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Abstract

We analyze some of the existent software tools to identify fractional-order transfer
functions from experimental data, and, more broadly, their use in the context of
Systems and Control Engineering.

The main goal of this Master Thesis is to compare fractional-order transfer
functions to ordinary ones, the latter being supported by many years of experience
in their use and development, in order to determine whether the former could
provide practical advantages, at least for certain kinds of systems, like those which
present di�usion phenomena, delays, and other characteristics hard to capture.

Resumen

Se propone analizar las herramientas sofware existentes para identi�car funciones
de transferencia fraccionales a partir de datos experimentales y su uso en el con-
texto de la ingenieria de sistemas y control.

El objetivo principal es compararlas con funciones de transferencia ordinarias,
para las que hay herramientas con muchos años de experiencia en su uso y desar-
rollo, para determinar si las nuevas herramientas ofrecen alguna ventaja práctica al
menos para determinado tipo de sistemas como puedan ser aquellos que presentan
fenómenos de difusión, retardos y otras características di�ciles de capturar.

Sommario

Vengono analizzati alcuni strumenti software per identi�care funzioni di trasferi-
mento frazionarie a partire da dati sperimentali e, più in generale, per il loro uso
nel campo dell'Ingegneria di Sistemi e di Controllo.

L'obiettivo principale è comparare le funzioni di trasferimento di ordine non
intero a quelle ordinarie, che sono sostenute da decenni di esperienza nel loro uso
e sviluppo, per veri�care se questi nuovi strumenti possano fornire un vantag-
gio pratico, almeno per determinati tipi di sistemi, come quelli che presentano
fenomeni di di�usione, ritardi e altre caratteristiche di�cili da catturare.
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Introduction

Fractional calculus is a branch of mathematical Analysis with three centuries of
history that recently has seen strong reception in a variety of �elds, from engi-
neering [31, 20, 2] to biology [25, 17]. The �exibility given by a noninteger order
of derivation or integration seem to help understanding underlying dynamics of
many systems in an unprecedented way. In particular, two of the main sectors
of employment of fractional modeling are control theory and system identi�cation
theory, both in real-life industrial scenarios and in more theoretical works. In con-
trol theory, the impression is that the non-integer character of the operators allows
to capture nonlinearities, at least partially, in order to design a control system.

However, such �exibility comes at a cost, in terms of computational resources
and conceptual e�ort in managing a much more sophisticated operator than the
traditional one. Therefore, there is room for wondering whether such cost is jus-
ti�ed by the enhanced capability of noninteger instruments or whether in the end
the investment outweigh the earnings, so that traditional integer-order operator
could be preferred without signi�cant performance losses. After all, ordinary tech-
niques have been playing the main role in the �eld for almost 80 years [3], so it
does not seem unfair asking for tangibles improvements.

In order to �nd insights which prove useful in answering the question, in this
Master Thesis we present three numerical results developed in the context of sys-
tem identi�cation, more speci�cally time-domain transfer function identi�cation.
The �rst two come from data collected in an experimental setting, while the last
one deals with computer-simulated data.

The �rst example is a furnace, a typical thermal system currently easily approx-
imated by ordinary di�erential equations for control purposes. Its most signi�cant
characteristic is that its gain depends on the input size (the voltage applied to the
heating resistance) and also on the sign of the input step (heating is not the same
as cooling). For relatively small variations of the input in a neighborhood of a
suitable working point, i.e., one of the possible equilibrium points of the system,
this latter e�ect has greater impact.

The second example is a Peltier cell, chosen precisely because it presents sig-
ni�cant di�usion phenomena, often (see e.g., [25, 26]) believed to be one of the
cases where fractional operators can actually provide advantages.

vii



viii Introduction

The main goal of these works is testing whether fractional-order transfer func-
tions outperform their integer-order counterparts when the former are approx-
imated with high-order rational transfer functions where every operator of the
form sα, α ∈ R+ is in the end replaced by a suitable sn, with n ∈ N.

The tests were conducted using the MATLAB toolbox FOMCON, by Aleksei
Tepljakov [32], a popular toolbox for fractional-order system identi�cation and
control.

The thesis outline is the following: in the �rst Chapter (1) we propose a brief
and mostly nontechnical overview to feedback and control theory, while in the
subsequent Chapter (2) we introduce in detail the mathematical basis of fractional
calculus and fractional di�erential equations. In Chapter 3 we synthesize the topic
of system identi�cation and in particular the topic of transfer functions identi�ca-
tion with respect of both integer and noninteger orders, and we also discuss the
two most popular approaches to approximate fractional operators, i.e., Oustaloup's
�lter [27, 21, 28] and Grünwald-Letnikov approximation [13, 32, 21]. Then (4) we
discuss the principal toolboxes employed in the �eld for fractional system identi-
�cation and control, and provide a brief outline of the one we e�ectively used for
our numerical computations, i.e. the FOMCON [33]. In the �fth Chapter (5) we
present and discuss the numerical results we found; �nally in Chapter 6 conclusions
are drawn.



Chapter 1

Feedback and Control

The purpose of this Chapter is to provide a tutorial overview of the engineering
topics that lie beneath this thesis, i.e., above all feedback and control.

1.1 Feedback

We will start with a well-known basic example. Let us consider the heating system
of a house: we would like to set the room temperature at a desired value and keep
it constant in spite of external undesired in�uences. There are some factors which
we need to take into account, above all the current room temperature and outside
temperature; of course one has to consider also the presence of individuals in the
room, the walls material composition, the actual kind of construction of the heater
etc, but for our purposes (i.e., control) we will see it is enough focusing only on
the �rst two factors, i.e., the two temperatures.

We would like the room temperature to be, for instance, 20◦C: we will call it
the reference value, and we will denote it by r. To achieve this goal, we would use
a suitably implemented device: typically it would obtain information about the
variables we want to control by measuring some related physical magnitude1; we
will refer to it as the output of the system and we will denote it by y.

Now let us focus our attention on the heater: for the sake of simplicity, let
assume it is an electric resistance. The higher the voltage, the more intense the
heat transmitted. We will refer to the voltage, being the physical magnitude we
are actually going to manipulate, as an input, and we will denote it by u.

Unfortunately, the room is not isolated. Ambient temperature also can be
(greatly) in�uential, but we in principle cannot manipulate it. Besides, in most
application other than for example this one, there is no way to measure the external

1The measured variables could coincide with the ones we would like to control, like in the
example of the heater, but there is no compelling reason for this to happen in every case.

1



2 CHAPTER 1. FEEDBACK AND CONTROL

variable a�ecting the system behavior. Hence, we will call such an uncontrollable,
and often unmeasurable, entity disturbance, and we will denote it by d.

We now have all the elements to set up the process: a sensor measures the
room temperature y, we compare it to the reference value r; their di�erence y− r
will be the error, denoted by e. Fed with the error e and, implicitly, with the
information about the underlying dynamics of the system (which was used to
design the controller itself), the controller actuates over the heater suitably, with
the goal of reducing the error, in spite of e�ects of external disturbances. A new
y is then obtained, which leads us to the starting point.

What we have described is a basic example of (closed) feedback loop: which can
be represented as in Figure 1.1, top half. In the bottom half we have zoomed on
one particular of the loop: the controller, described mathematically as a function
K(s), maps the input u to the function G(s), which represents the dynamics of the
system. However, we shall stress that the controller is actually a microprocessor
that sends signals to the house, including also all those variables we ignored in our
introduction above, so there is a fairly signi�cant di�erence between the two.

Figure 1.2 shows another possibility, named open-loop feedback : What if we
consider the bottom half of Figure 1.1 with the reference value r instead of the error
e as the variable entering in the controller? (That is, there is no feedback). Then
to achieve the desired relation y = r it would be enough to set K(s) = G−−1(s).
But, as we said before, G(s) only models those aspects of the system dynamics
that are relevant for our control problems, otherwise it would be too complex for
control design, and anyway perfect models do not exist2. It will never be the
real thing, our house. Therefore, this approach will generally fail. Closed-loop
feedback, instead, can continually adjust for errors made at previous iterations,
compensating them through time. For this reason closed-loop has become a key
idea of control engineering.

Now, let us deepen the mathematical interpretation of a system like the house
heating system. We assume that it can be described by an ordinary di�erential
equation with state variable x = x(t) and input variable u = u(t), so that the state
derivative is equal to a function f of both x and u:

ẋ = f(x, u), (1.1)

We consider the set of possible equilibrium points (x0, u0) of the system, i.e.,
those such that ẋ = 0. In a neighborhood of such points the system can be well

2�Essentially, all models are wrong, but some are useful.��Box, George E. P.; Norman
R. Draper (1987). Empirical Model-Building and Response Surfaces, p. 424, Wiley. ISBN
0471810339.
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+/−r K(s)e G(s)u +/+ y

H(s)

y

D(s)d

K(s)e G(s)u y

Figure 1.1: Top half: Closed-loop feedback system. K(s) represents the controller
and G(s) encapsulate system's dynamics. D(s) models the way disturbances a�ect
the output; while the way the measured output y is compared with the error e
at the beginning of a loop iteration is given by another function, H(s) which
represents the behavior as physical objects of the sensors used to measure the
system output.
Bottom half: Zoom on the phase from the controller to the objective system (the
actual room).



4 CHAPTER 1. FEEDBACK AND CONTROL

K(s)r G(s)u y

Figure 1.2: Open-loop feedback system. The dining room over the second block
represents all the details and variables inherent to the system which must be
predicted and modeled, a practically insurmountable challenge.

approximated by its �rst-order Taylor expansion:

ẋ ≈ f(x0, u0) +
∂f

∂x

∣∣∣∣∣
(x0,u0)

(x− x0) +
∂f

∂u

∣∣∣∣∣
(x0,u0)

(u− u0) (1.2)

Although it is possible to have a large number of equilibrium points, in studying
systems to design real-life controllers it is common practice to consider only the
ones that are of interest for a certain application. Consider for instance that
we need to store some perishable foods in a room for industrial purposes: we
would need to keep the room at a certain temperature (for example 4◦C), so we
consider only those points that are of equilibrium themselves or are close enough
to equilibrium points in a neighborhood of 4◦C. A point of such subset is called
working point to underline that we want our system to operate around it.

Suppose now we want a linear approximation of the system in a neighborhood
of a suitable working point (x̄0, ū0). We would have:

∂f

∂x
(x̄0, ū0) = a ∈ R,

∂f

∂u
(x̄0, ū0) = b ∈ R,

(1.3)

so that we can write
ẋ ≈ a(x− x0) + b(u− u0). (1.4)

We are one step away from the linear approximation we wanted: a simple change
of coordinates (x̄, ū) = (x− x0, u− u0), �nally, leads to:

˙̄x ≈ ax̄+ bū. (1.5)

At this time, it is common practice to consider the system as actually described
by ẋ = ax+ bu, where, in an abuse of notation, bars have dropped.

Then a standard tool in mathematical Analysis, the Laplace transform, de�ned
as

L {g}(s) :=

∫ ∞
0

g(t)est dt,
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is applied to obtain:

x(s) =
b

s+ a︸ ︷︷ ︸
Transfer
Function

·u(s) (1.6)

In this case, thus, the transfer function G(s) of the system would be b/(s+ a).

Applying the inverse Laplace transform L −1, gives us the time-domain equa-
tion:

x(t) = u(t) · b
a

(1− e−at). (1.7)

More generally, a system like the house's heating one can be described by a
transfer function of the form:

G(s) =
K

1 + τs
eθs, (1.8)

where k is the gain, i.e., the relation between input and output when the input is
a step and the system is in steady state; τ is the time constant and θ is the delay
between the instant in which the input changes and the instant in which a steep
response in the output starts. In other words, the gain tell us how much we must
change the input in order to change the output of a �xed value, the time constant
how much time we need to wait to have the system complete its response and the
delay how much time we need to wait to have the system start to respond the
controller commands.

What happens in practice in the �eld of Control Engineering is that only the
transfer function is analyzed because, since through decades it has been studied
the dependence between the coe�cients in (1.8) and its associated ODE's solution,
it provides all the information needed to understand the system dynamics.

Example 1.1. As an example, consider Figure 1.3: after 5 seconds the input u is
raised and after a delay of 2 s the output starts to increase steeply, until it tends
asymptotically to a stable value, called steady state value. The time needed to pass
from the initial exponential increase to the �nal plateau is called settling time and
it is usually equal to 4 or 5 times the amount of time needed to get to the 63.2%
of the steady state value, which is called time constant and it is usually denoted
by τ .

In the example, u(t) is a step of width 5 s. Its associated u(s) is u(s) = 5/s
and the whole system is described by:

x(s) =
b

s+ a
· 5

s
. (1.9)
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u

t

W. P.

t = 5

7t = 5

W. P.

7.85 10.4 t

y

S.S.V.

63.2%

Transient
State

Steady State

∆T

te

Figure 1.3: Example of system response under a step input.
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1.2 Control

The kind of control used in real life for the previous example is the following: if
the room temperature is lower than the reference value, it turns on the heater,
otherwise the controller turns it o�. Unsurprisingly, this kind of control action is
called on-o� control and is mathematically described by the following law:

u =

{
umax if e > 0, i.e., the measured temperature is lower than r,

umin if e < 0, i.e., the measured temperature is higher than r,

where, as said above, the control error e = r − y is the di�erence between the
reference value and the output y of the system, while u is the actuation command
(the input).

Actually, the most used type of controller in real-world scenarios [31] is the so
called PID controller, that stands for Proportional Integral Derivative controller.
It has the proportional term that depends on the current (instantaneous) value of
the error, kp e(t); the integral term that considers all the past history of the error

ki

∫ t

0

e(τ) dτ ;

and �nally it has the derivative term, which try to predict the future behavior
following a simple linear extrapolation:

e(t+ Td) ≈ e(t) + Td
de(t)

dt
.

We can, hence, express mathematically the PID controller by means of the equation

u(t) = kp e(t) + ki

∫ t

0

e(τ) dτ + kd
de(t)

dt
.

Of course, in light of what we said in the introduction, it is quite natural won-
dering whether the PID could be generalized via the use of fractional-order opera-
tors. The answer is a�rmative, and such controllers are called FOPID (Fractional
Order PID).

This means that if ordinary di�erential equations (ODE) are the mathematical
objects used to model and design PID controller, the equations involved in the
study of FOPID controller are fractional di�erential equations (FDE).

1.3 Motivation

In Mathematical Physics, the subject of study are closed systems, i.e., such that
it is not subjected to any interaction whose source is external to the system.
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However, sometimes there is some sort of exchange (either in form of mass, energy,
information,. . . ) with entities that we are not capable of isolate totally, and it
has a signi�cant impact on the behavior of the system. Indeed, let us consider
we are studying the motion of a set of celestial bodies: we know from empirical
observations that there are some other objects, planets3 for instance, which are far
away from our system but not enough to not in�uence its dynamics. In celestial
mechanics, and successively in the whole Mathematical Physics, the solution to
this problem has been modeling external in�uences by introducing parameters
dependent explicitly on time. This implicit way of dealing with uncontrollable
e�ects from the outside of the system is what distinguish between autonomous
and non-autonomous systems.

In Control Engineering, systems that are autonomous from the point of view
of Mathematical Physics are still considered non-autonomous, since external in�u-
ences (inputs) are not taken into account explicitly. Those inputs appear explicitly
in the equations as variables, in addition to the state variables which are presents in
the derivatives of the system of equations which de�ne the behavior of the system.

Since there are more variables than equations, we are dealing with a underde-
termined system, mathematically speaking, which is said to be an open system,
in engineering jargon. Like before there will be open systems which are also time-
invariant (i.e., with constant coe�cients) or they will be time-variant (i.e., with
varying coe�cients).

This premise should provide a reference for what mathematicians and engineers
mean when they refer to a system.

We now remind the reader that the transfer function G(s) of a system is a
relation between its inputs and outputs that is normally obtained via the Laplace
transform (for continuous systems). As said above, engineers use it habitually to
predict the system dynamics through time.

G(s)u y

Figure 1.4: Transfer function.

Another possibility is to study system's behavior with respect to the frequency
of the input. In practice it is very important to know how a system ampli�es inputs
at various frequencies. In performance analysis of control systems this information
allows one to quantify the in�uence of high frequency measurement noise on the
steady-state response of the system, or how close a closed-loop system will track

3A planet situated outside of the system being considered is called exoplanet.
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low-frequency reference signals. Usually, this information is provided by Bode

diagrams, graphs of gain (or magnitude) and output's amplitude (or phase) when
the system is subjected to periodic signals; see for example Figure 1.5
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Figure 1.5: Example of Bode diagram.

In particular, the Bode magnitude plot is a graphical representation of the gain
with which the system ampli�es harmonic signals at various frequencies.

Bode diagrams and more generally the whole branch of frequency analysis,
are not an exclusive feature of ordinary systems. Indeed, in Control Engineering
there is a fractional analog of frequency analysis, which in principle could lead to
signi�cant scienti�c advances.

Fractional-order operators have seen in recent years great reception in many
applied �elds for the �exibility they bring about in modeling systems dynamics,
especially when it comes to capture system's nonlinearities.

Moreover, for fractional-order open linear systems there exists an analogue of
the Engineering version of the superposition principle which asserts that the output
of a sum of two inputs equals the sum of the outputs of the single inputs.

Actually, when it comes to the speci�c task of solving ordinary di�erential equa-
tions (ODEs) there are two ways to employ the superposition principle, according
to the perspective of each �eld:

• In Mathematics, the superposition principle is applied to solve an inhomo-
geneous ODE as the sum of the family of its homogeneous counterpart plus
a particular solution of the original one;
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• In Engineering, the superposition principle, referred to open systems where
external in�uences are explicitly considered, is represented by

u1 → y1
u2 → y2

; u1 + u2 → y1 + y2,

that is, if the input u1 produces the output y1 and the input u2 produces the
output y2, then the sum of the two outputs y1 + y2 is obtained as sum of the
two inputs u1 + u2.

For linear systems, the two coincide. For nonlinear ones there is an analogue [5, 12],
although for closed, isolated systems, which are the ones Mathematical Physics
has been always, from an historical point of view, focused on. Indeed, it is still an
open problem whether there exist a superposition principle in the fashion of the
Engineering �eld for open systems.

Coming back to frequency analysis, one of the peculiarities of linear systems
is that their Bode magnitude plot depends only on the frequency. On the other
hand, the nonlinear ones are characterized by the dependence on input's magni-
tude: in every nonlinear system, the gain depends on input's magnitude. Besides,
there is a certain class of nonlinear systems which allow a nonlinear frequency
response function which characterizes all steady-state solutions corresponding to
harmonic excitations at various amplitudes and frequencies [29], thus extending
the conventional frequency response function de�ned for linear systems. The ele-
ments of such a class are called convergent systems and they are also characterized
by the so-called input entrainment i.e., a periodic input generates a periodic out-
put and also with the same frequency. These nonlinear systems are thus perfect
candidates to be analyzed through a suitable extension of Bode diagrams, with
enormous bene�ts (also from an industrial point of view, where there is little room
for controllers whose response to various frequencies is hard to predict). However,
as stressed by Pavlov et al. in [29], the gain in steady state will depend not only
on the frequency, as in the linear case, but also on the amplitude of the excitation.

Yet, after careful examination, the second adviser of this Master Thesis found
that fractional Bode diagrams do not present any evidence of dependence on the
amplitude of the excitation. They look no di�erent than ordinary, standard Bode
diagrams of linear systems, so it could not be possible for them to capture any
signi�cant nonlinearity, as if it that was the case there would be a related evidence
in the corresponding magnitude plot.

This could be due to the fact that they are obtained via an approximation with
high-order linear systems, defeating the whole analysis purpose.

As a consequence, in this work we verify whether fractional operators (needing
to be approximated for practical reasons) are more capable of capturing nonlin-
earities of a system than ordinary ones. We do so by identifying the same systems
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(in the time domain) with both ordinary transfer functions and fractional transfer
functions and then comparing the results. We will discuss them in Chapter 5.
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Chapter 2

Fundamentals of Fractional Calculus

In this chapter we develop the theory in detail to provide a reference for the inter-
ested reader, the calculations refer to the most interesting properties of fractional
operators and they do not claim to be a complete exposition. This chapter has
been greatly inspired by mainly [10] and partly [21].

We will start by giving a general historical context of the development of frac-
tional calculus, then we will introduce the three main approaches to noninteger
fractional operators, providing for each of them their most important properties.
Finally we conclude with an example of application where the use of derivatives
of order k ∈ R+ emerges naturally.

2.1 Brief Historical Overview

From the very beginning of the development of calculus there was some concern
about the nature of the order of the di�erential operator dn/dxn, where, classically,
n ∈ N. Indeed, was Leibniz himself that in a letter to L'Hôpital in 1695 wondered
�Can the meaning of derivatives with integer order be generalized to derivatives
with non-integer orders?� In his reply, L'Hôpital proposed �What if the order will be
1/2?� Leibniz on September 30, 1695 famously declared �It will lead to a paradox,
from which one day useful consequences will be drawn.�

The �rst systematic studies seem to have been made by Liouville (�rst half of
XIX century), who expanded functions in series of exponentials and de�ned the
nth-order derivative of such a series by operating term-by-term, although still with
n ∈ N. Riemann, in the same years, instead proposed a de�nition based on de�nite
integrals that was applicable also to non-integer exponents, and �nally Holmgren.
Later, Grünwald (1867) and Krug uni�ed the results of Liouville and Riemann.
Grünwald, arrived at de�nite-integral formulas for the nth-order derivative using
as starting point the de�nition of a derivative as the limit of a (backward) dif-
ference quotient. Krug, working through Cauchy's integral formula for ordinary

13
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derivatives, showed that Riemann's de�nite integral had to be interpreted as hav-
ing a �nite lower limit while Liouville's de�nition corresponded to a lower limit
−∞.

The �rst application of the fractional calculus was made by Abel in 1823. He
discovered that the solution of the integral equation for the tautochrone1 problem
could be obtained via an integral in the form of a derivative of order one half.
Later in the nineteenth century, important stimuli to the use of fractional calcu-
lus were provided by the development by Boole of symbolic methods for solving
linear di�erential equations of constant coe�cients, or the operational calculus of
Heaveside developed to solve certain problems in electromagnetic theory such as
transmission lines. In the twentieth century contributions have been made to both
the theory and applications of fractional calculus by very well known scientists
such as Erdélyi [11] (integral equations, 1854), Riesz [30] (functions of more than
one variable, 1973), Caputo and Mainardi [6, 7] (dissipation in geophysics, 1971),
or Oldham and Spanier [25] (electrochemistry and general transport problems,
1974).

In the last decades of the last century there was continuing growth of the ap-
plications of fractional calculus mainly promoted by the engineering applications
in the �elds of feedback control, systems theory, and signals processing [31, 20, 2].
In particular, in control theory e�orts have been devoted to improve the perfor-
mances of traditional controllers using fractional operators in place of integer ones,
in order to achieve more �exible and smooth e�ects. However, the applicability of
such methods is still under development and it is an open research �eld.

2.2 The Foundations

There are very many possible generalizations of dn/dxnf(x) to the case n /∈ N. We
shall only discuss three of them, the Riemann�Liouville derivative, the Grünwald-
Letnikov derivative and the Caputo derivative. The former concept is historically
the �rst (developed in works of Abel, Riemann and Liouville in the �rst half of
the nineteenth century) and the one for which the mathematical theory has been
established the most. However, it has certain features that lead to di�culties when
applying it to �real world� problems. As a consequence, the latter concepts was
developed. They are closely related to the Riemann�Liouville idea, but certain
modi�cations were introduced in order to avoid the above-mentioned di�culties.
Yet, the mathematical implications of these modi�cations have not been investi-

1A tautochrone (from Greek pre�x tauto- meaning same and chrono time) is the curve for
which the time taken by an object sliding without friction to its lowest point is independent of
its starting point. The curve is a cycloid, as it was proved geometrically by Huygens in 1659 and
later con�rmed with a variational approach by Euler and Lagrange in the subsequent century.
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gated fully so far.
The Grünwald-Letnikov derivative is especially used when precise numerical

approximations of the operator are needed, since its allows an immediate dis-
cretization of the derivative from its very de�nition. The Caputo derivative is
compatible for initial values problems [13], so it is mostly used in that context.

Before delving into details, we shall recall some classical function spaces where
we will set our discussion (Lebesgue space and k-regular functions space):

De�nition 2.1: Let 0 < µ ≤ 1, k ∈ N0 and p ∈ R, p ≥ 1.

Lp[a, b] :=
{
f : [a, b]→ R; f is measurable on [a, b] and

∫ b

a

|f(x)|p dx <∞
}
,

L∞[a, b] := { f : [a, b]→ R; f is measurable and bounded a. e. on [a, b]},
Ck[a, b] := { f : [a, b]→ R; f has a continuous k-th derivative},
C[a, b] := C0[a, b],

We shall occasionally also use the following set of functions.

De�nition 2.2: By An or An[a, b] we denote the set of functions with an absolutely
continuous (n− 1)st derivative, i.e., the functions f for which there exists (almost
everywhere) a function g ∈ L1[a, b] such that

f (n−1)(x) = f (n−1)(a) +

∫ x

a

g(t) dt.

In this case we call g the generalized nth derivative of f , and we simply write
g = f (n).

De�nition 2.3: Let f : [a, b]→ R be a di�erentiable function. We de�ne

(i) We denote by D the operator that maps a di�erentiable function onto its
derivative, i.e.,

D f(x) := f ′(x).

(ii) We denote by I a the operator that maps a function f , assumed to be
Riemann-integrable on the closed interval [a, b], onto its primitive centered
at a, i.e.,

I a f(x) =

∫ x

a

f(t) dt

for a ≤ x ≤ b.
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(iii) For n ∈ N we use the symbols Dn and I n
a to denote the n-fold iterates of

D and I a, respectively, i.e., we set D1 := D , I 1
a := I a and Dn := D Dn−1

and I n
a := I a I n−1

a for n ≥ 2.

Our focus will be on how can we extend the concepts of De�nition (iii) to
n ∈ R+.

The results we will present in the following sections show that, if we restrict
ourselves to suitable spaces of functions, we may unify the de�nitions of fractional
di�erential operators into one, denoted by Dn

a , which enjoys the following proper-
ties:

• If f(x) is analytic, then the derivative Dn
a f(x) is, too.

• If n ∈ N is a positive integer, then Dn
a f(x) coincides with the usual Dn f(x).

• If n = 0, then the 0-order operator D0
a coincides with the identity operator I.

• Given constants λ, µ ∈ R, Dn
a [λf(x) + µg(x)] = λ · Dn

a f(x) + µ · Dn
a g(x)

must hold, i.e., we require Dn
a to be linear.

• If n > 0 and m > 0 are any two positive real numbers, then Dn
a

(
Dm
a f(x)

)
=

Dm
a

(
Dn
a f(x)

)
= Dn+m

a f(x) must hold, i.e., Dn
a enjoy the semigroup prop-

erty.

2.3 Riemann-Liouville Integrals

We shall remark that the Fundamental Theorem of Calculus reads, in our notation,

D I a f = f

which implies that

Dn I n
a f = f (2.1)

for n ∈ N, i.e., Dn is the left inverse of I n
a in a suitable space of functions.

In order to extend this property, we begin with the integral operator I n
a , in

the case n ∈ N .

Lemma 2.4: Let f be Riemann integrable on [a, b]. Then, for a ≤ x ≤ b and
n ∈ N, we have:

I n
a f(x) =

∫ x

0

(x− t)n−1f(t)

(n− 1)!
dt.
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Proof. Let us apply operator I a to f twice; we get:

I 2
a f(x) =

∫ x

a

(∫ t

0

f(y) dy

)
dt. (2.2)

Equation (2.2) can be regarded as a double integral, thus, if we switch the order
of integration, we can reinterpret it as:

I 2
a f(x) =

∫ x

a

(∫ t

y

f(y) dt

)
dy (2.3)

and, since f(y) is constant with respect to t, the integral in (2.3) becomes

I 2
a f(x) =

∫ x

a

(x− t)f(t) dt.

Iterating the process, we obtain:

I 3
a f(x) =

1

2

∫ x

a

(x− t)2f(t) dt

and more generally we have

I n
a f(x) =

∫ x

a

(x− t)n−1f(t)

(n− 1)!
dt.

Lemma 2.5: Let m,n ∈ N such that m > n, and let f be a function having a
continuous n-th derivative on the interval [a, b]. Then,

Dn f = Dm I m−n
a f.

Proof. By (2.1), we have f = Dm−n I m−n
a f . Applying the operator Dn to both

sides of this relation and using the fact that Dn Dm−n = Dm, the statement
follows.

We shall remark also that if f ∈ L1[a, b], then the Fundamental Theorem of
Calculus reads in the form D I a f = f almost everywhere on [a, b].

We introduce the well-known generalization of the factorial function.

De�nition 2.6: The function Γ: (0,∞)→ R, de�ned by

Γ(x) :=

∫ ∞
0

tx−1e−t dt,

is called Euler's Gamma function.
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We remark here that the following equality holds

Γ(n) = (n− 1)!, ∀n ∈ N

Now we see that Lemma 2.4 suggests the following noninteger generalization
of the n-fold integral:

De�nition 2.7: Let n ∈ R+. The operator I n
a , de�ned on L1[a, b] by

I n
a f(x) :=

1

Γ(n)

∫ x

a

(x− t)n−1f(t) dt

for a ≤ x ≤ b, is called the Riemann-Liouville fractional integral operator of order
n.

For n = 0, we set I 0
a := I, the identity operator.

It is evident that the Riemann-Liouville fractional integral coincides with the
classical de�nition of I n

a in the case n ∈ N, (note also that we have extended
the domain from Riemann integrable functions to Lebesgue integrable functions).
Moreover, in the case n ≥ 1 it is easily seen that the integral I n

a f(x) exists for
every x ∈ [a, b] because the integrand is the product of an integrable function f
and the continuous function (x− ·)n−1. In the case 0 < n < 1 the following result
asserts that this de�nition is well posed.

Theorem 2.8: Let f ∈ L1[a, b] and n > 0 . Then, the integral I n
a f(x) exists for

almost every x ∈ [a, b]. Moreover, the function I n
a f itself is also an element of

L1[a, b].

One important property of integer-order integral operators is preserved by our
generalization:

Theorem 2.9: Let m,n ≥ 0 and φ ∈ L1[a, b]. Then,

I m
a I n

a φ = I m+n
a φ

holds almost everywhere on [a, b]. If additionally φ ∈ C[a, b] or m + n ≥ 1, then
the equality holds everywhere on [a, b].

Proof. We have

I m
a I n

a φ(x) =
1

Γ(m)Γ(n)

∫ x

a

(x− t)m−1
∫ t

a

(t− τ)n−1φ(τ) dτ dt.
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In view of Theorem 2.8, the integrals exist, and by Fubini's theorem we may
interchange the order of integration, obtaining

I m
a I n

a φ(x) =
1

Γ(m)Γ(n)

∫ x

a

∫ t

τ

(x− t)m−1(t− τ)n−1φ(τ) dt dτ

=
1

Γ(m)Γ(n)

∫ x

a

φ(τ)

∫ x

τ

(x− t)m−1(t− τ)n−1 dt dτ.

The substitution t = τ + s(x− τ) yields

I m
a I n

a φ(x) =
1

Γ(m)Γ(n)

∫ x

a

φ(t)

∫ 1

0

[(x− τ)(1− s)]m−1·

=
1

Γ(m)Γ(n)

∫ x

a

φ(t)(x− τ)m+n−1
∫ 1

0

(1− s)m−1sn−1 ds dτ,

where we notice that
∫ 1

0
(1− s)m−1sn−1ds is Euler's β function, so that∫ 1

0

(1− s)m−1sn−1ds =
Γ(m)Γ(n)

Γ(n+m)

and thus

I m
a I n

a =
1

Γ(m+ n)

∫ x

a

φ(τ)(x− τ)m+n−1 dτ = I m+n
a φ(x)

almost everywhere on [a, b].
Moreover, if φ ∈ C[a, b] then also I n

a φ ∈ C[a, b], and therefore I m
a I n

a φ ∈
C[a, b], and I m+n

a φ ∈ C[a, b], too. Thus, since two continuous functions coincide
almost everywhere, they must coincide everywhere.

Finally, if φ ∈ L1[a, b] and m+ n ≥ 1 we have, by the result above,

I m
a I n

a φ = I m+n
a = I m+n−1

a I 1
a φ

almost everywhere. Since we have that I 1
a φ is continuous, we also have that

I m+n
a φ = I m+n−1

a I 1
a φ is continuous, and once again we may conclude that the

two functions on either side of the equality almost everywhere are continuous; thus
they must coincide everywhere.

Corollary 2.10: Under the assumptions of Theorem 2.9,

I m
a I n

a φ = I n
a I m

a φ

There is an algebraic way to state this result.
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Theorem 2.11: The operators {I n
a : L1[a, b] → L1[a, b]; n ≥ 0} form a commu-

tative semigroup with respect to concatenation. The identity operator I 0
a is the

neutral element of this semigroup.

The following result will be the basis to obtain the analyticity property.

Theorem 2.12: Let n > 0. Assume that (fk)
∞
k=1 is a uniformly convergent se-

quence of continuous functions on [a, b]. Then we may interchange the fractional
integral operator and the limit process, i.e.,

(I n
a lim
k→∞

fk)(x) = ( lim
k→∞

I n
a fk)(x).

In particular, the sequence of functions (I n
a fk)

∞
k=1 is uniformly convergent.

Proof. We denote the (pointwise) limit of the sequence (fk)
∞
k=1 by f . It is well

known that f is continuous. We then �nd

|I n
a fk(x)−I n

a f(x)| ≤ 1

Γ(n)

∫ x

a

|fk(t)− f(t)|(x− t)n−1 dt

≤ 1

Γ(n)
‖fk − f‖∞

∫ x

a

(x− t)n−1 dt

=
1

Γ(n+ 1)
‖fk − f‖∞(x− a)n

≤ 1

Γ(n+ 1)
‖fk − f‖∞(b− a)n

which converges to zero as k →∞ uniformly for all x ∈ [a, b].

Corollary 2.13: Let f be analytic in (a−h, a+h) for some h > 0, and let n > 0.
Then

I n
a f(x) =

∞∑
k=0

(−1)k (x− a)k+n

k! (n+ k) Γ(n)
Dk f(x)

for a ≤ x < a+ h/2, and

I n
a f(x) =

∞∑
k=0

(x− a)k+n

Γ(k + 1 + n)
Dk f(a)

for a ≤ x < a+ h. In particular, I n
a f is analytic in (a, a+ h).

Proof. For the �rst statement, we use the de�nition of the Riemann-Liouville in-
tegral operator I n

a , namely,

I n
a f(x) =

1

Γ(n)

∫ x

a

f(t)(x− t)n−1 dt,
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and expand f(t) into a power series about x. Since x ∈ [a, a + h/2), the power
series converges in the entire interval of integration. Thus, by Theorem 2.11, we
are allowed to exchange summation and integration. Then we use again Euler's β
function to derive the representation:

I n
a f(x) =

1

Γ(n)

∫ x

a

(t− a)β(x− t)n−1 dt

=
1

Γ(n)
(x− a)n+β

∫ 1

0

sβ(1− s)n−1 ds =
Γ(β + 1)

Γ(n+ β + 1)
(x− a)n+β,

and we �nd the �nal result.
For the second statement, we proceed in a similar way, but we now expand the

power series at a and not at x. This allows us again to obtain the convergence of
the series in the required interval.

The analyticity of I n
a f follows immediately from the second statement

2.4 Riemann-Liouville Derivatives

Having established these fundamental properties of Riemann-Liouville integral op-
erators, we now come to the corresponding di�erential ones. To motivate the def-
inition coming up, we recall Lemma 2.5 that (under certain conditions) states the
identity

Dn f = Dm I m−n
a f

where m and n were integers such that m > n. Now assume that n is not an
integer: then we may still choose an integer m such that m > n. We hence come
to the following de�nition if we choose the value of the integer m to be as small
as possible:

De�nition 2.14: Let n ∈ R+ and m = dne, i.e., m is the smallest integer greater
or equal than n. The operator Dn

a , de�ned by

Dn
a f := Dm I m−n

a f

is called the Riemann-Liouville fractional di�erential operator of order n.
For n = 0, we set D0

a := I, the identity operator.

Once again we see that, as a consequence of Lemma 2.5, the newly de�ned
operator Dn

a coincides with the classical di�erential operator Dn whenever n ∈ N.
In Lemma 2.5 we had not requiredm to be as small as possible; indeed arbitrary

natural numbers for m were allowed as long as the inequality m > n was satis�ed.
A similar statement holds here.



22 CHAPTER 2. FUNDAMENTALS OF FRACTIONAL CALCULUS

Lemma 2.15: Let n ∈ R+ and let m ∈ N such that m > n. Then,

Dn
a = Dm I m−n

a .

Proof. Our assumptions on m imply that m ≥ dne. Thus,

Dm I m−n
a = DdneDm−dneI m−dne

a I dne−n
a = DdneI dne−n

a = Dn
a

in view of the semigroup property of booth integer di�erentiation and fractional
integration and (2.1).

We have seen in Theorem 2.9 that the Riemann-Liouville integral operators
form a semigroup. Therefore it is natural to ask whether and, if so, when the
Riemann-Liouville di�erential operators have got such a structure. We begin our
investigations in this direction with a positive result.

Theorem 2.16: Assume that n1, n2 ≥ 0. Moreover let φ ∈ L1[a, b] such that
f = I n1+n2

a φ. Then,
Dn1
a Dn2

a f = Dn1+n2
a f.

Proof. Note that in order to apply this identity we do not need to know the function
φ explicitly; it is su�cient to know that such a function exists.

By our assumption on f and the de�nition of the Riemann-Liouville di�erential
operator,

Dn1
a Dn2

a f = Dn1
a Dn2

a I n1+n2
a φ = Ddn1eI dn1e−n1

a Ddn2eI dn2e−n2
a I n1+n2

a φ.

The semigroup property of the integral operators allows us to rewrite this expres-
sion as

Dn1
a Dn2

a f = Ddn1eI dn1e−n1
a Ddn2eI dn2e+n1

a φ

= Ddn1eI dn1e−n1
a Ddn2eI dn2e

a I n1
a φ.

Because of (2.1) and the fact that the orders of the integral and di�erential oper-
ators involved are natural numbers, we �nd that this is equivalent to

Dn1
a Dn2

a f = Ddn1eI dn1e−n1
a I n1

a φ = Ddn1eI dn1e
a φ

where we have once again used the semigroup property of fractional integration.
We may now use (2.1) one more time and �nd that

Dn1
a Dn2

a f = φ

The proof that Dn1+n2
a f = φ goes along similar lines.
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Recall that one of the key features that we wanted to keep also in fractional
operators was (2.1). It turns out that the Riemann-Liouville de�nitions indeed
have this property.

Theorem 2.17: Let n ≥ 0. Then, for every f ∈ L1[a, b],

Dn
a I n

a f = f

almost everywhere.

Proof. The case n = 0 is trivial for then Dn
a and I n

a are both the identity operator.
For n > 0 we proceed as in the proof of Theorem 2.16: let m = dne. Then,

by the de�nition of Dn
a , the semigroup property of fractional integration and (2.1)

(which may be applied here since n ∈ N),

Dn
a I n

a f(x) = Dm I m−n
a I n

a f(x) = Dm I m
a f(x) = f(x).

Essentially this result and its proof have already been known to Abel even
though he has not denoted the operators involved as integrals and derivatives of
fractional order, respectively.

Now we come to an analogue of Theorem 2.11.

Theorem 2.18: Let n > 0. Assume that (fk)
∞
k=1 is a uniformly convergent se-

quence of continuous functions on [a, b], and that Dn
a fk exists for every k. Moreover

assume that (Dn
a fk)

∞
k=1 converges uniformly on [a + ε, b] for every ε > 0. Then,

for every x ∈ (a, b], we have

( lim
k→∞

Dn
a fk)(x) = (Dn

a lim
k→∞

fk)(x).

Proof. We recall that Dn
a = DdneI dne−n

a . Theorem 2.11 guarantees that the se-
quence (I dne−n

a fk)k is uniformly convergent, and we may interchange the limit
operation and the fractional integral. By assumption, the dneth derivative of this
series converges uniformly on every compact subinterval of (a, b]. Thus, by a stan-
dard theorem from Analysis, we may also interchange the limit operator and the
di�erential operator whenever a < x ≤ b.

We can immediately deduce an analogue of Corollary 2.13.

Corollary 2.19: Let f be analytic in (a−h, a+h) for some h > 0, and let n > 0,
n /∈ N. Then Dn

af is analytic in (a, a+ h).

Proof. It su�ces to use Corollary 2.13 and the de�nition of the operator Dn
a ,

Dn
a f(x) = DdneI dne−n

a f(x).
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Then it follows that

Dn
a f(x) =

∞∑
k=0

(x− a)k−n

Γ(k + 1− n)
Dk f(a)

and the statement follows.

The next result assures that generalizing the operators to a non-integer order
nevertheless preserves their linearity.

Theorem 2.20: Let f1 and f2 be two functions de�ned on [a, b] such that Dn
a f1

and Dn
a f2 exist almost everywhere. Moreover, let c1, c2 ∈ R. Then, Dn

a(c1f1+c2f2)
exists almost everywhere, and

Dn
a (c1f1 + c2f2) = c1 Dn

a f1 + c2 Dn
a f2.

Proof. This linearity property of the fractional di�erential operator is an immedi-
ate consequence of the de�nition of Dn

a .

We now introduce a notation that will be useful in later proofs.

De�nition 2.21: Let f be a m-times di�erentiable function in a open neighbor-
hood of a ∈ R and let m ∈ N; we denote by Tm[f ; a] the Taylor expansion of f
centered at a, i.e.,

Tm[f ; a] =
m∑
k=0

f (k)(a)

k!
(x− a)k.

Remark 2.22. There is one more fundamental di�erence between di�erential oper-
ators of integer order and the Riemann-Liouville fractional derivatives: The former
are local operators, the latter are not, in the sense that in order to calculate Dn f(x)
for n ∈ N, it is su�cient to know f in an arbitrarily small neighborhood of x. This
follows from the classical representation of Dn as a limit of a di�erence quotient.
However, to calculate Dn

a f(x) for n /∈ N, the de�nition tells us that we need to
know f throughout the entire interval [a, x].

Having established a theory of Riemann-Liouville di�erential and integral op-
erators separately, we now investigate how they interact. A very important �rst
result in this context has already been shown in Theorem 2.17 above: Dn

a is the
left inverse of I n

a . Yet, we cannot claim that it is the right inverse. More precisely,
we have the following situation.

Theorem 2.23: Let n > 0. If there exists some φ ∈ L1[a, b] such that f = I n
a φ,

then
I n

a Dn
a f = f

almost everywhere.



2.4. RIEMANN-LIOUVILLE DERIVATIVES 25

Proof. This is an immediate consequence of the previous result: We have, by
de�nition f f and Theorem 2.17, that

I n
a Dn

a f = I n
a [Dn

a I n
a φ] = I n

a φ = f.

If f is not as required in the assumptions of Theorem 2.23, then we obtain a
di�erent representation for I n

a Dn
a f .

Theorem 2.24: Let n > 0 and m = bnc + 1. Moreover, assume f is such that
I m−n

a f ∈ Am[a, b]. Then,

I n
a Dn

a f(x) = f(x)−
m−1∑
k=0

(x− a)n−k−1

Γ(n− k)
lim
z→a+

Dm−k−1 I m−n
a f(z).

Speci�cally, for 0 < n < 1 we have

I n
a Dn

a f(x) = f(x)− (x− a)n−1

Γ(n)
lim
z→a+

I 1−n
a f(z).

Proof. We �rst note that the limits on the right-hand side exist because of our
assumption on f that implies the continuity of Dm−1 I m−n

a f . Moreover, because
of this assumption, there exists some φ ∈ L1 such that

Dm−1 I m−n
a f = Dm−1 I m−n

a f(a) + I 1
a φ.

This is a classical di�erential equation of order m − 1 for I m−n
a f ; its solution is

of the form

I m−n
a f(x) =

m−1∑
k=0

(x− a)k

k!
lim
z→a+

Dk I m−n
a f(z) + I m

a φ(x). (2.4)

Thus, by de�nition of Dn
a ,

I n
a Dn

a f(x) = I n
a Dm I m−n

a f(x)

= I n
a Dm

[m−1∑
k=0

(· − a)k

k!
lim
z→a+

Dk I m−n
a f(z) + I n

a φ

]
(x)

= I n
a Dm I m

a φ(x) +
m−1∑
k=0

I n
a Dm[(· − a)k](x)

k!
lim
z→a+

Dk I m−n
a f(z)

= I n
a φ(x)

(2.5)
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because of Theorem 2.17 (note that Dm annihilates every summand in the sum).
Next we apply the operator Dm−n

a to both sides of (2.4) and �nd, in view of
Theorem (2.17), that

f(x) =
m−1∑
k=0

Dm[(· − a)k](x)

k!
lim
z→a+

Dk I m−n
a f(z) + Dm−n

a I m
a φ(x)

=
m−1∑
k=0

Dm[(· − a)k](x)

k!
lim
z→a+

Dk I m−n
a f(z) + D1

a I 1−m+n
a I m

a φ(x).

We now recognize the fraction in the summation to be

Dm[(· − a)k](x)

k!
=

(x− a)k+n−m

Γ(k + n−m+ 1)

so that after replacing it, and applying the semigroup property of fractional inte-
gration and Theorem 2.17 to manipulate the remaining term we have

f(x) =
m−1∑
k=0

(x− a)k+n−m

Γ(k + n−m+ 1)
lim
z→a+

Dk I m−n
a f(z) + I n

a φ(x). (2.6)

Finally we substitute k in the sum by m − k − 1, solve for I n
a φ(x) and combine

the result with (2.5) to obtain

I n
a Dn

a f(x) = I n
a φ(x) = f(x)−

m−1∑
k=0

(x− a)n−k−1

Γ(n− k)
lim
z→a+

Dm−k−1 I m−n
a f(z)

as desired.

2.5 Grünwald-Letnikov Operators

In the classical calculus it is well known that derivatives can be expressed as
di�erential quotients, i.e., as limits of backward di�erence quotients:

D1 f(x) = lim
h→0

1

h
[f(x)− f(x− h)].

Applying the operator twice leads to the second-order derivative of f(x):

D2 f(t) = lim
h→0

1

h2
[f(x)− 2f(x− h) + f(x− 2h)].

Iterating the process n-times (i.e., applying the operator n-times) we have:
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Theorem 2.25: Let n ∈ N, f ∈ Cn[a, b] and a < x ≤ b. Then

Dn f(x) = lim
h→0

∆n
hf(x)

hn

where

∆n
hf(x) :=

n∑
k=0

(−1)k
(
n

k

)
f(x− kh). (2.7)

This result is actually not only useful for analytical investigations; by using
a �nite positive value for h instead of performing the limit operation h → 0 it
also gives us a straightforward numerical approximation for the derivative. In
view of these advantages of this representation, it is evidently desirable to have
an analogue also for the fractional case. Such a construction is possible; it dates
back to the work of Grünwald and Letnikov. Indeed, all we have to do is to give
a meaning to the �nite di�erence in (2.7) for n /∈ N. To this end we recall the
de�nition of the binomial coe�cient with non-integer upper coe�cients:(

n

k

)
:=

n(n− 1) · · · (n− k + 1)

k!
, n ∈ R+, k ∈ N.

We also note that
(
n
k

)
= 0 if n ∈ N and n < k. Thus for n ∈ N, equation (2.7) is

equivalent to

∆n
hf(x) :=

∞∑
k=0

(−1)k
(
n

k

)
f(x− kh), (2.8)

indeed, all terms from k = n+ 1 on vanish.
We observe that the representation (2.8) introduces two problems in the case

n /∈ N where none of the binomial coe�cients vanishes, so that this expression
really represents an in�nite series:

• In order to evaluate the expression in (2.8) for all x ∈ (a, b], the function f
needs to be de�ned on (−∞, b].

• The function f must be such that the series converges.

These two problems can be resolved simultaneously by a simple concept: Given a
function f : [a, b]→ R, de�ne a new function

f ∗ : (−∞, b]→ R, x 7→
{
f(x) if x ∈ [a, b],

0 if x ∈ (−∞, a),

and use this function instead of the original f . In view of the fact that f and
f ∗ coincide on the interval where both functions are de�ned, we interpret f ∗ as a
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continuation of f and, with a slight abuse of notation, we will from now on write
f in place of f ∗.

This leads us to the required generalization of the concept of di�erential quo-
tients. For the sake of simplicity, we impose a restriction in the way that h → 0;
speci�cally for the value of x under consideration we assume that h takes only the
values hN = (x − a)/N , N = 1, 2, . . ., even if in principle such an assumption is
not necessary, actually.

De�nition 2.26: Let n > 0, f ∈ Cdne[a, b] and a < x ≤ b. Then

D̃
n

af(x) = lim
N→∞

∆n
hN
f(x)

hnN
= lim

N→∞

1

hnN

N∑
k=0

(−1)k
(
n

k

)
f(x− khN)

with hN = (x−a)/N is called the Grünwald-Letnikov fractional derivative of order
n of the function f .

The following results (for which we omit the quite cumbrous proofs [10]) explain
the relation between this new notion of a fractional derivative and the one that we
already know.

Theorem 2.27: Let n > 0, m = dne and f ∈ Cm[a, b]. Then, for x ∈ (a, b],

D̃
n

af(x) = Dn
a f(x)

Theorem 2.28: Let n > 0, f ∈ C[a, b] and a ≤ x ≤ b. Then, with hN = (x−a)/N ,
we have

I n
a f(x) = lim

N→∞
hnN

N∑
k=0

(−1)k
(
n

k

)
f(x− khN)

2.6 Caputo's Approach

It turns out that the Riemann-Liouville derivatives have certain disadvantages
when trying to model real-world phenomena with fractional di�erential equations.
We shall therefore now discuss a modi�ed concept of a fractional derivative. As we
will see below when comparing the two ideas, this second one seems to be better
suited to such tasks.

We start with a preliminary de�nition.

De�nition 2.29: Let n ≥ 0 and m = dne. Then, we de�ne the operator D̂
n

a by

D̂
n

af := I m−n
a Dm f

whenever Dm f ∈ L1[a, b].
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First o�, let us look at the case n ∈ N. Here we have m = n and hence our
de�nition implies

D̂
n

af = I 0
a Dn f = Dn f,

i.e., we recover the standard de�nition in the classical case.
The key to the construction of the alternative di�erential operator that we are

looking for is the following identity involving Riemann-Liouville derivatives on one
hand and the newly de�ned operator on the other.

Theorem 2.30: Let n ≥ 0 and m = dne. Moreover assume that f ∈ Am[a, b].
Then,

D̂
n

af = Dn
a [f − Tm−1[f ; a]]

almost everywhere. Here, Tm−1[f ; a] denotes the Taylor polynomial of degreem−1
for the function f , centered at a; in the case m = 0 we de�ne Tm−1[f ; a] := 0.

Note that the expression on the right-hand side of the equation exists if Dn
a f

exists and f possess m − 1 derivatives at a, the latter condition making sure
that the Taylor polynomial exists. This condition is weaker than the previous
condition that f ∈ Am. Therefore we will, from now on, use the latter expression.
A formalization is given as follows.

Proof. In the case n ∈ N the statement is trivial because, both sides of the equation
reduce to Dn f . We therefore only have to consider the case n /∈ N, which implies
that m > n.

In this case we have

Dn
a [f − Tm−1[f ; a]](x) = Dm I m−n

a [f − Tm−1[f ; a]](x)

=
dm

dxm

∫ x

a

(x− t)m−n−1
Γ(m− n)

(f(t)− Tm−1[f ; a](t)) dt.
(2.9)

A partial integration of the integral is permitted and yields∫ x

a

1

Γ(m− n)
(f(t)− Tm−1[f ; a](t))(x− t)m−n−1 dt

= − 1

Γ(m− n+ 1)
[(f(t)− Tm−1

[
f ; a](t))(x− t)m−n

]t=x
t=a

+
1

Γ(m− n+ 1)

∫ x

a

(D f(t)−D Tm−1[f ; a](t))(x− t)m−n dt.

The term outside the integral is zero (the �rst factor vanishes at the lower bound,
the second vanishes at the upper bound). Thus,

I m−n
a [f − Tm−1[f ; a]] = I m−n+1

a D [f − Tm−1[f ; a]].
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Under our assumptions, we may repeat this process a total number of m times,
and this results in

I m−n
a [f−Tm−1[f ; a]] = I 2m−n

a Dm[f−Tm−1[f ; a]] = I m
a I m−n

a Dm[f−Tm−1[f ; a]].

We note that Dm Tm−1[f ; a] ≡ 0 because Tm−1 is a polynomial of degree m − 1.
Thus, the last identity can be simpli�ed to

I m−n
a [f − Tm−1[f ; a]] = I m

a I m−n
a Dm f.

This may be combined with (2.9) to obtain

Dn
a [f − Tm−1[f ; a]](x) = Dm I m

a I m−n
a Dm f = I m−n

a Dm f = D̂
n

af

in view of (2.1).

De�nition 2.31: Assume that n ≥ 0 and that f is such that Dn
a [f − Tm−1[f ; a]]

exists, where m = dne. Then we de�ne the function Dn
∗a f by

Dn
∗a f := Dn

a [f − Tm−1[f ; a]].

The operator Dn
∗a is called the Caputo di�erential operator of order n.

Actually this concept has been introduced independently by many authors,
including Caputo [6, 7] and Rabotnov [22]. We follow the most common convention
and we will name the derivative after Caputo only.

Once again we note for n ∈ N that m = n and hence

Dn
∗a f = Dn

a [f − Tn−1[f ; a]] = Dn f −Dn(Tn−1[f ; a]) = Dn f

because Tn−1[f ; a] is a polynomial of degree n−1 that is annihilated by the classical
operator Dn. So in this case we recover the usual di�erential operator as well. In
particular, D0

∗a is once again the identity operator.

Remark 2.32. As in the case of the Riemann-Liouville operators, we see that the
Caputo derivatives are not local either.

Another representation for the Caputo operator can be obtained by combining
its de�nition with Theorem 2.27:

Lemma 2.33: Let n > 0, m = dne and f ∈ Cm[a, b]. Then, for x ∈ (a, b],

Dn
∗a f(x) = lim

N→∞

1

hnN

N∑
k=0

(−1)k
(
n

k

)
[f(x− khN)− Tm−1[f ; a](x− khN)]

with hN = (x− a) = /N .
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This representation has proven to be useful for numerical work [16, 9].

Lemma 2.34: Let n ≥ 0 and m = dne. Assume that f is such that both Dn
∗a f

and Dn
a f exist. Then,

Dn
a f = Dn

∗a f

holds if and only if f has an m-fold zero at a, i.e., if and only if

Dk f(a) = 0 for k = 0, 1, . . . ,m− 1.

When it comes to the composition of Riemann-Liouville integrals and Caputo
di�erential operators, we �nd that the Caputo derivative is also a left inverse of
the Riemann-Liouville integral:

Theorem 2.35: If f is continuous and n ≥ 0, then

Dn
∗a I n

a f = f.

A proof involving estimations for Riemann-Liouville integrals of µ-Lipschitz
functions can be found in [10].

Once again, we �nd that the Caputo derivative is not the right inverse of the
Riemann-Liouville integral:

Theorem 2.36: Assume that n ≥ 0, m = dne, and f ∈ Am[a, b]. Then

I n
a Dn

∗a f(x) = f(x)−
m−1∑
k=0

Dk f(a)

k!
(x− a)k.

Proof. By Theorem 2.30 and De�nition 2.29, we have

Dn
∗a f = D̂

n

af = I m−n
a Dm f.

Thus, applying the operator I n
a to both sides of this equation and using the

semigroup property of fractional integration, we obtain

I n
a Dn

∗a f = I n
a I m−n Dm f = I m

a Dm f.

By the classical version of Taylor's theorem we have that

f(x) =
m−1∑
k=0

Dkf(a)

k!
(x− a)k + I m

a Dm f(x).

Combining these two equations we derive the claim.
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Theorem 2.37: Let f ∈ Cµ[a, b] for some µ ∈ N. Moreover let n ∈ [0, µ]. Then,

Dµ−n
a Dn

∗a f = Dµ f.

Notice that the operator Dµ appearing on the right-hand side of the claim is a
classical (integer-order) di�erential operator.

Proof. If n is an integer then both di�erential operators on the left-hand side
reduce to integer-order operators and hence we obtain the desired result by an
application of the de�nition of the iterated operators, namely De�nition (iii).

If n is not an integer then we may invoke Theorem 2.30 to conclude that

Dn
∗a f = D̂

n

af = I dne−n
a Ddne f.

Combining this with the de�nition of the Riemann-Liouville derivative and using
the semigroup property of fractional integration and equation (2.1) we �nd

Dµ−n
a Dn

∗a f = Dµ−dne+1 I n+1−dne
a I dne−n

a Ddne f = Dµ−dne+1 I 1
a Ddne f

= Dµ−dneDdne f = Dµ f.

Caputo di�erential operators are linear, too.

Theorem 2.38: Let f1, f2 : [a, b]→ R be such that Dn
∗a f1 and Dn

∗a f2 exist almost
everywhere and let c1, c2 ∈ R. Then Dn

∗a(c1f1 + c2f2) exists almost everywhere,
and

Dn
∗a(c1f1 + c2f2) = c1 Dn

∗a f1 + c2 Dn
∗a f2.

Proof. This linearity property of the fractional di�erential operator is an immedi-
ate consequence of the de�nition of Dn

∗a.

2.7 Laplace and Fourier Transforms

Laplace and Fourier integral transforms are fundamental tools in systems and
control engineering. For this reason, we will give here the equation of these trans-
forms for the de�ned fractional-order operators. Notice that we can take these
integral transforms since we saw before that fractional operators of L1 functions
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are themselves L1 functions. These equations are [21]:

L [I n
a f(t)] = s−nF (s), (2.10)

L [Dn
a f(t)] = snF (s)−

m−1∑
k=0

sk[Dn−k−1
a f(t)]t=0, (2.11)

L [Dn
∗a f(t)] = snF (s)−

m−1∑
k=0

sn−k−1f (k)(0), (2.12)

L [D̃
n

af(t)] = snF (s), (2.13)

F [I n
a f(t)] = F

[
tn−1+

Γ(n)

]
F{f(t)} = (jω)−nF (ω), (2.14)

F [Dn f(t)] = F{Dm I m−n f(t)] = (jω)nF (ω), (2.15)

where m− 1 ≤ n < m.

2.8 An Example Application of Fractional Calcu-

lus

As a conclusion, let us take a brief look at a simple but not unrealistic example of
a model arising in mechanics where fractional derivatives can be used successfully.
The model has been originally proposed as theoretical work by Nutting [23, 24];
Scott Blair et al. [4] were among the �rst to con�rm its value in practice.

Speci�cally, we want to describe the behavior of certain materials under the
in�uence of external forces. Traditionally, laws of Hooke and Newton are employed.
We are interested in the relation between stress σ(t) and strain ε(t), both of which
are considered as functions of time t. If we are dealing with viscous liquids, then
Newton's law

σ(t) = ηD1 ε(t) (2.16)

is the preferred tool. Here the material constant η is the so-called viscosity of the
material. Hooke's law

σ(t) = ED0 ε(t) (2.17)

on the other hand is the correct way of modeling the stress-strain relationship for
elastic solids. The constant E is known as the modulus of elasticity of the material.
Here we mention the operator D0 (i.e., the identity operator) in(2.1) explicitly to
stress the formal similarity between the two laws.

Now consider an experiment where the strain is manipulated in a controlled
fashion such that, say, ε(t) = t for t ∈ [0, T ] with some T > 0. It then follows that
the stress behaves as

σ(t) = Et
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in the case of an elastic solid and

σ(t) = η

for a viscous liquid. We may summarize the equations in the form

ψk =
σ(t)

ε(t)
tk (2.18)

where ψ0 = E and ψ1 = η. Evidently the case k = 0 corresponds to Hooke's law
for solids and k = 1 refers to Newton's law for liquids.

In practice it is not uncommon to �nd so-called viscoelastic materials2 that
exhibit a behavior somewhere between the pure viscous liquid and the pure elastic
solid, i.e., where one would observe a relationship of the form (2.18) with 0 < k < 1.
In this case it is appropriate to interpret k as a second material constant in addition
to ψk. Classical examples are polymers, but some types of biological tissue may
also share this property as well as a number of metals (aluminum, for example)
at least under certain temperature and pressure conditions. It should be noted
that for the case of a constant strain ε, the stress in such a material would develop
according to the formula

σ(t) = c · t−k,
where c is a real constant, and thus converges to zero for long observation times.
In this respect it once again lies between a viscous liquid for which σ vanishes
identically and an elastic solid whose stress σ is a nonzero constant.

It seems therefore natural to assume that it is also possible to model the relation
between stress and strain for such a viscoelastic material via an equation of the
form

σ(t) = νDk ε(t) (2.19)

where ν is a material constant and k ∈ (0, 1) is the parameter introduced above.
This equation �interpolates� between (2.16) and (2.17) in a similar spirit. In view
of the above mentioned theoretical foundations of (2.19) laid by Nutting, this
relation is frequently called Nutting's law.

2E.g., some polymers, bitumen, non-Newtonian �uids, but also tendons and ligaments.



Chapter 3

System Identi�cation: Ordinary vs

Fractional

3.1 Introduction

In this chapter we will discuss system identi�cation as an approach for modeling
phenomena. In particular, we will introduce the topic from a broad perspective
and then we will go into the detail of the so-called system identi�cation loop for
ordinary, integer-order models, following [15]. Finally, we will look at the approx-
imation of fractional systems describing Oustaloup's �lter method [27], which will
be the keystone of the �nal chapter.

3.1.1 Dynamical Systems and Models

We can think a system as a pair box-observer. External stimuli can act on the box,
and in this case they are divided into control inputs and disturbances according to
the in�uence the observer can exert on them; this interaction exterior-box produces
signals, and those of interest for the observer are called outputs.

Once inputs and outputs are identi�ed, the observer needs to know the re-
lationship among the variables located inside the box and how they respond to
both inputs and disturbances to produce the corresponding outputs. Indeed, it is
assumed that the �nal goal of the observer is to predict system outputs with su�-
cient precision to make the whole process purposeful. We will call the relationship
external stimuli-box's variables-outputs a model of the system.

Di�erent levels of abstraction and formalism may be required when representing
a system. Some of them (mental models) are easily understood without relying
on any kind of mathematical formalization. Some other (like linear systems) are
appropriately described by numerical tables and/or plots. We shall refer to them
as graphical models. Sometimes instead the most pro�cient description comes in

35
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terms of mathematical expressions like di�erence or di�erential equations. We shall
call such models mathematical (or analytical) models. According to the degree of
sophistication, these latter descriptions can be further speci�ed; this is just a
side e�ect of the fact that mathematical models are ubiquitous in all branches of
modern sciences, both technical and nontechnical.

3.1.2 The Construction of a Model

Regardless of its kind, devising a model is an inductive process: the observer
gather instances of outputs and use them to infer the whole law. The route that
she follows to do so, however, depends on the characteristics of the system. Mental
models can be constructed from direct experience, while graphical models are made
up from suitable measurements. For what concerns mathematical models, instead,
the approach is twofold. A possibility is to divide the system into subsystems that
are well understood upon empiric considerations from various branches (physics,
engineering, biology, etc.); the global model is then built gluing every contributions
from the bottom up with mathematical laws. This �rst approach is called �rst

principle modeling and in recent years it has been greatly boosted by computer
science, so that a more precise term to connote a system description devised this
way would be software model.

The alternative route to build a mathematical model is to record and analyze
input and output signals from the system in order to infer a model from the data.
This method is called experimental identi�cation and it will be our focus in this
chapter.

3.2 The System Identi�cation Loop

The general procedure of system identi�cation consists of the following stages.

1. Design the experiment. For dynamic systems, this typically involves collect-
ing transient response data in the time domain or frequency response in the
frequency domain.

2. Record the data set, which should be the most informative possible in order
to represent the whole system with the most accuracy possible.

3. Choose a set of candidate models, whose elements are the di�erent models
that will be tested against the data set. Depending on the a priori knowledge
the model set can be called in di�erent ways: for example one could assume
nothing on the physical internal structure of the system, so that all the
inferred conclusions come from experimentally collected data only. Such
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choice is called black box model and it is the one we will focus on throughout
the thesis.

4. Choose the structure of the model, (e.g., whether a �rst-order or a second-
order model) based on known characteristics of the system and experience
joint with prior free identi�cation.

5. Find model parameters choosing the ones that �t the experimental data the
most using optimization techniques.

6. Validate the obtained model, keeping in mind that a model can never be
accepted as a �nal and true description of the system, but, rather, it can at
best be regarded as a description of some of its interesting properties that
is good enough to be useful. To do so generally requires the method to pass
certain tests, which are known as model validation. A typical example of
validation is to identify a model on a portion of the initial data set, which is
known as identi�cation set or, especially in the contest of the sets of models
called neural networks, as training set, and then make it perform against the
rest of the data set, which is known accordingly as validation set.

7. If the model meet all requirements, use it for the desired purpose. Otherwise,
revise modeling/identi�cation strategy and repeat the above steps.

3.3 Open-Loop Identi�cation in the Time Domain

De�nition 3.1: Formally, a single-input-single-output (SISO) black box model
can be de�ned starting from a map ψ : I → O, where (I ,O) ⊂ R2 denote the
measured input and output signals, respectively. Moreover, every signal can be
seen as a function of time t, such that the relationship between inputs and outputs
can be written as:

z(t) = ψ(v(t)) + R, (3.1)

where z(t) denotes the system output, and v(t) denotes the system input, and R
denotes measurement noise, which usually is modeled using a random distribution.

If we suppose that the sampling rate for the system is uniform ts = tk+1− tk ≡
constant, with k an integer index, then we refer to system's inputs as uk = v(kts)
and to system's output as yk = z(kts) + R, so that the data set will be:

Zn = {u0, y0, u1, y1, . . . , uN , yN , ts}, (3.2)

where k = 0, 1, . . . , N . Since zero initial conditions are assumed, if y0 6= 0, the
o�set will be removed from each of the collected output samples by translating the
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whole vector of the quantity y0:

yk ; yk − y0, k = 0, 1, . . . , N. (3.3)

3.3.1 Transfer Functions

Throughout the rest of the thesis we will focus Linear Time Invariant (LTI) sys-
tems. If we consider a SISO system with input u(t) and output y(t), it is said to
be linear if its output response of a linear combination of input signals equals the
same linear combination (i.e., with the same coe�cients) of the output responses
to the individual inputs. It is said to be time invariant if its output response to a
certain input signal does not depend on absolute time. Finally, if the output at a
certain time depends on the input up at that speci�c time only, the system is also
said to be causal.

It is well known that a causal LTI system can be described by its impulse

response g(τ) as follows:

y(t) =

∫ +∞

0

g(τ)u(t− τ) dτ. (3.4)

If we assume that the output y(t) is sampled at the sampling instants tk = kT ,
k = 0, 1, . . ., where T is the sampling interval, and we also assume that the input
signal u(t) is kept constant between the sampling instants, i.e., u(t) = uk for
t ∈ [kT, (k + 1)T ), we can simplify equation (3.4) and obtain:

y(kT ) =

∫ +∞

τ=0

g(τ)u(kT − τ) dτ =
+∞∑
`=1

∫ `T

τ=(`−1)T
g(τ)u(kT − τ) dτ

=
+∞∑
`=1

[ ∫ `T

τ=(`−1)T
g(τ) dτ

]
uk−` =

+∞∑
`=1

gT (`)uk−`,

(3.5)

where, following Ljung [15], we de�ned

gT (`) =

∫ `T

τ=(`−1)T
g(τ) dτ. (3.6)

The sequence {gT `)}+∞`=1 is called the impulse response on the system.
Moreover, if T is one time unit and (with slight abuse of notation) we indicate

with t the sampling instants we have that becomes:

y(t) =
+∞∑
k=1

g(k)u(t− k). (3.7)
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To streamline the notation a bit, let us introduce the forward shift operator and
its inverse, the backward shift operator, again following [15]:

qu(t) := u(t+ 1) q−1 u(t) = u(t− 1). (3.8)

Reexamining equation (3.7) we get:

y(t) =
+∞∑
k=1

g(k)u(t− k) =
+∞∑
k=1

g(k)
(

q−k u(t)
)

[ +∞∑
k=1

g(k) q−k
]
u(t) = GT (q)u(t),

(3.9)

where we introduced the notation:

GT (q) :=
∞∑
k=1

g(k) q−k, (3.10)

which we shall call the transfer function of the system (3.7).
Working with a continuous-time representation of (3.4), one fundamental de-

vice in system identi�cation is the Laplace transform L . Applying a reasoning
similar to the one expressed above, we can apply the Laplace transform to both
inputs and outputs, obtaining the relationship

y(t) = Gc(p)u(t), (3.11)

where Gc is the Laplace transform of the impulse response function g(τ) and p is
the di�erentiation operator. Two important things follow:

Remark 3.2.

• Equations (3.9) and (3.11) describe the output at all values for discrete-time
and continuous-time systems, respectively. This means that identifying such
systems can be reduced to identify their transfer functions.

• It is possible to go from continuous-time to discrete time representation in
several ways. One possibility is to approximate the di�erentiation operator
p by a di�erence approximation, so that we have the so-called Euler approx-
imation

GT (q) ≈ Gc

(q − 1

t

)
. (3.12)

From now on we will refer to the continuous-time transfer function Gc as
simply G.
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3.3.2 Identifying Transfer Functions

Let us consider a system regardless of errors and disturbances as

y(t) = G(q)u(t). (3.13)

The transfer function G is determined by a certain set of numerical values, or
coe�cient, whose knowledge it is often not possible a priori. This means that
actually, when describing a system through a transfer function, one should keep
in mind that it is fact a function of two variables: G(q) = G(q, θ), where θ is
the vector of all coe�cients. Therefore, θ speci�es a set of models and to identify
a system θ is to be determined. The identi�cation method aims to �nd the θ
which minimizes the squared Euclidean norm of output error. The corresponding
problem is stated as:

min
θ
e2, (3.14)

where e = yk − ŷk and ŷk = ψ̂(uk, θ) denotes the response of the estimated system
model ψ̂ under the input signal uk, k = 0, . . . , N .

In those cases where nonlinear least-squares estimation of model parameters θ
is required, the following are the most employed algorithms:

1. Trust Region Re�ective: especially useful for large-scale problems. Bounds
are given for parameter sets as θb = {θmin, θmax} [32].

2. Levenberg-Marquardt : common in the context of black-box model identi�ca-
tion.

3.3.3 The ODE model

One especially important example is given by a system described by an ordinary
di�erential equation (ODE):

n∑
k=0

ak
dk

dtk
y(t) =

m∑
k=0

bj
dj

dtj
u(t). (3.15)

The parameters in this case are:

θ = [a0, a1, . . . , an, b0, b1, . . . , bm]

Applying the Laplace transform to both sides we have:

y(t) =
Y (s)

U(s)
u(t) :=

m∑
j=0

bjs
j

n∑
k=0

aks
k

= G(s)u(t),
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that is, we have expressed the model via a rational complex transfer function,
whose numerator and denominator are called zero polynomial and pole polynomial,
respectively.

The identi�cation problem is then to estimate a set of parameters θ of the
model in (3.15), where θ is formed by:

ap = [an, an−1, · · · , a0], αp = [n, n− 1, · · · , 0],

bz = [bm, bm−1, · · · , b0], βz = [m,m− 1, · · · , 0],
(3.16)

ap and bz denote pole and zero polynomial di�erential operator coe�cients, αp and
βz denote the corresponding exponents (orders of di�erentiation), respectively; if
α0 = β0 = 0, then the system static gain is identi�ed as K = b0/a0; and for θ there
exists 9 possible parameter sets depending on the chosen identi�cation method:

• Full model parameter identi�cation, θ = [ap, αp, bz, βz];

• Fixed orders, unknown coe�cients, θ = [ap, bz];

• Fixed coe�cients, unknown orders, θ = [αp, βz].

With pole polynomial �xed:

• Full zero polynomial identi�cation, θ = [bz, βz];

• Fixed orders, unknown zero polynomial coe�cients, θ = bz;

• Fixed coe�cients, unknown zero polynomial orders, θ = βz.

With zero polynomial �xed:

• Full pole polynomial identi�cation, θ = [ap, αp];

• Fixed orders, unknown pole polynomial coe�cients, θ = ap;

• Fixed coe�cients, unknown pole polynomial orders, θ = αp.

Generally speaking, if there is a considerable amount of parameters to identify, the
identi�cation process may be slow; �xing or bounding parameters around partic-
ular values (maybe supported by engineering or physical insight) can alleviate the
workload signi�cantly.
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3.3.4 Residual Analysis

The following discussion deals with the assessment of the quality of the identi�ed
model.

Denote by yr the experimental plant output, and by ym the identi�ed model
output,so that they are two vectors of size N × 1. In the following, we address the
problem of statistical analysis of modeling residuals. Analysis is partially due to
Ljung [15]. Residuals are given by a vector containing the model output error

ε = yr − ym. (3.17)

The percentage �t may be expressed as

Fit =
(

1− ‖ε‖
‖yr − ȳr‖

)
× 100%, (3.18)

where ‖ · ‖ is the Euclidean norm, and ȳr denotes the mean value of yr.

Basic statistical data may be computed �rst, such as maximum absolute error

εmax = max
k
|ε(k)|, (3.19)

and mean squared error

εMSE =
1

N

N∑
k=1

ε2k =
‖ε‖22
N

. (3.20)

Assuming normal distribution of residuals the con�dence band η̂ is then approxi-
mated for a con�dence percentage pconf ∈ (0, 1] around zero mean as an interval

η̂ =
[0− φ−1(cp)√

N
,
0 + φ−1(cp)√

N

]
, (3.21)

where cp = 1−0.5(1−pconf) and φ−1(x) =
√

2 erf−1(2x−1) is the quantile function.

Based on these considerations, we may draw two conclusions: maximum abso-
lute error εmax shows the maximum deviation from the expected behavior of the
model over the examined time interval, however, it may be misleading when ad-
justing for noise or disturbance; mean squared error εMSE may serve as a general
measure of model quality. The lower it is, the more likely the model represents an
adequate description of the studied process.
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3.4 Fractional-Order Models

A fractional-order continuous-time dynamic system can be expressed by a frac-
tional di�erential equation of the following form:

an Dαn y(t) + an−1 Dαn−1 y(t) + · · ·+ a0 Dα0 y(t) =

= bm Dβm u(t) + bm−1 Dβm−1 u(t) + · · ·+ b0 Dβ0 u(t), (3.22)

where yi, uj are functions of time, (ai, bj) ∈ R2 and (αi, βj) ∈ R2
+. The system will

be called of commensurate-order if in (3.22) all the orders of derivation are integer
multiples of a base order α such that αk, βk = kα, α ∈ R+. The system can then
be expressed as

n∑
k=0

ak Dkα y(t) =
m∑
k=0

bk Dkα u(t). (3.23)

If in (3.23) is α = 1/q, q ∈ Z+, the system will be said of rational order. This
allows for a neat classi�cation of linear time-invariant systems based on their order
kind:

LTI Systems


Non-integer

Commensurate

{
Rational

Irrational

Non-commensurate

Integer

Applying the Laplace transform to (3.22) with zero initial conditions, the input-
output representation of a (continuous) fractional-order system can be obtained in
the form of a transfer function of the form:

G(s) =
Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + · · · b0sβ0

ansαn + an−1sαn−1 + · · · a0sα0
. (3.24)

We shall call the number of fractional poles in (3.24) the pseudo-order of the
system. In the case of a system with commensurate order α, we can take σ = sα

and consider the pseudo-rational transfer function

H(σ) =

m∑
k=0

bkσ
k

n∑
k=0

akσ
k

. (3.25)
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3.5 Approximation of Fractional-Order Operators

3.5.1 Grünwald-Letnikov Approximation

Numerical computations of fractional-order derivatives can be obtained by means
of an approximation of Grünwald-Letnikov de�nition [13, 32]

t0D
α
t f(t)

∣∣∣
t=kh

=
1

hα

[ t−a
h

]∑
k=0

w
(α)
j f(t− jh), (3.26)

where h is the computation step-size and

w
(α)
j = (−1)j

(
α

j

)
.

Since the approximation in (3.26) is de�ned via a summation, we note that the
larger t becomes, the more terms we need to add, which can easily lead to memory
problems. On the other hand, the Grünwald-Letnikov de�nition sees its coe�cients
corresponding to values of f near the initial point to bring little contribution for
large t. This fact is summarized in the short memory principle: is it possible to
approximate the derivative by using only �local� information. More formally, this
implies that to compute Dα f(t) with initial point t0, it actually su�ces to operate
in [t − L, t], with L being the maximum length of memory acting as a (moving)
lower limit. Thus we have

Dα f(t) ≈ t−LD
α f(t), t > L, (3.27)

and L/h represents the upper bound on the number of terms in the summation.
Of course, the memory length L in�uence the quality of the approximation.

For what concerns the calculation of the coe�cients in the case of a �xed α,
they can be evaluated recursively from

w
(α)
0 = 1, w

(α)
j =

(
1− α + 1

j

)
w

(α)
j−1, j = 1, 2, . . . (3.28)

while for a varying α the most used techniques involves the use of the fast Fourier
transform (FFT).

To obtain a numerical solution for the equation in (3.22), the signal û(t) should
be obtained �rst, using the algorithm in (3.26), where

û(t) = bm Dβm u(t) + bm−1 Dβm−1 u(t) + · · ·+ b0 Dβ0 u(t). (3.29)
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The time response of the system can then be obtained using the following equation:

y(t) =
( n∑
i=0

ai
hαi

)−1[
û(t)−

n∑
i=0

ai
hαi

[ t−a
h

]∑
j=1

w
(α)
j y(t− jh)

]
. (3.30)

The presented method is a �xed step method. The accuracy of simulation therefore
may depend on the step size.

3.5.2 Oustaloup's Filter Approximation

Due to practical limitations, it is often necessary to approximate a fractional-
order operator with a more manageable one of often much higher order, though.
Such replacement is the high-order rational approximation of the fractional-order
operator, and the method to derive it that we will adopt throughout the thesis is
due to Oustaloup [27].

Oustaloup's recursive �lter gives a very good approximation of fractional opera-
tors in a speci�ed frequency range. It is a well-established method and is often used
for practical implementation of fractional-order systems and controllers [28, 19, 32].
It is summarized next.

In order to approximate a fractional di�erentiator of order α or a fractional
integrator of order (−α) by a conventional transfer function one may compute the
zeros and poles of the latter using the following equations:

sα ≈ K
N∏
k=1

s+ ω′k
s+ ωk

, (3.31)

where

ω′k = ωb · ω(2k−1−α)/N
u , (3.32)

ωk = ωb · ω(2k−1+α)/N
u , (3.33)

K = ωαh , ωu =
√
ωh/ωb, (3.34)

with ωu being the unit gain frequency and the central frequency of a band of
frequencies geometrically distributed around it. That is, ωu =

√
ωhωb, ωh, ωb are

the high and low transitional frequencies.
One strong advantage of Oustaloup's �lter is that the amount of necessary

computations grows linearly with the order of approximation N , indeed, only a
limited history of the process is considered. The bigger the N the better the
approximation of the di�erentiator sα in its frequency band.

Besides, we shall remark that it su�ces to consider α ∈ (0, 1), since we can
always write:

sα = snsγ, (3.35)
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where n = α−γ denotes the integer part of α, so that γ ∈ (0, 1), since fractional and
integer-order derivatives commute for fractional orders α ≥ 1, and sγ is obtained
by the Oustaloup approximation by using (3.31).

Thus, every operator in (3.24) may be approximated using (3.35) and replaced
by the obtained approximation, yielding as a �nal result a conventional integer-

order transfer function. This suggests that, after all, identifying in the time domain
a system with a fractional-order model would lead to substantially the same results
of those provided by a classical integer-order model of possibly (very) high order,
at the price of a signi�cantly larger amount of computations. Before study the
correctness of this claim in the next chapter, we conclude the current one with a
remark.

Remark 3.3. Everything that has been said for the ODE model (3.15) still holds
for a fractional-order one, with the modi�cation that in this latter case the order
of derivation are generic nonnegative real numbers. Moreover, if the system under
investigation is of commensurate order 0 < γ < 2, an initial guess model should
be generated

αp = [γn γ(n− 1) · · · 0] (3.36)

and
βz = [γm γ(m− 1) · · · 0], (3.37)

such that {
(n,m) ∈ Z2

+ : n ≥ m
}
, (3.38)

where n determines the pseudo-order of the system; the orders should be �xed and
only model coe�cients estimated. Of course, a commensurate initial model may
also be used for identi�cation of all parameters.



Chapter 4

Fractional-Order Modeling and

Control Toolboxes

The recent increase of interest in fractional calculus by applied mathematics and
science �elds led to an increase in the demand of numerical tools for the computa-
tion of fractional integration/di�erentiation, and the simulation of fractional order-
systems. Accordingly, much software programs were produced and distributed, so
that today there is not an established standard �go-to� software, each of the cur-
rently used tools has its own strengths and weaknesses.

To perform the calculations and simulations needed to complete our numerical
results, we chose to use the MATLAB toolbox FOMCON, developed by Aleksej
Tepljakov [33], which is based on three other popular toolboxes.

In this chapter we give an outline of each of them and we also provide a table
of comparison as a reference. Next we describe the structure of the FOMCON
more in detail, concluding with an hands-on example of its usage. This summary
is largely based on a survey paper by Zhuo Li et al. [14], so something could have
changed.

4.1 FOTF

FOTF (Fractional Order Transfer Function) is a control toolbox for fractional
order systems developed by Xue et al. [8] which extends many MATLAB built-
in functions. The reference text for the FOTF toolbox is [37], where the author
explains thoroughly all its commands and applications.

The toolbox employs a programming technique called overload to enable the
related methods of the MATLAB built-in functions to deal with fractional-order
models. For instance, the transfer function objects generated from FOTF can
interact with those generated from the MATLAB transfer function class. However,
overload presents also negative sides, in fact functions such as impulse(), step(),

47
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etc, lost the plotting functionality. There are easy workarounds, though, usually
de�ning a time vector as second input su�ces.

FOTF toolbox also supports time delay in the transfer function, enabled by
calling for example fotf(a,na,b,nb,delay). It does not directly support transfer
function matrix, hence, multiple-input-multiple-output (MIMO) systems cannot
be simulated directly. Yet, it does provides Simulink block encapsulation of func-
tion fotf(), so multiple input/output relationship can be set up by adding loop
interactions in Simulink block diagrams manually.

As reported by Zhuo Li et al. [14] FOTF sampling time can have relatively
great impact on the accuracy.

FOTF approximate fractional di�erential operators by means of a discretization
of the Grünwald-Letnikov de�nition of noninteger derivative, but other approxi-
mation methods are possible [8].

It seems to lack a system identi�cation module.

4.2 Ninteger

Ninteger (Non-integer) is a toolbox for MATLAB intended to help developing non-
integer order controllers for single-input, single-output plants, and assess their per-
formance. It was originally developed by Duarte Valério and José Sá da Costa [34]
to face the lack of availability of toolboxes for fractional calculus and control.

Ninteger provides Simulink block encapsulation of the involved functions, such
as nid and nipid blocks. Moreover, it o�ers a user-friendly GUI for fractional
order PID controller design. It uses integer-order approximations of fractional-
order transfer function, mainly based on Oustaloup's �lter; more generally the
whole toolbox has been inspired by the original CRONE one, from which Ninteger
imported several methods.

There are compatibility issues with Ninteger toolbox in MATLAB version 2013a
or later: it has con�icts with some built-in functions due to the overload editing
of the Matlab built-in function isinteger().

Its last update dates back to March 2008.

4.3 ooCRONE

The CRONE (Commande Robuste d'Ordre Non Entier, robust command of non-
integer order) Toolbox, developed since the nineties by the CRONE team [28], is
a MATLAB and Simulink toolbox dedicated to applications of non integer deriva-
tives in engineering and science. It started as a script-based toolbox, while later
evolved into the current object-oriented version [19].
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CRONE is the �rst developed toolbox for the management of fractional op-
erators. Several other toolboxes are inspired by CRONE, e.g., Ninteger (as said
above) and FOMCON. Moreover, many approximations techniques proposed by
the CRONE team are considered as foundational in the literature (see e.g., [21, 32]).
For instance Oustaloup's (leader of the CRONE team) method of approximation
of transfer functions was one of the cornerstones of the original CRONE toolbox.

It has a fairly enhanced support for MIMO fractional transfer functions. For
example, executing sysMIMO=[sys,sys;sys2,sys2] generates a two-input-two-
output transfer function matrix. Yet CRONE does not allow incorporation of
time delay into the generated fractional-order transfer function, neither by manual
multiplication.

CRONE is a toolbox much more powerful than merely simulating fractional
order systems. Besides this basic functionality, it is also capable of fractional
order system identi�cation and robust control analysis and design. However, user
may experience di�culties about the availability of the toolbox, since it is not
hosted on MathWorks, but the license of use and the product itself have to be
distributed by the CRONE team itself. It also does not have a GUI, for the time
being.

4.4 FOMCON

The FOMCON toolbox for MATLAB is a fractional-order calculus based toolbox
for system modeling and control design. Aleksei Tepljiakov [33, 32] developed it
upon the core of FOTF. Consequently, the main object of analysis in FOMCON
is a fractional-order transfer function of the form:

G(s) =
bms

βm + bm−1s
βm−1 + · · · b0sβ0

ansαn + an−1sαn−1 + · · · a0sα0
,

and its main aim is to extend conventional control schemes, like PID controllers,
with concepts of fractional calculus and to provide tools to implement fractional-
order systems and controllers.

FOMCON is also related to other existing fractional-order calculus oriented
MATLAB toolboxes, such as CRONE [28] and Ninteger [34] (indeed, the author
refers to its work as the �missing link� between them) through either system model
conversion features or shared code, and this relation is depicted in Fig. 4.1.

FOMCONwas initially developed in order to facilitate the research of fractional-
order systems. This involved writing convenience functions, e.g., the polynomial
string parser and building a GUI. However, a full suite of tools was also desired
due to certain limitations in existing toolboxes. Once the core of basic function
of FOMCON was established, it was then extended with advanced features, such
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Figure 4.1: Fractional-calculus based toolboxes relations

as fractional-order system identi�cation and FOPID controller design. This makes
the toolbox suitable for both beginners and more demanding, experienced users.

The toolbox also supports sophisticated modeling approach and real-time con-
trol application through Simulink blockset. A plus is also FOMCON's (possibly
partial) portability among di�erent platforms such as Scilab and Octave, made
possible by the availability of the source code, hosted e.g. in the o�cial web-
site [1].

4.4.1 Structure of the Toolbox

The toolbox has an interconnected modular structure with most features supported
by graphical user interfaces. It currently consists of:

• Main module (core-fractional system analysis);

• Identi�cation module (system identi�cation in both time and frequency do-
mains);

• Control module (FOPID controller design, tuning and optimization tools, as
well as some additional features);

• Implementation module (continuous and discrete time approximations, im-
plementation of corresponding analog and digital �lters).

4.4.2 Dependencies

FOMCON employs two standard MATLAB toolboxes, i.e., Control System tool-
box, required for most features, and Optimization toolbox, required for time do-
main identi�cation and PID tuning.
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To further underline the connection lying between FOMCON and CRONE, we
remark that is also possible to export fractional-order systems to CRONE format,
once this latter toolbox has been installed on the main operative system.

4.4.3 Identi�cation Module

Since the numerical results that we will present in the next chapter deal with
system identi�cation, we devote some space here to illustrate FOMCON's identi-
�cation module.

It provides the following main features:

• Time domain identi�cation:

� Commensurate and non-commensurate order system identi�cation;

� Parametric identi�cation;

� Approximation of fractional systems by conventional process models.

• Frequency domain identi�cation:

� Commensurate transfer function identi�cation;

� Best �t algorithm for choosing an optimal commensurate order and
pseudo-orders of the fractional transfer function.

In addition, coe�cients and orders of the obtained model can be manipulated, (e.g.,
truncated, rounded, normalized etc), via ad-hoc functions; likewise FOMCON also
has functions for validating the models and carry out residual analysis.

4.4.4 Example

Here we illustrate the use of the fid function of FOMCON toolbox using one of
the examples provided by Tepljakov himself in [32]. Functions explanations can
be found at [1].

The task is to identify a system from an experimental signal to verify the
identi�cation algorithm.

An excitation signal (a PRBS7 sequence with amplitude of 1 applied for 30 s
and immediately followed by a sine wave with an amplitude of 1 centered around
zero with frequency of 20 Hz lasting 30 s) is applied to the input of the system
and output samples are collected with a sample rate of 200 Hz.

The system under study is described by

G(s) =
−1.3333s0.63 + 2.6667

1.3333s3.501 + 2.5333s2.42 + 1.7333s1.798 + 1.6667s1.31 + 1
. (4.1)
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Assuming the variables u, y, and t hold the experimental input, output, and
sample time vector, respectively, and denoting also with c and α the generic model
coe�cient and the generic model order, respectively, the initial model structure
and parameters are chosen as

Gi(s) =
s+ 1

s3 + s2.5 + s1.5 + s+ 1
, c ∈ [−100, 1000] α ∈ [10−9, 5]. (4.2)

The model is simulated by an Oustaloup's recursive �lter with ω ∈ [0.0001, 10000],
N = 5, and the Trust-Region-Re�ective optimization algorithm is used to optimize
the �t.

We now go through the code line by line:

% Setup: Create the fractional identification dataset

id1 = fidata (y, u, t);

Function fidata() returns an object containing correctly sized identi�cation pa-
rameters and additionally sampling interval based on the provided time vector.
It is called as fidata(y,u,t), where the arguments stand for, in order, observed
system output, observed system input, observations time vector.

% Initial model structure and parameters

g_i = fotf ('s+1', 's^3 + s^2.5 + s^1.5 + s + 1');

Function fotf() creates a new fractional-orderr transfer function object. It can be
called in multiple ways; here it has been chosen the fashion fotf('s'), where 's'
stands for a pair of symbolic expression in the variable s that represents the pair
pole polynomial-zero polynomial of the transfer function. In all other cases, fotf()
must be given the information about the transfer function providing coe�cients
and orders and delay, using coupled vectors or polynomial strings. The function
can also be called with argument another fotf object.

% Use Oustaloup approximation for system simulation

fsp = fsparam(g_i, 'oust', [0.0001 10000], 5);

Function fsparam() creates a new simulation parameters structure used for FOTF
system simulation using one of the following approximations: Oustaloup �lter, re-
�ned Oustaloup �lter. It is called as fsparam(plant, approx, w, N), where
plant is a fotf object or a symbolic expression in the variable s which evaluate to
a valid transfer function; approx is the approximation method employed, can be ei-
ther 'gl', 'oust' or 'ref' that indicate Grünwwald-Letnikov, Oustaloup's �lter
and re�ned Oustaloup's �lter, respectively (default: 'oust'); w is the approxima-
tion frequency range in form [wb; wh] (default: [1e-3;1e3]); N is approximation
order (default 5);
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% Model is assumed to have a unitary static gain and no delay

gp = {1, []};

% Optimization algorithm: Trust-region-reflective

op.IdentificationAlgorithm = 'trr';

lim = {[-100; 1000], [1e-9 5]}; % Bounds

% Run the identification: G_id1 is the identified model

[~,~,~,~,~,G_id1] = fid(fsp, gp, id1, [], [], [], lim, op);

Function fid() identi�es SISO systems transfer functions of fractional order. It
is called as

[a,na,b,nb,l,gid] = fid(fsim|g,gparam,idd,...

npoints,type,fixpoly,limits,op)}

The �rst argument can be either a fsparam structure or the initial fotf object.
gparam is a cell array with explicit model parameters: {K, L}, where K is the
static gain1 and L is the time delay in seconds. idd is a fidata structure with the
collected system samples.

All the remaining arguments are optional: npoints stands for the number of
points to use for identi�cation (default: 0 or, equivalently, []); type stands for
the type of identi�cation, to be either 'n', i.e., free identi�cation, 'c', i.e., coe�-
cients will be kept �xed, or 'e', i.e., exponents will be kept �xed (default: 'n').
fixpoly allows to �x one polynomial or both, it is in form of a two-valued vec-
tor [bfix,afix], nonzero values will �x corresponding polynomials (default: [0;
0]). limits is a cell array of the form [CMIN;CMAX],[EMIN;EMAX], containing
polynomial coe�cients and exponents (default: []). Finally op is a string indicat-
ing the optimization algorithm employed: 'trr' sets Trusted-Region-Re�ective,
while 'lm' set Levenberg-Marquadt.

For invoking the Levenberg-Marquardt algorithm the following commands may
be used2

% Optimization algorithm: Levenberg-Marquardt

op.IdentificationAlgorithm = 'lm'; op.Lambda = 100;

% Run the identification : G_id2 is the identified model

[~,~,~,~,~,G_id2] = fid(fsp, gp, id1, [], [], [], [], op);

A summary of the achieved results is provided in Table 4.1. The following
models are obtained with the powers truncated:

Gid1 (s) =
−1.281s0.656 + 2.657

1.396s3.495 + 2.145s2.471 + 2.736s1.817 + 1.199s1.176 + 1
(4.3)

1Note that static gain will be identi�ed only in case of free identi�cation, i.e., all parameters
of both polynomials are identi�ed.

2Note that 'lm' algorithm does not handle bound constraints, so the limits of search will be
discarded with this option.
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Algorithm %Fit εMSE NoIter FunEval τ (min)

TRR 99.98 1.50× 10−8 84 1020 02 : 26

LM 99.07 4.24× 10−5 97 1227 02 : 50

Table 4.1: Identi�cation of a complex fractional system: results for di�erent esti-
mation algorithms

and

Gid2 (s) =
0.014s4.617 + 2.627

0.899s4.922 + 5.003s3.409 + 6.519s2.059 + 1.71s0.962 + 1
(4.4)

Clearly, using the Trust-Region-Re�ective estimation algorithm leads to a more
accurate result in this particular case.

4.5 Summary

All the toolboxes described in this chapter are known and widespread in the frac-
tional calculus community. We opted for the FOMCON for its usability (although
we did not make use of its capable GUI) and updated state. The reliability of its
built-in techniques derives from established ideas also implemented in the other
toolboxes, so it was not necessary to have a trade-o� between performance and
ease. It was also essential that the toolbox had an identi�cation module, of course.

A brief dashboard with the major characteristics of each toolbox follows.

Toolbox Identi�cation Control GUI TF Approximation MIMO Maintenance

FOTF 7 3 7 G-L 3 07/2017

Ninteger 3 3 3 Oustaloup 7 03/2008

ooCRONE 3 3 7 Oustaloup 3 ≥ 01/2010

FOMCON 3 3 3 Oustaloup 3 04/2018

Table 4.2: Summary of toolboxes characteristics: the listed methods employed to
approximate transfer functions (TF) are the main ones used in each toolbox; as
said above they are not the only ones. For maintenance, the last known update
time was used as reference; concerning ooCRONE it is not clear when it was
updated the last time, so the date of the license was provided as a (probably very)
lower bound.



Chapter 5

Numerical Results

In this chapter we will present some numerical results on three cases of system
identi�cation, the �rst two coming from experimental data and the last one sim-
ulated at random. The goal is to investigate whether fractional-orders models,
being more �exible than their ordinary integer-order counterparts, are actually
more e�ective in approximating a given nonlinear system; and if that is the case,
whether the computational cost to generate them is worth it in real-life scenarios.
As we noted in the previous chapter, we know that these systems can be completely
described by a rational transfer function G. Thus, our purpose is to identify G
as an ordinary, integer-order transfer function and obtain an approximation of the
system. Then, we will employ MATLAB FOMCON toolbox by Tepljakov [32] to
identify the systems as fractional-order models, using G as starting point. In both
cases we simulate the outputs for identi�cation data and validation data and we
parallel them to the experimental data, estimating the error committed as the
squared norm of their di�erence.
Finally we compare the performance of the fractional-order model against the one
of the integer-order model, with particular focus on validation: the concern is that
the �exibility of fractional models can cause them to over-�t the identi�cation
data, weakening their performance against validation sets.

5.1 Furnace

We start with experimental data collected from an industrial furnace. The system
is considered to be well approximated by an LTI model, with inputs the voltages
applied to furnace's heating system and outputs its temperatures.

5.1.1 Data Set

The data set comes in form of a table whose columns are ordered as:

55
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1. Time instants;

2. Inputs u (voltages);

3. Outputs y (temperatures).

We chose to divide the data set with an 80 : 20 split between identi�cation set and
validation set, as can be seen in Figure 5.1.

portion_id = round(0.8*num_data);

data_id = data(1:portion_id,:);

data_val = data(portion_id+1:num_data,:);

% Identification data

time_id = data_id(:,1);

inputs_id = data_id(:,2);

outputs_id = data_id(:,3);

% Validation data

time_val = data_val(:,1);

inputs_val = data_val(:,2);

outputs_val = data_val(:,3);

5.1.2 Integer-Order Identi�cation

Before starting the identi�cation process, it is convenient to interpolate the time
instants and remove possible o�sets, then simulate the collected data to assure
them to be evenly sampled and with zero initial condition. The same holds for
validation data, of course.

Ts = 12

% Identification data set

time_id_int = [0:Ts:time_id(end)-time_id(1)] + time_id(1); $ time

u_id = interp1(time_id,inputs_id,time_id_int); % inputs

y_id = interp1(time_id,outputs_id,time_id_int); % outputs

% Offset removal

u_id = u_id - inputs_id(1);

y_id = y_id - outputs_id(1);

% Validation data set
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Figure 5.1: Furnace: data set. Identi�cation data are plotted in red, validation
data in blue.

time_val_int = [0:Ts:time_val(end)-time_val(1)] + time_val(1); % time

u_val = interp1(time_val,inputs_val,time_val_int); % inputs

y_val = interp1(time_val,outputs_val,time_val_int); % outputs

% Offset removal

u_val = u_val - inputs_id(1);

y_val = y_val - outputs_id(1);

In this and every other case in this chapter, the parametric identi�cation develops
with �xed orders, so that we only estimate the unknown coe�cients; in particular,
here we chose the numerator of G to be of order 1 and the denominator to be of
order 2 with a time step Ts = 12.
The integer-order transfer function is provided by the MATLAB function tfest:

data_id = iddata(y_id',u_id',Ts);

sys = tfest(data_id,2,1);

and for the furnace system it returns:

GI(s) =
0.003207 s− 2.166× 10−8

s2 + 0.003965 s+ 8.054× 10−8
(5.1)
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Its associated normalized root mean squared error (NRMSE) percentage of the �t
of the estimation data is of 70.91%, with an overall mean squared error (MSE)
of 14.79. Moreover, the norm of the di�erence between approximated and exper-
imental data is 302.1166. In conclusion, not extraordinary, but su�cient for our
purposes.

5.1.3 Fractional-Order Identi�cation

The next phase is fractional-order identi�cation. We employ the MATLAB FOM-
CON toolbox by Tepljakov [32]. The process starts with an initial transfer function:
we choose GI we found earlier in (5.1) to be the input of the FOMCON function
fotf.

frac_id = fidata(y_id',u_id,time_id_int);

G_starting = fotf(G_ord)

Then we use the FOMCON function fsparam to determine all the parameters: in
fact, when performing fractional-order identi�cation we do not �x the orders, in
contrast with our choices about integer-order identi�cation. Here we leave fairly
wide freedom of search, setting parameters bounds as low as −102 and as high 103,
and setting the order of derivation to be in the range [10−9, 10]. Concerning the
frequency range, instead, we allow searching in the range of [10−4, 103] radiants per
second. As remarked in the preceding chapter, fractional-order transfer functions
need to be approximated to be used. We choose therefore to approximate them
via Oustaloup's �lter, described earlier.

frac_param = fsparam(G_starting, 'oust', [0.0001 1000], 10);

System identi�cation is an optimization process; we thus need a (nonlinear) opti-
mization algorithm to help us realize it. In the case of the industrial furnace we
choose the Trusted Region Re�ective. We also assume that the model has static
gain.

gp = {1, []}; % static gain

op.IdentificationAlgorithm = 'trr'; % Trusted Region Reflective

lim = {[-100 ; 1000], [1e-9 10]}; % Search bounds

[a, na, b, nb, l, G_frac] = fid(frac_param, gp, frac_id,...

[],[],[], lim, op);

The fractional-order transfer function we obtained is:

GF (s) =
−5.6539 s0.91322 + 0.86611

24.911 s2.8497 + 115.81 s0.85359 + 1
(5.2)
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Identi�cation error Validation error

Integer Fractional Relative % Integer Fractional Relative %

302.1166 315.4941 4.24% 235.4625 251.9559 6.55%

Table 5.1: Furnace: approximation errors. Computed as ‖y − ỹ‖, where y are the
experimental data, ỹ are the approximated data and ‖ · ‖ is the Euclidean norm.
The relative percentage express the di�erence of the errors committed by the two
models in proportion of the highest between them.

5.1.4 Validation

Both GI and GF are employed to simulate data to parallel against the validation
set; the results are discussed next.

5.1.5 Comparison

Fractionally approximated data actually perform slightly worse than their ordinary
integer-order counterpart, in both identi�cation and validation set. Table 5.1
reports the errors committed, expressed as the norm of the di�erence between
approximated and experimental data.
What really is remarkable is that the two approximations di�er just a little, in the
end the returned model seem to be the same, practically speaking. Figures 5.2�5.7
show the comparison between the two models, with respect to experimental data
of both identi�cation and validation sets, and between each other.
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Figure 5.2: Furnace: integer-order identi�ca-
tion. Approximated data are plotted in red, ex-
perimental data in blue (dashed).
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Figure 5.3: Furnace: fractional-order identi�-
cation. Approximated data are plotted in red,
experimental data in blue (dashed).
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Figure 5.4: Furnace: integer-order validation.
Approximated data are plotted in red, experi-
mental data in blue (dashed).
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Figure 5.5: Furnace: fractional-order validation.
Approximated data are plotted in red, experi-
mental data in blue (dashed).

0 1 2 3 4 5 6

10
4

-40

-30

-20

-10

0

10

20

30

40
ordinary (blue) vs fractional (red)

Figure 5.6: Furnace: identi�cation comparison.
Fractional approximation data are plotted in
red, integer approximation data in blue.
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Figure 5.7: Furnace: validation comparison.
Fractional approximation data are plotted in
red, integer approximation data in blue.
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Figure 5.8: Peltier cell: data set. Identi�cation data are plotted in red, validation
data in blue.

5.2 Peltier Cell

The next data set comes from a Peltier cell, a thermoelectric device. In the ex-
perimental context of these data collection, heat di�usion e�ects were studied. It
is thus interesting to compare the approximation performances of integer-order
against fractional-orders models, since in the literature fractional-order models are
appraised for their great capability of identifying systems involved in �uid di�u-
sion, especially.

5.2.1 Data Set

The only things that change with respect at the analogous previous subsection are
that in this case the data set is much bigger (about three times larger), and in
the last 20% of its output column it presents a monotonic slight increase after an
initial sudden raising. Therefore we opt for a 60 : 40 split in order to preserve
variability in the validation data as shown in Figure 5.8.

5.2.2 Integer-Order Identi�cation

Like we did before in the case of the furnace we choose to identify the system
with a rational transfer function with a �rst-order numerator and a second-order
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denominator. This time, however, we interpolate with a time step Ts = 7. We get:

GI(s) =
−0.119 s− 0.0001706

s2 + 0.1701 s+ 0.0003153
. (5.3)

In this case the �t is much better, with a �t of 87.11%, a MSE of 0.7803 and a
norm of the di�erence between approximation and experimental data of 22.1407.

5.2.3 Fractional-Order Identi�cation

We keep unvaried all the settings for the FOMCON toolbox that we discussed in
the case of the industrial furnace. The fractional transfer function found for the
Peltier cell is:

GF (s) =
−123.35 s0.078998 + 6.8456

953.83 s0.8569 + 103.21 s4.9443×10−6 + 1
. (5.4)

5.2.4 Validation

Like before, we employed the two transfer functions to approximate also the vali-
dation data and compare the performances.

5.2.5 Comparison

First o�, this time the errors are signi�cantly lower. The fractional model perform
slightly worse than the integer one over the identi�cation data, while the former
outdoes the latter by a neck over the validation set. Table 5.2 reports the errors
committed, expressed as the norm of the di�erence between approximated and
experimental data, like in the case of the furnace.
Again, we �nd that the two di�erent models are practically the same in terms of
approximation.
Figures 5.9�5.14 show the comparison between the two models, with respect to
experimental data of both identi�cation and validation sets, and between each
other.
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Identi�cation error Validation error

Integer Fractional Relative % Integer Fractional Relative %

22.1407 25.3970 12.82% 50.7180 49.6075 2.19%

Table 5.2: Peltier cell: approximation errors. Computed as ‖y − ỹ‖, where y are
the experimental data, ỹ are the approximated data and ‖ · ‖ is the Euclidean
norm. The relative percentage express the di�erence of the errors committed by
the two models in proportion of the highest between them.
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Figure 5.9: Peltier cell: integer-order identi�-
cation. Approximated data are plotted in red,
experimental data in blue (dashed).
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Figure 5.10: Peltier cell: fractional-order identi-
�cation. Approximated data are plotted in red,
experimental data in blue (dashed).
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Figure 5.11: Peltier cell: integer-order valida-
tion. Approximated data are plotted in red, ex-
perimental data in blue (dashed).
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Figure 5.12: Peltier cell: fractional-order vali-
dation. Approximated data are plotted in red,
experimental data in blue (dashed).
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Figure 5.13: Peltier cell: identi�cation compari-
son. Fractional approximation data are plotted
in red, integer approximation data in blue.
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Figure 5.14: peltier: validation comparison.
Fractional approximation data are plotted in
red, integer approximation data in blue.
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5.3 Simulated Data

The last experimental result is di�erent from the previous two. In this case we
start from a transfer function with a strong fractional character, i.e., such that its
exponents are not close to integer numbers:

G(s) =
−1.3333 s0.63 + 2.6667

1.3333 s3.501 + 2.5333 s2.42 + 1.7333 s1.798 + 1.6667 s1.31 + 1
. (5.5)

This function is one of the examples employed by Tepljakov in [32] to illustrate
the use of the fid function in the FOMCON.

G = fotf('-1.3333 s^0.63 + 2.6667',...

'1.3333 s^3.501 + 2.5333 s^2.42 +...

1.7333 s^1.798 + 1.6667 s^1.31 + 1');

5.3.1 Data Set

We simulate input data at random to mimic the one obtained in a real experimental
context. In this way we can use G to simulate the outputs data that are supposed
to be associated to the random inputs.

time = 0:0.5:4999.5;

num_instant = length(time);

constant = 500;

num_samples = num_instant/constant;

% Inputs are designed to be piecewise constant.

inputs = [];

for i = 1:num_samples

valore = 100.*rand(1);

inputs = [inputs valore.*ones(1,constant)];

end

outputs = lsim(G,inputs,time);

5.3.2 Integer-Order Identi�cation

As before, we interpolate the data (here Ts = 10) before performing system iden-
ti�cation.

Ts = 10;

time_int = [0:Ts:time(end)];

u = interp1(time,inputs,time_int);

y = interp1(time,outputs,time_int);
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Figure 5.15: Simulated Data: data set. Inputs are plotted in blue, outputs in red.

Next we identify G with an integer-order model: it will be our reference. We
choose a fourth-order numerator and a sixth-order denominator.

data = iddata(y',u',Ts);

sys = tfest(data,6,4)

G_ord=tf(sys);

y_id_ordinary = lsim(G_ord,u,time_int)

What we obtained is:

GI(s) =
15.63 s4 + 4.076 s3 + 0.1355 s2 + 0.0008051 s+ 8.178× 10−7

s6 + 24.38 s5 + 8.618 s4 + 1.644 s3 + 0.05196 s2 + 0.0003044 s+ 3.07× 10−7
.

(5.6)
The quality of the approximation is the highest so far, with a �t percentage of
99.84%, a MSE of 0.01765 and a norm of the di�erence between approximated
and simulated of 7.9039.
This fact alone tells us that an integer-order transfer function can approximate a
fractional-order one with absolute precision without the need of excessively high
order of derivation or computational resources.

5.3.3 Oustaloup's Filter

The �nal step is to use Oustaloup's approximation of G provided by the function
oustapp to simulate another set of outputs and then compare it against both the
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simulated experimental one and integer-order one. We set the coe�cients to be
bounded in [10−3, 103] and the orders to be less or equal than 20.

G_oustapp = oustapp(G,0.001,1000,20,'oust');

y_id_oustapp = lsim(G_oustapp,u,time_int);

Oustaloup's approximation of G_oustapp is quite cumbrous, too much to report
it here; we will make to say that it has 262 terms su�ce.

5.3.4 Comparison

Like the previous ones, in this case also the more sophisticated approximation is
the one that performs worse, with an error of 59.4048 (against 7.9039). Anyway,
the two models are again very similar to each other when looking at the provided
outputs, as Figures 5.16�5.18 show.
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Figure 5.16: Simulated Data: integer-order
identi�cation. Approximated data are plotted
in red, experimental data in blue (dashed).
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Figure 5.17: Simulated Data: Oustaloup's ap-
proximation. Approximated data are plotted in
green, experimental data in blue (dashed).
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Figure 5.18: Simulated Data: identi�cation comparison. Integer-order approximation data are plotted in
red, Oustaloup's approximation in green.
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Conclusions

Fractional-order operators have been gaining popularity in the �eld of Control
Engineering in recent years, especially for their performances in capturing sys-
tems nonlinearities. What is more, the whole domain of frequency analysis has a
fractional-order counterpart that could be explored to achieve signi�cant advances
in the whole branch of control theory. However, using the fractional variant of
Bode diagram to analyze a nonlinear system modeled with a fractional transfer
function showed no evidence of dependence on the amplitude in the magnitude
plot, thus questioning whether any signi�cant nonlinearity could have been cap-
tured without leaving no trace in the diagram. This fact, noticed by the second
adviser of this Master Thesis, inspired the three experiments we explained in the
previous chapter.
In every of the three cases examined in the previous chapter, fractional-order
identi�cation of transfer function failed to provide signi�cant improvements with
respect to the performance of standard integer-order identi�cation, even in the
case where fractional operators capabilities where expected the most, i.e., the one
of the Peltier cell.
In all cases fairly wide freedom was given to parameters search in order to give the
chance to fractional operators to show their strength at their best. However, both
when approximation error was high and when it was low, the results provided by
fractional transfer functions were more de�cient (even if not very much) than the
ones provided by integer-order transfer functions, surprisingly.
Randomly generated data also con�rmed this trend when they were used to simu-
late outputs based on a fractional transfer function: a relatively low-order classical
integer transfer function was more e�ective in �tting the data than Oustaloup's
approximation, that is, more e�ective than what is popularly used to approximate
fractional transfer functions themselves.
However, as stressed before, what really stands out is that every time the two kinds
of model approximation proposed are nearly indistinguishable, virtually the same.
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This may be due to the fact that to approximate fractional transfer functions in
an e�cient manner (for instance using Oustaloup's �lter), one in the end works
with integer-order transfer function, possibly of (very) high order, though.
In conclusion, these results suggest that fractional-order methods may be useful
to take into account the system nonlinearities provided that ordinary linear ap-
proximations are not used except for the implementation phase. Yet if a �lter like
Oustaloup's one is employed at any time, all the theoretical advantage given by
non-integer-order operators may end up frustrated in an approximation, making
the adoption of fractional calculus useless.
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