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Abstract

In every science discipline, from engineering to economics, �nding solutions of an equation is es-
sential. As iterative methods allow us to �nd solutions of nonlinear equations, there exist in the
literature plenty of studies about these methods, such us Newton, Traub or Chebyshev. In this work,
we present and design di�erent families of methods depending on parameters. By using complex
dynamics tools, we will compare several methods in order to �nd those ones with a good and stable
behavior, by means of the properties of the rational function obtained when they are applied on
quadratic polynomials. The stability of the methods plays an important role in their reliability when
they are applied on di�erent problems. It is also important to focus on their order of convergence,
what means the speed at which the method reaches the solution. The study of �xed points, together
with the critical points and the development of their respective parameter and dynamical planes,
represent the variety of the presented classes and enable to select the best elements of the families.

Resumen

En todas las disciplinas de la ciencia, desde la ingeniería hasta la economía, encontrar las soluciones
de una ecuación es esencial. Puesto que los métodos iterativos nos permiten encontrar dichas solu-
ciones de ecuaciones no lineales, existen en la literatura numerosos estudios sobre estos métodos,
entre los que cabe destacar los de Newton, Traub o Chebyshev. En este trabajo, presentamos
y diseñamos diferentes familias de métodos dependientes de ciertos parámetros. Empleando her-
ramientas de dinámica compleja, se compararán varias clases con el �n de encontrar aquellas con un
comportamiento bueno y estable, mediante las propiedades de la función racional obtenida cuando
se aplican a polinomios cuadráticos. La estabilidad de los métodos juega un papel importante en
su �abilidad cuando son aplicados en distintos problemas. Asimismo, es importante centrarse en su
orden de convergencia, el cual indica la velocidad a la que se alcanza la solución. El estudio de los
puntos �jos, junto con los puntos críticos y sus planos de parámetros asociados, muestran la riqueza
de las clases presentadas y nos permiten seleccionar los mejores elementos de las familias.

Resum

En totes les disciplines de la ciència, des de l'enginyeria �ns a l'economia, trobar les solucions
d'una equació és essencial. Ja que els mètodes iteratius ens permeten trobar les dites solucions
d'equacions no lineals, existixen en la literatura nombrosos estudis sobre estos mètodes, entre els
que cal destacar els mètodes de Newton, Traub o Chebyshev. En este treball, presentem i dissenyem
diferents famílies de mètodes dependents de certs paràmetres. Emprant ferramentes de dinàmica
complexa, es compararan unes quantes classes a � de trobar aquelles amb un comportament bo
i estable, per mitjà de les propietats de la funció racional obtinguda quan s'apliquen a polinomis
quadràtics. L'estabilitat dels mètodes juga un paper important en la seua �abilitat quan són aplicats
en distints problemes. Així mateix, és important centrar-se en la seua orde de convergència, el qual
indica la velocitat a què s'aconseguix la solució. L'estudi dels punts �xos, junt amb els punts crítics
i els seus plans de paràmetres associats, mostren la riquesa de les classes presentades i ens permeten
seleccionar els millors elements de les famílies.
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Chapter 1

Introduction

Many real problems in Science and Engineering require the resolution of equations or systems of
equations that, in general, are nonlinear. Nonlinear equations have generally analytical solution. That
is why the manner to solve them is by approximating their solutions through iterative techniques.
There are plenty of di�erent types of �elds in science whose study is developed through nonlinear
equations and system. For example, related to Engineering of Telecommunications, these equations
are found in electronics and space communications, among others. For instance, we can �nd the
following examples of nonlinear equations f(z) = 0 or systems F (z) = 0:

The �ow of electrical current in a circuit comprised by a resistor R, an inductance L and a capacitor
C is de�ned by

i(t) = e−Rt/2Lcos
(√

(4L/C)−R2t/(2L)
)
. (1.1)

In which instant t does the intensity of the current take a concrete value?

The current i (in microamperes µAs) in a diode is related to the voltage v (in volts) by the following
equation:

i = Is(e
v/θ − 1), (1.2)

where Is is the saturation current in microamperes and θ the diode variable. For example, a diode
with Is = 20 and θ = 5.2 is connected to a circuit in which v and i must satisfy v + i = 4. We
want to determine all the possible solutions of the equation.

In order to study the movement of celestial bodies with elliptic orbits, the well-known Kepler equation
must be solved:

M = E − e · sinE, (1.3)

where e is the orbit eccentricity, M the average anomaly and the unknown variable is the eccentric
anomaly E. For instance, it is used for solving the equation for the eccentricity and the average
anomaly of Halley's Comet.

Furthermore, Global Positioning System (GPS) obtains the position (x,y,z) of the observer and his
clock bias by solving a system of equations de�ned by four di�erent satellites:

ρi =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 + c · dt, i = 1, 2, 3, 4. (1.4)

1



Chapter 1. Introduction

Therefore, four satellites are needed. In the case that there are only three, the system of equations
to solve is the following:

ρj =
√

(∆1
j )

2 + (∆2
j )

2 + (∆3
j )

2 + c · tu, j = 1, 2, 3 (1.5)

x2 + y2

(a+ h)2
+

z2

(b+ h)2
= 1 (1.6)

Where ∆1
j = xj − x, ∆2

j = yj − y and ∆1
j = xj − x.

Usually, these problems can not be analytically solved, so we use iterative schemes. The creation of
iterative methods for solving equations and systems is a relevant and challenging task in the �eld of
numerical analysis. The best known is Newton's method, whose characteristics have been improved
in many researches (see, for instance, the texts [1], [2] and the references therein).

Many di�erent techniques have been employed to design these new methods, which can be classi�ed
by di�erent criterions. They can be categorized, for instance, by their order of convergence, that
is the velocity at which methods converge to a concrete point, or by Kung-Traub conjecture [3],
which characterize methods by optimal or not optimal.

In recent times, an utilized technique to enlarge the order of convergence consists on methods
composition, resulting in multistep schemes with order of convergence as product of both individual
methods' order. In these cases, the challenge is to decrease the number of evaluations resulting
in an optimal method. Related to this �eld, analysis tools of complex dynamics associated to
iterative methods has been object of many works (see [4], [5], [6], [7], [8]...). This analysis include
the asymptotic behavior of �xed points, being these ones roots of the equation under study with
addition to di�erent points, the basins of attraction associated to each one of the attractive �xed
points and graphic representations, as dynamic and parameter planes. Due to these tools, we will
be able to choose the member of the family with more stability.

Throughout this work, families of iterative methods for solving nonlinear equations and systems
found in the literature will be studied by applying complex dynamic tools. We will also design new
families and carry out their respective study in order to obtain optimal methods, taking into account
the order of convergence and computational e�ciency.

The structure performed for this Final Degree Project is the following:

First, in this section it has been introduced the necessity and importance of this work, related to
the relevance of the resolution of iterative methods for solving nonlinear equations. Afterwards, the
objectives and methodology of this work will be explained.

Chapter 2 shows previous notions necessary to understand and follow the study carried out in
this project. These basic concepts will be used and developed later in this work regarding to the
application of complex dynamic in iterative methods, such as the analysis of �xed and critical points
and dynamical and parameter planes.

In Chapter 3 a study of a family of iterative methods designed by Kou ([9]) will be carried out. Its
dynamics will be developed and analyzed through dynamic techniques explained in the section of
Basic Concepts, with the aim of selecting the most stable members of the family by applying those
dynamic tools.

Chapter 4 develops the design and analysis of a parametric class of iterative methods. The dynamical
study is carried out di�erentiating two schemes of the same family. The di�erence between them is

2



their order of convergence, which has been increased from four to eight in order to improve the speed
at which the method reaches the solution of the equation to which it is applied. The dynamical
study developed in this chapter allows to choose the more e�cient and stable elements of each one
of the schemes.

In Chapter 5 we construct a new class of iterative methods for solving nonlinear problems, based
on a weight function. This weight function leads to many well-known schemes, varying the value of
the parameter of the family. The dynamical behavior of this family will also be studied, resulting in
the selection of the best schemes of the family, in terms of stability and e�ciency.

At the �nal point, the overall conclusions obtained after examining all the results achieved with the
development of the work will be shown. Additionally, new ideas that came up throughout the project
will be named as further work. Finally, the bibliography used will be desplayed.

3



Chapter 1. Introduction

1.1 Objectives

In this Final Degree Project, the main objective is to develop a deep analysis of parametric families
of iterative methods for solving nonlinear equations and systems that enables to understand the
behavior of the class and also to obtain the best and most stable schemes of each family.

To accomplish this general objective, speci�c goals should be arranged, as previous steps to reach
that main objective. Within these speci�c aims, the following are to be found:

� Study of complex dynamic existing tools in order to achieve the successive analysis. These
resources are used for classifying and comparing iterative schemes with the same order of
convergence.

� Research of existing families of iterative methods in the literature, so as to know and understand
the latest �ndings.

� Design of new schemes employing knowledge acquired. The aim of constructing these methods
is to obtain the best behavior possible, either by accelerating their convergence or by improving
the computational e�ciency.

� Application of skills of dynamic analysis to study the parametric families.

� Selection of the best elements of each family, as a result of the analysis made, which will be
the ones with the best characteristics, in terms of complex dynamics.

1.2 Methodology

In this section, methodology employed in this work is described, with the goal of achieving the
objectives mentioned before. This Final Degree Project has been written in accordance with the
applicable regulations of Higher Technical School of Telecommunications Engineering of Polytechnic
University of Valencia. The procedure carried out to analyze and select information in order to
develop this project has been the following:

First of all, it has been conducted a research, acquisition and selection of information in the literature
related to the subject of this work. All these data were deeply read in order to extract the most
relevant facts and understand what has been achieved in the last years. Several sources of information
have been used, being most of them articles published in scienti�c journals. When any peace of
information from these sources has been used within the work, it will be correctly cited.

From last studies found in the literature, it has been developed a study of discovered methods
and, after their analysis and comprehension, conclusions obtained have allow to design new iterative
schemes, whose behavior has been determined as stable and optimal by complex dynamic tools.

In order to develop numerical and symbolic dynamic analysis, several programs have been used,
such as Matlab and Mathematica. Mathematica enable to develop numerical analysis, as �nding the
rational function of a method applied on quadratic polynomials, along with their �xed and critical
points. In Matlab we have generated the code for the representation of dynamic and parameter
planes of the di�erent families.

4



Chapter 2

Basic concepts

2.1 Iterative methods

With the aim of obtaining an estimated solution of a nonlinear equation, iterative methods are
used. Nevertheless, not all of them work the same way. The analysis of the stability, the order of
convergence, the computational e�ciency of the method, among others, characterize the di�erent
iterative classes. The work will be developed around iterative methods which, in some circumstances,
�nd an approximation of a root α from a nonlinear equation f(z) = 0.

Iterative methods can be classi�ed according to di�erent criterions. They can be called with or
without memory depending on the information needed with the objective of obtaining the following
iteration. In this way, a method without memory can be described as it follows:

zk+1 = Φ(zk), k = 0, 1, 2, . . . (2.1)

Whereas one with memory will have the expression

zk+1 = Φ(zk, zk−1, zk−2, ...), k = 0, 1, 2, . . . (2.2)

In addition, each method can be classi�ed in one-point and multipoint schemes. One-point iterative
schemes are schemes in which the (k+1)th-iterate is achieved using evaluations only of kth-iterate,
following the expression (2.1).

Newton's method is one of the most popular schemes for solving nonlinear equations, being its
iterative expression:

zk+1 = zk −
f(zk)

f ′(zk)
, k = 0, 1, . . . (2.3)

The maximum order of convergence that can be reached by a one-point schem that uses d evaluations
per step is p = d. Nevertheless, Traub [10] proved that, so as to design a one-point method
of order p, it is necessary that the iterative expression contains derivatives at least of order p −
1. Therefore, it is interesting to enlarge the number of steps with the objective of increasing
the order of convergence and the computational e�ciency. In multipoint schemes, also known as
predictor/corrector methods, we achieve the (k+1)th-iterate using functional evaluations of the
kth-iterate and additionally di�erent points, having an expression similar to the following:

5



Chapter 2. Basic concepts

yk = Ψ(zk), zk+1 = Φ(zk, yk), k = 0, 1, . . . (2.4)

These way, the order of convergence is enlarged without increasing functional evaluations.

The last criterion to classify iterative methods is the presence or absence of derivatives. Free
derivative schemes allow that any method can be used. To that end, an habitual technique is the
replacement of derivative by divided di�erences. Throughout the work, multipoint methods without
memory and with derivatives will be subject of study.

The order of convergence, already mentioned before, is the speed at which methods reach the root
α, solution of f(z) = 0. Let {zk}k≥0 be a sequence obtained through an iterative scheme, the
sequence converges to the root α with order of convergence p if

lim
k→∞

|zk+1 − α|
|zk − α|p

= C, (2.5)

being C is the asymptotic error constant, C > 0.

The approximation's error in the kth-iteration can be denoted as ek = zk − α. In this case, the
error equation of a method of order p is the following:

ek+1 = epk +O(ep+1
k ). (2.6)

In order to compare iterative procedures, there exist di�erent measures. Traub in [10] introduced
the informational e�ciency of an iterative method, with order of convergence p and d number of
functional evaluations, as

I = p/d. (2.7)

Otherwise, Ostrowski in [11] de�ned the e�ciency index :

EI = p1/d. (2.8)

In this vein, Kung and Traub establish in [3] the de�nition of optimal method. Traub and Kung con-
jecture denotes that the order of convergence of method without, which has d functional evaluations
per iteration satis�es

p ≤ 2d−1, (2.9)

being the optimal method the one which satis�es the equality.

A conventional technique to enlarge the order of convergence of a method consists on composition
of methods, described in [12]. Let p1 and p2 the order of convergence of two di�erent methods, it
can be obtain a new method with order p = p1 · p2. Nevertheless, this composition increases the
number of functional evaluations, a�ecting the value of the e�ciency index.

On the other hand, weight function procedure is another way to enlarge the order of convergence,
but without adding evaluations. Functions with one or several variables can be used.

6



2.2 Complex dynamics

2.2 Complex dynamics

The utilization of techniques of complex dynamics is a useful way to compare iterative procedures.
From the application of discrete dynamics techniques to the associated �xed point operator of
iterative methods, we will conduct the dynamical study. This study consists on the analysis of the
rational function, result of the �xed point operator applied on a polynomial function. After the
analysis, we will obtain �xed points that, generally, will coincide with the roots of the polynomial.
Dynamics of these points will allow us to determine the stability of the iterative method. Graphic
representation of the methods will allow to acquire conclusions related to method's properties.

In this Final Degree Project, di�erent families (3.1, 4.1, 5.1) will be analyzed through complex
dynamic tools applied on quadratic polynomials. It can be seen in the literature ([13]) that using
an a�ne map it is possible to transform the roots of a polynomial without modifying the qualitative
dynamic behavior of the family. Therefore, it can be applied with p(z) = (z − a)(z − b). By
this quadratic polynomial, the families have operators which are rational functions (3.2, 4.2, 5.6),
depending on parameter of the families and also on the roots of the polynomial a and b.

The rational map h (z) =
z − a
z − b

was used by Blanchard in [14]. This is a Möbius transformation

that satis�es:
i) h (∞) = 1, ii) h (a) = 0, iii) h (b) =∞.

Blanchard also veri�ed that the well-known Newton's operator on quadratic polynomials is conjugate
to z2. Likewise, the operator of the families under study on quadratic polynomials are conjugated
to di�erent operators (3.3, 4.2, 5.7). In these new operators, the roots of the polynomial a and b
do not appear.

It is convenient to mention basic notions of complex dynamics (fully developed in [13]) that will
appear in this project.

With a rational function R : Ĉ→ Ĉ, in which Ĉ is the Riemann sphere, the orbit of a point z0 ∈ Ĉ
is the following:

{z0, R (z0) , R2 (z0) , . . . , Rn (z0) , . . .}.

The map R is studied making a classi�cation of the initial points depending on the orbits' asymptotic
character.

A z0 ∈ Ĉ is named �xed point when R (z0) = z0. A periodic point z0 with period p > 1 satis�es
Rp (z0) = z0 and Rk (z0) 6= z0, for k < p. A pre-periodic point is di�erent from a periodic point
but there is a k > 0 that makes Rk (z0) periodic. A critical point z0 applied to the derivative of the
rational function makes it null, R′ (z0) = 0. Furthermore, �xed points z0 can be named attractive
when |R′(z0)| < 1, superattractive when |R′(z0)| = 0, repulsive when |R′(z0)| > 1 and parabolic
when |R′(z0)| = 1.

The basin of attraction of an attractive point α can be de�ned as:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

The immediate basin of attraction of an attractive point is the connected component of its basin of
attraction that holds the attractor.

Additionally, an assortment of points z ∈ Ĉ, whith orbits that tend to an attractive point is named
the Fatou set , F (R). The Julia set, J (R) is its complementary, since the boundaries of the basins
of attraction of the �xed points belong to this set.
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Chapter 2. Basic concepts

The successive Theorem establishes a classical result of Fatou and Julia that we use in the study of
parameter space related to the family.

Theorem 1 [14] Let R be a rational function. The immediate basin of attraction of an attracting
�xed or periodic point holds, at least, a critical point.

By using this result, one can be sure to �nd all the stable behavior associated with a rational function
R, by analyzing the performance of R on the set of critical points.

In this section, some basic notions relating to iterative methods and complex dynamics have been
explained. These concepts will be used throughout the following chapters and, additionally, they
will be complemented going into detail on more dynamic techniques.
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Chapter 3

Choosing the most stable members

of Kou's family of iterative methods

Based on [15]: "Choosing the most stable members of Kou's family of iterative methods", Journal
of Computational and Applied Mathematics.
Presented at "Mathematical Modelling in Engineering and Human Behaviour 2016" Congress, IMM,
Valencia (Spain).

3.1 Introduction

In this chapter, a family of iterative methods and its dynamics are considered in order to �nd the
solutions of a nonlinear equation f(z) = 0. Speci�cally, the family of iterative methods designed
by Kou [9] is presented. As it has been mentioned, dynamical study of the rational function of
an iterative scheme provides relevant data related to the convergence and behavior of the system.
Regarding this facts, Amat et al. in [16] analyzed the dynamical character of di�erent families.

These research show di�erent numerical behavior, for instance, periodic orbits, attracting �xed
points, free critical points, etc. Certainly, the parameter space related to a family of schemes is
capable of explaining the behavior of the di�erent members of the family, allowing to select the best
choices.

The chapter is divided as follows: in this Introduction, we will present the family of iterative methods.
In Section 3.2, �xed and critical points of the rational function of the family will be analyzed, showing
the stability of these �xed points in Section 3.3. We will depict parameter and dynamical planes
of the family in Sections 3.4 and 3.6, respectively. Additionally, orbits of period two found in the
family will be described in Section 3.5. The theoretical results will be veri�ed with numerical results
in Section 3.8. Finally, the chapter presents some notes and conclusions.

As we have mentioned, Kou's family of iterative methods is presented, having the following iterative
expression:

zk+1 = zk −
(

1− 3

4

tk − 1

γtk + 1− γ

)
f(zk)

f ′(zk)
, n = 0, 1, . . . , (3.1)

9



Chapter 3. Choosing the most stable members of Kou's family of iterative methods

where yk = zk −
2

3

f(zk)

f ′(zk)
, tk =

f ′(yk)

f ′(zk)
and γ is a free parameter.

The order of convergence of (3.1) is proven by the authors in [9].

Theorem 2 Let f : I ⊆ R → R be a su�ciently derivable function in the open interval I and let
α ∈ I be a simple solution of the nonlinear equation f(z) = 0. We consider that z0 is an initial
approximation close enough to α. Then, the sequence {zk}k≥0 obtained by using Kou's family
converges to α with order of convergence three, being the error equation

ek+1 =
2

3
(3− 2γ)c2

2e
3
k +O(e4

k).

Besides, if γ = 3
2 , the method has order four and the following error equation:

ek+1 =
(
c3

2 − c2c3 +
c4

9

)
e4
k +O(e5

k),

where cj = f (j)(α)
j!f ′(α) , j = 2, 3, . . . and ek = xk − α.

When p(z) = (z − a)(z − b) is used, we obtain the following operator of the family:

Tp,γ,a,b(z) = z +
(a− z)(b− z)(3a2 + 3b2 + b(−15 + 4γ)z + (15− 4γ)z2 + a(b(9− 4γ) + (−15 + 4γ)z))

(a+ b− 2z)(3a2 + 3b2 + 4b(−3 + γ)z − 4(−3 + γ)z2 + a(b(6− 4γ) + 4(−3 + γ)z))
. (3.2)

This operator can be conjugated to operator Oγ (z) on quadratic polynomials, with the Möbius
transformation,

Oγ (z) =
(
h ◦ Tp,γ,a,b ◦ h−1

)
(z) = −z3 6− 4γ + 3z

−3− 6z + 4γz
. (3.3)

It can be observed that the parameters a and b do not appear in Oγ(z).

3.2 Study of the �xed and critical points

Now, a dynamical analysis of the members of the described family will show their behavior. In �rst
place, the object of study will be the �xed points of the operator Oγ(z) which are not the solutions
of p(z), naming these points as strange �xed points. Afterwards, free critical points will be analyzed,
which are the critical points of Oγ(z) di�erent from zero and ∞, associated with the solutions of
the polynomial.

Fixed points of the operator Oγ (z) are the solutions of Oγ (z) = z. Speci�cally, they are zero,
in�nity and the strange �xed points

� ex1(γ) = 1,

� ex2(γ) =
1

6
(−9 + 4γ −

√
45− 72γ + 16γ2),

� ex3(γ) =
1

6
(−9 + 4γ +

√
45− 72γ + 16γ2).

In the following lemma, relations among strange �xed points are shown.

10



3.2 Study of the �xed and critical points

Lemma 1 There are three strange �xed points of operator Oγ (z) apart from the following cases:

i) If the parameter γ =
3

4
, the rational function is O3/4(z) = z3, and as a result, there exist no

strange �xed points.

ii) When γ =
9

4
, the rational function is O9/4(z) = −z3, and there exist no strange �xed points.

iii) When γ =
15

4
, there exist only one strange �xed point, ex2 = ex3 = 1, since O15/4(z) =

−z3 −3 + z

−1 + 3z
.

iv) When γ =
3

2
, the rational function is O3/2(z) = z4, and there exist no strange �xed points.

With the objective of determining the critical points, the operator Oγ (z) has to be derivated:

O′γ (z) = 2z2 16γ2z + 27(1 + z)2 − 6γ(3 + z(8 + 3z))

(−3 + (−6 + 4γ)z)2
.

As it was claimed, the points z = 0 and z = ∞, which are associated with the solutions of the
polynomial by means of Möbius map, are critical points. However, there are free critical points
within the family, which must be analyzed, in terms of complex dynamics.

Lemma 2 From O′γ(z) = 0 it can be determined that:

a) When γ =
3

4
, γ =

9

4
or γ =

3

2
, free critical points of operator Oγ (z) don't exist.

b) If γ = 0, the only free critical point is z = −1.

c) When γ = 3, the only free critical point is z = 1.

d) In the rest of the cases,

cr1(γ) =
27− 24γ + 8γ2 − 2

√
−81γ + 171γ2 − 96γ3 + 16γ4

9(−3 + 2γ)

and

cr2(γ) =
27− 24γ + 8γ2 + 2

√
−81γ + 171γ2 − 96γ3 + 16γ4

9(−3 + 2γ)
=

1

cr1(γ)
,

are free critical points.

Hence, the conclusions of the preceding result are the follwoing:

� If γ = 0, cr1(0) = cr2(0) = −1, which is a pre-image of z = 1. Therefore, it is not a �xed

point and the rational function of this point is O0(z) = z3 2 + z

1 + 2z
.
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Chapter 3. Choosing the most stable members of Kou's family of iterative methods

� When γ = 3, cr1(3) = cr2(3) = 1, which is a superattractor with an associated operator of

O3(z) = −z3 −2 + z

−1 + 2z
.

� There is up to one independent free critical point. Consequently, only cr1(γ) will be taken
into account.

In the coming section it can be veri�ed that the parameter of the family a�ects the amount of �xed
points and their stability. This fact is relevant because the presence of attractive or supperattractive
strange �xed points could lead to the iterative method converging to a false solution.

3.3 Stability of the �xed points

Since the family has order of convergence three, we know that the origin and∞ (related to the roots
of p(z)) are superattractors. Nevertheless, the behavior of the other �xed points provides relevant
information. Now, stability of these strange �xed points will be developed.

Theorem 3 The behavior of ex1(γ) = 1, γ 6= 9

4
, is the following:

i) When

∣∣∣∣γ − 13

4

∣∣∣∣ < 1
2 , ex1(γ) = 1 is attractive, being superattractive if γ = 3.

ii) When

∣∣∣∣γ − 13

4

∣∣∣∣ =
1

2
, ex1(γ) = 1 is a parabolic point.

iii) If

∣∣∣∣γ − 13

4

∣∣∣∣ > 1

2
, then ex1(γ) = 1 is a repulsor.

Proof. We can prove that

O′γ (1) =
8(−3 + γ)

−9 + 4γ
.

So, ∣∣∣∣8(−3 + γ)

−9 + 4γ

∣∣∣∣ ≤ 1 is equivalent to 8| − 3 + γ| ≤ |−9 + 4γ| .

Taking into account that γ = a+ ib, being an arbitrary number. Therefore,

82(32 − 6a+ a2 + b2) ≤ 92 − 72a+ 16a2 + 16b2.

By simplifying
495− 312a+ 48a2 + 48b2 ≤ 0,

that is, (
a− 13

4

)2

+ b2 ≤ 1

4
.

Hence, ∣∣O′γ (1)
∣∣ ≤ 1 if and only if

∣∣∣∣γ − 13

4

∣∣∣∣ ≤ 1

2
.

12



3.3 Stability of the �xed points

Theorem 4 The study of the stability of strange points ex2(γ) and ex3(γ) concludes that:

i) When

∣∣∣∣γ − 9

2

∣∣∣∣ < 3

4
, both points are attractive points, becoming superattractive if γ =

9

2
.

ii) When

∣∣∣∣γ − 9

2

∣∣∣∣ =
3

4
, then ex2(γ) and ex3(γ) are parabolic points.

iii) In any other circumstance, both points are repulsors.

Proof. It can be proved that

O′γ (exi) = 6− 4γ

3
, i = 2, 3

So, ∣∣∣∣18− 4γ

3

∣∣∣∣ ≤ 1 is equivalent to |18− 4γ| ≤ 3.

If we consider γ = a+ ib an arbitrary complex number, we obtain that

182 − 144a+ 42a2 + 42b2 ≤ 9.

By simplifying
315− 144a+ 16a2 + 16b2 ≤ 0,

that is, (
a− 9

2

)2

+ b2 ≤
(

3

4

)2

.

Therefore, ∣∣O′γ (exi)
∣∣ ≤ 1 if and only if

∣∣∣∣γ − 9

2

∣∣∣∣ ≤ 3

4
.

In Figure 3.1, stability regions of exi(γ), i = 1, 2, 3 are depicted, obtained from Theorem 3 and
Theorem 4.

Figure 3.1: Stability regions of ex1(γ) (left) and exi(γ), i = 2, 3 (right).
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Chapter 3. Choosing the most stable members of Kou's family of iterative methods

3.4 The parameter plane

It has been proved that the character of Oγ(z), in terms of complex dynamics, relies on the parameter
of the family γ. Considering Theorem 1 , it would be interesting to know the behavior of free critical
points, for example, do some of them belong to a basin of attraction di�erent to those of zero and
in�nity? In order to answer that, we represent the parameter space related to the family (3.1).

The parameter plane associated with an independent free critical point of the rational function (3.3)
is achieved by linking every point of the plane with a complex value of the parameterγ, that is,
with an element of family (3.1). Each value of the parameter which belongs to the same point
of the parameter plane result in subsets of elements of (3.1) which have an analogous character.
Therefore, we are interested in �nding areas in parameter space with the more stable behavior, as
these parameters would provide the more e�cient elements of the family in reference to numerical
stability.

It was mentioned before that cr1(γ) =
1

cr2(γ)
, therefore, there is up to one free independent critical

point and di�erent parameter planes can be developed, with complementary information. Taking
into account that the free critical point z = cr1(γ) is the initial point of the iterative scheme of
the family, the point of the complex mesh related to each value of the parameter γ is colored in
red when the scheme reaches the solutions of the polynomial, zero and in�nity, being black in any
other circumstance. The brightness shows the amount of iterations needed, the lower, the brighter.
This way, parameter space P1 is represented, appearing in Figure 3.2. The procedure carried out
to create this parameter space appears in [17]. The parameters used have been the following: a
mesh of 1000 × 1000 points, a maximum of 500 iterations and a tolerance of 10−3 as a stopping
criterium.

From now on, the study will focused on P1, in order to analyze its dynamical variety.

IRe{α}
-2 0 2 4 6 8

IIm
{α

}

-6

-4

-2

0

2

4

6

Figure 3.2: Parameter plane P1 related to cri(γ), i = 1, 2
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3.5 Orbits of period two

It can be checked that members of family (3.1) are, overall, greatly stable, since the red area is
quite large. Nevertheless, there exist small black areas that inform us about di�erent pathological
behavior of some elements of the family.

Let us remark the two balls with centers (13/4, 0) and (9/2, 0), which will be called D1 and D2,
respectively. The �rst ball is related to values of the parameter γ for which ex1(γ) is attractive
or superattractive (see Theorem 3). The second one belongs to values of the parameter for which
ex2(γ) and ex3(γ) are simultaneously attractors or superattractors (see Theorem 4). Besides,
di�erent black areas and bulbs can be observed, which are related to attractive orbits of di�erent
periods. In the next section, orbits of period two are going to be analyzed.

3.5 Orbits of period two

With the aim of obtaining the elements of the family with orbits of period two, Oγ(Oγ(z)) has been
obtained, also named as O2

γ(z):

O2
γ(z) =

z9(6− 4γ + 3z)3(18− 12γ + 36z − 48γz + 16γ2z + 18z3 − 12γz3 + 9z4)

(−3− 6z + 4γz)3(−9− 18z + 12γz − 36z3 + 48γz3 − 16γ2z3 − 18z4 + 12γz4)
.

Figure 3.3: Stability areas of the orbits with period two pei(γ), i = 1, 2 (left) and pei(γ), i = 3, 4 (right)

The two-periodic points of Oγ(z) can be obtained as the solution of O2
γ(z) = z, what leads to �xed

points showed in previous sections, and also to the following two-periodic points:

pe{1,2}(γ) = 1
12(−9 + 4γ − r(γ)±

√
2
√
−9 + 16γ2 + 9r(γ)− 4γ(12 + r(γ)),

pe{3,4}(γ) = 1
12(−9 + 4γ + r(γ)±

√
2
√
−9 + 16γ2 − 9r(γ) + 4γ(−12 + r(γ)),

where r(γ) =
√

45− 24γ + 16γ2.

In Figure 3.3, stability regions of the orbits pe1,2 and pe3,4 are depicted. There exist small areas
where these orbits are attractive. Additionally, we can observe that there are several values of
parameter γ in which the two-periodic orbits become superattractive, what means that they satisfy
O′γ

2(z) = 0.

In Figure 3.4 all the stability regions are represented, comprised by those of the strange �xed points
and the two-periodic orbits. This 3D-plot enable to identify many of the di�erent stability regions
appearing in the parameter plane P1 (see Figure 3.2) as black regions.
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Chapter 3. Choosing the most stable members of Kou's family of iterative methods

Figure 3.4: Stability areas of strange �xed points and points with two-periodic orbits

3.6 Dynamical Planes

Now, the performance of the di�erent elements of the described family (3.1) will be analyzed. These
elements will be chosen after studying the parameter space of the family and the stability of the
�xed points and the two-periodic orbits.
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(c) γ = 2− 4i

Figure 3.5: Stable dynamical planes

Similar to the obtaining of the parameter space, we have created some dynamical planes following
a procedure explained in [17]. These planes are related to a value of the parameter of the family,
resulting in a speci�c scheme, which is iterated. This iteration is made selecting initial estimations
as the points of the complex plane. It has been utilized a squared mesh of 400 points, in which
points with an orbit converging to in�nity are painted in blue, in orange those whose orbits converges
to zero and in di�erent colors, such as green or red, those points with an orbit converging to one
of the strange �xed points, which are represented as a white star in the �gures. Additionally, some
points are colored with black when they reach the maximum forty iterations without reaching any
of the �xed points. It has been used a tolerance of 10−3.

In the parameter plane P1, we can observe some areas related to elements of the family with stable
and e�cient numerical behavior. These areas can be found selecting values of the parameter γ that
are colored in red (Figure 3.2). In Figure 3.5, several stable behavior related to di�erent values of
γ in this red area are shown. Speci�cally, it has been used γ = 0 , γ = 3

4 , γ = 3
2 and γ = 2− 4i.

Besides that, we can depict unstable dynamical planes if we select the parameter γ being located
in the black area of P1. We can see some of these dynamical planes in Figure 3.6, corresponding
to γ = −2 ∈ D2, where the presence of four di�erent basins of attraction can be seen, being two
of them of the points zero and in�nity, and the rest of the superattractive points ex2(−2) and
ex3(−2).
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3.7 Numerical results
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(b) γ = 2.7, in a bulb to the left of D1
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(c) γ = 4, in D2
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Figure 3.6: Dynamical planes with unstable behavior

3.7 Numerical results

In this section, we will check the theoretical results obtained previously, in terms of validity and
e�ectiveness. Throughout these numerical experiments, we have used Matlab R2013b with double
precision arithmetics. It has been selected stopping criterium |zk+1 − zk| < tol or |f(zk+1)| < tol,
with a tolerance tol = 10−12. With the objective of verifying the theoretical order of convergence,
it has been used the approximated computational order of convergence ACOC introduced in [18] as

p ≈ ACOC =
ln (|zk+1 − zk|/|zk − zk−1|)

ln (|zk − zk−1|/|zk−1 − zk−2|)
.

The numerical results are shown in the following Tables, from 3.2 to 3.4, where '-' means that ACOC
is not stable along the iterative process. Besides, if the scheme does not converge, it is represented
as 'nc'.

These numerical results are achieved by solving the nonlinear functions appearing in Table 3.1, with
some elements of Kou's family in comparison to several well-known iterative schemes as Newton',
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Chapter 3. Choosing the most stable members of Kou's family of iterative methods

Traub' and Homeier's. In the case of Kou's family, we have selected some elements with good
stability properties and di�erent ones with bad behavior. Now, we are going to recall the following
known iterative expressions:

zk+1 = zk −
f(zk) + f(yk)

f ′(zk)
, (3.4)

zk+1 = zk −
1

2

(
1 +

f ′(zk)

f ′(yk)

)
f(zk)

f ′(zk)
, (3.5)

where yk = zk− f(zk)
f ′(zk) is Newton's step, corresponding to Traub' [10] and Homeier's [19] procedures,

respectively.

Test functions Zeros

f1(z) = arctan(z) α = 0

f2(z) = ez
2−3z sin z + ln (z2 + 1) α = 0

f2(z) = ez − 1.5− arctan(z) α1 ≈ 0.767653, α2 ≈ −14.101270

Table 3.1: Test functions and their zeros

With regards to Table 3.2, it should be mentioned that classical methods have convergence issues
when the initial estimation is far from the solution. On the other hand, stable members of Kou's
family have a better numerical behavior.

z0 α |zk+1 − zk| |f(zk+1)| Iter ACOC

Newton 1 0.0 7.96e-10 0.0 5 2.9937
1.8 nc
-1.9 nc

Traub 1 0.0 3.63e-10 0.0 4 -
1.8 nc
-1.9 nc

Homeier 1 3.31e-24 1.97e-8 3.31e-24 4 2.9951
1.8 nc
-1.9 nc

Kou γ = 3
2

1 2.12e-22 1.65e-6 2.12e-22 3 4.6015
1.8 0.0 5.80e-10 0.0 5 -
-1.9 nc

γ = 3
4

1 0.0 2.89e-6 0.0 3 4.7770
1.8 0.0 8.14e-6 0.0 4 -
-1.9 0.0 1.27e-7 0.0 5 -

γ = 0 1 0.0 3.80e-7 0.0 4 -
1.8 -1.78e-16 7.95e-4 1.78e-16 3 2.7746
-1.9 > 1000

γ = 3 1 -6.09e-15 0.014 6.09e-15 3 3.4617
1.8 nc
-1.9 nc

γ = 5 1 0.0 2.38e-10 0.0 4 -
1.8 nc
-1.9 nc

γ = 2.7 1 -2.62e-16 7.86e-4 2.62e-16 3 3.6158
1.8 nc
-1.9 nc

Table 3.2: Numerical results for f1(z)

In the following Tables, 3.3 and 3.4, Newton', Traub' and Homeier's methods present a stable be-
havior. We can observe that the elements of Kou's family de�ned as stable on quadratic polynomials
present as good behavior as classical methods. Nevertheless, if the values of the parameter γ of
Kou's family are selected among the unstable ones, the numerical behavior is not appropriate.
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3.8 Conclusions

z0 α |zk+1 − zk| |f(zk+1)| Iter ACOC

Newton -1.5 -6.23e-17 7.90e-9 6.23e-17 13 2.0065
2.8 -1.06e-14 7.26e-8 1.06e-14 12 2.0128
-3 -2.76e-23 5.26e-12 2.76e-23 21 2.0008

Traub -1.5 -2.16e-13 3.00e-5 2.16e-13 9 3.0901
2.8 nc
-3 -8.52e-20 2.20e-7 2.52e-20 15 3.0219

Homeier -1.5 9.29e-24 3.05e-12 9.29e-24 8 3.0000
2.8 2.38e-14 2.07e-5 2.38e-14 4 -
-3 -2.71e-13 4.67e-5 2.71e-13 8 3.1501

Kou γ = 3
2

-1.5 8.57e-17 5.04e-7 8.57e-17 6 -
2.8 3.64e-17 2.87e-6 3.64e-17 5 6.8344
-3 7.93e-15 2.57e-4 7.93e-15 8 5.8084

γ = 3
4

-1.5 -5.03e-13 5.01e-5 5.03e-13 8 3.2028
2.8 1.73e-19 9.16e-10 1.73e-19 7 3.0223
-3 2.42e-22 1.56e-11 2.42e-22 13 3.0135

γ = 0 -1.5 -3.32e-13 3.46e-5 3.32e-13 9 3.0961
2.8 7.90e-19 2.33e-7 7.90e-19 7 3.0234
-3 -1.79e-13 2.82e-5 1.79e-13 14 3.0901

γ = 3 -1.5 nc
2.8 nc
-3 nc

γ = 5 -1.5 > 1000
2.8 > 1000
-3 > 1000

γ = 2.7 -1.5 nc
2.8 nc
-3 nc

Table 3.3: Numerical results for f2(z)

3.8 Conclusions

We have presented the dynamical study applied on quadratic polynomials of a parametric family
of iterative methods for solving nonlinear equations, designed by Kou et al. With the parameter
plane obtained from the family, we have been able to verify the presence of numerous values of γ,
what means diverse elements of the family, with stable behavior, but existing other ones without
convergence to the solutions of the polynomial. It has been also shown the presence of periodic
orbits with period two, analyzing their analytical expressions. Finally, the family under study has
been applied with non-polynomial equations, achieving the numerical results that prove that the
information given by the theoretical dynamical study in terms of the good or bad numerical behavior
of the di�erent elements of the family was correct.
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Chapter 3. Choosing the most stable members of Kou's family of iterative methods

z0 α |zk+1 − zk| |f(zk+1)| Iter ACOC

Newton 4 0.7677 1.56e-12 0.0 9 2.0001
2 0.7677 1.34e-7 0.0 6 2.0021
-2 -14.1013 8.80e-8 0.0 7 2.0037

Traub 4 0.7677 3.83e-7 0.0 5 2.8767
2 0.7677 5.55e-5 0.0 4 2.7523
-2 -14.1013 2.45e-6 0.0 5 2.9919

Homeier 4 0.7677 2.10e-8 0.0 5 3.1308
2 0.7677 2.19e-10 0.0 4 3.0927
-2 -14.1013 1.36e-4 0.0 4 3.1931

Kou γ = 3
2

4 0.7677 5.18e-5 2.22e-16 4 3.3038
2 0.7677 9.68e-5 0.0 3 3.2606
-2 -14.1013 0.0078 4.44e-16 3 6.8668

γ = 3
4

4 0.7677 8.49e-12 2.22e-16 6 2.9780
2 0.7677 1.68e-6 1.11e-16 4 2.8713
-2 -14.1013 9.77e-10 0.0 5 3.0043

γ = 0 4 0.7677 4.12e-7 1.11e-16 6
2 0.7677 5.64e-5 4.49e-13 4
-2 -14.1013 2.98e-6 2.22e-16 5

γ = 3 4 nc
2 nc
-2 - 5.94e-13 0.0849 35 0.9723

γ = 5 4 nc
2 > 1000
-2 > 1000

γ = 2.7 4 nc
2 nc
-2 nc

Table 3.4: Numerical results for f3(z)
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Chapter 4

Stability of a parametric class of

iterative methods of fourth and

eighth order

Based on [20]: "On two classes of fourth- and seventh-order vectorial methods with stable behav-
ior", Journal of Mathematical Chemistry.
Partial results were shown in di�erent congresses: "International conference Computational and
Mathematical Methods in Science and Engineering 2017", Rota (Spain) and "Mathematical Mod-
elling in Engineering and Human Behaviour 2017", IMM, Valencia (Spain).

4.1 Introduction

Along this chapter we are going to conduct an exhaustive study of a new designed family of iterative
methods. Firstly, the dynamical analysis of the family of order four will be analyzed, explaining its
�xed and critical points and the parameter and dynamical planes, through sections from 4.2 to 4.4.
Afterwards, we will enlarge the order of convergence of the proposed family in order to improve its
characteristics. We will develop the dynamical analysis of this new scheme in sections from 4.6 to
4.8. We will �nish with some conclusions obtained.

The family under study in this chapter is based on the family presented in [21]. It is constructed by
adding a new step to Newton's method. This way, the following two-step scheme is obtained

yk = zk − f(zk)
f ′(zk) ,

zk+1 = yk −
(
α1 + α2

f ′(zk)
f ′(yk) + α3

(
f ′(zk)
f ′(yk)

)2
)

f(yk)
f ′(yk) , k = 0, 1, . . . ,

(4.1)

where α1, α2 and α3 are free parameters.

The following result establishes the convergence of family (4.1), which was proved in [21].
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Chapter 4. Stability of a parametric class of iterative methods of fourth and eighth order

Theorem 5 Let f : I ⊆ R → R be a su�ciently di�erentiable function in an open interval I
and z∗ ∈ I a root of equation f(z) = 0. Choosing an initial approximation z0 close enough to
z∗, the iterative scheme de�ned by (4.1) has fourth-order convergence when α2 = 3 − 2α1 and
α3 = −2+α1, being α1 a free parameter. In particular, if α1 = 5

4 then method (4.1) has order �ve.

An analysis of the convergence of the family presented (4.1) on quadratic polynomials will be carried
out applying tools of complex dynamics. This would enable to �nd connections between the values
of the parameter of the family α1 and the stability of the iterative scheme obtained with that value.
It is known that, if the iterative method satis�es the scaling theorem (what successfully happens
with family (4.1)), the roots of a polynomial can be transformed by an a�ne map without modifying
the dynamic character of the family. Therefore, and as in the previous Chapter, we use a generic
polynomial p(z) = (z − a)(z − b). Applying this polynomial to the family (4.1), we obtain the
following rational operator:

Tp,α1,a,b(z) =
(a− z)(b− z)
a+ b− 2z

+ z + (a− z)2(b− z)2
[
(a4 + b4 − 4a3z − 4b3z + 4(1 + α1)b

2z2 − 8α1bz
3

(a+ b− 2z)(a2 + b2 − 2az − 2bz + 2z2)3

+
4α1z

4 − 4az((−1 + 2α1)b
2 + (2− 4α1)bz + 2α1z

2)

(a+ b− 2z)(a2 + b2 − 2az − 2bz + 2z2)3
+
a2((−2 + 4α1)b

2 + (4− 8α1)bz + 4(1 + α1)z
2))

(a+ b− 2z)(a2 + b2 − 2az − 2bz + 2z2)3

]
,

which depends on parameters α1, a and b, being the last ones the solutions of p(z).

If the conjugacy map h (z) =
z − a
z − b

is considered ([14]), the operator Tp,α1,a,b(z) on quadratic

polynomials is conjugated to the rational function Oα1
(z),

Oα1
(z) =

(
h ◦ Tp,α1,a,b ◦ h−1

)
(z) = −z4 5− 4α1 + 2z2 + z4

−1− 2z2 +−5z4 + 4α1z4
, (4.2)

where the parameters a and b have been obviated.

In the following sections we analyze the strange �xed and critical points of the rational function
Oα1

(z), the character of the �xed points, the parameter plane related to the family and some
dynamical planes describing di�erent behavior, such as stability and periodic orbits.

4.2 Study of the �xed and critical points

Now, the strange �xed points and the free critical points will be analyzed.

In this family, the �xed points of Oα1
(z) are zero, in�nity and the strange �xed points: ex1(α1) = 1

and the roots of the polynomial

r(α1, z) = 1 + z + 3z2 + (−2 + 4α1)z3 + 3z4 + z5 + z6,

that are denoted by exi(α1), i = 2, 3, 4, 5, 6, 7.

Therefore, there are seven strange �xed points, except in the following cases:

i) When α1 = 1, the operator of the family is O1(z) = z4. As a result, there exists no strange
�xed points.

ii) If α1 = 2, the operator is O2(z) = −z4 3+z2

1+3z2 . There are only six strange �xed points as
ex2(α1) = ex3(α1) = −1.
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4.3 Stability of the �xed points

iii) When α1 = −2, there are only �ve strange �xed point as ex2(α1) = ex3(α1) = 1.

On the other hand, the �rst derivative of Oα1
(z) is calculated so we can obtain the critical points:

O′α1
(z) = −4z3 (1 + z2)2(−5 + 4α1 + 2(1− 2α1)z2 + (−5 + 4α1)z4)

(1 + 2z2 + (5− 4α1)z4)2
.

Proposition 1 We achieve, by examining the equation O′α1
(z) = 0 of the family:

a) When α1 = 1, operator Oα1
(z) has no free critical points.

b) If α1 = 2 or α1 = 5
4 , we only obtain z = −i and z = i as free critical points.

c) In other circumstances,
cr1(α1) = −i,

cr2(α1) = i,

cr3(α1) = −

√
1− 2α1 + 2

√
3
√
−2 + 3α1 − α2

1

5− 4α1
,

cr4(α1) =

√
1− 2α1 + 2

√
3
√
−2 + 3α1 − α2

1

5− 4α1
= −cr3,

cr5(α1) = −

√
−1 + 2α1 + 2

√
3
√
−2 + 3α1 − α2

1

−5 + 4α1
=

1

cr3
,

and

cr6(α1) =

√
−1 + 2α1 + 2

√
3
√
−2 + 3α1 − α2

1

−5 + 4α1
= −cr5 =

1

cr4
,

are free critical points.

We should mention that cr1(α1) and cr2(α1) are pre-images of z = 1 and cr3(α1) and cr5(α1) are
conjugated, as well as cr4(α1) and cr6(α1). Therefore, there is only one independent free critical
point.

4.3 Stability of the �xed points

Of course, z = 0 and z =∞ are superattracting �xed points, however, the character of the rest of
�xed points must be analyzed.

The behavior of the strange �xed point ex1(α1) = 1 of the family, α1 6= 2, is the following:

23



Chapter 4. Stability of a parametric class of iterative methods of fourth and eighth order

i) If |α1 − 2| > 4 , then ex1(α1) = 1 is an attractor.

ii) When |α1 − 2| = 4, ex1(α1) = 1 is a parabolic point.

iii) If |α1 − 2| < 4, then ex1(α1) = 1 is a repulsor.

In Figure 4.1, the stability regions of all strange �xed points exi(α1), i = 1, 2, 3, 4, 5, 6, 7�are shown.

Figure 4.1: Stability regions of ex1(α1) (left), exi(α1), i = 6, 7 (middle) and exi(α1), i = 2, 3, 4, 5 (right).

The study of the stability of strange �xed points exi(α1), i = 2, 3, 4, 5 allows us to determine that
they are repulsors for any value of α1.

4.4 The parameter and dynamical planes

We can represent the parameter plane related to an independent free critical point of operator as
it has been explained in the previous chapter. We obtain, therefore, the most stable regions which
will lead to the �nest elements of the proposed family.

The points painted in red are those in which the scheme converges to one of the solutions (zero and
in�nity), being black in any other circumstance. We obtain P1 if the initial point of the iterative
scheme is considered as a independent free critical point of Oα1

(z). The maximum number of
iterations utilized has been 500, with a mesh of 1000× 1000 points and being 10−3 the tolerance.

In this family only one parameter space is obtained, since cr4(α1) is equal in module to cr6(α1)
and the operator's powers are even numbers. From P1 it can be veri�ed that we can �nd the best
elements of the family choosing values of α1 between 1 and 2, in terms of real values.

We obtain the dynamical planes linked to di�erent values of α1, using a mesh of 400× 400 points.

Firstly, we select values of the parameter α1 belonging to red regions of the parameter plane, with
stable numerical behavior. These dynamical planes are found in Figure 4.3, selecting the values of
α1 = 1, α1 = 2 and α1 = 0.5.

Secondly, unstable behavior is shown in Figure 4.4, corresponding to values of α1 in the black region,
speci�cally, α1 = 3, α1 = 3.5 and α1 = −1.5.

In Figure 4.4a and 4.4b the two-periodic orbits are represented, whereas in Figure 4.4c we can
observe 4 basins of attraction, two of them from the solutions of p(z) and the other ones related to
the basins of attraction of the strange �xed points exi(α1), i = 5, 6.
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4.4 The parameter and dynamical planes
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Figure 4.2: Parameter plane P1 associated with cri(α1), i = 3, 4, 5, 6
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(c) α1 = 0.5

Figure 4.3: Some dynamical planes with stable behavior
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Figure 4.4: Dynamical planes with unstable behavior
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Chapter 4. Stability of a parametric class of iterative methods of fourth and eighth order

4.5 Increasing the order

Now, our objective is to increase the order of convergence of the family and to analyze its dynamics
with the objective of �nding the best elements of the resulting scheme. When we take α1 = 5

4 and
add a step in order to improve the order to eight, we obtain the iterative expression:

zk+1 = tk −

(
β1 + β2

f ′(zk)

f ′(yk)
+ β3

(
f ′(zk)

f ′(yk)

)2
)
f(tk)

f ′(yk)
, n = 0, 1, . . . , (4.3)

where yk = zk−
f(zk)

f ′(zk)
, tk = yk−

(
α1 + α2

f ′(zk)

f ′(yk)

)
+α3

(
f ′(zk)

f ′(yk)

)2 f(yk)

f ′(yk)
, β2 = −2(−1 +β1),

β3 = −1 + β1 and β1 is a free parameter.

The rational function of the operator is the following:

Tp,β1,a,b(z) =
(a− z)(b− z)
a+ b− 2z

+ z +
(a− z)2(b− z)2

(a+ b− 2z)(a2 + b2 − 2az − 2bz + 2z2)3

∗γ − 4b3z9b2z2 − 10bz3 + 5z4 + 3a2(b2 − 2bz + 3z2)− 2az(3b2 − 6bz + 5z2)

(a+ b− 2z)(a2 + b2 − 2az − 2bz + 2z2)3

+
(a− z)6(b− z)6(a2 + 2b2 − 2az − 4bz + 3z2)(2a2 + b2 − 4az − 2bz + 3z2)

(a+ b− 2z)(a2 + b2 − 2az − 2bz + 2z2)9

∗γ − 4b3z + 4b2(1 + β1)z2 − 8bβ1z
3 + 4β1z

4 − 4az(b2(−1 + 2β1) + b(2− 4β1)z + 2β1z
2) + a2δ

(a+ b− 2z)(a2 + b2 − 2az − 2bz + 2z2)9
,

where γ = a4 + b4 − 4a3z and δ = (b2(−2 + 4β1) + b(4− 8β1)z + 4(1 + β1)z2).

This rational function relies on parameter β1 and additionally on the parameters a and b, from
polynomial p(z).

The operator Tp,β1,a,b(z) applied on quadratic polynomials is conjugated to the rational function
Oβ1

(z),

Oβ1
(z) =

(
h ◦ Tp,α1,a,b ◦ h−1

)
(z) = −z8 (2 + z2)r(z)

(1 + 2z2)s(z)
, (4.4)

where r(z) = 6 + 18z2 + 18z4 + 15z6 + 6z8 + z10 − 4β1(1 + 2z2) and s(z) = −1− 6z2 − 15z4 −
18z6 + 2(−9 + 4β1)z8 + (−6 + 4β1)z10.

We can observe that the roots of the polynomial, a and b, do not appear.

4.6 Study of the �xed and critical points

Now, we obtain �xed points of the operator, which are the solutions of Oβ1
(z) = z (zero and

in�nity) and the strange �xed points ex1(β1) = 1 and also the roots of the following polynomial

r(β1, z) = 1 + z + 9z2 + 9z3 + 36z4 + 36z5 + 84z6 + (72 + 8β1)z7 + 126z8 + (84 + 20β1)z9 +

126z10 + (72 + 8β1)z11 + 84z12 + 36z13 + 36z14 + 9z15 + 9z16 + z17 + z18.

Hence, there are nineteenth strange �xed points. However, in the following case:

i) If β1 = −208
9 , there are sixteen strange �xed points.

26



4.6 Study of the �xed and critical points

The following step in our study is to calculate the �rst derivative of Oβ1
(z):

O′β1
(z) = −4z7 (1 + z2)8(2β1(8 + 9z2 − 16z4 + 9z6 + 8z8)− 3(8 + 19z2 + 10z4 + 19z6 + 8z8))

(1 + 2z2)2(−1 + z2(2z + z2)(−3− 6z2 − 6z4 + (−6 + 4β1)z6))2
.

We already have mention that the points zero and in�nity, which are associated to the solutions of
the polynomial, are critical points.

Proposition 2 For this family of order eight, we obtain the following free critical points:

cr1(β1) = −i,

cr2(β1) = i,

cr3(β1) = −1

4

√√√√ 1

−6 + 4β1

(
57− γ + 3

√
6

√
θ

(3− 2β1)2
− 2β1(9 +

√
6

√
θ

(3− 2β1)2
)

)
,

cr4(β1) = −cr3(β1),

cr5(β1) = −1

4

√√√√ 1

−6 + 4β1

(
57− γ − 3

√
6

√
θ

(3− 2β1)2
+ 2β1(−9 +

√
6

√
θ

(3− 2β1)2
)

)
=

1

cr3
,

cr6(β1) = −cr5(β1) =
1

cr4
,

cr7(β1) = −1

4

√√√√ 1

−6 + 4β1

(
57 + γ + 3

√
6

√
δ

(3− 2β1)2
− 2β1(9 +

√
6

√
δ

(3− 2β1)2
)

)
,

cr8(β1) = −cr7(β1),

cr9(β1) = −1

4

√√√√ 1

−6 + 4β1

(
57 + γ − 3

√
6

√
δ

(3− 2β1)2
+ 2β1(−9 +

√
6

√
δ

(3− 2β1)2
)

)
=

1

cr7
,

and

cr10(β1) = −cr9(β1) =
1

cr8
,

where γ =
√

4977− 9348β1 + 4420β2
1 , θ = −165 + 108β2

1 − 19γ+ 2β1(74 + 3γ) and δ = −165 +
108β2

1 − 19γ + β1(148− 6γ).
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Chapter 4. Stability of a parametric class of iterative methods of fourth and eighth order

We observed that cr1(β1) and cr2(β1) are pre-images of z=1, and the following pairs are conjugated:
cr3(β1) and cr5(β1), cr4(β1) and cr6(β1), cr7(β1) and cr9(β1), cr8(β1) and cr10(β1). Hence, there
are only two independent free critical points.

a) If β1 = 1, then cr1(β1) = cr3(β1) = −i and cr2(β1) = cr4(β1) = i. Then, the number of
free critical points is six.

b) If β1 = 16
3 , cr5(β1) = cr7(β1) = −1 and cr6(β1) = cr8(β1) = 1, there exist six free critical

points.

4.7 Stability of the �xed points

Proposition 3 In this case, the behavior of the strange �xed point ex1(β1) = 1, β1 6= 16
3 is the

following:

i) When
∣∣β1 − 32

6

∣∣ > 256
9 , ex1(β1) = 1 is attractive.

ii) If
∣∣β1 − 32

6

∣∣ = 256
9 , ex1(β1) = 1 is a parabolic point.

iii) When
∣∣β1 − 32

6

∣∣ < 256
9 , then ex1(β1) = 1 is a repulsor.

Proof. We can prove that

O′β1
(1) =

256

48− 9β1
.

So, ∣∣∣∣ 256

48− 9β1

∣∣∣∣ ≤ 1 is analogous to 256 ≤ |48− 9β1| .

If β1 = a+ ib is considered an arbitrary complex number. Hence,

2562 ≤ 482 − 864a+ 81a2 + 81b2.

By simplifying
81a2 − 864a+ 81b2 − 63232 ≥ 0,

that is, (
a− 32

6

)2

+ b2 ≥ 65536

81
.

Therefore, ∣∣O′β1
(1)
∣∣ ≤ 1 if and only if

∣∣∣∣β1 −
32

6

∣∣∣∣ ≥ 256

9
.

In Figure 4.5, the stability areas of exi(β1), i = 1, 2, 3, ..., 19 are represented.

We observe that strange points exi(β1), i = 2, 3, ..., 14, 15 and ex18(β1) are repulsors in any case.
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4.7 Stability of the �xed points

(a) ex1(β1) (b) ex16(β1)

(c) ex17(β1) (d) ex19(β1)

(e) exi(β1), i = 2, 3, ..., 14, 15 and ex18(β1)

Figure 4.5: Stability areas of exi(β1), i = 1, 2, 3, ..., 19

29



Chapter 4. Stability of a parametric class of iterative methods of fourth and eighth order

4.8 The parameter space and dynamical planes

Taking into account the free critical points of the family, the parameter space P2 can be obtained
(for cri(β1), i = 3, 4, 5, 6) and P3 (cri(β1), i = 7, 8, 9, 10), as we can see in Figure 4.6. It has been
used a mesh of 1000 × 1000 points, with a maximum number of iterations of 500 and a tolerance
of 10−3.
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(c) Parameter plane P3

Figure 4.6: Parameter planes of the family of order eight

We obtain two parameter planes because of the four pairs of conjugated critical points and since
the operator has only pair powers.

The best real values of the parameter β1 are found around the following regions:

� For P2: β1 < −2.2 and β > 1.2,

� For P3: β1 < 0.5 and β > 1.

Let us result that the number of best values of the parameter is much bigger with order eight than
order four, as its red area is larger.

We also show in Figure 4.7 the dynamical planes with good characteristics, taking into account
their stability and e�ciency. They are related to values of the parameter colored in red in the
parameter planes. The last two ones (Figures 4.7e and 4.7f) correspond to dynamical planes with
slow convergence. Nevertheless, we represent in Figure 4.8 unstable behavior selecting the parameter
β1 in the black area of parameter spaces.
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4.8 The parameter space and dynamical planes
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Figure 4.7: Stable dynamical planes
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(b) β1 = −0.34

Figure 4.8: Dynamical planes with unstable behavior
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Chapter 4. Stability of a parametric class of iterative methods of fourth and eighth order

4.9 Conclusions

In this chapter we studied the dynamical analysis developed on quadratic polynomials of a di�erent
parametric family of iterative methods with two varieties: fourth and eighth order. We have been
able to verify, due to the parameter plane, that there are more values of the parameter of the family
with stable behavior once that we enlarge the order of convergence of this family.

When we raise the order of convergence to eight, from the parameter space it can be veri�ed that
unstable schemes of the family are obtained selecting values of the parameter placed in small areas
of the parameter space. Apart from these areas, the family and its schemes has a stable behavior.
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Chapter 5

Fixed point root-�nding methods of

fourth-order of convergence

Based on [22]: "Fixed Point Root-Finding Methods of Fourth-Order of Convergence", Symmetry.
Presented at "Seventh Conference on Finite Di�erence Methods 2018", Lozenetz (Bulgary). Partial
results are based on [23]: "Stability of a family of iterative methods of fourth-order", Lecture Notes
in Computer Science.

5.1 Introduction

In this chapter, we have designed a family of iterative methods for solving nonlinear problems,
applying the weight-function technique. This family includes several well-known schemes in the
literature that can be achieved by varying weigh functions. The weight function of the family
depends on two di�erent evaluations of the derivative, being this one the only di�erence between
the two steps of each method, leads to an uncommon scheme. We will realize the study of the
family applying tools of complex dynamics on quadratic polynomials, so as to select the most stable
elements, since every possible scheme is optimal in the sense of Kung-Traub's conjecture.

Throughout this Introduction, the scheme of the family is presented and the order of convergence
is proven. Later, in Section 5.2 the behavior of the class will be analyzed, based on the study of the
�xed points and critical points in Section 5.2. Additionally, the analysis of the parameter space will
enable to choose the most e�cient schemes of the family, in relation to their stability. Finally, in
Section 5.6 some conclusions are mentioned.

In our study, through weight function procedure and Newton's scheme, a new family of iterative
schemes is presented, with the following iterative expression:

yn = zn − γ
f(zn)

f ′(zn)
,

zn+1 = zn −H(tn)
f(zn)

f ′(zn)
, n = 0, 1, . . . ,

(5.1)
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Chapter 5. Fixed point root-�nding methods of fourth-order of convergence

where γ is a real parameter and the variable of the weight function H(t) is t = f ′(y)
f ′(z) .

Now, we present the convergence result of this family, describing the conditions that function H(t)
must satisfy for reaching order four.

Theorem 6 Let f : D ⊆ R → R be a su�ciently derivable function in an open interval D and
let z̄ ∈ D be a simple solution of the nonlinear equation f(z) = 0. Starting from a known initial
estimation z0 close enough to z̄, if γ = 2/3 and function H satis�es H(1) = 1, H ′(1) = −3/4,
H ′′(1) = 9/4 and |H ′′′(1)| < +∞, then sequence {zn}n≥0 obtained from (5.1) converges to z̄ with
order of convergence four, being the error equation

en+1 = (5c3
2 − c2c3 + c4/9)e4

n +O(e5
n),

where cj = f (j)(z̄)
j!f ′(z̄) , j = 2, 3, . . . and en = zn − z̄.

Proof. It is known that f(zn) and f ′(zn) can be expressed as

f(zn) = f ′(z̄)[en + c2e
2
n + c3e

3
n + c4e

4
n +O(e5

n)]

and
f ′(zn) = f ′(z̄)[1 + 2c2e

2
n + 3c3e

3
n + 4c4e

4
n +O(e5

n)].

By direct division,

f(zn)

f ′(zn)
= en − c2e

2
n + (2c2

2 − 2c3)e3
n + [−8c3

2 + c2(4c2
2 − 3c3) + 10c2c3 − 3c4]e4

n +O(e5
n).

Then,

yn = zn− γf(zn)f ′(zn) = (1− γ)en + γc2e
2
n− 2[γ(c2

2− c3)]e3
n + γ(4c3

2− 7c2c3 + 3c4)e4
n +O(e5

n).

Again, by expanding in Taylor series,

f ′(yn) = f ′(z̄)
[
1− 2[(−1 + γ)c2]en + [2γc22 + 3(−1 + γ)2c3]e2

n

+2[−2γc32 + (5− 3γ)γc2c3 − 2(−1 + γ)3c4]e3
n

]
+O(e4

n).

Therefore,

tn =
f ′(yn)

f ′(zn)
= 1− 2γc2en + 3γ[2c2

2 + (−2 + γ)c3]e2
n

−4[γ(4c3
2 + (−7 + 3γ)c2c3 + (3− 3γ + γ2)c4)]e3

n +O(e4
n)

and, taking into account that t tends to 1 when n tends to in�nity, the weight function can be
expressed as

H(tn) = h0 + h1(tn − 1) +
1

2
h2(tn − 1)2 +

1

6
h3(tn − 1)3 +O((tn − 1)4)

= h0 − 2γh1c2en + [2γ2h2c
2
2 + 3γh1(2c2

2 + (−2 + γ)c3)]]e2
n

+

[
−4

3
γ3h3c

3
2 − 6γ2h2c2(2c2

2 + (−2 + γ)c3)− 4γh1(4c3
2 + (−7 + 3γ)c2c3

+(3− 3γ + γ2)c4)
]
e3
n +O(e4

n),

where h0, h1, h2 and h3 denotes H(1), H ′(1), H ′′(1) and H ′′′(1), respectively. Finally,

en+1 = zn+1 − z̄ = zn − z̄ −H(tn)
f(zn)

f ′(zn)
=
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5.1 Introduction

= (1− h0)en + (h0 + 2γh1)c2e
2
n + [−2(h0 + γ(4h1 + γh2))c2

2 + (2h0 − 3(−2 + γ)γh1)c3]e3
n

+[(4h0 + 26γh1 + 14γ2h2 +
4

3
γ3h3)c3

2 + (−7h0 + γ((−38 + 15γ)h1 + 6(−2 + γ)γh2))c2c3

+(3h0 + 4γ(3− 3γ + γ2)h1)c4]e4
n +O(e5

n).

Therefore, in order to eliminate �rst order error,

1− h0 = 0, which means that h0 = H(1) = 1.

For the second order error:
h0 + 2γh1 = 0,

being h0 = 1

h1 = H ′(1) =
−1

2γ
.

With these values of h0 and h1, the error equation is now

en+1 = [(2− 2γ2h2)c2
2 +

1

2
(−2 + 3γ)c3]e3

n

+[(−9 + 14γ2h2 +
4γ3h3

3
)c3

2

3

2
(8− 5γ − 8γ2h2 + 4γ3h2)c2c3

+(−3 + 6γ − 2γ2)c4]e4
n +O(e5

n).

So, we can eliminate the third order error if

2− 2γ2h2 = 0 and − 2 + 3γ = 0,

which means that

h2 = H ′′(1) =
1

γ2
and γ =

2

3
.

Hence it is proven that if γ = 2/3 and function H satis�es H(1) = 1, H ′(1) = −3/4 and
H ′′(1) = 9/4, the order of convergence is four.

Now, we analyze how to extend the structure (5.1) for designing derivative-free methods and for
solving nonlinear systems, n > 1.

If we want to design a derivative-free scheme with a similar structure as (5.1), we change f ′(zn) by
the divided di�erence f [zn, wn], where wn = zn + ρf(zn) with ρ a real parameter, obtaining the
following iterative expression:

yn = zn − γ
f(zn)

f [zn, wn]
,

zn+1 = zn −H(tn)
f(zn)

f [zn, wn]
, n = 0, 1, . . . ,

(5.2)

being in this case t =
f [y, w]

f [z, w]
the variable of the weight function. Unfortunately, family (5.2) does

not reach order four. However, if we use as variable of the weight function t =
f [y, z]

f [z, w]
, being

wn = zn + ρf(zn)2, the class

yn = zn − γ
f(zn)

f [zn, wn]
,

zn+1 = zn −H(tn)
f(zn)

f [zn, wn]
, n = 0, 1, . . . ,

(5.3)

reaches order four under certain conditions as we establish in the following result.
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Chapter 5. Fixed point root-�nding methods of fourth-order of convergence

Theorem 7 Let f : D ⊆ R → R be a su�ciently derivable function in an open interval D and
let z̄ ∈ D be a simple solution of the nonlinear equation f(z) = 0. Starting from a known initial
estimation z0 close enough to z̄, if γ = 1 and function H satis�es H(1) = 1, H ′(1) = −1,
H ′′(1) = 4 and |H ′′′(1)| < +∞, then sequence {zn}n≥0 obtained from (5.3) converges to z̄ with
order of convergence four, being the error equation

en+1 = (−f ′(z̄)2ρc2
2 +

1

6
(30 + h3)c3

2 − c2c3)e4
n +O(e5

n),

where cj = f (j)(z̄)
j!f ′(z̄) , j = 2, 3, . . ., en = zn − z̄ and h3 = H ′′′(1).

On the other hand, family (5.1) can be extended to the multidimensional case, n > 1, so we
accomplish a family of iterative methods for solving nonlinear systems F (z) = 0, where F : D ⊆
Rn → Rn. In this case, the iterative expression is

y(n) = z(n) − γ[F ′(z(n))]−1F (z(n)),

z(n+1) = z(n) −H(t(n))[F ′(z(n))]−1F (z(n)), n = 0, 1, . . . ,
(5.4)

where F ′(z(n)) is the Jacobian matrix of F evaluated in the iteration z(n). The variable of weight
is t = [F ′(z)]−1F ′(y) and H(t) is a matrix function H : X → X, where X = Rn×n, such that

(i) H ′(u)(v) = h1uv, being H
′ the �rst derivative of H, H ′ : X → L(X), h1 ∈ R and L(X)

denotes the space of linear mappings from X to itself.

(ii) H ′′(u, v)(w) = h2uvw, being H
′′ the second derivative of H, H ′′ : X × X → L(X) and

h2 ∈ R.

Then, the Taylor expansion of H around the identity matrix I gives

H(t(n)) ≈ H(I) + h1(t(n) − I) +
1

2
h2(t(n) − I)2.

A similar result to Theorem 6 can be establish for class (5.4), obtaining conditions for function H(t)
to reach order four. In the proof we use some tools and notations introduced in [24].

Theorem 8 Let F : D ⊆ Rn → Rn be a su�ciently di�erentiable function in an convex set D
and let z̄ ∈ D be a solution of the nonlinear system F (z) = 0, such that F ′(z̄) is nonsingular.
Starting from a known initial estimation z(0) close enough to z̄, if γ = 2/3 and function H satis�es
H(I) = I, h1 = −3/4 and h2 = 9/4, then sequence {zn}n≥0 obtained from (5.4) converges to z̄
with order of convergence four, being the error equation

en+1 =

(
26

9
C4 − 6C2C3 − C3C2 − 7C3

2 − 2C2
2

)
e4
n +O(e5

n),

where Cj = 1
j! [F

′(z̄)]−1F (j)(z̄), j = 2, 3, . . . and en = z(n) − z̄.

Proof. By using Taylor expansion of F (z(n)) and F ′(z(n)) around z̄,

F (z(n)) = F ′(z̄)[en + C2e
2
n + C3e

3
n + C4e

4
n] +O(e5

n),
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F ′(z(n)) = F ′(z̄)[I + 2C2en + 3C3e
2
n + 4C4e

3
n] +O(e4

n).

From the above expression, we conjecture

F ′(z(n))−1 = [I +X2en +X3e
2
n +X4e

3
n]F ′(z̄)−1 +O(e4

n)

and, from F ′(z(n))−1F ′(z(n)) = F ′(z(n))F ′(z(n))−1 = I, we have

F ′(z(n))−1 = [I−2C2en+ (4C2
2 −3C3)e2

n+ (−4C4 + 6C2C3 + 6C3C2−8C3
2 )e3

n]F ′(z̄)−1 +O(e4
n).

Then,

F ′(z(n))−1F (z(n)) = en − C2e
2
n + 2(C2

2 − C3)e3
n + (−3C4 + 4C2C3 + 3C3C2 − 4C3

2 )e4
n +O(e5

n).

Similarly, we calculate

y(n) − z̄ = (1− γ)en + γC2e
2
n − 2γ(C2

2 −C3)e3
n − γ(−3C4 + 4C2C3 + 3C3C2 − 4C3

2 )e4
n +O(e5

n).

So,

F ′(y(n)) = F ′(z̄)
[
I + 2C2(y(n) − z̄) + 3C3(y(n) − z̄)2 + 4C4(y(n) − z̄)3

]
+O(y(n) − z̄)4)

= F ′(z̄)
[
I + 2C2(1− γ)en + (2γC2

2 + 3C3(1− γ)2)e2
n + (−4γ(C2

2 − C2C3)

+6γ(1− γ)C3C2 + 4(1− γ)3C4)e3
n + (−2γ(−3C2C4 + 4C2

2C3 + 3C2C3C2 − 4C4
2 )

+3(5γ2 − 4γ)C3C
2
2 + 12(γ − γ2)C2

3 + 12γ(1− γ)2C4C2)e4
n

]
+O(e5

n).

Therefore, variable t of the weight function is described as

t = F ′(zn)−1F ′(yn) = I − 2γC2en + (6γC2
2 + 3C3(γ2 − 2γ))e2

n

+(−4γC2
2 + (6γ2 − 8γ)C2C3 + (12γ − 6γ2)C3C2

+(−4γ3 + 12γ2 − 12)C4 − 12γC3
2 )e3

n +O(e4
n)

and

H(t) = H(I) + h1(t− I) +
1

2
h2(t− I)2

= H(I)− 2γC2h1en + (6γh1C
2
2 + 3h1C3(γ2 − 2γ) + 2h2γ

2C2
2 )e2

n

+
[
−4γh1C

2
2 + h1(6γ2 − 8γ)C2C3 + h1(12γ − 6γ2)C3C2

+h1(−4γ3 + 12γ2 − 12)C4 − 12h1γC
3
2 − 2γh2(6γC3

2 + 3C2C3(γ2 − 2γ))
]
e3
n +O(e4

n).

Therefore,

ek+1 = (I −H(I))en + (H(I)C2 + 2γh1C2)e2
n +

(
−2H(I)(C2

2 − C3)− 2γh1C
2
2

−6γh1C
2
2 − 3h1C3(γ2 − 2γ)− 2h2γ

2C2
2

)
e3
n +O(e4

n).

In order to reach order four, the coe�cients of en, e
2
n and e3

n must be zero, so

H(I) = I, h1 =
−1

2γ
, h2 =

9

4
and γ =

2

3
.

With these values, the error equation is

en+1 =

(
26

9
C4 − 6C2C3 − C3C2 − 7C3

2 − 2C2
2

)
e4
n +O(e5

n)

and the proof is �nished.
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Many known schemes designed for solving nonlinear equations or nonlinear systems can be obtained
as particular cases of (5.4) by using di�erent weight functions satisfying the conditions of Theorem
8. For example, the classical Jarratt's scheme [25]

yn = zn − 2
3

f(zn)

f ′(zn)
,

zn+1 = zn − 3f ′(yn)+f ′(zn)
6f ′(yn)−2f ′(zn)

f(zn)

f ′(zn)
, n = 0, 1, . . . ,

(5.5)

is obtained from (5.1) for equations and (5.4) for systems, by using

H(t) = (6t− 2I)−1(3t+ I).

In a similar way, the method constructed by Khattri and Abbasbandy in [26] is an element of (5.4),
n ≥ 1, by using the weight function

H(t) = I +
21

8
t− 9

2
t2 +

15

8
t3.

The parametric family of iterative methods for solving nonlinear equations or systems, designed by
Kanwar et al. in [27], is a particular case of (5.1) or (5.4) using the weight function

H(t) =
1

2

α2
1 − 22α1α2 − 27α2

2 + 3(α2
1 + 10α1α2 + 5α2

2)

(α1 + 3α2t)(3(α1 + α2)t− α1 − 5α2)
t,

where α1 and α2 are free real parameters such that α1 6= α2 and α1 6= 3α2.

Sharma and Arora published in [28] a method for solving nonlinear systems which we can obtain
from (5.4) by using

H(t) =
23

8
I + t

(
−3I +

9

8
t

)
.

Hueso et al. presented in [29] a parametric family of iterative schemes, which is obtained from the
weight function

H(t) =
5− 8α

8
I + αt−1 +

α

3
t+

9− 8α

24
t,

where α is a real free parameter.

Ghorbanzadeh and Soleymani presented in [30] an iterative method solving nonlinear equations or
nonlinear systems, which is a particular case of our scheme using the weight function

H(t) = 4(I + 3t)−1

[
I +

9

16
(t− I)

]2

.

Finally, the class of iterative schemes proposed by Argyros et al. in [31] for solving nonlinear
equations can be deduced by using the weight function

H(t) = M(t)
β + 1

β + [1− (3/2)(β − 1)(1− t)]1/2
,

where β is a free parameter and M(t) is a function satisfying M(1) = 1, M ′(1) = 0 and M ′′(1) =
−9
16 (β − 1).

38



5.2 Study of the �xed points

One of the most simpler sub-class of family (5.1) is obtained when H(t) is the Taylor polynomial of
third degree, satisfying γ = 2/3, H(1) = 1, H ′(1) = −3/4 and H ′′(1) = 9/4, that is, the weight
function is:

H(t) = 1− 3

4
(t− 1) +

9

8
(t− 1)2 +

1

6
γ(t− 1)3,

being γ = H ′′′(1) the free parameter. In this way, we obtain a parametric family of iterative methods
of order four, denoted by CGTγ. In the next sections, we are going to analyze de dynamical behavior
of this class in terms of parameter γ, for �nding the methods with good stability properties and to
avoid the elements of the family with chaotic behavior.

Using the generic quadratic polynomial p(x) = (x − a)(x − b), the following function is the �xed
point operator of the proposed family:

Tp,γ,a,b(z) = z +
(−a+ z)(−b+ z)(1 + (a−z)(b−z)

(a+b−2z)2 + 2(a−z)2(b−z)2
(a+b−2z)4 + 22γ(a−z)3(−b+z)3

81(a+b−2z)6 )

a+ b− 2z
, (5.6)

which depends on parameters γ, a and b.

This operator on quadratic polynomials is conjugated to operator Oγ (z),

Oγ (z) =
(
φ ◦ Tp,γ,a,b ◦ φ−1

)
(z) = z4 405 + 32γ + 1134z + 1134z2 + 486z3 + 81z4

81 + 486z + 1134z2 + 1134z3 + 405z4 + 32γz4
. (5.7)

In this new operator Oγ , parameters a and b have been obviated.

5.2 Study of the �xed points

Stability and reliability of the members of the family are analyzed in the rest of the chapter, regarding
the properties of its associate rational function when the class is applied on polynomial p(z). Firstly,
�xed points of the rational function Oγ(z) are calculated. Speci�cally, we focus on the points that
are not related to the original roots of polynomial p(z), the strange �xed points.

In the next result, some properties of the strange �xed points are described.

Theorem 9 Fixed points of the rational function Oγ(x) are the roots of equation Oγ(z) = z.
Therefore, we obtain z = 0, z =∞ (corresponding to the roots of p(z)), and the following strange
�xed points:

� ex1(γ) = 1,

� the roots of symmetric sixth-degree polynomial r(t) = 81 + 567t+ 1701t2 + (2430− 32γ)t3 +
1701t4 + 567t5 + 81t6, or analogously,

ex2,3(γ) =
s1(γ)±

√
s1(γ)2 − 4

2
, ex2(γ) =

1

ex3(γ)
,

ex4,5(γ) =
s2(γ)±

√
s2(γ)2 − 4

2
, ex4(γ) =

1

ex5(γ)
,

ex6,7(γ) =
s3(γ)±

√
s3(γ)2 − 4

2
, ex6(γ) =

1

ex7(γ)
,
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where s1(γ), s2(γ) and s3(γ) are the roots of the third-degree polynomial s(t) = 81t3 + 567t2 +
1458t+ 1296− 32γ, that is,

s1(γ) =
1

9

(
−21− 15 31/3

(Φ(γ))1/3
+ (9Φ(γ))1/3

)
,

s2(γ) =
1

18

(
−42 +

15 31/3
(
1 + i

√
3
)

(Φ(γ))1/3
+ i
(
i+
√

3
)

(9Φ(γ))1/3

)
,

s3(γ) =
1

18

(
−42 +

15 31/3
(
1− i

√
3
)

(Φ(γ))1/3
−
(

1 + i
√

3
)

(9Φ(γ))1/3

)
,

being Φ(γ) = 24 + 16γ +
√

1701 + 768γ + 256γ2.

It is possible to �nd values of parameter γ where two or more strange �xed points coincide. Conse-
quently, operator Oγ (x) provides seven strange �xed points, except in the following cases:

i) If γ = 0 or γ = 891
4 , there are only �ve strange �xed points.

ii) If γ = 3
16 i
(
8i+ 5

√
5
)
or γ = − 3

16 i
(
−8i+ 5

√
5
)
the strange �xed points are ex1 = 1 and

the roots of a sixth-degree polynomial, which are two simple and two double roots.

5.3 Stability of the �xed points

In this section, we observe that the number of �xed points is not the only characteristic that depends
on the parameter, since the stability of these points relies on the parameter, as well. This fact can
lead to the existence of attracting strange �xed points, which can make the iterative scheme converge
to a false solution.

It is known that z = 0 and z =∞ are always superattracting �xed points, as the order of convergence
of the class is greater than 2. However, relevant numerical information is provided by the stability
of the other �xed points (for example, z = 1 corresponds to the divergence of the original method).
Therefore, we determine this stability in the next results.

Theorem 10 Strange �xed point ex1(γ) = 1, with γ 6= −405

4
, has the following character:

i) When
∣∣γ + 405

4

∣∣ < 324 , ex1(γ) = 1 is a repulsor.

ii) If
∣∣γ + 405

4

∣∣ = 324, ex1(γ) = 1 is a parabolic point.

iii) When
∣∣γ + 405

4

∣∣ > 324, then ex1(γ) = 1 is an attractor.

Proof. We can prove that

O′γ (1) =
1296

405 + 4γ
.

So, ∣∣∣∣ 1296

405 + 4γ

∣∣∣∣ ≤ 1 is equivalent to 1296 ≤ |405 + 4γ| .
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If we consider γ = c+ id an arbitrary complex number. Therefore,

12962 ≤ 4052 + 16c2 + 16d2 + 3240c.

By simplifying
1515591− 3240c− 16c2 − 16d2 ≤ 0,

that is, (
c+

405

4

)2

+ d2 ≤ 3242.

Therefore, ∣∣O′γ (1)
∣∣ ≤ 1 if and only if

∣∣∣∣γ +
405

4

∣∣∣∣ ≤ 324 .

Stability regions of every strange �xed point (exi(γ), i = 1, 2, . . . , 7) are shown in Figure 5.1.

(a) ex1(γ) (b) exi(γ), i = 2, 3 (c) exi(γ), i = 4, 5, 6, 7

Figure 5.1: 3D-view of stability functions of strange �xed points

We can observe from the stability of exi(γ), i = 4, 5, 6, 7 that these strange �xed points are repulsive
for any value of parameter γ.

5.4 Analysis of the critical points

Regarding the dynamics of the family, it is signi�cant to analyze the critical points of the rational
function Oγ(z) di�erent from 0 and ∞, the free critical points.

With the purpose of calculating the critical points, we study which points make null the derivative
of Oγ(z).

O′γ(z) = (1 + z)6 324z3405(1 + z)2 + 16γ
(
2− 3z + 2z2

)
(81 + 486z + 1134z2 + 1134z3 + (405 + 32γ)z4)2 .

We know that z = 0 and z = ∞, which are linked to the roots of the polynomial through Möbius
map, are the critical points that lead to their Fatou components. Nevertheless, several free critical
points can be obtained, some of them depending on the value of the parameter γ.

Proposition 4 The number of critical points of the rational function Oγ(z) depend on the value of
the parameter γ:

a) If γ = 0, there exist one only free critical point, z = −1, which is a pre-image of the �xed
point z = 1.

41



Chapter 5. Fixed point root-�nding methods of fourth-order of convergence

b) In all other cases, the free critical points are cr1(γ) = −1,

cr2(γ) =
−405 + 24γ − 4

√
7
√
−γ(405 + 4γ)

405 + 32γ
=

1

cr3
,

which means that there exists only one independent free critical point.

Proof. We obtain the previous critical points, since

O′γ(z) = (1 + z)6 324z3405(1 + z)2 + 16γ
(
2− 3z + 2z2

)
(81 + 486z + 1134z2 + 1134z3 + (405 + 32γ)z4)2 =

= z(1+z)6(−
−405 + 24γ − 4

√
7
√
−γ(405 + 4γ)

405 + 32γ
+z)(−

−405 + 24γ + 4
√

7
√
−γ(405 + 4γ)

405 + 32γ
+z).

In the case of strange �xed point exi(γ), i = 2, 3, we can see that there exist a ball in which the
strange �xed points are attractors, whereas outside this ball, exi(γ), i = 2, 3 are repulsive.

5.5 The parameter space

We have observed that the dynamical behavior of operator Oγ(x) depends on the values of the
parameter γ. Taking into account Theorem 1, we are interested in knowing what happens with the
free critical points, and if any of them gives rise to a basin of attraction di�erent from those of zero
and in�nity. In order to have knowledge of this, we obtain the parameter plane associated to the
family.

We depict the parameter space associated with a free critical point of operator (5.7) by linking the
parameter plane's points with a complex value of the parameter with an element of family (5.1).
The values of the parameterγ which belongs to the same component of the parameter plane lead to
sets of schemes of the family (5.1) with an analogous dynamical behavior. Therefore, our objective
is to �nd stable areas in the parameter space, due to the fact that the values of γ in these regions
will provide the best members of the family in terms of numerical stability.

Since cr2(γ) =
1

cr3(γ)
, we have at most one free independent critical point, consequently, there

exist only one parameter plane of the family. A in previous chapters, if we consider the independent
free critical point as a starting point of the iterative schemes of the family associated to each
complex value of γ, this point of the complex plane is painted in red if the method converges to any
of the roots and they are black in other cases. Following this procedure, we obtain the parameter
plane presented in Figure 5.2, by using the processes described in [17]. We have used a mesh
of 2000 × 2000 points, 500 maximum iterations and 10−3 as the tolerance used in the stopping
criterium. We also show a zoom of this parameter plane in Figure 5.3 (a), focusing on the biggest
red area, where the members of family (5.1) are, in general, very stable.

Nevertheless, we can see black regions that inform us about di�erent pathological behavior of the
elements of the family. The black ball represented in Figure 5.3 (b), correspond to values of
parameter γ for which exi(γ), i = 2, 3 are attracting. Besides, the big black ball that surrounds the
parameter plane in Figure 5.2 correspond to values of the parameter for which ex1(γ) is attracting.

In addition, we can analyze the remaining black regions by drawing dynamical planes with the
parameter γ corresponding to values inside these black regions.

42



5.6 Dynamical Planes

IRe{α}

IIm
{α

}

−400 −300 −200 −100 0 100 200

−300

−200

−100

0

100

200

300

Figure 5.2: Parameter plane associated to cri(γ), i = 2, 3.
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Figure 5.3: Details of the parameter plane

5.6 Dynamical Planes

Now, we will analyze the qualitative behavior of the di�erent elements of family through the dynami-
cal planes. These elements are selected taking into account the conclusions obtained by studying the
parameter plane of the family. Dynamical planes with stable behavior are depicted by using points
in the red region of the parameter plane, whereas dynamical planes with unstable performance are
calculated with points in the black region of the parameter plane of the family.

Every dynamical plane presented here has been generated by using the routines appearing in [17].
The dynamical plane related to a value of parameter γ is obtained by iterating an element of family
(5.1). Initial estimations are based on each point of the complex plane. The color of each point
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(d) γ = 0 + 30i

Figure 5.4: Some dynamical planes with stable behavior

represents their convergence, following the same pattern that in the previous chapters. In this case,
a mesh of 600× 600 points has been used and a tolerance of 10−3).

Some dynamical planes are shown in Figure 5.4. These planes correspond to values of the parameter
γ which, from parameter plane, give us elements of the family with stable behavior. Therefore, we
can see only two basins of attraction, that correspond to zero (orange basin) and in�nity (blue
basin).

On the other hand, as it has been said, unstable behavior is found when we choose values of the
parameter in the black region of parameter plane. These dynamical planes are shown in Figure 5.5.

In Figures 5.5 (a), (c), (e) and (f) the dynamical planes of iterative schemes related to γ = 65,
γ = 85+35i, γ = −140 and γ = −200, respectively, are presented, with regions of slow convergence.
Figure 5.5 (b), corresponding to γ = 90, shows four basins of attraction, being two of them of the
superattractive points 0 and ∞, and the other ones related to strange �xed points.

Finally, in Figure 5.5 (d), corresponding to γ = 891
4 , we can observe an orbit of period two.
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(f) γ = −200

Figure 5.5: Some dynamical planes with unstable behavior
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5.7 Conclusions

In this chapter, a class of optimal iterative methods for solving nonlinear equations is presented,
which holds many known methods as particular elements. This family is extended in two di�erent
directions: a class of derivative-free methods for solving nonlinear equations and a multidimensional
family for nonlinear systems. Both classes preserve the order of convergence of the initial family.
The dynamical analysis in these areas will be object of study in future works.

Moreover, a complex dynamical study for a parametric sub-family applied on quadratic polynomials
has been presented. We have been able to prove, in terms of the parameter space, that there are
many values of γ with good stability properties, which means that there exist plenty elements of the
family with stable behavior. Nevertheless, there are other values of γ with convergence anomalies
that must be avoided in practical applications.
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Conclusions and further work

6.1 Conclusions

In the course of this Final Degree Project, a deep analysis of iterative methods for solving nonlinear
equations and systems has been carried out. The relevance of these methods in many �elds of
science has been detailed, presenting several examples related to those di�erent �elds. Additionally,
the importance of achieving the improvement of them has also been explained, creating new schemes
in order to accelerate the convergence or to improve the computational e�ciency.

With the main objective of design an iterative method with the best characteristics, such as a high
order of convergence and a stable behavior in terms of complex dynamics, throughout the project,
the following actions have been developed:

It has been carried out the analysis of complex dynamics associated to the family of iterative methods
created by Kou. The study of the operator of the family, along with the strange �xed points and the
free critical points was developed, followed by the representation and interpretation of parameter
and dynamical planes. Those tools and their analysis led to the selection of the most stable elements
of the presented family.

A new family of methods for the resolution of nonlinear equations, with order of convergence
four, has been designed in Chapter 4, based on a family presented in [21] for solving nonlinear
systems. Additionally, the presented family has been modi�ed, increasing the order to eight. This
modi�cations enabled the family to reach the solution of the equation applied faster, what is truly
important in the application of iterative schemes. The dynamical analysis carried out proved that the
dynamical characteristics of the family of order eight had improved, compared with the fourth-order
family, having more elements of the family with stable behavior.

In Chapter 5, a new family of fourth-order has also been created, on the basis of previous studies
of existing families of iterative methods. The family under study includes known schemes in the
literature selecting some speci�c values of the parameter of the family, fact that makes it a relevant
family for researching. The analysis of this family and its dynamics also enable to choose the schemes
with the best characteristics, in terms of e�ciency and stability.

47



Chapter 6. Conclusions and further work

Dynamical characteristics of every family mentioned have been obtained as a result of complex
dynamics. Since all the families under study are parametric, their behavior has been analyzed
according to their respective parameters and with the objective of �nding the best elements of each
one of the presented families. These optimal elements have been shown in the di�erent chapters of
the respective families.

Routines in Matlab have been implemented, so as to depict dynamic and parameter planes. Through
these representations, it has been realized the analysis of the stability of the di�erent methods,
allowing the ful�lment of the main objective of the selection of the most e�cient members of the
families.

All these actions and studies, led to the following conclusions:

� Parameter planes enable the ful�lment of a previous study of the dynamical behavior of a
parametric family of iterative methods.

� As a result of the analysis of the parameter planes, it can be achieved the selection of a member
of the family whose stability is guaranteed.

� Dynamic planes show the behavior of a large amount of initial estimations, providing an idea
of the orbit of each one of those points.

� The characteristics of the basins of attractions of the dynamical planes contribute with relevant
information related to the properties of each method.

6.2 Further work

The development of this Final Degree Project has been the result of several years of research,
thanks to the development of three collaboration scholarship in Applied Mathematics Department
from Polytechnic University of Valencia. After the research and the results obtained, more studies
will be carried out, since the analysis of iterative methods for solving nonlinear problems is a �eld in
continuous development due to the relevance of improving these methods. Further work would be
placed in the following lines:

� Development of the dynamical analysis of the class of derivative-free methods for solving
nonlinear equations and the multidimensional family for nonlinear systems showed in Section
5.1.

� Design of optimal iterative methods with higher orders of convergence.

� Design of iterative methods adapting them for the resolution of nonlinear matrix equations.

� Implementation of new iterative methods for solving nonlinear systems.

� Study of the dynamics associated to the created iterative methods.
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