

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/124676

Torreño Lerma, A.; Sapena Vercher, O.; Onaindia De La Rivaherrera, E. (2018). FMAP: A
platform for the development of distributed multi-agent planning systems. Knowledge-Based
Systems. 145:166-168. https://doi.org/10.1016/j.knosys.2018.01.013

https://doi.org/10.1016/j.knosys.2018.01.013

Elsevier

FMAP: A Platform for the Development of Distributed

Multi-Agent Planning Systems

Alejandro Torreño, Óscar Sapena, Eva Onaindia

Universitat Politècnica de València
Camino de Vera, s/n, 46010, Valencia

Abstract

The development of cooperative Multi-Agent Planning (MAP) solvers in a
distributed context encompasses the design and implementation of decen-
tralized algorithms that make use of multi-agent communication protocols.
In this paper, we present FMAP, a platform aimed at developing distributed
MAP solvers such as MAP-POP, FMAP and MH-FMAP, among others.

Keywords: multi-agent planning, distributed algorithms
2010 MSC: 68-20, 68-42

1. Introduction

Cooperative Multi-Agent Planning (MAP) generalizes automated plan-
ning to a context in which several autonomous entities, or agents, plan and
act concurrently in a common environment towards a common goal. The
recent 2015 Competition of Distributed and Multiagent Planners (CoDMAP)5

[1] was the first attempt to showcase the current MAP technology. The com-
petition was arranged in two tracks, a centralized and a distributed track,
in order to classify and compare the participating MAP solvers. Most of
the planners are based on a single-host running process and took part in the
centralized track only. Centralized MAP rules out the need of a communica-10

tion infrastructure and distributed computation, and enables to reuse widely
developed single-agent planning technology. In contrast, the development of
fully-distributed MAP platforms is far less exploited as evidenced by the few
solvers that participated in the CoDMAP distributed track.

Distributed computation poses additional requirements and challenges15

such as an efficient agent communication and the design of algorithms suited

Preprint submitted to Knowledge-Based Systems January 13, 2018

to a distributed control. In cooperative MAP, where all agents are aimed at
solving a common goal, the distribution of the information and distributed
problem-solving compel agents to constantly exchange knowledge and partial
solutions. Hence, implementing distributed MAP algorithms is a challenging20

task that involves a set of independent software agents.
This paper introduces FMAP, a software platform for the development

of MAP solvers based on multi-agent heuristic search [2]. FMAP supports
language, runtime and associated components to develop distributed solu-
tions to a cooperative MAP task. We provide a flexible platform that allows25

for a fast development of distributed search algorithms and heuristics and
includes a thoroughly-tested communication infrastructure. In order to min-
imize communication overhead, FMAP uses a democratic leadership scheme
by which a coordinator role is scheduled among the agents, so that one of the
agents centralizes messaging and leads the procedure at each iteration [2].30

The remainder of this article is as follows: section 2 analyzes the archi-
tecture and the main features of our software platform; section 3 compares
FMAP against other existing MAP tools; and section 4 concludes.

2. System Architecture and Functionalities

FMAP attains cooperative MAP tasks in which a set of independent plan-35

ning agents jointly develop a course of action or plan to reach a common goal
from a given initial situation or state. A state of the world is defined as a fi-
nite set of state variables, each associated to a finite set of mutually exclusive
values. Agents have a local view of the world defined by their state variables
and values. The variables/values of an agent which are not shared with the40

others are private to the agent.
The architecture of FMAP is depicted in Figure 1. The platform works

with a factored planning representation such that the user introduces, for
each planning agent agi, a domain file that describes its domain knowledge,
and a problem file that contains agi’s local view of the initial state and the45

goal, as well as the information of agi that is shareable with the others.
FMAP can be run through either a command-line mode or an interactive

graphical interface that serves as a powerful execution monitoring and debug-
ging tool. Since agents communicate via TCP-IP sockets, the command-line
mode allows tasks to be executed in multiple hosts, running one or various50

agents in each host. For this purpose, the user must provide an agent list file
(see Figure 1) that specifies the names and IP addresses of the agents.

2

TCP/IP sockets

Reasoning system ag1

(Graphical) user interface ag1

Reasoning system agn

(Graphical) user interface agn

ag1 agn

...
Domain agn

Problem agn

Agent list

Domain ag1

Problem ag1

Agent list

Figure 1: Architecture of the FMAP platform

A planning agent integrates a (graphical or textual) user interface and
a reasoning system. The interactions among the components of the agent’s
reasoning module are described in Figure 2. Via the pre-processor, the agents55

lexically and syntactically analyze their domain and problem files (parsing),
and instantiate the arguments of the actions and state variables of their
tasks (grounding). In grounding time, agents jointly analyze the reachability
of the task actions, excluding those that will not be reachable when solving
the planning task. After pre-processing the MAP task, agents generate a set60

of auxiliary structures to facilitate the heuristic evaluation of plans; namely,
a landmark graph and a set of domain transition graphs (DTGs) [3].

Pre-processor

Plan generator Heuristic evaluator

Planner

Parser

TCP/IP
sockets

Grounder

Landmark graph generator

DTGs generator

Auxiliary structures

Domain

Problem

Agent list

Figure 2: Structure of an agent’s reasoning system

The planner component of an agent includes a plan generator and a
heuristic evaluator. Currently, the platform applies MH-FMAP, a multi-agent
A* search scheme governed by two different heuristic functions that are ap-65

plied alternatively to select plans [3]. Nonetheless, the code of FMAP is easily
extendible and the programmer can modify and add new search schemes and
heuristic functions.

3

As depicted in Figure 2, agents communicate via TCP/IP sockets. The
communication infrastructure of FMAP includes a collection of robust meth-70

ods to synchronously and asynchronously exchange messages. A FMAP agent
incorporates a queue to store and manage the received messages. The socket-
based infrastructure of the platform allows agents to be executed in different
machines and automatically coordinate through the network.

From a development perspective, FMAP is a software platform imple-75

mented in Java that is executable under multiple operating systems. In order
to maximize modularity, FMAP heavily draws upon Java interfaces, which
encapsulate the components of the code. This facilitates ease of replacement
of the existing algorithms by new implementations, as long as they adhere
to the corresponding interfaces.80

3. Comparison with other MAP Tools

The state of the art in MAP includes several tools that share some of
the design principles of FMAP. LAPKT1 is a command-line modular platform
for single-agent planning that allows users to assemble and combine different
search strategies and heuristics. The centralized MAP solver MAP-LAPKT85

compiles the MAP task into a single-agent task and uses LAPKT to solve it.
Regarding distributed MAP tools, we can cite the two solvers that partic-

ipated in the distributed track of the 2015 CoDMAP along with MH-FMAP.
MAPlan [4] applies a distributed heuristic search scheme and combines several
local and global heuristic functions. Similarly to our tool, MAPlan commu-90

nicates agents through network message passing. PSM [5] solves a MAP
task by merging the various finite automata that represent the agent plans.
PSM was the top solver in the distributed CoDMAP thanks to its efficient
handling of communication among agents, based on the use of a specialized
broker agent.95

Unlike the aforementioned solvers, FMAP is designed as an extendible tool
whose modular design enables an easy replacement of the code. Moreover,
FMAP is also the first MAP tool to feature a powerful graphical interface
for execution monitoring and debugging purposes. Finally, the Java-based
implementation turns FMAP into a portable tool and the message infrastruc-100

ture allows agents of a MAP task to be effortlessly run in multiple hosts
under different operating systems.

1http://lapkt.org

4

Regarding performance, MH-FMAP, which is the most advanced MAP
solver developed with the FMAP platform [3], has been extensively tested
and compared with other approaches in the literature. In [3], MH-FMAP was105

tested via a comprehensive benchmark that includes 10 domains from the IPC
(International Planning Competition) adapted to a MAP context. Moreover,
in the 2015 CoDMAP, MH-FMAP exhibited a consistent performance and it
ranked third in the distributed track2.

4. Conclusions110

FMAP is a software platform that represents one step ahead in the sim-
plification of the design, development and debugging of a distributed MAP
solver. The extendible components of the platform such as the communica-
tion infrastructure, the GUI and the search engine alleviate debugging tasks
and allow users to focus on the design and development of distributed algo-115

rithms, thus saving time and effort.

References

[1] A. Komenda, M. Stolba, D. L. Kovacs, The international competition
of distributed and multiagent planners (CoDMAP), AI Magazine 37 (3)
(2016) 109–115.120

[2] A. Torreño, E. Onaindia, O. Sapena, FMAP: Distributed cooperative
multi-agent planning, Applied Intelligence 41 (2) (2014) 606–626.

[3] A. Torreño, E. Onaindia, O. Sapena, Global heuristics for distributed co-
operative multi-agent planning, in: Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS), 2015, pp.125

225–233.

[4] D. Fǐser, M. Štolba, A. Komenda, MAPlan, in: Proceedings of the Com-
petition of Distributed and Multi-Agent Planners (CoDMAP-15), 2015,
pp. 8–10.

[5] J. Tožička, J. Jakubuv, A. Komenda, M. Pěchouček, Privacy-concerned130

multiagent planning, Knowledge and Information Systems 48 (3) (2016)
581–618.

2http://agents.fel.cvut.cz/codmap/results/

5

Required Metadata

Current executable software version

S1 Current software version v1.0

S2 Permanent link to executables of this
version

https : //bitbucket.org/altorler/fmap

S3 Legal Software License GNU General Public License v3

S4 Computing platform/Operating Sys-
tem

Java-compatible platform

S5 Installation requirements & dependen-
cies

Java 1.7 or greater

S6 If available, link to user manual - if for-
mally published include a reference to
the publication in the reference list

https : //bitbucket.org/altorler/fmap
/overview

S7 Support email for questions altorler@upvnet.upv.es,
osapena@dsic.upv.es

Table 1: Software metadata

Current code version135

C1 Current code version v1.0

C2 Permanent link to code/repository
used of this code version

https : //bitbucket.org/altorler/fmap

C3 Legal Code License GNU General Public License v3

C4 Code versioning system used Git

C5 Software code languages, tools, and
services used

Java 1.7

C6 Compilation requirements, operating
environments & dependencies

Java JRE 1.7 or greater

C7 If available Link to developer documen-
tation/manual

https : //bitbucket.org/altorler/fmap
/overview

C8 Support email for questions altorler@upvnet.upv.es,
osapena@dsic.upv.es

Table 2: Code metadata

6

