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RESUMEN INGLÉS

In 1965, L. Zadeh introduced the concept of fuzzy set, and thus established a

new topic of research, known as fuzzy mathematics. Since then, several au-

thors have been investigating the approach of a consistent fuzzy metric space

theory. In 1994, George and Veeramani introduced and studied a concept

of fuzzy metric space which was a proper modi�cation of the concept given

by Kramosil and Michalek. These notions have been studied and developed

in several ways during the last 25 years. With the purpose of contributing

to the development of the study of the fuzzy theory, in this thesis we have

introduced and studied the following items:

(i) We have introduced the concept of extended fuzzy metric M0 which is

an appropriate extension of a GV -fuzzy metric M to X×X× [0,+∞[.

Furthermore, we have studied convergence and Cauchyness concepts in

this context, as well as contractivity and �xed point theorems.

(ii) We have proved the existence of contractive sequences in the sense of

D. Mihet in a GV -fuzzy metric space which are not Cauchy. Then we

have given and studied an appropriate concept of strictly contractive

sequence and we have corrected Lemma 3.2 of [12].

(iii) We have introduced and studied a concept of (GV -)fuzzy partial metric

space (X,P, ∗) without any extra conditions on the continuous t-norm

∗. Then we have de�ned a topology TP on X deduced from P and we

have proved that (X, TP ) is a T0 space.

(iv) We have related the aforementioned notion of GV -fuzzy partial metric

space with the concept of GV -fuzzy quasi-metric space given by Gre-

gori and Romaguera in [24]. A duality is studied by mimicking the

techniques used in [6] by Matthews.
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RESUMEN ESPAÑOL

En 1965, L. Zadeh introdujo el concepto de conjunto fuzzy, estableciendo una

nueva línea de investigación, conocida como matemática fuzzy. Desde en-

tonces, varios autores han estado investigando la construcción de una de�ni-

ción consistente de espacio métrico fuzzy. En 1994, George y Veeramani

introdujeron y estudiaron un concepto de espacio métrico fuzzy, que era una

adecuada modi�cación del concepto dado por Kramosil y Michalek. Estos

conceptos han sido estudiados y desarrollados en diversas líneas durante los

últimos 25 años. Con la intención de contribuir a este desarrollo de la teoría

fuzzy, en esta tesis hemos introducido y estudiado los siguientes ítems:

(i) Hemos introducido el concepto de espacio métrico fuzzy extendidoM0,

que es una extensión adecuada de una GV -métrica fuzzy M a X ×
X × [0,+∞[. Además, hemos estudiado conceptos relacionados con

la convergencia y las sucesiones de Cauchy en este contexto, así como

teoremas sobre contractividad y punto �jo.

(ii) Hemos probado la existencia de sucesiones contractivas en el sentido de

D. Mihet en un espacio métrico fuzzy en el sentido de George y Veera-

mani que no son de Cauchy. En consecuencia, hemos introducido y

estudiado un concepto adecuado de sucesión estrictamente contractiva

y hemos corregido el Lema 3.2 de [12].

(iii) Hemos introducido y estudiado una noción de (GV -)espacio métrico

parcial fuzzy (X,P, ∗) sin ninguna condición adicional sobre la t-norma

continua ∗. Después, hemos de�nido una topología TP sobre X de-

ducida de P y hemos demostrado que (X, TP ) es un espacio T0.

(iv) Hemos relacionado el mencionado concepto de GV -espacio métrico par-

cial fuzzy con la noción de GV -espacio casi-métrico fuzzy de�nido por

vi



Gregori y Romaguera en [24]. Se ha estudiado una dualidad entre estos

espacios, imitando las técnicas utilizadas por Matthews en [6].
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RESUMEN VALENCIANO

En 1965, L. Zadeh va introduir el concepte de conjunt fuzzy, establint una

nova línia d'investigació, coneguda com matemàtica fuzzy. Des d'aquell mo-

ment, molts autors han investigat la construcció d'una de�nició consistent

d'espai mètric fuzzy. En 1994, George i Veeramani van introduir i estudiar

una noció d'espai mètric fuzzy, realitzant una modi�cació adequada del con-

cepte donat per Kramosil i Michalek. Aquests conceptes han estat estudiats i

desenvolupats en diversos sentits durant els últims 25 anys. Amb la intenció

de contribuir a aquest desenvolupament de la teoria fuzzy, en aquesta tesi

hem introduït i estudiat els següents continguts:

(i) Hem introduït el concepte d'espai mètric extésM0, que és una extensió

adequada d'una GV -mètrica fuzzy M a X ×X × [0,+∞[. A més, hem

estudiat conceptes relacionats amb la convergència i les successions de

Cauchy en aquest context, així com teoremes sobre contractivitat i punt

�xe.

(ii) Hem provat l'existència de successions contractives en el sentit de D.

Mihet en un GV -espai mètric fuzzy que no són Cauchy. Conseqüent-

ment, hem aportat i estudiat un concepte apropiat de successió estric-

tament contractiva i hem corregit el Lema 3.2 de [12].

(iii) Hem introduït i estudiat una noció de (GV -)espai mètric parcial fuzzy

(X,P, ∗) sense cap tipus de condició addicional sobre la t-norma con-

tínua ∗. A continuació, hem de�nit una topologia TP sobre X deduïda

de P i hem demostrat que (X, TP ) es un espai T0.

(iv) Hem relacionat el ja mencionat concepte de GV -espai mètric parcial

fuzzy amb la noció de GV -espai quasi-mètric fuzzy de�nit per Gregori

viii



i Romaguera en [24]. S'ha estudiat una dualitat entre ambdós espais,

imitant les tècniques utilitzades per Matthews en [6].
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Introduction.

In 1965, L. Zadeh [54] introduced the notion of fuzzy set as an assignment

of a value in [0, 1] to each element of a classical, non-empty set X. The

value is interpreted as the degree of membership of each element to the

fuzzy set. Formally, each application A : X → [0, 1] is called a fuzzy set

on X. This concept stimulated most of the branches of science, including

Mathematics. The �rst research topic involving fuzzy mathematics were

about fuzzy topology. Indeed, C. L. Chang [30] de�ned a fuzzy topology T
on X as a family of fuzzy sets on X which is closed for unions and for �nite

intersections.

An interesting and studied topic of research can be found in the obtaining

of an appropriate notion of fuzzy metric. The study of metric spaces is

based on the notion of distance between points. However, in many real

situations this distance cannot be exactly determined. In 1942, K. Menger

[32] introduced the concept of probabilistic metric space to approach this

problem from the probability theory point of view. Menger proposed to

associate a distribution function Fxy to each pair of elements x, y, and for

any positive t, interpreted Fxy(t) as the probability that the distance from x

to y to be less than t. These spaces have been widely studied, as it can be

seen in [30, 3, 27, 42].
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6 Introduction. Objectives

In 1975, Kramosil and Michalek [29] gave a notion of fuzzy metric space

which could be considered as a reformulation, in the fuzzy context, of the

notion of probabilistic metric space due to Menger [32]. In this work, by

KM -fuzzy metric space, or simply, fuzzy metric space (X,M, ∗) we mean

this concept, but in a modern reformulation, due to Grabiec [9], where ∗
is a continuous t-norm (De�nition 1.2.2). Later, George and Veeramani [7]

introduced a new concept that we will denote GV -fuzzy metric space, which

constitutes a modi�cation of the concept of KM -fuzzy metric space (De�-

nition 1.2.1). We notice that, although these two concepts are not related,

many concepts and properties stated for GV -fuzzy metrics can be given for

KM -fuzzy metrics, and vice versa. For this reason, sometimes, the term

fuzzy metric, in a wide sense, makes reference to any of them. On the other

hand, it is worth to observe that a GV -fuzzy metric M can be regarded as

a KM -fuzzy metric de�ning M(x, y, 0) = 0 for all x, y ∈ X. For this reason

the concept of KM -fuzzy metric can be considered a generalization of the

GV -fuzzy metric concept, when the value M(x, y, t) does not play any role

at t = 0. In this sense, and if confusion is not possible, we will also refer to

KM -fuzzy metrics as fuzzy metrics.

Several authors have contributed to the development of this theory, for

instance [26, 33, 34, 1, 39, 47, 48]. In particular, it has been proved that the

class of topological spaces which are fuzzy metrizable (in its obvious sense)

agrees with the class of metrizable topological spaces [8, 21] and then, some

classical theorems on metric completeness and metric (pre)compactness have

been adapted to the realm of fuzzy metric spaces [21]. Nevertheless, the

theory of fuzzy metric completion is, in the case of GV -fuzzy metrics, very

di�erent from the classical theories of metric completion and probabilistic

metric completion. In fact, there are GV -fuzzy metric spaces which are not

completable ([22, Example 2], [23, Example 2] and [20, Example 14]). A

characterization of completable GV -fuzzy metric spaces was given in [23,
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Theorem 1].

An interesting aspect of this type of fuzzy metrics is that it includes

in its de�nition a parameter t. This feature has been successfully used in

Engineering applications such as color image �ltering [5] and perceptual color

di�erences [16]. From the mathematical point of view it allows to introduce

novel (fuzzy) metric concepts that only have natural sense in this fuzzy metric

context. This is the case of several concepts of Cauchyness and convergence,

related to sequences, appeared in the literature (see [18]).

One can �nd several generalizations of the concept of metric space in the

literature. For instance, in [6] it was introduced the notion of partial metric,

a generalized metric for which the self-distance is not necessarily zero. It

is worth mentioning that, a partial metric p on a non-empty set X induces

a topology T (p) on X which is T0. Interesting notes on it can be seen in

[2]. In the same line of research, there is the notion of quasi-metric, which

is a classical metric that is not necessarily symmetric. In [6], Matthews

stablishes a relationship between partial metrics and a class of quasi-metrics

called weighted quasi-metrics.

In [24], Gregori and Romaguera extended the concept of quasi-metric

to the fuzzy context. Also, di�erent works have tried to unify both gener-

alizations of classical metric, partial metric and fuzzy one, in a single one

notion. For instance, in [53] was given a concept of fuzzy partial metric

space (X,P, ∗), which was de�ned using the continuous minimum t-norm.

Furthermore, the authors endowed a fuzzifying topology (see [51]) to the set

X deduced from the fuzzy partial metric P . Later on, in [52] it was intro-

duced the concept of probabilistic partial metric as a generalization of both

fuzzy metrics and partial ones by means of ∆+-valued sets. A probabilistic

partial metric is a generalization of the fuzzy partial metric given in [53].
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Besides, Y. Yue [51] de�ned the concept of open ball in a probabilistic par-

tial metric space (X,P,∧), where ∧ is the minimum t-norm, and proved that

the family of open balls induces a (classical) topology TP on X. He also

proved �xed point theorems on a complete probabilistic partial metric space

(X,P,∧), and generalized �xed point theorems given in [9] and in [25]. Re-

cently, in [50] the poset BX of formal balls has been studied in these last one

spaces, renamed as fuzzy partial metric spaces. Moreover, in [43] has been

introduced a concept of partial fuzzy metric which generalizes the concept

of strong (non-Archimedean) GV -fuzzy metric (see [19, 35]), and there were

proved �xed point theorems for complete partial fuzzy metric spaces.

The objective of this work is to study topics that concern contractivity,

�xed point theorems, partial metric and quasi-metrics in fuzzy setting. The

organization of this work consists of �ve chapters divided in several subsec-

tions, and at the end, a list of references is provided. Chapter 1 is dedicated

to basic necessaries about lattice-ordered monoids and continuous t-norms

(Section 1.1), fuzzy metric spaces (Section 1.2), and partial metric and quasi-

metric spaces (Section 1.3). Chapter 2 is devoted to the study of a certain

extension of the concept of GV -fuzzy metric. Chapter 3 is devoted to the

study of (fuzzy) contractive sequences and Cauchyness concepts in GV -fuzzy

metric spaces. Chapter 4 is devoted to fuzzy partial metrics and Chapter 5

to the relationship between GV -fuzzy partial metrics and GV -fuzzy quasi-

metrics. The chapters contain explanatory notes and appropriate examples,

throughout the paper, for illustrating the theory. The contents of these chap-

ters are summarized in the following paragraphs.

A GV -fuzzy metric M on X satis�es M(x, y, t) > 0 for all x, y ∈ X,

t > 0 and it is not de�ned at t = 0. For this reason, in a strict sence,

GV -fuzzy metrics and fuzzy metrics (in the Kramosil and Michalek's sense)

are not related. In Chapter 2 we try to relate both concepts in a particular
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case, as follows. We say that a GV -fuzzy metric M on X is extendable

(De�nition 2.2.6) if its (unique) continuous extension M0 of M to X2 ×
[0,+∞[ is always positive, i.e. M0(x, y, 0) =

∧
t>0M(x, y, t) > 0 for all

x, y ∈ X. In such a case M0 is called an extended fuzzy metric on X, or

with more precision, M0 is the (fuzzy metric) extension ofM . The existence

ofM0 is characterized in Theorem 2.2.4. Observe thatM0 is not a GV -fuzzy

metric (neither a fuzzy metric), but it behaves, in some sense, as both a GV -

fuzzy metric space and a fuzzy metric space. In fact, it is possible to construct

a topology TM0 on X in a similar way to fuzzy metrics. In Proposition 2.3.3

it is proved that a sequence {xn} in X is TM0-convergent to x0 if and only

if limnM(xn, x0, 0) = 1. Hence, the t parameter does not play any role in

TM0 , and so M0 can be studied, from the topological point of view, as a

classical metric. It is obvious that TM ≺ TM0 , and in Section 2.4 it is proved

that for an extendable fuzzy metric M we have that TM = TM0 if and only

if M is an s-fuzzy metric (i.e. if limnM(xn, x0, 1/n) = 1 whenever {xn} is
TM -convergent to x0) (Theorem 2.4.4). A sequence {xn} in X is called M0-

Cauchy if limm,nM
0(xm, xn, 0) = 1 (De�nition 2.5.1) and X isM0-complete

if every M0-Cauchy sequence is M0-convergent (i.e., {xn} is TM0-convergent

inX). Section 2.5 is dedicated to the study of completeness of extended fuzzy

metrics. In De�nition 2.6.4 is de�ned for an extendable fuzzy metric M the

concept of fuzzy-ψ-M0-contractivity, for a mapping f : X → X, where ψ is a

gauge function satisfying the conditions of De�nition 2.6.1. In particular, f

is called ψ-0-contractive if M(f(x), f(y), 0) ≥ ψ(M(x, y, 0)) for all x, y ∈ X.

Example 2.6.6 shows that the ψ-0-contractive condition is weaker than the

ψ-M0-contractive one. Then, for extendable fuzzy metrics it is possible to

generalize some existing versions of �xed point theorems, using only the fuzzy

ψ-0-contractivity. For instance, in Theorem 2.6.10 is stated that every fuzzy

ψ-0-contractive mapping f : X → X of an extendable complete fuzzy metric

space (X,M, ∗) admits a unique �xed point. The results presented in this

chapter have been published in [14].
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In Chapter 3 we study the relationship between Cauchyness and con-

tractivity of sequences in a GV -fuzzy metric space (X,M, ∗). In [25] Gre-

gori and Sapena gave the �rst concept of a fuzzy contractive sequence (

(ii) of De�nition 3.2.3). They formulated the following question, which, up

to now, remains open: Is every fuzzy contractive sequence a Cauchy se-

quence? (Recall that a sequence {xn} is Cauchy if limm,nM(xm, xn, t) = 1

for all t > 0) (De�nition 3.2.1). Several other concepts of (fuzzy) contractive

sequence have appeared in the literature which are according to the corre-

sponding concepts of contractive mappings. Here we deal with other three

contractivity concepts, which are related to the aforementioned contractivity

concept given by Gregori and Sapena (GS-contractivity) due to Romaguera

and Tirado (RT -contractivity), Wardowski (H-contractivity) and Mihet (ψ-

contractivity) (De�nition 3.2.3). They satisfy the following chain of implica-

tions:

RT−contractive→ GS−contractive→ H−contractive→ ψ−contractive

It is easy to prove that every ψ-contractive sequence is G-Cauchy ({xn}
is G-Cauchy if limnM(xn, xn+p, t) = 1 for all t > 0, n = 1, 2, . . . [10])

(Proposition 3.3.12). In Lemma 3.2 of [12] it is asserted that under a cer-

tain condition a ψ-contractive sequence is Cauchy. Nevertheless, this lemma

is not true as it is pointed out in Example 3.3.13 (the main result of this

chapter). Indeed, in this example a non-Cauchy ψ-contractive sequence in

a GV -fuzzy metric space, which ful�lls hypotheses of Lemma 3.2 of [12], is

constructed. To overcome this inconvenience, we have de�ned the follow-

ing concept (De�nition 3.3.2): A sequence {xn} is strictly ψ-contractive if

M(xm+1, xn+1, t) ≥ ψ(M(xm, xn, t)) for all m,n ∈ N, t > 0. We notice

that this condition is stronger than ψ-contractivity, and we extend it to

the other contractivity conditions aforementioned. Moreover, this condition

is ful�lled by every iterative sequence {fn)(x)}n, x ∈ X, deduced from a

contractive mapping f (Proposition 3.3.5), for each one of the contractivity
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concepts studied in this work (De�nition 3.3.2). Now, the most interesting

fact is that Lemma 3.2 of [12] is true if we replace ψ-contractivity by strict

ψ-contractivity (Proposition 3.3.12). Consequently, �xed point theorems of

[12] are correct. The results presented in this chapter have been published

in [13].

In Chapter 4 we approach the concept of fuzzy partial metric space

(X,P, ∗). This approach is an extension to the fuzzy setting, in the senses of

Kramosil and Michalek (De�nition 4.2.1) and George and Veeramani (De�ni-

tion 4.2.2), of the concept of partial metric due to Matthews. This approach

has been made using the residuum operator →∗ associated to a continuous

t-norm, without any extra condition on ∗. As in the case of fuzzy metrics a

GV -fuzzy partial metric can be regarded as a fuzzy partial metric de�ning

P (x, y, 0) = 0 for each x, y ∈ X. Also, a (GV -)fuzzy metric is a (GV -)fuzzy

partial metric satisfying P (x, x, t) = 1 for all x ∈ X, t > 0. Examples of

fuzzy partial metric spaces for the minimum, product and Hamacher con-

tinuous t-norms are given in Examples 4.2.10, 4.2.5 and 4.2.6, respectively.

A signi�cative di�erence with respect to fuzzy metrics is the fact that for

a given fuzzy partial metric space (X,P, ∗) it is not true, in general, that

(X,P,♦) has to be also a fuzzy partial metric space, whenever ♦ ≤ ∗ (Re-
mark 4.2.8). This di�erence is illustrated in Example 4.2.7. In Section 4.3

we de�ne a topology TP on X deduced from P when P is a (GV -)fuzzy par-

tial metric. To construct TP , the value of P (x, y, t) at t = 0 does not play

any role, as in the fuzzy metric case, and so we suppose that P is a fuzzy

partial metric. In De�nition 4.3.3, and similarly to the case of fuzzy metrics,

it is de�ned the concept of open ball BP centered at x ∈ X, with radius

r ∈]0, 1[ and parameter t > 0 as BP (x, r, t) = {y ∈ X : P ′x,x,y(t) > 1 − r},
where P ′x,x,y(t) = sup{P (x, x, s) →∗ P (x, y, s) : s ∈]0, t[}. This function

P ′x,x,t is non-decreasing and also left-continuous (Lemma 4.3.4), which leads

to prove Theorem 4.3.7: the family of open balls in a fuzzy partial metric
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space (X,P, ∗) forms a base for a topology TP on X, which is T0. We cannot

refuse to take the supremum when de�ning P ′x,x,y, as it is illustrated in Ex-

ample 4.3.2. Nevertheless, after some explanatory comments (Remark 4.3.9),

a question related to the removal of the supremum is posed at the end of the

chapter (Question 4.3.8). The results presented in this chapter have been

published in [15].

In Chapter 5 we establish a duality between the GV -fuzzy quasi-metrics

due to Gregori and Romaguera (De�nition 5.2.1) and GV -fuzzy partial met-

rics studied in Chapter 4. This duality is motivated by the classical rela-

tionship between a partial metric space and a quasi-metric space, which was

introduced by Matthews in [6]. In Section 5.2 we provide some examples of

GV -fuzzy quasi-metric space (Example 5.2.2). Later, we show a way to de�ne

a GV -fuzzy quasi-metric space from a given GV -fuzzy partial metric space

(X,P, ∗), where ∗ is an Archimedean t-norm (Theorem 5.2.3). Furthermore,

Example 5.2.4 proves that the condition of the t-norm being Archimedean is

necessary to apply the aforementioned theorem. The end of this section is

dedicated to show that the topology of a GV -fuzzy partial metric coincides

with the topology of its deduced GV -fuzzy quasi-metric. Section 5.3 stud-

ies the converse problem, i.e. how to de�ne a GV -fuzzy partial metric from

a GV -fuzzy quasi metric. To begin with, we give a de�nition of GV -fuzzy

weighted quasi-metric, which is a generalization of the classical weighted

quasi-metrics to the fuzzy context (De�nition 5.3.1). Also, we illustrate this

de�nition with two examples (Propositions 5.3.2 and 5.3.3). Analogously to

the previous section, we stablish a way to de�ne a GV -fuzzy partial metric

space from a GV -fuzzy weighted quasi-metric space (Theorem 5.3.4). Mak-

ing use of a previous lemma, we prove that, as we point out in Theorem

5.2.3, the t-norm has to be Archimedean (Example 5.2.4). To conclude this

chapter, we show, analogously to Section 5.2, that the topology of a GV -

fuzzy weighted quasi-metric space coincides with the topology of its deduced
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GV -fuzzy partial metric space. Moreover, the GV -fuzzy quasi-metric space

deduced from a GV -fuzzy partial metric space is weightable (Theorem 5.3.7).
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Chapter 1

Preliminaries

1.1 Lattice-ordered monoids and continuous t-norms

In this section, we will recall some notions and results related to lattice-

ordered monoids. They will be useful in order to introduce a binary operator

that we will use in our de�nition of fuzzy partial metric space in Chapters 4

and 5. We begin recalling some concepts introduced in [37].

De�nition 1.1.1. Let (L,�) be a lattice and let (L, ∗) be a semigroup with

neutral element, denoted by 1.

(i) The triple (L, ∗,�) is called a lattice-ordered monoid (or an l-monoid)

if for all x, y, z ∈ L we have

(LM1) x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z),

(LM1) (x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z).

(ii) An l-monoid (L, ∗,�) is said to be commutative if the semigroup (L, ∗)

15
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is commutative.

(iii) A commutative l-monoid (L, ∗,�) is called a commutative residuated

l-monoid if there exists a further binary operation →∗ on L such that

for each x, y, z ∈ L we have

x ∗ y � z if and only if x � y →∗ z.

In this case,→∗ is called the ∗-residuum. In [37] it was observed that for each

commutative residuated l-monoid (L, ∗,�), the ∗-residuum operator →∗ is
uniquely determined by the formula

x→∗ y = sup{z ∈ L : x ∗ z � y} (1.1)

(iv) An l-monoid (L, ∗,�) is called integral if there is a greatest element

in the lattice (L,�) which coincides with the neutral element of the

semigroup (L, ∗).

(v) A commutative integral l-monoid (L, ∗ �) is called divisible if for each

x, y ∈ L with y � x there exists z ∈ L such that x ∗ z = y.

The concepts introduced in De�nition 1.1.1 are very related with the

notion of triangular norm (brie�y, t-norm). Recall that a t-norm is a binary

operation ∗ on the unit interval [0, 1] such that it is commutative, associative,

monotone, and satis�es that x ∗ 1 = x for every x ∈ [0, 1].

The most commonly used continuous t-norms in Fuzzy Logic are the min-

imum, denoted by ∧, the usual product, denoted by ∗P , and the Lukasievicz

t-norm, denoted by ∗L, where x ∗L y = max{0, x+ y − 1}.

The aforementioned relation was established in the following proposition

provided in [37].
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Proposition 1.1.2. For each binary operation ∗ : [0, 1] × [0, 1] → [0, 1] the

following are equivalent:

(i) ([0, 1], ∗,≤) is a commutative residuated integral l-monoid.

(ii) ∗ is a left-continuous t-norm.

Moreover, in [37] it was pointed out the next corollary of the last result.

Corollary 1.1.3. ∗ is a continuous t-norm if and only if ([0, 1], ∗,≤) is a

commutative residuated divisible integral l-monoid.

Taking into account the formula (1.1), an immediate consequence of the

last corollary is that the ∗-residuum operator →∗ of a continuous t-norm ∗
is uniquely determined now by the formula

x→∗ y =

{
1, if x ≤ y;

sup{z ∈ L : x ∗ z = y}, if x > y.
(1.2)

Attending to this last expression, the ∗-residuum operator of the mini-

mum, the usual product and the Lukasievicz t-norms, respectively, are the

following:

x→∧ y =

{
1, if x ≤ y;

y, if x > y.
(1.3)

x→∗P y =

{
1, if x ≤ y;
y
x , if x > y.

(1.4)

x→∗L y =

{
1, if x ≤ y;

1 + y − x, if x > y.
(1.5)

In [37] it was also established a representation theorem of a (large) class

of t-norms, which are the Archimedean and continuous ones. Recall that
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a t-norm is called Archimedean if for each x, y ∈ [0, 1] there exists n ∈ N
with x ∗ · · · ∗(n) x < y, where ∗ · · · ∗(n) denotes the n-times composition by

∗. Two well-known examples of Archimedean t-norms are the usual product

and the Lukasievicz one. Nevertheless, the minimum t-norm is an example

of non-Archimedean one.

In order to obtain the representation theorem of the Archimedean t-

norms, it was introduced the following concept.

De�nition 1.1.4. An additive generator f∗ : [0, 1] → [0,∞] of a t-norm

∗ is a strictly decreasing function which is right-continuous at 0, satisfying

f∗(1) = 0, and such that for x, y ∈ [0, 1] we have

f∗(x) + f∗(y) ∈ Ran(f∗) ∪ [f∗(0),∞],

and also

x ∗ y = f
(−1)
∗ (f∗(x) + f∗(y)), for all x, y ∈ [0, 1], (1.6)

where f
(−1)
∗ denotes the pseudo-inverse of the function f∗ (see [37]).

Now, we present the announced representation theorem.

Theorem 1.1.5. A binary operator ∗ in [0, 1] is a continuous Archimedean

t-norm if and only if there exists a continuous additive generator f∗ of ∗.

Moreover, an additive generator f∗ of a continuous Archimedean t-norm

∗ allows us to obtain a simpler formula of the ∗-residuum, as follows:

x→∗ y = f
(−1)
∗ (max{f∗(y)− f∗(x), 0}) (1.7)

In the preceding formula it is assumed that ∞−∞ = 0 and ∞− a =∞ for

each a ∈ [0,∞[.
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Note that the pseudo-inverse of a continuous additive generator f∗ is

given by

f
(−1)
∗ (y) = f−1∗ (min{f∗(0), y}). (1.8)

Remark 1.1.6. Attending to this last equation, it is obvious that given a

continuous Archimedean t-norm ∗, its ∗-residuum is continuous on ]0, 1]×]0, 1].

Moreover, the ∗-residuum is left-continuous on [0, 1] × [0, 1]. Nevertheless,

one can easily observe in Equation 1.3 that the last a�rmation is not true,

in general, when we consider continuous non-Archimedean t-norms, as it is

the minimum t-norm.

Corollary 1.1.7. Let ∗ be a continuous Archimedean t-norm, and let f∗

be its continuous additive generator. Then, for every a > 0, we have that

f
(−1)
∗ (f∗(a)) = a.

To �nish this subsection, we recall another well-known continuous Archimedean

t-norm called the Hamacher product. It will be denoted by ∗H and it is given

by the following expression:

a ∗H b =

{
0, if a = b = 0;

ab
a+b−ab , elsewhere ,

for each a, b ∈ [0, 1].

In [37] it was pointed out that the function fH(x) = 1−x
x is an additive

generator of ∗H and so, on account of formula (1.8), the function f
(−1)
H (y) =

1
1+y is its pseudo-inverse. Attending to these observations and taking into

account the formula (1.7), the expression of the ∗H -residuum is given by

x→∗H y =

{
1, if x ≤ y;

xy
xy+x−y , if x > y.

(1.9)
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1.2 Fuzzy metric spaces

De�nition 1.2.1. (George and Veeramani [7]). A GV -fuzzy metric space is

an ordered triple (X,M, ∗) such that X is a (non-empty) set, ∗ is a contin-

uous t-norm and M is a fuzzy set on X ×X×]0,∞[ satisfying the following

conditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t);

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(GV5) M(x, y,_) :]0,∞[→]0, 1], also denoted as Mxy, is continuous.

The axiom (GV1) is justi�ed by the authors because in the same way

that a classical metric does not take the value ∞ then M cannot take the

value 0. The axiom (GV2) is equivalent to the following:

M(x, x, t) = 1 for all x ∈ X, t > 0 and M(x, y, t) < 1 for all x 6= y, t > 0.

The axiom (GV2) gives the idea that only when x = y the degree of nearness

of x and y is perfect, or simply 1, and then M(x, x, t) = 1 for each x ∈ X
and for each t > 0. In this manner the values 0 and ∞ in the classical

theory of metric spaces are identi�ed with 1 and 0, respectively, in this fuzzy

theory. Axioms (GV3) and (GV4) are a fuzzy version of the symmetry and

the triangular inequality, respectively. Finally, in (GV5) the authors only

assume that the variable t behave nicely, that is, they assume that for �xed

x and y, the function t → M(x, y, t) is continuous without any imposition

for M as t→∞.
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If (X,M, ∗) is a GV -fuzzy metric space, we will say that (M, ∗) is a

GV -fuzzy metric on X. Also, if confusion is not possible, we will say that

(X,M) is a GV -fuzzy metric space or M is a GV -fuzzy metric on X. This

terminology will be also extended along this work in other concepts, as usual,

without explicit mention.

De�nition 1.2.2. (Kramosil and Michalek, [29]) A KM -fuzzy metric space

(or, simply, fuzzy metric space) is an ordered triple (X,M, ∗) such that X is a

non-empty set, ∗ is a continuous t-norm andM is a fuzzy set onX×X×[0,∞[

that satis�es (GV3) and (GV4), and

(KM1) M(x, y, 0) = 0;

(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(KM5) M(x, y,_) : [0,∞[→ [0, 1] is left continuous.

We will also say that (M, ∗), or simply M , is a (KM -)fuzzy metric on X.

Lemma 1.2.3. (Grabiec [9]) Let (X,M, ∗) be a fuzzy metric space. Then,

the real function M(x, y,_) is non-decreasing for all x, y ∈ X.

Remark 1.2.4. If (X,M, ∗) is a (GV -)fuzzy metric space, and ♦ is a con-

tinuous t-norm such that ♦ ≤ ∗, we have that (X,M,♦) is also a (GV -)fuzzy

metric space.

It is worth noting that, by de�ning the probabilistic metric Fxy(t) =

M(x, y, t), every KM -fuzzy metric space (X,M, ∗) becomes a generalized

Menger space, [38], under the continuous t-norm ∗. On the other hand a

GV -fuzzy metric space can be considered a KM -fuzzy metric space if we

extend M de�ning M(x, y, 0) = 0 for all x, y ∈ X. For this reason, and if
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confusion is not possible, by fuzzy metric we mean both GV -fuzzy metric

and KM -fuzzy metric.

George and Veeramani proved in [7] that every GV -fuzzy metric M on

X generates a topology TM on X which has as a base the family of open sets

of the form {BM (x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where BM (x, ε, t) = {y ∈
X : M(x, y, t) > 1− ε} for all x ∈ X, ε ∈]0, 1[ and t > 0. The same is valid

for KM -fuzzy metric spaces.

Example 1.2.5. Let (X, d) be a metric space and let Md a function on

X ×X×]0,∞[ de�ned by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md,∧) is a GV -fuzzy metric space [7] andMd is called the standard

fuzzy metric induced by d. The topology TMd
coincides with the topology

on X deduced from d.

Example 1.2.6. Let (X, d) be a metric space and let Me a function on

X ×X×]0,∞[ de�ned by

Me(x, y, t) = e−
d(x,y)
t

Then (X,Me,∧) is a GV -fuzzy metric space. The topology TMe coincides

with the topology on X deduced from d.

Remark 1.2.7. As (X,Md,∧) and (X,Me,∧) are GV -fuzzy metric spaces,

we can conclude that (X,Md, ∗) and (X,Me, ∗) are GV -fuzzy metric spaces

for every continuous t-norm ∗.

De�nition 1.2.8. A fuzzy metric M on X is said to be stationary [23] if

M does not depend on t, i.e. if for each x, y ∈ X, the function Mx,y(t) =

M(x, y, t) is constant. In this case we write M(x, y) instead of M(x, y, t).
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Proposition 1.2.9. (George and Veeramani [7]). A sequence {xn} in a GV -

fuzzy metric space (X,M, ∗) converges to x if and only if limnM(xn, x, t) =

1, for all t > 0.

De�nition 1.2.10. (George and Veeramani [7], Schweizer and Sklar [42]). A

sequence {xn} in aGV -fuzzy metric space (X,M, ∗) is said to beM-Cauchy if

for each ε ∈]0, 1[ and each t > 0 there is n0 ∈ N such thatM(xn, xm, t) > 1−ε
for all n,m ≥ n0. Equivalently, {xn} isM -Cauchy if limn,mM(xn, xm, t) = 1

for each t > 0, where limn,m denotes the double limit as n→∞, andm→∞.

If confusion is not possible we will say, simply, that {xn} is Cauchy. X is called

(M -)complete if every Cauchy sequence in X is convergent with respect to

TM . In such a case M is also said to be complete.

In [17], the authors introduced a stronger concept than convergence:

De�nition 1.2.11. Let (X,M, ∗) be a GV -fuzzy metric space. We will say

that a sequence {xn} in X is s-convergent to x0 ∈ X if

lim
n
M(xn, x0,

1

n
) = 1.

Moreover, we will say that (X,M, ∗) is an s-fuzzy metric space or simply,

that M is an s-fuzzy metric, if every convergent sequence is s-convergent.

De�nition 1.2.12. Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric

M (or the fuzzy metric space (X,M, ∗)) is said to be strong if it satis�es for

each x, y, z ∈ X and each t > 0 the following:

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t). (GV 4′)

Following terminology of probabilistic metric spaces, [10, 28], some au-

thors call non-Archimedean fuzzy metrics those that also satisfy equation

(GV4'). Notice that in this case there is not any correspondence, in the
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above sense, between non-Archimedean metrics and non-Archimedean fuzzy

metrics since Md always satis�es Md(x, z, t) ≥ Md(x, y, t) ·Md(y, z, t) and

also because all stationary fuzzy metrics would be non-Archimedean. Fur-

ther (GV4') is not stronger than (GV4) and it means that if we replace

(GV4) by (GV4') then M could not be a fuzzy metric on X. (Indeed,

M(x, y, t) = 1/t
1/t+d(x,y) satis�es (GV1)-(GV3), (GV4') and (GV5) and it does

not satis�es (GV4).)

1.3 Partial metric and quasi-metric spaces

In this subsection we recall two generalizations of the notion of classical

metric space. First, we recall the concept of quasi-metric space.

De�nition 1.3.1. A quasi-metric space is a pair (X, q) where X is a non-

empty set, and q : X2 → [0,+∞[ is a mapping such that

(Q1) q(x, y) = q(y, x) = 0 if and only if x = y for every x, y ∈ X.

(Q2) q(x, z) ≤ q(x, y) + q(y, z), for each x, y, z ∈ X.

We also say that q is a quasi-metric on X.

In a similar way that a classical metric, given a quasi-metric space (X, q),

then q induces a T0 topology T (q) on X which has as a base the family of

open balls {Bq(x; ε) : x ∈ X, ε > 0}, where Bq(x; ε) = {y ∈ X : q(x, y) < ε},
for each x ∈ X, t > 0.

Another well-known generalization of metric space was introduced by

Matthews in [6]. It was de�ned as follows.
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De�nition 1.3.2. (see [6]) A partial metric space is a pair (X, p) where X

is a non-empty set, and p : X2 → [0,+∞[ is a mapping such that, for each

x, y, z ∈ X, the following conditions are satis�ed:

(P1) p(x, x) = p(x, y) = p(y, y) if and only if x = y.

(P2) p(x, x) ≤ p(x, y).

(P3) p(x, y) = p(y, x).

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

We also say that p is a partial metric on X.

Also, Matthews showed in [6] that a partial metric p on a non-empty setX

induces a T0 topology T (p) on X which has as a base the family of open balls

{Bp(x; ε) : x ∈ X, ε > 0}, where Bp(x; ε) = {y ∈ X : p(x, y) − p(x, x) < ε},
for each x ∈ X, t > 0.

Remark 1.3.3. Note that axiom (P4) can be rewritten as

q(x, z)− q(x, x) ≤ p(x, y)− p(x, x) + p(y, z)− p(y, y).

This equation is more appropriate to establish a duality between quasi-

metrics and partial metrics.

Remark 1.3.4. Note that the unique di�erence between a quasi-metric and

a classical metric is the symmetry since, in general, q(x, y) 6= q(y, x). On the

other hand, a partial metric does not satisfy, in general, that p(x, x) = 0 for

each x ∈ X.
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Chapter 2

Extended fuzzy metric spaces

and �xed point theorems

2.1 Introduction

A signi�cant characteristic of a fuzzy metric is that it contains in its def-

inition a parameter t. Related to it, we focus our attention in two facts

about M . First, axiom (GV1) demands that M (x, y, t) > 0 for all x, y ∈ X
and t > 0, which is in accordance to classical metrics that do not take the

value +∞. Second, axiom (GV5) requires that Mx,y : ]0,+∞[ → ]0, 1] be a

continuous function, where Mx,y (t) = M (x, y, t). These two facts suggest

the introduction of a new notion of fuzzy metric M0, which we study in this

chapter.

Stationary fuzzy metrics are the closest to classical ones. It is clear that

the expression of a stationary fuzzy metric M on X can be regarded as a

27
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fuzzy set M0 on X2× [0,+∞[ given by M0 (x, y, t) = M (x, y) satisfying the

two facts aforementioned, i.e., M0 (x, y, t) > 0 and M0
x,y : [0,+∞[→ ]0, 1] is

continuous for x, y ∈ X and t ≥ 0.

The above paragraph suggests to consider fuzzy setsM0 : X2×[0,+∞[→
]0, 1] satisfying all axioms of a fuzzy metric, but currently for t ≥ 0. The tern

(X,M0, ∗) will be called extended fuzzy metric space (De�nition 2.2.1) and

the aim of Section 2.2 is the study of these spaces. First, we are interested in

the relationship between fuzzy metrics and extended fuzzy metrics. Theorem

2.2.4 shows that every extended fuzzy metric M0 is a natural extension of

those fuzzy metrics, called extendable, which satisfy that
∧
t>0M (x, y, t) >

0, and vice versa. The natural extension is M0 (x, y, 0) =
∧
t>0M (x, y, t),

for all x, y ∈ X. It is now, a natural process to adapt the concepts of fuzzy

metrics to extended fuzzy metrics.

In Section 2.3, we introduce and generalize the concept of open ball

BM0 (x, r, t) (De�nition 2.3.1) and then, we prove that the family {BM0 (x, r, 0) : x ∈ X, r ∈ ]0, 1[}
is a base for a topology τM0 on X �ner than τM , which is called the topology

generated by M0. This result is obtained after observing that (NM , ∗) is

a stationary fuzzy metric on X, where NM (x, y) =
∧
t>0M (x, y, t) for all

x, y,∈ X. Then, it is easy to conclude that τM0 = τNM and hence τM0 is

metrizable. Furthermore, we pointed out that a sequence {xn} converges to
x0 in τM0 if and only if limnM

0 (xn, x0, 0) = 1 (Proposition 2.3.3) . From the

topological point of view (Remark 2.3.4), the class of extended fuzzy metrics

(X,M0, ∗) are so close to metrics that topological results related to M0 can

be established as a simple extension of classical concepts to the fuzzy setting,

only by modifying the notation.

In Section 2.4, after proving thatM0 : X2×[0,+∞[→ ]0, 1] is continuous

(Proposition 2.4.1), we characterize those extendable fuzzy metrics in which
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τM = τM0 (Theorem 2.4.4). Such spaces are the so called s-fuzzy metrics.

Besides, this characterization motivates a study in the relationship between

τM0-convergence and s-convergence.

With respect to completeness, although there are many concepts of Cauchy

sequence in the literature (see [18]), in Section 2.5 we only pay attention to

the original concept of Cauchy sequence given by H. Sherwood in PM -spaces

[45]. It was adapted later by George and Veeramani to the fuzzy metric con-

text (De�nition 1.2.10). Then, an adaptation to the extended context of

completeness andM -Cauchyness concepts is given. Furthermore, we provide

some properties and observations on M0-Cauchyness and M0-completeness.

For instance, M0 is complete if and only if NM is complete (Proposition

2.5.6). Also, if M is an s-fuzzy metric, we have that, if M is complete, then

M0 is complete (Proposition 2.5.7). However, the converse is false (Example

2.5.8).

The last topic that we approach, in Section 2.6, is contractivity, which

plays a crucial role in �xed point theory. It should be expected that in fuzzy

metrics with strong properties one should be able to weaken the usual con-

tractive conditions in order to ensure the existence of �xed points, for a larger

class of contractive mappings. Indeed, this is so. First we notice that the

condition itself of being M extendable is used explicitly [12, Theorem 3.3],

or in a concealed or relaxed way in order to obtain �xed point theorems ([49,

Theorem 3.2] or [36, Theorem 2.4]). We here go further and we will give

a notion of ψ-0-contractive mapping (De�nition 2.6.7), that is, contractiv-

ity assumed only at t = 0. Then, we prove that there are ψ-0-contractive

mappings in (X,M0, ∗) which are not ψ-contractive in (X,M, ∗) (Example

2.6.6). Then, mimicking arguments in the literature one can give �xed point

theorems for extendable fuzzy metrics in a more general version. It is the

case of Theorem 2.6.10. The reader can �nd in this example a method for
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obtaining more general results in �xed point theory, but for extendable fuzzy

metrics.

2.2 Extended fuzzy metrics

We begin this section introducing the announced concept of extended fuzzy

metric space.

De�nition 2.2.1. The tern (X,M0, ∗) is called an extended fuzzy metric

space if X is a (non-empty) set, ∗ is a continuous t-norm and M0 is a fuzzy

set on X2 × [0,+∞[ satisfying the following conditions, for each x, y, z ∈ X
and t, s ≥ 0

(EFM1) M0(x, y, t) > 0;

(EFM2) M0(x, y, t) = 1 if and only if x = y;

(EFM3) M0(x, y, t) = M0(y, x, t);

(EFM4) M0(x, y, t) ∗M0(y, z, s) ≤M0(x, z, t+ s);

(EFM5) M0
x,y : [0,+∞[→ ]0, 1] is continuous, whereM0

x,y(t) = M0(x, y, t).

It is also said that (M0, ∗), or simply M0, is an extended fuzzy metric

on X. If ? is a continuous t-norm satisfying ? ≤ ∗ then (M0, ?) is also an

extended fuzzy metric on X.

Remark 2.2.2. Recently, in [31] it was introduced the concept of extended

fuzzy b-metric space, with the aim of generalizing the notion of fuzzy b-metric

space. Both notions generalize the concept of fuzzy metric by means of relax-

ing the triangle inequality. Nevertheless, the goal of introducing De�nition
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2.2.6 is to extend the domain of the t parameter to [0,+∞[, in the concept

of the GV -fuzzy metric. Notice that the concept of extended fuzzy b-metric,

introduced in [31], is not related with this new concept introduced above.

After introducing this new concept, we present some examples of it.

Example 2.2.3. (a) If M is a stationary fuzzy metric on X, then

M0(x, y, t) = M(x, y) for all x, y ∈ X and t ≥ 0 is, obviously, an

extended fuzzy metric on X, for the same t-norm. Since, again, t does

not play any role in the de�nition of M0, we also say that M0 is sta-

tionary. Further, since in this case the expression ofM can be regarded

itself as an extended fuzzy metric on X, we will not distinguish between

M and M0, if confusion is not possible.

(b) Let X be the interval ]0,+∞[ and de�ne the fuzzy set M0 on X2 ×
[0,+∞[ by M0(x, y, t) = min{x,y}+t

max{x,y}+t . Then M0 is an extended fuzzy

metric on X, for the product t-norm.

(c) Let (X, d) be a metric space and let φ : [0,+∞[ → ]0, 1] be a non-

decreasing continuous function with φ(0) > 0. Then (X,M0
φ, ∗) is an

extended fuzzy metric, where ∗ is the product t-norm andM0
φ(x, y, t) =

φ(t)
φ(t)+d(x,y) , for all x, y ∈ X and t ≥ 0.

The following theorem shows the relationship between fuzzy metrics and

extended fuzzy metrics that one can observe in the last example.

Theorem 2.2.4. LetM be a fuzzy set on X2×]0,+∞[, and denote byM0 its

extension to X2 × [0,+∞[ given by M0(x, y, t) = M(x, y, t) for all x, y ∈ X,

t > 0, and M0(x, y, 0) =
∧
t>0M(x, y, t). Then (X,M0, ∗) is an extended

fuzzy metric space if and only if (X,M, ∗) is a fuzzy metric space satisfying

for each x, y ∈ X the condition
∧
t>0M(x, y, t) > 0.
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Proof. Suppose that (M0, ∗) is an extended fuzzy metric onX. Then, clearly,

(M, ∗) is a fuzzy metric on X. Now, we will see that
∧
t>0M(x, y, t) > 0 for

all x, y ∈ X.

Take x, y ∈ X. Since Mx,y is not decreasing on ]0,+∞[ and M0
x,y is

continuous at t = 0 then∧
t>0

M(x, y, t) = lim
t→0

M(x, y, t) = lim
t→0

M0
x,y(t) = M0

x,y(0) = M0(x, y, 0) > 0.

Conversely, let (X,M, ∗) be a fuzzy metric space satisfying
∧
t>0M(x, y, t) >

0 for each x, y ∈ X. Attending to the hypothesis and by construction of M0

we have that (EFM1) and (EFM3) are ful�lled. We will show the rest of

axioms.

(EFM2) Suppose M0(x, y, t) = 1 for some t > 0. Then, M(x, y, t) =

1 and so x = y. If M0(x, y, 0) = 1 then
∧
t>0M(x, y, t) = 1 and thus

M(x, y, t) = 1 for all t > 0, and so x = y. Obviously, if x = y then

M0(x, y, t) = 1 for all t ≥ 0.

(EFM4) Let x, y, z ∈ X. We will distinguish three possibilities on t, s ≥ 0.

1. If t, s > 0, then (EFM4) is ful�lled since M is a fuzzy metric.

2. Suppose t > 0 and s = 0 (the case t = 0 and s > 0 is analogous). Then

for ε ∈ ]0, t[ we have that

M0(x, z, t+ 0) = M0(x, z, t) = M(x, z, t) ≥M(x, y, t− ε) ∗M(y, z, ε).

Then, taking limits as ε tends to 0 in the last inequality we obtain

M0 (x, z, t+ 0) ≥ lim
ε→0

(M (x, y, t− ε) ∗M (y, z, ε)) =

=
(

lim
ε→0

M(x, y, t− ε)
)
∗
(

lim
ε→0

M(y, z, ε)
)

=
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= M(x, y, t) ∗

(∧
ε>0

M(y, z, ε)

)
= M0(x, y, t) ∗M0(y, z, 0).

3. Suppose t = s = 0. Then, we have that

M0(x, z, 0 + 0) = M0(x, z, 0) =
∧
t>0

M(x, z, t) = lim
t→0

M(x, z, t) ≥

≥ lim
t→0

(M (x, y, t/2) ∗M (y, z, t/2)) =
(

lim
t→0

M(x, y, t/2)
)
∗
(

lim
t→0

M(y, z, t/2)
)

=

=

(∧
t>0

M(x, y, t)

)
∗

(∧
t>0

M(y, z, t)

)
= M0(x, y, 0) ∗M0(y, z, 0).

(EFM5) Since Mx,y is continuous on ]0,+∞[, and ]0,+∞[ is open in

[0,+∞[, with the usual topology of R restricted to [0,+∞[, then M0
x,y is

continuous at each point of ]0,+∞[ for each x, y ∈ X. For t = 0 we have

that

lim
t→0

M0(x, y, t) = lim
t→0

M(x, y, t) =
∧
t>0

M(x, y, t) = M0(x, y, 0),

and so M0
x,y is continuous at t = 0.

Hence, (X,M0, ∗) is an extended fuzzy metric space.

An immediate consequence of the preceding result is that given an ex-

tended fuzzy metric space (X,M0, ∗), then M0
x,y : [0,+∞[→ ]0, 1] is a non-

decreasing continuous function satisfying M0
x,y(0) =

∧
t>0M

0(x, y, t), for all

x, y ∈ X. Furthermore, we can deduce the following result proved by Gregori

et al. in [17].

Proposition 2.2.5. Let (X,M, ∗) be a fuzzy metric space. De�ne

NM (x, y) =
∧
t>0

M(x, y, t).
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Then (NM , ∗) is a stationary fuzzy metric on X if and only if
∧
t>0M(x, y, t) >

0 for all x, y ∈ X.

Theorem 2.2.4 motivates the introduction of the following de�nition.

De�nition 2.2.6. Let (X,M, ∗) be a fuzzy metric space. M is called ex-

tendable if for each x, y ∈ X the condition
∧
t>0M(x, y, t) > 0 is satis�ed.

In such a case, we will say thatM0 is the (fuzzy metric) extension ofM , and

that M is the restriction of M0.

From now on, by NM we are referring to the stationary fuzzy metric de-

�ned in Proposition 2.2.5, whenever (X,M, ∗) be an extendable fuzzy metric

space. So, by the aforementioned proposition we have that M is extendable

if and only if (NM , ∗) is a stationary fuzzy metric on X. Besides, by Theorem

2.2.4 we have that M is extendable if and only if (X,M0, ∗) is an extended

fuzzy metric space where M0 is given by

M0(x, y, t) =


NM (x, y), t = 0,

M(x, y, t), t > 0.

We continue our study providing an example of a non-extendable fuzzy met-

ric.

Example 2.2.7. Let (X, d) be a metric space where X has at least two

points. Then, the standard fuzzy metric (Example 1.2.5) (X,Md,∧) is not

extendable. Indeed, given x, y ∈ X such that x 6= y, then d(x, y) 6= 0 and so∧
t>0

Md(x, y, t) = lim
t→0

t

t+ d(x, y)
= 0.

Remark 2.2.8. In the following we will associate to an extendable fuzzy

metricM the extended fuzzy metricM0 and the stationary fuzzy metric NM ,

above de�ned. Then, it is satis�edM0(x, y, 0) =
∧
t>0M(x, y, t) = NM (x, y)
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for all x, y ∈ X. In analogous way, we will associate M and NM to an

extended fuzzy metric M0.

Notice that due to the continuity of the real function M0
x,y on [0,+∞[,

whenever M0 is an extended fuzzy metric, then the extension M0 of an

extendable fuzzy metric M , is unique.

2.3 Topology deduced from an extended fuzzy

metric

In this section, we justify that we can de�ne a topology from an extended

fuzzy metric. We proceed in a similar way as in the fuzzy metric case. So,

we begin de�ning the concepts of open and closed ball.

De�nition 2.3.1. Let (X,M0, ∗) be an extended fuzzy metric space. For

x ∈ X, r ∈ ]0, 1[ and t ≥ 0, we de�ne the open ball of center x, radius r and

parameter t as

BM0(x, r, t) =
{
y ∈ X : M0(x, y, t) > 1− r

}
.

In an analogous way the closed ball is

BM0 [x, r, t] =
{
y ∈ X : M0(x, y, t) ≥ 1− r

}
.

Clearly, for t > 0 we have thatBM0(x, y, t) = BM (x, y, t) andBM0 [x, y, t] =

BM [x, y, t]. Besides, BM0(x, y, 0) = BNM (x, y) andBM0 [x, y, 0] = BNM [x, y].

Notice that for all x ∈ X, t > 0, r ∈ ]0, 1[ we have that BM0(x, r, 0) ⊂
BM (x, r, t) and BM0 [x, r, 0] ⊂ BM [x, r, t].
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Let (X,M0, ∗) be an extended fuzzy metric space. It is well known that

the family {BNM (x, r) : x ∈ X, r ∈ ]0, 1[} is a base for the topology τNM on

X deduced from the stationary fuzzy metric NM . So, the family given by

{BM0(x, r, 0) : x ∈ X, r ∈ ]0, 1[} is a base for the topology τNM on X.

De�nition 2.3.2. Let (X,M, ∗) be an extended fuzzy metric space. Then,

the family given by

{BM0(x, r, 0) : x ∈ X, r ∈ ]0, 1[}

is a base for a topology τM0 on X, that will be called deduced from M0.

Clearly, the open balls BM0(x, y, 0) are τM0-open and the closed balls are

τM0-closed. Obviously, τM0 is metrizable.

Moreover, since for all x ∈ X, r ∈ ]0, 1[, t > 0 we have that BM0(x, r, 0) ⊆
BM (x, r, t), then it is obvious that τM0 � τM . Consequently, the open balls

BM (x, r, t) (for t > 0) are τM0-open, and the closed balls BM [x, r, t] (for

t > 0) are τM0-closed.

Now, we focus on convergence of sequences in τM0 . We provide the next

characterization for the extended fuzzy metric case (compare with Proposi-

tion 1.2.9).

Proposition 2.3.3. Let (X,M0, ∗) be an extended fuzzy metric space. A

sequence {xn} in X τM0-converges to x0 if and only if limnM
0 (xn, x0, 0) =

1.

Proof. Since τNM = τM0 , then a sequence {xn} in X τM0-converges to

x0 ∈ X if and only if {xn} τNM -converges to x0. By Proposition 1.2.9

we have that {xn} τNM -converges to x0 if and only if limnNM (xn, x0) = 1.
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Therefore, {xn} τM0-converges to x0 ∈ X if and only if limnM
0(xn, x0, 0) =

limnNM (xn, x0) = 1, as we claimed.

Remark 2.3.4. On account of the exposed in this section, one can observe

the similarity between extended fuzzy metrics and classical metrics, from the

topological point of view. Indeed, in an extended fuzzy metric, the parameter

t does not play any role in the topological concepts. Nevertheless, such pa-

rameter remains being essential in di�erent �metric� concepts for extendable

fuzzy metrics, as we will see in the rest of the paper.

2.4 Relationship between τM0-convergence and

s-convergence in extendable fuzzy metrics

In this section, we compare τM0-convergent sequences with s-convergent ones,

a stronger concept of convergence introduced in [17] (De�nition 1.2.11). Such

comparison is framed in the class of extendable fuzzy metrics. In order to

ful�l the main goal of this section, we introduce the next proposition.

Proposition 2.4.1. Let (X,M0, ∗) be an extended fuzzy metric space. Then

M0 is continuous with respect to the product topology, where X is endowed

with τM0 and [0,+∞[ with the usual topology of R restricted to it.

Proof. Let {(xn, yn, tn)} be a sequence in X2 × [0,∞[ which converges to

(x, y, t) ∈ [0,∞[ with respect to the product topology, where X is endowed

with τM0 and [0,+∞[ with the usual topology of R restricted to it.

We will prove that limnM
0(xn, yn, tn) = M0(x, y, t) (i.e. {(xn, yn, tn)}

converges to M0(x, y, t) in the usual topology of R). To this end, we will

distinguish two cases:
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1. Suppose that t > 0. Without loss of generality, we can suppose that

tn > 0 for all n ∈ N.

Following [39, Proposition 1], if we consider the restriction M of the

extended fuzzy metric M0, then M is continuous on X2 × ]0,+∞[

with respect to the product topology, where X is endowed with τM .

Therefore,

lim
n
M0(xn, yn, tn) = lim

n
M(xn, yn, tn) = M(x, y, t) = M0(x, y, t),

and so M0 is continuous at (x, y, t).

2. Suppose now that t = 0.

Let {(xn, yn, tn)} be a sequence that converges to (x, y, 0) ∈ X2 ×{0}.
It follows that, for every n ∈ N,

M0 (xn, yn, tn) ≥M0 (xn, x, 0) ∗M0 (x, y, tn) ∗M0 (y, yn, 0) ,

and

M0 (x, y, tn) ≥M0 (x, xn, 0) ∗M0 (xn, yn, tn) ∗M0 (yn, y, 0) .

If we take limits on both equations and we use Proposition 2.3.3, we

obtain the following expressions.

lim
n
M0 (xn, yn, tn) ≥ lim

n
M0 (x, y, tn) ,

and

lim
n
M0 (x, y, tn) ≥ lim

n
M0 (xn, yn, tn) .

Now, by continuity of the functionM0
x,y we have that limnM

0 (x, y, tn) =

M0 (x, y, 0). We deduce that limnM
0 (xn, yn, tn) = M0 (x, y, 0) and so

M0 is continuous at (x, y, 0).

Hence, M0 is continuous at each point of X2 × {0}.
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The previous result is useful to prove the following proposition.

Proposition 2.4.2. Let M be an extendable fuzzy metric on X. If {xn} is
τM0-convergent to x0 then limnM(xn, x0, 1/n) = 1.

Proof. Let {xn} be a τM0-convergent sequence inX. Then, limnM(xn, x0, 1/n) =

limnM
0(xn, x0, 1/n) = M0(x0, x0, 0) = 1, since M0 is continuous and the

sequence {(xn, x0, 1/n)} converges to (x0, x0, 0) in the product topology.

The following example proves that the converse of the last proposition is

false, in general.

Example 2.4.3. (see [17, Example 4.3]). Consider the extendable fuzzy

metric space (X,M, ∗), where X = ]0, 1], ∗ is the Lukasievicz t-norm, and

M is given by

M(x, y, t) =


1− 1

2d(x, y)t 0 ≤ t ≤ 1,

1− 1
2d(x, y) t > 1,

where d is the usual metric of R. The sequence {xn}, where xn = (1/2) −
(1/nn) for all n ≥ 2, is τM -convergent to 1/2 since τM is the usual topology of

R restricted to ]0, 1]. Moreover, limnM(xn, 1/2, 1/n) = limn

(
1− 1

2

(
1
nn

)1/n)
=

1 and so {xn} is s-convergent. Now,

NM (x, y) =
∧
t>0

M(x, y, t) =


1 if x = y,

1
2 if x 6= y.

Therefore, limnM
0(xn, 1/2, 0) = limnNM (xn, 1/2) = 1/2 and so {xn} is not

τM0-convergent.

On account of the above example, an interesting question is to charac-

terize those extendable fuzzy metric spaces in which s-convergent sequences
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are τM0-convergent. We approach this problem in the rest of the section. To

such goal, we begin expressing Theorem 4.2 of [17] in our context.

Theorem 2.4.4. Let M be an extendable fuzzy metric on X. Then, τM =

τM0 if and only if M is an s-fuzzy metric.

So, an immediate corollary of the previous theorem is the following one.

Corollary 2.4.5. Let M be an extendable fuzzy metric on X. If M is an

s-fuzzy metric then every s-convergent sequence is τM0-convergent.

Even more, the next theorem shows that the converse of the preceding

corollary is also true.

Theorem 2.4.6. Let M be an extendable fuzzy metric on X. If every s-

convergent sequence is τM0-convergent then M is an s-metric.

Proof. Let M be an extendable fuzzy metric on X.

Suppose that M is not an s-fuzzy metric. Then, there exists a τM -

convergent sequence {xn} to some x0 ∈ X, which is not s-convergent (to x0)

in (X,M). We will construct an s-convergent subsequence {xnk} of {xn},
which is not τM0-convergent. To construct such subsequence, we are focused

in two facts:

First, since {xn} is τM -convergent then for each ε ∈]0, 1[ and each t > 0

we can �nd n0 ∈ N such that M(xn, x0, t) > 1− ε whenever n ≥ n0.

Moreover, {xn} is not s-convergent and so it is not τM0-convergent. Then,

by Proposition 2.3.3 we have that there exists ε0 ∈]0, 1[ such that for each

k ∈ N we can �nd nk > k such that M0(xnk , x0, 0) ≤ 1− ε0.

Fix k = 2. On the one hand, if we consider ε = t = 1
2 , then there exists
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n′2 ∈ N such thatM(xn, x0,
1
2) > 1− 1

2 whenever n ≥ n′2. On the other hand,

given n′2 ∈ N we can �nd n2 > n′2 such that M0(xn2 , x0, 0) ≤ 1− ε0.

From this element xn2 , we construct inductively on k ∈ N the announced

subsequence of {xn} as follows.

Take k ∈ N. As before, there exists n′k ∈ N, with n′k ≥ nk−1, such that

M(xn, x0,
1
k ) > 1 − 1

k whenever n ≥ n′k. Furthermore, given n′k ∈ N we can

�nd nk > n′k such that M0(xnk , x0, 0) ≤ 1− ε0.

Therefore, the constructed subsequence {xnk} satis�es the following prop-
erties:

M(xnk , x0, 1/k) > 1− 1/k,

and

M0(xnk , x0, 0) ≤ 1− ε0,

for each k ∈ N. So, taking limits in the above two inequalities we have that

lim
k
M(xnk , x0, 1/k) = 1,

and

lim
k
M0(xnk , x0, 0) ≤ 1− ε0.

Thus, {xnk} is an s-convergent sequence that is not τM0-convergent and the

proof is concluded.

As a consequence of Corollary 2.4.5 and Theorem 2.4.6, we can state for

an extendable fuzzy metric the following corollary.

Corollary 2.4.7. Let M be an extendable fuzzy metric on X. Then, M is

an s-metric if and only if every s-convergent sequence is τM0-convergent.



42 Extended fuzzy metric spaces and fixed point theorems

2.5 Cauchyness and completeness

This section is dedicated to study the completeness of extended fuzzy metric

spaces. To this goal, we begin introducing a concept of Cauchy sequence in

such spaces.

De�nition 2.5.1. Let (X,M0, ∗) be an extended fuzzy metric space. A

sequence {xn} in X is called M0-Cauchy if given ε ∈ ]0, 1[ we can �nd

nε ∈ N such that M0(xn, xm, 0) > 1 − ε for all n,m ≥ nε. Then, {xn} is
M0-Cauchy if and only if limm,nM

0(xm, xn, 0) = 1.

Remark 2.5.2. From now on, we will say that a sequence is M0-convergent

instead of τM0-convergent in order to simplify the notation.

An immediate relationship between M0-convergent sequences and M0-

Cauchy ones is the next.

Proposition 2.5.3. Let (X,M0, ∗) be an extended fuzzy metric space. Every

M0-convergent sequence is M0-Cauchy.

Proof. Suppose {xn} is M0-convergent to x0. The conclusion follows from

the inequality M0(xm, xn, 0) ≥M0(xm, x0, 0) ∗M0(x0, xn, 0).

The M0-Cauchy's concept is according to the idea of Cauchy sequence

in [7], since it can be expressed as limm,nM
0(xm, xn, t) = 1 for all t ≥ 0.

Clearly, every M0-Cauchy sequence is M -Cauchy, and the converse is false,

in general, as the following example shows.

Example 2.5.4. Consider the extendable fuzzy metric space (X,M, ∗), where
X = ]0,+∞[, ∗ is the product t-norm and M is given by

M(x, y, t) =
min{x, y}+ t

max{x, y}+ t
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for each x, y ∈ X and t > 0.

The sequence {xn}, where xn = 1
n for each n ∈ N, is M -Cauchy. Indeed,

for each t > 0 we have that

lim
n,m

M(xn, xm, t) =
min{1/n, 1/m}+ t

max{1/n, 1/m}+ t
= 1.

Nevertheless, {xn} is not M0-Cauchy. Indeed, observe that

M0(x, y, 0) =
∧
t>0

M(x, y, t) =
∧
t>0

min{x, y}+ t

max{x, y}+ t
=

min{x, y}
max{x, y}

,

for each x, y ∈ X.

Then, if {xn} was M0-Cauchy we will have that

lim
n,m

M0(xn, xm, 0) = lim
n,m

min{1/n, 1/m}
max{1/n, 1/m}

= 1.

Now, if we consider m = 2n, then

lim
n,m

min{1/n, 1/m}
max{1/n, 1/m}

= lim
n

=
1/2n

1/n
=

1

2
,

a contradiction.

We continue introducing the following notion of completeness in a natural

way.

De�nition 2.5.5. An extended fuzzy metric space (X,M0, ∗) is called com-

plete if everyM0-Cauchy sequence isM0-convergent. It is also said thatM0

is complete, and, if confusion does not arise, that X is M0-complete.

An immediate property of the above de�nition is the next one.

Proposition 2.5.6. (X,M0, ∗) is complete if and only if (X,NM , ∗) is com-

plete.
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Proof. The sequence {xn} is M0-Cauchy if and only if it is NM -Cauchy.

Then, the conclusion follows from the fact that τM0 = τNM .

The next proposition shows the relationship between M0-completeness

and M -completeness, when we consider an extendable s-fuzzy metric.

Proposition 2.5.7. LetM be an extendable s-fuzzy metric on X. If (X,M, ∗)
is complete then (X,M0, ∗) is complete.

Proof. Let (X,M, ∗) be a complete extendable s-fuzzy metric space and let

{xn} be an M0-Cauchy sequence in X. Then, {xn} is M -Cauchy and thus

{xn} is τM -convergent in X, since M is complete. Now, by Theorem 2.4.4

we conclude that {xn} is M0-convergent.

The converse of the last proposition is false, in general, as it is shown in

the following example.

Example 2.5.8. Let (X,M, ∗) be the extendable s-fuzzy metric space, where

X = ]0,+∞[, M(x, y, t) = min{x,y}+t
max{x,y}+t and ∗ is the t-norm product (see [17]).

We notice that τM is the usual topology of R restricted to ]0,+∞[. Fur-

thermore, τM0 = τM since M is an s-fuzzy metric.

On the one hand, we have that (X,NM , ∗) is complete (see [16, 38]),

where NM is given by

NM (x, y) = M0(x, y, 0) =
min {x, y}
max {x, y}

.

We conclude, by Proposition 2.5.6, that (X,M0, ∗) is complete.
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On the other hand, (X,M, ∗) is not complete, since {1/n} is an M -

Cauchy sequence in X, but it does not converge for τM .

To �nish this section we provide an example, which shows that for ev-

ery metrizable topological space we can �nd a compatible non-stationary

extendable fuzzy metric which is an s-fuzzy metric.

Example 2.5.9. Let (X, τ) be a metrizable topological space. Suppose that

d is a compatible metric on X, i.e. τ(d) = τ . Consider the extendable fuzzy

metric Mφ(x, y, t) = φ(t)
φ(t)+d(x,y) of Example 2.2.3 (c). It is not hard to check

that τMφ
= τ .

If {xn} is τMφ
-convergent to x0 then

lim
n
Mφ(xn, x0, 1/n) = lim

n

φ(1/n)

φ(1/n) + d(xn, x0)
=
φ(0)

φ(0)
= 1.

Then Mφ is an extendable s-fuzzy metric on X, and thus by Theorem 2.4.4,

τM0
φ

= τMφ
.

2.6 Contractivity and �xed point theorems

In this section we show a method for giving more general versions of �xed

point theorems in extendable fuzzy metricsM by means of a weaker contrac-

tive condition (Remark 2.6.5) on the extended fuzzy metric M0. We begin

recalling a notion of contractive mapping introduced by Mihet in [35]. It was

adapted by Gregori and Miñana in [11] to the George and Veeramani context

as follows.

De�nition 2.6.1. Let Ψ be the class of all mappings ψ : ]0, 1]→ ]0, 1] such

that ψ is continuous, non-decreasing and ψ(t) > t for all t ∈ ]0, 1[. Let
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ψ ∈ Ψ. A mapping f : X → X is called fuzzy ψ-contractive mapping if:

M(f(x), f(y), t) ≥ ψ(M(x, y, t)) for all x, y ∈ X and t > 0. (2.1)

Accordingly to the above de�nition and extending the classical concept

of contractive sequence, then a sequence {xn} in X is called (fuzzy) ψ-

contractive sequence if it satis�es

M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)) for all n ∈ N and t > 0. (2.2)

An immediate consequence of the previous notion is the next proposition.

Proposition 2.6.2. Let (X,M, ∗) be a fuzzy metric space. If f : X → X

is ψ-contractive then, for each x0 ∈ X, the sequence of iterates {xn} where
x1 = f(x0), . . . , xn = f(xn−1), for n = 2, 3, · · · , is ψ-contractive.

Proof. It is straightforward.

We recall the concept of contractivity given by Gregori and Sapena in

[25].

De�nition 2.6.3. Let (X,M, ∗) be a fuzzy metric space. A mapping f :

X → X is called fuzzy contractive if there exists k ∈ ]0, 1[ such that

1

M(f(x), f(y), t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)
for each x, y ∈ X and t > 0. (k is called the contractive constant of f .)

Mihet observed in [35] that a fuzzy contractive mapping is a fuzzy ψ-

contractive one for ψ(s) = s
s+k(1−s) for each s ∈]0, 1].

As we have proceeded throughout the paper, we will adapt the notion of

fuzzy ψ-contractive mapping to extended fuzzy metrics.
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De�nition 2.6.4. Let (X,M, ∗) be an extendable fuzzy metric space. A

mapping f : X → X is called fuzzy ψ-M0-contractive if Equation (2.1)

is satis�ed for all t ≥ 0. Particularly, f is called fuzzy ψ-0-contractive if

Equation (2.1) is satis�ed for t = 0.

Remark 2.6.5. Due to the continuity of M0
x,y for all x, y ∈ X, it is clear

that f is ψ-M0-contractive if and only if f is ψ-contractive. Nevertheless,

the next example shows that the fuzzy ψ-0-contractive condition is weaker

than the fuzzy ψ-M -contractive one.

Example 2.6.6. Consider X = R endowed with the usual metric d. De�ne

the fuzzy set M on X2 × ]0,+∞[ as follows

M(x, y, t) =
1 + α(t)d(x, y)

1 + d(x, y)
,

where α : [0,+∞[→ [0, 1[ is a function given by α(t) = t
1+t for all t ≥ 0. We

will see that (X,M, ∗) is a fuzzy metric for the Lukasievicz t-norm ∗L.

Clearly, (GV1)-(GV3) and (GV5) are satis�ed. We will only prove the

triangle inequality (GV4). First, note that

M(x, y, t) =
1 + α(t)d(x, y)

1 + d(x, y)
= 1−(1− α(t))d(x, y)

1 + d(x, y)
= 1− d(x, y)

(1 + t)(1 + d(x, y))
.

We will prove that M(x, z, t + s) ≥ M(x, y, t) ∗LM(y, z, s), when the right

side is positive.

Therefore, we must prove that

1− d(x, z)

(1 + t+ s)(1 + d(x, z))
≥ 1− d(x, y)

(1 + t)(1 + d(x, y))
− d(y, z)

(1 + s)(1 + d(y, z))
,

i.e. that

d(x, z)

(1 + t+ s)(1 + d(x, z))
≤ d(x, y)

(1 + t)(1 + d(x, y))
+

d(y, z)

(1 + s)(1 + d(y, z))
.
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Indeed, it is easy to verify that if a ≥ b ≥ 0 then a
a+1 ≥

b
b+1 . Then, since

d(x, z) ≤ d(x, y) + d(y, z) we have that

d(x, z)

(1 + t+ s)(1 + d(x, z)
≤ d(x, y) + d(y, z)

(1 + t+ s)(1 + d(x, y) + d(y, z))

≤ d(x, y) + d(y, z)

(1 + max{t, s})(1 + max{d(x, y), d(y, z)})

≤ d(x, y)

(1 + t)(1 + d(x, y))
+

d(y, z)

(1 + s)(1 + d(y, z))
.

Hence (M, ∗L) is a fuzzy metric on X, and, obviously, M is extendable.

Now we will see that f : R → R given by f(x) = x/2, for x ∈ R is fuzzy

ψ-0-contractive.

Let x, y ∈ X. Then

1

M(f(x), f(y), 0)
−1 =

(
1

1 + 1/2|x− y|

)−1
−1 =

|x− y|
2

=
1

2
(1+|x−y|−1) =

=
1

2

((
1

1 + |x− y|

)−1
− 1

)
=

1

2

(
1

M(x, y, 0)
− 1

)
.

Then, attending to the above comment, f is fuzzy ψ-0-contractive, for ψ(s) =
s

s+k(1−s) for each s ∈]0, 1].

Now we will see that f is not fuzzy contractive. Indeed, if we take t = 1,

then, for x, y ∈ R we have

1

M(f(x), f(y), 1)
− 1 =

(
1 + 1

2 ·
1
2 |x− y|

1 + 1
2 |x− y|

)−1
− 1 =

|x− y|
4 + |x− y|

.

On the other hand,

k

(
1

M(x, y, 1)
− 1

)
= k

(1 + 1
2 |x− y|

1 + |x− y|

)−1
− 1

 = k

(
|x− y|

2 + |x− y|

)
.
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In this case, the inequality

1

M(f(x), f(y), 1)
− 1 ≤ k

(
1

M(x, y, 1)
− 1

)
is not possible for k ∈ [0, 1[. Indeed, for a �xed y ∈ R, if x tends to +∞ then

we obtain 1 ≤ k, a contradiction.

According to De�nition 2.6.4, we introduce the notion of fuzzy ψ-0-

contractive sequence.

De�nition 2.6.7. Let (X,M, ∗) be an extendable fuzzy metric space. A

sequence {xn} of X is called fuzzy ψ-0-contractive if there exists ψ ∈ Ψ such

that

M0(xn+1, xn+2, 0) ≥ ψ(M0(xn, xn+1, 0)) for all n ∈ N.

The sequence of iterates constructed from a fuzzy ψ-0-contractive map-

ping satis�es the following stronger property.

Proposition 2.6.8. Let (X,M, ∗) be an extendable fuzzy metric space, and

let f : X → X be a fuzzy ψ-0-contractive mapping. Consider, for x0 ∈ X,

the sequence {xn} of iterates x1 = f(x0), xn = f(xn−1), n = 2, 3, . . .. Then,

M0(xn+1, xm+1, 0) ≥ ψ(M0(xn, xm, 0)

for every n,m ∈ N.

Proof. It follows from the de�nition of fuzzy ψ-0-contractive function.

Mimicking the proof of Lemma 3.2 in [12] and using the preceding propo-

sition, we obtain the following result.
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Proposition 2.6.9. Let (X,M0, ∗) be an extended fuzzy metric space and

let f : X → X be a fuzzy ψ-0-contractive mapping. Then for each x0 ∈ X,

the sequence of iterates {xn} is M0-Cauchy.

As a consequence of the above result and following the arguments of [12],

for instance, Corollary 3.9 of [12] admits the following more general version

(Remark 2.6.5).

Theorem 2.6.10. Let (X,M, ∗) be an extendable complete fuzzy metric

space. Then, every fuzzy ψ-0-contractive mapping f : X → X admits a

unique �xed point.



Chapter 3

Contractive sequences in

GV -fuzzy metric spaces

3.1 Introduction

Recall that in classical �xed point theory, a contractive sequence of iterates{
f (n)(x0)

}
of a self-contractive mapping f on a complete metric space X is

constructed, for all x0 ∈ X. This sequence converges in X since contrac-

tive sequences are Cauchy. But, what about this statement in fuzzy setting?

We notice that in [25] the authors introduced a concept of fuzzy contractive

sequence and they posed the following question: Is every fuzzy contractive

sequence a Cauchy sequence? So far, there is no answer to this question

(D. Mihet [35] gave a negative answer, but for fuzzy metrics in the sense of

Kramosil and Michalek). The purpose of this chapter is to make a new con-

tribution to this �eld and, at the same time, to correct an error appeared in

[12]. For it, we will introduce and study a concept of strictly fuzzy contractive

51
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sequence.

Regarding the last paragraph, on the one hand, in our short (preliminary)

Section 3.2 we notice that there are several concepts of Cauchy sequence in

the literature [18]. Here we focus our attention in the two concepts used

in fuzzy �xed point theory. The �rst one was given by M. Grabiec in [9]

and it will be denoted by G-Cauchy (De�nition 3.2.1). The second one will

be called, simply, Cauchy (De�nition 1.2.10) and it is due to George and

Veeramani [7] (although it comes from PM-spaces [44]). It is well known

that Cauchy implies G-Cauchy. On the other hand, with respect to (fuzzy)

contractive mappings, we deal with four related concepts, named within

brackets, due (chronologically) to Gregori and Sapena (GS) [25], Mihet (ψ-

contractive) [35], Romaguera and Tirado (RT) [40], and Wardowski (H) [49]
(De�nition 3.2.2). The relationship among these concepts is shown in the

following chain of (strict) implications:

RT-contractive =⇒ GS-contractive =⇒ H-contractive =⇒ ψ-contractive

According to these concepts, and in a similar way to classical metrics, we ob-

tain their corresponding concepts of (fuzzy) contractive sequence (De�nition

3.2.3), which preserve the aforementioned chain of implications.

In Section 3.3 we study the relationship among these contractivity con-

ditions and Cauchyness. Our main result is Example 3.3.13 in which we

construct a ψ-contractive sequence in a stationary fuzzy metric, which is

not Cauchy. This example points out that the concept of ψ-contractivity

needs to be strengthened, to some strictly fuzzy contractivity, to get Cauchy-

ness. But in what form should it be done? Our decision is based on (the

proof of) Lemma 3.2 of [12], which asserts: �A ψ-contractive sequence {xn}
satisfying

∧
t>0M(x1, x2, t) > 0, is a Cauchy sequence". It is clear, at the

light of Example 3.3.13, that this lemma is false. The error in the men-
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tioned proof is due to the fact that the authors have improperly used the

property: M(xm+1, xn+1, t) ≥ ψ(M(xm, xn, t)), for all m,n ∈ N. Therefore

we just de�ne a strictly fuzzy ψ-contractive sequence (De�nition 3.3.2) as a

ψ-contractive sequence that satis�es that property. In this manner, the men-

tioned Lemma 3.2 is valid for strictly fuzzy ψ-contractive sequences de�ned

in a fuzzy metric space satisfying
∧
t>0M(x, y, t) > 0 for every x, y ∈ X.

The concept of strictly contractive sequence for a metric space is also given,

in a similar way, in De�nition 3.3.6. In a similar way, the other three con-

cepts of strictly fuzzy contractive sequence are de�ned, and among these four

concepts, again the above chain of implications is satis�ed. The given con-

cept of strictly fuzzy contractive sequence can be considered an appropriate

concept, not only because it makes true Lemma 3.2 aforementioned, but also

because for x0 ∈ X the sequence of iterates
{
f (n)(x0)

}
of a contractive map-

ping f , for each one of the mentioned contractive conditions, is strictly fuzzy

contractive (Proposition 3.3.5). The reader can �nd another favorable argu-

ment to this new concept in Proposition 3.3.7. Example 3.3.9.(a) provides a

contractive sequence which is not a strictly contractive sequence in (R, | · |).
Then, using this example and Proposition 3.3.8 we construct in (b) of Exam-

ple 3.3.9 a non strictly RT -contractive sequence. As a positive result, before

our mentioned Example 3.3.13, we prove that every ψ-contractive sequence

is G-Cauchy (Proposition 3.3.12).

Section 3.4 is, basically, a correction to Lemma 3.2 of [12]. Then, after

properly correcting Corollary 3.8 and Lemma 3.12 of [12] we show two large

classes of fuzzy metric spaces where the condition of strictly fuzzy contrac-

tivity for a sequence implies Cauchy. The section is �nished with Question

3.4.4; Is every strictly fuzzy ψ-contractive sequence a Cauchy sequence?
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3.2 Preliminaries

In order to obtain �xed point theorems in fuzzy metric spaces, M. Grabiec

introduced the �rst concept of Cauchy sequence, as follows.

De�nition 3.2.1. (Grabiec [9]). A sequence {xn} in a fuzzy metric (X,M, ∗)
is called G-Cauchy if limnM(xn, xn+p, t) = 1 for each t > 0 and each p ∈ N.

In Chapter 2 we have mentioned two notions of contractive mapping in

fuzzy metric spaces due to Mihet (De�nition 3.3.2) and Gregori and Sapena

(De�nition 2.6.3). In [40] Romaguera and Tirado introduced another concept

of contractive mapping. In addition, in [49] Wardowski introduced a new

concept of contractive mapping using a family H of mappings η :]0, 1] →
[0,+∞[ satisfying that η is onto and strictly decreasing. In order to make

a self-contained chapter, we summarize these four concepts in the following

de�nition.

De�nition 3.2.2. Let M be a fuzzy metric on X. A mapping f : X → X

is called

(i) RT -contractive [40] if there exists k ∈ ]0, 1[ such that:

M(f(x), f(y), t) ≥ 1− k + kM(x, y, t) for all x, y ∈ X and t > 0.

(ii) GS-contractive [25] if there exists k ∈ ]0, 1[ such that:

1

M(f(x), f(y), t)
−1 ≤ k

(
1

M(x, y, t)
− 1

)
for all x, y ∈ X and t > 0.

(iii) fuzzy H-contractive [49] with respect to η ∈ H if there exists k ∈ ]0, 1[

such that:

η(M(f(x), f(y), t)) ≤ kη(M(x, y, t)) for all x, y ∈ X and t > 0.
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(iv) fuzzy ψ-contractive [35], with respect to ψ ∈ Ψ, if:

M(f(x), f(y), t) ≥ ψ(M(x, y, t)) for all x, y ∈ X and t > 0.

The following de�nition is according to De�nition 3.2.2.

De�nition 3.2.3. Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X is called

(i) RT -contractive [40] if there exists k ∈ ]0, 1[ such that

M(xn+1, xn+2, t) ≥ 1− k + kM(xn, xn+1, t) for all n ∈ N and t > 0.

(ii) GS-contractive [25] if there exists k ∈ ]0, 1[ such that:

1

M(xn+1, xn+2, t)
−1 ≤ k

(
1

M(xn, xn+1, t)
− 1

)
for all n ∈ N and t > 0.

(iii) fuzzy H-contractive [49] with respect to η ∈ H if there exists k ∈ ]0, 1[

satisfying

η(M(xn+1, xn+2, t)) ≤ kη(M(xn, xn+1, t)) for all n ∈ N and t > 0.

(iv) fuzzy ψ-contractive [35], with respect to ψ ∈ Ψ, if

M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)) for all n ∈ N and t > 0.

3.3 Strictly fuzzy contractive sequences

In this section (X,M, ∗) is a fuzzy metric space. By a (fuzzy) contractive

sequence we refer to any of the ones mentioned in De�nition 3.2.3, when

speci�cation is not needed. The following proposition shows the relationship

among the di�erent notions of contractive sequence.
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Proposition 3.3.1. The following chain of implications related to sequences,

is satis�ed:

RT-contractive =⇒ GS-contractive =⇒ H-contractive =⇒ ψ-contractive

Proof. The �rst implication is obtained with a simple computation (with the

same constant k). The second one is a consequence of [49, Example 3.1].

The last one is a consequence of [12, Proposition 6].

We introduce now the following concept as a result of the discussion made

in Introduction.

De�nition 3.3.2. We will say that a sequence {xn} is strictly fuzzy ψ-

contractive ifM(xm+1, xn+1, t) ≥ ψ(M(xm, xn, t)) for all n,m ∈ N and t > 0.

In an analogous way are de�ned the concepts of strictly fuzzy contractivity

for the other three concepts of contractive sequence.

Proposition 3.3.3. A sequence {xn} is strictly fuzzy ψ-contractive if and

only if for each p ∈ N, M(xm+p, xn+p, t) ≥ ψ(M(xm, xn, t)) holds for all

n,m ∈ N.

Proof. Suppose that the sequence {xn} is strictly fuzzy ψ-contractive and let

p ∈ N. Take t > 0. With an induction process on p, we have for all m,n ∈ N
that

M(xm+p, xn+p, t) ≥ ψ(M(xm+p−1, xn+p−1, t)) ≥ . . . ≥ ψ(ψp−1)(M(xm, xn, t)))

≥ ψ(M(xm, xn, t)).

The converse is obvious.

Remark 3.3.4. Analogous statements can be given for the rest of the notions

of strictly fuzzy contractivity.
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The following proposition ensures the existence of strictly fuzzy contrac-

tive sequences.

Proposition 3.3.5. Let f : X → X be a contractive mapping in any of the

senses in De�nition 3.2.2. Then, for each x0 ∈ X, the sequence of iterates{
f (n)(x)

}
is strictly fuzzy contractive for the same sense.

Proof. Let x0 ∈ X and suppose that f is ψ-contractive. Put xn = f (n)(x),

n = 1, 2, . . .. For t > 0 we have that

M(xm+1, xn+1, t) = M(f(xm), f(xn), t) ≥ ψ(M(xm, xn, t))

for all m,n ∈ N.

The proof for the other contractive concepts is analogous.

At the light of Proposition 3.3.1 the reader can easily obtain the same

chain of implications with strictly fuzzy contractive sequences instead of the

contractive ones.

The concept of strictly contractive sequence can also be given in metric

spaces, as follows.

De�nition 3.3.6. Let (X, d) be a metric space. A sequence {xn} in (X, d)

is strictly contractive if there exists k ∈ ]0, 1[ such that

d(xm+1, xn+1) ≤ kd(xm, xn), for all m,n ∈ N.

It is also said that {xn} is strictly d-contractive. This terminology is

commonly used in topology and we will use it in other concepts without

explicit mention. Obviously, if f is a contractive self-mapping of (X, d) then

{fn(x)}n is strictly d-contractive, for each x ∈ X.
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Proposition 3.3.7. Let (R,Md, ·) be the standard fuzzy metric where d is

the usual Euclidean metric on R. Then, every monotone (non decreasing or

non increasing) GS-contractive sequence in R is strictly GS-contractive.

Proof. Suppose that {xn} is a non-decreasing GS-contractive sequence in R.
On account of [25, Proposition 3.9], {xn} is a d-contractive sequence for the
same constant of contractivity, say k ∈ ]0, 1[. We will prove that {xn} is

strictly d-contractive. Indeed, for m,n ∈ N, with m > n, we have that

d(xm+1, xn+1) ≤ d(xm+1, xm) + d(xm, xm−1) + . . .+ d(xn+2, xn+1).

Since {xn} is d-contractive and monotone we have that

d(xm+1, xn+1) ≤ kd(xm, xm−1) + kd(xm−1, xm−2) + . . .+ kd(xn+1, xn)

= k (d(xm, xm−1) + . . .+ d(xn+1, xn))

= k (d(xm, xn)) ,

and so {xn} is strictly d-contractive. Therefore,

1

Md(xm+1, xn+1, t)
− 1 =

t+ d(xm+1, xn+1)

t
− 1 =

d(xm+1, xn+1)

t

≤ kd(xm, xn)

t
= k

(
1

Md(xm, xn, t)
− 1

)
,

and hence {xn} is strictly GS -contractive.

In Example 3.3.9 we will construct a contractive sequence in R, provided
with its usual metric, which is not strictly contractive. Then, based on

this sequence, we will give an example of an RT -contractive sequence (the

strongest concept of contractivity, here considered) which is not strictly RT -

contractive. Before, we need the following proposition.
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Proposition 3.3.8. Let (X, d) be a metric space such that d(x, y) < 1 for

all x, y ∈ X. Denote by (X,N,L) the stationary fuzzy metric space where

N(x, y) = 1− d(x, y). Then

(i) τN = τ(d).

(ii) {xn} is (strictly) RT -contractive in (X,N,L) if and only if {xn} is

(strictly) d-contractive.

(iii) {xn} is N -Cauchy if and only if {xn} is d-Cauchy.

(iv) (X,N,L) is complete if and only if (X, d) is complete.

Proof. It is straightforward.

It is left to the reader to introduce a similar proposition for (X,Md, ·).

Example 3.3.9. (a) (A non-strictly contractive sequence). Consider the

metric space (X, d), where X = R and d is the Euclidean metric. Let

a, b ∈ R with 0 ≤ a < b. We de�ne the sequence {xn} in R, by
recurrence as follows.

x1 =
a+ b

2
, x2 =

a+ x1
2

,

x2k−1 =
x2k−2 + x2k−3

2
, x2k =

x2k−1 + x2k−3
2

, for k ≥ 2.

The sequence {xn} is d-contractive. Indeed,

d(xk+1, xk) = |xk+1−xk| = |xk+1+xk−1−xk−1−xk| = 2|xk+2−xk+1|,

that is, d(xk+2, xk+1) ≤ 1
2d(xk+1, xk), and so {xn} is d-contractive.

This sequence is not strictly d-contractive. Indeed, for k ≥ 1, we have



60 Contractive sequences in fuzzy metric spaces

that

d(x4k+2, x4k) = |x4k+1

2
+
x4k−1

2
− x4k| =

∣∣∣∣x4k + x4k−1
4

+
x4k−1

2
+ x4k

∣∣∣∣
=

3

4
|x4k−1 − x4k| >

1

2
|x4k−1 − x4k| =

∣∣∣∣x4k−1 − x4k − x4k−1
2

∣∣∣∣
= |x4k−1 − x4k+1| = d(x4k+1, x4k−1),

and hence, the sequence {xn} is not strictly contractive.

On the other hand, the sequence {xn} is convergent in R, since every
contractive sequence in a metric space is Cauchy, and R is complete.

(b) (A non-strictly RT -contractive sequence). Now, take a = 0, b = 1/2 in

the part (a) of this example. The corresponding sequence {xn}, named

now {yn}, is a non-strictly contractive sequence in the complete metric

space ([0, 1/2] , d) and by (ii) of Proposition 3.3.8, {yn} is a non-strictly
RT -contractive sequence in ([0, 1/2] , N,L). Moreover, by (iii)−(iv) of

Proposition 3.3.8 the sequence {yn} is N -Cauchy and then it converges

in [0, 1/2].

Remark 3.3.10. After a tedious computation it can be proved that the

sequence {xn} in (a) of Example 3.3.9 converges to (3a+ 2b)/5. Indeed, by

induction on k, it is easy to prove that

x4k − x4k−1 =
(b− a)

16k
. (3.1)

Furthermore, for every k ∈ N, we have that

x4k =
x4k−1 + x4k−3

2
=

(x4k−2 + x4k−3) + (x4k−4 + x4k−5)

4

=
x4k−3 + x4k−5 + x4k−4 + x4k−5 + 2x4k−4 + 2x4k−5

8

=
x4k−4 + x4k−5 + 2x4k−5 + 2x4k−4 + 2x4k−5 + 4x4k−4 + 4x4k−5

16

=
7x4k−4 + 9x4k−5

16
=

7x4(k−1) + 9x4(k−1)−1

16
.
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Now, using Equation (3.1), we have that

x4k =
7x4(k−1) + 9

(
x4(k−1) −

(b−a)
16k−1

)
16

= x4(k−1) −
9(b− a)

16

1

16k−1
.

Using the notation yk = x4k, we get a recurrence sequence given by

yk = yk−1 −
9(b− a)

16k
, for k = 2, 3 . . . (3.2)

Now, one can prove that y1 = x4 = 9a+7b
16 , and then, by a few calculations

one obtains

yk =
3a+ 2b

5
− 3(a− b)

5

1

16k
.

Therefore the sequence {yn}, obviously, converges to (3a+2b)/5. Our conclu-

sion holds by the fact that all subsequences of a convergent sequence converge

to the same point.

The following example shows another non-strictly contractive sequence.

Example 3.3.11. Let a ∈ R and let. Consider the metric space ([−a, a], d)

where d is the Euclidean metric. We will de�ne a sequence {xn} that is

convergent to zero:

x1 = 0.5a; x2 = −0.8a; x3 = 0.3a; x4 = −0.3a.

It is obvious that d(x1, x3) = 0.2a < 0.5a = d(x2, x4). Let us de�ne

{x4k+1, x4k+2, x4k+3, x4k+4} for each k ∈ N inductively by mimicking the

same process with interval [x4k, x4k−1] = [−0.3ka, 0.3ka]. Clearly, this se-

quence is convergent to zero, but it is not strictly contractive as d(x4k+1, x4k+3) <

d(x4k+2, x4k+4).

Now we are interested in the relationship between fuzzy contractive se-

quences and Cauchy sequences. The most general result that we can give is
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the following proposition, which states that every fuzzy contractive sequence

of De�nition 3.2.3 is G-Cauchy.

Proposition 3.3.12. Every ψ-contractive sequence is G-Cauchy.

Proof. Let {xn} be a ψ-contractive sequence. Then, for t > 0 we have that

M(xn, xn+1, t) ≥ ψ(M(xn−1, xn, t)) ≥ . . . ≥ ψn)(M(x1, x2, t)),

for all t > 0. Now for each s ∈ ]0, 1[ it is easy to verify that limn ψ
n)(s) = 1,

and then limnM(xn, xn+1, t) = 1 for each t > 0.

In the following example we show a ψ-contractive sequence which is not

Cauchy.

Example 3.3.13 (A ψ-contractive sequence which is not Cauchy). Consider

the real line R endowed with the usual Euclidean metric d. We de�ne the

mapping ψ̃ : [0, 1]→ [0, 1] as follows.

Consider the partition {[`/(`+ 1), (`+ 1)/(`+ 2)[ : ` = 0, 1, 2, . . .} of [0, 1[.

We de�ne

ψ̃(s) =


`+ 1

`+ 3
· s+

2`+ 3

(`+ 2)(`+ 3)
, for s ∈

[
`

`+ 1
,
`+ 1

`+ 2

[
,

1 for s = 1.

Let ψ the restriction of ψ̃ to ]0, 1].Then, it is easy to verify that ψ(s) > s

for all s ∈ ]0, 1[, and that ψ is non-decreasing on [0, 1]. Also ψ is continuous

on ]0, 1[. We will see that ψ is continuous at s = 1. Suppose that {sj} is a
sequence in [0, 1] that converges to 1. We will see that {ψ(sj)} converges to
1.
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Let 0 < ε < 1. Choose `0 ∈ N such that `0/(`0 + 3) > 1− ε. Then

ψ

(
`0

`0 + 1

)
=
`0 + 1

`0 + 3
· `0
`0 + 1

+
2`0 + 2

(`+ 2)(`+ 3)
>
`0 + 1

`0 + 3
· `0
`0 + 1

=
`0

`0 + 3
> 1−ε

Take δ > 0 such that `0/(`0 + 1) < δ < 1. Then, there exists j0 ∈ N such

that sj ∈ ]δ, 1] for j ≥ j0, since {sj} converges to 1. Hence, for j ≥ j0 we

have that ψ(sj) ≥ ψ(δ) ≥ ψ( `0
`0+1) > 1− ε. Hence, ψ is continuous at s = 1.

Consider the sequence (harmonic series) {xn} where xn =
∑n

i=1 1/i. It

is well known that {xn} is a G-Cauchy sequence which is not Cauchy in the

standard fuzzy metric space (R,Md, ·) (see [7]). Then it is clear that {xn} is
G-Cauchy in the stationary fuzzy metric space (X,M1, ·) where M1(x, y) =

1
1+d(x,y) and it is almost immediate that {xn} is not Cauchy in (R,M1, ·).
Now we will prove that {xn} is ψ-contractive.

For n ∈ N we have that

d(xn, xn+1) =
1

n+ 1
, d(xn+1, xn+2) =

1

n+ 2
.

Then,

M1(xn, xn+1) =
1

1 + 1
n+1

=
n+ 1

n+ 2
, M1(xn+1, xn+2) =

1

1 + 1
n+2

=
n+ 2

n+ 3
.

Now, since

ψ(M1(xn, xn+1)) = ψ

(
n+ 1

n+ 2

)
=
n+ 2

n+ 4
· n+ 1

n+ 2
+

2(n+ 1) + 3

(n+ 3)(n+ 4)
=

=
n+ 1

n+ 2
∈
[
n+ 1

n+ 2
,
n+ 2

n+ 3

[
,

we have that

M1(xn+1, xn+2) =
n+ 2

n+ 3
≥ ψ(M1(xn, xn+1)),

and so {xn} is ψ-contractive.
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Remark 3.3.14. The sequence {xn} of Example 3.3.13 is not strictly fuzzy

ψ-contractive in (R,M1, ·). Indeed, d(x2, x4) = 7/12 and d(x3, x5) = 9/20.

Then M1(x3, x5) = 20/29 and M1(x2, x4) = 12/19. Since 12/19 ∈ [1/2, 2/3[,

then

ψ(M1(x2, x4)) = ψ(12/19) =
2

4
· 12

19
+

7

20
=

373

380
.

Then, M1(x3, x5) = 20/29 < 373/380 = ψ(M1(x2, x4)), and so, {xn} is

not strictly fuzzy ψ-contractive. Furthermore, it can be proved that for

each n ∈ N there exists m ∈ N with m > n satisfying M1(xn+1, xm+1) <

ψ(M1(xn, xm)). Indeed, �x n ∈ N. Since {xn} is a sequence of positive terms

which diverges to in�nity, then we can �nd m > n satisfying
∑m+1

i=n+2 1/i ≥ 1.

Then,

d(xn+1, xm+1) =
m+1∑
i=n+2

1

i
≥ 1, d(xn, xm) =

m∑
i=n+1

1

i
>

m+1∑
i=n+2

1

i
≥ 1.

Thus,

M1(xn+1, xm+1) =
1

1 + d(xn+1, xm+1)
≤ 1

2

and

M1(xn, xm) =
1

1 + d(xn, xm)
<

1

2
.

As M1(xn, xm) ∈ [0, 1/2[, we take ` = 0 to compute ψ(M1(xn, xm)), and so,

since M1(xn, xm) > 0, we have that

ψ(M1(xn, xm)) =
1

3
M1(xn, xm) +

1

2
>

1

2
≥M(xn+1, xm+1).

Remark 3.3.15. Recently in [46] the following contractive condition, related

with the above ones, has been given.

Denote by Z the family of all functions ζ :]0, 1]×]0, 1] → R satisfying

ζ(t, s) > s for all t, s ∈]0, 1[. Let (X,M, ∗) be a fuzzy metric space and let

f : X → X be a mapping. Then, f is called a fuzzy Z-contractive mapping

with respect to ζ if M(f(x), f(y), t) ≥ ζ(M(f(x), f(y), t),M(x, y, t)) for all
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x, y ∈ X, f(x) 6= f(y), t > 0 where ζ ∈ Z. According to this de�nition, we

can say that a sequence {xn} in X is Z-contractive with respect to ζ ∈ Z
if M(xn+1, xn+2, t) ≥ ζ(M(xn+1, xn+2, t),M(xn, xn+1, t)) for all n ∈ N and

t > 0.

In [46] it is observed that every ψ-contractive mapping is fuzzy Z-contractive
wih respect to the function ζM given by ζM (t, s) = ψ(s) for all s, t ∈]0, 1].

Then it is immediate that every ψ-contractive sequence is Z-contrative se-

quence with respect to ζM . Therefore the sequence {xn} constructed in

Example 3.3.13 is a fuzzy Z-contractive sequence which is not Cauchy.

3.4 Correction to Lemma 3.2 of [12]

Lemma 3.2 of [12] asserts that if {xn} is a ψ-contractive sequence satisfying∧
t>0M(x1, x2, t) > 0 then {xn} is Cauchy. Clearly, at the light of Example

3.3.13 this assertion is false. Nevertheless one can observe on the proof of

this lemma that this assertion is true if we assume that {xn} is strictly fuzzy

ψ-contractive.

Then, accordingly to the last paragraph, Corollary 3.8 and Lemma 3.12

of [12] must also be corrected as show the next propositions.

Proposition 3.4.1. (Correction of [12, Corollary 3.8]). Let (X,M, ∗) be a

fuzzy metric space such that
∧
t>0M(x, y, t) > 0 for all x, y ∈ X. Then every

strictly fuzzy ψ-contractive sequence is a Cauchy sequence.

Proposition 3.4.2. (Correction of [12, Lemma 3.12]). Let (X,M, ∗) be a

strong fuzzy metric space. Then every strictly fuzzy ψ-contractive sequence

is a Cauchy sequence.

Remark 3.4.3. The �xed point theorems of [12] remain valid, since the



66 Contractive sequences in fuzzy metric spaces

sequence of iterates
{
f (n)(x0)

}
for each x0 ∈ X, for a fuzzy ψ-contractive

mapping f of X, is a strictly fuzzy ψ-contractive sequence by Proposition

3.3.5.

At the light of Proposition 3.4.2, we propose to investigate the next ques-

tion.

Question 3.4.4. Is every strictly fuzzy ψ-contractive sequence a Cauchy

sequence?



Chapter 4

Fuzzy partial metric spaces

4.1 Introduction

In this chapter we approach the concept of (GV -)fuzzy partial metric as an

extension of the concept of partial metric to the fuzzy setting in the sense

of Kramosil and Michalek and in the George and Veeramani's one. These

extensions have been made in a natural way, but for establishing the triangle

inequality we have used the residuum operator →∗ associated to a continu-

ous t-norm (De�nition 1.1.1). This way of proceeding has been inspired by

Demirci [4, De�nition 13], without assuming any additional restrictions on

the continuous t-norm.

We start Section 4.2 de�ning the concept of (GV -)fuzzy partial metric

space (X,P, ∗) (De�nitions 4.2.1 and 4.2.2). As in the case of fuzzy metrics,

a GV -fuzzy partial metric can be regarded as a fuzzy partial metric (Remark

4.2.3). In Propositions 4.2.5 and 4.2.6 we introduce two GV -fuzzy partial

67
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metric spaces, deduced explicitly from a partial metric, while in Example

4.2.9 we introduce a fuzzy partial metric which is not explicitly deduced

from a classical partial metric. Example 4.2.7 shows that for a fuzzy partial

metric space (X,P, ∗), it is not true in general that the tern (X,P,♦) has to

be also a fuzzy partial metric, whenever ♦ ≤ ∗. Example 4.2.10 provides a

fuzzy partial metric which is not a GV -fuzzy partial metric.

In the beginning of Section 4.3 and motivated by Example 4.3.2, we de�ne

the concept of open ball BP centered at x ∈ X, with radius r ∈]0, 1[ and

parameter t ∈]0,+∞[ as BP (x, r, t) = {y ∈ X : P ′x,x,y(t) > 1 − r}, where
P ′x,x,y(t) = sup{P (x, x, s) →∗ P (x, y, s) : s ∈]0, t[}. Then, using Lemmas

4.3.4 and 4.3.6 we prove that the family B = {BP (x, r, t) : x ∈ X, r ∈
]0, 1[, t ∈]0,+∞[} is a base for a topology TP on X, and (X, TP ) is a T0-

space (Theorem 4.3.7). The possibility of re�ning the concept of open ball

in order to obtain a topology on X has ben posed as a question (Question

4.3.8), followed by a justifying remark.

4.2 Fuzzy partial metric spaces

The aim of this section is to extend properly the concept of partial metric

to the fuzzy setting. First, we will introduce the concept of (GV -)fuzzy

partial metric by means of continuous t-norms, which will be according to

the concept of (GV -)fuzzy metric.

De�nition 4.2.1. A fuzzy partial metric space is an ordered triple (X,P, ∗)
such that X is a (non-empty) set, ∗ is a continuous t-norm and P is a fuzzy

set on X ×X × [0,∞[ satisfying the following conditions, for all x, y, z ∈ X
and s, t ∈]0,∞[:
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(FPKM0) P (x, y, 0) = 0;

(FPKM1) P (x, y, t) ≤ P (x, x, t);

(FPKM2) P (x, x, t) = P (y, y, t) = P (x, y, t), for each t ∈]0,∞[, if and only

if x = y;

(FPKM3) P (x, y, t) = P (y, x, t);

(FPKM4) P (x, x, t+ s)→∗ P (x, z, t+ s) ≥

(P (x, x, t)→∗ P (x, y, t)) ∗ (P (y, y, s)→∗ P (y, z, s)) ;

(FPKM5) The assignment Px,y :]0,∞[→ [0, 1], given by Px,y(t) = P (x, y, t),

is a left-continuous function.

According to the notion of GV -fuzzy metric space we introduce the fol-

lowing de�nition.

De�nition 4.2.2. A GV -fuzzy partial metric space is an ordered triple

(X,P, ∗) such that X is a (non-empty) set, ∗ is a continuous t-norm and P

is a fuzzy set on X×X×]0,∞[ satisfying, for all x, y, z ∈ X and s, t ∈]0,∞[,

conditions (FPKM3), (FPKM4) and the following ones:

(FPGV1) 0 < P (x, y, t) ≤ P (x, x, t);

(FPGV2) P (x, x, t) = P (y, y, t) = P (x, y, t) if and only if x = y;

(FPGV5) The assignment Px,y :]0,∞[→]0, 1], given by Px,y(t) = P (x, y, t),

is a continuous function.

If (X,P, ∗) is a (GV -)fuzzy partial metric space we will say that (P, ∗),
or simply P , is a (GV -)fuzzy partial metric on X.
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Remark 4.2.3. As in the case of fuzzy metrics, a GV -fuzzy partial metric

can be regarded as a fuzzy partial one de�ning P (x, y, 0) = 0 for each x, y ∈
X. The purpose of this paper is to introduce a topology on a non-empty

set X deduced from a (GV -)fuzzy partial metric on X. Now, as the reader

will be able to observe, the value P (x, y, 0) does not play any role in our

construction and then the results that we will state for fuzzy partial metric

spaces will be also valid for GV -fuzzy partial metrics.

Note that the above notions are generalizations of the concepts of fuzzy

metric space and GV -fuzzy metric space, respectively. Indeed, one can show

that a fuzzy metric (M, ∗) on a non-empty set X is a fuzzy partial metric

satisfying the additional condition below, for each x ∈ X:

M(x, x, t) = 1 for each t ∈]0,∞[.

After introducing both approaches, to the fuzzy context, of the notion of

partial metric, we will justify the axiomatic that has been chosen for them.

We only make such observations on the notion of fuzzy partial metric space,

since for the George and Veeramani's approach they can be deduced similarly.

Remark 4.2.4. One can observe that the axioms (FPKM1), (FPKM2) and

(FPKM3) are �literal� adaptations to the fuzzy context (following the ideas

of the notion of fuzzy metric space introduced by Kramosil and Michalek) of

axioms (P1), (P2) and (P3), respectively (De�nition 1.3.2). Attending to

Remark 1.3.3, the (FPKM4) axiom is an adaptation of the inequality (P4).

Finally, we have included axiom (FPKM5) for the sake of similarity with

fuzzy metric spaces.

After justifying the axioms chosen in the de�nition of fuzzy partial met-

ric, we continue our study introducing two propositions that provide two

examples of GV -fuzzy partial metric spaces, which generalize, in some sense,
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the GV -fuzzy metric spaces recalled in expressions (1.2.6) and (1.2.5), re-

spectively.

Proposition 4.2.5. Let (X, p) be a partial metric space. We de�ne the fuzzy

set on X ×X×]0,∞[ as follows

Pe(x, y, t) = e−
p(x,y)
t .

Then, (X,Pe, ∗P ) is a GV -fuzzy partial metric space.

Proof. Let (X, p) be a partial metric space and let Pe the function given by

Pe(x, y, t) = e−p(x,y)/t, for each x, y ∈ X, t ∈]0,∞[.

Let x, y, z ∈ X and t, s ∈]0,∞[. We will see that Pe satis�es all the axioms

of De�nition 4.2.2.

(FPGV1) Note that 0 < e−
p(x,y)
t ≤ e−

p(x,x)
t ≤ 1, since 0 ≤ p(x, x) ≤ p(x, y).

(FPGV2) On the one hand, Pe(x, x, t) = Pe(y, y, t) = Pe(x, y, t) implies e−
p(x,x)
t =

e−
p(y,y)
t = e−

p(x,y)
t . Then, p(x, x) = p(y, y) = p(x, y) and so x = y. On

the other hand, if x = y, it is obvious that Pe(x, x, t) = Pe(y, y, t) =

Pe(x, y, t).

(FPKM3) It is obvious, since p(x, y) = p(y, x).

(FPKM4) Recall that the function fP , where fP (x) = − log(x) for each x ∈ [0, 1],

is an additive generator of the usual product t-norm (it was observed in

[37]). Now, an easy computation shows that the function f
(−1)
P , given

by f
(−1)
P (y) = e−y for each y ∈ [0,∞[, is the pseudo-inverse of fP .

Let u, v ∈ X and r ∈]0,∞[. Attending to formula (1.7) in Section 1.1

we have that

Pe(u, u, r)→∗P Pe(u, v, r) = f
(−1)
P (fP (Pe(u, v, r))− fP (Pe(u, u, r))) =
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= f
(−1)
P

(
− log

(
e−

p(u,v)
r

)
+ log

(
e−

p(u,u)
r

))
=

f
(−1)
P

(
p(u, v)

r
− p(u, u)

r

)
= e−

p(u,v)−p(u,u)
r .

Then, using Remark 1.3.3 we have that

Pe(x, x, t+s)→∗P Pe(x, z, t+s) = e−
p(x,z)−p(x,x)

t+s ≥ e−
p(x,y)−p(x,x)+p(y,z)−p(y,y)

t+s ≥

≥ e−
p(x,y)−p(x,x)+p(y,z)−p(y,y)

max{t,s} ≥ e−
p(x,y)−p(x,x)

t ∗P e−
p(y,z)−p(y,y)

s =

= (Pe(x, x, t)→∗P Pe(x, y, t)) ∗P (Pe(y, y, s)→∗P Pe(y, z, s)) .

(FPGV5) Obviously, the function (Pe)x,y(t) = e−
p(x,y)
t is a continuous function

on ]0,∞[, for each x, y ∈ X.

Hence, (X,P, ∗P ) is a GV -fuzzy partial metric space.

Following the same ideas of the last proof one can prove the following

proposition.

Proposition 4.2.6. Let (X, p) be a partial metric space. We de�ne the fuzzy

set on X ×X×]0,∞[

Pd(x, y, t) =
t

t+ p(x, y)
.

Then, (X,Pd, ∗H) is a GV -fuzzy partial metric space.

Proof. Indeed,

(PGV1) As p(x, x) ≤ p(x, y) P (x, x, t) = t
t+p(x,x) ≥

t
t+p(x,y) = P (x, y, t) > 0.
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(PGV2) If x = y, we have that P (x, y, t) = t
t+p(x,y) = t

t+p(y,y) = P (y, y, t).

Analogously, P (x, y, t) = P (x, x, t). On the other hand, if P (x, y, t) =

P (x, x, t), we have that t
t+p(x,y) = t

t+p(x,x) . Hence, p(x, y) = p(x, x).

Analogously, p(x, y) = p(y, y). Therefore, x = y.

(PGV3) P (x, y, t) = t
t+p(x,y) = t

t+p(y,x) = P (y, x, t).

(PGV4) We have to show that

P (x, x, t+s)→∗ P (x, z, t+s) ≥ P (x, x, t)→∗ P (x, y, t)∗HP (y, y, s)→∗ P (y, z, s).

First, we compute P (x, x, t)→∗ P (x, y, t):

P (x, x, t)→∗ P (x, y, t) = sup{z ∈ [0, 1] :
t

t+ p(x, x)
∗H z =

t

t+ p(x, y)
}

t

t+ p(x, x)
∗H z =

t

t+ p(x, y)
tz

t+p(x,x)

z + t
t+p(x,x) −

tz
t+p(x,x)

=
t

t+ p(x, y)

z
t+p(x,x)z
t+p(x,x)

=
t+ p(x, x)

t+ p(x, y)

z =
t+ p(x, x)z

t+ p(x, y)
=

t

t+ p(x, y)
+

p(x, x)

t+ p(x, y)
z

z

(
1− p(x, x)

t+ p(x, y)

)
=

t

t+ p(x, y)

z

(
t+ p(x, y)− p(x, x)

t+ p(x, y)

)
=

t

t+ p(x, y)

z =
t

t+ p(x, y)− p(x, x)
.

Hence, if we denote q(x, y) = p(x, y)−p(x, x), as q(x, y) is the classical

quasi-metric deduced from p, we have to prove the following inequality:

t+ s

t+ s+ q(x, z)
≥ t

t+ q(x, y)
∗H

s

s+ q(y, z)

=
ts

ts+ sq(x, y) + tq(y, z)
.



74 Fuzzy Partial Metric Spaces

By a simple computation, we get

t+ s

t+ s+ q(x, z)
≥ ts

ts+ sq(x, y) + tq(y, z)

(t+ s)ts+ (t+ s)sq(x, y) + (t+ s)tq(y, z) ≥ ts(t+ s)tsq(x, z)

ts(q(x, y) + q(y, z)) + s2q(x, y) + t2q(y, z) ≥ tsq(x, z),

which is true because tsq(x, z) ≤ ts(q(x, y) + q(y, z)). Hence, (PGV4)

is satis�ed.

(PGV5) The assignment P (x, y, t) = t
t+p(x,y) is clearly continuous for t > 0.

Hence, (X, ∗H , P ) is a fuzzy partial metric space.

Moreover, we could show that both examples, presented in Proposition

4.2.5 and Proposition 4.2.6, are GV -fuzzy partial metrics for the minimum

t-norm too. Nevertheless, in the next example we will show that the fuzzy

set Pd introduced in Proposition 4.2.6 is not a fuzzy partial metric on X for

the Lukasievicz t-norm, in general.

Example 4.2.7. Let (X, p) be the partial metric space, where X = [0,∞[

and p(x, y) = max{x, y} for each x, y ∈ X, and consider the fuzzy set Pd on

X ×X×]0,∞[ given by Pd(x, y, t) = t
t+p(x,y) . We will see that (X,Pd, ∗L) is

not a GV -fuzzy partial metric space. Indeed, we will show that Pd does not

satisfy axiom (FPKM4) for the Lukasievicz t-norm.

Let u, v ∈ X and r ∈]0,∞[. By formula (1.5), we have that

Pd(u, u, r)→∗L Pd(u, v, r) = 1 +
r

r + max{u, v}
− r

r + u
.

Now, consider x = 1; y = 2; z = 10 and t = s = 1. By the last expression,

Pd(x, x, t+s)→∗L Pd(x, z, t+s) = 1+
1 + 1

1 + 1 + 10
− 1 + 1

1 + 1 + 1
= 1+

1

6
−2

3
=

1

2
,
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and

(Pd(x, x, t)→∗L Pd(x, y, t)) ∗L (Pd(y, y, s)→∗L Pd(y, z, s)) =

=

(
1 +

1

1 + 2
− 1

1 + 1

)
+

(
1 +

1

1 + 10
− 1

1 + 2

)
− 1 =

1

2
+

1

11
.

Therefore, in this case, we have that Pd (x, x, t+ s) →∗L Pd (x, z, t+ s) <

(Pd (x, x, t)→∗L Pd (x, y, t)) ∗L (Pd (y, y, s)→∗L Pd (y, z, s)) .

Remark 4.2.8. Since ∗H ≥ ∗L, the preceding example shows a signi�cant

di�erence between fuzzy metrics and fuzzy partial ones. Indeed, given a fuzzy

partial metric space (X,P, ∗) it is not true, in general, that the tern (X,P, �)
has to be also a fuzzy partial metric space, whenever � ≤ ∗.

The following example shows a fuzzy partial metric which is not explicitly

deduced from a classical partial metric.

Example 4.2.9. Let X =]0, 1]. We de�ne the fuzzy set P on X×X× [0,∞[

by the next expression

P (x, y, t) =

{
min{x, y} · t2

t+1 , if x 6= y, t ∈]0, 1];

min{x, y} · t
t+1 , elsewhere.

We will see that (X,P,∧) is a fuzzy partial metric space.

(FPKM0) By de�nition, P (x, y, 0) = min{x, y} · 01 = 0 for every x, y ∈ X.

(FPKM1) Take x, y ∈ X with x 6= y. We will distinguish two cases.

1. Suppose that t ∈]0, 1].

First, note that P (x, x, t) = x· t
t+1 < 1 and P (x, y, t) = min{x, y}·

t2

t+1 > 0.

Then,

1 > P (x, x, t) = x · t

t+ 1
≥ min{x, y} · t2

t+ 1
= P (x, y, t) > 0.
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2. Now, suppose that t ∈]1,∞[. Then, P (x, x, t) = x · t
t+1 < 1 and

P (x, y, t) = min{x, y} · t
t+1 > 0, and so

1 > P (x, x, t) = x · t

t+ 1
≥ min{x, y} · t

t+ 1
= P (x, y, t) > 0.

Thus, for each x, y ∈ X and t ∈]0,∞[ it is satis�ed 0 < P (x, y, t) ≤
P (x, x, t) ≤ 1.

(FPKM2) Obviously, if x = y, then P (x, x, t) = P (y, y, t) = P (x, y, t). Con-

versely, let x, y ∈ X and t ∈]0,∞[ satisfying P (x, x, t) = P (y, y, t) =

P (x, y, t). Then,

P (x, x, t) = x · t

t+ 1
= y · t

t+ 1
= P (y, y, t),

and so x = y.

(FPKM3) It is obvious by de�nition of P .

(FPKM4) Let x, y, z ∈ X and t, s ∈]0,∞[. Suppose that x 6= z, since if x = z this

axiom is clearly held. We will distinguish two possibilities:

1. Suppose that t+ s ∈]0, 1]. On the one hand, an easy computation

shows that
(t+ s)2

1 + t+ s
≥ max

{
t2

1 + t
,
s2

1 + s

}
.

On the other hand,

P (x, x, t+ s)→∧ P (x, z, t+ s) = min{x, z} · (t+ s)2

t+ s+ 1
.

Now, if x = y (or similarly, y = z), then

(P (x, x, t)→∧ P (x, y, t))∧(P (y, y, s)→∧ P (y, z, s)) = min{x, z}· s
2

1 + s
.

Thus, (FPKM4) is held.
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Contrary, if x 6= y and y 6= z, then

(P (x, x, t)→∧ P (x, y, t)) ∧ (P (y, y, s)→∧ P (y, z, s)) =(
min{x, y} · t2

1 + t

)
∧
(

min{y, z} · s2

s+ 1

)
≤

≤
(

min{x, y} ·max

{
t2

1 + t
,
s2

1 + s

})
∧
(

min{y, z} ·max

{
t2

1 + t
,
s2

1 + s

})
≤

≤ min{x, z} ·max

{
t2

1 + t
,
s2

1 + s

}
≤ min{x, z} · (t+ s)2

1 + t+ s
=

= P (x, x, t+ s)→∧ P (x, z, t+ s),

and so, (FPKM4) is ful�lled too.

2. Suppose that t + s ∈]1,∞[. In such a case, observe that x ≤ z

implies P (x, x, t + s) = P (x, z, t + s). Then P (x, x, t + s) →∧
P (x, z, t + s) = 1 and so, the triangle inequality is held. Thus,

suppose that x > z. Besides, assume that y 6= x and y 6= z, since

contrary the inequality is ful�lled obviously. On the one hand,

P (x, x, t+ s)→∧ P (x, z, t+ s) = z · t+ s

t+ s+ 1
.

On the other hand, we claim that

(P (x, x, t)→∧ P (x, y, t)) ∧ (P (y, y, s)→∧ P (y, z, s)) ≤

≤ max{y, z} ·min{ t

t+ 1
∧ s

s+ 1
}.

To show it, we will distinguish three cases:

(a) Suppose that y > x. Then,

P (x, x, t)→∧ P (x, y, t) =

{
x · t2

t+1 , if x 6= y, t ∈]0, 1];

1, elsewhere.

and

P (y, y, s)→∧ P (y, z, s) =

{
z · s2

s+1 , if x 6= y, s ∈]0, 1];

z · s
s+1 , elsewhere.
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Then, (P (x, x, t)→∧ P (x, y, t))∧ (P (y, y, s)→∧ P (y, z, s)) ≤
z · s

s+1 ≤ min{y, z} ·max
{

t
t+1 ,

s
s+1

}
.

(b) Suppose that x > y > z. Then,

P (x, x, t)→∧ P (x, y, t) =

{
y · t2

t+1 , if x 6= y, t ∈]0, 1];

y · t
t+1 , elsewhere.

and

P (y, y, s)→∧ P (y, z, s) =

{
z · s2

s+1 , if x 6= y, s ∈]0, 1];

z · s
s+1 , elsewhere.

Then, (P (x, x, t)→∧ P (x, y, t))∧ (P (y, y, s)→∧ P (y, z, s)) ≤
z · s

s+1 ≤ min{y, z} ·max
{

t
t+1 ,

s
s+1

}
.

(c) Suppose that x > z > y. Then,

P (x, x, t)→∧ P (x, y, t) =

{
y · t2

t+1 , if x 6= y, t ∈]0, 1];

y · t
t+1 , elsewhere.

and

P (y, y, s)→∧ P (y, z, s) =

{
y · s2

s+1 , if x 6= y, s ∈]0, 1];

1, elsewhere.

Then, (P (x, x, t)→∧ P (x, y, t))∧ (P (y, y, s)→∧ P (y, z, s)) ≤
y ·max

{
t
t+1 ,

s
s+1

}
≤ min{y, z} ·max

{
t
t+1 ,

s
s+1

}
.

Therefore, since z · t+s
t+s+1 ≥ min{y, z} · max

{
t
t+1 ,

s
s+1

}
we have

that (FPKM4) is satis�ed.

(FPKM5) By de�nition of P , it is easy to verify that Px,y given by Px,y(t) =

P (x, y, t), is, obviously, a (non-decreasing) continuous function on [0,+∞[,

for each x, y ∈ X.

Hence, (X,P,∧) is a fuzzy partial metric space.

The next example provides a fuzzy partial metric which is not a GV -fuzzy

partial one.
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Example 4.2.10. Let (X, d) be a metric space and let c ∈]0, 1]. We de�ne

the fuzzy set on X ×X × [0,∞[ as follows

P0(x, y, t) =

{
0, if d(x, y) ≥ t;
c, if d(x, y) < t.

We will see that (X,P0,∧) is a fuzzy partial metric space.

Proof. Let x, y, z ∈ X and t, s ∈]0,∞[. We will prove that (X,P0,∧) satis�es

the axioms of De�nition 4.2.1.

(FPKM0) P0(x, y, 0) = 0 since d(x, y) ≥ 0 for every x, y ∈ X.

(FPKM1) Observe that P0(x, x, t) = c, for each t ∈]0,∞[, since d(x, x) = 0 < t.

Then, for each x, y ∈ X and t ∈]0,∞[ we have that P0(x, y, t) ≤
P0(x, x, t).

(FPKM2) Let x, y ∈ X. On the one hand, by the last observation P0(x, x, t) =

P0(y, y, t) = P0(x, y, t) for each t ∈]0,∞[, implies P0(x, y, t) = c for

each t ∈]0,∞[, and so, by de�nition of P0 we have that d(x, y) = 0.

Thus x = y. On the other hand, if x = y, it is obvious that P0(x, x, t) =

P0(y, y, t) = P0(x, y, t).

(FPKM3) It is obvious, since d(x, y) = d(y, x).

(FPKM4) First of all, attending to formula (1.3) in Subsection 1.1, by de�nition

of P0 we have that

P0(u, u, r)→∧ P0(u, v, r) =

{
0, if d(u, v) ≥ r;
1, if d(u, v) < r,

for each u, v ∈ X and each r ∈]0,∞[.
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Let M0(x, y, t) = P0(x, x, t) →∧ P0(x, y, t). Then, given x, y, z ∈ X

and t, s ∈]0,∞[, we have that

M0(x, z, t+ s) =

{
0, if d(x, z) ≥ t+ s;

1, if d(x, z) < t+ s,

Therefore, if d(x, z) < t+ s, the inequality

M0(x, z, t+ s) ≥M0(x, y, t) ∧M(y, z, s)

is ful�lled for every x, y, z ∈ X and t, s > 0. Alternatively, if d(x, y) ≥
t+s, since d(x, z) ≤ d(x, y)+d(y, z) for every x, y, z ∈ X, we have that

d(x, y) ≥ t or d(y, z) ≥ s. In that case, M0(x, y, t) = 0 or M0(y, z, s) =

0. Hence, (FPKM4) is also satis�ed.

(FPKM5) By de�nition, the assignment (P0)x,y(t) is a left-continuous function on

]0,∞[, for each x, y ∈ X.

However, (P0)x,y is not continuous whenever x 6= y, and consequently

P0 is not a GV -fuzzy partial metric.

We �nish this section providing another signi�cant di�erence between

(GV -)fuzzy metrics and (GV -)fuzzy partial metrics. Such a di�erence is

given by the fact that, for each x, y ∈ X, the function Px,y de�ned in the

axiom (FPKM5) is not increasing, in general.

Example 4.2.11. Consider the set X = R and the usual product t-norm

∗P . We de�ne a fuzzy set P on X ×X × [0,∞[ given by

P (x, y, t) =


0, if t = 0;

e−t, if x = y;
1
2e
−t, if x 6= y.
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It is not hard to check that (X,P, ∗P ) is a fuzzy partial metric space. In-

deed, (FPKM0)-(FPKM3) are obviously ful�lled by P attending to its de�ni-

tion. To show (FPKM4), consider x, y, z ∈ X, with x 6= z (since, contrarily,

P (x, x, t + s) →∗P P (x, z, t + s) = 1 and so, the inequality is satis�ed) and

t, s ∈]0,∞[. On account of formula (1.4) in Subsection 1.1,

P (x, x, t+ s)→∗P P (x, z, t+ s) =
1

2
.

Now, by our assumption, at least x 6= y or z 6= y, and so

(P (x, x, t)→∗P P (x, y, t)) ∗P (P (y, y, s)→∗P P (y, z, s)) ≤ 1

2
.

Therefore, (FPKM4) is also held.

Obviously, Px,y is a continuous function for each x, y ∈ X, which is not

increasing.

4.3 Topology induced by a fuzzy partial metric

The aim of this section is to de�ne a topology deduced from a fuzzy partial

metric. Such a topology is de�ned by means of open balls, in a similar way to

the classical case. Based on the notions of open ball, both in partial metrics

and fuzzy ones, it seems natural to de�ne the concept of open ball in a fuzzy

partial metric space as follows:

De�nition 4.3.1. Let (X,P, ∗) be a fuzzy metric space, the open ball B̃P

centred at x ∈ X, with radius r ∈]0, 1[ and parameter t ∈]0,∞[ is de�ned by

the next expression:

B̃P (x, r, t) = {y ∈ X : P (x, x, t)→∗ P (x, y, t) > 1− r}. (4.1)
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Observe that, for each x, y ∈ X, the assignment Px,x,y :]0,∞[→ [0, 1] is a

well-de�ned function, where Px,x,y is given by

Px,x,y(t) = P (x, x, t)→∗ P (x, y, t), for each t ∈]0,∞[.

Indeed, Px,x,y(t) = sup{c ∈ [0, 1] : P (x, x, t) ∗ c = P (x, y, t)}, which is

unique. Furthermore, as a consequence of the axiom (FPKM4) in De�nition

4.2.1, we can deduce that, for each x, y ∈ X, the function Px,x,y is non-

decreasing. However, such a function is not left-continuous in general, as

shows the following example.

Example 4.3.2. Let (X,P,∧) be the fuzzy partial metric space of Example

4.2.9. Consider x = 1
4 and y = 1

2 . Then, P (x, x, t) = t
4(t+1) for each t ∈]0,∞[

and

P (x, y, t) =

 t2

4(t+1) , if t ∈]0, 1];

t
4(t+1) , elsewhere.

Therefore, attending to equation (1.3) the function Px,x,y is given by

Px,x,y(t) =

{
t2

4(t+1) , if t ∈]0, 1[;

1, if t ∈ [1,∞[,

which is not left-continuous at t = 1.

In our next construction of a topology TP deduced from P we shall need

left-continuity for Px,x,y. To overcome this lack of left-continuity of the func-

tion Px,x,y, in general, we propose to de�ne the open balls in a fuzzy partial

metric space as follows.

De�nition 4.3.3. Let (X,P, ∗) be a fuzzy partial metric space. We de�ne

the open ball BP centred at x ∈ X, with radius r ∈]0, 1[ and parameter

t ∈]0,∞[ by the next expression:

BP (x, r, t) = {y ∈ X : P ′x,x,y(t) > 1− r}, (4.2)

where P ′x,x,y(t) = sup{P (x, x, s)→∗ P (x, y, s) : s ∈]0, t[}.
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Attending to the above observations on the assignment Px,x,y(t), it is not

hard to check that P ′x,x,y is a non-decreasing function on ]0,∞[, for each

x, y ∈ X. Furthermore, P ′x,x,y is left-continuous, for each x, y ∈ X, as shows

the next lemma.

Lemma 4.3.4. Let (X,P, ∗) be a fuzzy partial metric space. For each x, y ∈
X, the function P ′x,x,y :]0,∞[→ [0, 1] given by

P ′x,x,y(t) = sup{P (x, x, s)→∗ P (x, y, s) : s ∈]0, t[}, for each t ∈]0,∞[,

is left-continuous.

Proof. Take x, y ∈ X. We de�ne, for each t ∈]0,∞[, the function

P ′x,x,y(t) = sup{P (x, x, s)→∗ P (x, y, s) : s ∈]0, t[}.

Let t0 ∈]0,∞[. Since (P (x, x, s2)→∗ P (x, y, s2)) ≥ (P (x, x, s1)→∗ P (x, y, s1)),

whenever s1, s2 ∈]0,∞[ with s2 > s1, and attending to the de�nition of P
′
x,x,y,

we deduce that for each ε > 0 there exists s0 ∈]0, t0[ such that

P (x, x, s0)→∗ P (x, y, s0) > P ′x,x,y(t0)− ε.

Then, by the last inequality, we have that

P (x, x, s)→∗ P (x, y, s) > P ′x,x,y(t0)− ε, for each s ∈ [s0, t0].

Therefore, given ε > 0 there exists δ > 0, with δ = t0 − s0, such that

P ′x,x,y(t) = sup{P (x, x, s)→∗ P (x, y, s) : s ∈]0, t[} > P ′x,x,y(t0)− ε,

for each t ∈]t0 − δ, t0]. Thus, P ′x,x,y is left continuous at t0, and since t0 is

arbitrary then P ′x,x,y is left-continuous on ]0,∞[.

Remark 4.3.5. Observe that if, for each x, y ∈ X, the function Px,x,y is

left-continuous, then B̃P (x, r, t) = BP (x, r, t), for each x ∈ X, r ∈]0, 1[ and

t ∈]0,∞[.
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Lemma 4.3.6. Let (X,P, ∗) be a fuzzy partial metric space. Then, for each

x, y, z ∈ X and each t, s ∈]0,∞[ it is satis�ed the following:

P ′x,x,z(t+ s) ≥ P ′x,x,y(t) ∗ P ′y,y,z(s).

Proof. Let x, y, z ∈ X and t, s ∈]0,∞[. Consider t′ ∈]0, t[ and s′ ∈]0, s[.

Then,

P ′x,x,z(t+ s) ≥ P (x, x, t′ + s′)→∗ P (x, z, t′ + s′)

≥
(
P (x, x, t′)→∗ P (x, y, t′)

)
∗
(
P (y, y, s′)→∗ P (y, z, s′)

)
.

Since t′ ∈]0, t[ and s′ ∈]0, s[ are arbitrary then

P ′x,x,z(t+ s) ≥ sup
0<t′<t

{P (x, x, t′)→∗ P (x, y, t′)} ∗ sup
0<s′<s

{P (y, y, s′)→∗ P (y, z, s′)}

= P ′x,x,y(t) ∗ P ′y,y,z(s).

Now, we are able to show the main goal of this section. We have included

the proof for the sake of completeness and because of its particularities.

Theorem 4.3.7. Let (X,P, ∗) be a fuzzy partial metric space. Then, the

family of open balls

B = {BP (x, r, t) : x ∈ X, r ∈]0, 1[, t ∈]0,∞[} (4.3)

forms a base of a topology TP , which is T0.

Proof. Let x1, x2 ∈ X, r1, r2 ∈]0, 1[, t1, t2 ∈]0,∞[ and consider the open balls

BP (x1, r1, t1) and BP (x2, r2, t2).
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We will show that for each y ∈ BP (x1, r1, t1)∩BP (x2, r2, t2) we can �nd

r ∈]0, 1[ and t ∈]0,∞[ satisfying BP (y, r, t) ⊂ BP (x1, r1, t1) ∩BP (x2, r2, t2).

Let y ∈ BP (x1, r1, t1) ∩ BP (x2, r2, t2). Then, by de�nition of open ball,

we have that

P ′x1,x1,y(t1) > 1− r1 and P ′x2,x2,y(t2) > 1− r2.

On the one hand, we can �nd r′1 ∈]0, r1[ and r
′
2 ∈]0, r2[ such that

P ′x1,x1,y(t1) > (1− r′1) and P ′x2,x2,y(t2) > (1− r′2).

And, on the other hand, since the functions P ′x1,x1,y and P ′x2,x2,y are non-

decreasing left-continuous functions on ]0,∞[, then we can �nd t′1 ∈]0, t1[

and t′2 ∈]0, t2[ satisfying

P ′x1,x1,y(t
′
1) > (1− r′1) and P ′x2,x2,y(t

′
2) > (1− r′2).

Now, since ∗ is continuous, there exist r′′1 ∈]0, 1[ and r′′2 ∈]0, 1[ such that

(1− r′1) ∗ (1− r′′1) > (1− r1) and (1− r′2) ∗ (1− r′′2) > 1− r2, respectively.

Take r = min{r′′1 , r′′2} and t = min{t1 − t′1, t2 − t′2}. We will see that

BP (y, r, t) ⊂ BP (x1, r1, t1) ∩ BP (x2, r2, t2). Indeed, take z ∈ BP (y, r, t),

then applying Lemma 4.3.6 in the �rst inequality and the monotony of the

function P ′x1,x1,y in the second one, we have that

P ′x1,x1,z(t1) ≥
(
P ′x1,x1,y(t

′
1)
)
∗
(
P ′y,y,z(t1 − t′1)

)
≥
(
P ′x1,x1,y(t

′
1)
)
∗
(
P ′y,y,z(t)

)
≥

≥ (1− r′1) ∗ (1− r) ≥ (1− r′1) ∗ (1− r′′1) > (1− r1),

and so z ∈ BP (x1, r1, t1).

Analogously, one can prove that z ∈ BP (x2, r2, t2). Hence, B is a base of

a topology TP .
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Finally, we will prove that (X, TP ) is a T0-space. Indeed, if x 6= y,

there exists t0 ∈]0,∞[ such that P ′x,x,y(t0) < 1 or P ′y,y,x(t0) < 1. Con-

trary, P ′x,x,y(t) = P ′x,x,y(t) = 1, for each t ∈]0,∞[, that implies P (x, x, t) =

P (x, y, t) = P (y, y, t), for each t ∈]0,∞[, which is equivalent to x = y. Sup-

pose that P ′x,x,y(t0) = 1 − r0 < 1. Let r1 < r0 < 1. Then y 6∈ BP (x, r1, t0),

and so (X, TP ) is a T0-space.

Concerning the above theorem, given a fuzzy partial metric P on a non-

empty set X, we will say that TP is the topology deduced from P or induced

by P .

Coming back to the fuzzy partial metric case, as it has been shown in

Example 4.3.2, axioms (FPKM1)-(PKM5) do not ensure the left-continuity

of the function Px,x,y. Nevertheless, in such an example, one can verify that

we are able to de�ne a topology on X deduced from P , which has as a base

the family of open balls B̃P . It is due to the fact that the fuzzy partial metric

P , de�ned in Example 4.2.9, satis�es in addition the next condition, for each

x, y, z ∈ X and each t ∈]0,∞[,

P (x, x, t)→∗ P (x, z, t) ≥ (P (x, x, t)→∗ P (x, y, t))∗(P (y, y, t)→∗ P (y, z, t)) .

So, the above comments motivate the next question.

Question 4.3.8. Let (X,P, ∗) be a fuzzy metric space. Can we de�ne a

topology on X which has as a base the family{
B̃P (x, r, t) : x ∈ X, r ∈ ]0, 1[ , t ∈ ]0,∞[

}
?

Remark 4.3.9. Example 4.3.2 shows a fuzzy partial metric such that Px,x,y

is not a left-continuous function but the family{
B̃P (x, r, t) : x ∈ X, r ∈ ]0, 1[ , t ∈ ]0,∞[

}
de�nes a topology on X.



Chapter 5

A duality relationship between

fuzzy partial metrics and fuzzy

quasi-metrics

5.1 Introduction

In addition to introduce the notion of partial metric in [6], Matthews showed

a duality relationship between partial metrics and quasi-metrics. Such a

relationship is given by the fact that, from each partial metric p on a non-

empty set X we can construct a quasi-metric qp on X de�ning qp(x, y) =

p(x, y)− p(x, x), for each x, y ∈ X. In order to obtain a similar construction

in the converse case, Matthews introduced the notion of weighted quasi-

metric space. Following [6], a weighted quasi-metric space is a tern (X, q, w),

where q is a quasi-metric on X and w is a function de�ned on X satisfying,

for each x, y ∈ X, the following conditions:

87
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(w1) w(x) ≥ 0;

(w2) q(x, y) + w(x) = q(y, x) + w(y).

Then, Matthews established a way to construct a partial metric from a given

weighted quasi-metric space (X, q, w), de�ning a partial metric pq on X given

by pq(x, y) = q(x, y) + w(x), for each x, y ∈ X.

Besides, Matthews showed that both constructions preserve the topology.

Indeed, given a partial metric space (X, p) then, T (p) = T (qp). Conversely,

given a weighted quasi-metric space (X, q, w) then, T (q) = T (pq).

Based on the duality relationship exposed above, the aim of this chapter

is to retrieve the above relationship in the fuzzy setting. On account of the

de�nition of fuzzy partial metric space introduced in Chapter 4, given a fuzzy

partial metric (P, ∗) on X, P (x, y, t) can take the value 0 for some x, y ∈ X
and t > 0. This fact can be translated to the classical case assuming that,

given a partial metric p on X, p(x, y) can take the value∞ for some x, y ∈ X.

In its study, Matthews did not consider such a case. So, we have avoided

to consider the Kramosil and Michalek's sense to provide a �rst approach to

retrieve the classical relationship between partial metrics and quasi-metrics.

Hence, in Section 5.2 we focus on the notion of GV -fuzzy partial metric

introduced in Chapter 4 and a concept of fuzzy quasi-metric given by Gregori

and Romaguera in [24] (De�nition 5.2.1). We introduce two examples of

GV -fuzzy metrics that are a generalization of the standard and exponential

fuzzy metrics (Example 5.2.2), and then we give a way to de�ne a GV -fuzzy

quasi-metric (X,QP , ∗) from a GV -fuzzy partial metric (X,P, ∗), where ∗
is a continuous, Archimedean t-norm (Theorem 5.2.3). Also, we prove, as

a consequence of Proposition 5.2.5, that the topology induced by this GV -

fuzzy quasi-metric is the same as the topology induced by the GV -fuzzy

partial metric space.
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In Section 5.3, we generalize the concept of weighted quasi-metric to the

fuzzy context (De�nition 5.3.1), in order to give a way to de�ne a GV -fuzzy

partial metric from a GV -fuzzy weighted quasi-metric space (Theorem 5.3.4).

Through the chapter, the continuous t-norm that we use to de�ne the GV -

fuzzy partial metric and quasi-metric spaces is demanded to be Archimedean.

This fact is justi�ed in Example 5.3.6. Moreover, it is proved that the

GV -fuzzy quasi-metric deduced from a GV -fuzzy partial metric is weigh-

able (Theorem 5.3.7) and thus, both Sections 5.2 and 5.3 de�ne a duality

between GV -fuzzy partial metric spaces and GV -fuzzy quasi-metric spaces.

5.2 From GV -fuzzy partial metrics to GV -fuzzy

(quasi-)metrics

In this section, we provide a way of constructing a GV -fuzzy quasi-metric

from a GV -fuzzy partial metric. To get such an aim, we are based on the

classical techniques given by Matthews in [6].

We begin recalling the concept of GV -fuzzy quasi-metric introduced by

Gregori and Romaguera [24].

De�nition 5.2.1. A GV -fuzzy quasi-metric space is a tern (X,Q, ∗) such

that X is a non-empty set, ∗ is a continuous t-norm and Q is a fuzzy set on

X × X×]0,+∞) satisfying the following conditions, for all x, y, z ∈ X and

t, s ∈]0,∞[:

(QGV1) Q(x, y, t) > 0;

(QGV2) Q(x, y, t) = Q(y, x, t) = 1 if and only if x = y;

(QGV3) Q(x, z, t+ s) ≥ Q(x, y, t) ∗Q(y, z, s);
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(QGV4) The assignment Qx,y :]0,+∞[→]0, 1], given by Qx,y(t) = Q(x, y, t)

for each t ∈]0,+∞[, is a continuous function.

In such a case, (Q, ∗), or simply Q, is called a GV -fuzzy quasi-metric on X.

In addition, Gregori and Romaguera proved in [24] that every fuzzy quasi-

metric Q on X generates a T0 topology TQ on X which has as a base the

family of open sets of the form {BQ(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where
BQ(x, ε, t) = {y ∈ X : Q(x, y, t) > 1− ε} for all x ∈ X, ε ∈]0, 1[ and t > 0.

Before providing the aformetnioned construction, we introduce two ex-

amples of GV -fuzzy quasi-metric spaces. They generalize, in some sense, the

standard and exponential fuzzy metric spaces deduced from a classic metric

(see [7]). Both examples will be useful later.

Example 5.2.2. (i) Let (X, q) be a quasi-metric space. We de�ne the

fuzzy set Qe on X ×X×]0,∞[ as follows

Qe(x, y, t) = e−
q(x,y)
t .

Then, (X,Qe,∧) is a GV -fuzzy partial metric space which we call ex-

ponential GV -fuzzy quasi-metric space deduced from q.

We will see that Qe satis�es, for each x, y, z ∈ X and t > 0, axioms

(QGV 1)− (QGV 4).

(QGV1) Qe(x, y, t) = e−
q(x,y)
t > 0 for every x, y ∈ X, t > 0.

(QGV2) If x = y, then

Qe(x, y, t) = e−
q(x,y)
t = e0 = 1,

Qe(y, x, t) = e−
q(y,x)
t = e0 = 1.
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Therefore Qe(x, y, t) = Qe(y, x, t) = 1. Conversely, if Qe(x, y, t) =

Qe(y, x, t) = 1, then

e−
q(x,y)
t = e−

q(y,x)
t = 1,

q(x, y)

t
=
q(y, x)

t
= 0,

q(x, y) = q(y, x) = 0,

hence x = y.

(QGV3) We have to prove that Qe(x, z, t+ s) ≥ Qe(x, y, t) ∧Qe(y, z, s).

Suppose that Qe(x, y, t) ≥ Qe(y, z, s). Then, e−
q(x,y)
t ≥ e−

q(y,z)
s ,

or equivalently, sq(x, y) ≤ tq(y, z). So, in this case, the next

inequality

Qe(x, z, t+ s) ≥ Qe(x, y, t) ∧Qe(y, z, s) = Qe(y, z, s),

is satis�ed, if and only if, it is ful�lled the following one:

e−
q(x,z)
t+s ≥ e−

q(y,z)
s .

Observe that the previous inequality is held, if and only if,

q(x, z)

t+ s
≤ q(y, z)

s
(⇔ sq(x, z) ≤ tq(y, z) + sq(y, z)) .

Since q is a quasi-metric and sq(x, y) ≤ tq(y, z) we have that

sq(x, z) ≤ sq(x, y) + sq(y, z) ≤ tq(y, z) + sq(y, z).

Thus, Qe(x, z, t+ s) ≥ Qe(x, y, t) ∧Qe(y, z, s) in this case.

The case Qe(x, y, t) ≤ Qe(y, z, s) is proved analogously.

(QGV4) The assignment (Qe)xy(t) = e−
q(x,y)
t is continuous for every t > 0.

(ii) Let (X, q) be a quasi-metric space. We de�ne the fuzzy set Qd on

X ×X×]0,∞[ as

Qd(x, y, t) =
t

t+ q(x, y)
.
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Then, (X,Qd, ∗P ) is a GV -fuzzy quasi-metric space (see [24]). Fol-

lowing similar arguments to the ones used in (i), one can show that

(X,Qd,∧) is also a GV -fuzzy quasi-metric space.

Now, we are able to show the next theorem.

Theorem 5.2.3. Let (X,P, ∗) be a GV -fuzzy partial metric space, where ∗
is a continuous Archimedean t-norm. Then, (X,QP , ∗) is a GV -fuzzy quasi-

metric space, where QP is the fuzzy set on X ×X×]0,∞[ given by:

QP (x, y, t) = P (x, x, t)→∗ P (x, y, t),

for each x, y ∈ X, t > 0.

Proof. We will show that every axiom of De�nition 5.2.1 is ful�lled:

(QGV1) As P (x, y, t) > 0, then P (x, x, t) →∗ P (x, y, t) = sup{z ∈ [0, 1] :

P (x, x, t) ∗ z = P (x, y, t)} > 0. Hence QP (x, y, 0) > 0.

(QGV2) x = y implies that P (x, x, t) = P (x, y, t) and P (y, y, t) = P (y, x, t)

for each t > 0. Hence, QP (x, y, t) = P (x, x, t) →∗ P (x, y, t) = 1 and

QP (y, x, t) = P (y, y, t) →∗ P (y, x, t) = 1. Therefore, QP (x, y, t) = 1

and QP (y, x, t) = 1. On the other hand, if QP (x, y, t) = QP (y, x, t) = 1

for some t > 0, we have that P (x, x, t) →∗ P (x, y, t) = P (y, y, t) →∗
P (y, x, t) = 1. Hence, as P (x, x, t) ≥ P (x, y, t) and P (y, y, t) ≥
P (y, x, t), we have that P (x, x, t) = P (x, y, t) = P (y, x, t) = P (y, y, t)

for some t > 0, and so x = y.

(QGV3) It is straightforward due to axiom (PGV4).

(QGV4) (QP )xy(t) = Q(x, y, t) = P (x, x, t) →∗ P (x, y, t) is a continuous func-

tion as we have shown in Remark 1.1.6.
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The condition imposed on the t-norm, which is that it must be Archimedean,

cannot be removed to prove the previous theorem, as shows the next example.

Example 5.2.4. Let (X,P,∧) be the fuzzy partial metric space of Example

4.2.9, where Let X =]0, 1] and P is the fuzzy set de�ned on X ×X×]0,∞[

by the following expression

P (x, y, t) =

{
min{x, y} · t2

t+1 , if x 6= y, t ∈]0, 1];

min{x, y} · t
t+1 , elsewhere.

It is not hard to check that (X,P,∧) is a GV -fuzzy partial metric space.

Nevertheless, if we de�ne the fuzzy set QP on X×X×]0,∞[ by QP (x, y, t) =

P (x, x, t)→∧ P (x, y, t), for each x, y ∈ X and t > 0, then QP does not satisfy

axiom (QGV 4). Indeed, on account of Example 4.3.2 we have that

QP

(
1

4
,
1

2
, t

)
= P

(
1

4
,
1

4
, t

)
→∧ P

(
1

4
,
1

2
, t

)
=

{
t2

4(t+1) , if t ∈]0, 1[;

1, if t ∈ [1,∞[.

Obviously, (QP ) 1
4
, 1
2
is not a continuous function.

We motivate the construction presented in Theorem 5.2.3 applying it to

the examples of GV -fuzzy partial metric spaces introduced in Proposition

4.2.5 and 4.2.6.

Let (X, p) be a partial metric space. Following the Matthews' construc-

tion we have that qp is a quasi-metric on X, where qp(x, y) = p(x, y)−p(x, x)

for each x, y ∈ X.

On the one hand, by Proposition 4.2.5, (X,Pe, ∗P ) is a GV -fuzzy partial

metric space, where Pe(x, y, t) = e−
p(x,y)
t , for each x, y ∈ X, t > 0. Since ∗P
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is a continuous Archimedean t-norm then, by Theorem 5.2.3, we have that

(X,QPe , ∗P ) is a GV -fuzzy quasi-metric space, where QPe is given by

QPe(x, y, t) = Pe(x, x, t)→∗ Pe(x, y, t),

for each x, y ∈ X, t > 0.

On account of formula (1.4) we have, for each x, y ∈ X, t > 0, that

Pe(x, x, t)→∗ Pe(x, y, t) =
e−

p(x,y)
t

e−
p(x,x)
t

= e−
p(x,y)−p(x,x)

t = e−
qp(x,y)

t .

Thus, QPe(x, y, t) = e−
qp(x,y)

t , for each x, y ∈ X, t > 0.

On the other hand, by Proposition 4.2.6, (X,Pd, ∗H) is aGV -fuzzy partial

metric space, where Pd(x, y, t) = t
t+p(x,y) , for each x, y ∈ X, t > 0. Since ∗H

is a continuous Archimedean t-norm then, by Theorem 5.2.3, we have that

(X,QPd , ∗H) is a GV -fuzzy quasi-metric space, where QPd is given by

QPd(x, y, t) = Pd(x, x, t)→∗ Pd(x, y, t),

for each x, y ∈ X, t > 0.

On account of formula (1.9) we have, for each x, y ∈ X, t > 0, that

Pd(x, x, t)→∗ Pd(x, y, t) =

t
t+p(x,y) ·

t
t+p(x,x)

t
t+p(x,y) ·

t
t+p(x,x) + t

t+p(x,x) −
t

t+p(x,y)

=

=
1

1 + t+p(x,y)
t − t+p(x,x)

t

=
t

t+ p(x, y)− p(x, x)
=

t

t+ qp(x, y)
.

Thus, QPd(x, y, t) = t
t+qp(x,y)

, for each x, y ∈ X, t > 0.

Observe that in both examples, the GV -fuzzy quasi-metric constructed

coincide with the GV -fuzzy quasi-metric induced from qp.
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To �nish this section, we will show that the topology induced by a fuzzy

partial metric coincides with the topology induced by the fuzzy quasi-metric

constructed in Theorem 5.2.3. To achieve such a goal the next proposition

will be helpful.

Proposition 5.2.5. Let (X,P, ∗) be a GV -fuzzy partial metric space, where

∗ is a continuous Archimedean t-norm. Then, for each x, y ∈ X, the assign-

ment Px,x,y :]0,∞[→]0, 1] given by

Px,x,y(t) = P (x, x, t)→∗ P (x, y, t), for each t ∈]0,∞[,

is a continuous function.

Proof. Let (X,P, ∗) be a GV -fuzzy partial metric space and suppose that

∗ is a continuous Archimedean t-norm. Then, by Theorem 1.1.5 ∗ admits

a continuous additive generator f∗ and attending to formula (1.7) the ∗-
residuum →∗ is given by

a→∗ b = f
(−1)
∗ (max{f∗(b)− f∗(a), 0}) , if a, b ∈]0, 1].

Fix x, y ∈ X. Then, the function Px,x,y has the following expression

Px,x,y(t) = f
(−1)
∗ (max{f∗(P (x, y, t))− f∗(P (x, x, t)), 0}) , for each t ∈]0,∞[.

By axiom (FPGV 1), both P (x, y, t), P (x, x, t) ∈]0, 1]. Therefore, Px,x,y is

continuous due to f∗ and f
(−1)
∗ are continuous and so Px,x,y is the composition

of continuous functions.

Let (X,P, ∗) be a GV -fuzzy partial metric, where ∗ is a continuous

Archimedean t-norm. As a consequence of the preceding proposition, and

taking into account Lemma 4.3.5, we have that, for each x, y ∈ X and t > 0,

the open balls are de�ned as follows:

BP (x, r, t) = {y ∈ X : P (x, x, t)→∗ P (x, y, t) > 1− r}.
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It ensures that y ∈ BP (x, r, t) if and only if y ∈ BPQ(x, r, t). Indeed,

y ∈ BP (x, r, t)⇔ P (x, x, t)→∗ P (x, y, t) > 1− r ⇔

⇔ QP (x, y, t) > 1− r ⇔ y ∈ BPQ(x, r, t).

Hence, T (P ) = T (QP ).

5.3 From GV -fuzzy quasi-metrics to GV -fuzzy

(partial) metrics

In this section, we tackle the reciprocal of the construction provided in Sec-

tion 5.2, i.e. we establish a way to construct a GV -fuzzy partial metric

from a GV -fuzzy quasi-metric. To achieve such a goal, we introduce the

notion of GV -fuzzy weighted quasi-metric adapting the classical notion of

weighted quasi-metric to the fuzzy context. Then, we study the topology in-

duced by both, the GV -fuzzy quasi-metric and the GV -fuzzy partial metric

constructed from it.

We begin our study introducing a notion of GV -fuzzy weighted quasi-

metric. This de�nition is based on the classical de�nition of weighted quasi-

metric. Besides, some axioms have been added in order to maintain the

�essence� of the George and Veeramani's fuzzi�cation.

De�nition 5.3.1. We will say that (X,Q, ∗,W ) is a GV -fuzzy weighted

quasi-metric space provided that (X,Q, ∗) is a GV -fuzzy quasi-metric space

and W is a fuzzy set on X×]0,∞[ satisfying, for each x, y ∈ X, t ∈]0,∞[,

the following properties:

(WGV0) Q(x, y, t) ∗W (x, t) > 0;
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(WGV1) Q(x, y, t) ∗W (x, t) = Q(y, x, t) ∗W (y, t).

(WGV2) The assignment Wx :]0,+∞[→]0, 1], given by Wx(t) = W (x, t)

for each t ∈]0,∞[, is a continuous function.

In such a case, the fuzzy set W will be called the fuzzy weight function

associated to the GV -fuzzy quasi-metric space (X,Q, ∗).

Moreover, we will say that a GV -fuzzy quasi-metric space (X,Q, ∗) is

weightable if there exist a weight function W : X×]0,∞[ satisfying axioms

(WGV 0)− (WGV 2).

After introducing the above concept we provide, in the next two propo-

sitions, examples of GV -fuzzy weighted quasi-metric spaces.

Proposition 5.3.2. Let (X, q, w) be a weighted quasi-metric space. Then,

(X,Qd, ∗H ,Wd) is a GV -fuzzy weighted quasi-metric space, where

Qd(x, y, t) =
t

t+ q(x, y)
, for each x, y ∈ X, t ∈]0,∞[,

Wd(x, t) =
t

t+ w(x)
for each x, y ∈ X, t ∈]0,∞[,

and ∗H is the Hamacher product t-norm.

Proof. On account of Example 5.2.2 (ii), we deduce that (X,Q, ∗H) is a GV -

fuzzy quasi-metric space. So, we just need to show thatWd satis�es, for each

x, y ∈ X and t ∈]0,∞[, axioms (WGV 0) − (WGV 2). Then, it remains to

show (WKM1).

Let x, y ∈ X and t ∈]0,∞[. On the one hand,

Qd(x, y, t) ∗H Wd(x, t) =
t

t+ q(x, y)
∗H

t

t+ w(x)
=
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=

t
t+q(x,y) ·

t
t+w(x)

t
t+q(x,y) + t

t+w(x) −
t

t+q(x,y) ·
t

t+w(x)

=
t

t+ q(x, y) + w(x)
.

On the other hand,

Qd(y, x, t) ∗H Wd(y, t) =
t

t+ q(y, x)
∗H

t

t+ w(y)
=

=

t
t+q(y,x) ·

t
t+w(y)

t
t+q(y,x) + t

t+w(y) −
t

t+q(y,x) ·
t

t+w(y)

=
t

t+ q(y, x) + w(y)
.

Since (X, q, w) is a weighted quasi-metric space, thenq(x, y)+w(x) = q(y, x)+

w(y) and so Qd(x, y, t) ∗H Wd(x, t) = Qd(y, x, t) ∗H Wd(y, t).

Following similar arguments to the ones used in the preceding proof, one

can show the next proposition.

Proposition 5.3.3. Let (X, q, w) be a weighted quasi-metric space. Then,

(X,Qe, ∗P ,We) is a GV -fuzzy weighted quasi-metric space, where

Qe(x, y, t) = e−
q(x,y)
t for each x, y ∈ X, t ∈]0,∞[,

We(x, t) = e−
w(x)
t for each x, y ∈ X, t ∈]0,∞[,

and ∗P is the product t-norm.

On account of De�nition 5.3.1, one can observe that W is de�ned on

X×]0,∞[ according to the George and Veeramani's context. The following

theorem states a way to obtain a GV -fuzzy partial metric from a weighted

GV -fuzzy quasi-metric.

Theorem 5.3.4. Let (X,Q, ∗,W ) be a GV -fuzzy weighted quasi-metric space,

where ∗ is a continuous Archimedean t-norm. Then, (X,PQ, ∗) is a GV -fuzzy
partial metric space, where PQ is the fuzzy set on X ×X × [0,∞[ given by:

PQ(x, y, t) = Q(x, y, t) ∗W (x, t), for each x, y ∈ X, t > 0.
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Proof. We will show that every axiom of De�nition 4.2.2 is satis�ed, for each

x, y, z ∈ X and t > 0.

(PGV1) Let x, y ∈ X and t > 0. On the one hand, since W is a fuzzy

weight function, axiom (WGV 0) ensures that PQ(x, y, t) = Q(x, y, t) ∗
W (x, t) > 0. On the other hand, PQ(x, y, t) = Q(x, y, t) ∗W (x, t) ≤
Q(x, x, t) ∗W (x, t) = P (x, x, t). Thus, 0 < PQ(x, y, t) ≤ PQ(x, x, t)

(PGV2) Obviously, x = y implies PQ(x, x, t) = PQ(x, y, t) = PQ(y, y, t).

Now, suppose that PQ(x, x, t) = PQ(x, y, t) = PQ(y, y, t) for some

x, y ∈ X, t > 0. Then, on the one hand,

W (x, t) = Q(x, x, t)∗W (x, t) = PQ(x, x, t) = PQ(x, y, t) = Q(x, y, t)∗W (x, t).

On the other hand,

W (y, t) = Q(y, y, t)∗W (y, t) = PQ(y, y, t) = PQ(x, y, t) = Q(x, y, t)∗W (x, t).

Besides, since W is a fuzzy weight function, axiom (WGV 1) ensures

that Q(x, y, t)∗W (x, t) = Q(y, x, t)∗W (y, t). So, W (y, t) = Q(y, x, t)∗
W (y, t).

Since ∗ is an Archimedean t-norm and, Q(x, y, t) > 0 andQ(y, x, t) > 0,

then Q(x, y, t) = Q(y, x, t) = 1. Thus, axiom (QGV 2) implies x = y.

(PGV3) Let x, y ∈ X. Since W is a fuzzy weight function, by axiom (WGV 1)

we have that

PQ(x, y, t) = Q(x, y, t) ∗ w(x, t) = Q(y, x, t) ∗ w(y, t) = PQ(y, x, t).

(PGV4) Let x, y, z ∈ X and t, s > 0. We will see that the following holds:

PQ(x, x, t+ s)→∗ PQ(x, z, t+ s) ≥

(PQ(x, x, t)→∗ PQ(x, y, t)) ∗ (PQ(y, y, s)→∗ PQ(y, z, s)) .
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To show it, we claim that PQ(u, u, r) →∗ PQ(u, v, r) = Q(u, v, r), for

each u, v ∈ X and r > 0.

Fix u, v ∈ X and r > 0. First, since ∗ is a continuous Archimedean

t-norm, there exists an additive generator f∗ of ∗. Then, using the

properties of f∗ collected in Section 1.1 and taking into account that

Q(u, v, r) ∗W (u, r) > 0 we have that

PQ(u, u, r)→∗ PQ(u, v, r) = W (u, r)→∗ Q(u, v, r) ∗W (u, r)

= f
(−1)
∗ (max {f∗(Q(u, v, r) ∗W (u, r))− f∗(W (u, r)), 0})

= f
(−1)
∗ (f∗(Q(u, v, r) ∗W (u, r))− f∗(W (u, r)))

= f
(−1)
∗ (f∗(f

(−1)
∗ (f∗(Q(u, v, r)) + f∗(W (u, r))))− f∗(W (u, r)))

= f
(−1)
∗ (f∗(Q(u, v, r)) + f∗(W (u, r))− f∗(W (u, r)))

= f
(−1)
∗ (f∗(Q(u, v, r)))

= f
(−1)
∗ (f∗(Q(u, v, r)) = Q(u, v, r).

Therefore, PQ(u, u, r)→∗ PQ(u, v, r) = Q(u, v, r).

Then, PQ(x, x, t+ s)→∗ PQ(x, z, t+ s) = Q(x, z, t+ s), PQ(x, x, t)→∗
PQ(x, y, t) = Q(x, y, t) and PQ(y, y, s) →∗ PQ(y, z, s) = Q(y, z, s).

Hence, since Q is a GV -fuzzy quasi-metric, axiom (QGV 3) ensures

that

PQ(x, x, t+ s)→∗ PQ(x, z, t+ s) ≥

(PQ(x, x, t)→∗ PQ(x, y, t)) ∗ (PQ(y, y, s)→∗ PQ(y, z, s)) .

(PGV5) The function (PQ)x,y(t) = Q(x, y, t) ∗W (x, t) is continuous because of

the continuity of both Qx,y(t) = Q(x, y, t) and Wx(t) = W (x, t), and

the continuity of the t-norm ∗.



A Duality Relationship Between Fuzzy Partial Metrics and

Fuzzy Quasi-Metrics 101

In the next example we will show that the assumption on the t-norm,

which has to be Archimedean, cannot be removed in Theorem 5.3.4. For

that purpose, we introduce the following previous lemma:

Lemma 5.3.5. Let (X,M, ∗) be a GV -fuzzy metric space, where ∗ is integral
t-norm (i.e. a ∗ b = 0 if and only if min{a, b} = 0). Then (X,Q, ∗,Wk) is

a GV -fuzzy weighted quasi-metric, space where Q(x, y, t) = M(x, y, t) and

Wk(x, t) = k, for every k ∈]0, 1[.

Proof. Let (X,M, ∗) be a GV -fuzzy metric space, where ∗ is continuous

integral t-norm, and let k ∈]0, 1[. Obviously, every (X,M, ∗) is a GV -fuzzy

quasi-metric. So, we need to prove that W (x, t) = k is a fuzzy weight

function.

(WGV0) Suppose that Q(x, y, t) ∗ Wk(x, t) = 0 for some x, y ∈ X and t >

0. Since ∗ is integral, our assumption implies that Q(x, y, t) = 0 or

Wk(x, t) = 0, which is a contradiction. So, Q(x, y, t) ∗Wk(x, t) > 0.

(WGV1) Let x, y ∈ X and t > 0. By axiom (KM3) we have that Q(x, y, t) =

Q(y, x, t), so Q(x, y, t) ∗ Wk(x, t) = Q(x, y, t) ∗ k = Q(y, x, t) ∗ k =

Q(y, x, t) ∗Wk(y, t)..

(WGV2) Obviously, for each x ∈ X the assignment (Wk)x is a continuous func-

tion on ]0,∞[, since (Wk)x (t) = k for each t ∈]0,∞[.

The previous lemma allows us to introduce the next example.

Example 5.3.6. Let (X, du) be metric space, where X = [0, 1] and duis the

usual metric of R restricted to [0, 1]. Consider the stantard GV -fuzzy metric
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deduced from (X, du), i.e. (X,Mdu ,∧), where ∧ is the minimum t-norm (see

[41]) and

Mdu(x, y, t) =
t

t+ d(x, y)
, for each x, y ∈ X, t > 0.

Then, by Lemma 5.3.5, (X,Q,∧,W 1
2
) is a GV -fuzzy weighted quasi-metric

space, where Q(x, y, t) = Mdu(x, y, t) for each x, y ∈ X, t > 0. Let x = 1,

y = 0.9 and t = 10. We have that

Q(1, 0.9, 10) = Q(0.9, 1, 10) =
10

10 + |1− 0.9|
=

10

10.1
≈ 0.99.

Hence, we have that

Q(1, 0.9, 10) ∧W 1
2
(1, 10) = Q(0.9, 1, 10) ∧W 1

2
(0.9, 10) = min{0.99, 0.5} = 0.5,

Q(1, 1, 10) ∧W 1
2
(1, 10) = min{1, 0.5} = 0.5,

Q(0.9, 0.9, 10) ∧W 1
2
(0.9, 10) = min{1, 0.5} = 0.5.

Therefore,

Q(1, 0.9, 10)∧W 1
2
(1, 10) = Q(1, 1, 10) ∗w(1, 10) = Q(0.9, 0.9, 10)∧W 1

2
(0.9).

If we de�ne PQ(x, y, t) = Q(x, y, t) ∧W 1
2
(x, t) then PQ does not ful�l axiom

(PGV 2). Indeed, as it has been shown, PQ(1, 0.9, 10) = PQ(1, 1, 10) =

PQ(0.9, 0.9, 10) but 1 6= 0.9.

As in the preceding section, we motivate Theorem 5.3.4 using the con-

struction provided in it to the examples introduced in Proposition 5.3.2 and

5.3.3.

Let (X, q, w) be a weighted quasi-metric space. Following the Matthews'

construction we have that pq is a partial metric on X, where pq(x, y) =

q(x, y)− w(x) for each x, y ∈ X.
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On the one hand, by Proposition 5.3.2, (X,Qd, ∗H ,Wd) is a GV -fuzzy

weighted quasi-metric space, where

Qd(x, y, t) =
t

t+ q(x, y)
, for each x, y ∈ X, t ∈]0,∞[,

Wd(x, t) =
t

t+ w(x)
for each x, y ∈ X, t ∈]0,∞[,

and ∗H is the Hamacher product t-norm. Since ∗H is a continuous Archimedean

t-norm then, by Theorem 5.3.4, we have that (X,PQd , ∗H) is a GV -fuzzy par-

tial metric space, where PQd is given by

PQd(x, y, t) = Qd(x, y, t) ∗H Wd(x, t),

for each x, y ∈ X, t > 0.

Then, for each x, y ∈ X, t > 0, we have that

Qd(x, y, t) ∗H Wd(x, t) =

t
t+q(x,y) ·

t
t+w(x)

t
t+q(x,y) + t

t+w(x) −
t

t+q(x,y) ·
t

t+w(x)

=

=
t

t+ q(x, y) + w(x)
=

t

t+ pq(x, y)
.

Thus, PQd(x, y, t) = t
t+pq(x,y)

, for each x, y ∈ X, t > 0.

On the other hand, by Proposition 5.3.3, (X,Qe, ∗P ,We) is a GV -fuzzy

weighted quasi-metric space, where

Qe(x, y, t) = e−
q(x,y)
t for each x, y ∈ X, t ∈]0,∞[,

We(x, t) = e−
w(x)
t for each x, y ∈ X, t ∈]0,∞[,

and ∗P is the product t-norm. Since ∗P is a continuous Archimedean t-norm

then, by Theorem 5.2.3, we have that (X,PQe , ∗P ) is a GV -fuzzy partial

metric space, where PQe is given by

PQe(x, y, t) = Qe(x, y, t) ∗P We(x, t),
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for each x, y ∈ X, t > 0.

Then, for each x, y ∈ X, t > 0, we have that

Qe(x, y, t) ∗P We(x, t) = e−
q(x,y)
t · e−

w(x)
t = e−

q(x,y)+w(x)
t = e−

pq(x,y)

t .

Thus, PQe(x, y, t) = e−
pq(x,y)

t , for each x, y ∈ X, t > 0.

Observe that in both examples, the GV -fuzzy partial metric constructed

coincide with the GV -fuzzy partial metric induced from pq.

Now, we approach the study on the relationship between the topologies

induced by a GV -fuzzy weighted quasi-metric and the GV -fuzzy partial met-

ric constructed from it.

Let (X,Q, ∗,W ) be a GV -fuzzy quasi-metric space, where ∗is a contin-

uous Archimedean t-norm. On the one hand, for each x ∈ X, r ∈]0, 1[ and

t > 0, we have that

BQ(x, r, t) = {y ∈ X : Q(x, y, t) > 1− r}.

On the other hand, by Proposition 5.2.5 and Lemma 4.3.5 we have that

BPQ(x, r, t) = {y ∈ X : PQ(x, x, t)→∗ PQ(x, y, t) > 1− r},

for each x ∈ X, r ∈]0, 1[ and t > 0.

Moreover, in the demonstration of Theorem 5.3.4, PQ(x, x, t)→∗ PQ(x, y, t) =

Q(x, y, t). Thus, it is obvious that, for each x ∈ X, r ∈]0, 1[ and t > 0,

y ∈ BQ(x, r, t) if and only if y ∈ BPQ(x, r, t). Hence, T (Q) = T (PQ).

To �nish this section we tackle a question related with the construction

given in Theorem 5.2.3. In such a theorem, we provide a way of obtaining

a GV -fuzzy quasi-metric from a GV -partial one. It is based on the results
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given by Matthews in [6] for the classical case. Taking into account that, in

the construction of Matthews, the obtained quasi-metric from a partial one

turns out to be weightable, we wonder it it is so in the fuzzy context. The

next theorem answer a�rmatively such a question.

Theorem 5.3.7. Let (X,P, ∗) be a GV -fuzzy partial metric space, where ∗
is a continuous Archimedean t-norm. Then, (X,QP , ∗,WP ) is a GV -fuzzy

weighted quasi-metric space, where

QP (x, y, t) = P (x, x, t)→∗ P (x, y, t) for each x, y ∈ X, t ∈]0,∞[,

and

WP (x, t) = P (x, x, t) for each x ∈ X, t ∈]0,∞[.

Proof. Let (X,P, ∗) be a GV -fuzzy partial metric space, where ∗ is a con-

tinuous Archimedean t-norm. Theorem 5.2.3 ensures that (X,QP , ∗) is a

GV -fuzzy quasi-metric space. So, we just need to show that WP satis�es, for

each x, y ∈ X and t > 0, axioms (WGV 0), (WGV 1) and (WGV 2).

First, observe that ∗ is a continuous Archimedean t-norm, so there exists

a continuous additive generator f∗ of ∗. Now, �x x, y ∈ X and t > 0:

(WGV0) QP (x, y, t) ∗WP (x, t) = (P (x, x, t)→∗ P (x, y, t)) ∗ P (x, x, t). By

de�nition of additive generator and taking into account formula (1.7),

since P (x, x, t) ≥ P (x, y, t) > 0 by axiom (PGV 1), we have that

(P (x, x, t)→∗ P (x, y, t)) ∗ P (x, x, t) =

= f
(−1)
∗ (f∗(P (x, x, t)→∗ P (x, y, t)) + f∗(P (x, x, t))) =

= f
(−1)
∗

(
f∗

(
f (−1) (f∗(P (x, y, t))− f∗(P (x, x, t)))

)
+ f∗(P (x, x, t)

)
=

= f
(−1)
∗ (f∗(P (x, y, t))− f∗(P (x, x, t)) + f∗(P (x, x, t)) =
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= f
(−1)
∗ (f∗(P (x, y, t))) = P (x, y, t).

Hence, QP (x, y, t) ∗WP (x, t) = (P (x, x, t)→∗ P (x, y, t)) ∗ P (x, x, t) =

P (x, y, t) > 0.

(WGV1) As it was exposed above, QP (x, y, t)∗WP (x, t) = P (x, y, t). Anal-

ogously, QP (y, x, t) ∗ WP (y, t) = P (y, x, t). By axiom (PGV 3) we

have that P (x, y, t) = P (y, x, t). Therefore, QP (x, y, t) ∗WP (x, t) =

P (x, y, t) = P (y, x, t) = QP (y, x, t) ∗WP (y, t).

(WGV2) By axiom (PGV 5) we have that the assignment Px,x :]0,∞[→
]0, 1] is a continuous function. Thus, since (WP )x (t) = Px,x(t) for each

t ∈][0,∞[ then, the assignment (WP )x :]0,∞[→]0, 1] is a continuous

function.



Chapter 6

Discussion of the obtained

results and conclusions

In Chapter 2 we have introduced and studied the concept of extended fuzzy

metricM0. We have constructed a topology deduced from an extended fuzzy

metric and we have characterized convergent sequences in it. We also have ap-

proached the relationship between s-convergence and τM0-convergence. Fur-

thermore, we have studied Cauchyness and completeness in extended fuzzy

metrics. Finally, we have obtained a �xed point theorem in extended fuzzy

metric spaces.

In Chapter 3 we have given an example of a ψ-contractive sequence which

is not Cauchy. Then we have introduced and studied a notion of strictly

contractive sequence, and we have corrected in an appropriate way the proof

of Lemma 3.2 of [12].

In Chapter 4 we have introduced a notion of fuzzy partial metric space
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(X,P, ∗) which constitutes an adaptation of the notion of partial metric space

given in [6] to the fuzzy setting. Such an adaptation is based on the fuzzy

metric space given in [29], using the residuum operator →∗ associated to

a continuous t-norm ∗, without any extra condition on ∗. Then, we have

constructed a topology TP on X, deduced from P , and we have proved that

(X, TP ) is a T0-space. The introduced notion of fuzzy partial metric opens

several lines of research in the fuzzy setting. On the one hand, the study of

the (fuzzy partial) metric properties, and in particular �xed point theory. On

the other hand, its applicability to engineering problems in which it makes

sense to consider that the self-similarity can be less than 1.

In Chapter 5 we establish a duality between GV -fuzzy partial metrics

de�ned in Chapter 4 and GV -fuzzy quasi-metrics de�ned in [24], by de�n-

ing the concept of GV -fuzzy weighted quasi-metric, which is a generalization

of classical weighted quasi-metrics. This duality is motivated by the clas-

sical relationship between partial metrics and quasi-metrics introduced by

Matthews in [6].
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