
activation, pooling and fully-connected layer) (Aphex34 2015).

4.2.2 U-Net architecture

The U-Net is a convolutional network architecture for fast and precise segmen-
tation of images. It was introduced by (Ronneberger, Fischer, and Brox 2015).
The network is based on the fully convolutional network and its architecture
was modified and extended to work with fewer training images and to yield
more precise segmentation.

The U-Net network consists of a contracting path and an expansive path,
which gives it the u-shaped architecture. The contracting path is a typical
convolutional network that consists of repeated application of convolutions,
each followed by a rectified linear unit (ReLU) and a max pooling operation.
During the contraction, the spatial information is reduced while feature infor-
mation is increased. The expansive pathway combines the feature and spatial
information through a sequence of up-convolutions and concatenations with
high-resolution features from the contracting path.

The U-Net architecture (Ronneberger, Fischer, and Brox 2015; Sevastopolsky
2017) used in this section can be seen in Figure 4.12.

This network was originally introduced as a fully-convolutional neural network
in which feature maps are depth-concatenated to layers that are upsampled
from the bottleneck layer. In simple terms, this network receives as input an
RGB image and outputs a probability map.

As a pre-processing technique, we used Contrast Limited Adaptive Histogram
Equalization (CLAHE) (Pizer, Johnston, et al. 1990; Pizer, Amburn, et al.
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Conv 3x3, ReLU + dropout
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Figure 4.12: U-Net architecture used for Optic disc and Optic Cup segmentation. The
number on top of the box represents the number of channels.

1987) for both optic disc and optic cup segmentation. This technique improves
the local contrast and enhances the definitions of edges in each region of an
image. After that, images were resized to 256×256 px.

A pipeline of our approach for optic disc and optic cup segmentation is shown
in Figure 4.13.

U-Net Optic 
Disc

CLAHE

U-Net Optic 
Cup

CLAHE

Figure 4.13: Schema used for Optic disc and Optic Cup segmentation
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As it is possible to see in Figure 4.13, we first segment the optic disc to obtain
the optic cup mask. This means a two-stage process: we first segment the
optic disc and used the mask to crop the image and segment the optic cup.

We also used data augmentation for both optic disc and optic cup segmen-
tation. To do that, we employed the Keras library (Chollet et al. 2015) to
transform images and masks simultaneously and in the same fashion. We ap-
plied vertical and horizontal flipping, a rotation range of 50 degrees, applied
both width and height shift of 0.15 and finally randomly zoomed the images
by a range between 0.7 and 1.3. All these transformations were applied for
each batch during the training stage.

This method was used for the REFUGE challenge, hosted at the MICCAI 2018
conference in conjunction with OMIA workshop1. The goals of this challenge
were to evaluate and compare automated algorithms for glaucoma detection
and obtain, for the optic disc and optic cup segmentation task, the highest
value of Dice index on the validation and test set of the REFUGE database.
The dataset is composed of 1200 retinal fundus images: 400 images for each
set (training, validation and test). These images were annotated by seven
independent glaucoma experts from the Zhongshan Ophthalmic Center, Sun
Yat-sen University, China.

4.3 Results

Results for the Stochastic-watershed-based approach

Images belonging to the 12Octubre (Román Morán et al. 2014), DRIVE (Staal
et al. 2004), Autogla, HRF (Köhler et al. 2013), RIM-ONE v1 (Medina-Mesa
et al. 2015) and the training set of the Drishti-GS1 database were used to
validate the stochastic watershed method presented in Section 4.1. They were
carefully analysed by a clinical expert and excluded images that had at least
one of the following issues:

• Low resolution or low image quality

• Image with doubtful diagnosis

After that, 54 images were excluded from the RIM-ONE database. Examples
of the excluded images are shown in Figure 4.14. Therefore, a total of 672

1https://refuge.grand-challenge.org/home/ (Group name: Cvblab)
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images were used for the experiments. 308 were related to glaucomatous and
364 were related to healthy images.

(a) (b) (c) (d)

Figure 4.14: Different samples of the excluded images. (a-c) Images with low resolution
and (d) Image with doubtful diagnosis.

Cup segmentation

In order to test the performance of the cup segmentation, the Jaccard and Dice
indexes were calculated for every image, and the mean and standard deviation
were obtained for each database. After that, the weighted average (according
to the number of images of each database) and the standard deviation of the
Jaccard and Dice indexes were calculated for all databases. This analysis was
performed for all the six colour spaces (CMYK, PCA, YIQ, Lab, Luv and
RGB).

As it can be seen in Table 4.1, HRF and RIM-ONE databases have better
cup segmentation results when YIQ colour space is used. Given that these
databases have the majority of the images (446/723 images), the weighted av-
erage is higher when YIQ colour space is applied. However, the results obtained
when using the CMYK colour space, have also a considerable performance in
cup segmentation.

In most cases, using the Stochastic Watershed transformation a proper contour
of the optic cup is obtained. Examples of these results can be observed in
Figure 4.15(a-b). However, wrong contours are obtained when the optic cup
has not its characteristic pallor. For that reason, a weakness of this method
lies in the pallor absence of the optic cup. Which makes the optic cup not
discernible from other parts of the optic disc. Examples of this problem can
be seen in Figure 4.15(c-d).
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Table 4.1: Results of the cup segmentation using five colour spaces.

Database Index CMYK YIQ Luv Lab PCA RGB

12Octubre Jaccard 0, 553± 0, 185 0, 565± 0, 215 0, 526± 0, 260 0, 551± 0, 238 0, 558± 0, 214 0, 575 ± 0.192
Dice 0, 692± 0, 173 0, 695± 0, 204 0, 643± 0, 281 0, 674± 0, 250 0, 689± 0, 202 0, 709 ± 0.178

DRIVE Jaccard 0, 567 ± 0, 198 0, 481± 0, 227 0, 415± 0, 247 0, 461± 0, 224 0, 471± 0, 211 0, 495± 0.200
Dice 0, 700 ± 0, 191 0, 615± 0, 233 0, 541± 0, 269 0, 596± 0, 239 0, 611± 0, 209 0, 638± 0.187

Drishti-GS1 Jaccard 0, 656± 0.191 0, 661± 0.215 0, 347± 0.350 0, 492± 0.328 0, 668 ± 0.200 0, 664± 0.185
Dice 0, 775± 0.160 0, 771± 0.190 0, 416± 0.391 0, 583± 0.356 0, 781 ± 0.175 0, 780± 0.161

Autogla Jaccard 0, 568± 0, 197 0, 551± 0, 210 0, 512± 0, 270 0, 527± 0, 240 0, 560± 0, 209 0, 572 ± 0.201
Dice 0, 702± 0, 177 0, 683± 0, 207 0, 626± 0, 296 0, 653± 0, 245 0, 693± 0, 194 0, 706 ± 0.180

HRF Jaccard 0, 607± 0, 185 0, 627 ± 0, 150 0, 545± 0, 250 0, 592± 0, 221 0, 575± 0, 212 0, 614± 0.179
Dice 0, 738± 0, 161 0, 759 ± 0, 131 0, 663± 0, 269 0, 712± 0, 234 0, 704± 0, 199 0, 744± 0.161

RIM-ONE Jaccard 0, 523± 0, 190 0, 540 ± 0, 178 0, 329± 0, 287 0, 464± 0, 253 0, 491± 0, 209 0, 515± 0.198
Dice 0, 665± 0, 175 0, 683 ± 0, 169 0, 423± 0, 336 0, 586± 0, 281 0, 630± 0, 202 0, 656± 0.185

All databases Jaccard 0, 559± 0, 203 0, 565 ± 0, 218 0, 546± 0, 259 0, 468± 0, 233 0, 546± 0, 227 0.537± 0.205
Dice 0, 696± 0, 187 0, 702 ± 0, 221 0, 679± 0, 281 0, 590± 0, 226 0, 682± 0, 215 0.674± 0.190

(a) (b) (c) (d)

Figure 4.15: Results of best and worst cases of the optic cup segmentation (upper images
are the original images cropped around the optic disc). The blue line represents the annota-
tion made by the experts, the black line represents the contour obtained from the Stochastic
Watershed and the white line represents the cup adjustment.

In order to compare the proposed method with other state-of-the-art methods,
the overlapping error E was computed. This evaluation metric is defined in
equation 4.3.

E = 1− Area(S ∩G)
Area(S ∪G)

(4.3)
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where S and G denote the segmented and the ground truth cup respectively.

Table 4.2 shows the percentage of images per interval of overlapping error and
the average µE using the annotated images as ground truth. The results are
shown in detail for each database, and for all the images combined when using
the YIQ colour space.

Table 4.2: Percentage of images per overlapping error E interval and the average µE for
cup segmentation purpose.

# images E <= 0, 1 E <= 0, 2 E <= 0, 3 E <= 0, 4 E <= 0, 5 µE

12Octubre 53 1,89 % 15,09 % 39,62 % 62,26 % 69,81 % 38,60 %
DRIVE 40 0 % 12,50 % 27,50 % 52,50 % 75 % 41,40 %
Drishti-GS1 101 6 % 34 % 64 % 68 % 86 % 30,85 %
Autogla 83 0 % 9,64 % 37,35 % 56,63 % 71,08 % 40,42 %
HRF 45 0 % 17,78 % 40 % 71,11 % 86,67 % 35,09 %
RIM-ONE 401 0,25 % 5,74 % 22,44 % 42,14 % 61,60 % 44,72 %

All databases 723 1.11 % 11.94 % 32.59 % 51.27 % 69.00 % 41.06 %

It can be seen from the table that the percentage of images for the Drishti-GS1
database has better relative results compare to the other databases. However,
the RIM-ONE database has more impact on the final result because of the
number of images.

For the comparison, the results presented in (Cheng et al. 2013) were used.
Results in that article were obtained from experiments using cup segmentation
algorithms such as the threshold method (Joshi, Sivaswamy, and Krishnadas
2011), R-bend (Bock, Meier, Michelson, et al. 2007), ASM method (Yin et al.
2012) and regression method (Y. Xu et al. 2011).

Table 4.3 gives a comparative analysis of the performance of the proposed
method against some existing methods of cup segmentation. It is possible to
see from the table that the proposed algorithm is among the methods with the
best performance. In addition, this method is evaluated with a greater number
of images.

Table 4.3: Comparison between existing methods and the proposed method using the
overlapping error E in cup segmentation. Other works results shown in this table were taken
from (Cheng et al. 2013)

E <= 0, 1 E <= 0, 2 E <= 0, 3 E <= 0, 4 E <= 0, 5 µE Images used

Thresholding (Joshi, Sivaswamy, and Krishnadas 2011) 0 % 3 % 15 % 31 % 47 % 53,50 % 138
R-bend (Bock, Meier, Michelson, et al. 2007) 0 % 4 % 28 % 56 % 77 % 39,50 % 200
Proposed method 1 % 10 % 30 % 50 % 69 % 41.06 % 723
ASM (Yin et al. 2012) 3 % 25 % 51 % 76 % 88 % 31,30 % 325
Regression (Y. Xu et al. 2011) (Z. Zhang et al. 2010) 6 % 29 % 62 % 81 % 95 % 28,40 % 650
Superpixel (Cheng et al. 2013) 8 % 42 % 75 % 90 % 96 % 24,10 % 650
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Chapter 4. Optic Disc and Optic Cup Segmentation

Unlike existing works, the proposed method uses databases from different hos-
pitals and research centres, which implies different image resolution and image
quality, thus it demonstrates the robustness of the method in case of variability
conditions. For instance, Regression and Superpixel methods were evaluated
using fewer images and from only one private database.

Another comparison with works that only use the Drishti-GS1 database was
made. For this comparison the F-score, which is defined as F = 2P×R/(P+R)
was calculated, where P is precision and R is the recall. For instance, Sedai et
al. (S Sedai and P Roy and D Mahapatra and R Garnavi 2016) obtained an F-
score of 0.86 using only 50 of the 101 images in the Drishti-GS1 database and
Chakravarty et al. (Chakravarty and Sivaswamy 2014) obtained an F-score
of 0.81 using the whole Drishti-GS1 database. As in the latter, in this work,
all the images in the Drishti-GS1 were used; obtaining an F-score of 0.77. It
shows that the proposed algorithm has a competitive performance for optic
cup segmentation.

Glaucoma diagnosis

After the cup is segmented, the CDR, ACDR and ISNT rule was measured
for all the images. Table 4.4 shows the specificity (Sp) and sensitivity (Se)
obtained for each colour space that was used in the cup segmentation process.

It can be observed from Table 4.1 that YIQ colour space presents better perfor-
mance overall the other colour spaces in cup segmentation. It is also possible
to see from Table 4.4, that measuring the CDR using the colour space YIQ,
the glaucoma diagnosis is more reliable than measuring the ACDR, the ISNT
rule or combining all of them. For that reason, the next results were obtained
using the YIQ colour space and measuring the CDR.

Table 4.4: Results of the Glaucoma diagnosis using the CDR, ACDR, ISNT and the
combination of all of them (Combined). In this table, Sp stands for Specificity and Se stands
for Sensitivity

CMYK YIQ Luv Lab PCA RGB

Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se

CDR 0,574 0,697 0,675 0,674 0,650 0,731 0,832 0,563 0,487 0,716 0.545 0.716
ACDR 0,601 0,633 0,715 0,604 0,688 0,673 0,849 0,509 0,517 0,663 0.574 0.655
ISNT 0,495 0,570 0,431 0,568 0,422 0,561 0,337 0,609 0,523 0,544 0.499 0.511

Combined 0,545 0,702 0,730 0,602 0,685 0,635 0,373 0,760 0,376 0,778 0.513 0.742
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In Figure 4.16, the ROC curves for each database can be observed. In these
figures, blue lines represent the ROC curves for the ground truth and the red
lines represent the obtained results from the proposed method measuring the
CDR and using the YIQ colour space. It was observed from the experiments
that the ROC plot for the Drishti-GS1 database has the best relative result
compared to the other databases.

After the ROC curves for each database were generated, a weighted average
ROC curve was computed using the results of all databases. In Figure 4.17(a)
it is possible to see a comparison between the ground truth and the results
of the proposed method and in Figure 4.17(b), a comparison between the
superpixel results, using SiMES database (Cheng et al. 2013), and the results
of the proposed method. It is important to remark that the superpixel method
and the proposed method were tested with different databases. It can be seen
that although the experiments were made with a wide variety of images, the
proposed method performs properly and its results could be of interest in a
clinical setting.

Computation time

Our whole method was implemented in MatLab on a 3.40 GHz quad-core CPU
running Windows 8.1. Once the Stochastic Watershed parameters were tuned,
an average of 0.508 s per image was needed to segment, adjust the optic cup
contour and measured the CDR, ACDR and ISNT rule. This time clearly
highlights a strength of this method, its computational efficiency.

Results for the U-Net-based approach

For the REFUGE challenge, we implemented and trained an U-Net architec-
ture for the optic disc and optic cup segmentation task. This U-Net was trained
with the same hyper-parameters used in (Sevastopolsky 2017): Stochastic Gra-
dient Descent (SGD) as optimizer, a batch size of 1, a learning rate of 1e4 and
a momentum of 0.95. As mentioned in Section 4.2.2, the main and only goal
for the optic disc and optic cup Segmentation task was to obtain the highest
value of Dice index on the validation (400 images) and test set (400 images)
of the REFUGE database.

For training the U-Net network, not only the training set (400 images) of
the REFUGE database (REFUGE 2018) was used, but also the DRIONS-DB
(110 images) (Carmona et al. 2008), Drishti-GS1 (101 images) (Sivaswamy et
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Figure 4.16: Receiver operating characteristic (ROC) curves for the automatic glaucoma
diagnosis for each database using the ground truth (GT) images and the results of the
proposed method using the YIQ colour space and the CDR.

al. 2014) and RIM-ONE v3 (159 images) (Medina-Mesa et al. 2015), giving
place to a total of 770 images.
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Figure 4.17: A comparison ROC plots between the weighted average ROC curves for all
databases using the ground truth (GT) images and the proposed method (left) and the
Superpixel method and the proposed method (right).

Using this method, a Dice index of 0.91 and 0.78 were obtained for the optic
disc and optic cup segmentation, respectively, in the validation set and a Dice
index of 0.91 and 0.77 for the optic disc and optic cup segmentation in the test
set. Examples of the optic disc and optic cup segmentation results using the
U-Net are shown in Figure 4.18

It is worthy to mention that the open source Deep Learning library Keras
(Chollet et al. 2015) and NVIDIA Titan Xp GPU were used to carry out the
experiments.

4.4 Discussion

In this chapter, we have analysed the capability of two different approaches for
image segmentation. In section 4.1, we have presented an automatic algorithm
based on the Stochastic Watershed transformation for optic cup segmenta-
tion. Training and testing were performed on 672 fundus images, obtaining
a Dice index of 0, 70. After cup segmentation, further feature extraction and
glaucoma diagnosis were also performed. This method is a classical approach
for classification, in which handcrafted features such as the CDR, ACDR and
ISNT rule were used to classify normal and glaucomatous images.

Although a fair comparison with state-of-the-art methods is not always pos-
sible as some databases are not public, the obtained results were compared
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Figure 4.18: Examples of the optic disc and optic cup segmentation obtained from the
U-Net. First row are the original images. Optic disc and optic cup are represented by
yellow and black lines, respectively. For visibility purposes, images in the second row were
intentionally cropped.

against some methods showing competitive sensitivity (0.675) and specificity
(0.674) when using the YIQ colour space, the cup adjustment technique and
measuring the CDR. However, the main disadvantage of this method is its high
dependence on the selected features. For that reason, we proposed a second
method based on convolutional neural networks.

In the second approach, presented in subsection 4.2.2, we proposed an U-Net
to segment the optic disc and optic cup. Different to the previous method, we
were focused on segmentation only, not glaucoma assessment. It is because
this method was presented for the REFUGE challenge. In this challenge, we
were asked to develop a method for optic disc and optic cup segmentation
that presents a high Dice index on the validation and test set of the REFUGE
database. A Dice index of 0.91 and 0.78 were obtained for the optic disc and
optic cup, respectively. The results obtained from this approach demonstrate
the potential of this system to be used in a clinical setting to help ophthalmol-
ogists in the glaucoma detection task.

Although a rigorous comparison between these two approaches is interesting, it
has been demonstrated in other works in the literature that segmentation algo-
rithms based on Deep Learning techniques significantly outperform algorithms
based on classical approaches (Sevastopolsky 2017; Ronneberger, Fischer, and
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Brox 2015). For that reason, the comparison between these two methods will
not significantly contribute to this thesis.

Even though Deep Learning approaches seem more interesting for segmentation
tasks, classical approaches, such as the Stochastic Watershed transformation,
are still of great interest. They could be used in cases where the number
of images is very limited and/or Deep Learning techniques do not perform
well. Additionally to this, classical approaches could be used in segmentation
tools to obtain semi-automatic ground-truth, in which experts can verify and
correct if necessary. This could significantly reduce the time and cost of manual
segmentation.

Nevertheless, we show in Figure 4.19 some of the best and the worst examples
of cup segmentation when using the Stochastic Watershed transformation and
the U-Net. We can see from this figure that although both systems perform
well, the U-Net makes fewer mistakes than the Stochastic Watershed approach.
It is because the U-Net has the ability to learn more discriminative features
than only the intensity.

In summary, we have presented two approaches for optic cup segmentation.
The first one uses the classical approach of machine learning and a second
approach uses a deep learning technique. In the first approach, we employed an
external algorithm to segment the optic disc. In the second approach, however,
we segment the optic disc and the optic cup by using the same architecture.
Another difference is that cup adjustment was only applied for the Stochastic
Watershed approach.
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(a) (b) (c)

(d) (e) (f)

Figure 4.19: Examples of the optic cup segmentation performed by the U-Net (upper rows)
and the Stochastic Watershed transformation (lower rows). Upper row (a-d) U-Net best cases
and upper row (e-f) U-Net worst cases. Lower row (a-c) Stochastic Watershed best cases
and lower row (d-f) Stochastic Watershed worst cases. Black lines represent the predicted
cup, blue lines represent the ground-truth and white lines represent the cup adjustment.
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Chapter 5

Glaucoma Classification and
Retinal Image Synthesis using

Deep Learning

Current algorithms for automatic glaucoma assessment using
fundus images usually rely on handcrafted features based on seg-
mentation, which are affected by the performance of the chosen
segmentation method and the extracted features. To avoid this prob-
lem, we address the glaucoma classification task skipping the seg-
mentation step. In this chapter, we present the latest convolutional
neural network architectures fine-tuned for the automatic glaucoma
assessment task. Additionally, retinal image synthesizer and semi-
supervised learning methods for automatic glaucoma classification
are presented.

5.1 Convolutional Neural Networks (CNNs) for Glaucoma
Assessment

CNNs have been applied to a wide variety of applications in image segmenta-
tion and classification. In this section, we show how CNNs, that were used to
classify natural non-medical images, can be applied for retinal image classifi-
cation using ImageNet-trained CNN architectures.
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ImageNet-trained CNN architectures

In this subsection, the CNN architectures used for glaucoma assessment are de-
scribed. They are the state-of-the-art in image classification, object detection
and localization. Moreover, their pre-trained versions are publicly available to
use for applications that differ from the initial task.

VGG16 and VGG19

The architecture of the VGG16 and VGG19 networks are based on the same
model and characterized by their simplicity (Simonyan and Zisserman 2014).
They used 3x3 convolutional filters stacked on top of each other in increasing
depth and reducing the volume size by max pooling. In the end, three fully-
connected (FC) layers, two of 4096 and one of 1000 neurons (this one represents
the class scores) are followed by a softmax classifier (See Figure 5.1). This
architecture was the basis of their ImageNet 2014 submission, with which they
secured the first and the second places in the localization and classification
tracks.

The main advantages of this architecture in comparison with previous archi-
tectures such as AlexNet (Krizhevsky, Sutskever, and G. E. Hinton 2012), is
that it has fewer parameters to optimize and has more non-linear rectification
layers, which makes the decision function more discriminative.

We used the CNN weights, available in Keras Applications, to classify glauco-
matous images: https://keras.io/applications/#available-models.

GoogLeNet

This CNN was first introduced by (Szegedy, W. Liu, et al. 2015). With this
architecture, the authors made the submission to the ImageNet 2014 and se-
cured the first place in the object detection track. Based on the Inception
module, they developed an architecture significantly more complex and deeper
than all previous CNN architectures. The main idea of the Inception module
is the concatenation of filters of different sizes and dimensions into a single
new filter, acting as a “multi-level feature extractor” by computing 1x1, 3x3,
and 5x5 convolutions within the same module of the network. As it is shown
in Figure 5.2.

The initial architecture of this CNN was called GoogLeNet or Inceptionv1.
However, after some improvements to the architecture, it has been called Incep-
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Figure 5.1: Illustration of the VGG16 architecture with its 16 weighted layers (13 con-
volution layers and 3 Fully Connected Layers, represented by yellow and green colours,
repectively). FC stands for Fully Connected and is followed by the number of neurons. In
the yellow blocks, the first part represents the convolution block dimension (i.e. 3x3 conv),
followed by the number of filters (64, 128, 256 and 512).

Previous Layer

1× 1 convolutions 3× 3 max pooling1× 1 convolutions1× 1 convolutions

1× 1 convolutions3× 3 convolutions5× 5 convolutions

Filter
Concatenation

Figure 5.2: Illustration of the inception module proposed by (Szegedy, W. Liu, et al. 2015).

tionvN where N refers to the version number put out by Google. For instance,
the Inceptionv3 architecture, included in the Keras core, was presented by
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(Szegedy, Vanhoucke, et al. 2016), where they proposed updates to the incep-
tion module to further boost classification accuracy. For that reason, we used
the pre-trained architecture Inceptionv3 for the glaucoma classification task.

It is worthy to mention that, because of the weights of the last Inception
version (Inceptionv4) are not in Keras, that Inception version was not used in
this work.

Microsoft ResNet

Microsoft ResNet is the CNN architecture proposed by the Microsoft Research
Asia team (MSRA) to the ImageNet competition in 2015. With this archi-
tecture, the MSRA not only won the competition, but also set new records
in classification, detection, and localization. Unlike traditional sequential net-
work architectures such as AlexNet (Krizhevsky, Sutskever, and G. E. Hinton
2012) and VGG, ResNet is an “exotic architecture” that relies on residual blocks
(See Figure 5.3). With these blocks, they solved the degradation problem, a
problem that appears when the network depth increases, and is not caused by
overfitting.

Weighted layer

Weighted layer

+
ReLU

Figure 5.3: Illustration of a Residual block proposed by (He et al. 2016), where x is the
input and F (x)+ x the output of the residual block, before the rectified linear unit (ReLU).

The residual block is used to construct the network itself. It is a collection
of convolutions and pooling layers that leads to a macro-architecture. The
description of this block and the whole architecture was published by (He et
al. 2016). In their work, they demonstrated that extremely deep networks
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can be trained using standard Stochastic Gradient Descent (SGD) optimizer
through the use of residual blocks.

Given the obtained performance by (He et al. 2016) and the fact that the
weights of this network are available in Keras, the ResNet50 architecture is
also fine-tuned to the glaucoma assessment task. The obtained results will be
described in the results section.

Xception

Xception stands for Extreme Inception and is the name of the architecture
proposed by (Chollet 2016). It is an extension of the Inception architecture
which replaces the standard Inception modules with depthwise separable con-
volutions. This type of convolution is also called “separable convolution” in
frameworks such as TensorFlow and Keras. It consists in a depthwise convolu-
tion (spatial convolution performed independently over each channel), followed
by a pointwise convolution, i.e. a 1x1 convolution (Chollet 2016). In Figure
5.4(a) it is possible to see an illustration of the simplified version of the In-
ception module and in Figure 5.4(b) an illustration of the extreme Inception
module.
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Figure 5.4: Illustration of the Inception modules. (a) A simplified Inception module and
(b) an “extreme” version of the Inception module (Xception) with one spatial convolution
per output channel. Concat and conv stand for concatenation and convolutions, respectively.
The numbers 1×1 and 3×3 are the convolution block dimensions.

The fundamental hypothesis behind this architecture is that the cross-channel
correlations and spatial correlations are sufficiently decoupled to be mapped
separately.
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As the other previously mentioned CNN architectures, the weights of the
ImageNet-trained Xception architecture are provided as part of the Keras Ap-
plications module. For that reason, and given the results presented in the
work made by (Chollet 2016), this architecture was fine-tuned to the glaucoma
assessment task and its performance results are also presented in the results
section.

Fine-Tuning

CNN architectures can be either trained from scratch (with random initial-
ization) or fine-tuned from models that were trained on a very large database
(e.g. ImageNet, which contains 1.2 million images with 1000 categories (Deng
et al. 2009)).

Fine-tuning a CNN is a procedure that is based on transfer learning (Bengio
2012). In order to optimise the network and minimize the error in a more
specific task, fine-tuning consists of two parts: a) the weight initialization of
the convolutional layers using the weights of the pre-trained CNN with the
same architecture and b) the replacement of the classification function or the
number of nodes in the last fully connected layer. All the weights in the layers
are initialized except for the last fully connected layer whose nodes depend
on the number of classes of the new task. Using fine-tuning technique, the
initialized parameters, or “knowledge”, of the pre-trained networks from natural
non-medical images is transferred to the glaucoma classification task that uses
fundus images.

After the weight initialization, the CNN can be fine-tuned in a layer-wise man-
ner. It means, start fine-tuning only the last layer, then include layers until
fine-tuned all the layers in the network. Depending on the number of fine-tuned
layers, this procedure can be called “shallow tuning” if only the last few layers
are fine-tuned and “deep tuning” if all the layers are fine-tuned (Tajbakhsh
et al. 2016).

In the literature, other applications have successfully used shallow- and deep-
tuned CNNs, obtaining promising results in different computer vision tasks
(Tajbakhsh et al. 2016; H. Chen et al. 2015). In this work, both techniques,
shallow- and deep-tuning, were explored and evaluated. Deep-tuning turned
out to be the best technique when fine-tuning ImageNet-trained CNN for glau-
coma assessment.

For all the experiments executed in this work, the open source Deep Learning
library Keras (Chollet et al. 2015) and NVIDIA GeForce GTX 1080 graphic
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cards were used. Keras library is a simple way to use, implement and fine-tune
CNNs architectures built on top of Theano (Al-Rfou et al. 2016) or TensorFlow
(Abadi et al. 2015).

Preprocessing

The fundus images used for the fine-tuning process were cropped around the
optic disc with a size of 1.5 times the optic disc radius, which turned out to be
the more efficient way to obtain better results when using CNN for glaucoma
assessment task. Cropping the images around the optic disc has also a clinical
reason, glaucoma disease affects mainly the optic disc and its surroundings.

Subtracting the vessels and doing CLAHE enhancement do not provide any
improvement to the classification results (Orlando, Prokofyeva, et al. 2017).
An example of the images used for the fine-tuning and testing time is showed
in Figure 5.5(b).

(a) (b)

Figure 5.5: Digital fundus images. (a) Original fundus image and (b) Cropped image used
for fine-tuning and testing.

Cross Validation

Cross-validation (CV) (Stone 1974; Geisser 1975) is one of the most commonly
used methods for the performance evaluation of a predictive model. Basically,
based on data splitting, part of the data is used for training and the rest of
the data is used for test. A version of CV is the k-fold CV. In this version, the
data is randomly partitioned into k equal-size subsets. k − 1 subsets are used
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for training and the remaining subset is used for test. The average prediction
error of each split is obtained to estimate the model performance (Y. Zhang
and Yang 2015). More information about the k-fold CV can be found on the
survey made by (Arlot and Celisse 2010).

Following the procedure described by (Hastie, Tibshirani, and Friedman 2009),
the performance evaluation of all the pre-trained models used in this subsection
were obtained using the k-fold CV with k = 10.

5.2 Ensemble Setting with CNNs

Several papers have shown that an ensemble method can deliver outstand-
ing performance in reducing the testing error. For instance, (Krizhevsky,
Sutskever, and G. E. Hinton 2012) showed that their ensemble model with
5 convolutional nets achieved a top-1 error rate of 38.1% on the ImageNet
2012 classification benchmark, compared to the top-1 error rate of 40.7% given
by the single model. Another example is the work made by (Zeiler and Fergus
2013) in which they showed that by the ensemble of 6 convolutional nets, they
reduced the top-1 error from 40.5% to 36.0%.

In this section, we proposed a system based on an ensemble of four CNNs for
automatic glaucoma assessment using single retinal fundus images. A schema
of the proposed method can be seen in Figure 5.6
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ResNet50
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Figure 5.6: Schema of the ensemble setting used for glaucoma classification

We used the VGG19, GoogLeNet (InceptionV3), ResNet50 and Xception net-
works for this task. Each network was fine-tuned independently and then
combined in an average ensemble setting to finally obtain a glaucoma score for
each image.
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This method was also used for the REFUGE challenge (See subsection 4.2.2),
hosted at the MICCAI 2018 conference in conjunction with OMIA workshop
https://refuge.grand-challenge.org/home/. (Group name: Cvblab). Ad-
ditionally to the evaluation and comparison of optic disc/cup segmentation
algorithms, this challenge also evaluates the performance of automated algo-
rithms for glaucoma detection.

5.3 Retinal Image Synthesis and Semi-supervised Learning

Retinal Image Synthesis using VAE and DCGAN

The limited number of glaucoma-labelled images available in the literature is a
huge problem when trying to generalise. Therefore, retinal image synthesizer
has been a focus of the scientific community, as it was mentioned in Subsection
2.4.2.

In this subsection, the Variational Autoencoder (VAE) and the Deep Convo-
lutional Generative Adversarial Network (DCGAN) are trained to synthesize
cropped retinal images. Further image quality evaluation is also presented.

Variational Autoencoder

The Variational Autoencoder (VAE) is composed by two neural networks: the
approximate inference network (or encoder), that maps a training example to
a latent (hidden) space, and the decoder network that maps from the latent
space to a synthetic sample. In this work, we used the architecture proposed
in (D P Kingma and Welling 2013), in which the prior over the latent space
is a centred isotropic multivariate Gaussian, and the encoder and decoder are
fully-connected neural networks with a single hidden layer.

During training or learning phase, the encoder obtains the latent variables
z from the input data and the decoder draws those variables to generate a
sample. After that, during the generation phase, VAE draws samples from the
latent space that run through the decoder to finally obtain a synthetic sample.
The VAE architecture can be seen in Figure 5.7(a).
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Generative Adversarial Network

Generative Adversarial Networks, or GAN, are deep neural net architectures
comprised of two nets. One is called the generator and the other (the adver-
sary) is called the discriminator.

A class of CNN called Deep Convolutional Generative Adversarial Networks
(DCGAN) that are based on the adversarial strategy was used for this work.
This architecture was a major improvement on the first GAN, generating better
quality images and more stability during the training stage. Following the
guidelines to construct the generator and discriminator, described in the paper
written by (Radford, Metz, and Chintala 2015), we implemented and trained
them on cropped retinal images using the original discriminator and generator
cost functions.

In the same way, as in the VAE approach, synthetic image generation using
the DCGAN mainly consists of two phases: a learning phase and a gener-
ation phase. For the training phase, the generator draws samples from an
N-dimension normal distribution (latent variables) that run through the gen-
erator to obtain a synthetic sample and the discriminator attempts to distin-
guish between images drawn from the generator and images from the training
set. A figure of a DCGAN architecture can be seen in Figure 5.7(b).
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Figure 5.7: Schema of the VAE and DCGAN architecture. (a) VAE architecture and (b)
DCGAN architecture.

In the following subsection, we focused on the development of an image synthe-
sizer and, at the same time, a semi-supervised learning method for glaucoma
assessment using the DCGAN architecture. Different to this subsection, the
method presented in the next subsection employed a lot more images (86926
cropped retinal images) and not only trained an image synthesizer, but also a
glaucoma classifier.
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Semi-supervised Learning and Retinal Image Synthesis using
DCGAN

Semi-supervised learning is an area in machine learning and a special form of
classification in which a large amount of unlabelled data, along with the la-
belled data, are used to build better classifiers. Other names for this technique
are “learning from labelled and unlabelled data” or “learning from partially
labelled/classified data” (Zhu 2005).

Semi-supervised learning has been of great interest both in theory and in prac-
tice because it requires less human effort and gives higher accuracy. Given the
scarce number of glaucoma-labelled images, this technique can significantly
help the development of automatic glaucoma assessment systems using retinal
images. For that reason, we decided to use the power of the DCGAN to develop
a semi-supervised learning method for training a glaucoma classifier and at the
same time an image synthesizer. In that way, we train a glaucoma classifier
making use of a small set of glaucoma-labelled images, a set of unlabelled im-
ages and the synthetic images generated by the DCGAN to train a glaucoma
classifier. This setting learns not only from the small set of glaucoma-labelled
images but also from the unlabelled and synthetic images.

As in Section 5.3, we used the Deep Convolutional Generative Adversarial Net-
works (DCGAN) as image synthesizer and semi-supervised learning method.
A schema of the trained architecture can be seen in Figure 5.8.
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Figure 5.8: Schema of the DCGAN architecture. The generator takes as input a vector
of latent variables (N-dimension normal distribution) to synthesize retinal images while the
discriminator tries to predict whether the input is a real or a generated image.
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Model Architecture and Hyperparameters

The DCGAN architecture has several improvements on the vanilla GAN. Among
them are the replacement of all pooling layers with strided convolutions in the
discriminator and fractional-strided convolutions in the generator, the use of
batch normalization (batchnorm) in both the generator and the discriminator,
the replacement of fully connected hidden layers with the average pooling at
the end, the use of ReLU activation in the generator for all layers except for
the output and the use of LeakyReLU activation for all layers in the discrimi-
nator. We followed the guidelines to construct the generator and discriminator
described in the paper written by Radford et al. (Radford, Metz, and Chintala
2015).

The architecture of the image synthesis and semi-supervised learning method
differs only on the last output layer (Fully connected layer) of the discriminator:
one neuron for image synthesis (Synthetic or Real, FC-1) and three neurons
for semi-supervised learning method (Normal, Glaucoma and Synthetic class
FC-3. See Figure 5.9). The architecture details are presented in Table 5.1.

Table 5.1: The discriminator and generator CNNs used for retinal image synthesis. conv
stands for convolution, upconv stands for upconvolution, FC stands for Fully Connected and
batchnorm stands for batch normalization.

Discriminator D Generator G

Input 128×128 Color image Input ∈ IR100

5×5 conv, LeakyReLU (alpha 0.2), FC 32×32×256, ReLU, batchnorm
stride 2, Dropout 0.4

5×5 conv, LeakyReLU (alpha 0.2), UpSampling2D size 2
stride 2, Dropout 0.4 5×5 upconv, ReLU, stride 1, batchnorm

5×5 conv, LeakyReLU (alpha 0.2), UpSampling2D size 2
stride 1, Dropout 0.4 5×5 upconv, ReLU, stride 1, batchnorm

FC-1 output layer, sigmoid activation 5×5 upconv, ReLU, stride 1, batchnorm
(Output for DCGAN)

FC-3 output layer, softmax activation 5×5 upconv, Tanh, stride 1
(Output for SS-DCGAN)

Regarding image resolution, we modified the architecture to handle 128×128
px, which is closer to the average resolution of original fundus images cropped
around the optic disc. No pre-processing was applied to the training images,
no data augmentation was used and class weights for the Glaucoma, Normal
and Not-labelled images were set to train the semi-supervised learning method.
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Figure 5.9: Schema of the DCGAN architecture used as a Semi-supervised learning method.
The DCGAN discriminator is converted into a 3-class classifier (Normal, Glaucoma and
Real/Fake class).

Although research in adversarial models continues to improve, stability on
training these models is still a challenging task. For that reason, we followed
the recommendations given in (Chintala et al. 2016) to reach stability on train-
ing the DCGAN and the semi-supervised learning method (SS-DCGAN). Rec-
ommendations such as normalizing the input images between -1 and 1, using
Stochastic Gradient Descent (SGD) optimizer for the discriminator and ADAM
optimizer for the generator, using a Gaussian distribution for the latent space
and mini-batches containing only all real images or all generated images were
used for training the models in this work.

Model Losses

As in a vanilla GAN, the DCGAN model emulates a competition in which
the Generator G attempts to produce realistic images, while the Discriminator
D classifies between images from the training set with their corresponding
labels and images produced by the generator. The main goal of the DCGAN
model is to maximise the miss-classification error of the Discriminator while the
generator produces more realistic images trying to fool the discriminator. This
competition is also called a two-player minimax game and it can be described
as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (5.1)

where Ex∼pdata(x) is the expectation over the training data and Ez∼pz(z) is the
expectation over the data produced by the generator. D(x) represents the
probability that x came from the training data rather than the data produced
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by the generator and G(z) represents the probability of z being produced by
the generator. Therefore, the system is trained to minimize log(1−D(G(z)))
and maximise log(D(x)) (Goodfellow, Pouget-Abadie, et al. 2014).

However, regarding the semi-supervised learning method using the DCGAN
architecture, instead of binary classification, the discriminator is transformed
into a K-class classifier (Salimans et al. 2016; Dai et al. 2017). Therefore, the
semi-supervised setting loss function is composed of two parts; the supervised
and the unsupervised loss function (Diederik P Kingma et al. 2014):

L = Lsupervised + Lunsupervised, (5.2)

where the supervised loss is defined by the cross-entropy loss function as in a
supervised learning setting with K classes:

Lsupervised = −Ex,y∼pdata(x,y) log(pmodel(y|x, y < K + 1)), (5.3)

and the unsupervised loss function is, in fact, the standard GAN minimax
game:

Lunsupervised = −
{
Ex∼pdata(x) logD(x) + Ez∼pz(z) log(1−D(G(z)))

}
(5.4)

where D(x) = 1 − pmodel(y = K + 1|x), being pmodel(y = K + 1|x) the model
predictive distribution and K the number of real classes.

In other words, the unsupervised loss function is computed to differentiate
real training images and fake images and the supervised loss computes the
individual real classes probabilities. In this work, these classes are Glaucoma
and Normal.

5.4 Results

Convolutional Neural Networks (CNNs) for Glaucoma Assessment

All the CNN architectures described in Section 5.1 were fine-tuned to the glau-
coma assessment task using their ImageNet-trained versions available in the
Keras core. To properly fine-tune these architectures, the last fully connected
layer was changed for a global average pooling layer (GlobalAveragePooling2D)
followed by a fully connected layer of two nodes (class scores, glaucoma and
healthy) and a softmax classifier. With this change to the original architec-
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tures, all the models were trained using the Stochastic Gradient Descent (SGD)
optimizer, with a batch size of 8 a fixed learning rate of 1e−4 and a momentum
of 0.9.

A total of 1707 images belonging to the ACRIMA, HRF (Köhler et al. 2013),
Drishti-GS1 (Sivaswamy et al. 2014), RIM-ONE v1 (Medina-Mesa et al. 2015),
and sjchoi86-HRF (sjchoi86 2017) databases were used (788 glaucomatous im-
ages and 919 normal images). It is important to remark that images from
all databases were cropped around the optic disc. Only the images in the
RIM-ONE database came originally cropped around the optic disc.

Although we got a considerable number of images to fine-tune the networks,
images were randomly rotated, zoomed and horizontal and vertical flipped
to augment the number of images; which avoid overfitting and increase the
performance of the models. The images were also rescaled to the default input
size of each CNN architecture (224 × 224 for VGG16, VGG19 and ResNet50
and 299× 299 for Inceptionv3 and Xception).

The results presented in this section were obtained for 200 epochs, which turned
out to be the optimum number of epochs to get the best performance for the
fine-tuning process.

As a first experiment, only the last weighted layer of the CNN architectures was
fine-tuned, keeping the other layers in a “not trainable” mode. Afterwards, the
number of weighted layers that were fine-tuned was increased until updating
all the layers in the CNN. After these experiments, it was observed that the
best results were obtained when all the layers were fine-tuned.

For the model evaluation, 10-fold cross validation was performed. Therefore,
10 values of area under the curve (AUC), accuracy, specificity, sensitivity and
F-score were obtained. Afterwards, the average and standard deviation of these
values were calculated for each CNN architecture. Results for each fine-tuned
model are presented in Table 5.2.

Table 5.2: Results for each model doing deep tuning and 10-fold cross validation

ModelName AUC Accuracy Specificity Sensitivity Fscore

VGG16 (Simonyan and Zisserman 2014) 0.9632 (0.0149) 0.8948 (0.0253) 0.8816 (0.0612) 0.9057 (0.0331) 0.9005 (0.0231)

VGG19 (Chatfield et al. 2014) 0.9686 (0.0158) 0.9069 (0.0318) 0.8846 (0.0362) 0.9240 (0.0434) 0.9125 (0.0312)

InceptionV3 (Szegedy, W. Liu, et al. 2015) 0.9653 (0.0135) 0.9000 (0.0201) 0.8752 (0.0358) 0.9216 (0.0311) 0.9056 (0.0236)

ResNet50 (He et al. 2016) 0.9614 (0.0171) 0.9029 (0.0249) 0.8943 (0.0350) 0.9105 (0.0282) 0.9076 (0.0251)

Xception (Chollet 2016) 0.9605 (0.0170) 0.8977 (0.0264) 0.8580 (0.0398) 0.9346 (0.0247) 0.9051 (0.0274)
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Additionally to the measurements reported in Table 5.2, the ROC curves for
the average specificity and sensitivity, obtained by performing 10-folds cross
validation, were plotted in Figure 5.10.
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Figure 5.10: Average ROC curves for each fine-tuned CNN architecture

It is possible to see that all the proposed fine-tuned models have really good
performance for the glaucoma assessment task. As the performance of the
models is comparable, characteristics of the CNN such as the number of pa-
rameters can be used to determine which model is better than the others.

In Table 5.3, the number of parameters and the obtained AUC of each CNN
architecture are shown. It is possible to see that, although VGG16 and VGG19
present higher AUC than the Xception architecture, they have much more
parameters to fine-tune, which requires more computation power and resources.
Therefore, the Xception architecture presents a better trade-off between the
number of parameters and obtained AUC than the other architectures.

Given the changes in illumination and high variability among databases, the
glaucoma assessment using fundus images is not an easy task. A developed
method that properly classifies images from a certain database/s does not
necessarily perform well when it is applied to images that come from a dif-
ferent database. A critical experiment that evaluates the performance of a
glaucoma classifier consists of using images that come from a different sensor
or database. For that reason, five different experiments using the Xception
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Table 5.3: Number of parameters and obtained AUC for each architecture.

Model Name # parameters (in millions) AUC

VGG16 138 0.9632 (0.0149)

VGG19 144 0.9686 (0.0158)

InceptionV3 23 0.9653 (0.0135)

ResNet50 25 0.9614 (0.0171)

Xception 22 0.9605 (0.0170)

architecture and all public glaucoma-labelled databases (HRF, Drishti-GS1,
RIM, sjchoi86-HRF and ACRIMA) were done. First, the Xception architec-
ture was fine-tuned using all the databases except the images that belong to
the database to be tested. Secondly, the trained model is tested on the desired
database. This approach is repeated to test HRF, Drishti-GS1, RIM, sjchoi86-
HRF and ACRIMA database. The results obtained from these experiments
are presented in Figure 5.11 and Table 5.4, in which is possible to see that
although the Xception architecture was fine-tuned without using images from
these databases, its performance is promising.

Table 5.4: Obtained results for HRF, Drishti-GS1, RIM, sjchoi86-HRF and ACRIMA
databases, using Xception architecture represented in AUC, Accuracy, sensitivity and speci-
ficity.

Database AUC Accuracy Sensitivity Specificity # images

HRF 0.8354 0.8000 0.8333 0.7778 45

Drishti-GS1 0.8041 0.7525 0.7419 0.7143 101

RIM-ONE 0.8575 0.7121 0.7931 0.7990 455

sjchoi86-HRF 0.7739 0.7082 0.7033 0.7030 401

ACRIMA 0.7678 0.7021 0.6893 0.7020 705

It can be seen from Table 5.4 how robust is the developed system in terms
of AUC, accuracy, sensitivity and specificity when evaluating images from
databases that differ to the ones used during the fine-tuning process.

Thanks to the public availability of the Drishti-GS1 database, a comparison
with other state-of-the-art algorithms that used this database is possible. For
instance, in the work developed by (Chakravarty and Sivaswamy 2016), they
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Figure 5.11: ROC curves for the Xception architecture in different experiments. When
using HRF, Drishti-GS1, RIM, sjchoi86-HRF and ACRIMA database only as test set and
using as test set a percentage of all the HRF, Drishti-GS1, RIM-ONE, sjchoi86-HRF and
ACRIMA databases combined (Using all databases).

obtained an AUC of 0.78 when tested their method on this database. Or the
work presented by (Orlando, Prokofyeva, et al. 2017), in which they obtained
an AUC of 0.76 using pre-trained CNNs applied to the Drishti-GS1 database.
It can be seen from Table 5.4 that the proposed method outperformed the ex-
isting works. Moreover, it must be taken into account that (Chakravarty and
Sivaswamy 2016) and (Orlando, Prokofyeva, et al. 2017) evaluated their meth-
ods using the same database for training and test different to the experiments
we performed in which Drishti-GS1 database is only used for test.

Although it is not possible to do a fair comparison with other CNN-based
methods, as the databases used in other works are private and complete details
about the implemented algorithms are not given, the results presented in (X.
Chen et al. 2015) are outperformed by the proposed method. In their work,
they obtained a maximum AUC of 0.887, which is lower than the AUC we
obtained (0.9605).
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Ensemble Setting with CNNs

For the ensemble setting (using VGG19, InceptionV3, ResNet50 and Xception
networks), we employed a total of 2140 images from five public databases.
These images belongs to the HRF (30 images) (Köhler et al. 2013), Drishti-GS1
(101 images) (Sivaswamy et al. 2014), RIM-ONE v3 (159 images) (Medina-
Mesa et al. 2015), ORIGA-light (650 images) (Z. Zhang et al. 2010), and
REFUGE (1200 images) (REFUGE 2018) databases.

As mentioned in Section 5.2, the ensemble setting was implemented for the
REFUGE challenge. In this challenge, the main goal in the classification task
was to obtain the maximum AUC on the validation (400 images) and test set
(400 images) of the REFUGE database. Therefore, we used 1340 for training
and 800 images for validation and test, obtaining an AUC of 0.94 for the
validation set and 0.88 for the test set.

Retinal Image Synthesis and Semi-supervised Learning

Our main goal in this section is to show the methods used for image synthesis
and semi-supervised learning. In the first part (subsection “Retinal Image
Synthesis using VAE and DCGAN”), we present the performance obtained
from the VAE and DCGAN architectures, when trained on 2357 glaucoma-
labelled images, for the images synthesis task. After that (subsection “Semi-
supervised Learning and Retinal Image Synthesis using DCGAN”), we present
the performance results of the DCGAN and the SS-DCGAN when trained on
86926 images. This second part is focused on both, image synthesis and the
semi-supervised learning method.

Retinal Image Synthesis using VAE and DCGAN

In this section, we will present the obtained results of using the VAE and
DCGAN architectures for retinal image synthesis. These architectures were
trained on 2357 cropped retinal images from five public glaucoma-labelled
databases: HRF (Köhler et al. 2013) (45 images), Drishti-GS1 (Sivaswamy
et al. 2014) (101 images), ORIGA-light (Z. Zhang et al. 2010) (650 images)
RIM-ONE (Medina-Mesa et al. 2015) (455 images) and sjchoi86-HRF (sjchoi86
2017) database (401 images) and our private database, ACRIMA (705 images).
All images were manually cropped around the optic disc by an expert, with
the exception of RIM-ONE images that are already cropped in the original
database.
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In order to keep a trade-off between performance and system complexity, the
images were automatically re-scaled to the following resolutions: 28× 28 pix,
56 × 56 pix, 112 × 112 pix and 224 × 224 pix. For each image size, we tested
a range of N-dimensional latent spaces from 32 to 100 latent variables. Each
latent space was explored in order to check that the systems do not memorise
the training database and, at the same time, it generates plausible retinal
images. To do that, we used spherical interpolation to evaluate intermediate
latent representation points (White 2016).

For training the VAE model, we ran several tests and found out that the
best results are obtained when using a 100-dimension latent space and image
resolution of 28 × 28 and 56 × 56 pix. Running for 500 epochs and a small
batch size of 64, we obtained the synthetic images presented in Figure 5.12

(a) (b) (c) (d)

Figure 5.12: Examples of images synthesised by the VAE architecture. (a-b) Images of
28× 28 pix and (c-d) images of 56× 56 pix.

Although the texture of the synthetic images obtained from VAE is similar to
the real images, they are blurry and do not have sharp vessels as in real fundus
images. For that reason, we only trained on the resolution 28× 28 and 56× 56
pix.

Regarding the DCGAN architecture, we found that realistic images were ob-
tained when using an image size of 224× 224 pix, a small batch size of 32 and
35000 steps. Examples of them are shown in Figure 5.13(d-f).

The main advantage of using the DCGAN architecture is that synthetic images
are sharper than the ones synthesised by the VAE approach. We can see from
Figure 5.13(d-f) well-defined optic disc shapes, how blood vessels converge
into the optic disc and the right and left eye symmetry. For this reason, we
continued with the evaluation of only the images synthesised by the DCGAN
architecture and discarded those obtained by the VAE architecture.
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(a) (b) (c) (d) (e) (f)

Figure 5.13: Examples of real images and examples of synthetic images generated by the
DCGAN architecture. (a - c) Real images and (d - f) Synthetic images.

Experimental Evaluation

Although a great effort to develop objective metrics that correlate with per-
ceived quality measurement has been made in recent years, it is still a chal-
lenging task. In the case of quality evaluation of synthetic images, it should be
specific for each application (Theis, Oord, and Bethge 2016). For that reason,
we created a database composed of 200 images: 100 synthetic images and 100
real images (randomly selected from the training set) to perform a qualitative
and quantitative evaluation of our methods.

Qualitative evaluation of the database was carried out by ten experts with
3 to 10 years of experience. They evaluated the anatomical consistency and
plausibility of the synthetic images. For this purpose, we developed a web ap-
plication (https://cvblab.synology.me/ganval/) that randomly shows the
200 images (one each time) to be evaluated by the expert. For each expert, we
calculated the Cohen’s kappa coefficient using the ground-truth labels (Fake
- Real) and the labels given by each expert. The Cohen’s kappa coefficient
ranges from −1 to +1, where 0 represents the amount of agreement that can
be expected from random chance, and 1 represents a perfect agreement be-
tween the ground-truth and the expert. The obtained results are presented in
Figure 5.14.

It can be seen from Figure 5.14 that although the Cohen’s Kappa coefficient
is high for two experts with high expertise, most of them were fooled when
evaluating synthetic images.

Quantitative evaluation was carried out by measuring and further compari-
son of the average proportion of pixels belonging to the vessel and optic disc
structures between the synthetic and real images. To obtain these percentages,
optic disc masks were manually segmented by clinical experts and the vessel
masks were automatically segmented using the method proposed in (Morales,
Naranjo, Navea, et al. 2014). Table 5.5 shows the obtained results.

81

https://cvblab.synology.me/ganval/


Chapter 5. Glaucoma Classification and Retinal Image Synthesis using Deep Learning

Figure 5.14: Qualitative evaluation using Cohen’s Kappa coefficient and years of experi-
ence. Blue stars mean two squares are in the same point.

Table 5.5: Mean and standard deviation of pixel proportion occupied by the vessels, optic
disc and background on the evaluation database.

Synthetic Images Real Images

Vessel proportion 0.1431± 0.0306 0.1519± 0.0306

Optic Disc proportion 0.1776± 0.0339 0.2456± 0.0722

Background 0.6792± 0.0428 0.6025± 0.0795

It is possible to observe from Table 5.5 that the mean proportions between
synthetic and real images are very similar. The small difference between the
mean proportion of the synthetic and real optic discs depends on the normal
variation of the optic disc size among real fundus images.

To support the quantitative evaluation and to analyse the similarity between
synthetic and real images, we also obtained the averaged 2D-histogram of real
and synthetic images. These 2D-histograms were constructed using the Red
and Green channels normalized by the luminance (See Figure 5.15).

Moreover, we calculated the mean-squared error between the averaged 2D-
histograms and the chromaticity diagram of each of the 200 images of the
database. The obtained results are presented in Table 5.6.
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(a)

(b)

(c)

Figure 5.15: Averaged 2D-histograms of the synthetic and real images. (a) Averaged
2D-histogram of real images, (b) Averaged 2D-histogram of synthetic images and (c) Mean-
squared error between synthetic and real 2D-histogram.
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Table 5.6: Average and standard deviation of the mean-squared error between the averaged
2D-histograms and all images.

Averaged 2D-histogram Real Images Synthetic Images

Real 0.0028± 3.25× 10−4 0.0036± 5.43× 10−4

Synthetic 0.0031± 4.61× 10−4 0.0022± 5.62× 10−4

The obtained results of this evaluation show that the mean-squared error be-
tween synthetic and real images is smaller than the resulting standard deviation
among real images (3.25× 10−4).

An additional experiment to further analyse the latent space and cup size of the
images was performed. We automatically measured the Cup/Disc ratio (CDR)
to 1500 synthetic images using the method proposed by (Fu et al. 2018). From
these samples, we obtained 743 glaucomatous images when setting the CDR
threshold to 0.6 and 344 glaucomatous images when setting the CDR threshold
to 0.7. This shows how this method could be used to assign glaucoma labels
to synthetic images by using the CDR value.

Semi-supervised Learning and Retinal Image Synthesis using DCGAN

For this method, we used all the publicly available databases in the litera-
ture. A total of 86926 images belonging to the ORIGA-light (Z. Zhang et al.
2010), Drishti-GS1 (Sivaswamy et al. 2014), RIM-ONE (Medina-Mesa et al.
2015), sjchoi86-HRF (sjchoi86 2017), HRF (Köhler et al. 2013), ACRIMA,
DRIVE (Staal et al. 2004), MESSIDOR (Decencière, X. Zhang, et al. 2014),
DR KAGGLE (Kaggle 2015), STARE (Hoover, Kouznetsova, and Goldbaum
2000), e-ophtha (Decencière, Cazuguel, et al. 2013), ONHSD (Lowell et al.
2004), CHASEDB1 (Owen et al. 2011), DRIONS-DB (Carmona et al. 2008),
and SASTRA (Narasimhan et al. 2012) databases were used to carry out the
experiments.

All images were automatically cropped around the optic disc by using the
method proposed in (P. Xu et al. 2017), with the exception of RIM-ONE
where images are already cropped (See Figure 5.16). In order to fully covered
the optic disc, we used a bounding box with ten more pixels around it. After
cropping the images, they were revised by an expert in order to remove images
with no optic disc or with the presence of huge artefacts. For that reason, we
used fewer images of the DR KAGGLE (82447 instead of the 88702 images),
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SASTRA (34 instead of 40 images), DRIONS-DB (105 instead of 110 images),
ONHSD (89 instead of 99 images) and e-ophtha (431 instead of 463 images).

In this section, and as in previous sections in which deep learning techniques
were employed, we used the open source Deep Learning library Keras (Chollet
et al. 2015) and NVIDIA Titan Xp GPU.

In order to test the performance of the semi-supervised method, images with
glaucoma and normal labels were divided into train and test using a typical
division: 70% for training and 30% for test (287 glaucomatous and 420 normal
images). In that way, the performance of the resulting discriminator/classifier
can be evaluated using the test set.

As already mentioned in subsection 5.3, we trained an image synthesizer and a
semi-supervised learning method. These models were trained on 86926 cropped
retinal images from fourteen different databases. In the process of training
these models, we tested a range of N-dimensional latent spaces from 32 to
100 latent variables. Each latent space was explored in order to check that
the systems do not memorise the training database and, at the same time, it
generates plausible retinal images. To accomplish this goal, we used spheri-
cal interpolation (White 2016) to evaluate intermediate latent representation
points as it was done in (Costa, Galdran, M. I. Meyer, Abràmoff, et al. 2017).
Regarding the image size, all the images were rescaled into 128×128 px because
this size represents the nearest power of two to the averaged height and width
of a retinal image cropped around the optic disc. We utilised a power of two
image size to optimise speed and computational performance.

Retinal Image Synthesis

In this subsection, information about training stage (i.e. number of epochs)
and a description of the obtained results (i.e. image resolution, image quality)
using the DCGAN and SS-DCGAN will be presented.

Realistic images from the DCGAN model were obtained after 15 Epochs. How-
ever, for the SS-DCGAN model 150 Epochs were needed to obtain good enough
synthetic images. To train the SS-DCGAN algorithm, we weighted the classes
during the training stage because there is less number of glaucomatous images
in the training set than normal and/or images without labels.
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Experimental Evaluation

To evaluate this method, we created a database composed of 400 images: 100
synthetic images from the DCGAN, 100 synthetic images from the SS-DCGAN,
100 images from a state-of-the-art method (Costa’s method (Costa, Galdran,
M. I. Meyer, Niemeijer, et al. 2017)), and 100 real images (randomly selected
from the training set with the exception of ORIGA-light database that will
be used for qualitative evaluation) to perform a qualitative and quantitative
evaluation. The synthetic images used for this evaluation were generated after
training the DCGAN for 15 Epochs and the semi-supervised learning method
for 150 Epochs.

As previously mentioned, synthetic images evaluation should be specific for
each application. For that reason, we believe a good way to compare synthetic
and real retinal images is by comparing the features extracted by a CNN trained
to classify retinal images. Therefore, we fine-tuned the ResNet50 architecture
(He et al. 2016) on the ORIGA-light database as a glaucoma classifier. Once
this network was fine-tuned, we took 100 features for each image using a fully
connected layer with 100 neurons on the top model, in which each neuron’s
output represents one feature.

After obtaining the 100 features for each image, we qualitatively show with t-
SNE (Maaten and G. Hinton 2008) the feature differences between real images
and synthetic images generated by the DCGAN, the semi-supervised learning
method and the Costa’s method (Costa, Galdran, M. I. Meyer, Niemeijer, et
al. 2017).

It is important to highlight that Costa’s method was originally presented to
synthesize images with a wider field of view and fewer images. For that reason,
we retrained their method on the 86926 cropped retinal images with a resolu-
tion of 128×128 px. Examples of images used for this comparison are shown
in Figure 5.16.

For the quantitative evaluation, we analyzed two important features in cropped
retinal images: the anatomic characteristics such as vessels and the optic disc
and the colour properties of the images. In particular, optic disc masks were
manually segmented by clinical experts and the vessel masks were automati-
cally segmented using the method proposed in (Morales, Naranjo, Navea, et al.
2014).

The colour properties of the images were analyzed by the averaged chromaticity
diagram (Colomer, Naranjo, and Angulo 2017). We additionally measured
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Real Images

DCGAN 
Method

Costa’s 
Method

SS-DCGAN 
Method

Figure 5.16: Examples of real images (first row), synthetic images generated by the DC-
GAN method (second row), synthetic images generated by Costa’s method (third row) and
synthetic images generated by the Semi-supervised DCGAN (fourth row).

the mean-squared error between the averaged histograms and the individual
chromaticity diagram of each image. Results of this evaluation are presented
in the next section.

In order to compare qualitatively and quantitatively the synthetic images ob-
tained from our method, we first trained the method proposed by (Costa,
Galdran, M. I. Meyer, Abràmoff, et al. 2017), following all the recommenda-
tions given in their paper, to generate cropped retinal images with the same
size (128×128 px). See Figure 5.16.

As it can be seen from the Figure 5.16, synthetic images obtained from the
DCGAN model are sharper, they present well-defined optic disc shapes, how
the blood vessels clearly converge into the optic disc and right/left eye sym-
metry is evidenced in the resulting images. From this comparison, we found
out that synthetic images from the Costa’s algorithm have artefacts inside the
optic disc as it is shown in Figure 5.17

These observations can be also qualitatively evaluated making use of the t-
SNE plots. See Figure 5.18. From Figure 5.18 it is possible to see that features
(extracted by the t-SNE algorithm) of the synthetic images generated by the
DCGAN architecture are closer to the real images than the other methods
and the features of images generated by Costa’s method are closer to the real
images than the SS-DCGAN method.
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(a) (b)

Figure 5.17: Image sample generated by the Costa’s (a) and the DCGAN (b) methods.
Artifacts inside the optic disc are visible on the image generated by the Costa’s method.

(a) (b) (c)

Figure 5.18: t-SNE plots of features associated to the different types of synthetic images.
Yellow and blue dots indicate real and synthetic features respectively. Features of synthetic
images using (a) DCGAN method, (b) Costa’s method and (c) Semi-supervised DCGAN).
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The quality of the images generated by the Semi-supervised DCGAN was ex-
pected to be low because this method is not only synthesizing images but
also training a glaucoma classifier using labelled and not-labelled glaucoma-
tous images. It was empirically demonstrated in (Dai et al. 2017) that a good
semi-supervised learning method and a good generator cannot be obtained at
the same time.

Given the results obtained from the qualitative evaluation, we decided to evalu-
ate quantitatively the real images, the images generated by the Costa’s method
and the DCGAN. The semi-supervised DCGAN model will be further evalu-
ated on glaucoma classification due to its low performance in synthesizing
images.

As previously mentioned, the quantitative evaluation was carried out by mea-
suring the average proportion of pixels belonging to the vessel and optic disc
structures. Table 5.7 shows the obtained results.

Table 5.7: Mean and standard deviation of pixel proportion occupied by the vessels, optic
disc, and background on the evaluation database.

Real Images DCGAN method Costa’s method

Vessel proportion 0.1519± 0.0306 0.1431± 0.0306 0.1026± 0.0195

Optic Disc proportion 0.2456± 0.0722 0.1776± 0.0339 0.1851± 0.0396

Background 0.6025± 0.0795 0.6792± 0.0428 0.7122± 0.0437

It is possible to observe from Table 5.7 that the mean proportions between
synthetic and real images are very similar. The small difference between the
mean proportion of the synthetic and real optic discs depends on the normal
variation of the optic disc size among real fundus images. Moreover, the vessel
proportion obtained from the Costa’s images (0.1026) is significantly less than
the averaged vessel proportion obtained from the real images (0.1519). This
result could also be seen from Figure 5.17, in which vessels of the Costa’s
images are not as sharp as in the real or DCGAN images.

In order to evaluate the colour properties of the synthetic and real images, we
also obtained the averaged 2D-histogram of real and synthetic images generated
by our method and Costa’s method. These 2D-histograms were constructed
using the red and green channels normalized by the luminance (See Figure
5.19). It can be seen in Figure 5.19 that the shape of the histogram obtained
from the DCGAN images (Figure 5.19(b)) is more similar to the shape of the
histogram obtained from the real images (Figure 5.19(a)) than the shape of
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the histogram obtained from the images generated by Costa’s method (Figure
5.19(c)). This means that the colour properties of the images generated by the
DCGAN method are closer to the properties of real retinal images.

Additionally, we calculated the mean-squared error between the averaged 2D-
histograms and the chromaticity diagram of each of the 300 images of the
database (100 Real images, 100 synthetic images using the DCGAN and 100
images using Costa’s method). In other words, we compute for example the
mean-squared error between the averaged 2D-histogram of real images and
each image synthesized by the DCGAN and the Costa’s method. The obtained
results are presented in Table 5.8.

Table 5.8: Average and standard deviation of the mean-squared error between the averaged
2D-histograms of our method, Costa’s method, and all images.

Averaged 2D-histogram Real Images DCGAN method Costa’s method

Real 0.0028± 0.000325 0.0036± 0.000543 0.0013± 0.000262

DCGAN method 0.0031± 0.000461 0.0022± 0.000562 0.0016± 0.000439

Costa’s method 0.0031± 0.000126 0.0035± 0.000178 0.0010± 0.000163

In Table 5.8 it is possible to see that images generated by the DCGAN method
are more heterogeneous among them than the images generated by the Costa’s
method. This is represented by the mean error distance between the averaged
2-D histogram and each image generated by the Costa’s method (0.0013).

Glaucoma Diagnosis

In the qualitative evaluation we showed that although the SS-DCGAN system
does not generate synthetic images better than the state-of-the-art methods,
the resulting discriminator/classifier of the SS-DCGAN could be used as a
glaucoma classifier. This classifier is the result of using glaucoma, normal and
not-labelled images for training.

We computed the ROC curve, AUC, specificity, sensitivity and F-score to
evaluate the performance of the proposed glaucoma classifier on the test set
(287 glaucomatous and 420 normal images). Moreover, the obtained results
were compared with other works in the literature such as the CNNs proposed
by (X. Chen et al. 2015) and (Alghamdi et al. 2016). These networks were
trained from scratch and tested on the same dataset used to evaluate our
method. Additionally, we fine-tuned the ResNet50 architecture using the Im-
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Figure 5.19: Averaged 2D-histograms of synthetic and real images. (a) Averaged 2D-
histogram of real images, (b) Averaged 2D-histogram of synthetic images generated by the
DCGAN model and (c) Averaged 2D-histogram of synthetic images produced by Costa’s
method. X-axis represents the normalized red channel and the Y-axis represents the nor-
malized green channel.
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ageNet weights. The obtained results from those models and our method are
presented in Figure 5.20 and Table 5.9.
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Figure 5.20: ROC curve for the glaucoma classifier trained by the Semi-supervised learning
method.

Table 5.9: Comparison results of the proposed glaucoma classifier.

Model Specificity Sensitivity AUC F-score

Chen (X. Chen et al. 2015) 0.7440 0.8150 0.8330 0.8188

Alghamdi (Alghamdi et al. 2016) 0.6894 0.8384 0.8365 0.8174

ResNet50 (He et al. 2016) 0.8055 0.7775 0.8607 0.8137

SS-DCGAN 0.7986 0.8290 0.9017 0.8429

It is possible to see, from the Figure 5.20 and Table 5.9, that although the
obtained results using the ResNet50 model, Chen’s and Alghamdi’s methods
present a high AUC, the proposed glaucoma classifier outperforms them.

It is important to highlight that the architecture of the discriminator/classifier
in the SS-DCGAN model is less complex than most of the works in the lit-
erature (4 layers). For instance, the CNN proposed by Chen is composed of
6 layers, the CNN proposed by Alghamdi is composed of 10 layers, and the
ResNet50 architecture is composed of 50 layers. This improvement is given
by the images without label and the synthetic images used to train the semi-
supervised DCGAN. It was empirically demonstrated in (Dai et al. 2017) that
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generative adversarial networks used as semi-supervised learning method boost
the task performance because it uses the synthetic images generated while
training the discriminator/classifier.

5.5 Discussion

In sections 5.1 and 5.2, we have proposed two methods for automatic glaucoma
assessment using pretrained ImageNet CNN architectures. In the first method
(Section 5.1), we used images cropped around the optic disc to fine-tune the
VGG16, VGG19, InceptionV3, ResNet50, and Xception architectures. Using
10-fold cross-validation, we compared the performance between all these archi-
tectures. Although they have similar performance, the Xception architecture
presents a better trade-off between the number of parameters and accuracy in
glaucoma detection (AUC = 0.9605). Additionally, we carried out more ex-
periments in order to analyse the performance of the Xception architecture on
unseen images. From these experiments, we could see how this network outper-
formed the state-of-the-art CNNs for glaucoma assessment on a cross-testing
setting.

The second glaucoma classifier (Section 5.2) is an average ensemble setting
that uses four CNN architectures: VGG19, InceptionV3, ResNet50, and Xcep-
tion. This configuration reduces the error rate by using the combination of
output predictions of each CNN. Because this method was used to participate
in the REFUGE challenge, we trained this algorithm on complete retinal im-
ages. Validation and test were performed on the validation and test set of the
REFUGE database, obtaining an AUC of 0.94 and 0.88 for the validation and
test set, respectively.

To summarise, we employed the fine-tuning technique on CNNs that were ini-
tially trained on natural (non-medical) images to classify glaucomatous images.
Furthermore, we compared the performance of five CNNs by using cross-testing
validation. Finally, we presented an average setting that was employed to com-
pete in the REFUGE challenge.

In Subsections 5.3 and 5.3, two approaches for retinal image synthesis and
semi-supervised learning have been introduced. In Subsection 5.3, a compari-
son between two image synthesizers, VAE and DCGAN, have been presented.
Training these two models, we generated synthetic retinal images that were
qualitatively and quantitatively evaluated. From this comparison, we saw that
the DCGAN performed better than the VAE architecture in synthesizing reti-
nal images. Additionally, we measured the CDR to 1500 synthetic images
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which were used to put a label to each image. However, as CDR depends
on how well the optic disc/cup is segmented, we decided to go further with
retinal image synthesizers to produce glaucoma-labelled images by using a
semi-supervised learning approach.

As our main goal was to implement a robust image synthesizer, capable of gen-
erating glaucoma-labelled images, we first collected and used, to the best of our
knowledge, all the publicly available images (86926) to train again the DCGAN
architecture as image synthesizer and a semi-supervised learning method based
on the DCGAN (SS-DCGAN). Using the SS-DCGAN, we improved the state-
of-the-art methods in retinal image synthesis and in automatic glaucoma clas-
sification (AUC = 0.9017) as shown in Section 5.3. The SS-DCGAN method
is able to synthesise retinal image without previous vessel segmentation, which
is an improvement to the methods proposed in the literature.

In summary, we showed how the DCGAN architecture outperformed the VAE
architecture and the state-of-the-art methods in retinal image synthesis. More-
over, the proposed semi-supervised learning method (SS-DCGAN) is able to
generate an unlimited number of glaucoma-labelled images that can be used
to train a glaucoma classifier.
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Conclusions

In this thesis we have presented several contributions for automatic glaucoma
assessment and optic disc and optic cup segmentation algorithms using retinal
fundus images. As it was indicated in Chapter 2, the used of these types of
images to assess glaucoma is highly valuable due to the low cost and non-
invasive nature of this imaging modality.

In Chapter 4 we have presented a novel optic cup segmentation method based
on the stochastic watershed transformation. We demonstrated that using
the YIQ colour space and measuring the CDR, we obtained a sensitivity
and a specificity comparable with state-of-the-art algorithms in the literature.
This algorithm was validated on 723 colour fundus images from six different
databases with high variability. However, because this method is highly depen-
dent on the intensity to detect the cup, in Subsection 4.2.2 we presented how
the U-Net performs better for optic disc and optic cup segmentation which has
the ability to learn more discriminative features than only the intensity. Using
only publicly available databases, we trained, validated and tested a two-stage
segmentation method, which also allows us to participate in the REFUGE
challenge hosted at the MICCAI2018 conference in conjunction with OMIA
workshop.

Regarding automatic glaucoma classification task, we also proposed and im-
proved the state-of-the-art results by using convolutional neural networks (CNNs)
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pre-trained on the ImageNet database. In Chapter 5, we showed how five dif-
ferent CNNs could be used for automatic glaucoma assessment when small
datasets are available. We fine-tuned these CNNs on 1707 images and aug-
mented images. Additionally, we also developed a method using four CNNs on
an average ensemble setting. This method was also used to participate in the
same challenge previously mentioned in Subsection 4.2.2 (REFUGE challenge).

Given the fact glaucoma-labelled images are often scarce or costly to obtain and
the performance of a glaucoma assessment system is affected by the number
of labelled images used during the training stage, we presented two image
synthesizers based on the VAE and DCGAN architecture (Subsection 5.3).
These two models were trained on cropped retinal images from one private
and five public databases (2357 retinal images). They showed an improvement
in the state-of-the-art algorithms because the models we presented do not
need the vessel masks to synthesise images. Ten clinical experts qualitatively
evaluated the results of this method by randomly presenting 100 real images
and 100 synthetic images. With the results of this evaluation, we demonstrated
that most of the clinical experts were fooled when evaluating synthetic images.
Furthermore, we measured the CDR and put a label according to its CDR value
to 1500 synthetic images. However, as CDR depends on how well the optic
disc/cup is segmented, we decided to go further with retinal image synthesizers.

Therefore, an algorithm able to generate and, at the same time, label images
was proposed in Subsection 5.3. In this Subsection, we presented a semi-
supervised learning method for automatic glaucoma assessment. This method
used the DCGAN model and was trained on a small glaucoma-labelled and
large unlabelled database. To train this model, we used 86926 retinal images,
in which only 2357 images have glaucoma labels. Qualitative and quantitative
evaluation were carried out on the obtained synthetic images, showing an im-
provement in quality when compared with the current works in the literature.
Moreover, glaucoma labels to synthetic data were be assigned without using
the CDR.

As future works, several lines of research could be carried out from the con-
tributions made in this thesis. It was presented in this thesis that the use
of generative adversarial networks, as semi-supervised learning methods, have
great potential for training image synthesizers and glaucoma classifiers. For
that reason, the use of more advanced generative adversarial networks such
as image-to-image translation methods, for retinal image synthesis and semi-
supervised learning can be considered as a future line of research.
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Given the performance presented by the CNNs, another future line of research
could be the implementation and analysis of deeper and new convolutional
neural networks such as ResNet152 and InceptionResNetV2. A comparison be-
tween these networks trained with synthetic images against networks trained
with real images could also be considered as a further line of research. In
this way, we could explore all the potential that CNNs can give to the glau-
coma classification task. Finally, we think a further line of research can be the
combination of fundus images with clinical history and/or other image tech-
nology such as optical coherence tomography (OCT) to obtain more accurate
screening results. As it can be used to measure the thickness of layers in the
retina.
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