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Closed-form eigensolutions of nonviscously, nonproportionally damped

systems based on continuous damping sensitivity
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Universitat Politècnica de València 46022 Valencia, Spain

Abstract

In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped
systems are characterized by dissipative mechanisms which depend on the history of the response velocities
via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem
involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this
latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key
point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then
the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an
ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting
expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the non-
proportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using
existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical
example which compares proposed with exact ones and with those determined from the linear first order
approximation in terms of the damping matrix. Frequency response functions are also plotted showing that
the proposed approach is valid even for moderately or highly damped systems.

Keywords: nonviscous damping, nonproportionality, eigenvalues and eigenvectors, closed-form expression,
nonclassical damping, symmetric systems, viscoelasticity

1. Introduction

Nonviscous damping materials are widely used for vibration control within many applications of me-
chanical, civil and aeronautical engineering. These type of energy dissipation devices can also be known as
viscoelastic damping. The physical modeling of vibrating structures under viscoelastic damping results in
a complex problem since energy dissipation is characterized by hereditary mechanisms: damping forces are
function of the time-history of the velocity response. In mathematical terms, this behavior is represented by
convolution integrals involving the degrees-of-freedom (dof) velocities over certain kernel functions. Hence,
time-domain response is governed by the following system of linear integro-differential equations

Mü+

∫ t

−∞

G(t− τ)u̇ dτ +Ku = f(t) , u(0) = u0 , u̇(0) = u̇0 (1)

where u(t) ∈ R
n represents the array containing the n dof’s, M ∈ R

n×n and K ∈ R
n×n are the mass

and stiffness matrices. We assume M to be positive definite and K positive semidefinite; G(t) ∈ R
n×n is

the viscoelastic damping matrix in the time domain containing the hereditary kernel functions, which must
satisfy the necessary conditions given by Golla and Hughes [1] to induce a dissipative behavior. The viscous
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damping can be considered as a particular case with G(t) ≡ C δ(t), where C is the viscous damping matrix
and δ(t) the Dirac’s delta function. The time-domain response governed by Eqs. (1) is closely related to the
eigensolutions of the associated nonlinear eigenvalue problem [2]. Due to this nonlinearity (induced by a
frequency-dependent damping matrix), the search of eigensolutions is in general much more expensive from
a computational point o view than that of classical viscous damping. In this paper, our challenge is to de-
duce closed-form approximations which, on one hand, takes into account the main features of a nonviscously
damped system (viscoelasticity and nonproportionality) and, on the other hand, it only requires the compu-
tational complexity needed for solving the undamped eigenproblem (natural frequencies and normal modes).

The Laplace transform of the free-motion equation (1) leads to a nonlinear eigenvalue problem in the
frequency domain. This nonlinearity arises from the frequency dependency of the viscoelastic function in the
Laplace domain, G(s) = L{G(t)}. In general, the s-dependent functions within the damping matrix G(s)
can be of different nature as long as they satisfy the necessary conditions given by Golla and Hughes [1] to
describe a real dissipative motion. However, two viscoelastic models have been traditionally used for prac-
tical applications: nonviscous models based on exponential kernels proposed by Biot [3] and those based on
the fractional derivatives studied by Bagley and Torvik [4, 5].

Several methods to solve the general nonlinear eigenvalue problem exist in the bibliography. Ruhe [6],
Yang [7] and Singh [8] proposed methodologies based on the Taylor series expansion of the transcendental
matrices combined with Newton’s eigenvalue iteration method. Williams and Kennedy [9] obtained numer-
ical solutions using on the parabolic interpolation of the determinant of the eigenvalue problem. Daya and
Potier-Ferry [10], Duigou et al. [11] and Boudaoud et al. [12] developed techniques based on the asymptotic
perturbation theory to determine complex frequencies and eigenvectors. Voss [13, 14] developed two algo-
rithms based on the shift-and-invert Arnoldi’s technique and on the Jacobi-Davidson method, respectively.
References [15, 16, 17] describe how to transform multiple dof systems based on the Biot’s model into a into
a extended linear system, which can be solved using state-space techniques. For lightly nonproportional
systems, Adhikari and Pascual [18, 19] published an iterative method based on the first and second order
Taylor series expansion of the modal damping function. Lázaro et al. [20] proposed a recursive approach us-
ing the fixed-point iteration. References [21, 22] exploits the damping parameters as mathematical variables
in certain domain obtaining solutions for both proportional and nonproportional systems. In the same direc-
tion, Lázaro et al. [23] derived a closed from expression for the complex eigenvalues of frame structures with
viscoelasic layers based on fractional derivatives and assuming light nonproportionality. In these works the
derivatives of the eigensolutions respect of certain damping parameter play a special role. The generalization
of derivatives of eigenvalues and eigenvectors for viscoelastic structures was analyzed by Adhikari [24, 25].
Cortés and Elejebarrieta [26, 27] used Adhikari’s solutions in an recursive numerical approach, valid even
for highly damped systems. Li et al. [28, 29] proposed a new method for eigensensitivity analysis based on
a new form of normalization. Singh [30] has proposed recently a new numerical approach to estimate simul-
taneously eigenvalues and eigenvectors using a iterative scheme. Lewandowski [31] developed a recursive
numerical method using a perturbation parameter, valid for a special type of viscoelastic damper based on
fractional derivatives.

In the present paper, a closed-form expression of the complex eigenvalues for nonviscously nonpropor-
tionally damped symmetric systems is derived. In the bibliography, numerous methods based on iterative
procedures are provided. Those most relevant are described in the previous paragraph. In this work, we
appeal the added value of having analytical forms valid for any nonviscous damping model independently
on its nature. In fact, our derivations lead to formulas which explicitly depend on the entrees of the modal
damping matrix and on its s-derivatives. We find two advantages in our proposal respect to those meth-
ods based on iterative schemes: On one hand, we dispose of a mathematical expression which is explicitly
expressing how the eigenvalues depend on the damping parameters. And, on the other hand, the only com-
putational requirements are those needed for solving the natural frequencies and the normal modes of the
undamped problem. Recently, Lázaro [32] has deduced a closed-form expression valid for nonproportionally
viscously symmetric damped systems. The current work generalizes that paper introducing the viscoelas-
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ticity. The method is validated through a multiple degrees-of-freedom system with various damping models
with different nature, considering two levels of damping. Additionally, we compare the eigenvalues and
frequency response functions with those determined using the linear first order approximation proposed by
Woodhouse [33].

2. Eigensolutions of nonviscous and nonproportional systems

In general, the set of eigenvalues and eigenvectors of a linear dynamic system contains itself the complete
information needed to construct frequency- and time-domain solutions. The free motion equations are
obtained from f(t) ≡ 0 and u0 = u̇0 = 0 in Eq. (1). Checking solutions of the form u(t) = ūest we obtain

[

s2M+ sG(s) +K
]

ū ≡ D(s)ū = 0 (2)

where D(s) ∈ C
n×n is the dynamic stiffness matrix. The main difference between viscous and nonviscous

systems is found in the nature of the solution of Eq. (2). Assuming that there are not repeated eigenvalues,
nonviscous systems are characterized by having m = 2n+ r eigenvalues arranged as

{s1, . . . , sn, s∗1, . . . , s∗n, s2n+1, . . . , s2n+r} (3)

The subset {sj , s∗j}, 1 ≤ j ≤ n are n pairs of complex-conjugate eigenvalues, under the hypothesis that no
overdamped modes exist. The rest {sj}, 2n + 1 ≤ j ≤ m are negative real eigenvalues, characteristic of
nonviscous damping governed by a Biot’s dissipative model [34, 35].

The jth eigenvector associated to eigenvalue sj verifies

D(sj)uj = 0 , 1 ≤ j ≤ m (4)

where (•)T denotes the matrix transpose. In the context of nonviscously damped systems, the 2n complex
eigensolutions {sj ,uj , s

∗
j ,u

∗
j}nj=1 are known as elastic modes, while {sj ,uj}mj=2n+1 are nonviscous modes

without oscillatory nature. In the references [36, 37], two methods to determine these eigenvalues can be
found for proportional and nonproportional systems, respectively.

The undamped eigenmodes play an important role in the construction of the damped solution. For
G(t) ≡ 0 we define the undamped dynamic stiffness matrix as Du(s) = s2M+K. The natural frequencies
ωj , 1 ≤ j ≤ n are the roots of det [Du(iω)] = 0. Associated to each natural frequency there exist undamped
eigenvectors defined as the subspace solution of the ill-conditioned linear systems

Du(iωj)xj = 0 , 1 ≤ j ≤ n (5)

where i =
√
−1 denotes the imaginary unit. From the previous equations the orthogonality relations for

symmetric systems can be derived [38] obtaining

xT
kMxj = δkj , xT

kKxj = δkjω
2
j , 1 ≤ j, k ≤ n (6)

where δkj is the Kronecker delta. Once the complete set of eigenmodes (eigenvalues and eigenvectors) are
determined, analytical closed-form expressions of both frequency- and time-domain solutions are available
from the work of Adhikari [2]. Denoting by u(s) = L{u(t)} and f(s) = L{f(t)} to the Laplace transforms of
response and external force, then we have

u(s) = H(s) [f(s) +Mu̇0 + sMu+G(s)u0] (7)

u(t) =

n
∑

j=1

[

γjψj(t)uj + γ∗jψ
∗
j (t)u

∗
j

]

+

m
∑

j=2n+1

[γjψj(t)uj ] (8)
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where H(s) = D−1(s) represents the transfer function in the Laplace domain, which can efficiently be
expressed in terms of the eigenmodes as

H(s) =

n
∑

j=1

[

γjuju
T
j

s− sj
+
γ∗ju

∗
ju

∗T

j

s− s∗j

]

+

m
∑

j=2n+1

γjuju
T
j

s− sj
(9)

and the coefficient γj

γj =

[

uT
j

∂D(sj)

∂s
uj

]−1

, 1 ≤ j ≤ m (10)

Additionally, the time functions in Eq. (8) are

ψj(t) =

∫ t

τ=0

esj(t−τ)uT
j [f(τ) + G(τ)u0] dτ + esjtuT

j [Mu̇0 + sjMu0] (11)

Note that according to the previous expressions, both the time- and the frequency-domain solutions
result from the superposition of elastic and nonviscous modes. It is known [33, 2, 39] that, in general, the
contribution of nonviscous modes is very small compared with that of elastic modes. Thus, for the majority
of the physical systems its effect, represented by terms from j = 2n+1 to j = m in Eqs. (8) and (9), can be
neglected for the response calculation. For instance, Adhikari [2] and Lázaro [37] shown that the effect in the
frequency response function associated to nonviscous modes is between one and three orders of magnitude
smaller than those from elastic modes. The weight of the nonviscous modes effect in the response becomes
higher as the damping level increases.

3. Continuous damping sensitivity and the closed-form solution of eigenvalues

The highest computational effort of the response calculation is focused on solving the nonlinear eigen-
value problem of Eq. (2). We attempt in this point the derivation of a closed-form approach of the elastic
modes valid for nonproportional and nonviscous systems. For that, we will assume that the damped system
presents light or moderate damping, which is a common hypothesis for the majority of the oscillating systems.

Let us define the following eigenvalue problem depending on a fictitious continuous parameter p ∈ [0, 1]

[

s2M+ p sG(s) +K
]

ū ≡ D(s, p) ū = 0 (12)

Evaluating at p = 0 we have D(s, 0) = Du(s) and Eq. (12) leads to the undamped problem. On the other
side, at p = 1 the dynamic stiffness matrix is that of the damped problem D(s, 1) = D(s). Somewhat, the
parameter p collects the physical meaning of damping as a perturbation of the undamped problem. If the
dissipative capacity is not too high (lightly or moderately damped systems), it will be expected that the
evaluation at p = 1 can be a good approach of the exact one.

The parameter p will be manipulated as a continuous variable so that we can define the complex eigenval-
ues (associated to the elastic modes) of Eq. (12) as 2n functions {λj(p), λ∗j (p)}, 1 ≤ j ≤ n. Associated to the
jth eigenvalue we have the corresponding jth eigenvector, denoted by {Uj(p)}, 1 ≤ j ≤ n. In mathematical
terms, we can define these functions as

λj(p) : [0, 1] ⊂ R → C , Uj(p) : [0, 1] ⊂ R → C
n , 1 ≤ j ≤ n (13)

In Table 1 the eigenvalues and eigenvectors for values p = 0, 1 are shown. Since s = λj(p) and, ū = Uj(p)
are solutions of Eq. (12) we can write, for 0 ≤ p ≤ 1

D(λj(p), p)Uj(p) = 0 (14)
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Undamped p = 0 λj(0) = iωj Uj(0) = xj

Damped p = 1 λj(1) = sj Uj(1) = uj

Table 1: Definition of eigenvalues and eigenvectos for the boundary values of parameter p. i =
√

−1 denotes the imaginary
unit.

Taking derivatives respect to p on Eq. (14) and using the chain rule

[

∂D(λj(p), p)

∂s

dλj
dp

+
∂D(λj(p), p)

∂p

]

Uj(p) +D(λj(p), p)
dUj

dp
= 0 (15)

Premultiplying now by UT
j (p)

UT
j (p)

[

∂D(λj(p), p)

∂s

dλj
dp

+
∂D(λj(p), p)

∂p

]

Uj(p) +UT
j (p)D(λj(p), p)

dUj

dp
= 0 (16)

From the symmetry of the system, we have that UT
j (p)D(λj(p), p) = 0T and, hence, the second term of the

above equation vanishes allowing to find the derivative dλj/dp

dλj
dp

= −
UT

j (p)
∂D(λj(p), p)

∂p
Uj(p)

UT
j (p)

∂D(λj(p), p)

∂s
Uj(p)

(17)

From the definition of D(s, p), the derivative ∂D(s,p)
∂p = sG(s) and, therefore

dλj
dp

= −λj(p)
UT

j (p)G(λj(p))Uj(p)

UT
j (p)

∂D
∂s (λj(p), p)Uj(p)

(18)

Introducing the notation

Wj(p) = UT
j (p)G(λj(p))Uj(p) , Tj(p) = UT

j (p)
∂D(λj(p), p)

∂s
Uj(p) (19)

Eq. (17) can be expressed in a compact form as

dλj
dp

= −λj
Wj(p)

Tj(p)
(20)

We see that λj can be read as the solution of a differential equation. Obviously, λj is implicitly inside Wj(p)
and Tj(p). Additionally, both of them depend on the damped eigenvectors. Consequently, exact integration
of Eq. (20) is not available. However, appealing now to the hypothesis of light damping, Wj(p) and Tj(p)
can be expanded in p retaining linear terms and avoiding higher order ones. Thus, we have

Wj(p) ≈ Wj(0) + p
dWj(0)

dp
, Tj(p) ≈ Tj(0) + p

dTj(0)
dp

(21)

The values of Wj(0) and Tj(0) can be calculated evaluating their expressions at p = 0, that is at the
undamped system. Therefore, according to Table 1 and to the orthogonality relations of Eq. (6), we have

Wj(0) = UT
j (0)G(λj(0))Uj(0) = xT

j G(iωj)xj = Γjj(iωj) (22)

Tj(0) = UT
j (0)

∂D(λj(0), 0)

∂s
Uj(0) = xT

j (2iωjM)xj = 2iωj (23)
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where Γkj(s) = xT
k G(s)xj denotes the entrees of the damping matrix in the modal space of the undamped

system. In the Eq. (23) the value of the derivative ∂D/∂s = 2sM + p [G+ s∂G/∂s] has been used. The
following paragraphs are devoted to calculate expressions for dWj(0)/dp and dTj(0)/dp.

Taking derivatives in the definition of Wj(p) and using the chain rule

dWj

dp
=

dUT
j

dp
G(λj(p))Uj(p) +UT

j (p)
∂G(λj(p))

∂s
Uj(p)

dλj
dp

+UT
j (p)G(λj(p))

dUj

dp
(24)

Evaluating at p = 0

dWj(0)

dp
=

dUT
j (0)

dp
G(iωj)xj + xT

j

∂G(iωj)

∂s
xj

dλj(0)

dp
+ xT

j G(iωj)
dUj(0)

dp
(25)

The value of dλj(0)/dp can be obtained directly from its definition in Eq. (18) and from Eqs. (22) and (23).
Thus

dλj(0)

dp
= −(iωj)

Wj(0)

Tj(0)
= −Γjj(iωj)

2
(26)

To calculate the eigenvector derivative dUj(0)/dp at p = 0 we use the expressions deduced by Adhikari [25]
for symmetric systems. The expressions evaluated at p = 0 are

dUj(0)

dp
= ajjxj +

Γjj(iωj)

4iωj
xj − iωj

n
∑

k=1
k 6=j

Γkj(iωj)

ω2
k − ω2

j

xk (27)

where

ajj = −1

4

[

∂Γjj(iωj)

∂s
+

Γjj(iωj)

iωj

]

(28)

The derivation of these expressions from those of Adhikari [25] for our particular case can be found in Ap-
pendix A. We can introduce the above results into Eq. (25) resulting

dWj(0)

dp
=

dUT
j (0)

dp
G(iωj)xj + xT

j G(iωj)
dUj(0)

dp
+ xT

j

∂G(iωj)

∂s
xj

dλj(0)

dp

=






ajjx

T
j +

Γjj(iωj)

4iωj
xT
j − iωj

n
∑

k=1
k 6=j

Γkj(iωj)

ω2
k − ω2

j

xT
k






G(iωj)xj

+ xT
j G(iωj)






ajjxj +

Γjj(iωj)

4iωj
xj − iωj

n
∑

k=1
k 6=j

Γkj(iωj)

ω2
k − ω2

j

xk







+ xT
j

∂G(iωj)

∂s
xj

(

−Γjj(iωj)

2

)

(29)

Since Γkj(s) = xT
kG(s)xj , we can express the above expression as function of Γkj(s) and its derivative

evaluated at s = iωj .

dWj(0)

dp
= 2ajj Γjj(iωj) +

Γ2
jj(iωj)

2iωj
− 1

2

∂Γjj(iωj)

∂s
Γjj(iωj)− 2iωj

n
∑

k=1
k 6=j

Γ2
kj(iωj)

ω2
k − ω2

j
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Substituting now the value of ajj from Eq. (28)

dWj(0)

dp
= −Γjj(iωj)

2

[

∂Γjj(iωj)

∂s
+

Γjj(iωj)

iωj

]

+
Γ2
jj(iωj)

2iωj
− 1

2

∂Γjj(iωj)

∂s
Γjj(iωj)− 2iωj

n
∑

k=1
k 6=j

Γ2
kj(iωj)

ω2
k − ω2

j

= −∂Γjj(iωj)

∂s
Γjj(iωj)− 2iωj

n
∑

k=1
k 6=j

Γ2
kj(iωj)

ω2
k − ω2

j

≡ 2iωj (iζjνj − αj) (30)

where the coefficients

ζj =
Γjj(iωj)

2ωj
, νj =

∂Γjj(iωj)

∂s
, αj =

n
∑

k=1
k 6=j

Γ2
kj(iωj)

ω2
k − ω2

j

(31)

This form of ordering the terms will be justified later, since it is related to the physical meaning of the
solution.

We focus now on the calculation of the remaining term of Eq. (21), that is dTj(0)/dp. As before, we
take again derivative from its definition

dTj
dp

=
dUT

j

dp

∂D(λj(p), p)

∂s
Uj(p) +UT

j (p)
∂D(λj(p), p)

∂s

dUj

dp

+UT
j (p)

[

∂2D(λj(p), p)

∂s2
dλj
dp

+
∂2D(λj(p), p)

∂s∂p

]

Uj(p) (32)

From the definition of D(s, p) the derivatives respect to s and p are

∂D(s, p)

∂s
= 2sM+ p

[

G(s) + s
∂G(s)

∂s

]

∂2D(s, p)

∂s2
= 2M+ p

[

2
∂G(s)

∂s
+ s

∂2G(s)

∂s2

]

∂2D(s, p)

∂s∂p
= G(s) + s

∂G(s)

∂s
(33)

Let us evaluate at p = 0. For that, we use the results in Table 1 and the expression of dUj(0)/dp from
Eq. (27)

dTj(0)
dp

=






ajjx

T
j +

Γjj(iωj)

4iωj
xT
j − iωj

n
∑

k=1
k 6=j

Γkj(iωj)

ω2
k − ω2

j

xT
k






(2iωjM) xj

+ xT
j (2iωjM)






ajjxj +

Γjj(iωj)

4iωj
xj − iωj

n
∑

k=1
k 6=j

Γkj(iωj)

ω2
k − ω2

j

xk







+ xT
j

[

2M (−Γjj(iωj)/2) +G(iωj) + iωj
∂G(iωj)

∂s

]

xj (34)

Using the orthogonality relations, the terms within the sums vanish due to xT
kMxj = δjk, where δjk denotes

the Kronecker delta. After some operations and the corresponding simplifications

dTj(0)
dp

= 4iωj ajj + Γjj(iωj) + iωj
∂Γjj(iωj)

∂s
(35)
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Finally, using the value of ajj from Eq. (28) yields

dTj(0)
dp

= 0 (36)

Summarizing the results of Eqs. (22), (23), (30) and (36)

Wj(p) ≈ Wj(0) + p
dWj(0)

dp
= −2iωj [iζj + (αj − iζjνj) p]

Tj(p) ≈ Tj(0) + p
dTj(0)
dp

= 2iωj (37)

where the coefficients αj , ζj , νj ∈ C have been defined in Eq. (31). Returning to Eq. (20), the relation
Wj(p)/Tj(p) can be approximated by

Wj(p)

Tj(p)
≈

Wj(0) + p
dWj(0)

dp

Tj(0) + p
dTj(0)
dp

= −iζj − (αj − iζjνj) p (38)

Under this approach, Eq. (20) adopts the form of an ordinary differential equation of separated variables







dλj
dp

≈ λj · [iζj + (αj − iζjνj) p]

λj(0) = iωj

(39)

Integrating and evaluating the solution at p = 1 a closed-form compact approach of the jth complex elastic
eigenvalue can be derived as

sj ≈ iωj exp {iζj + (αj − iζjνj) /2} (40)

where, rewriting the expression of the coefficients

ζj =
Γjj(iωj)

2ωj
, νj =

∂Γjj(iωj)

∂s
, αj =

n
∑

k=1
k 6=j

Γ2
kj(iωj)

ω2
k − ω2

j

(41)

These three coefficients only depend on the natural frequencies and on the entrees of the damping matrix
and its s-derivative in the modal space. Therefore, undamped eigenmodes are the only requirement for the
calculation of sj . In addition, they allow us to read the physical insight of the proposed solution.

First, ζj represents the damping ratio of the jth mode and consequently it is a measurement of the
level of modal damping. In fact, this coefficient emerges in the first order perturbation solution of lightly
nonproportional systems [33, 18, 40] as

sj ≈ iωj − ζjωj = iωj −
Γjj(iωj)

2ωj
(42)

This expression was obtained by Woodhouse [33] and can also be considered as a closed–form which does
not depend on the nature of damping model since is explicitly expressed as function on the entrees Γjk(s).

Second, the coefficient νj is the derivative of the damping matrix evaluated at the natural frequency
and is characteristic of nonviscously or viscoelastically damped systems. Its weight in the final expression
depends of the named viscoelasticity of the damping model. Mathematically, a system present small vis-
coelasticity if G(s) does not present high variations with respect to the frequency, which is a synonym of
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small values of the s-derivative of the damping coefficients. A deep analysis on this property can be found
in the reference [41]. For viscous damping, the elements Γjk(s) = C ′

jk are now the entrees of the viscous
damping matrix in the modal space and consequently does not depend on the frequency. Therefore νj = 0
for viscous damping, leading to the approximation obtained by Lázaro [32].

Finally, the coefficient αj is formed by a sum of products of the off-diagonal elements of the damping
matrix affected by the distance between the natural frequencies. Consequently, it contains the information
related with the nonproportionality of the damping matrix. It vanishes for proportional systems, for which in
general Γjk(s) = 0, for j 6= k. The necessary and sufficient conditions for proportional damping in nonviscous
systems have been studied by Adhikari [42]. For those system which present light nonproportionality this
term is expected to be small since they are characterized by [43, 2]

n
∑

k=1
k 6=j

|Γjk(iωj)| < |Γjj(iωj)| , ∀ 1 ≤ j ≤ n (43)

We consider that Eq. (40) is the most remarkable contribution of this paper. Such as described, the so
found expression represents itself a closed-form to obtain the jth complex eigenvalue which explicitly depends
on the main properties of the damping model: (i) the damping level, (ii) the nonviscousity or viscoelasticity
and (iii) the nonproportionality. According to this mathematical result, it is interesting that each one of
these three properties are presented as three terms or weights affecting or perturbing the undamped state.
So, the complex eigenvalue can be expressed as the product.

sj ≈ iωj ·DLj ·NPj ·NVj (44)

where the different terms or weights are (i) DLj = eiζj , the Damping-Level term. (ii) NVj = e−iζjνj/2, the
nonviscous term (or viscoelasticity term). (iii) NPj = eαj/2, the nonproportional term. Now, in order to
complete the proposal, let us see how to obtain the estimation of the associated eigenvectors.

4. Computation of eigenvectors

Assuming as known certain eigenvalue, the ill-conditioned linear systems (4) needs to be solved to obtain
the associated eigenvectors. Adhikari [2] found closed-form expressions for eigenmodes using a numerical
method based on the Neumann series expansion. The eigenvectors so calculated are

uj ≈ xj − sj

n
∑

k=1
k 6=j

Γkj(sj)

Dk(sj)
xk + s2j

n
∑

k=1
k 6=j

n
∑

l=1
l 6=j 6=k

Γkl(sj)Γlj(sj)

Dk(sj)Dl(sj)
xk (45)

where Dj(s) = s2 + sΓjj(s) + ω2
j . The above expressions show the Adhikari results up to the second order

approximation, in terms of the entrees of the damping matrix in the modal space Γjk(s). According to
Adhikari, higher order terms could be considered and the convergence of the series depends on the weight
of the off-diagonal terms Γjk(s) , j 6= k respect to those of the main diagonal Γjj(s). This presents the great
advantage that barely involves computational effort since it does not require any matrix inversion process
and the results are just expressed as linear combination of the undamped eignemodes.

5. Numerical Example

The theoretical results will be validated through a numerical example consisting in a discrete six degrees-
of-freedom mass-lumped dynamical system with two viscoelastic links, shown in Fig. 1. The six lumped
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Figure 1: Example: Lumped-mass dynamical system with two viscoelastic dampers. k = 100 kN/m, m = 1 t. Viscoelastic
damper A based on a five exponential kernels. Viscoelastic damper B based on a four-parameter fractional derivative-based
model.

masses have m = 103 kg and are linked using springs with linear constant k = 105 N/m. The damping is
introduced by two linear viscoelastic constrains.

Link A is modeled by a nonviscous damper based on exponential kernels. Mathematically, the total force
reaction between degrees of freedom u4 and u5 is related to the relative displacement ∆u45 = u5 − u4 with
the following linear nonviscous model

R45(t) = k∆u45(t) +

∫ t

−∞

GA(t− τ)∆u̇45(τ) dτ

The damping function GA(t) is based on five exponential kernels. The time and frequency domain expressions
of this function results in

GA(t) =
1

5

5
∑

k=1

ck µk e
−µkt , GA(s) = L{GA(t)} =

1

5

5
∑

k=1

ck µk

s+ µk
(46)

where µk represent the relaxation parameters and ck the damping coefficient of the limit viscous model
obtained doing µk → ∞ for all 1 ≤ k ≤ 5. Instead of parameters ck, the nondimensional damping ratios
defined as ξk = ck/2mω0 will be used, where ω0 =

√

k/m = 10 rad/s is a reference frequency. According to
Eq. (46), the relationship between reaction and displacement in the Laplace domain is

R45(s) = [k + s GA(s)]∆ū45(s) (47)

The viscoelastic constrain B linking the structure to the ground obeys to model based on the fractional
derivatives, in particular a four-parameter viscoelastic model is used [44]. According to this model, the
time-domain equation relating force R02 to displacement u2 can be written as

R02 + Tα
r

dαR02

dtα
= kB

(

u2 + c Tα
r

dαu2
dtα

)

(48)

where c, α, Tr and kB are the mentioned four parameters, also called storage coefficient, fractional exponent,
relaxation time and linear-static rigidity, respectively. For real materials c > 1, 0 < α < 1, Tr > 0, kB > 0.
The time-domain kernel function GB(t) is difficult to obtain explicitly and it becomes necessary to appeal to
infinite series based functions [45]. However, the damping function in the Laplace domain GB(s) can easily
be determined just applying the Laplace transform to the fractional derivatives of Eq. (48) and using its
properties. Denoting by R02(s) = L{R02(t)} and ū2(s) = L{u2(t)} to the Laplace transform of the reaction
and displacement, respectively, then

R02(s) = kB
1 + c (Trs)

α

1 + (Trs)
α ū2(s) ≡ [kB + s GB(s)] ū2(s) (49)
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DAMPING LEVEL
Parameters (Units) LOW HIGH

Constraint A {µj}
5

j=1 (rad/s) {5, 8, 13, 20, 40}
ξ1 (–) 0.05 0.24
ξ2 (–) 0.07 0.22
ξ3 (–) 0.03 0.28
ξ4 (–) 0.01 0.22
ξ5 (–) 0.04 0.20

Constraint B α (–) 0.70 0.70
Tr (s) 1.00E-05 1.00E-04
c (–) 5.20 50.50

kB (kN/m) 5.00E+04 5.00E+04

Table 2: Assumed values of damping parameters to cover lowly and highly damped structures

where

GB(s) =
kB
s

(c− 1)(Trs)
α

1 + (Trs)
α (50)

The free-motion equations in the Laplace domain can be obtained assembling the mass and the stiffness
matrices associated with the structural configuration shown in Fig. 1, resulting

[

s2M+ sG(s) +K
]

ū(s) = 0 (51)

where M = mI6, and

K =

















2k −k 0 0 0 0
−k 2k + kB −k 0 0 0
0 −k 2k −k 0 0
0 0 −k 2k −k 0
0 0 0 −k 2k −k
0 0 0 0 −k 2k

















, G(s) =

















0 0 0 0 0 0
0 GB(s) 0 0 0 0
0 0 0 0 0 0
0 0 0 GA(s) −GA(s) 0
0 0 0 −GA(s) GA(s) 0
0 0 0 0 0 0

















(52)

Both viscoelastic dampers induce certain level of energy dissipation depending on the values of their pa-
rameters. In particular, the damping level of the constraint A is mainly controlled by the damping rations
ξk = ck/2mω0, whereas the nonviscosity directly depend on the value of the relaxation parameters, µk. On
the other hand, although the damping behavior of constraint B is a result of a combination of the different
parameters c, α and Tr, the main responsible of the level of energy-disspation is the storage parameter,
c [46, 47]. Not all modes behave equally with the different damping parameters since the system present
nonproportional damping. Thus, to cover cases of low and high damping, two combinations of the damping
parameters will be considered (’LD’ and ’HD’ for Low and High Damping. See Table 2)

To measure the modal damping level of the jth mode we will use the Qj-factor and the modal damping
ratio gj , defined as

Qj = − ℑ{sj}
2ℜ{sj}

, gj = −ℜ{sj}
|sj |

(53)

Since the damping model induces a strictly dissipative motion, ℜ{sj} < 0, for 1 ≤ j ≤ 6, hence the negative
sign in both definitions. Additionally, the modal damping ratio is usually presented in percentage. The
exponential decay of amplitudes is directly related to the real part of eigenvalues, therefore the lower Qj ,
the higher the modal damping level. Woodhouse [33] considers Qj ≤ 10 “as very high damping for most
structural vibration applications”. Otherwise, the upper bound Qj = ∞ characterizes an undamped mode.
Modal damping ratio behaves inversely to the Q-factor, thus gj = 0 represents the undamped state and
gj = 100% is characteristic of a critically damped mode. In Table 3, Qj-factors and modal damping ratios gj
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LOW DAMPING

Quality Daming Undamped Damping–level Non–Viscous Non–Proportional
Mode factor ratio frequeny coef. coef. coef.

j Qj (–) gj (%) ωj (rad/s) DLj (–) NVj (–) NPj (–)

1 339 0.15% 4.45042 1.00071 + 0.00150i 1.00002− 0.00002i 1.00000 + 0.00000i
2 198 0.25% 8.67767 1.00183 + 0.00265i 1.00004− 0.00012i 1.00000− 0.00000i
3 90 0.56% 12.46980 1.00544 + 0.00596i 1.00003− 0.00031i 1.00002− 0.00003i
4 1, 477 0.03% 15.63663 1.00036 + 0.00036i 1.00000− 0.00003i 1.00000− 0.00000i
5 135 0.37% 18.01938 1.00469 + 0.00424i 0.99992− 0.00050i 1.00001− 0.00002i
6 80 0.62% 19.49856 1.00650 + 0.00556i 1.00014 + 0.00073i 1.00001− 0.00004i

HIGH DAMPING

Quality Daming Undamped Damping–level Non–Viscous Non–Proportional
Mode factor ratio frequeny coef. coef. coef.

j Qj gj (%) ωj (rad/s) DLj NVj NPj

1 11 4.34% 4.45042 1.02332 + 0.04940i 1.00316− 0.00403i 0.99961 + 0.00065i
2 12 4.06% 8.67767 1.02302 + 0.04350i 1.00034− 0.00156i 1.00009 + 0.00028i
3 18 2.81% 12.46980 1.03385 + 0.04454i 1.00336− 0.01477i 1.00115− 0.00091i
4 149 0.36% 15.63663 1.00344 + 0.00480i 1.00021− 0.00144i 1.00001− 0.00000i
5 19 2.67% 18.01938 1.03456 + 0.03979i 0.99538− 0.01091i 1.00066− 0.00087i
6 8 6.09% 19.49856 1.04432 + 0.04510i 1.00520 + 0.02328i 1.00100− 0.00178i

Table 3: Natural undamped frequencies and damping coefficients DLj , NVj and NPj —Eq. (44)—, calculated with the
proposed formula. Second and third columns show the Q factors and the modal damping rations, respectively

(%) of each mode are shown for the two damping considered cases, allowing to distinguish which modes are
the most affected by the nonviscous dampers. The proposed model involves three modal coefficients, namely
damping-level, DLj , nonviscousity or viscoelasticity, NVj and nonproportionality, NPj coefficients. As de-
duced, the resulting complex eigenvalue is approximated as the product sj ≈ iωj DLj NVj NPj (Eq. (44)
rewritten, see results in Table 3). Somehow, DLj , NVj , NPj represent the effect of the associated damping
property on the corresponding eigenvalue. Therefore, the further from the unity the more perturbed is the
complex frequency. The results are shown for both LD and HD cases. Note that the damping level coefficient
DLj is closely related to the quality factor, showing an inversely proportional tendency. Additionally, both
NVj and NPj are in general at least one order of magnitude lower than that of DLJ since they come from
second order terms (that is, product of modal damping matrix entrees, see Eqs. (41)).

In Table 4 the proposed approximations of the eigenvalues are listed and compared with the exact results
and with linear first order approximation. Let us describe how these two latter eigensolutions have been
obtained.

The exact eigenvalues have been determined using an iterative scheme based on a generalization of
the Newton’s method for nonlinear eigenproblems [6, 8]. This method is based on the linearization of the
problem (2) around an initial guess, say s0j . The value s0j + δ is assumed to be very close to the jth
eigenvalue and hence, D(s0j + δ)uj ≈ 0. Expanding this matrix up to the first order in terms of the
unknown δ results in

[

D (s0j) + δ
∂D (s0j)

∂s

]

uj ≈ 0 (54)

The above equation represents a linear eigenvalue problem in the variable δ. Only the smallest eigenvalue

of this problem (in absolute value), δ
(0)
j , needs to be found, allowing to find the approximation of the next

step as s
(1)
j = s0j + δ

(0)
j . The iterative process consists on building the sequence {s(n)j }, which is locally

convergent with quadratic speed. The initial guess is taken as the undamped eigenvalue s0j = iωj and the
process will conclude when the relative error between two consecutive iterations is less than 10−10, consid-
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ering the achieved solution as the exact one.

LOW DAMPING

Eigenvalues, sj Error, %
j Qj gj Exact Proposed Light Prop Damp. Proposed Light Prop Damp.
1 339 0.15% −0.0066 + 4.4537i −0.0066 + 4.4537i −0.00665 + 4.45360i 0.0590 + 0.0000i 1.3132 + 0.0016i
2 198 0.25% −0.0219 + 8.6939i −0.0219 + 8.6939i −0.02295 + 8.69361i 0.0337 + 0.0005i 4.7036 + 0.0031i
3 90 0.56% −0.0700 + 12.5382i −0.0700 + 12.5383i −0.07392 + 12.53792i 0.0369 + 0.0007i 5.5506 + 0.0022i
4 1477 0.03% −0.0053 + 15.6422i −0.0053 + 15.6422i −0.00570 + 15.64225i 0.2738 + 0.0001i 7.3691 + 0.0002i
5 135 0.37% −0.0669 + 18.1027i −0.0670 + 18.1027i −0.07606 + 18.10411i 0.0907 + 0.0005i 13.6956 + 0.0081i
6 80 0.62% −0.1218 + 19.6285i −0.1219 + 19.6282i −0.10751 + 19.62559i 0.1253 + 0.0014i 11.7065 + 0.0149i

HIGH DAMPING

Eigenvalues, sj Error, %
j Qj gj Exact Proposed Light Prop Damp. Proposed Light Prop Damp.
1 11 4.34% −0.19866 + 4.57059i −0.20509 + 4.56754i −0.21710 + 4.55693i 3.236 + 0.067i 9.278 + 0.299i
2 12 4.06% −0.36058 + 8.88435i −0.36624 + 8.88180i −0.37319 + 8.88326i 1.569 + 0.029i 3.496 + 0.012i
3 18 2.81% −0.36277 + 12.92025i −0.35557 + 12.95868i −0.54191 + 12.90805i 1.986 + 0.297i 49.379 + 0.094i
4 149 0.36% −0.05614 + 15.69038i −0.05253 + 15.69392i −0.07492 + 15.69057i 6.421 + 0.023i 33.469 + 0.001i
5 19 2.67% −0.49489 + 18.54463i −0.49442 + 18.57641i −0.69372 + 18.65734i 0.096 + 0.171i 40.176 + 0.608i
6 8 6.09% −1.25537 + 20.56851i −1.32321 + 20.47097i −0.83748 + 20.38467i 5.404 + 0.474i 33.288 + 0.894i

Table 4: Complex Eigenvalues calculated with the proposed formula, Eq. (40). Comparison with (a) Exact results, obtained
using an iterative method described in Eq. (54) and (b) First-order linear approximation, Eq. (55). Second and third columns
show the Q factors and the modal damping rations, respectively

Additionally, we are interested in comparing the proposed solution with other of the same nature, that
is, explicit closed forms valid for any nonviscously, nonproportionally damped systems. We can find in the
bibliography analytical approximations but built for specific damping models and supported by the light
nonproportionality assumption [18, 22, 23]. On the other hand, solutions proposed for nonproportional
systems are based on iterative approaches [26, 11, 21] something that is not of interest for our comparison
since we look for explicit expressions. What is new of our approach respect to the above references is to
provide an analytical form involving all the information of the system in a simple expression (all the entrees
of the modal damping matrix are presented), valid for any nonviscous damping model and without requiring
eigenvector calculation or iterative processes.

To the best author’s knowledge, only the approach of Woodhouse [33] (and revisited by Adhikari [2, 48]),
which coincides with the linear first order approximation (LIN), provides a closed-form depending on the
values of the modal damping matrix, no matter the damping model behind. Therefore, we use it to be
compared with that of our method. In the most general case, the so-called LIN approach is expressed as

sj ≈ iωj − ζjωj = iωj −
1

2
xT
j G(iωj)xj (55)

In the last two columns of Table 4 the relative error (in %) of real and imaginary part is shown. The LD and
HD cases are listed within the two sub-tables. As expected, focusing on one particular mode, the higher the
damping level, the higher the relative error. In addition, real part of eigenvalues (usually linearly depending
on the damping coefficients) presents higher relative error than that of the imaginary part. Relative errors
of the proposed method are in general much lower than those of the LIN method. Even if we compare the
proposed eigenvalues obtained for HD case with those determined using LIN method for LD case, something
that extends the derived formula also for moderately or highly damped systems. This behavior emerges
from the fact that our closed-form expression has been derived after integrating Eq. (39), which in turn
comes from the a linear expansion of functions Wj(p) y Tj(p), both defined in Eqs. (37), in terms of the
fictitious damping parameter p. Therefore, its order of approximation can be considered as one unit higher
than that of the linear first-order expression, Eq. (55).
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As known, the eigensolutions contain all the information related to the dynamic response, both in time
and in frequency domain. Together with the comparison of eigenvalues (shown in Table 4), we consider
necessary to verify how the derived expression affects to the response in the frequency domain. To this end,
the transfer function H(s) will be plotted for the three described methods using the Eq. (9) as function of
frequency s = iω. Therefore, and according to Eq. (9), also the complex eigenvectors need to be computed
since they take part of the expression of H(s). On one hand, the ‘Exact’ eigenvectors are obtained from
the recursive method described above, based on the generalized Newton’s method for nonlinear eigenvalue
problems, see Eq (54). On the other hand, the eigenvectors of the ‘Proposed’ and the ‘LIN’ approximations
are determined from Eq. (45), introducing as sj the corresponding eigenvalues associated to each approach.

xiv
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Figure 2: Frequency Response Function H26(iω) calculated from Eq. (9). Eigenmodes computation: ‘Exact’ from Eqs. (54);
‘Proposed’ from Eqs. (40),(45); ‘Linear First Order’ approximation (LIN) from Eqs. (42),(45). Top-graphics: Low damping.
Bottom-graphics: High damping
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Figure 3: Frequency Response Function H35(iω) calculated from Eq. (9). Eigenmodes computation: ‘Exact’ from Eqs. (54);
‘Proposed’ from Eqs. (40),(45); ‘Linear First Order’ approximation (LIN) from Eqs. (42),(45). Top-graphics: Low damping.
Bottom-graphics: High damping
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The transfer function H(iω) is a 6 × 6 frequency-dependent symmetric matrix. Each entree Hjk(iω)
represents the complex valued frequency response function (FRF) associated to the jth and kth degrees
of freedom. Fig. 2 shows graphically the FRF H26(iω) for LD and HD cases (top and bottom plots,
respectively). FRF’s from exact, proposed and LIN methods are plotted both in magnitude and phase
together with the relative error. The latter is obtained comparing the proposed and LIN approximations
with the exact one, allowing us to compare the accuracy along the frequency domain covering the range up
to the sixth mode. Fig. 3 shows the same information but for the FRF H35(iω). Since the derived equations
are based on the hypothesis of light damping, it seems clear that the accuracy strongly depends on the
level of damping after a simple comparison between the curves for LD nad HD. In fact, FRF-error plots,
mathematically defined as

ǫjk(ω) =
|Hjk,exact(iω)−Hjk,aprox(iω)|

|Hjk,exact(iω)|
(56)

show that the error increases from LD cases to HD cases, both in figs. 2 and 3. However, it can also be
noticed within the error curves that, for the whole studied frequency range, the proposed solution is between
one and three orders of magnitude more accurate than that of the LIN approximation. This fact has already
been observed in the comparison of the relative errors of eigenvalues (Table 4) and it is justified in how the
proposed formula has been obtained.

Our model predicts the jth complex eigenfrequency as the natural frequency somehow perturbed by
the effects of the level of damping, the viscoelasticity and the nonproportionality, via DLj , NVj and NPj

coefficients, shown in Table 3. Since these coefficients vary for each mode, it is expected that accuracy of
the FRF curves along the frequency band is neither uniform. Let us compare now the values of Table 3
and the FRF-curves of Figs. 2 and 3. We observe in Table 3 that the most affected modes by the above
commented effects are the 3th, 5th and 6th ones (approximate natural frequencies 12.5, 18.0 and 19.5 rad/s,
respectively). For them, the coefficients DLj , NVj and NPj are the furthest from the unity. Now, in Figs. 2
and 3 (HD case) we see around these frequencies a stronger lack of accuracy for the FRF obtained with the
LIN approximation. This behavior can be explained since the viscoelasticity and the nonproportionality are
not considered in LIN method, together with the fact that the damping model is taken into account up to
the first order of magnitude. Otherwise, the FRF curves from the proposed method fit very well with the
exact solution even for highly damped systems, both in magnitude and phase, validating its derivation and
the assumed hypothesis. Additionally, we remark also the theoretical value of the proposed approach. In
fact, the method allows to explicitly relate complex eigenvalues with modal damping matrix entrees using
for it just the computational effort needed to solve the linear undamped problem.

Future research is now focused on exploiting this method to determine as challenge higher orders of
magnitude and more sophisticated closed-form derivations. Additionally, we are investigating if these new
closed forms could be used to a new line of research in damping identification.

6. Conclusions

Nonviscous vibrating systems are characterized by dissipative forces depending on the time history of the
degrees of freedom via hereditary kernel functions. The dynamic equilibrium leads to a system of integro-
differential equations in the time domain. In the Laplace domain, eigenvalues and eigenvectors must be
determined from a non-linear eigenvalue problem which in general requires high computational effort. Our
research is focused on developing numerical methods for this type of problems.

In this paper, a closed-form approximated expression of the eigenvalues for nonviscous, nonproportional
vibrating systems is derived. It is demonstrated that the resulting expression explicitly depends (i) on the
damping level induced by the dissipative model; (ii) on the viscoelasticity of the system, i.e. the variability
of the damping model in the frequency domain; (iii) on the nonproportionality of the modal damping ma-
trix. This latter dependence involves the off-diagonal terms of the modal damping matrix together with the
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distance between natural frequencies. The resulting formula has the great advantage of involving only the
computational complexity associated to solution of the undamped eigenvalue problem. The developments
are carried out using a fictitious parameter affecting the damping model and on the basis of small damping
assumption.

To validate the proposed approach, a six degrees-of-freedom lumped-mass nonproportional nonviscously
damped system is analyzed. Exact eigensolutions are obtained using a iterative scheme based on the gen-
eralized Newton’s method for non-linear eigenvalue problems. Additionally, we contrast the results with
those from the linear first order approximation, which are also closed-form expressions constructed without
discriminating the type of damping model. To this end, two cases of the level of damping are considered
differentiating between ‘low damping’ (LD) and ‘high damping’ (HD). Additionally, the frequency response
functions are plotted both in magnitude and phase in order to detect how our approach affects to the
eigenvectors, also for both LD and HD. The proposed approach clearly depends on the level of damping,
as evidenced by the increasing of the relative error of eigenvalues for LD case in contrast to those of HD.
However, the proposed method presents a notably lower level than that of the linear first order approxima-
tion, keeping the accuracy within acceptable values even for moderately or highly damped systems. The
sensitivity of the obtained results to the damping level also can be noticed in the frequency response func-
tions (FRF). The different effects considered in the model (viscoelasticity and nonproportionality) enhance
the estimation of the response against that one determined from the linear first order approximation. This
behavior can be observed within the neighborhood of those modes most affected by the so-called coefficients
of damping level, viscoelasticity and nonproportionality.

Appendix A. Eigenvectors Derivatives

Computation of eigenderivatives of eigenvalues and eigenvectors in nonviscously damped systems has
been studied by Adhikari [25]. In this work, Adhikari derived general expressions of eigenvector derivatives
respect to certain design parameter. We manipulate the expressions obtained by Adhikari in this Appendix
in order to a better clarity in the developments made in the paper and avoiding some hard operations and
simplifications.

We are interested in the p-derivative of eigenvectors of Eq. (12), say Uj(p). Let us rewrite the eigenre-
lations depending on the introduced p parameter.

D(λj(p), p)Uj(p) = 0 (A.1)

The expressions calculated by Adhikari in the reference [25] are

dUj

dp
= ajj Uj(p) +

m
∑

k=1
k 6=j

ajk Uk(p) (A.2)

where

ajk = −
UT

k (p)
∂D(λj(p), p)

∂p
Uj(p)

θk [λj(p)− λk(p)]
, k 6= j

ajj = −UT
j (p)

∂2D(λj(p), p)

∂s∂p
Uj(p)/2θj (A.3)

and

θk = UT
k (p)

∂D(λk(p), p)

∂s
Uk(p) (A.4)
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The number m of terms in the above sum is equal to the number of poles of the matrix D
−1(s, p). For our

purposes, the expression (A.2) must be evaluated at p = 0 (undamped problem), consequently the sum is
extended to the m = 2n undamped modes. Additionally, we have the following results corresponding to the
undamped problem (p = 0 in Eq. (33))

∂D(iωj , 0)

∂s
= 2iωjM ,

∂2D(iωj , 0)

∂s∂p
= iωj

∂G(iωj)

∂s
+G(iωj) ,

∂D(iωj , 0)

∂p
= iωjG(iωj) (A.5)

Introducing these results in Eq. (A.2) and using the equivalences of Table 1 we have, after some manipulations

dUj

dp

∣

∣

∣

∣

p=0

= ajj Uj(0) +

2n
∑

k=1
k 6=j

ajk Uk(0)

= ajj xj −
n
∑

k=1
k 6=j

(

xT
k

∂D(iωj ,0)
∂p xj

xT
k

∂D(iωk,0)
∂s xk

)

xk

iωj − iωk
−

n
∑

k=1

(

xT
k

∂D(iωj ,0)
∂p xj

xT
k

∂D(−iωk,0)
∂s xk

)

xk

iωj + iωk

= ajj xj −
n
∑

k=1
k 6=j

iωj Γkj(iωj)

2iωk (iωj − iωk)
xk +

n
∑

k=1
k 6=j

iωj Γkj(iωj)

2iωk (iωj + iωk)
xk +

Γjj(iωj)

4iωj
xj

= ajj xj +
Γjj(iωj)

4iωj
xj −

n
∑

k=1
k 6=j

iωj Γkj(iωj)xk

2iωk

(

1

iωj − iωk
− 1

iωj + iωk

)

= ajj xj +
Γjj(iωj)

4iωj
xj − iωj

n
∑

k=1
k 6=j

Γkj(iωj)xk

ω2
k − ω2

j

(A.6)

Finally the coefficient ajj at p = 0 is

ajj = −UT
j (0)

∂2D(iωj , 0)

∂s∂p
Uj(p)/2θj = −

xT
j

[

iωj
∂G(iωj)

∂s +G(iωj)
]

xj

4iωj
= −1

4

[

∂Γjj(iωj)

∂s
+

Γjj(iωj)

iωj

]

(A.7)
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