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Siempre ten presente que la piel se arruga,
el pelo se vuelve blanco,
los d́ıas se convierten en años.....
Pero lo importante no cambia,
tu fuerza y tu convicción no tienen edad.
Tu esṕıritu es el plumero de cualquier telaraña.

Detrás de cada d́ıa de llegada, hay una partida.
Detrás de cada logro, hay otro desaf́ıo.
Mientras estés vivo, siéntete vivo.

Si extrañas lo que haćıas, vuelve hacerlo.
No vivas de fotos amarillas.
Sigue aunque todos esperen que abandones.
No dejes que se oxide el hierro que hay en t́ı.
Haz que en vez de lástima, te tengan respeto.

Cuando por los años no puedas correr, trota.
Cuando no puedas trotar, camina.
Cuando no puedas caminar, usa el bastón.
Pero nunca te detengas.

Madre Teresa de Calcuta
Always keep in mind that your skin will wrinkle

and that your hair will go white
and that your days will become years...

But the most important thing never changes,
your strength of will and your convictions don’t have an age limit.

Your spirit is like a feather duster to wipe away the cobwebs.

After every arrival there is a leaving.
After every accomplishment there is another challenge.

While you are alive, feel and know that you are alive.

When you are feeling sorry for yourself
about what you used to be able to do, do something new.

Don’t live surrounded by the yellowed photos of yesterday.
Continue forward, even though you feel abandoned by others.

Don’t let rust take away the steel that is in you.
Behave in a way that others respect you, not pity you.

When, due to your years, you cannot run, trot.
When you can no longer trot, walk.

When you can no longer walk, grab a cane and keep on going.
Never stop yourself.

Mother Teresa of Calcutta
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Abstract

The increasing complexity of Web system has led to the development
of sophisticated formal methodologies for verifying and correcting Web
data and Web programs. In general, establishing whether a Web system
behaves correctly with respect to the original intention of the programmer
or checking its internal consistency are non-trivial tasks as witnessed by
many studies in the literature.

In this dissertation, we face two challenging problems related to the
verification of Web systems.

Firstly, we extend a previous Web verification framework based on
partial rewriting by providing a semi-automatic technique for repairing
Web systems. We propose a basic repairing methodology that is endowed
with several strategies for optimizing the number of repair actions that
must be executed in order to fix a given Web site. Also, we develop an
improvement of the Web verification framework that is based on abstract
interpretation and greatly enhances both efficiency and scalability of the
original technique.

Secondly, we formalize a framework for the specification and model-
checking of dynamic Web applications that is based on Rewriting Logic.
Our framework allows one to simulate the user navigation and the evalu-
ation of Web scripts within a Web application, and also check important
related properties such us reachability and consistency. When a property
is refuted, a counter-example with the erroneous trace is delivered. Such
information can be analyzed in order to debug the Web application under
examination by means of a novel backward trace slicing technique that
we formulated for this purpose. This technique consists in tracing back,
along an execution trace, all the relevant symbols of the term (or state)
that we are interested to observe.





Resumen

El incremento de la complejidad de los sistemas Web ha dado lugar al
desarrollo de sofisticadas metodoloǵıas formales para verificar y corregir
la información y los programas en la Web. En general, establecer si un
sistema Web se comporta correctamente con respecto a la intención orig-
inal del programador o demostrar su consistencia no son tareas triviales.
La prueba de esto es la cantidad de estudios al respecto que existen en
la literatura.

En esta tesis abordamos dos problemas interesantes relacionados a la
verificación de sistemas Web.

En primer lugar, extendemos un marco previo de verificación Web,
basado en reescritura parcial, agregando una técnica para la reparación
de sistemas Web. Proponemos una metodoloǵıa de reparación básica que
está dotada con distintas estrategias para optimizar el número de acciones
que deben ser ejecutadas para reparar un sitio Web dado. Además, de-
sarrollamos una mejora del marco de verificación Web que está basada
en interpretación abstracta y mejora en gran medida la eficiencia y la
escalabilidad de la técnica original.

En segundo lugar, formalizamos un marco para la especificación y
compilación de modelos (verificación) de aplicaciones Web dinámicas
basado en la lógica de reescritura. Nuestro marco nos permite simular
la navegación de un usuario y evaluar los scripts dentro de la aplicación
Web, aśı como verificar importantes propiedades tales como la alcanzabil-
idad y la consistencia. Cuando una propiedad es refutada, el verificador
entrega un contraejemplo que consiste en la traza errónea. Esta infor-
mación puede ser analizada con el fin de depurar la aplicación Web que
se está examinando. Para este propósito, formulamos una nueva técnica
de slicing que analiza la traza en sentido opuesto a la ejecución. Esta
técnica consiste en rastrear hacia atrás, sobre dicha traza de ejecución,
los śımbolos relevantes del término (o estado) que estamos interesados.





Resum

L’increment de la complexitat dels sistemes Web ha donat lloc al desen-
volupament de sofisticades metodologies formals per a verificar i corregir
la informació i els programes a la Web. En general, comprovar si un sis-
tema Web es comporta correctament en respecte a la intenció original del
programador aix́ı com verificar la seua consistència no son tasques triv-
ials. La prova d’açò es la quantitat d’estudis que existixen a la lliteratura
al respecte d’estes comprovacions.

A la tesis, abordem dos problemes interessants relacionats a la verifi-
cació de sistemes Web.

En primer lloc, ampliem un marc previ de verificació Web, basat en re-
escritura parcial, afegint una tècnica per a la reparació de sistemes Web.
Proposem una metodologia de reparació bàsica dotada amb distintes es-
tratègies per optimitzar el nombre d’accions que deuen ser executades
per reparar una web donada. A més, desenvolupem un millora del marc
de verificació Web que està basada en interpretació abstracta i millora
en gran mida la eficiència i la escalabilitat de la tècnica original.

En segon lloc, formalizem un marc lògic de re-escritura per l’especifica-
ció i ’model-checking’ de aplicacions Web dinàmiques. El nostre marc,
mos permet simular la navegació d’un usuari i avaluar els scripts Web
dins de la aplicació Web, aix́ı com verificar importants propietats com per
eixample d’abastabilitat i consistència. Quan una propietat es refutada,
es mostra un contra-eixample amb la traça errònea. Aquesta informació
pot ser analitzada amb la finalitat de depurar l’aplicació Web que esta
sent analitzada. Per aquest propòsit, formulem una nova tècnica d’slicing
cap enrere sobre les traces donades. Aquesta tècnica consisteix en buscar
cap enrere, sobre la traça d’execució, els śımbols rellevants del terme (o
estat) en el qual estem interessats a observar.
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Introduction

In the last decade, Web environments have evolved into very sophisti-
cated systems that play a crucial role in the modern information society.
Nowadays, Web systems pervade our digital life: as a matter of fact,
almost all Web scenarios rely on some kind of Web systems in order to
perform tasks such as financial and e-commerce transactions, fast and
secure information interchange, social interactions, etc.

This evolution comes together with a rise in the complexity of Web
script languages and communication protocols that makes it necessary
to assist developers and Web administrators in the analysis, verification
and repairing of such complex systems. As a consequence, the specifica-
tion and debugging of Web systems require the development of specific
techniques that address the specific challenges of the World Wide Web.

In order to achieve this goal, it is essential to develop of formal meth-
ods, models, and automated tools, which should be able not only to
detect errors in the syntactic structure, but also in the semantics of Web
systems. Web system failures must be precisely diagnosed in order to
apply (semi)automatic repair strategies that allow one to obtain a cor-
rect and complete Web system with respect to a reference specification.
Systematic, formal approaches can bring many benefits to Web system
development and maintenance, giving support for automated Web veri-
fication and repairing.

Our work is certainly neither the first nor the only proposal for ver-
ifying Web systems, but it can be distinguished from many others for
advocating the use of term rewriting technology. An updated and com-
pleted description of the state of the art can be found in [ACD09].

What is a Web system?

There is no general agreement on what a Web system is. Actually, its
definition may vary depending on the specific scientific community. In
this dissertation, we focus on server-side Web systems, that is, systems
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hosted in a server that are accessed over a network (such as the Internet)
by means of a Web browser, which interprets and displays the system’s
outcome.

Roughly speaking, it is possible to classify the Web systems into two
groups: Web systems contain static content, also called Web sites in
this thesis, and dynamic Web systems (often called Web application).
The former class represents those Web systems that consist in a collec-
tion of interconnected static Web pages, where the content presented to
the user does not change dynamically, e.g., blog and forum repositories,
home pages, news Webs, and digital libraries. Such Web systems are
called static because their content only changes if it is explicitly modi-
fied by the user or the system administrator. The latter class represents
those Web systems where the content is the result of processing the sys-
tem’s state along with the (possible) input provided by the user, e.g.,
user level privileges, visited pages history, and parameters furnished to
the server. These Web systems are called dynamic because their con-
tent is generated on-the-fly each time a Web page is requested by the
user. Examples of Web systems in this group are: Webmailers, online
auction Web sites, Web database managers, and Web-based conference
management software systems. As we will see, the difference in behavior
between the static and dynamic Web systems has a great impact on the
kind of analyses and techniques we need to use for their verification.

Contributions of the Thesis

Verification of Web systems is a nontrivial task because of their complex
and distributed nature. Although in recent years much effort has been
invested into this problem, there is still a generalized lack of techniques
and tools for verifying and debugging Web systems. We do believe that
systematic, formal approaches can bring many benefits to Web system
development, thus giving support to automated verification and repair-
ing.

This dissertation develops a series of novel, rewriting-based techniques
for the verification of static as well as dynamic Web systems with a par-
ticular focus on the formal verification of semantic properties, as opposed
to many current tools that mainly support syntax check (e.g., [Osk05;
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Sol10; Gmb]).

The thesis is organized in two parts:

� Part I – Static Web verification. This part extends a rewriting-based,
Web verification framework first presented in [ABF06] by adding
a semi-automatic technique for repairing Web sites together with
several strategies that optimize the number of repair actions that
must be executed in order to fix a given Web site. Also, we present
an improvement of the verification methodology of [ABF06], based
on abstract interpretation [CC77; CC79], that greatly enhances
both efficiency and scalability of the original technique.

� Part II – Dynamic Web verification. In this part, a rewriting logic
framework for the specification and model-checking of dynamic
Web applications is proposed. The framework allows one to simu-
late the navigation of a user when using the Web application, check
important related properties such as the open windows and mutual
exclusion problems [MM08], and evaluate the possibly included
Web scripts.

In the following, we briefly summarize the main contributions in the
two parts of this thesis.

Part I – Static Web Verification

[ABF06] presents a rewriting-based approach for Web site specification
and verification. This methodology allows one to specify integrity con-
ditions for a given Web site and then diagnose the errors by computing
the requirements not fulfilled in the considered Web site, that is, by find-
ing out incorrect/forbidden patterns and missing/incomplete Web pages.
This approach is particularly suitable for checking large static Web sites,
e.g., digital libraries, which contain a number of deeply interconnected
XML documents; or collaborative Web sites, that is, sites where several
users may freely change/remove data. In these scenarios, keeping the
static Web contents correct and complete is obviously not trivial and
requires advanced verification capabilities that are naturally supported
by this methodology, which was implemented in the prototype Verdi
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[Bal05; BV05] written in Haskell. The main foundations of this verifica-
tion methodology that serve as a basic for the original contributions of
this thesis are described in Chapter 1.

Semi-Automatic Repairing for Web Sites (Chapter 2)

This chapter describes a repairing methodology for fixing Web sites. It is
based on our work [ABFR06], and complements the verification method-
ology presented in [ABF06] for detecting Web site errors. Our aim is to
complement the verification methodology with a tool-independent tech-
nique that gives support for semi-automatically repairing the errors found
during that verification phase.

First, we formalize the different kinds of errors that can be found in
a Web site with respect to a Web site specification. Then, we classify
the repair actions that can be performed to repair each kind of error.
Since different repair actions can be executed in order to repair a given
error, our method is tuned to deliver a set of correct and complete repair
actions to choose between. Our repair methodology is formulated in two
phases. First, all the necessary actions to make the Web site correct are
performed. Once correctness of the Web site has been achieved, the user
is given the option to execute all the necessary actions to make it complete
(while preserving correctness) with respect to a given formal specification.
Also, this methodology allows us to manage the interference issues that
might arise from the interaction among multiple repair actions.

Optimization Strategies for Repairing Web Sites (Chapter 3)

The repair framework of [ABFR06] does not investigate the relations/de-
pendencies among the errors. Such analysis can be a potential source
of optimization and can increase the level of automation of the repair
system. As a matter of fact, errors in a given Web site are often deeply
interrelated. This fact suggests us that correcting a given bug may lead
to an automatic fix of a “related” bug without executing any other repair
action. In this chapter, we extend the repair methodology of Chapter 2
in order to optimize the repair process by considering how the number of
repair actions can be minimized and reduce the amount of information
that needs to be changed/removed in order to fix the Web site [BR07b;
ABF+07c].
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The Web Verification Service WebVerdi-M (Chapter 4)

In order to make the verification and repair techniques available to any
interested user easier to use by hiding the technical details to the user,
a new prototype WebVerdi-M that extends the Verdi system [BV05] is
described in Chapter 4. The prototype is based on the implementation
infrastructure presented in [ABF+07a].

WebVerdi-M relies on a strictly more powerful Web verification engine
written in the Rewriting Logic language Maude [CDE+07] that automat-
ically derives the error symptoms of a given Web site. Thanks to the
AC pattern matching supported by Maude and its metalevel features,
we have significantly improved both the performance and the usability
of the original Verdi system.

A Java Web client that is publicly available interacts with a Web
verification service by using SOAP messages [GHM+07] and other Web-
related standards.

Finally, we report on some benchmarks gathered from an experimen-
tal evaluation of our system by using several correctness and completeness
rules of different complexity for a number of randomly generated XML
documents.

An Abstract Generic Framework for Web Site Verification (Chap-
ter 5)

For correctness checking, WebVerdi-M shows impressive performance
thanks to the Associativity-Commutativity (AC) pattern matching and
the metalevel features supported by Maude (for instance, verifying cor-
rectness over a 10Mb XML document with 302000 nodes takes less than
13 seconds). Both resource allocation and elapsed time scale linearly. Un-
fortunately, for the verification of completeness, a (finite) fixpoint com-
putation is typically needed that leads to unsatisfactory performance.
Indeed, the verification tool is only able to efficiently process XML doc-
uments smaller than 1Mb.

In this chapter, we develop an abstract approach to Web site verifi-
cation that makes use of an approximation technique based on abstract
interpretation [CC77; CC79] that greatly improves the previous perfor-
mance. We also ascertain the conditions that ensure the correctness of
the approximation, so that the resulting abstract rewrite engine safely
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supports accurate Web site verification. Since the abstract framework
is parametric with respect to the considered abstraction, we precisely
characterize the conditions that allow us to ensure the correctness of the
abstraction, which is implemented as a source-to-source transformation
of concrete Web sites and Web specifications into abstract ones. Thanks
to this source-to-source approximation scheme, all facilities supported
by our previous verification system are straightforwardly adapted and
reused with very little effort. The abstract methodology presented in
this chapter was presented in [ABF+07b; ABF+08].

Part II – Dynamic Web Verification

A Web application runs in a server and is shown in a browser, which acts
as the interface between the user and the Web application. Browsers
were initially intended to access to static content, and their main features
(e.g., back, forward, and reload buttons) have not been properly adapted
to the Web application evolution. This mismatch contributes to many
errors present in the Web [GFKF03; MM08].

The goal of this part of the thesis is to explore the application of
the formal methods to formal modeling and automatic verification of
complex, real-size dynamic Web applications.

Specification and Verification of Web Applications in Rewriting
Logic (Chapter 6)

This chapter describes a Rewriting Logic framework for the formal spec-
ification of the operational semantics of Web applications first proposed
in [ABR09]. In particular, we define a rewrite theory that precisely for-
malizes the interactions among Web servers and Web browsers through a
communicating protocol abstracting the main features of the HyperText
Transfer Protocol (HTTP). Our model also supports a scripting language
encompassing the main features of the principal Web scripting languages
(e.g., PHP, ASP, Java servlets), which is powerful enough to model com-
plex Web application dynamics as well as advanced navigation capabili-
ties such as adaptive navigation (that is, a form of navigation through a
Web application that can be dynamically customized according to both
user and session information). A detailed characterization of browser ac-
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tions (e.g., forward/backward navigation, refresh, and new window/tab
openings) via rewrite rules completes the proposed specification.

Our formalization is particularly suitable for verification purposes,
since it allows one to carry out in-depth analyses of several subtle aspects
of Web interactions. To this respect, we show how our models can be
naturally model-checked by using the Linear Temporal Logic of Rewriting
(LTLR) [Mes08], which is a Linear Temporal Logic [MP92] supporting
model-checking of rewrite theories.

Backward Trace Slicing for Rewriting Logic Theories (Chap-
ter 7)

Trace slicing is a widely used technique for execution trace analysis that
is effectively used in program debugging, analysis and comprehension. In
this chapter, we present a backward trace slicing technique [ABER11a]
that can be used for the analysis of Rewriting Logic theories. In Rewrit-
ing Logic, system computations are modeled by means of rewrite rules
that describe transitions between states. System states are represented
as elements of an algebraic data type that is defined by means of an equa-
tional theory E that may include sorts, functions and algebraic laws (such
as commutativity and associativity). Our trace slicing technique allows
us to systematically trace back rewrite sequences modulo E (i.e., system
computations) by means of a backward algorithm that dynamically sim-
plifies the traces by detecting control and data dependencies, dropping
useless data that do not influence the final result. Our methodology is
particularly suitable for analyzing complex, textually-large system com-
putations such as those delivered as counter-example traces by Maude
model-checkers. In particular, we use this slicing methodology to simplify
the counter-examples that are delivered by Web-TLR executions.

Model-checking Web Applications with Web-TLR (Chapter 8)

Web-TLR [ABER10] is a software tool designed for model-checking
Web applications that is based on rewriting logic. Web applications
are expressed as rewrite theories that can be formally verified by us-
ing the Maude built-in LTLR model-checker. Web-TLR is equipped
with a user-friendly, graphical Web interface that shields the user from
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unnecessary information. Whenever a property is refuted, an interac-
tive slideshow is generated, which allows one to reproduce visually, step
by step, the erroneous navigation trace that underlies the failing model
checking computation. This provides deep insight into the system be-
havior that helps to debug Web applications. This chapter describes the
main features of our tool and presents several examples that demonstrate
the feasibility of our approach.



Preliminaries

We recall in this section some basic notions that will be used in the rest
of the thesis.

By V we denote a countably infinite set of variables and Σ denotes a
set of function symbols, or signature. We consider varyadic signatures as
in [DP01] (i.e., signatures in that symbols have an unbounded arity, that
is, they may be followed by an arbitrary number of arguments). Given
a term t, we say that t is ground if no variables occur in t. τ(Σ,V) and
τ(Σ) denote the non-ground term algebra and the term algebra built on
Σ ∪ V and Σ, respectively.

A many-sorted signature (Σ, S) consists of a set of sorts S and a
S∗ × S-indexed family of sets Σ = {Σs̄×s}(s̄,s)∈S∗×S, which are sets of
function symbols (or operators) with a given string of argument sorts
and result sort. Given an S-sorted set V = {Vs | s ∈ S} of disjoint sets
of variables, τ(Σ,V)s and τ(Σ)s are the sets of terms and ground terms of
sort s, respectively. An equation is a pair of terms of the form s = t, with
s, t ∈ τ(Σ,V)s. In order to simplify the presentation, we often disregard
of sorts when no confusion can arise.

Terms are viewed as labeled trees in the usual way. Positions are
represented by sequences of natural numbers denoting an access path in
a term. The empty sequence Λ denotes the root position. By root(t),
we denote the symbol occurring at the root position of t. We let Pos(t)
denote the set of positions of t. By notation w1.w2, we denote the con-
catenation of positions (sequences) w1 and w2. Positions are ordered by
the prefix ordering, that is, given the positions w1, w2, w1 ≤ w2 if there
exists a position x such that w1.x = w2. ≤Lex denoted the lexicographic
ordering between positions, that is, Λ ≤Lex w for every position w, and
given the positions w1 = i.w′1 and w2 = j.w′2, then w1 ≤Lex w2 iff i < j
or (i = j and w′1 ≤Lex w′2). Given S ⊆ Σ ∪ V , OS(t) denotes the set
of positions of a term t that are rooted by symbols in S. Moreover,
for any position x, {x}.OS(t) = {x.w | w ∈ OS(t)}. t|u is the subterm
at the position u of t. t[r]u is the term t with the subterm rooted at
the position u replaced by r. By pathw(t), we denote the set of sym-
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bols in t that occur in the path from its root to the position w of t,
e.g., path(2.1)(f(a, g(b), c)) = {f, g, b}. By Var(t) (resp. FSymbols(t)),
we denote the set of variables (resp. function symbols) occurring in the
term t.

Syntactic equality between objects is represented by ≡. Given a set
S, sequences of elements of S are built with constructors ε :: S∗ (empty
sequence) and . :: S × S∗ → S∗.

A substitution σ is a mapping from variables to terms
{x1/t1, . . . , xn/tn} such that xiσ = ti for i = 1, . . . , n (with xi 6= xj
if i 6= j), and xσ = x for all other variables x. By ε, we denote
the empty substitution. Given a substitution σ, the domain of σ is
the set Dom(σ) = {x|xσ 6= x}. Given the substitutions σ1 and σ2,
such that Dom(σ2) ⊆ Dom(σ1), by σ1/σ2 we define the substitution
{X/t ∈ σ1 | X ∈ Dom(σ1) \ Dom(σ2)} ∪ {X/t ∈ σ2 | X ∈ Dom(σ1) ∩
Dom(σ2)}∪ {X/X|X 6∈ Dom(σ1)}. An instance of a term t is defined as
tσ, where σ is a substitution.

A context is a term γ ∈ τ(Σ ∪ 2,V) with zero or more holes 2, and
2 6∈ Σ. We write γ[ ]u to denote that there is a hole at position u of γ. By
notation γ[ ], we define an arbitrary context (where the number and the
positions of the holes are clarified in situ), while we write γ[t1, . . . tn] to
denote the term obtained by filling the holes appearing in γ[ ] with terms
t1, . . . , tn. By notation t2, we denote the context obtained by applying
the substitution σ = {x1/2, . . . , xn/2} to t, where Var(t) = {x1 . . . , xn}
(i.e., t2 = tσ).

Term Rewriting Systems

Term rewriting systems provide an adequate computational model for
functional languages. In the sequel, we follow the standard framework
of term rewriting (see [BN98; Klo92]). A term rewriting system (TRS
for short) is a pair (Σ, R), where Σ is a signature and R is a finite set
of reduction (or rewrite) rules of the form λ→ ρ, λ, ρ ∈ τ(Σ,V), λ 6∈ V
and Var(ρ) ⊆ Var(λ). We will often write just R instead of (Σ, R).
Sometimes, we denote the signature of a TRS (Σ, R) by ΣR.

A rewrite step is the application of a rewrite rule to an expression. A
term s rewrites to a term t via r ∈ R, s

r→R t (or s
r,σ→R t), if there exists
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a position q in s such that λ matches s|q via a substitution σ (in symbols,
s|q ≡ λσ), and t is obtained from s by replacing the subterm s|q ≡ λσ
with the term ρσ, in symbols t ≡ s[ρσ]q. When no confusion can arise,
we will omit any subscript (i.e., s → t). We denote the transitive and
reflexive closure of → by →∗. t is the irreducible form of s w.r.t. R (in
symbols s→!

R t) if s→∗R t and t is irreducible.
The rule λ → ρ (or equation λ = ρ) is collapsing if ρ ∈ V ; it is left-

linear if no variable occurs in λ more than once. We say that a TRS R is
terminating, if there exists no infinite rewrite sequence t1 →R t2 →R . . ..
A TRS R is confluent if, for all terms s, t1, t2, such that s →∗R t1 and
s →∗R t2, there exists a term t s.t. t1 →∗R t and t2 →∗R t. When R
is terminating and confluent, it is called canonical . In canonical TRSs,
each input term t can be univocally reduced to a unique irreducible form.

Let s = t be an equation, we say that the equation s = t holds in a
canonical TRS R, if there exists an irreducible form z ∈ τ(Σ,V) w.r.t.
R such that s →!

R z and t →!
R z. Let s 6= t be an inequation. We

say that s 6= t holds in a canonical TRS R, when s = t does not hold
in R. A condition is a finite set of equations and inequations. We say
that a condition C holds in a canonical TRS R, if for each equation
(inequation) e ∈ C, e holds in R. The empty condition ∅ trivially holds
in any canonical TRS R.

Rewrite Theories

The static state structure as well as the dynamic behavior of a concurrent
system can be described by meas of a Rewriting Logic (RWL) specifica-
tion encoding a rewrite theory [MOM02]. A rewrite theory is a triple
R = (Σ, E,R), where:

(i) (Σ, E) is an order-sorted equational theory equipped with a partial
order < modeling the usual subsort relation. The signature Σ spec-
ifies the operators and sorts defining the type structure of R, while
E = ∆∪B consists of a set of (oriented) equations ∆ together with
a collection B of equational axioms (e.g., associativity, commuta-
tivity, and unity) that are associated with some operator of Σ. The
equational theory (Σ, E) induces a congruence relation on the term
algebra τ(Σ,V), which is usually denoted by =E. Intuitively, the
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sorts and operators contained in the signature Σ allow one to for-
malize system states as ground terms of the term algebra τ(Σ, E)
that is built upon Σ and E.

(ii) R defines a set of (possibly conditional) labeled rules of the form
(l : t ⇒ t if c) such that l is a label, t, t′ are terms, and c is an
optional boolean term representing the rule condition. Basically,
rules in R specify general patterns modeling state transitions. In
other words, R formalizes the dynamics of the considered system.

Variables may appear in both equational axioms and rules. By nota-
tion x : S, we denote that variable x has sort S.

The system evolves by applying the rules of the rewrite theory to the
system states by means of rewriting modulo E, where E is the set of
equational axioms. This is accomplished by means of pattern matching
modulo E. More precisely, given an equational theory (Σ, E), a term t
and a term t′, we say that t matches t′ modulo E (or that t E-matches
t′) via substitution σ if there exists a context C such that C[tσ] =E t′,
where =E is the congruence relation induced by the equational theory
(Σ, E). Hence, given a rule r = (l : t⇒ t′ if c), and two ground terms s1

and s2 denoting two system states, we say that s1 rewrites to s2 modulo
E via r (in symbols s1

r→ s2), if there exists a substitution σ such that
s1 E-matches t via σ, s2 = C[t′σ] and cσ holds (i.e., it is equal to true
modulo E). A computation over R is a sequence of rewrites of the form

s0
r1→ s1 . . .

rk→ sk, with r1, . . . , rk ∈ R, s0, . . . , sk ∈ τ(Σ, E).



Part I

Static Web Verification





Chapter 1

Rewriting-based Web
Verification

In this chapter, we briefly recall the formal verification methodology pro-
posed in [ABF06], which is able to detect erroneous as well as missing
information in a Web site. By executing a Web specification on a given
Web site, this methodology is able to recognize and exactly locate the
source of a possible discrepancy between the Web site and the properties
stated in the Web specification.

1.1 Web Site Description

In [ABF06], a Web page is either an XML [BPM+08] or an XHTML
[Pem00] document, which is assumed to be well-formed. This is jus-
tified by the plenty of programs and online services that are able to
validate XHTML/XML syntax and perform link checking (e.g., [Sol10;
Osk05]). As Web pages are provided with a tree-like structure, they can
be straightforwardly encoded into ordinary terms of a suitable term al-
gebra TText∪Tag , where Text ∪ Tag is a signature containing the text and
the tags on which the Web pages are built, as shown in Figure 1.1.

<people> people(
<person> person(
<id>per0</id> id(per0),
<name>Conte</name> name(Conte)

</person> )
</people> )

Figure 1.1: A Web page and its corresponding encoding as a ground term
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p1) members(member(name(mario), surname(rossi), status(professor)),
member(name(franca), surname(bianchi), status(technician)),
member(name(giulio), surname(verdi), status(student)),
member(name(ugo), surname(blu), status(professor)) )

p2) hpage(fullname(mariorossi), phone(3333), status(professor),
hobbies(hobby(reading), hobby(gardening))),

p3) hpage(fullname(francabianchi), status(technician), phone(5555),
links(link(url(www.google.com), urlname(google)),
link(url(www.sexycalculus.com), urlname(FormalMethods))),

p4) hpage(fullname(annagialli), status(professor), phone(4444),
teaching(course(algebra))),

p5) pubs(pub(name(ugo), surname(blu), title(blah1), blink(year(2003))),
pub(name(anna), surname(gialli), title(blah2), year(2002))),

p6) projects(project(pname(A1), grant1(1000), grant2(200),
total(1100), coordinator(fullname(mariorossi))),

project(pname(B1), grant1(2000), grant2(1000),
projectleader(surname(gialli), name(anna)),
total(3000)))

W = {p1, p2, p3, p4, p5, p6}

Figure 1.2: An example of a Web site W for a research group

Note that XML/XHTML tag attributes can be considered as common
tagged elements, and hence translated in the same way. Therefore, Web
sites can be represented as finite sets of (ground) terms.

In the following, we will also consider terms of the non-ground term
algebra τ(Text ∪ Tag ,V), which may contain variables. An element
s ∈ τ(Text ∪ Tag ,V) is called Web page template. In our methodol-
ogy, Web page templates are used for specifying properties on Web sites
as described in the following section.

Example 1.1.1

In Figure 1.2, we represent a Web site W of a research group, which con-
tains information about group members affiliation, scientific publications,
research projects, teaching and personal data.
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1.2 Web Specification Language

A Web specification is a triple (IN , IM , R), where R, IN , and IM are
finite set of rules. The set R contains the definition of some auxiliary
functions which the user would like to provide, such as string processing,
arithmetic, boolean operators, etc. It is formalized as a canonical term
rewriting system which is handled by standard rewriting [Klo92]. This
implies that each input term t can be univocally reduced to an irreducible
form.

The set IN describes constraints for detecting erroneous Web pages
(correctNess rules). As the amount of faulty information is typically a
small portion of the whole content of a Web site, the correctness rules
model erroneous patterns rather than correct/safe patterns, which facili-
tates both the specification and the verification of correctness properties.
Formally, a correctness rule has the following form:

l⇀ error | C, with V ar(C) ⊆ V ar(l)

where l is a term, error is a reserved constant, and C is a (possibly
empty) finite sequence containing membership tests (e.g., X ∈ rexp)
w.r.t. a given regular language1, and/or equations over terms. For the
sake of expressiveness, we also allow to write inequalities of the form
s 6= t in C, which hold whenever the corresponding equation s = t does
not hold. When C is empty, we simply write l⇀ error.

The meaning of a correctness rule l ⇀ error | C, where
C ≡ (X1 in rexp1, . . . , Xn in rexpn, s1 = t1 . . . sm = tm), is the follow-
ing. We say that C holds for substitution σ, if (i) each structured text
Xiσ, i = 1, . . . , n, is contained in the language of the corresponding reg-
ular expression rexpi; (ii) each instantiated equation (resp. inequality)
(si = ti)σ (resp. (si 6= ti)σ) , i = 1, . . . , m, holds in R.

The Web page p is considered incorrect if an instance lσ of l is
recognized within p, and C holds for σ.

The third set of rules IM specifies some properties for detecting in-
complete/missing Web pages (coMpleteness rules). A completeness rule

1Regular languages are represented by means of the usual Unix-like regular ex-
pressions syntax.
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is defined as

l⇀ r 〈q〉

where l and r are terms and q ∈ {E, A}. Completeness rules of a Web
specification formalize the requirement that some information must be
included in all or some pages of the Web site. The attributes 〈A〉 and 〈E〉
distinguish the “universal” rules from the “existential” rules. Right-hand
sides of completeness rules can contain functions, which are defined in R.
Intuitively, the interpretation of a universal rule l⇀ r 〈A〉 (respectively,
an existential rule l ⇀ r 〈E〉) w.r.t. a Web site W is as follows: if (an
instance of) l is recognized in W , also (an instance of) the irreducible
form of r must be recognized in all (respectively, some) of the Web pages
which embed (an instance of) r.

Sometimes, we may be interested in checking a given completeness
property only on a subset of the whole Web site. For this purpose, some
symbols in the right-hand sides of the rules are marked by means of the
constant symbol ]. Marking information of a given rule r is used to
select the subset of the Web site in which we want to check the condition
formalized by r. More specifically, rule r is executed on all and only
the Web pages embedding the marking information. A detailed example
follows.

Example 1.2.1
Consider the Web specification that consists of the following complete-
ness and correctness rules along with a term rewriting system defining
the string concatenation function ++, the arithmetic operators + and ∗
on natural numbers and the relational operator ≤. That is:

r1) member(name(X), surname(Y)) ⇀ ]hpage(fullname(X ++Y), status) 〈E〉
r2) hpage(status(professor)) ⇀ ]hpage(]status(]professor),

teaching) 〈A〉
r3) pubs(pub(name(X), surname(Y))) ⇀ ]members(member(name(X),

surname(Y))) 〈E〉
r4) courselink(url(X), urlname(Y)) ⇀ ]cpage(title(Y)) 〈E〉
r5) hpage(X) ⇀ error | X in[:TextTag:]∗sex[:TextTag:]∗

r6) blink(X) ⇀ error
r7) project(grant1(X), grant2(Y), total(Z)) ⇀ error | X + Y 6= Z
r8) project(grant1(X), grant2(Y)) ⇀ error | X 6= Y ∗ 2
r9) total(Z) ⇀ error | Z ≥ 500000 = true
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This Web specification models some required properties for the Web
site of Figure 1.2. First rule formalizes the following property: if there is
a Web page containing a member list, then for each member, a home page
should exist which contains (at least) the full name and the status of this
member. The full name is computed by concatenating the name and the
surname strings by means of the ++ function. The marking information
establishes that the property must be checked only on home pages (i.e.,
pages containing the tag “hpage”). Second rule states that, whenever
a home page of a professor is recognized, that page must also include
some teaching information. The rule is universal, since it must hold for
each professor home page. Such home pages are selected by exploiting
the marks which identify professor home pages. Third rule specifies that,
whenever there exists a Web page containing information about scientific
publications, each author of a publication should be a member of the
research group. In this case, we must check the property only in the
Web page containing the group member list. The fourth rule formalizes
that, for each link to a course, a page describing that course must exist.
The fifth rule forbids sexual contents from being published in the home
pages of the group members. This is enforced by requiring that the word
sex does not occur in any home page by using the regular expression
[: TextTag :]∗sex[: TextTag :]∗, which identifies the regular language of
all the strings built over (Text ∪ Tag) containing word sex. The sixth
rule is provided with the aim of improving accessibility for people with
disabilities. It simply states that blinking text is forbidden in the whole
Web site. The last three rules respectively state that, for each research
project, the total project budget must be equal to the sum of the grants,
the first grant should be the double of the second one, and the total
budget is less than 500000 euros.

The error diagnoses are carried out by running Web specifications
on Web sites. This is mechanized by means of partial rewriting, a novel
rewriting technique which is obtained by replacing the traditional pattern-
matching of term rewriting with a new mechanism based on page (tree)
embedding (cf. [ABF06]).
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1.3 Homeomorphic Embedding and Partial

Rewriting

Partial rewriting extracts “some pieces of information” from a page,
pieces them together, and then rewrites the glued term. The assembling
is done by means of the homeomorphic embedding relation, which recog-
nizes the structure and the labeling of a given term (Web page template)
inside a particular page of the Web site.

The notion of homeomorphic embedding, E, is an adaptation of
Kruskal’s embedding (or “syntactically simpler”) relation [Bez03] where
the usual diving rule2 [Leu02] is ignored.

Definition 1.3.1 (homeomorphic embedding) The homeomorphic
embedding relation

E⊆ τ(Text ∪ Tag)× τ(Text ∪ Tag)

on Web pages is the least relation satisfying the rule:

f(t1, . . . , tm) E g(s1, . . . , sn)
iff f ≡ g and ti E sπ(i), for i = 1, . . . ,m,

and some injective function π : {1, . . . ,m} → {1, . . . , n}.

Given two Web pages s1 and s2, if s1 E s2 we say that s1 simulates
(or is embedded or recognized into) s2. We also say that s2 embeds s1.
Note that, in Definition 1.3.1, for the case when m is 0 we have c E c for
each constant symbol c. Note also that s1 6E s2 if either s1 or s2 contain
variables.

Regarding to the positions involved in the homeomorphic embedding
relation, we give the following auxiliary definition that will be needed
later.

Definition 1.3.2 (Embs(t)) Let s, t ∈ τ(Text ∪ Tag) such that s E t.
We define the set Embs(t) as the set of all the positions in t which embed
some subterm of s.

2The diving rule allows one to “strike out” a part of the term at the right-hand
side of the relation E. Formally, s E f(t1, . . . tn), if s E ti, for some i.



1.3. Homeomorphic Embedding and Partial Rewriting 21

For instance, consider the terms f(k, g(c)), and f(b, g(c), k). Then,
f(k, g(c)) E f(b, g(c), k), and

Embf(k,g(c))(f(b, g(c), k)) = {Λ, 2, 2.1, 3}

Now we are ready to introduce the partial rewrite relation between
Web page templates. Without loss of generality, conditions and/or quan-
tifiers from the Web specification rules are disregarded.

Definition 1.3.3 (partial rewriting) Let s, t ∈ τ(Text ∪ Tag ,V).
Then, s partially rewrites to t via rule l ⇀ r and substitution σ iff
there exists a position u ∈ OTag(s) such that:

(i) lσ E s|u, and
(ii) t = Reduce(rσ,R), where function Reduce(x ,R) com-
putes, by standard term rewriting, the irreducible form of x
in R.

Roughly speaking, given a Web specification rule l ⇀ r, partial
rewriting allows us to extract from, a given Web page s, a subpart of
s which is embedded by a ground instance of l, and to replace s by
a reduced, ground instance of r. Note that the context of the selected
reducible expression s|u is disregarded after each rewrite step. By no-
tation s ⇀I t, we denote that s is partially rewritten to t using some
rule belonging to the set I. A partial rewrite sequence is of the form
s0 ⇀ s1 ⇀ . . . ⇀ sn. Moreover, we denote the transitive closure (resp.,
the transitive and reflexive closure) of ⇀ by ⇀+ (resp., ⇀ ∗).

Example 1.3.4

Let p = h(f(a), f(b)) be a Web page. Let I = {r1, r2} be a Web specifi-
cation where r1 = f(x) ⇀ g(h(x), b) and r2 = h(a) ⇀ m(a, b). Then, we
get the following partial rewrite sequences:

s1 = h(f(a), f(b)) ⇀ g(h(a), b) ⇀ m(a, b)
s2 = h(f(a), f(b)) ⇀ g(h(b), b)
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1.4 Error Diagnoses

In order to diagnose correctness as well as completeness errors, we follow
the method presented in [ABF06].

We classify the kind of errors which can be found in a Web site in
terms of the different outputs delivered by our verification technique,
when is fed with a Web site specification. In Chapter 2, we will exploit
this information to develop our repairing/correction methodology. Let
us start by characterizing correctness errors.

Applying the correctness rules to Web pages. If a Web page is
partially rewritten to the constant error, then a correctness error for
that page is signaled, since a piece of erroneous/forbidden information
has been recognized.

Definition 1.4.1 (correctness error) Let W be a Web site and
(IM , IN , R) be a Web specification. Then, the quadruple (p, w, l, σ) is
a correctness error evidence iff p ∈ W , w ∈ OTag(p), and lσ is an in-
stance of the left-hand side l of a correctness rule belonging to IN such
that lσ E p|w.

Given a correctness error evidence (p, w, l, σ), lσ represents the er-
roneous information which is embedded in a subterm of the Web page p,
namely p|w.

We denote the set of all correctness error evidences of a Web site W
w.r.t. a set of correctness rules IN by EN(W ). When no confusion can
arise, we just write EN .

Example 1.4.2

Consider the correctness rule r5 in the Web specification of Example
1.2.1 and the Web site in Figure 1.2. Then, our verification methodology
outputs (p3,Λ, l, σ), where

l ≡ hpage(X)
σ ≡ {X/links(link(url(www.sexycalculus.com),

urlname(FormalMethods))) }
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Applying the completeness rules to Web pages. First, a set of
requirements (i.e., pieces of information which must be contained in the
site) is generated by partially rewriting the Web pages via the complete-
ness rules; then, is used a homeomorphic embedding algorithm to check
whether the requirements are fulfilled, that is, the required information is
not missing. When a requirement is not satisfied, it witnesses the lack of
some data and the system outputs the incomplete Web page p together
with the information which should be added to p in order to fulfill the
requirement.

As for completeness errors, we can distinguish three classes of errors:
(i) Missing Web pages, (ii) Universal completeness errors, (iii) Existen-
tial completeness errors. These completeness errors can be detected by
partially rewriting Web pages to some expression r by means of the rules
of IM , and then checking whether r does not occur in a suitable subset
of the Web site.

Definition 1.4.3 (Missing Web page) Let W be a Web site, and let
(IM , IN , R) be a Web specification. Then the pair (r,W ) is a missing
Web page error evidence if there exists p ∈ W s.t. p ⇀+

IM
r and r ∈

τ(Text ∪ Tag) does not belong to W .

When a missing Web page error is detected, the evidence (r,W ) sig-
nals that the expression r does not appear in the whole Web site W .

In order to formalize existential as well as universal completeness
errors, the following auxiliary definition is introduced.

Definition 1.4.4 Let P be a set of terms in τ(Text ∪ Tag), and let r ∈
τ(Text∪Tag) be a term. We say that P is universally (resp. existentially)
complete w.r.t. r iff for each p ∈ P (resp. for some p ∈ P), there exists
w ∈ OTag(p) s.t. r E p|w.

Definition 1.4.5 (Universal completeness error) Let W be a Web
site, and let (IM , IN , R) be a Web specification. Then the triple
(r, {p1, . . . , pn}, A) is a universal completeness error evidence, if there
exists p ∈ W s.t. p ⇀+

IM
r and {p1, . . . , pn} is not universally complete

w.r.t. r, pi ∈ W , i = 1, . . . , n.
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Definition 1.4.6 (Existential completeness error) Let W be a Web
site, and let (IM , IN , R) be a Web specification. Then the triple
(r, {p1, . . . , pn}, E) is an existential completeness error evidence, if there
exists p ∈ W s.t. p⇀+

IM
r and {p1, . . . , pn} is not existentially complete

w.r.t. r, pi ∈ W , i = 1, . . . , n.

Note that Definition 1.4.5 (resp. Definition 1.4.6) formalizes the fact
that the Web site W fails to fulfil the requirement that a piece of in-
formation must occur in all (resp. some) Web pages of a given subset
of W . We denote by EM(W ) the set containing all the completeness
error evidences w.r.t. IM for a Web site W (missing Web pages as well as
universal/existential completeness errors evidences). When no confusion
can arise, we just write EM .

Example 1.4.7
Consider the Web specification of Example 1.2.1 and the Web site in
Figure 1.2. The following completeness error evidences are delivered:

eM1 = ( hp(fullname(giulioverdi), status), W )
eM2 = ( hp(status(professor), teaching), p2, p4, A)
eM3 = ( members(member(name(anna), surname(gialli))), p1, E)

EM = {eM1 , eM2 , eM3}

eM1 is a missing Web page error showing the missing page’s Giulio

Verdi; eM2 represents a universal completeness error which formalizes
the fact that there are some professors’ home pages without any teaching
information; and eM3 identifies an existential completeness error telling
us that the members’ Web page should contain the group member Anna
Gialli.

Definition 1.4.8 (Web site correctness) Given a Web specification
(IM , IN , R), a Web site W is correct w.r.t. (IM , IN , R) iff the set EN of
correctness error evidences w.r.t. IN is empty.

Definition 1.4.9 (Web site completeness) Given a Web specification
(IM , IN , R), a Web site W is complete w.r.t. (IM , IN , R) iff the set EM
of completeness error evidences w.r.t. IM is empty.



1.4. Error Diagnoses 25

Corollary 1.4.10 (Correct and complete) Given a Web site W and
a Web specification (IM , IN , R). We say that W is correct and complete
w.r.t. (IM , IN , R) iff EN = ∅ and EM = ∅.

The verification methodology of [ABF06] generates the sets of cor-
rectness and completeness error evidences EN and EM mentioned above
for a given Web site w.r.t. the input Web specification. Starting from
these sets, in the following chapter we formulate a method for fixing the
errors and delivering a Web site which is correct and complete w.r.t. the
intended Web specification.
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Chapter 2

Semi-Automatic Repairing
of Web Sites

This chapter describes the semi-automatic methodology for repairing
faulty Web sites which complements the verification methodology given
in Chapter 1.

Given a faulty Web site W and the sets of errors EN and EM , our
goal is to modify the given Web site by adding, changing, and removing
information in order to produce a Web site that is correct and complete
with respect to the considered Web specification. For this purpose, in
correspondence with the error categories distinguished in the previous
chapter, we introduce a catalog of repair actions that can be applied
to the faulty Web site. Therefore, in our framework, fixing a Web site
consists in selecting a set of suitable repair actions that are automatically
generated, and executing them in order to remove inconsistencies and
wrong data from the Web site.

2.1 Repairing Faulty Web Sites

In order to repair a faulty Web site, we introduce four repair actions that
will be used as primitives into the repair strategies. The primitive repair
actions that we consider are the following:

� change(p, w, t), which replaces the subterm p|w in p with the
term t;

� insert(p, w, t), which modifies the term p by adding the term t

into p|w;

� add(p,W ), which adds the Web page p to the Web site W;
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� delete(p, t), which deletes all the occurrences of the term t in the
Web page p.

Each repair action returns the modified/added Web page after its ex-
ecution. Note that it is possible that a particular error could be repaired
by means of different actions. For instance, a correctness error can be
fixed by deleting the incorrect/forbidden information, or by changing the
data which rise that error. Similarly, a completeness error can be fixed by
either (i) inserting the missing information, or (ii) deleting all the data in
the Web site that caused that error. Moreover, modifying or inserting ar-
bitrary information may cause the appearance of new correctness errors.
In order to avoid this, we have to ensure that the data considered for
insertion are safe w.r.t. the Web specification, i.e., they cannot fire any
correctness rule. For this purpose, we introduce the following definition.

Definition 2.1.1 Let (IM , IN , R) be a Web specification, and let p ∈
τ(Text ∪ Tag) be a Web page. Then, p is safe w.r.t. IN , iff for each
w ∈ OTag(p) and (l⇀ r | C) ∈ IN , either (i) there is no σ s.t. lσ E p|w;
or (ii) lσ E p|w, but Cσ does not hold.

In the following, we develop a repairing methodology which gets rid
of both, correctness and completeness errors. We proceed in two main
phases. First, we deal with correctness errors. Some repair actions are
automatically inferred and run in order to remove the wrong information
from the Web site. After this phase, we will end up with a correct Web
site which still can be incomplete. At this point, other repair actions are
synthesized and executed in order to provide Web site completeness.

2.1.1 Fixing Correctness Errors

Throughout this section, we will consider a given Web site W , a Web
specification (IM , IN , R) and the set EN 6= ∅ of the correctness error
evidences w.r.t. IN for W . Our goal is to modify W in order to generate
a new Web site which is correct w.r.t. (IM , IN , R). We proceed as follows:
whenever a correctness error is found, we choose a possible repair action
(among the different actions described below) and we execute it in order
to remove the erroneous information, provided that it does not introduce
any new bug.
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Given e = (p, w, l, σ) ∈ EN , e can be repaired in two distinct ways:
we can decide either (i) to remove the wrong content lσ from the Web
page p (specifically, from p|w), or (ii) to change lσ into a piece of correct
information. Hence, it is possible to choose between the following repair
strategies.

“Correctness through Deletion” Strategy

In this case, we simply remove all the occurrences of the subterm p|w of
the Web page p containing the wrong information lσ by applying the
repair action delete(p, p|w).1

Example 2.1.2
Consider the Web site in Figure 1.2 and the Web specification in Exam-
ple 1.2.1. The term lσ ≡ p|1.4 ≡ blink(year(2003)) embedded in the
Web page (5) of W (which is also called p in this example) generates
a correctness error evidence (p, 1.4, l, σ) w.r.t. the rule blink(x) ⇀ error

and hence a delete action will remove from p the subterm
blink(year(2003)).

“Correctness through Change” Strategy

Given a correctness error e = (p, w, l, σ) ∈ EN , we replace the subterm
p|w of the Web page p with a new term t introduced by the user. The new
term t must fulfill some conditions which are automatically provided and
checked in order to guarantee the correctness of the inserted information.
In the following we show how to compute such constraints.

Roughly speaking, whenever we fix some wrong data by executing a
repair action change(p, w, t), it is not enough to ensure that the term
t to be introduced has no errors, we also need to consider t within the
context that surrounds it in p. If we don’t pay attention to such a global
condition, some subtle correctness errors might arise as witnessed by the
following example.

1Note that, instead of removing the whole subterm p|w, it would be also possible
to provide a more precise though also time-expensive implementation of the delete
action which only gets rid of the part lσ of p|w which is responsible for the correctness
error.
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Example 2.1.3
Consider the Web page p ≡ f(g(a), b, h(c)), and the following correctness
rule set

IN ≡ {(r1) f(g(b)) ⇀ error, (r2) g(a) ⇀ error}.

The Web page p contains a correctness error according to rule (r2). The
Web page f(g(b), b, h(c)) is obtained from p by executing, for instance,
the repair action

change(f(g(a), b, h(c)), 1, g(b)).

Although the term g(b) is safe w.r.t. IN (i.e., it does not introduce any
new correctness error), the replacement of g(a) with g(b) in p produces
a new correctness error which is recognizable by rule (r1).

In order to avoid such kinds of undesirable repairs, we define the
following global correctness property, which simply prevents a new term
t from firing any correctness rule when inserted in the Web page to be
fixed.

Definition 2.1.4 Let (IM , IN , R) be a Web specification,
p′ ≡ change(p, w, t) be a repair action producing the Web page p′. Then,
change(p, w, t) obeys the global correctness property if, for each correct-
ness error evidence e = (p′, w′, l, σ) w.r.t. IN such that w′ ≤ w,

{w}.OTag(t) ∩ {w′}.Emblσ(p′|w′) = ∅

The idea behind Definition 2.1.4 is that any error e in the new page
p′ ≡ change(p, w, t), obtained by inserting term t within p, is not a
consequence of this change but already present in a different sub-term of
p. For this purpose, we require that (the set of positions of) the wrong
information lσ does not “overlap” the considered term t.

Example 2.1.5
Consider again Example 2.1.3. The repair action

change(f(g(a), b, h(c)), 1, g(b))

does not obey the global correctness property. Indeed, it generates a
Web page f(g(b), b, h(c)) containing a correctness error.
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The use of the “Correctness through Deletion” and “Correctness
through Change” strategies decreases the number of correctness errors of
the original Web site as stated by the following proposition.

Proposition 2.1.6 Let (IM , IN , R) be a Web specification, and let W be
a Web site. Let EN(W ) be the set of correctness error evidences w.r.t. IN
of W , and let (p, w, l, σ) ∈ EN(W ) be a correctness error. By executing
a repair action delete(p, pw) (resp. change(p, w, t), which obeys the
global correctness property), we have that

|EN(W ′)| < |EN(W )|

where
W ′ ≡ W \ {p} ∪ {delete(p, pw)}

(resp. W ′ ≡ W \ {p} ∪ {change(p, w, t)})

Proof. We prove the two cases separately.

Case (i). Assume that the repair action delete(p, pw) is executed. In
this case, the proof is immediate, since no new information is added
to the Web site, hence, no extra correctness errors can be intro-
duced.

Case (ii). Assume that the repair action change(p, w, t), which obeys
the global correctness property, is executed. The proof for this case
is also immediate. It suffices to observe that Definition 2.1.4 (global
correctness property) prevents new errors from being introduced by
any application of a repair action change.

We say that performing a repair action delete (resp. change) is safe,
if it does not introduce any new correctness error, i.e.,
|EN(W ′)| < |EN(W )|. In Algorithm 1 we provide the pseudocode of
the correction algorithm we implemented.
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Algorithm 1 An algorithm for repairing correctness errors in a Web
site.
Require:

W be a Web site, IN be a set of correctness rules.
EN be a set of correctness error in W w.r.t. IN

1: procedure Correctness-Repair (W, IN)
2: while a correctness error evidence (p, w, l, σ) ∈ EN exists do
3: option ← AskUser()
4: if option = delete then
5: W ← W \ {p} ∪ {delete(p, lσ)} // Delete action
6: else
7: t ← AskUser() // Change action
8: if change(p, w, t) obeys the local and the global correctness

properties then
9: W ← W \ {p} ∪ {change(p, w, t)}

10: else
11: Error(”incorrect term t”)
12: end if
13: end if
14: end while
15: end procedure

2.1.2 Fixing Completeness Errors

In this section, we address the problem of repairing an incomplete Web
site W . Without loss of generality, we assume that W is an incomplete
but correct Web site w.r.t. a given Web specification (IM , IN , R). Such
an assumption will allow us to design a repair methodology which “com-
pletes” the Web site and does not introduce any incorrect information.

Let EM(W ) be the set of completeness error evidences risen by IM for
the Web site W . Any completeness error evidence belonging to EM(W )
can be repaired following distinct strategies and thus by applying distinct
repair actions. On the one hand, we can think of adding the needed
data, whenever a Web page or a piece of information in a Web page is
missing. On the other hand, all the information that caused the error
might be removed to get rid of the bug. In both cases, we must ensure
that the execution of the chosen repair action does not introduce any
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new correctness/completeness error to guarantee the termination and
the soundness of our methodology. In the following, we distinguish and
argue about the two possible repair strategies mentioned above.

“Completeness through Insertion” strategy

We consider two distinct kinds of repair actions, namely add(p,W ) and
insert(p, w, t), according to the kind of completeness error we have to
fix. The former action adds a new Web page p to a Web site W and thus
will be employed whenever the system has to fix a given missing Web
page error. The latter allows us to add a new piece of information t to (a
subterm of) an incomplete Web page p, and therefore is suitable to repair
universal as well as existential completeness errors. More specifically, the
insertion repair strategy works as follows.

Missing Web page errors. Given a missing Web page error evidence
(r,W ), we fix the bug by adding a Web page p, which embeds the missing
expression r, to the Web site W . Hence, the Web site W will be “en-
larged” by effect of the following add action: W = W ∪ {add(p,W )},
where r E p|w for some w ∈ OTag(p).

Existential completeness errors. Given an existential completeness
error evidence (r, {p1, p2, . . . , pn}, E), we fix the bug by inserting a term
t, that embeds the missing expression r, into an arbitrary page pi, i =
1, . . . , n. The position of the new piece of information t in pi is typically
provided by the user, who must supply a position in pi where t must
be attached. The insert action will transform the Web site W in the
following way: W = W \ {pi} ∪ {insert(pi, w, t)}, where r E pi|w for
some w ∈ OTag(p).

Universal completeness errors. Given a universal completeness error
evidence (r, {p1, p2, . . . , pn}, A), we fix the bug by inserting a term ti, that
embeds the missing expression r, into every Web page pi, i = 1, . . . , n
not embedding r. The position of the new piece of information ti in each
pi is typically provided by the user, who must supply a position wi in pi
where ti must be attached. In this case, we will execute a sequence of
insert actions, exactly one for each incomplete Web page pi. Therefore,
the Web site W will be transformed in the following way. For each
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pi ∈ {p1, p2, . . . , pn} such that r 6E p, W = W \{pi}∪{insert(pi, wi, ti)},
where r E p|wi for some wi ∈ OTag(pi).

Both the add action and the insert action introduce new informa-
tion in the Web site which might be potentially dangerous, since it may
contain erroneous as well as incomplete data. It is therefore important to
constrain the kind of information a user can add. In order to preserve cor-
rectness, we compel the user to only insert safe information in the sense
of Definition 2.1.1. Hence, the new data being added by the execution
of some repair action cannot fire a correctness rule subsequently.

Additionally, we want to prevent the execution of the repair actions
from introducing new completeness errors, that is, we just want to fix all
and only the initial set of completeness error evidences of the Web site W,
namely EM(W ). Given a completeness error evidence e, we use notation
e(r) to make evident the unsatisfied requirement r signaled by e.

Definition 2.1.7 Let (IM , IN , R) be a Web specification, and let W be a
Web site w.r.t. (IM , IN , R). Let EM(W ) be the set of completeness error
evidences of W w.r.t. IM .

� the repair action p1 ≡ insert(p, w, t) is acceptable w.r.t. (IM , IN , R)
and W iff

1. p1 is safe w.r.t. (IM , IN , R);

2. r E t|w, w ∈ OTag(t), for some e(r) ∈ EM(W );

3. if W ′ ≡ W \ {p} ∪ {p1}, then EM(W ′) ⊂ EM(W ).

� the repair action p2 ≡ add(p2,W ) is acceptable w.r.t. (IM , IN , R)
and W iff

1. p2 is safe w.r.t. (IM , IN , R);

2. r E p2|w, w ∈ OTag(p2), for some e(r) ∈ EM(W );

3. if W ′ ≡ W ∪ {p2}, then EM(W ′) ⊂ EM(W ).

Definition 2.1.7 guarantees that the information which is added by
insert and add actions is correct and does not yield any new complete-
ness error. More precisely, the number of completeness errors decreases
by effect of the execution of such repair actions.
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As an immediate consequence of Definition 2.1.7, we have the follow-
ing.

Corollary 2.1.8 Let (IM , IN , R) be a Web specification, and let W be
a Web site w.r.t. (IM , IN , R). Let EM(W ) be the set of completeness
error evidences of W w.r.t. IM . By execution a repair action p1 ≡
insert(p, w, t) (resp. p2 ≡ add(p2,W )) , which obeys the acceptable prop-
erty, we have that

|EN(W ′)| < |EN(W )|

where

W ′ ≡ W \ {p} ∪ {p1}, where p1 ≡ insert(p, w, t)
(resp. W ′ ≡ W ∪ {p2}, where p2 ≡ add(p2,W ))

Example 2.1.9
Consider the Web specification of Example 1.2.1 and the universal com-
pleteness error evidence (hp(status(professor), teaching), p2, p4, A)
where p1 and p2 are the home pages of Mario Rossi and Anna Gialli

in the Web site of Figure 1.2. To fix the error, we should add some
information to Web page p2, while Web page p4 is complete w.r.t. the
requirement hp(status(professor), teaching). Consider the pieces of
information

t1 ≡ teaching(course(title(logic),
syllabus(blah)))

t2 ≡ teaching(courselink(url(www.mycourse.com),
urlname(Logic))).

If we introduce term t1, the corresponding insert action is acceptable.
However, inserting term t2 would produce a new completeness error (i.e.,
a broken link error).

“Completeness through Deletion” strategy.

When dealing with completeness errors, sometimes it is more convenient
to delete incomplete data instead of completing them. In particular, this
option can be very useful, whenever we want to get rid of out-of-date
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information as illustrated in Example 2.1.11 below. The main idea of the
deletion strategy is to remove all the information in the Web site that
caused a given completeness error. The strategy is independent of the
kind of completeness error we are handling, since the missing information
is computed in the same way for all the three kinds of errors by partially
rewriting the original Web pages of the Web site. In other words, given
the missing expression r of a completeness error evidence e(r) (that is, a
missing page error evidence (r,W ), or an existential completeness error
evidence (r, {p1, . . . , pn}, E), or a universal completeness error evidence
(r, {p1, . . . , pn}, A)), there exists a Web page p ∈ W such that p⇀+ r.

Therefore, we proceed by computing and eliminating from the Web
pages the term that started the partial rewrite sequence that lead to a
missing expression r.

Definition 2.1.10 (repairByDelete) Let W be a Web site, and let
(IM , IN , R) be a Web specification. Let e(r) be a completeness error.
Them, the Web site W will change in the following way.

For each t ⇀+ r, where t E p|w, w ∈ OTag(p), p ∈ W

W ≡{p ∈ W | t 6E p|w,∀ w ∈ OTag(p)} ∪
{delete(p, t) | p ∈ W, t E p|w, w ∈ OTag(p)}

Example 2.1.11
Consider the Web specification of Example 1.2.1, the Web site W of
Figure 1.2 and the missing Web page error evidence

(hpage(fullname(ugoblu), status), W)

which can be detected in W by using the completeness rules in IM . The
missing information is obtained by means of the following partial rewrite
sequence:

pub(name(ugo), surname(blu), title(blah1),
blink(year(2003))) ⇀
member(name(ugo), surname(blu)) ⇀
hpage(fullname(ugoblu), status)

By choosing the deletion strategy, we would delete all the information
regarding the group membership and the publications of Ugo Blu from
the Web site.
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As in the case of the insertion strategy, we have to take care about the
effects of the execution of the repair actions. More precisely, we do not
want the execution of any delete action to introduce new completeness
errors. For this purpose, we consider the following notion of acceptable
delete action.

Definition 2.1.12 Let (IM , IN , R) be a Web specification, and let W be
a Web site w.r.t. (IM , IN , R). Let EM(W ) be the set of completeness
error evidences of W w.r.t. IM(W ). The repair action p1 ≡ delete(p, t)
is acceptable w.r.t. (IM , IN , R) and W iff W ′ ≡ W \ {p} ∪ {p1} implies
EM(W ′) ⊂ EM(W ).

Algorithm 2 outlines a procedure for repairing completeness errors. It
implements the correction strategies described in the previous sections.
For any given completeness error, the user is asked to choose between
deletion of wrong information and insertion of new data. In both cases
the performed repair actions must be acceptable in order to ensure the
termination and the correctness of the procedure.

2.2 Automatic Error Repair

The execution of the strategies seen so far allow us to guarantee the
termination of our repair methodology as well as avoid to introduce new
errors in the Web site w.r.t. a given Web specification. These strategies
are semi-automatics, because it is necessary to involve the user either to
define the new term to be added or to decide the deletion of the incorrect
information. In the following, we will see a particular case where it is
possible to repair a correctness error in an automatic way.

Let us consider a correctness error e ≡ (p, w, l, σ) ∈ EN given by a
conditional rule, i.e., a rule as follows

l⇀ error | C, where C 6= ∅ and V ar(C) ⊆ V ar(l)

Let us also consider the repair action change(p, w, t). Note that to fix
the error e it is enough to give a substitution σ′ such that t = lσ′.

We call the constraint satisfaction problem associated with e, in sym-
bols CSe, to the set of conditions
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Algorithm 2 An algorithm for repairing completeness errors.
Require:

W be a Web site, (IM , IN , R) be a Web specification.
1: procedure Completeness-errors-Repair (W, IM , IN , R)
2: while a completeness error e(r) ∈ EM (W ) is found do
3: option ← AskUser()
4: if option = delete then
5: call DeletionStrategy(e(r),W, IM , IN , R)
6: else
7: switch e(r) of

8: • case [e(r) ≡ (r,W )] // Missing Web page error
9: p ← AskUser()
10: if add(p,W ) is acceptable w.r.t. (IM , IN , R) and W then
11: W ←W ∪ {add(p,W )}
12: else
13: Error(“incorrect page”, p)
14: end if

15: • case [e(r) ≡ (r, {p1, . . . , pn}, E)] // Existential completeness error
16: (t, w) ← AskUser()
17: select p ∈ {p1, . . . , pn}
18: call InsertTermToPage(p, w, t,W, IM , IN , R)

19: • case [e(r) ≡ (r, {p1, . . . , pn}, A)] // Universal completeness error
20: for all pi ∈ {p1 . . . pn} s.t. r 6E pi do
21: (ti, wi) ← AskUser()
22: call InsertTermToPage(pi, wi, ti,W, IM , IN , R)
23: end for

24: end switch
25: end if
26: end while
27: end procedure

28: procedure DeletionStrategy (e(r),W, IM , IN , R)
29: for all t ⇀+ r, where t E p|w, w ∈ OTag (p), p ∈W do

30: for all p ∈W and t E p|w, for some w ∈ OTag (p) do

31: if delete(p, t) is acceptable w.r.t. (IM , IN , R) and W then
32: W ←W \ {p} ∪ {delete(p, t)}
33: else
34: Error(“incorrect delete action”)
35: end if
36: end for
37: end for
38: end procedure

39: procedure InsertTermToPage (p, w, t,W, IM , IN , R)
40: if insert(p, w, t) is acceptable w.r.t. (IM , IN , R) and W then
41: W ←W \ {p} ∪ {insert(p, w, t)}
42: else
43: Error(“incorrect term”,t, “in page”,p)
44: end if
45: end procedure
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CSe ≡ {¬C | ∃ (l⇀ r | C) ∈ IN , a position w′,
a substitution σ s.t. lσ E p|w.w′}

Roughly speaking, CSe is obtained by collecting and negating all the
conditions of those rules which detect correctness errors in p|w. Such
collection of constraints, that can be solved manually or automatically
by means of an appropriate constraint solver [Apt03], which can be used
to provide suitable values for the substitution σ′. We say that CSe is
satisfiable iff there exists at least one assignment of values for the vari-
ables occurring in CSe that satisfies all the constraints. We denote by
Sol(CSe) the set of all the assignments that verify the constraints in CSe.
The restriction of Sol(CSe) to the variables occurring in σ is denoted by
Sol(CSe)|σ. Let us see an example.

Example 2.2.1
Consider the Web site W in Figure 1.2 and the Web specification of
Example 1.2.1. The following subterm of Web page (6)

project(pname(A1), grant1(1000), grant2(200), total(1100),
coordinator(fullname(mariorossi)))

causes a correctness error e w.r.t. the rule

project(grant1(X), grant2(Y), total(Z)) ⇀ error | X + Y 6= Z.

The error can be fixed by changing the values of the grants and the
total amount, according to the solution of the constraint satisfaction
problem CSe that follows. {

X + Y = Z,
X = Y ∗ 2,
Z < 500000

}

The constraints in CSe come from the conditions of the last three
rules. An admissible solution, which can be chosen by the user, might be

{X/1000, Y/500, Z/1500} ∈ Sol(CS )

and the term t to be inserted might be
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project(pname(A1), grant1(1000), grant2(500),
coordinator(fullname(mariorossi)),
total(1500))

which does not contain incorrect data.

2.2.1 Incompatibility of Conditions

Sometimes CSe might be not solvable, since there are two or more rules
demanding incompatible conditions for correctness. For example, con-
sider the following scenarios.

i) Given the following set of correctness rules

IN = {l ⇀ error | c, l ⇀ error | ¬c}

we obtain the unsolved set CSe = {¬c, c}.

ii) Given the following set of correctness rules

IN = {l1 ⇀ error, l2 ⇀ error | c} where l1 E l2

along with the correctness error e = (p, w, l2, σ), we obtain the
set CSe = {¬c}. Let σ′ ∈ Sol(CSe) be a substitution, then, the
new term to change is t = l2σ

′. However, t is not a suitable term,
because l1 E t and, in this way, a new correctness error is introduced
(see Definition 2.1.4).

In both scenarios the user is asked to fix the Web specification before
proceeding.

2.3 Related Work

A lot of research work has been invested in consistency management and
repairing of software applications and databases, whereas similar tech-
nologies are much less mature for Web systems. [CF07] proposes a
framework for Web site verification which can be used at both compile-
time and run-time, and is based on type verification of the rules that
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can be applied to the considered Web document. The base language is
XCentric [CF04], which is a logic programming language. Errors can
be automatically fixed by performing actions that are executed when-
ever an error is found. In [NEF03], a repair framework for inconsistent
distributed documents is presented that complements the tool xlinkit
[CEFN02]. The main contribution is the semantics that maps xlinkit’s
first order logic language to a catalogue of repairing actions that can be
used to interactively correct rule violations, although it does not predict
whether a repair action can provoke new errors to appear. Also, it is not
possible to detect whether two formulae expressing a requirement for the
Web site are incompatible. Similarly, in [SRBS04b; SRBS04a] an exten-
sion of the tool CDET [SBRS03] is developed. This extension includes
a mechanism to remove inconsistencies from sets of interrelated docu-
ments, which first generates direct acyclic graphs (DAGs) representing
the relations among the documents and then appropriate repair actions
are directly derived from such DAGs. In this case, temporal rules are sup-
ported and interference and compatibility of repairs are not completely
neglected. Unfortunately, this compatibility is too much expensive to
check for temporal rules. Both approaches rely on basic techniques bor-
rowed from the field of active databases [BP99]. Current research in
this field focuses on the derivation of active rules that automatically fire
repair actions leading to a consistent state after each update [MT99].
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Chapter 3

Optimization Strategies
for Repairing Web Sites

In previous chapters, we have presented a rewriting-based approach to
Web site verification and correction. Our methodology allows us to
automatically recognize forbidden/incorrect patterns as well as incom-
plete/missing Web pages in a Web site with respect to a given formal
specification, and then repair the detected bugs by running/executing
a sequence of repair actions that are semi-automatically inferred by the
system. Since different repair actions are able to repair the same error,
in this chapter we present some optimization strategies that allow us to
generate a reduced sequence of repair actions that significantly improves
the basic technique.

First, we define two correction strategies that are aimed to increase
the level of automation of our repair method. Then, since the Web
site is correct with respect to a given Web specification, we also define
two completion strategies that optimize the repairing of completeness
errors. Specifically, the proposed strategies minimize both the amount
of information to be changed and the number of repair actions to be
executed in a faulty Web site in order to make it correct and complete.

3.1 Fixing Web Sites by Using Correction

Strategies

Chapter 1 describes a specification language along with a verification
technique for the definition and the validation of formal properties over
Web sites. Among the distinguished features that our framework pro-
vides, it allows one to detect erroneous/forbidden information in a Web
site yielding as the outcome a set of correctness error evidences which
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basically represent pieces of faulty information (i.e., correctness errors,
Definition 1.4.1).

In this section, we extend our basic repairing methodology in several
ways. First, we carry out a systematic analysis on the relations among
correctness errors that we exploit in order to formalize two possible cor-
rection strategies: the M strategy allows one to minimize the number
of repair actions to be executed, while the MNO strategy reduces the
amount of information to be changed/removed in order to fix the Web
site. In both cases, it is worth noting that the number of errors we
need to correct in order to repair the Web site W is much less than the
total number of errors occurring in W . Consequently, employing such
strategies guarantees a better performance of our repair methodology.

3.1.1 Correctness Error Dependencies

Typically, a given Web page can contain several correctness errors which
may be somehow interrelated. Since the execution of a repair action
might fix more related errors simultaneously, it is crucial to discover
whether an error depends on other errors. In this section, we analyze the
dependencies among error correctness evidences. Later on, we will exploit
this information in order to develop two correction strategies with the
aim of minimizing the amount of information the user needs to update
or delete.

First of all, let us consider the order among error correctness evi-
dences, which can be induced from the positions of the errors in the
considered Web page. Such order is formalized by means of the following
definition.

Definition 3.1.1 Let e1 ≡ (p, w1, l1, σ1, C1) and e2 ≡ (p, w2, l2, σ2, C2)
be two correctness error evidences in EN(p). Then, e1 � e2 iff w1 ≤ w2.

We say that e1 and e2 are not comparable (w.r.t. �) iff e1 6� e2 and
e2 6� e1. By exploiting the order of Definition 3.1.1, we are able to prove
the following result.

Proposition 3.1.2 Let p ∈ τ(Text ∪ Tag) be a Web page, and
ei = (p, wi, li, σi, Ci) ∈ EN(p), i = 1, . . . , n, such that e1 � e2 � . . . � en.
The following results hold:
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� If p′ ≡ change(p, w1, t) is a safe repair action, then p′|w1
≡ t is

repaired.

� If p′ ≡ delete(p, w1, t) is a repair action, then p′|w1
is repaired.

Proof. (Sketch) The proof of this result relies on the fact that the errors
e2, . . . , en are located into the subterm p|w1 , which is changed or deleted
by the action under consideration. Note also that the action change is
safe, which implies that not new errors are introduced because of the
execution of the repair action.

In other words, Proposition 3.1.2 states that repairing a given correct-
ness error evidence e1 ≡ (p, w1, l1, σ1, C1) allows us to fix automatically
any error which is included in the term p|w1 .

However, what happens when errors are not comparable w.r.t. �, or
we decide to fix an error which is not the smallest in the order? Is it
still possible to fix more than one error at a time? In the following, we
deepen our analysis about the relation among correctness error evidences
in order to answer these questions. Let us start by providing an auxiliary
definition.

Definition 3.1.3 Let e1 ≡ (p, w1, l1, σ1, C1) and e2 ≡ (p, w2, l2, σ2, C2)
be two correctness error evidences in EN(p). We say that e2 overlaps
e1 in w (in symbols, e2 ⊃⊂w e1), iff (i) e1 � e2, and (ii) there exists
w ≡ min(Embl1(p|w1) ∩ Embl2(p|w2)), where min(X) = w s.t. w ≤ wi
for all wi ∈ X. When position w is not relevant or clear from the context,
we simply write e2 overlaps e1 or e2 ⊃⊂ e1.

By notation e2 6⊃⊂ e1, we denote that e2 does not overlap e1. Given two
correctness errors evidences e1 and e2 of a Web page p, we can distinguish
three possible scenarios:

1. e1 and e2 are not comparable w.r.t. � (see Figure 3.1(a));

2. e1 � e2 and e2 does not overlap e1 (see Figure 3.1(b));

3. e2 overlaps e1 (see Figure 3.1(c)).
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Figure 3.1: Taxonomy of error dependencies.

In the case 1, correctness error evidences e1 and e2 are completely in-
dependent, and hence repairing one of them does not affect the correction
of the other one. This fact, together with Proposition 3.1.2, leads us to
an obvious optimization of the correction framework which is formalized
by the M strategy described in Section 3.1.2.

Let us consider now the case 2. In this case, still by Proposition 3.1.2,
we are able to fix automatically e2 by just repairing e1. Vice versa, fixing
e2 will not help to fix e1, as stated in the next proposition.

Proposition 3.1.4 Let p ∈ τ(Text ∪ Tag) be a Web page. Let
e1 ≡ (p, w1, l1, σ1, C1) and e2 ≡ (p, w2, l2, σ2, C2) be two correctness
error evidences in EN(p) such that e1 � e2 and e2 6⊃⊂ e1. If p′ ≡
action(p, w2, t), with action ∈ {delete, change}, then (i) p′|w2

is re-

paired, (ii) (p′, w1, l1, σ
′, C1) ∈ EN(p′) for some substitution σ′.

Proof. By contradiction. Assume that by repairing the error e2, also
the error e1 is repaired. This implies that there exists at least a position
v such that v ∈ Embl1(p) and w2 ≤ v. Since w1 ≤ w2, then also w2 ∈
Embl1(p). Thus, (Embl1(p) ∩ Embl2(p)) 6= ∅, i.e., e2 ⊃⊂ e1, which leads
to a contradiction.
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Example 3.1.5
Consider the Web page p ≡ f(g(a), h(b)) and the following correctness
error evidences

e1 ≡ (p,Λ, f(X), {X/h(b)}, ∅}), e2 ≡ (p, 2, h(Y ), {Y/b}, ∅)

Thus, e1 � e2 and e2 does not overlap e1. Now observe that we can fix
e2 by either removing subterm h(b) or by changing subterm h(b) with a
suitable term t. In both cases, such a repair will not fix e1.

In the case 3, e1 and e2 are “connected”, since e1 � e2 and e2 over-
laps e1. Roughly speaking, this fact tells us that the correctness error
evidence e2 is partly “contained” in e1 and thus fixing e2 might also yield
a fix for e1. Anyway, this is not always the case as the next example
shows.

Example 3.1.6
Consider the Web page p ≡ f(g(a), h(b)) and the following correctness er-
ror evidences e1 ≡ (p,Λ, f(h(X)), {X/b}, ∅), e2 ≡ (p, 2, h(X), {X/b}, ∅).
Thus, e1 � e2 and e2 overlaps e1. We can fix e2 by changing, for instance,
h(b) with h(a). However, such a fix would not repair e1 automatically,
while by removing h(b) or by replacing h(b) with term l(c) we would fix
both e2 and e1 just by executing a single repair action.

As Example 3.1.6 illustrates, some conditions are necessary in order
to automatically achieve a fix for e1 by simply correcting e2. The next
proposition clarifies the ingredients we need to this purpose.

Proposition 3.1.7 Let p ∈ τ(Text ∪ Tag) be a Web page. Let e1 ≡
(p, w1, l1, σ1, C1) and e2 ≡ (p, w2, l2, σ2, C2) be two correctness error evi-
dences in EN(p) such that e1 � e2 and e2 overlaps e1 in w. The following
results hold:

1) If p′ ≡ delete(p, w2, t), then
(i) p′|w2

is repaired,

(ii) (p′, w1, l1, σ
′) 6∈ EN(p′), for any substitution σ′ ;
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2) If p′ ≡ change(p, w2, t) and l1|w 6E t, then
(i) p′|w2

is repaired,

(ii) (p′, w1, l1, σ
′) 6∈ EN(p′), for any substitution σ′;

3) If p′ ≡ change(p, w2, t) is a safe repair action, l1|wσ
′ E t for some

substitution σ′, and C1(σ1/σ
′) does not hold, then

(i) p′|w2
is repaired,

(ii) (p′, w1, l1, σ1/σ
′, C1) 6∈ EN(p′).

Proof. Claim 1 and 2 follow from Proposition 3.1.2 straightforwardly.
The proof of Claim 3 exploits Proposition 3.1.2 and Proposition 2.1.6,
which establishes that no new errors are introduced in the Web page by
executing a change action.

Roughly speaking, Proposition 3.1.7 states that: (i) when a delete
action is chosen to fix a correctness error evidence e2, which overlaps
a smaller (w.r.t. �) correctness error evidence e1, such an action will
always fix e1 as well; (ii) when a repair action p′ ≡ change(p, w2, t)
is performed in order to fix e2, some extra conditions are necessary in
order to ensure that the term t to be inserted will automatically fix
e1. Basically, these conditions establish that either (an instance of) the
faulty term l1 is not recognized in p′ or, if such an instance is detected,
the associated condition does not hold. This suffices to guarantee that
(p′, w1, l1, σ1/σ

′, C1) 6∈ EN(p′).

3.1.2 Correction Strategies

As we explained in Section 2.1, a given correctness error evidence e in a
Web page p can be fixed by executing a suitable repair action a. By (e, a)
we denote a pair containing a repair action a that fixes e. Moreover, by
notation p′ = a(p) we intend the execution of the repair action a on the
Web page p which returns the Web page p′.

Definition 3.1.8 Let p ∈ τ(Text ∪ Tag) be a Web page, and let E(p) =
{e1, . . . , en} be the set of correctness error evidences of p. A correction
strategy for p is a sequence 〈(e1, a1), . . . (e2, an)〉, where a1, . . . an are re-
pair actions such that

1. p0 = p;
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2. pi = ai(pi−1), 0 < i ≤ n.

and pn is repaired.

Roughly speaking, given a faulty Web page p, a correction strategy
for p allows one to fix all the bugs in p by running all the repair actions
occurring in the strategy.

As we shown in Section 3.1.1, fixing a correctness error evidence may
automatically repair others bugs. This fact suggests us that a correctness
strategy does not necessary contain a pair (e, a) for any correctness error
evidence e which appears in a faulty Web page. In the following, we de-
scribe two possible correction strategies which exploit the results of Sec-
tion 3.1.1. The former aims at minimizing the number of actions which
are needed in order to repair a Web page, whereas the purpose of the lat-
ter one is to reduce the amount of information to be removed/changed for
correcting a Web site. In both cases, we assume that for any e ∈ EN(p),
we have an error/action pair (e, a) at hand, and we call the set contain-
ing such pairs EA(p). In other words, we associate a repair action a with
every correctness error evidence e.

The minimal strategy

First of all, we provide a partial ordering over EA(p) which is directly
induced by the ordering � over correctness error evidences.

Let p ∈ τ(Text∪Tag) be a Web page. Given (e1, a1), (e2, a2) ∈ EA(p),
(e1, a1) vT (e2, a2) iff e1 � e2. We say that (e, a) ∈ EA(p) is minimal
w.r.t. vT iff there does no exist (e′, a′) ∈ EA(p) such that (e′, a′) vT
(e, a).

Now, let us observe the following facts.

� Fact 1. By Proposition 3.1.2, we note that for any (e, a), (e′, a′) ∈
EA(p) such that (e, a) vT (e′, a′), the execution of the repair ac-
tion a will fix both e and e′. Therefore, fixing a correctness error
evidence e which corresponds to a minimal (e, a) ∈ EA(p) w.r.t.
vT will fix all the correctness error evidences e′ which are greater
than e, without running any other repair action.
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� Fact 2. Given (e1, a1), (e2, a2) ∈ EA(p) both minimal w.r.t. vT ,
e1 and e2 are not comparable w.r.t. �.

In the light of these facts, it should be rather clear that it suffices to
fix those errors corresponding to minimal error/action pairs in order to
fix the whole Web page.

Definition 3.1.9 (Minimal strategy) Let p ∈ τ(Text∪Tag) be a Web
page, and let E(p) be the set of correctness error evidences of p. A min-
imal strategy (or M strategy) for p is a sequence 〈(e1, a1), . . . (em, am)〉,
(ei, ai) ∈ EA(p), i = 1, . . .m, such that each (ei, ai) is minimal w.r.t. vT .

Roughly speaking, only the repair actions associated with errors evi-
dences that are rooted at minimal positions need to be executed in order
to make the Web page correct.

Proposition 3.1.10 Let p ∈ τ(Text ∪ Tag) be a Web page. Then, the
M strategy for p is a correction strategy for p.

Proof. Immediate by the definition of minimality w.r.t. vT and Propo-
sition 3.1.2.

Moreover, since minimal error/action pairs only refer to incomparable
(w.r.t. �), and thus independent, correctness error evidences, we may
run each repair action of the M strategy in parallel, whenever a parallel
architecture is available, speeding up the correction process.

Example 3.1.11
Consider the Web page p ≡ f(g(10), h(d), 20) together with the following
sequence of error/action pairs:

〈((p,Λ, f(g(X), 20), {X/10}, {X < 20}),
change(p,Λ, f(g(20), 10)),
((p, 2, h(Y ), {Y/d}, ∅),delete(p, 2, h(d))〉

In this case, the M strategy corresponds to the unary sequence

〈((p,Λ, f(g(X), 20), {X/10}, {X < 20}),
change(p,Λ, f(g(20), 10))〉.
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The following result establishes that it suffices to consider minimal
error/action pairs in order to define a correction strategy which minimizes
the number of actions we need to perform for repairing a given Web page.

Proposition 3.1.12 Let p ∈ τ(Text ∪ Tag) be a Web page, and let
T be the M strategy for p. Then, for every correction strategy S for
p, length(T ) ≤ length(S), where length(·) computes the number of er-
ror/action pairs of a given correction strategy.

Proof. By contradiction. Let us assume that length(S) < length(T ) for
some correction strategy S. Then, there exists a pair (e, a) ∈ T such that
(e, a) 6∈ S. Moreover, since S is a correction strategy, there exists a pair
(e′, a′) ∈ S such that, by performing (e′, a′), the error e is also repaired.
Hence, e′ ≤ e, which leads to a contradiction, since by Definition 3.1.9 if
(e, a) ∈ T then (e, a) is minimal w.r.t. vT .

Minimal non-overlapping strategy

The M strategy typically forces the user to modify/introduce a lot of
information in a Web page p, even if only minor changes are required to
fix p. Let us see an example.

Example 3.1.13
Let us consider the Web page p ≡ f(g(a), k(m(c)), h(a)) and the set
EN(p) = {(p,Λ, f(g(X), h(Y )), {X/a, Y/a}, {X=Y })}, (p, 1, g(a), ε, ∅)}.
The M strategy would only fix the “minimal” error at the root position.
This fact might force the user to provide a quite big amount of informa-
tion in case a change action is taken, even if a close variant of p would
have been enough to fix the bug.

For instance, if the chosen change action was change(p,Λ, f(g(b),
k(m(c)), h(a))), the user should re-enter the whole Web page p with just
a small change at position 1.1.

Instead, if we repaired (p, 1, g(a), ε, ∅) by means of the following action
change(p, 1, g(b)), the user would correct both errors by introducing a
smaller amount of information.

The idea behind the minimal non-overlapping strategy is thus to
“push” the corrections towards the leaves of the Web page as much as
possible and to automatically propagate them up to the root position.
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Obviously, given two error evidences e and e′ such that e′ � e, cor-
recting e does not guarantee to automatically fix e′ (see, for instance,
Example 3.1.5). Indeed, by Proposition 3.1.4, whenever an error evi-
dence e′ does not overlap a given error evidence e, there is no possibility
to automatically spread a correction for e up to e′. On the other hand,
under suitable conditions, overlapping error evidences allow one to infer
a repair on e′ by just fixing e (see Proposition 3.1.7).

Therefore, the strategy works as follows. First of all, given a Web
page p, we partition EN(p) into the two following sets:

� NOVL(p) = {e ∈ EN(p) | @ e′, e′ ⊃⊂ e}

� ØVL(p) = EN(p) \ NOVL(p).

Clearly, EN(p) = NOVL(p) ∪ ØVL(p). We call error evidences in
NOVL(p) (resp., in ØVL(p)) non-overlapping (resp., overlapping) error
evidences. Note that a non-overlapping error evidence e cannot be auto-
matically fixed by executing a repair action on a non-overlapping error
evidence e′ such that e � e′, since correction effects cannot be propagated
up. However, this is the case of the overlapping error evidences which
may be implicitly affected by other repairs. Actually, the following facts
hold.

� Fact 1. Given an overlapping error evidence e, there must exist a
non-overlapping error evidence e′ such that e′ � e.

� Fact 2. Let e, e0, e1, . . . en, n ≥ 0, be correctness error evidences.
If e is an overlapping error evidence s.t. e0 overlaps e and e � en �
en−1, . . . � e0, then ei overlaps e, i = 1, . . . n.

These facts, together with Proposition 3.1.2, suggest us that it suffices
to fix only non-overlapping error evidences in order to get a repaired
Web page. This is because: (i) all the error evidences which are greater
(w.r.t. �) than the considered non-overlapping error evidences will be
repaired, as stated by Proposition 3.1.2; (ii) for each overlapping error
evidence e there is always e′ ∈ NOVL(p) which overlaps e, hence repairing
e′ will also fix e, whenever the following safety property is fulfilled:
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Definition 3.1.14 Let p ∈ τ(Text ∪ Tag) be a Web page. Let e ≡
(p, w, l, σ, C) ∈ NOVL(p) be a correctness error, and let
(e, change(p, w, t)) ∈ EA(p) be an error/action pair. Then, the safety
property for (e, change(p, w, t)) ∈ EA(p) states that, for each e′ ≡
(p, w′, l′, σ′, C ′) ∈ ØVL(p) such that e′ � e, one of the following con-
ditions must hold:

(i) l′|w 6E t, or

(ii) l′|wσ
′ E t for some substitution σ′, and C ′(σ/σ′) does not hold.

Note that the above safety property directly comes from Proposi-
tion 3.1.7 which guarantees the automatic propagation of the repairs.
Moreover, observe that such a property only affects change actions, since
delete actions always enable the correction propagation.

Now, we are ready to provide the minimal non-overlapping strategy.

Definition 3.1.15 (Minimal non-overlapping strategy) Let p ∈
τ(Text ∪ Tag) be a Web page, and let NOVL(p) be the set of non-
overlapping correctness error evidences of p. A minimal non-overlapping
strategy (or MNO strategy) for p is a sequence 〈(e1, a1), . . . (em, am)〉,
(ei, ai) ∈ EA(p), i = 1, . . .m, such that

(i) ei ∈ NOVL(p) and each (ei, ai) is minimal w.r.t. vT in NOVL(p);
(ii) if ai is a change action, then the safety property

for (ei, ai) must hold.

Proposition 3.1.16 Let p ∈ τ(Text ∪ Tag). Then the MNO strategy
for p is a correction strategy for p.

Proof. Immediate from the notion of minimality w.r.t. vT ,
Definition 3.1.14, and Proposition 3.1.2.

In Figure 3.2, we show how the MNO strategy works. For the sake of
simplicity we just label each node of the given Web page with: ok, if no
error evidence is rooted at the considered node; ov, if an overlapping error
evidence is rooted at the considered node; or no, if a non-overlapping
error evidence is rooted at the considered node. The Web page contains
nine errors, but we just need to fix three errors in order to end up with
a repaired Web page. Precisely, these errors correspond to the minimal
non-overlapping error evidences occurring in the Web page.
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Figure 3.2: The MNO strategy

Example 3.1.17
Consider the Web page
p ≡ f(g1(h1(a1, a2), h2(b1, b2)), g2(h3(c1), h4)) and

EN(p) = {(p, 1, g1, ε, ∅), (p, 1.1, h1(a2)ε, ∅),
(p, 1.1.2, a2, ε, ∅), (p, 2.1.1, c1, ε, ∅),
(p, 2.1, h3(c1), ε, ∅),
(p, 2, g2(h3(X)), {X/c1}, ∅)}

Hence,
NOVL(p) = {(p, 1, g1, ε, ∅), (p, 1.1.2, a2, ε, ∅),

(p, 2.1.1, c1, ε, ∅)}

ØVL(p) = (p, 1.1, h1(a2), ε, ∅),
(p, 2, g2(h3(X)), {X/c1}, ∅),
(p, 2.1, h3(c1), ε, ∅)}

The MNO strategy only corrects minimal non-overlapping error evi-
dences. A possible MNO strategy for p might be:

〈 ((p, 1, g1, ε, ∅),delete(p, 1, g1(h1(a1, a2), h2(b1, b2)),
((p, 2.1.1, c1, ε, ∅), change(p, 2.1.1, c4)) 〉

And the safety property for ((p, 2.1.1, c1, ε, ∅), change(p, 2.1.1, c4)) is ful-
filled. The execution of the correction strategy thus yields the following
repaired Web page f(g2(h3(c4), h4)).

Finally, observe that we needed to fix only two errors out of six, and
just minor fixes were necessary to make the original Web page correct.
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So far, we have presented a significant extension of the preliminary
Web site correction framework of [ABFR06], which improved several
aspects of the repair methodology:

(i) we provided a detailed analysis of errors which clarified the relation
among correctness errors in Web sites;

(ii) by exploiting the results of the analysis, we formulated two correc-
tion strategies which reduce the number of repair actions as well as
the amount of information that is needed to fix a given Web site;

(iii) the considered correction strategies increase the level of automation
of the repairing methodology, since the user has to fix just a small
number of correctness errors in order to make the whole Web site
correct.

3.2 Fixing Web Sites by Using Complete-

ness Strategies

The specification language together with the verification technique given
in Chapter 1 allow us to detect incomplete or missing Web pages, de-
livering as outcome a set of completeness error evidences. These errors
represent the incomplete or absent information in the Web site. There
are three kinds of completeness errors, namely: missing page (M), uni-
versal completeness error (A), and existential completeness error (E).
These errors can be detected by means of partial rewriting on the Web
site with respect to the Web specification.

In this section, first we extended the Definitions 1.4.3, 1.4.5, and 1.4.6
of completeness errors by adding, into the error structure, the rewrite se-
quence that led to detecting the error. Then, we define two new complete-
ness strategies that further improve our repairing framework [ABFR06].

Let us start with an auxiliary definition. Let s ∈ τ(Text ∪ Tag) be
a term, and let W be a Web site. We define the set mark(s,W ) as
the set of all pages in W that embed the marking information s. For
example, consider the Web site W = {p1, p2} where p1 = f(m(a)) and
p2 = h(g(b)), then mark(]f(h(X)),W ) = {p1}.

A completeness error is defined as follows.
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Definition 3.2.1 (completeness error) – Extended version of Defini-
tions 1.4.3, 1.4.5, and 1.4.6 – Let W be a Web site, and let (IN , IM , R)
be a Web specification. Let c ∈ {M,A,E} be the kind of completeness
error (Missing Web page, Universal completeness error, or Existential
completeness error, respectively). Let q ∈ {A,E}. Then, the tuple
e ≡ (s0 ⇀

+
IM
sn, P, c) is a completeness error in W w.r.t. IM if:

(i) For some l ⇀ r〈q〉 ∈ IM , there exists a substitution σ such that:
lσ = s0 ∧ s0 E p ∧ p ∈ W

(ii) For some l ⇀ r〈q〉 ∈ IM , there exists a substitution σ such that:
rσ = sn ∧ P = {p | p ∈ mark(r,W ) ∧ sn 6E p} ∧
((c = M ∧ P = ∅) or (c = q ∧ P 6= ∅))

Roughly speaking, the chain s0 ⇀+
IM
sn represents the sequence of

partial rewriting that generates the requirement which is not fulfilled.
The first condition defines the subpart of the Web page that satisfies
the left-hand side of a completeness rule, whereas the second condition
returns the requirement not fulfilled by the set of Web pages P . Note
that the rules used in these conditions could be different, due to the
transitive closure of partial rewriting relation.

We denote by EM(W ) the set of all the completeness error evidences
w.r.t. IM for a Web site W . When no confusion can arise, we just write
EM .

3.2.1 Completeness Error Dependencies

As in Section 3.1.1, the completeness errors in a Web site may be some-
how connected, and repair one of them might fix other errors. In this
section, we analyze the dependencies among completeness errors. Later
on, we will exploit this information in order to develop two novel com-
pleteness strategies that aim to minimizing the amount of information
the user needs to change or delete.

First of all, we define two partial orders (�inf and �sup) on the set
of completeness error evidences. These orders are based on the sequence
of partial rewriting of the completeness error.
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Definition 3.2.2 (�inf) Let e1, e2 ∈ EM(W ) be two completeness error
with e1 ≡ (s0 ⇀

+
IM
sn, P1, q1) and e2 ≡ (t0 ⇀

+
IM
tm, P2, q2). Then,

e1 �inf e2 iff s0 E t0

Note that e1 is incomparable with e2 w.r.t. �inf if s0 6E t0. We say that
an error e ∈ EM is minimal w.r.t. �inf , if and only if there does not
exist e′ ∈ EM such that e′ �inf e and e′ 6≡ e.

Definition 3.2.3 (�sup) Let e1, e2 ∈ EM(W ) be two completeness error
with e1 ≡ (s0 ⇀

+
IM
sn, P1, q1) and e2 ≡ (t0 ⇀

+
IM
tm, P2, q2). Then,

e1 �sup e2 iff sn E tm.

Note that e1 is incomparable with e2 w.r.t. �sup if sn 6E tn. We say that
an error e ∈ EM is maximal w.r.t. �sup, if and only if there does not
exist e′ ∈ EM such that e �sup e′ and e′ 6≡ e.

Note that the above partial orders are defined by considering the
embedding relation between the first two terms of the sequences of par-
tial rewriting (�inf ), and the last two terms of the sequences of partial
rewriting (�sup), respectively.

With regard to the relation �inf , the following proposition states
that the action of repairing a minimal error e with respect to �inf via
the operation repairByDelete (Definition 2.1.10), allows us to repair all
errors related with e by means of �inf in an automatic way.

Proposition 3.2.4 Let W be a Web site. Let ei ∈ EM(W ), i = 1 . . . n
be completeness errors in W , and let e1 be a minimal error such that
e1 �inf . . . �inf en. Then, after repairing the completeness error e1 by
using the operation repairByDelete, all errors e1, . . . , en are repaired.

Proof. First of all, let us recall from Definition 2.1.10 that a complete-
ness error is repaired by removing the term (or any subterm of it) that
begins the partial rewriting sequence.

Consider the completeness errors e1, . . . , en ∈ EM(W ) such that e1 ≡
(s10 ⇀

+
IM
s1m , P1, q1), . . . , en ≡ (sn0 ⇀

+
IM
snm , Pn, qn) and e1 �inf . . . �inf

en. By Definition 3.2.2, we have that s10 E, . . . ,E sn0 . Then, by using



58 Chapter 3. Optimization Strategies for Repairing Web Sites

repairByDelete(e1,W ) to repair the error e1, the term s10 is removed
from the whole Web site W . This fact implies that each subterm t = s10

of s20 , . . . sn0 is removed too. Finally, by Definition 2.1.10, the errors
e2, . . . en are repaired, which concludes the proof.

Note that Proposition 3.2.4 does not depend on the kind of com-
pleteness error (Missing Web page, Universal completeness error, and
Existential completeness error).

As for the relation �sup, let us show how we can repair a Web site by
adding the missing information required. First, we need to analyze the
errors with respect to both the relation �sup and the information needed
to repair them.

Let us consider e1 �sup e2 with e1 ≡ (s0 ⇀+
IM
sn, P1, q1) and e2 ≡

(t0 ⇀
+
IM
tm, P2, q2). Then, is it possible to repair more than one error in

an automatic way?. The reason why it is possible to repair more than
one error in an automatic way stems from the following considerations:

� Since the last term in the sequence of partial rewriting is the infor-
mation to be added in order to repair the error, then, by definition
of �sup, sn E tn. Hence, if we add tn, we also added sn.

� Assume e1 �sup e2. Then, by the previous point, e2 must be re-
paired before e1.

� If a maximal error e is repaired, then all the errors e′ such that
e′ �sup e with e′ being of kind missing Web page or existential
error, are repaired too. This is because in a simple step, we add the
information that embeds the requirements from the other missing
Web pages and existential errors.

These considerations are the basis of Algorithm 3, which implements
the operation repairByInsert that allows us to repair completeness er-
rors that are related by means of the order �sup.

The result given in the Proposition 3.2.4 together with the Algo-
rithm 3 provide an obvious optimization of the repair framework that we
will formalize by means of the strategies presented in the next section.
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Algorithm 3 Procedure to repair a set of completeness error evidences
ordered by �sup.
Require:

E = {ei | ei ∈ EM(W ), i = 1, . . .m, and e1 �sup . . . �sup em}
W be a Web site.

Ensure:
W | ∀e ∈ E, e 6∈ EM(W )

1: procedure repairByInsert (E, W )
2: PR = {} // Set of repaired pages.
3: for i← m to 1 do
4: (s0 ⇀

+
IM

sn, P, q)← ei
5: if q = M and PR = {} then
6: W ← W ∪ {add(sn,W )}
7: PR ← PR ∪ {sn}
8: else if q = E and PR = {} then
9: p← element(P ) // Get a Web page.

10: p′ ← insert(p, w, sn) // w is an arbitrary position in p.
11: W ← W \ {p} ∪ {p′}
12: PR ← PR ∪ {p}
13: else if q = A then
14: PAux ← P \ PR
15: for all p ∈ PAux do
16: p′ ← insert(p, w, sn) // w is an arbitrary position in p.
17: W ← W \ {p} ∪ {p′}
18: PR ← PR ∪ {p}
19: end for
20: end if
21: end for
22: end procedure

3.2.2 Completion Strategies

The above results suggest the idea that the application of a repair action
can fix more than one completeness error. This implies we do not need
to execute a different repair action for each detected error, but rather we
can choose suitable subsets of errors to act upon. In the following, we
present two completion strategies. The aim of the first one is to reduce
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the amount of information to be removed in order to derive a Web site
free of completeness errors, whereas the second strategy aims to reduce
the amount of information to be added to complete the Web site.

By (e, a) we denote the pair that consists of the completeness error
e, and the repair action a that we intend to use to fix e, and by notation
W ′ = a(e,W ) we specify the execution of the repair action a on the Web
site W , which returns the Web site W ′ where the error e has been fixed.

Definition 3.2.5 (Repair strategy) Let W be a Web site, and let
{e1, . . . , en} ⊂ EM(W ) be a subset of the completeness errors in W . A re-
pair strategy for W is the sequence [(e1, a1), . . . , (en, an)], where a1, . . . , an
are repair actions such that:

(i) W0 = W ;
(ii) Wi = ai(ei,Wi−1) ∀i, 1 ≤ i ≤ n;
(iii) EM(Wn) = ∅

By abuse, we sometimes write ([e0, . . . , en], a) for a subsequence
[(e0, a0), . . . , (en, an)] when ai = a for i = 1, . . . , n. Note that, in Defini-
tion 3.2.5, only a subset of the errors is considered. Roughly speaking, a
repair strategy is a sequence of repair actions that, once executed, allows
all the completeness errors in a given Web site to be repaired.

In the following, we formalize several completion strategies for a given
Web site with respect to the specification IM .

Reduce-delete-actions Strategy

The relation �inf defines a partial order on the set of completeness error
evidences EM . Furthermore, Proposition 3.2.4 ensures that if a minimal
error e is fixed by applying repairByDelete, then the other errors in
the set that are greater than or equal to e are repaired too. Obviously, if
there are two minimal independent errors, both errors need to be repaired
independently as well.

Definition 3.2.6 (Reduce-delete-actions Strategy - RDA) Let W
be a Web site, and let EM(W ) be a set of completeness error evidences
in W . We call RDA strategy the repair strategy that reduces the number
of delete actions for a given Web site W as follows:

([e1, . . . , en], repairByDelete),
where ∀i, 1 ≤ i ≤ n, ei ∈ EM(W ) ∧ ei is minimal w.r.t. �inf
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Roughly speaking, the strategy boils down to repair all minimal errors
with respect to the relation �inf . The following proposition establishes
that the RDA strategy allows us to derive a Web site free of completeness
errors by repairing only a subset of the errors in EM(W ).

Proposition 3.2.7 Let W be a Web site, and let EM(W ) be the set of
completeness error evidences in W . Then, the RDA strategy transforms
W into a Web site free of completeness error evidences by applying a
number of repair actions that is less than or equal to the number of com-
pleteness errors EM(W ).

Proof. Given a set of completeness error evidences EM(W ), let e ∈
EM(W ) be a completeness error. When applying the RDA strategy on
W w.r.t. EM(W ), we can distinguish two cases:

Case(i). e be minimal w.r.t. �inf . This implies that there exists a pair
(e, repairByDelete) in the RDA strategy, hence e is repaired by
applying one repair action.

Case(ii). Let e′ ∈ EM(W ) be minimal w.r.t. �inf , and let e′ �inf e with
e′ 6= e. This implies that there exists a pair (e′, repairByDelete)
in the RDA strategy. By Proposition 3.2.4, e is repaired without
applying any specific repair action on it. Consequently, the number
of repair actions needed to repair W is less than (or equal to) the
number of completeness errors.

Reduce-insertion-actions Strategy

The procedure repairByInsert (Algorithm 3) allows us to reduce both
the amount of information to be added and the number of repair actions
to be executed on a subset of completeness error evidences defined by
relation �sup.

Let {em1 , . . . , emn } be the set of maximal errors of EM w.r.t. �sup. By
C�

sup

EM
we denote the set of subsets of EM that are induced by relation
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�sup as follows:

C�
sup

EM
= {c1, . . . , cn}

where (∀emi ∈ {em1 , . . . , emn }, 1 ≤ i ≤ n, emi ∈ ci) ∧ (1)
(∀e ∈ EM , ∃i, 1 ≤ i ≤ n, s.t. e ∈ ci) ∧ (2)
(∀i, 1 ≤ i ≤ n, ∀e1, e2 ∈ ci, e1 �sup e2 ∨ e2 �sup e1) (3)

Note that the number of subsets is given by the number of maximal
errors. Note also that, in each subset, all the errors are related by �sup,
and that all errors in EM belong at least to one subset. Finally, observe
that a completeness error e may belong to more than one subset ci.

A näıve strategy would execute the procedure repairByInsert on
each subset of C�

sup

EM
. However, if a particular error belong to two different

subsets and one of them is repaired, this näıve strategy may lead to an
inconsistency.

Let us consider C�
sup

EM
= {c1, . . . , cn} ordered by the cardinality of

the subsets ci, i.e., |ci| ≥ |ci+1| for 1 ≤ i < n. By C�
sup

EM
(i) we denote

{c1, . . . , ci}. Then, we define a partition ΓEM of EM as follows:

ΓEM = {mi | mi = dif (C�
sup

EM
(i)), ∀i, 1 ≤ i ≤ k, k = |C�

sup

EM
|},

where dif ({x0}) = x0

dif ({x0, . . . , xn}) = xn \ . . . \ x0, if n > 0

Definition 3.2.8 (Reduce-insertion-actions Strategy - RIA) Let
W be a Web site and EM(W ) be the set completeness errors in W . We
call RIA strategy the repair strategy that reduces the information to be
added in order to repair a given Web site W as follows:

[(m1, repairByInsert), . . . , (mn, repairByInsert)],
where ∀i, 1 ≤ i ≤ n, mi ∈ ΓEM )

Roughly speaking, the RIA strategy executes the procedure
repairByInsert on each set of the partition ΓEM .

Proposition 3.2.9 Let W be a Web site, and let EM(W ) be the set of
completeness error evidences in W . Let Γ(EM) be a partition on EM .
Then, the RIA strategy transforms W in a complete Web site by ap-
plying a number of repair actions less than or equal to the number of
completeness errors EM .
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Proof. This result directly derives from Algorithm 3, which reduces the
number of repair actions to be applied, since each completeness error
belongs to only one set of the partition Γ(EM) and the errors in each set
are related by means of �sup.

Let us illustrate these strategies by means of a rather intuitive exam-
ple.

Example 3.2.10

Let W be a Web site, and let (IN , IM , R) be a Web specification. W and
IM are defined as follows:

Web site W = {p1, p2, p3, p4} Completeness rules IM = {r1, r2, r3, r4}
p1 = m(s(b), f(a)) r1 = f(X) ⇀ ]g(X)〈A〉
p2 = m(m(g(a))) r2 = g(X) ⇀ ]h(X)〈E〉
p3 = m(l(b, a)) r3 = h(X) ⇀ ]p(X)〈A〉
p4 = h(b) r4 = l(X,Y ) ⇀ ]p(X,Y )〈A〉

Then, EM = {e1, e2, e3, e4, e5, e6} is the set of detected completeness
errors in W , where

e1 = ((g(a) ⇀ h(a)), {p4}, E) e4 = ((f(a) ⇀ g(a) ⇀ h(a)), {p4}, A)
e2 = ((h(b) ⇀ p(b)), {},M) e5 = ((g(a) ⇀ h(a) ⇀ p(a)), {},M)
e3 = ((l(b, a) ⇀ p(b, a)), {},M) e6 = ((f(a) ⇀ g(a) ⇀ h(a) ⇀ p(a)), {},M)

Note that the errors e2, e3, e5 and e6 refer to missing Web pages, whereas
e1 is an existential error and the error e4 is universal.

In the following we describe how to apply the strategies given in this
section.

A) Reduce-delete-actions Strategy
The relation �inf induces the following subsets of errors.

�inf : {e1 �inf e5}; {e2}; {e3}; {e4 �inf e6}

Then, the RDA strategy is applied as follows:
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W ′ = repairByDelete(e4,
repairByDelete(e3,

repairByDelete(e2,
repairByDelete(e1,W ))))

where W ′ = {p1, p2, p3}
p1 = m(s(b))
p2 = m(m( ))
p3 = m( )
− p4 was removed −

B) Reduce-insertion-actions Strategy
The relation �sup induces the following subsets of errors.

�sup : {e4 �sup e1}; {e2 �sup e3}; {e5 �sup e6 �sup e3}

First of all, we define the partition ΓEM as follows:

C�
sup

EM
= {c1, c2, c3}, where c1 = {e5, e6, e3}, c2 = {e2, e3}, and

c3 = {e4, e1}
Γ(EM) = {m1,m2,m3}

where m1 = c1 = {e5, e6, e3},
m2 = c2 \ c1 = {e2} and
m3 = c3 \ c2 \ c1 = {e4, e1}

Then, the RIA strategy is applied as follows:

W ′ = repairByInsert(m3,
repairByInsert(m2,

repairByInsert(m1,W ))))
where W ′ = {p1, p2, p3, p4, p5, p6}

p1 = m(s(b), f(a))
p2 = m(m(g(a)))
p3 = m(l(b, a))
p4 = h(b, a)
p5 = p(b, a)
p6 = p(b)
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To conclude, by systematically applying the above strategies we are
able to optimize the performance of our repair system. To our knowledge,
no repair system supports such kind of optimization based on the notion
of repairing strategy, which gives support for faster and simpler correction
of faulty Web site.
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Chapter 4

The Web Verification Service
WebVerdi-M

In this chapter, we describe the rewriting-based, Web verification service
WebVerdi-M [ABF+07a], which is able to recognize forbidden/incorrect
patterns and incomplete/missing Web pages, and interacts with the user
to (semi-)automatically repair them. WebVerdi-M relies on a powerful
Web verification engine that is written in Maude, which automatically de-
rives the error symptoms. Thanks to the AC pattern matching supported
by Maude and its metalevel facilities, WebVerdi-M enjoys much better
performance and usability than a previous implementation of the verifi-
cation framework [BV05]. By using the XML Benchmarking tool xmlgen,
we develop some scalable experiments that demonstrate the practicality
of our approach.

4.1 Web Site Verification Using Maude

Maude [CDE+07] is a high-level language and high-performance system
supporting both equational and rewriting logic computation, which is
particularly suitable for developing domain-specific applications [EMM06;
EMS03]. In addiction, the Maude language is not only intended for sys-
tem prototyping, but it has to be considered as a real programming
language with competitive performance. In this section, we recall some
of the most important features of the Maude language which we have
conveniently exploited for the optimized implementation of our Web site
verification engine.

Equational attributes

Let us describe how we can model (part of) the internal representation of
XML documents in our system. The chosen representation slightly mod-
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ifies the data structure provided by the Haskell HXML Library [Eng02]
by adding commutativity to the standard XML tree-like data represen-
tation. In other words, in our setting, the order of the children of a tree
node is not relevant: e.g., f(a, b) is “equivalent” to f(b, a).

fmod TREE-XML is

sort XMLNode .

op RTNode : -> XMLNode . -- Root information item

op ELNode _ _ : String AttList -> XMLNode . -- Element information item

op TXNode _ : String -> XMLNode . -- Text information items

--- ... definitions of the other XMLNode types omitted ...

sorts XMLTreeList XMLTreeSeq XMLTree .

op Tree (_) _ : XMLNode XMLTreeList - > XMLTree .

subsort XMLTree < XMLTreeSeq .

op _,_ : XMLTreeSeq XMLTreeSeq -> XMLTreeSeq [comm assoc id:null] .

op null : -> XMLTreeSeq .

op [_] : XMLTreeSeq -> XMLTreeList .

op [] : -> XMLTreeList .

endfm

In the previous module, the XMLTreeSeq constructor _,_ is given
the equational attributes comm assoc id:null, which allow us to get
rid of parentheses and disregard the ordering among XML nodes within
the list. The significance of this optimization will be clear when we
consider rewriting XML trees with AC pattern matching.

AC pattern matching

The evaluation mechanism of Maude is based on rewriting modulo an
equational theory E (i.e., a set of equational axioms), which is accom-
plished by performing pattern matching modulo the equational theory
E. More precisely, given an equational theory E, a term t and a term
u, we say that t matches u modulo E (or that t E-matches u) if there
is a substitution σ such that σ(t)=E u, that is, σ(t) and u are equal
modulo the equational theory E. When E contains axioms for express-
ing the associativity and commutativity of some operators, we instead
use AC pattern matching. AC pattern matching is a powerful matching
mechanism, which we employ to inspect and extract the partial structure
of a term. In particular, we use it directly to implement the notion of
homeomorphic embedding of Definition 1.3.1.
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Metaprogramming

Maude is based on rewriting logic [MOM02], which is reflective in a
precise mathematical way. In other words, there is a finitely presented
rewrite theory U that is universal in the sense that we can represent
in U (as a data) any finitely presented rewrite theory R (including U
itself), and then mimick in U the behavior of R. We have used the
metaprogramming capabilities of Maude to implement the semantics of
correctness as well as completeness rules (e.g., implementing the home-
omorphic embedding, evaluating conditions of conditional rules, etc.).
Namely, during the partial rewriting process, functional modules are dy-
namically created and run by using the meta-reduction facilities of the
language.

Now we are ready to explain how we implemented the homeomor-
phic embedding relation of Section 1.3, by exploiting the aforementioned
Maude high-level features.

4.1.1 Homeomorphic Embedding Implementation

Let us consider two XML document templates l and p. The critical point
of our methodology is to (i) discover whether l E p (i.e., l is embedded
into p); (ii) find the substitution σ such that lσ is the instance of l
recognized inside p, whenever l E p.

Given l and p, our proposed solution can be summarized as follows.
By using Maude metalevel features, we first dynamically build a module
M that contains a single rule of the form

eq l = sub(”X1”/X1), . . . , sub(”Xn”/Xn), Xi ∈ Var(l), i = 1, . . . n,

where sub is an associative operator used to record the substitution σ
that we want to compute. Next, we try to reduce the XML template p
by using such a rule. Since l and p are internally represented by means
of the binary constructor _,_ with the attributes comm assoc id:null
(see Section 4.1), the execution of module M on p essentially boils down to
computing an AC-matcher between l and p. Moreover, since AC pattern
matching directly implements the homeomorphic embedding relation, the
execution of M corresponds to finding all the homeomorphic embeddings
of l into p (recall that the set of AC matchers of two compatible terms is
not generally a singleton). Additionally, as a side effect of the execution
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of M, we obtain the computed substitution σ for free as the collection of
bindings for the variables Xi, i = 1, . . . , n which occur in the instantiated
rhs

sub(”X1”/X1)σ, . . . , sub(”Xn”/Xn)σ, Xi ∈ Var(l), i = 1, . . . n,

of the dynamic rule after the partial rewriting step.

Example 4.1.1
Consider the following XML document templates (called s1 and s2, re-
spectively):

hpage(surname(Y ), status(prof), name(X), teaching)

hpage( name(mario), surname(rossi), status(prof),
teaching(course(logic1), course(logic2))
hobbies(hobby(reading), hobby(gardening)))

Note that s1 E s2, since the structure of s1 can be recognized inside the
structure of s2, while s2 6E s1.

We build the dynamic module M containing the rule

op hpage(surname(Y), status(prof), name(X), teaching)
= sub(”Y”/Y), sub(”X”/X) .

Since s1 E s2, there exists an AC-match between s1 and s2 and, hence,
the result of executing M against the (ground) XML document template
s2 is the computed substitution: sub(”Y”/rossi), sub(”X”/mario).

4.2 Prototype Implementation

The verification system has been structured as a SOAP Web Service
[GHM+07]. The main reason behind this choice is the advantage of using
the Service Oriented Architecture paradigm [IBM07]. In this paradigm,
services are distributed, autonomous, and independent. They are realized
using standard protocols, in order to build networks of collaborating
applications. This type of architecture allows one the reuse of services at
the macro level, rather than at the micro level (object).
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Figure 4.1: Components of WebVerdi-M

As a service-oriented architecture, WebVerdi-M allows one to access
the core verification engine Verdi-M as a reusable entity. This imple-
mentation is public available at http://www.dsic.upv.es/users/elp/

webverdi-m.
WebVerdi-M is structured in two layers: front-end and back-end. The

back-end layer provides web services that support the front-end layer.
This architecture allow clients on the network to invoke the Web service
functionality through the available interfaces.

The tool consists of the following components: Web service Web-
VerdiService, Web client WebVerdiClient, core engine Verdi-M, XML API,
and database DB. Figure 4.1 illustrates the overall architecture of the
system.

4.2.1 The WebVerdiService

The sever has been structured as a Web Service and its control parts
are implemented in Java 1.4 [Mic03], which allows us to use the large
number of implementations of the Web Service standards available as
the TriActive JDO persistence package [Pro05]. Persistence is used to
store both web pages and specification locally to the sever in a MySQL
database [MyS07].

TriActive JDO is an open source implementation of Sun’s JDO spec-
ification [Mic06], designed to support transparent persistence using any
JDBC-compliant database. TriActive JDO allows one to generate
schemata, meaning it takes user-written Java classes and automates the
tasks required to transparently allocate persistent objects into a database.

http://www.dsic.upv.es/users/elp/webverdi-m
http://www.dsic.upv.es/users/elp/webverdi-m
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The web service exports six operations that are network-accessible
through standardized XML messaging. These operations are: store a
Web site, remove a Web site, retrieve a Web site, add Web page to a
Web site, check correctness, and check completeness. The Web service
acts as a single access point to the core engine Verdi-M which implements
the Web verification methodology in Maude. Following the standards,
the architecture is also platform and language independent. It is made
accessible via scripting environment as well as via client applications
across multiple platforms.

4.2.2 The XML API

In order for successful communications to occur, both the WebVerdiSer-
vice and WebVerdiClient (or any user) must agree to a common format
for the messages being delivered so that they can be properly interpreted
at both ends. The WebVerdiService is endowed with an API (see Sec-
tion 4.3) that encompasses the executable library of the core engine. This
is achieved by making use of Apache Axis [Apab], integrated into Apache
Tomcat Web server [Apaa]. The Apache Axis handles all procedures
needed for the Web service deployment. Synthesized error symptoms are
also encoded as XML documents in order to be transferred from the We-
bVerdiService Web service to client applications as an XML response by
means of the SOAP protocol.

4.2.3 The Verdi-M Engine

Verdi-M is the core part of the tool, where the verification and repair
methodologies are implemented. This component is implemented in
Maude and kept independent of the other system components. The
systems was first described in [ABE+07]. The modules of verification
and repair are invoked by different Java process when they are required.
Overall, the flow execution is under the Java control.

4.2.4 The WebVerdiClient

The client consist of a Java graphical user interface which allows one to
use the services (functionalities) offered by the Web Server. The client
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Figure 4.2: WebVerdiClient Snapshot

uses the API specified in Section 4.3 to interact with the server through
a network connection. In order to provide an easy, one-click activation
of the client, the Java Web Start framework is used. The main goal was
to provide a versatile and friendly user interface for the system.

The graphical interface offers three complementary views for both
the specification rules and the pages of the considered Web site: the first
one is based on the typical idea of accessing contents by using folders
trees and is particularly useful for beginners; the second one is based
on XML, and the third one is based on term algebra syntax. The tool
provides all possible translations among the three views. A snapshot of
the WebVerdiClient is shown in Figure 4.2. Any other client using the
API of the Web Server could be employed as well.
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4.2.5 The Database

The WebVerdiService Web service needs to transmit abundant XML data
over the Web to and from client applications. The tool allows users to
modify the default rules provided for every Web specification and then
verify a particular Web site. After parameterizing the Web specification,
it is necessary to send back to the service the considered specification
as well as the whole Web site to verify. After the application invokes
the WebVerdiService with these two inputs, the synthesized errors are
progressively generated and transferred to the client application. The
standard Web service architecture would require client applications to
wait until all data are received and then errors are sent, which could
cause significant time lags. In order to avoid this overhead and improve
performance, we introduced a local MySQL data base where the Web site
and Web errors are temporarily stored at the server side.

4.3 The API

This section summarizes the categories of methods and the specific mes-
sage exchange patterns that are considered for interacting with WebVerdi-
M.

We considerer the data and method representation separately.

4.3.1 Data Representation

Web Sites

A website consist of a set of pages, which are represented as a triple
(id,name,data) where:

� id: is the page identifier;

� name: is the name of the page;

� data: is the XML content of the page.

An example of page is given in Example 4.3.1.

Example 4.3.1
XML representation of a Web page:
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<webSite>

<page> ... </page>

<page> ... </page>

<page> ... </page>

...

<page> ... </page>

</webSite >

Figure 4.3: XML encoding of a Web site

<page>

<id>p1</id>

<name>biblio.htm</name>

<data>

<biblioteca>

<libro ndoc="99231">

<isbn>8437607000</isbn>

<autor>Rojas, Fernando de</autor>

<titulo>La Celestina</titulo>

</libro>

<libro ndoc="158290">

<isbn>8403870485</isbn>

<autor>Homero</autor>

<titulo>Iliada</titulo>

</libro>

<libro ndoc="181227">

<isbn>8466401040</isbn>

<autor>Kafka, Franz</autor>

<titulo>La metamorfosi</titulo>

</libro>

</biblioteca>

</data>

</page>

A Web Site is represented by a collection of web pages. The XML
encoding of a typical Web Site is shown in Figure 4.3.

Rules

In our methodologies, there are two different kinds of rules, which are
handled differently. Different XML representations are therefore needed.

� Correctness rules. A correctness rule is defined by the triple
(l,r,C), where:

– l: is the left-hand side of the rule;
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– r: is the right-hand side of the rule;

– C: is the condition (if any).

The XML representation of a correctness rule is as follows.

<ruleCorrectness Name="...">

<left> ... </left>

<right> ... </right>

<condition> ... </condition>

</ruleCorrectness>

� Completeness rules. A completeness rule is encoded by the triple
(l,r,q), where:

– l: is the left-hand side of the rule;

– r: is the right-hand side of the rule;

– q is a logical quantifier, which can be either E (Existential) o
A (Universal).

An attribute is added to help identify a particular rule inside the
Web specification. The XML representation of completeness rules
is as follows

<ruleCompletness Name="Rule 1">

<left>

<atrib>

<f>

<atrib>

<g>

<atrib>X</atrib>

</g>

</atrib>

</f>

</atrib>

</left>

<right>

<atrib Mark=true>

<h>

<atrib Mark=true>

<g>

<atrib>X</atrib>

</g>

</atrib>

</h>

</atrib>

</rigth>

<quantifier>E</quantifier>

</ruleCompletness>
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A Web specification is a collection of completeness and/or correctness
rules. Its XML representation is sketched in Figure 4.4.

<specification>

<ruleCorrectness Name=xxx> ... </ruleCorrectness>

<ruleCompletness Name=xxx> ... </ruleCompletness>

<ruleCompletness Name=xxx> ... </ruleCompletness>

...

<ruleCorrectness Name=xxx> ... </ruleCorrectness>

</specification>

Figure 4.4: XML representation for a Web specification

Errors

Correction errors are given by the tuple (pid,w,l,sigma,C), where:

� pid: is the identifier of the page that contains errors;

� w: is the position within the page where the error is located; this
position is defined by an array of integers like [1, 4, 5]; in XML this
is written “1.4.5”;

� l: the left-hand side of the rule that produces the error;

� sigma: the substitution(s) in l that produce(s) the error;

� C: the condition of the rule that produces the error.

The completeness error representation depends on the type of error:
missing page error or universal/existential error.

� Missing page errors are defined by the triple (r,W,sigma):

– r: rule which generates the error;

– W: Web Site;

– sigma: the substitution(s) which produce(s) the error.

� Universal/Existential errors are defined by the triple (r,P,sigma):

– r: rule which generates the error;

– P: the set of identifiers of pages which do not comply with the
considered rule;

– sigma: the substitution(s) which produce(s) the error.
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<errorCorrectness>

<pid>p1</pid>

<w>1.2</w>

<l>

<autor>X</autor>

</l>

<sigma>

<sust>

<var>X</var>

<value>Rojas, Fernando de</value>

</sust>

</sigma>

<condition>X=Rojas, Fernando de</condition>

</errorCorrectness>

Figure 4.5: XML error representation

<errorCompletness>

<r> ... </r>

<pages>

<pid>p1</pid>

<pid> ... </pid>

<pid>pn</pid>

</pages>

<sigma> ... </sigma>

<type> ... </type>

</errorCompletness>

Figure 4.6: Completeness error representation

An attribute is needed to distinguish among the different types of
errors. The values of this attribute can be either M (Missing Page),
A (Universal), or E (Existential). Its XML representation is given in
Figure 4.6.

Actions

An action is the primitive carried out in order to repair the website.
There are four different primitives:

� change (pid,w,t): changes the subterm in the position w of the
page pid with the term t;

� insert(pid,w,t): adds term t in the position w of the page pid;

� delete(pid,t): deletes the term t from the page pid;

� add(p, idWS): adds the page p to the website idWS.
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<action>

<type>change</type>

<pid>p1</pid>

<w>1.2</w>

<t>

<autor>Perez, Pepito</autor>

</t>

</action>

Figure 4.7: XML action representation

4.3.2 Methods Exported

To optimize the transfer of data, some methods are provided as defined
below (storeWebSite, retrievePage, retrieveWebSite and removeWebSite).

Descriptions of Methods

storeWebSite (WebSite): Stores a Web Site in the local client server.
Input: WebSite: The Web Site to be stored.
Output: The identifier of the Web Site stored in the local server.

retrievePage(idP, idWS): Loads a page of the specified Web Site.
Input: idP, the identifier of the page; idWS, the identifier of the
Web Site stored in the local server.
Output: The retrieved page of the website, if the identifiers exists.

retrieveWebSite(idWS): Loads the Web Site stored in the local server.
Input: idWS, the identifier of the website as stored in the local
server.
Output: The Web Site, if the identifiers exist.

removeWebSite(idWS): Deletes the Web Site stored in the local server.
Input: idWS, the Web Site Identifier stored in the local server.
Output: True if the website has been successfully deleted; False
otherwise.

checkCorrectness(idWS SPEC): Returns a collection of correctness errors
of a Web Site, w.r.t. the given specification.
Input: idWS, the identifier of the Web Site as stored in the local
server; SPEC, the XML representation of the Web specification.
Output: An XML encoding of a collection of correctness errors.
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checkCompletness(idWS SPEC): Returns a collection of completeness er-
rors of a Web Site, w.r.t. the given specification.
Input: idWS, the identifier of the Web Site as stored in the local
server; SPEC, the XML representation of the Web specification.
Output: An XML encoding collection of a completeness errors.

fixErrorCorrectnessByDelete (errorCorrecness idWS): Repairs a complete-
ness error by a delete action.
Input: errorCorrecness, error to be fixed; idWS, the identifier of the
Web Site as stored in the local server.
Output: True in case the error was successfully deleted; False oth-
erwise.

changeCS (errorCorrecness SPEC idWS): Repairs automatically the cor-
rectness error by invoking a constraint solver.
Input: errorCorrecness, error to be fixed; SPEC, the XML represen-
tation of the web specification; idWS, the identifier of the Web Site
as stored in the local server.
Output: True in case the error was successfully solved; False other-
wise.

fixErrorCompleteness (pairErrorAction SPEC idWS): Repairs a complete-
ness error.
Input: pairErrorAction, pair error-action; SPEC, the XML represen-
tation of the Web specification; idWS, the identifier of the Web Site
as stored in the local server.
Output: True in case the error can be fixed; False otherwise.

fixErrorCompletenessByStrategyM (idWS pairEA Set): Repairs a com-
pleteness error using a Minimal strategy.
Input: idWS, the identifier of the Web Site as stored in the local
server; pairEA Set, the set of pairs < error, action >.
Output: True in case the error can be fixed; False otherwise.

fixErrorCompletenessByStrategyMNO (idWS pairEA Set): Repairs a com-
pleteness error using a Minimal non-overlapping strategy.
Input: idWS, the identifier of the Web Site as stored in the local
server; pairEA Set, the set of pairs < error, action >.
Output: True in case the error can be fixed; False otherwise.
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4.4 Experimental Evaluation

In order to evaluate the usefulness of our approach in a realistic scenario
(that is, for Web sites with a big volume of data), we have benchmarked
our system by using a repository of correctness as well as complete-
ness rules of different complexity for a number of XML documents ran-
domly generated by using the XML documents generator xmlgen (avail-
able within the XMark project [SWK+02]). The tool xmlgen is able to
produce a set of XML data, each of which is intended to challenge a par-
ticular primitive of XML processors or storage engines by using different
scale factors.

Table 4.1 shows some of the results we obtained for the simulation of
three different Web specifications WS1, WS2 and WS3 in five different,
randomly generated XML documents. Specifically, we tuned the genera-
tor for scaling factors from 0.01 to 0.1 to match an XML document whose
size ranges from 1Mb –corresponding to an XML tree of about 31000
nodes– to 10Mb –corresponding to an XML tree of about 302000 nodes–
(an exhaustive evaluation, including comparison with related systems can
be found in http://www.dsic.upv.es/users/elp/webverdi-m/).

Both Web specifications WS1 and WS2 aim at checking the verifica-
tion power of our tool regarding data correctness, and thus include only
correctness rules. The specification rules of WS2 contain more complex
and more demanding constraints than the ones formalized in WS1, with
involved error patterns to match, and conditional rules with a number of
membership tests and functions evaluation. The Web specification WS3

aims at checking the completeness of the randomly generated XML docu-
ments. In this case, some critical completeness rules have been formalized
which recognize a significant amount of missing information.

The results shown in Table 4.1 were obtained on a personal computer
equipped with 1Gb of RAM memory, 40Gb hard disk and a Pentium
Centrino CPU clocked at 1.75 GHz running Ubuntu Linux 5.10.

Let us briefly comment our results. Regarding the verification of
correctness, the implementation is extremely time efficient, with elapsed
times scaling linearly. Table 4.1 shows that the execution times are small
even for very large documents (e.g., running the correctness rules of Web
specification WS1 over a 10Mb XML document with 302000 nodes takes
less than 13 seconds). Concerning the completeness verification, the fix-

http://www.dsic.upv.es/users/elp/webverdi-m/
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Size Nodes
Scale Time
factor WS1 WS2 WS3

1 Mb 30, 985 0.01 0.930 s 0.969 s 165.578 s
3 Mb 90, 528 0.03 2.604 s 2.842 s 1768.747 s
5 Mb 150, 528 0.05 5.975 s 5.949 s 4712.157 s
8 Mb 241, 824 0.08 8.608 s 9.422 s 12503.454 s

10 Mb 301, 656 0.10 12.458 s 12.642 s 21208.494 s

Table 4.1: Verdi-M Benchmarks

point computation which is involved in the evaluation of the completeness
rules typically burdens the expected performance (see [ABF06]), and we
are currently able to process efficiently XML documents whose size is
not bigger than 1Mb (running the completeness rules of Web specifica-
tion WS3 over a 1Mb XML document with 31000 nodes takes less than 3
minutes).

Finally, we want to point out that the current Maude implementation
of the verification system supersedes and greatly improves our prelimi-
nary system, called GVerdi[ABF06; BV05], that was only able to manage
correctness for small XML repositories (of about 1Mb) within reasonable
time.



Chapter 5

An Abstract Generic
Framework for

Web Site Verification

This chapter formalizes an abstract framework for Web site verification
which improves the performance of our previous, rewriting-based Web
verification methodology. The approximated framework is formalized as
a source-to-source transformation which is parametric with respect to the
chosen abstraction. This transformation significantly reduces the size of
the Web documents by dropping or merging contents that do not influ-
ence the properties to be checked. This allows us to reuse all verification
facilities of the previous system WebVerdi-M to efficiently analyze Web
sites. In order to ensure that the verified properties are not affected by
the abstraction, we characterize the conditions that allow us to ensure the
correctness of the abstraction. An experimental implementation shows
a huge speedup with respect to the previous methodology which did not
use this transformation.

5.1 Introduction

The basic idea of abstract interpretation [CC77; CC79] is to infer infor-
mation from programs by interpreting (“running”) them using abstract
data rather than concrete ones, thus obtaining safe approximations of
the programs. The “concrete” data and operators are replaced by corre-
sponding “abstract” (approximated) data and operators. The “answers”
obtained by running the program in the abstract domain are proven
sound by exploiting the correspondence between the abstract and con-
crete domains.
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5.1.1 Web Site Description

In order to describe Web sites, in this chapter we use the formulation
given in [Luc05], which considers the hyperlinks to surf among Web
pages. This will allows us to deal later with dynamic Web pages that
can be generated from a database by a Web script.

We use an alphabet P to give names to Web pages and to express
the different transitions between pages.

Definition 5.1.1 (immediate successors) The immediate successors
relation for a given Web page p is defined by

→p= {(p, p′) ⊆ P × P | p′ is directly accessible from p}

Definition 5.1.1 establishes a relationship between the page p and its
immediate successors (i.e., the pages p1, . . . , pn that p points to by means
of hyperlinks). We will use the associated computational relations →P ,
→+
P , etc., to describe the dynamic behavior of a Web site. For instance,

the reachability of a given Web page p′ from another page p can be
expressed as p→∗P p′.

Definition 5.1.2 (Web site) A Web site is defined as a set of reachable
Web pages from an initial Web page, and is denoted by

W = {p1, . . . , pn}, s.t. ∃i, 1 ≤ i ≤ n,
∀j, 1 ≤ j ≤ n, pi →∗W pj

Definition 5.1.2 formalizes the idea that a Web site has an initial Web
page which allows one to visit the whole Web site. Note that there may
exist several initial Web pages of a given Web site.

Example 5.1.3
The algebraic description of a simple Web site modeling an on-line auc-
tion system along with its Web specification are shown in Figure 5.1.
The Web site contains information regarding open and closed auctions,
and auctioned items. The Web specification contains three rules. The
first rule is intended for auditing Web site contents and requires that, in
an open auction, the reserve price (or the lower price at which a seller is
willing to sell an item) is greater than the initial one. The second rule
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Web site W = {p1, p2, p3}, where

p1) list-items(
item(id(ite0),

name(racket),state(sold),
description(Wilson tennis racket),
incategories(category(cat1))),

item(id(ite1),
name(shirt),state(available),
description(men’s t-shirts),
incategories(category(cat1),

category(cat2))),
item(id(ite2),

name(shoes),state(available),
description(women’s shoes),
incategories(category(cat0),

category(cat2))) )

p2) list-categories(
pack(category(cat0)),
unit(category(cat1),

category(cat2)) )

p3) open-auctions(
open-auction(item(ite2),

initial(48.51), reserve(64.3),
seller(Bob), bidder(Alice)) )

p4) closed-auctions(
closed-auction(

seller(Bob), buyer(John),
item(ite0), price(77.5)) )

Web specification (IN , IM , R), where IN = {r1}, IM = {r2, r3}, and
r1) open-auction(initial(X),reserve(Y)) ⇀ error | X > Y
r2) list-items(item(incategories(X,Y))) ⇀ ]list-categories(pack(X),unit(Y)) 〈E〉
r3) list-item(item(id(X),state(sold)) ⇀ ]closed-auction(item(X)) 〈E〉

Figure 5.1: Web site and Web specification for an on-line auction system.

also states an existential property: if there is an auctioned item that is
listed in two or more categories, then at least two of these categories
must be “unit” and “pack”. The last rule states that, for every item that
is sold, a closed auction associated to the item must exist.

5.2 Abstract Web Site Verification

In this chapter, we are particularly interested in the abstraction of the
completeness process, because the fixpoint computation needed for the
completeness verification leads to unsatisfactory performance (see the
last column of Table 4.1 in page 82).

We want to formalize the abstraction as a source–to–source trans-
formation which translates Web documents and Web specification rules
into constructions of the very same languages, hence our concrete and
abstract domains do coincide. In this way, the domain of abstract terms
Dα is equal to the domain of concrete terms D. Let us first introduce
the notion of abstract domain.
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Definition 5.2.1 (abstract non-ground term algebra, poset)
Let D = (τ(Text ∪ Tag ,V),≤) be the standard domain of (equivalence
classes of) terms, ordered by the standard partial order ≤ induced by the
preorder on terms given by the relation of being “more general”.

Then the domain of abstract terms Dα is equal to D.

We define the abstraction (tα) of a term t as: tα = α(t). Our frame-
work is parametric w.r.t. the abstraction function α, which can be used
to tune the accuracy of the approximation. For example, for on–line auc-
tioning, a convenient abstraction function would be better defined as to
distinguish registered bidders and sellers, and auctioned items.

Let us introduce the definition of term abstraction α.

Definition 5.2.2 (term abstraction α) Let atext :: Tag∗ × Text →
Text be a text abstraction function.

α :: τ(Text ∪ Tag ,V)→ τ(Text ∪ Tag ,V)
α(t) = α̂(ε, t)

where the auxiliary function α̂ is given by

α̂ :: Tag∗ × τ(Text ∪ Tag ,V)→ τ(Text ∪ Tag ,V)
α̂( , x) =x, if x ∈ V

α̂(c, f(t1, .., tn)) =f(α̂(c.f, t1), .., α̂(c.f, tn)), if f ∈ Tag
α̂(c, w) =atext(c, w), if w ∈ Text

The reader may notice that elements of Text are abstracted by taking
into account the chain of tags under which a particular piece of text
appears. This is formalized by means of the text abstraction function

atext :: Tag∗ × Text → Text

which is left undefined and is actually the formal parameter of the defi-
nition.

The text abstraction function should be conveniently fixed in order
to tune the abstraction for each particular domain. For instance, in the
case where no Tag distinction is needed, each element in Text could be
simply replaced by some (abstract) fresh, constant symbol d.
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Example 5.2.3
Consider the Web page p2 of Example 5.1.3. By fixing

atext( , w) = first(w), where first(x.xs) = x,

the resulting abstraction of p2 is

α(p2) = list-categories(pack(category(c)),
unit(category(c), category(c)))

Note that this abstraction function does not distinguish among some
leaves in the term that do influence the properties to be verified. As a
consequence of this lack of precision, by using this abstraction we would
not be able to observe the constraint given by the completeness rule r2

anymore. Specifically, the rule r2 states that if there is an auctioned
item that is listed in two or more categories, then at least two of these
categories must be “unit” and “pack”. Clearly, the second item in the
Web page p1 does not satisfy this constraint.

In order to achieve correctness of the abstraction, we restrict our in-
terest to text abstraction functions atext which distinguish those pieces
of text that are observed by the Web specification rules and then poten-
tially affect the result of the verification.

The auxiliary function gen emb ttI(c, t) allows us to know whether
a sequence of tags c (with leaf t) is recognized within some rule of the
Web specification I. This allows us to determine whether a term within
a given Web page needs to be carefully considered.

Text abstraction functions are required to obey the following correct-
ness condition w.r.t. W .

Definition 5.2.4 (correctness condition w.r.t. W ) Let W be a Web
site, and let I be a Web specification. Let s, t ∈ Text be any two pieces of
text in W . For every c ∈ Tag∗ such that gen emb ttI(c, s) ≡ True and
gen emb ttI(c, t) ≡ True, the text abstraction function atext satisfies

s 6≡ t⇒ atext(c, s) 6≡ atext(c, t)

The condition above formalizes the idea that, whenever two pieces
of text are indistinguishable in the abstract domain, then they are also
indistinguishable in the concrete domain.



88 Chapter 5. An Abstract Generic Framework for Web Verification

5.2.1 Abstract Web Specification

The abstraction of the correctness and completeness Web specification
rules is simply based on abstracting the terms occurring in the left-hand
side and the right-hand side of the rules. In particular, the conditional
parts of the correctness rules are not abstracted, and hence we let con-
crete conditions to be applied to concrete data as well as to abstract
data.

Definition 5.2.5 (abstract specification rule) Let

α :: τ(Text ∪ Tag ,V)→ τ(Text ∪ Tag ,V)

be a term abstraction function with text abstraction function atext ::
Tag∗×Text → Text. Let rlM ≡ l ⇀ r〈q〉 be a completeness rule, and let
rlN ≡ l ⇀ error|C be a correctness rule. We denote by rlαM (resp. rlαN)
the abstraction of rlM (resp. rlN), where rlαM ≡ α(l) ⇀ α(r)〈q〉 (resp.
rlαN ≡ α(l) ⇀ error|C).

Example 5.2.6
Consider the completeness rule r3 of Example 5.1.3. By fixing the text
abstraction function atext(c, x) = last(x) where last(w) returns the last
element of the sequence w, the computed abstract completeness rule
α(r3) is

list-item(item(id(X), state(d)) ⇀ ]closed-auction(item(X))〈E〉

Roughly speaking, the abstraction of a rewrite rule consists of ab-
stracting the two terms. When no confusion can arise, we just write
rlαM ≡ lα ⇀ rα〈q〉 (resp. rlαN ≡ lα ⇀ error|C). The Web specification
(IN , IM , R) is lifted to (IαN , I

α
M , R) element–wise.

To ensure the soundness of the abstract framework, we need to pre-
cisely relate the satisfiability of the conditions over abstract and concrete
data. Specifically, we require the fulfillment of an abstract condition to
imply the fulfillment of the corresponding concrete description.

Definition 5.2.7 (correctness condition w.r.t. IN) Let α :: τ(Text∪
Tag ,V)→ τ(Text ∪ Tag ,V) be a term abstraction function with text ab-
straction function atext :: Tag∗×Text → Text. Let rl ≡ l ⇀ error|C be
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a correctness rule. Then, α is correct w.r.t. rl iff, for each substitution
σ ≡ {X1/t1, . . . , Xn/tn},

Cσα holds ⇒ Cσ holds

where σα ≡ {X1/α(t1), . . . , Xn/α(tn)}. Moreover, α is correct w.r.t. IN
if it is correct w.r.t. every correctness rule of IN .

5.2.2 Abstract Web Site

When navigating a Web site, it is common to find a number of pages that
have a similar structure but different contents. This happens very often
when pages are dynamically generated by some script which extracts
contents from a database (e.g., in Amazon’s Web site). This can make our
simple analysis impracticable unless we are able to provide a mechanism
to drastically reduce the Web size. In order to ensure that the verified
properties are not affected by the abstraction, in this section we develop
an abstract methodology which derives an approximation of Web sites
from the considered Web specifications.

Let us introduce a compression function for terms which reduces the
size of each singular Web page by dropping some arguments, thus reduc-
ing the number of branches of the tree. This is used as a preprocess prior
to the abstraction of a given Web site.

Web Compression pre–processing

Let (IN , IM , R) be a Web specification and s, t ∈ τ(Text∪Tag). We define
two auxiliary functions join and max ar. The function join(s, t) returns
the term that is obtained by concatenating the arguments of terms s and t
(if they exist), whenever root(s) = root(t), e.g., join(f(a, b, c), f(b, e)) =
f(a, b, c, b, e). The function max ar(f, IM) returns the maximal arity of
f in IM .

Definition 5.2.8 (correctness condition w.r.t. IM) Let (IN , IM , R)
be a Web specification. Then, the term f(t1, ..., tn) ∈ τ(Text ∪ Tag) is
compressed by using function compress given in Algorithm 4, which
packs together those subterms which are rooted by the same root symbol
while ensuring that the arity of f after the transformation is not smaller
than max ar(f, IM).
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Algorithm 4 Term Compression Transformation.
Input:

Term t = f(t1, . . . , tn)
IM a set of completeness rules

Output:
Term f(t′1, . . . , t

′
m), with m ≤ n

1: function compress (t,IM)
2: if n = 0 then
3: ← f
4: else if max ar(f, IM) < n and

∃ i, j s.t. root(ti) = root(tj) then
5: t′ ← join(ti, tj)
6: ← compress(f(t1, . . . , ti−1, t

′, ti+1, . . . ,
tj−1, tj+1, . . . , tn), IM)

7: else
8: ← f(compress(t1, IM), ..,compress(tn, IM))
9: end if

10: end function

The idea behind Definition 5.2.8 is as follows. Roughly speaking,
all arguments with the same root symbol f that occur at level i are
joined together. Then, compression recursively proceeds to level (i+ 1).
The condition that the maximal arity of f in IM must be respected is
essential for the correctness of our method, as this condition ensures that
a partial rewrite step on an abstract term is always enabled, whenever
the corresponding partial rewrite step can be executed in the concrete
domain. Let us see an example.

Example 5.2.9

Consider the Web page p1 and the completeness rule r2 of Example 5.1.3.
The left–hand side of rule r2 is embedded in p1, in symbols

list-items(item(incategories(X, Y ))) E p1

If we näıvely compressed p1 without respecting the maximal arity in IM
of function symbol “incategories”, we would get
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p′1 = list-items(
item(id(ite0), name(racket),state(sold),

description(Wilson tennis racket),
incategories(category(cat1))),

item(id(ite0), name(shirt),state(available),
description(men’s t-shirts),
incategories(category(cat1,cat2))),

item(id(ite2), name(shoes),state(sold),
description(women’s shoes),
incategories(category(cat0,cat2))) )

Unfortunately,

list-items(item(incategories(X, Y ))) 6E p′1

since in p′1 the arity of the symbol “incategories” is lower than in the lhs
of r2.

Now we are ready to formalize our notion of Web site approximation.

Web site abstraction

In order to approximate a Web site, we start from an initial Web page
and recursively apply the successor relation (→), while implementing a
simple depth-first search (DFS) [CLRS01].

Definition 5.2.10 (Abstract Web Site) Let W be a Web site, let p
be an initial page of W , and let (IN , IM , R) be a Web specification. Then,
the abstraction of W is defined by:

α(W ) = dfs(p, ∅, IM)
where function dfs is given in Algorithm 5.

Note that, after applying the transformation above, the information
in the Web pages as well as the number of pages in the Web site can be
significantly reduced.
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Algorithm 5 Web site abstraction.
Input:

p :: τ(Text ∪ Tag ,V)
Wα :: set(τ(Text ∪ Tag ,V))
IM a set of completeness rules

Output:
Wα = set (τ(Text ∪ Tag ,V))

1: function dfs (p, Wα, IM)
2: pα ← compress(α(p), IM)
3: Wα ← Wα ∪ {pα}
4: for all i s.t. (p, pi) ∈→p and

compress(α(pi), IM) 6∈ Wα do
5: Wα ← dfs(pi, W

α)
6: end for
7: ← Wα

8: end function

5.2.3 Abstract Verification Soundness

The abstraction function given in Definition 5.2.2 defines abstractions by
a source-to-source transformation. Due to this source-to-source approxi-
mation scheme, all facilities supported by our previous verification system
can be straightforwardly adapted and reused with very little effort.

Informally, our abstract verification methodology applies to the con-
sidered abstract descriptions of the Web site and Web specification.
Given a Web specification (IN , IM , R) and a Web site W , we first gener-
ate the corresponding abstractions (IαN , I

α
M , R) and Wα. Then — since

we consider a source to source transformation — we apply our original
verification algorithm [ABF06] to analyze Wα w.r.t. (IαN , I

α
M , R). We call

abstract error, each error which is detected in Wα using (IαN , I
α
M , R) by

the verification methodology.

In order to guarantee the soundness of the abstract diagnosis, we have
to ensure that, when fed with the abstracted data, the partial rewriting
relation, ⇀, correctly approximates the behavior of the partial rewriting
relation over the corresponding concrete representation. In the following,
we demonstrate the soundness of our abstract representation. First of all
we introduce the notion of abstract embedding, which is used to establish
a relation between concrete and abstract terms.
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Definition 5.2.11 (abstract embedding) The abstract embedding re-
lation

E] ⊆ τ(Text ∪ Tag ,V)× τ(Text ∪ Tag ,V)

w.r.t. a function atext :: Tag∗ × Text → Text on Web page templates is
the least relation satisfying the rules:

1. X E] t, for all X ∈ V and t ∈ τ(Text ∪ Tag ,V).

2. f(t1, . . . , tm) E] g(s1, . . . , sn) iff f ≡ g and
ti E] sπ(i), for i = 1, . . . ,m, and
some total function π :: {1, . . . ,m} → {1, . . . , n}.

3. c E] c′ iff c′ ≡ atext(x, c) for some x ∈ Tag∗.

Given t1, t2 ∈ τ(Text ∪ Tag ,V) such that t1 E] t2 w.r.t. atext ::
Tag∗ × Text → Text , we say that t2 safely approximates t1.

Basically, Definition 5.2.11 slightly modifies Definition 1.3.1 (home-
omorphic embedding) by allowing the detection of noninjective embed-
dings and the renaming of some constants. In other words, two distinct
paths in t1 may be mimicked (i.e., simulated) by a single path appearing
in t2 modulo (a possible) renaming of some leaves of t1.

Example 5.2.12
Consider the terms t1 ≡ f(g(a), g(b)) and t2 ≡ f(g(d, e)) which are
depicted in Figure 5.2. Then, t1 6E t2 and t2 6E t1, but we have t1 E] t2
w.r.t. the function {(f.g, a) 7→ c, (f.g , b) 7→ d} as shown in Figure 5.2
by means of dashed arrows. Moreover, note that the two distinct t1’s
edges from f to g are represented in t2 by a single edge from f to g.

By using Definition 5.2.11, we are able to map any concrete path
within a concrete term into a path in an abstract term: the structure and
the labeling of t are represented in a compressed and suitable relabeled
version of t such that many paths of t are mapped into one shared path
of the abstract description, as stated by the following proposition.

Proposition 5.2.13 Let t ∈ τ(Text∪Tag ,V). Let α :: τ(Text∪Tag ,V)→
τ(Text ∪Tag ,V) be a term abstraction function using the text abstraction
function atext :: Tag∗ × Text → Text. Then, t E] α(t) w.r.t. atext.
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Proof. (sketch) We proceed by induction on the structure of t.

Case t ≡ X,X ∈ V. By Definition 5.2.11, X E] t′ for any t′ ∈ τ(Text ∪
Tag ,V) w.r.t. atext. Hence, X E] α(X) w.r.t. atext.

Case t ≡ w,w ∈ Text . By Definition 5.2.2, atext(seq, w) ≡ c, for some
seq ∈ Tag∗. Hence, w E] α(w) w.r.t. atext.

Case t ≡ f(t1, . . . , tn), n > 0. By Definition 5.2.2, we have

root(α(t)) ≡ root(t).

Hence, α(t) ≡ f(t′1, . . . , t
′
m). Observe that, whenever m < n, some

root symbols of the terms t1, . . . , tn have been compressed with the
aim of reducing the arity of f . Note that compression preserves
the paths of t. That is, if there exists a path from x to y in t, then
there exists a corresponding path in α(t). Thus, each t′j of α(t) may
correspond to many ti’s which are included in t. Therefore, we can
define the total (possibly, non-injective) function π :: {1, . . . , n} →
{1, . . . ,m} in the following way: π(i) = j, where root(ti) ≡ root(tj)
and t′j in f(t′1, . . . , t

′
m) corresponds to ti in f(t1, . . . , tn). By using

such a definition of π and the inductive hypothesis, we get ti E] t′π(i)

w.r.t. atext. Consequently, t E] α(t) w.r.t. atext.

Roughly speaking, Proposition 5.2.13 establishes that α(t) safely ap-
proximates the (concrete) term t.

Example 5.2.14
Consider the terms t1 and t2 of Figure 5.2. Let atext :: Tag∗ × Text →
Text be defined as {(f.g, a) 7→ c, (f.g, b) 7→ d}. Assume that there exists
a Web specification in which the maximal arity of g equals to 1, so
that the compression of the t1’s nodes labeled with g is enabled. Then,
α(t1) ≡ t2 and t1 E] α(t1) w.r.t. function atext.

Proposition 5.2.13 states that abstract terms simulate the concrete
terms through an abstract embedding (i.e., the E] relation w.r.t. a suit-
able renaming function). In the following, we demonstrate that such a
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Figure 5.2: Abstract embedding

property is preserved by partial rewriting. In other words, whenever a
partial rewrite step t1 ⇀ t2 is executed in the concrete domain, a par-
tial rewrite step over the abstract counterpart is enabled, in symbols
α(t1) ⇀ t′2, such that t2 still simulates the obtained abstract term t′2
w.r.t. E]. The following property holds.

Proposition 5.2.15 Let s, t ∈ τ(Text ∪ Tag ,V). Let α :: τ(Text ∪
Tag ,V) → τ(Text ∪ Tag ,V) be a term abstraction function with text
abstraction function atext :: Tag∗ × Text → Text. Let I ≡ (IN , IM , R)
be a Web specification, and let Iα ≡ (IαN , I

α
M , R) be the abstract version

of I. If s ⇀IM t, then

� α(s) ⇀IαM
t′

� t E] t′ w.r.t. atext

Proof. (sketch) Consider s, t ∈ τ(Text ∪ Tag ,V) such that s ⇀IM t
via the rule l ⇀ r 〈q〉 ∈ IM , q ∈ {A, E}. Therefore, t ≡ rσ for some
substitution σ = {X1/s1, . . . , Xn/sn}. Now, observe the following two
facts.

(i) Given the abstract rule α(l) ⇀ α(r) 〈q〉 ∈ IαM , by applying Defini-
tion 5.2.5, we have α(l) ≡ l (resp., α(r) ≡ r) modulo renaming of
some constants in l (resp. r) via the function atext. In particular,
by Proposition 5.2.13, l E] α(l) w.r.t. atext (resp., r E] α(r) w.r.t.
atext).
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(ii) Given a term t ∈ τ(Text ∪ Tag ,V), the arity of each symbol f
appearing in α(t) is reduced as far as it overcomes the maximal
arity of f appearing in IM (see Definition 5.2.8).

Fact (i) and Fact (ii) imply that if l E s|w, then α(l) E α(s)|w′ ,
w ∈ OTag(s), w′ ∈ OTag(α(s)). Therefore, α(s) ⇀IαM

t′ via α(l) ⇀
α(r) 〈q〉 ∈ IαM , and t′ ≡ α(r)σα, where σα = {X1/α(s1), . . . , X2/α(sn)}.
Now, by Proposition 5.2.13, s E] α(s) w.r.t. atext, and consequently
si E] α(si) w.r.t. atext, i = 1, . . . , n. Moreover by Fact (ii), we have
r E] α(r) w.r.t. atext. Hence, rσ E] α(r)σα w.r.t. atext. Finally,

t ≡ rσ E] α(r)σα ≡ t′ w.r.t. atext

Proposition 5.2.15 can be generalized to partial rewrite sequences
using a simple inductive argument. More formally,

Proposition 5.2.16 Let α :: τ(Text ∪ Tag ,V)→ τ(Text ∪ Tag ,V) be a
term abstraction function with text abstraction function atext :: Tag∗ ×
Text → Text. Let I ≡ (IN , IM , R) be a Web specification, and let Iα ≡
(IαN , I

α
M , R) be the abstract version of I.

If t0 ⇀IM t1 ⇀IM . . . ⇀IM tn, n ≥ 0, then
1. α(t0) ⇀IαM

t′1 ⇀IαM
. . . ⇀IαM

t′n;
2. tn E] t′n w.r.t. atext

Proof. We proceed by induction on the length n of the concrete partial
rewrite sequence.

Case n = 0. In this case, we trivially have tn ≡ t0, hence t′n ≡ α(tn)
which directly implies claim 1. To prove claim 2, observe that, by
Proposition 5.2.13, tn E] α(tn) ≡ t′n w.r.t. atext.

Case n > 0. We consider the following concrete partial rewrite sequence

t0 ⇀IM t1 ⇀IM . . . ⇀IM tn, n > 0.

By inductive hypothesis, there exists α(t0) ⇀IαM
t′1 ⇀IαM

. . . ⇀IαM
t′n−1 such that tn−1 E] t′n−1 w.r.t. atext. Since tn−1 E] t′n−1, t′n−1 ≡
α(tn−1). By Proposition 5.2.15, we obtain t′n−1 ≡ α(tn−1) ⇀IαM

t′n
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such that tn E] t′n. Therefore, by composing the computed abstract
partial rewrite sequences, we obtain

α(t0) ⇀IαM
t′1 ⇀IαM

. . . ⇀IαM
t′n

with tn E] t′n w.r.t. atext.

Given an (abstract) partial rewrite sequence Sα ≡ α(t1) ⇀IαM
t′2 ⇀IαM

. . . ⇀IαM
t′n, we call abstract completeness requirement any term ap-

pearing in Sα. Now, the concrete verification methodology works as
follows: first, we compute the concrete completeness requirements and,
then, we check whether such requirements are fulfilled in the consid-
ered Web site. As explained in Section 1.4, a completeness require-
ment r is a term which occurs in a partial rewrite sequence of the form
p ≡ t0 ⇀ t1 ⇀ t2 . . . ⇀ tn ≡ r, where p ∈ τ(Text ∪Tag) is a Web page of
the Web site W and r ∈ τ(Text ∪ Tag) is the computed (completeness)
requirement. Our novel abstract methodology exploits Proposition 5.2.16
in order to avoid the computation of concrete requirements, since they
are safely approximated by their abstract descriptions.

Therefore, by Proposition 5.2.16, we can directly conclude that each
concrete requirement is safely approximated by its abstract description.
More formally, the following corollary holds.

Corollary 5.2.17 Let α :: τ(Text∪Tag ,V)→ τ(Text∪Tag ,V) be a term
abstraction function with text abstraction function atext :: Tag∗×Text →
Text. Let W be a Web site, and let Wα be the abstract version of W .
Let (IN , IM , R) be a Web specification, and let (IαN , I

α
M , R) be the abstract

version of (IN , IM , R). If r is a concrete completeness requirement for
W computed by (IN , IM , R), then there exists an abstract completeness
requirement rα for Wα computed by (IαN , I

α
M , R) such that r E] rα w.r.t.

atext.

The fact that any concrete completeness requirement is safely ap-
proximated by an abstract completeness requirement ensures that the
abstract verification is safe, that is, whenever an abstract requirement
is fulfilled in the abstract Web site, each concrete representation is ful-
filled in the concrete domain. This allows us to conclude the absence of
concrete errors in the case when no abstract errors are detected.
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Formally, the following theorem holds.

Theorem 5.2.18 Let α :: τ(Text∪Tag ,V)→ τ(Text∪Tag ,V) be a term
abstraction function with text abstraction function atext :: Tag∗×Text →
Text. Let W be a Web site, and let Wα be the abstract version of W .
Let I ≡ (IN , IM , R) be a Web specification, and let Iα ≡ (IαN , I

α
M , R)

be the abstract version of I. Then, Wα does not contain any abstract
(universal/existential) completeness error w.r.t. Iα, then W does not
contain any concrete (universal/existential) completeness error w.r.t. I.

Proof. (sketch) First of all, we show that if α(t) E α(p), for t ∈
τ(Text ∪ Tag ,V) and p ∈ W , then t E p (requirement safeness prop-
erty). By contradiction, we assume that t 6E p. This amounts to saying
that there is a path in t which is not recognized in p. On the other
hand, by Proposition 5.2.13, we have t E] α(t) w.r.t. atext, and hence
all the paths in t are simulated (recognized) in α(t). Since α(t) E α(p),
all the paths in t are recognized in α(p). Finally, by Proposition 5.2.13,
p E] α(p) w.r.t. atext, hence all the paths in t are recognized in p, which
leads to a contradiction.

Now, we use this result to prove the main theorem in this section.
In the following, we will distinguish three cases according to the kind of
completeness errors we want to detect.

Existential completeness error. By contradiction, we assume there
exists a concrete existential completeness error

(r, {p1, p2, . . . , pn}, E)

in W w.r.t. I. That is, there exists p ∈ W such that p ⇀+
IM

r and {p1, p2, . . . , pn} is not existentially complete w.r.t. r (i.e.
∀ i = 1, . . . , n, w ∈ OTag(pi), r 6E pi|w). By Corollary 5.2.17,
r E] α(r) w.r.t. atext. On the other hand, Wα does not con-
tain any abstract existential completeness error w.r.t. Iα. This
implies that any computed abstract requirement rα is embedded
in some pα ∈ Wα. In particular, the abstract requirement α(r) is
embedded in some α(pi) ∈ {α(p1), . . . , α(pn)} ⊆ Wα (in symbols,
∃ i = 1, . . . , n, w ∈ OTag(α(pi)), α(r) E α(p)i|w). By the require-
ment safeness property, we then derive r E pi|w′ , which leads to a
contradiction, as we supposed that {p1, p2, . . . , pn} is not existen-
tially complete w.r.t. r.
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Missing Web page error. Analogous to the first case.

Universal completeness error. Analogous to the first case.

Note that —whenever we detect an abstract completeness error— we
are not able to guarantee the presence of a concrete completeness error.
This is mainly due to the fact that the abstraction can enable partial
rewriting steps over abstract descriptions that are not feasible in the
concrete domain. Thus, there might be an abstract requirement that
does not correspond to any concrete requirement, as illustrated by the
following example.

Example 5.2.19
Consider the following set IM of completeness rules of a Web specification

r1) f(X, Y ) ⇀ m 〈E〉
r2) f(a, b) ⇀ m′ 〈E〉

and the Web site W = {f(f(a), f(b), h(c)),m}. Assume that the text
abstract function atext :: Tag∗×Text → Text is defined as atext( , t) = t
for each t ∈ Text . Then,

Wα = {f(f(a, b), h(c)),m}.

Moreover, the abstract description of IM is equal to IM (i.e., IM ≡ IαM).
The set of concrete requirements of W w.r.t. IM is {m}; while the set
of abstract requirements of Wα w.r.t. IαM is {m,m′}. Note that m′ is
not fulfilled in Wα, as it is not embedded in any abstract page of Wα,
that is, m′ represents an abstract completeness error. On the other hand,
requirement m′ cannot be computed in the concrete domain, since rule
r2 cannot be applied to Web pages in W . Consequently, m′ is not re-
sponsible for any concrete completeness error in W .

The approximation we considered allows us to establish a safe connec-
tion between abstract and concrete correctness errors as well. In partic-
ular, we are able to ensure that, whenever an abstract correctness error
is detected, a corresponding correctness error must exist in the concrete
counterpart.
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Given a concrete correctness error e ≡ (p, w, l, σ), we define α(e) ≡
(α(p), wα, α(l), α(σ)), wα ∈ OTag(α(p)).

Theorem 5.2.20 Let α :: τ(Text∪Tag ,V)→ τ(Text∪Tag ,V) be a term
abstraction function with text abstraction function atext :: Tag∗×Text →
Text. Let W be a Web site, and let Wα be the abstract version of W . Let
I ≡ (IN , IM , R) be a Web specification such that α is correct w.r.t. IN ,
and let Iα ≡ (IαN , I

α
M , R) be the abstract version of I. If Wα contains an

abstract correctness error

eα ≡ (pα, wα, lα, σα)

w.r.t. Iα, then W contains a concrete correctness error e ≡ (p, w, l, σ)
w.r.t. I such that α(e) ≡ eα.

Proof. (sketch) By contradiction, we assume there exists no concrete
correctness error in the Web site W such that eα ≡ α(e).

The fact that there exists an abstract correctness error

(pα, wα, lα, σα)

in an abstract Web page pα w.r.t. the abstract rule rlα ≡ lα ⇀ error|C ∈
IαN implies that lα E pα|wα , for some wα ∈ OTag(pα), and Cσα holds.

Now, by Proposition 5.2.13, we derive (i) p E] pα ≡ α(p) w.r.t. atext,
and (ii) l E] lα ≡ α(l) w.r.t. atext. By (i), (ii), and lα E pα|wα , we

conclude that l E p|w, w ∈ OTag(p). Moreover, α is correct w.r.t. IN ,
and Cσα holds. Thus, Cσ holds.

Summing up, there exists l ⇀ error|C which detects a concrete cor-
rectness error (p, w, l, σ) w.r.t. I, which contradicts the initial hypothesis.

To conclude, by the approximation scheme formalized so far, we are
able to apply the original verification framework to abstract data, pro-
viding an extremely efficient analysis which is able to locate correctness
errors as well as to ensure the absence of completeness errors in the con-
crete descriptions quickly, saving time to the user.
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5.3 Implementation

An experimental implementation αVerdi of the abstract framework pro-
posed in this chapter has been developed and compared to the previous
Verdi implementation for the realistic test cases given in [ABF+07a]. Ta-
ble 5.1 shows some of the results we obtained for the simulation of the
Web specification rules for an on–line auction system in five different,
randomly generated XML documents. Specifically, we tuned the gener-
ator xmlgen (available within the XMark project [SWK+02]), for scaling
factors from 0.01 to 0.1 to produce XML documents whose size ranges
from 1Mb (corresponding to an XML tree of about 30 thousand nodes)
to 10Mb (corresponding to an XML tree of about 301 thousand nodes).

Nodes Mb
Time

Verdi
Abstraction
App αVerdi

30 th 1 165.34 s 11 s 0.92 s
90 th 3 1, 768.65 s 154 s 3.01 s

150 th 5 4, 712.39 s 732 s 52.45 s
241 th 8 12, 503.85 s 5, 330 s 186.22 s
301 th 10 21, 208.28 s 8, 132 s 285.51 s

Table 5.1: Verdi and αVerdi Benchmarks

The results shown in Table 5.1 were obtained on a personal computer
equipped with 1Gb of RAM memory, 40Gb hard disk and a Pentium
Centrino CPU clocked at 1.75 GHz running Ubuntu Linux 7.04.

Column Verdi shows the runtime of the original Verdi tool. Column
App shows the time used for the approximation of the Web site w.r.t. the
corresponding abstract Web specification. Finally, column αVerdi shows
the execution time of the abstract verification tool αVerdi.

The preliminary results that we have obtained demonstrate a huge
speedup w.r.t. our previous methodology. At the same time, the abstrac-
tion times are affordable in view of the complexity and size of the involved
data sets: less than 5 minutes for the largest benchmark (10 Mb), with a
very reduced space budget. We note that the original Verdi implementa-
tion was only able to process efficiently XML documents whose size was
not bigger than 1Mb.
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5.4 Related Work

In the literature, abstract interpretation frameworks have been scarcely
applied to analyze Web sites. Actually, we have found very few works
addressing this issue, and all of them focus on the dynamic aspects of
the distributed system underlying the Web site. For instance, in [GJJ06]
an abstract approach is developed which allows one to analyze the com-
munication protocols of a particular distributed system with the aim of
enforcing a correct global behavior of the system. [KEG06] uses ab-
stract interpretation for secret property verification: the methodology
applies Input/Output abstract set descriptions to finite state machines
in order to validate cryptographic protocols implementing secure Web
transactions.

To the best of our knowledge, this work develops the first methodology
based on abstract interpretation techniques which is general enough to
support the verification of Web sites.

Our inspiration comes from the area of approximating (XML) query
answering [BGK03; PGI04], where XML queries are executed on com-
pressed versions of XML data (i.e., document synopses) in order to obtain
fast, albeit approximate, answers. Roughly speaking, document synopses
represent abstractions of the original data on which abstract computa-
tions (i.e., queries) are performed.

In our methodology, both the XML documents (Web pages) and the
constraints (Web specification rules) are approximated via an abstraction
function. Then, the verification process is carried out using the abstract
descriptions of the considered XML data. This approach results in a
powerful abstract verification methodology which pays off in practice.
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Chapter 6

Specification and Verification
of Web Applications in

Rewriting Logics

Over the past decades, the Web has evolved from being a static medium
to a highly interactive one. Currently, a number of corporations (includ-
ing book retailers, auction sites, travel reservation services, etc.) interact
with their clients primarily through the Web by means of complex inter-
faces which combine static content with dynamic data produced “on-the-
fly” by the execution of server-side scripts (e.g., Java servlets, Microsoft
ASP.NET and PHP code).

Typically, a Web application consists of a series of Web scripts whose
execution may involve several interactions between a Web browser and a
Web server. In a typical scenario, the browser/server interact by means
of a particular “client-server” protocol in which the browser requests the
execution of a script to the server, then the server executes the script, and
it finally packs its output into a response that the browser can display.
This execution model -albeit very simple- hides some subtle intricacies
which may yield erroneous behaviors.

Actually, Web browsers typically support backward and forward nav-
igation through Web application stages, and allow the user to open dis-
tinct (instances of) Web scripts in distinct windows/tabs which are run
in parallel. Such browser actions may be potentially dangerous, since
they can change the browser state without notifying the server, and may
easily lead to errors or undesired responses. For instance, [MM08] re-
ports on a frequent error, called the multiple windows problem, which
typically happens when a user opens the windows for two items in an
online store, and after clicking to buy on the one that was opened first,
he frequently gets the second one being bought. Moreover, clicking re-
fresh/forward/backward browser buttons may sometimes produce error
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messages, since such buttons were designed for navigating stateless Web
pages, while navigation through Web applications may require multiple
state changes. These problems have occurred frequently in many popular
Web sites (e.g., Orbitz, Apple, Continental Airlines, Hertz car rentals,
Microsoft, and Register.com) [GFKF03]. Finally, näıvely written Web
scripts may allow security holes (e.g., unvalidated input errors, access
control flaws, etc. [Pro07]) producing undesired results that are difficult
to debug.

Although the problems mentioned above are well known in the Web
community, there is a limited number of tools supporting the automated
analysis and verification of Web applications. The aim of this chapter is
to explore the application of formal methods to the formal modeling and
automatic verification of complex, real-size Web applications.

Our contribution. This chapter presents the following original contri-
butions.

� We define a fine-grained, operational semantics of Web applications
that is based on a formal navigational model which is suitable for
the verification of real, dynamic Web sites. Our model is formal-
ized within the Rewriting Logic (RWL) framework [MOM02], a
rule-based, logical formalism particularly appropriate to modeling
concurrent systems [Mes92]. Specifically, we provide a rigorous
rewrite theory which:

i) completely formalizes the interactions between multiple
browsers and a Web server through a request/response proto-
col that supports the main features of the HyperText Transfer
Protocol (HTTP);

ii) models browsers actions such as refresh, forward/backward
navigation, and window/tab openings;

iii) supports a scripting language which abstracts the main com-
mon features (e.g., session data manipulation, data base in-
teractions) of the most popular Web scripting languages.

iv) formalizes adaptive navigation [HH06], that is, a navigational
model in which page transitions may depend on user’s data or
previous computation states of the Web application.
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� We also show how rewrite theories specifying Web application mod-
els can be model-checked using the Linear Temporal Logic of Rewrit-
ing (LTLR) [BM08; Mes08]. The LTLR allows us to specify proper-
ties at a very high level using RWL rules and hence can be smoothly
integrated into our RWL framework.

� Finally, we report an implementation of the verification framework
in Maude [CDE+07], using a built-in model-checker for LTLR. By
running our prototype, we conducted an experimental evaluation
which demonstrates the usefulness of our approach.

To the best of our knowledge, this work represents the first attempt
to provide a formal RWL verification environment for Web applications
which allows one to verify several important classes of properties (e.g.,
reachability, security, authentication constraints, mutual exclusion, live-
ness, etc.) w.r.t. a realistic model of a Web application which includes
detailed browser-server protocol interactions, browser navigation capa-
bilities, and Web script evaluations.

Plan of the chapter. The rest of the chapter is organized as follows.
Section 6.1 illustrates a general model for Web interactions which infor-
mally describes the navigation through Web applications using HTTP.
The model supports both Web script evaluations and adaptive naviga-
tion. In Section 6.2, we specify a rewrite theory formalizing a simplified
version of the navigation model of Section 6.1. In this preliminary model,
we assume that a Web server interacts with a single browser which is not
equipped with the usual navigation buttons. Section 6.3 provides an
extended rewrite theory which generalizes the rewrite theory formalized
in Section 6.2 in order to deal with multiple Web browsers which fully
support the most common navigation features of modern browsers. In
Section 6.4, we introduce LTLR, and we show how we can use it to for-
mally verify Web applications. In Section 6.5, we discuss some related
work. Formal Maude specifications encoding the operational semantics
of our Web scripting language and the protocol evaluation mechanism
can be respectively found in Appendix A and Appendix B.
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6.1 A Navigation Model for Web Applica-

tions

A Web application is a collection of related Web pages, hosted by a
Web server, containing Web scripts and links to other Web pages. A
Web application is accessed using a Web browser which allows one to
navigate through Web pages by clicking and following links.

Communication between the browser and the server is given through
the HTTP protocol, which works following a request-response scheme.
Basically, in the request phase, the browser submits a URL to the server
containing the Web page P to be accessed together with a string of input
parameters (called the query string). Then, the server retrieves P and, if
P contains a Web script α, it executes α w.r.t. the input data specified by
the query string. According to the execution of α, the server defines the
Web application continuation (that is, the next page P ′ to be sent to the
browser), and enables the links in P ′ dynamically (adaptive navigation).
Finally, in the response phase, the server delivers P ′ to the browser.

Since HTTP is a stateless protocol, we assume that HTTP is cou-
pled with some session management technique, implemented by the Web
server, which allows us to define Web application states via the notion
of session, that is, global stores that can be accessed and updated by
Web scripts during an established connection between a browser and the
server. Web application continuations as well as adaptive navigations
are dynamically computed w.r.t. the current session (i.e., the current
application state).

6.1.1 Graphical Navigation Model

The navigation model of a Web application can be graphically depicted
at a very abstract level by using a graph-like structure as follows. Web
pages are represented by nodes which may contain a Web script to be
executed (α). Solid arrows connecting Web pages model navigation links
which are labeled by a condition and a query string. Conditions provide
a simple mechanism to implement a general form of adaptive navigation:
specifically, a navigation link will be enabled (i.e., clickable) whenever
the associated condition holds. The query string represents the input
parameters which are sent to the Web server. Finally, dashed arrows
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Figure 6.1: The navigation model of a Webmail application.

model Web application continuations, that is, arcs pointing to Web pages
which are automatically computed by Web script executions. Conditions
labeling continuations allow us to model any possible evolution of the
Web application of interest.

Example 6.1.1

Consider the graphical navigation model given in Figure 6.1, which repre-
sents a generic Webmail application that provides some typical functions
such as login/logout features, email management, system administration
capabilities, etc. The Web pages of the application are pairwise connected
by either navigation links (i.e., solid arrows) or continuations (i.e., dashed
arrows). For example, the solid arrow between the welcome page and the
home page, whose label is decorated with the string “∅,{user=x,pass=y}”,
defines a navigation link which is always enabled and requires two input
parameters. The home page has got two possible continuations (dashed
arrows) login=ok and login=no. According to the user and pass values
provided in the previous transition, only continuation one is chosen. In
the former case, the login succeeds and the home page is delivered to the
browser, while in the latter case the login fails and the welcome page is
sent back to the browser.

An example of adaptive navigation is provided by the navigation link
connecting the home page to the administration page. In fact, navigation
through that link is enabled only when the condition role=admin holds,
that is, the role of the logged user is admin.
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6.2 Formalizing the Navigation Model as a

Rewrite Theory

In this section, we define a rewrite theory which specifies a navigation
model that allows us to formalize the navigation through a Web ap-
plication via a communicating protocol abstracting HTTP. Initially, to
keep the model simple, we assume that the server interacts with a sin-
gle browser which does not support browser actions (e.g., windows/tabs
openings, refresh actions, etc.). Section 6.3 generalizes the model into
a more realistic scenario by defining server interactions with multiple
browsers, and by equipping browsers with some standard navigation fa-
cilities.

Our formalization of a Web application consists of the specification
of the following three components: the Web scripting language, the Web
application structure, and the communication protocol.

6.2.1 The Web Scripting Language

We consider a scripting language which includes the main features of
the most popular Web programming languages. Basically, it extends an
imperative programming language with some built-in primitives for read-
ing/writing session data (getSession, setSession), accessing and updating
a data base (selectDB, updateDB), and capturing values contained in a
query string sent by a browser (getQuery). The language is defined by
means of an equational theory (Σs, Es), whose signature Σs specifies the
syntax as well as the type structure of the language, while Es is a set
of equations modeling the operational semantics of the language through
the definition of an evaluation operator [[ ]] : ScriptState→ ScriptState,
where ScriptState is defined by the operator

( , , , , ) : (Script× PrivateMemory × Session× Query × DB)→ ScriptState

Roughly speaking, the operator [[ ]] takes in input a tuple (α,m, s, q, db)
that consists of a script α, a private memory m, a session s, a query string
q and a data base db, and returns a new script state (skip,m′, s′, q, db′) in
which the script has been completely evaluated (i.e., it has been reduced
to the skip statement) and the private memory, the session and the data
base might have been changed because of the script evaluation. In our
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framework, sessions, private memories, query strings and data bases are
modeled by sets of pairs id = val, where id is an identifier whose value
is represented by val. The full formalization of the operations semantics
of our scripting language as a system theory in Maude can be found in
Appendix A.

6.2.2 The Web Application Structure

The Web application structure is modeled by an equational theory
(Σw, Ew) such that (Σw, Ew) ⊇ (Σs, Es). (Σw, Ew) contains a specific
sort Soup for modeling multisets (i.e., a soup of elements whose opera-
tors are defined by using commutativity, associativity and unity axioms)
as follows:

∅ :→ Soup (empty soup)
, : Soup× Soup→ Soup [comm assoc Id : ∅] (soup concatenation).

The structure of a Web page is defined with the following operators
of (Σw, Ew)

( , , { }, { }) : (PageName× Script× Continuation× Navigation)→ Page
( , ) : (Condition× PageName)→ Continuation
, [ ] : (PageName× Query)→ Url

( , ) : (Condition× Url)→ Navigation

where we enforce the following subsort relations Page < Soup,
Query < Soup, Continuation < Soup, Navigation < Soup,
Condition < Soup. Each subsort relations S < Soup allows us to auto-
matically define soups of sort S.

Basically, a Web page is a tuple (n, s, {cs}, {ns}) ∈ Page such that
n is a name identifying the Web page, s is the Web script included
in the page, cs represents a soup of possible continuations, and ns de-
fines the navigation links occurring in the page. Each continuation ap-
pearing in {cs} is a term of the form (cond, n′), while each navigation
link in ns is a term of the form (cond, n′, [q1, . . . , qn]). A condition is
a term of the form {id1 = val1, . . . , idk = valk}. Given a session s, we
say that a continuation (cond, n′) is enabled in s, iff cond ⊆ s, and a
navigation link (cond, n′, [q1, . . . , qn]) is enabled in s iff cond ⊆ s. A
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Web application is defined as a soup of Page defined by the operator
〈 〉 : Page→ WebApplication.

Example 6.2.1
Consider again the Web application of Example 6.1.1. Its Web applica-
tion structure can be defined as a soup of Web pages

wapp = 〈p1, p2, p3, p4, p5, p6, p7, p8〉

as follows:

p1 = (welcome, skip, {∅}, {(∅, home, [user, pass])})
p2 = (home, αhome, {(login = no,welcome), (login = ok, home)},

(changeLogin = no, changeAccount),
{(∅, changeAccount, [∅]), (role = admin, administration, [∅])
(∅, emailList, [∅]), (∅, logout, [∅])})

p3 = (emailList, αemailList, {∅}, {(∅, viewEmail, [emailId]), (∅, home, [∅])})
p4 = (viewEmail, αviewEmail, {∅}, {(∅, emailList, [∅]), (∅, home, [∅])})
p5 = (changeAccount, skip, {∅}, {(∅, home, [newUser, newPass])})

p6 = (administration, αadmin, {(adm = no, home), (adm = ok, administration)},
{∅, adminLogout, [∅]})

p7 = (adminLogout, αadminLogout, {(∅, home)}, {∅})
p8 = (logout, αlogout, {(∅,welcome)}, {∅})

where the application Web scripts might be defined in the following way

αhome =

login := getSession(”login”) ;
if ( login = null ) then

u := getQuery(user) ;
p := getQuery(pass) ;
p1 := selectDB(u) ;
if ( p = p1 ) then

r := selectDB(u.”-role”) ;
setSession(”user”, u) ;
setSession(”role”, r) ;
setSession(”login”, ”ok”)

else
setSession(”login”, ”no”) ;
f := getSession(”failed”) ;
if (f = 3) then

setSession(forbid,”true”)
fi ;
setSession(”failed”, f+1) ;

fi fi

αadmin =

u := getSession(”user”) ;
adm := selectDB(”admPage”) ;
if (adm = ”free”)∨(adm = u)
then

updateDB(”admPage”, u) ;
setSession(”adm”, ”ok”)

else
setSession(”adm”, ”no”)

fi

αemailList =
u := getSession(”user”) ;
es := selectDB(u . ”-email) ;
setSession(”email-found”, es)

αviewEmail =
u := getSession(”user”) ;
id := getQuery(idEmail) ;
e := selectDB(id) ;
setSession(”text-email”, e)
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αadminLogout = updateDB(”admPage”, ”free”) αlogout = clearSession

6.2.3 The Communication Protocol

We define the communication protocol by means of a rewrite theory
(Σp, Ep, Rp), where (Σp, Ep) is an equational theory that formalizes the
Web application states, and Rp is a set of rewrite rules that specifies Web
script evaluations as well as request/response protocol actions.

The equational theory (Σp, Ep)

The rewrite theory is built on top of the equational theory (Σw, Ew) (i.e.,
(Σp, Ep) ⊇ (Σw, Ew)) which models the entities into play (i.e., the Web
server, the Web browser and the protocol messages). Besides, it provides
a formal mechanisms to evaluate enabled continuations as well as enabled
adaptive navigations which may be generated “on-the-fly” by executing
Web scripts. More formally, (Σp, Ep) includes the following operators.

B( , { }, { }) : (PageName× Url× Session)→ Browser
S( , { }, { }) : (WebApplication× Session× DB)→ Server
B2S( , [ ]) : (PageName× Query)→ Message
S2B( , { }, { }) : (PageName× Url× Session)→ Message
empty : → Message
|| || : Browser ×Message× Server→WebState

We model a browser as a term B(n, {url1, . . . , urll}, {id1 = val1, . . . , idm =
valm}), where n is the name of the Web page which is currently dis-
played on the Web browser, while url1, . . . , urll is a soup of sort Url
that represents the navigation links which appear in the Web page n,
and {id1 = val1, . . . , idm = valm} is the last session the server has sent
to the browser. The server is formalized by using a term of the form
S(〈p1, . . . , pl〉, {id1 = val1, . . . , idm = valm}, {id1 = val1, . . . , idk = valk}),
where 〈p1, . . . , pl〉 defines the Web application currently in execution,
{id1 = val1, . . . , idm = valm} is the session which is needed to keep track
of the Web application state, and {id1 = val1, . . . , idk = valk} specifies
the data base hosted by the Web server.
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We assume the existence of a bidirectional channel that supports the
communication between the server and browser by message passing. In
this context, terms of the form B2S(n, [id1 = val1, . . . , idm = valm]) model
request messages, that is, messages sent from the browser to the server
asking for the Web page n with query parameters [id1 = val1, . . . , idm =
valm]. Instead, terms of the form S2B(n, {url1, . . . , urll}, {id′1 = val′1, . . . ,
id′m = val′m}) model response messages, that is, messages sent from the
server to the browser including the computed Web page n together with
the navigation links {url1, . . . , urll} occurring in n, and the current session
information1. We denote the empty channel by the constant empty. Us-
ing the operators so far described, we can precisely formalize the notion of
Web application state as a term of the form br||m||sv, where br ∈ Browser,
m ∈ Message, and sv ∈ Server. Intuitively, a Web application state can
be interpreted as a snapshot of the system with captures the current
configurations of the browser, the server and the channel.

The equational theory (Σp, Ep) also defines the operator

eval( , , , ) : WebApplication× Session× DB×Message
→ Session× DB×Message

whose semantics is specified by means of Ep (see Appendix B for the
precise formalization of eval). Given a Web application w, a session s, a
data base db, and a request message B2S(n, [q]), eval(w, s, db,B2S(n, [q]))
generates a triple (s′, db′,m′) that consists of the updated session s′, the
updated data base db′, and the response message m′ = S2B(n′, {url1, . . . ,
urlm}, s′). Intuitively, the generation of such a triple proceeds as follows.
Let αn be the Web script occurring in the Web page n of w.

1. The server evaluates αn by applying the evaluation function [[ ]]
to the script state (αn, ∅, s, q, db). This delivers a new script state
(skip,m′, s′, q, db′) in which the script’s private memory, the session
and the data base have been updated.

2. Then, eval returns the new session s′, the new database db′, and a
response message S2B(n′, {url1, . . . , urlm}, s′) which is built by glu-
ing together a Web page name n′ corresponding to a continuation

1Session information is typically represented by HTTP cookies, which are textual
data sent from the server to the browser to let the browser know the current applica-
tion state.
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(cond′, n′) enabled w.r.t. s′, the navigation links of n′ enabled w.r.t.
s′, and the session s′.

Roughly speaking, the operator eval allows us to execute a Web script
and dynamically determine (i) which Web page n′ is generated by com-
puting an enabled continuation, and (ii) which links of n′ are enabled
w.r.t. the current session.

The rewrite rule set Rp

Rp is defined by means of a collection of rewrite rules of the form

label : WebState⇒ WebState

representing the standard request-response behavior of the HTTP proto-
col. More specifically, Rp specifies browser requests, script evaluations,
and server responses by means of the following three rules:

Req : B(n, {(n1, [qs1]), urls}, {s}) || empty || sv⇒
B(emptyPage, ∅, {s}) ||B2S(n1, [qs1]) ||sv

Evl : B(emptyPage, ∅, {s}) ||m || S(〈w〉, {s}, {db})⇒
B(emptyPage, ∅, {s}) ||m′ || S(〈w〉, {s′}, {db′})

where m = B2S(n1, [qs1]) and (s′, db′,m′) = eval(w, s, db,m)

Res : B(emptyPage, ∅, {s}) || S2B(n′, {urls′}, {s′}) || sv⇒
B(n′, {urls′}, {s′}) || empty || sv

where emptyPage : → PageName is a constant representing a Web page
without content, and n, n1, n

′ : PageName, urls, urls′ : URL, sv : Server,
qs1 : Query, m,m′ : Message, s, s′ : Session, db, db′ : DB, w : WepApplication
are variables.

Basically, by means of rule Req, the browser requests the navigation
link (n1, [qs1]) appearing in the current Web page n by sending a request
message B2S(n1, [qs1]) to the channel. When this happens, the emptyPage
is loaded into the browser in order to avoid further browser requests until
a response is obtained from the server. Rule Evl retrieves a given request
message m from the channel and evaluates it. Such an evaluation updates
the session and the data base on the server side with values s′ and db′, and
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generates the response message m′ which is sent to the channel. Finally,
through rule Res, the response message S2B(n′, {urls′}, {s′}) is withdrawn
from the channel and sent to the browser, which is then updated by using
the information received.

It is worth noting that the whole protocol semantics is elegantly de-
fined by means of only three, high-level rewrite rules without making any
implementation detail explicit. Implementation details are automatically
managed by the rewriting logic engine (i.e., rewrite modulo equational
theories). For instance, in the rule Req, no tricky function is needed to
select an arbitrary navigation link (n1, [qs1]) from the URLs available in a
Web page, since they are modeled as associative and commutative soups
of elements (i.e., Url < Soup) and hence a single URL can be extracted
from the soup by simply applying pattern matching modulo associativity
and commutativity.

Example 6.2.2
Consider the Web application structure wapp specified in Example 6.2.1
together with the following two Web application states

was1 = B(welcome, {(home, [user = Alice, pass = pA])}, ∅) || empty ||
S(wapp, ∅, {data})

was2 = B(welcome, {(home, [user = Bob, pass = wrong pB])}, ∅) || empty ||
S(wapp, ∅, {data})

where {data} is the data base {pwdAlice = pA, pwdBob = pB, roleAlice =
user}. Then, by applying the rewrite rules of Rp to was1, we obtain a
computation trace modeling a successful login.

was1
Req→ B(emptyPage, ∅, ∅) ||B2S(home, [user = Alice, pass = pA]) ||

S(wapp, ∅, {data})
Evl→ B(emptyPage, ∅, ∅) || S2B(home, {urls}, {login = ok})||

S(wapp, {login = ok}, {data})
Res→ B(home, {urls}, {login = ok}) || empty || S(wapp, {login = ok}, {data})

where urls = (changeAccount, [∅]), (emailList, [∅]), (logout, [∅])

Note that, since the role of Alice is user, the link to the administration
page is not enabled. On the other hand, by applying rules of Rp to was2,
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we get a computation modeling a login failure.

was2
Req→ was3

Evl→ was4
Res→ B(welcome, {(home, [user = Bob, pass = wrong pB])},
{login = no}) || empty || S(wapp, {login = no}, {data})

6.3 Modeling Multiple Web Interactions

and Browser Features

In a real scenario, a Web server concurrently interacts with multiple
browsers through distinct connections. Besides that, the browser struc-
ture is in general more complex than the one presented in Section 6.2
—in fact, browsers are equipped with browser navigation features which
may produce unexpected Web application behaviors as explained at the
beginning of this chapter (see also [MM08]).

In the rest of the section, we define a rewrite theory (Σext, Eext, Rext)
extending the rewrite theory (Σp, Ep, Rp) presented in Section 6.2 in order
to manage such aspects. The augmented model generalizes the communi-
cation protocol in order to support multiple browser connections as well
as the following browser navigation features: forward/backward/refresh
actions, new tab/windows openings.

6.3.1 The Extended Equational Theory (Σext,Eext)

First of all, we assume that (Σext, Eext) includes two new sorts Queue
and List for modeling queues and bidirectional lists, respectively. The
former data structure allows us to model the communication channel as
well as the response/request messages which have to be processed by the
server; while the latter is used to specify the browser history list that is
needed to implement browser navigation through forward and backward
buttons. Moreover, (Σext, Eext) contains the sort Nat defining natural
numbers and the sort Id modeling univocal identifiers.

Extended definitions of Browser, Server, and Message are then defined
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by means of the following operators:

B( , , , { }, { }, , , ) : (Id× Id× PageName× URL× Session×Message
×History × Nat)→ Browser

S( , { }, { }, , ) : (WebApplication× UserSession× DB×Message
×Message)→ Server

H( , { }, ) : (PageName× URL×Message)→ History
B2S( , , , [ ], ) : (Id× Id× PageName× Query × Nat)→ Message

S2B( , , , { }, { }, ) : (Id× Id× PageName× URL× Session
×Nat)→ Message

BS( , { }) : (Id× Session)→ BrowserSession

where we enforce the following subsort relations History < List,
BrowserSession < Soup, Message < Queue, and Browser < Soup.

An extended browser is a term of the form

B(idb, idt, n, {url}, {s},m, h, i)

where idb is an identifier representing the browser; idt is an identifier
modeling an open windows or tab which refers to browser idb; n and
url are respectively the current page displayed in the window/tab idt

and the enabled navigation links appearing in Web page n; s is the last
session received from the server; m is the last message sent to the server
(this piece information is used to implement the refresh action); h is a
bidirectional list recording the history of the visited Web pages; i is an
internal counter used to distinguish among several response messages due
to refresh actions (e.g., if a user pressed twice the refresh button, only
the second refresh is displayed in the browser window).

An extended server is a term

S(w, {BS(idb1, {s1}), . . . ,BS(idbn, {sn})}, {db}, fiforeq, fifores)

which extends the previous server definition of Section 6.2 by adding
a soup of browser sessions in order to manage distinct connections, and
two queues of messages fiforeq,fifores, which respectively model the request
messages which still have to be processed by the server and the pending
response messages that the server has still to send to the browsers.

In an analogous way, both request and response messages are aug-
mented with information regarding the browser internal counter, and
the browser and window/tab identifiers.
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It is worth noting that the considered extension keep unmodified both
the scripting language specification and the Web application structure
which are indeed completely independent of the communicating protocol
chosen.

6.3.2 The Extended Rewrite Rule Set Rext

Both the extended communication protocol supporting multiple browser
connections, and the browser navigation features, are formalized by means
of the rewrite rules included in Rext.

The extended communication protocol

The protocol is specified via rewrite rules of the form label : Webstate⇒
Webstate, where the notion of Web application state has been adapted ac-
cording to the equational theory (Σext, Eext). More specifically, a web ap-
plication state is a term br||m||sv, where br is a soup of extended browsers,
m is a channel modeled as a queue of messages, and sv is an extended
server. The protocol specification is as follows:

ReqIni : B(idb, idt, pc, {(np, [q]), urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, emptyPage, ∅, {s},midb,idt, hc, i), br || (m,midb,idt) || sv

where midb,idt = B2S(idb, idt, np, [q], i) and
hc = push((pc, {(np, [q]), urls},midb,idt), h)

ReqFin : br || (midb,idt,m) || S(w, {bs}, {db}, fiforeq, fifores)⇒
br ||m || S(w, {bs}, {db}, (fiforeq,midb,idt), fifores)

where midb,idt = B2S(idb, idt, np, [q], i)

Evl : br ||m || S(w, {BS(idb, {s}), bs}, {db}, (midb,idt, fiforeq), fifores)⇒
br ||m || S(w, {BS(idb, {s′}), bs}, {db′}, fiforeq, (fifores,m

′))
where (s′, db′,m′) = eval(w, s, db,midb,idt)

ResIni : br ||m || S(w, {bs}, {db}, fiforeq, (midb,idt, fifores))⇒
br || (m,midb,idt) || S(w, {bs}, {db}, fiforeq, fifores)

ResFin : B(idb, idt, emptyPage, ∅, {s}, lm, h, i), br || (S2B((idb, idt, p
′, urls,

({s′}), i),m) || sv⇒ B(idb, idt, p
′, urls, {s′}, lm, h, i), br ||m || sv
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where idb, idt : Id, br : Browser, sv : Server, urls : URL, q : Query,
h : History, w : WebApplication, m,m′,midb,idt, fiforeq, fifores : Message,
i : Nat, pc, p

′, np : PageName, s, s′ : Session, and bs : BrowserSession are
variables.

Roughly speaking, the request phase is split into two parts, which
are respectively formalized by rules ReqIni and ReqFin. Initially, when a
browser with identifier idb requests the navigation link (np, [q]) appearing
in a Web page pc of the window/tab identified by idt, rule ReqIni is fired.
The execution of ReqIni generates a request message midb,idt, which is
enqueued in the channel and saved in the browser as the last message sent.
The history list is updated as well. Rule ReqFin simply dequeues the first
request message midb,idt of the channel and enqueues it to fiforeq, which is
the server queue containing pending requests. Rule Evl consumes the first
request message midb,idt of the queue fiforeq, evaluates the message w.r.t.
the corresponding browser session (idb, {s}), and generates the response
message which is enqueued in fifores; that is, the server queues containing
the responses to be sent to the browsers. Finally, rules ResIni and ResFin
implement the response phase. First, rule ResIni dequeues a response
message from fifores and sends it to the channel m. Then, rule ResFin
takes the first response message from the channel queue and sends it to
the window/tab of the corresponding browser.

Example 6.3.1

Consider the scenarios given in Example 6.2.2 that represent Alice’s suc-
cessful login and Bob’s login failure. Let A be Alice’s browser identifier,
and let B be Bob’s browser identifier. Assume that the two browsers
interact simultaneously with the same server, starting from an initial
state s0.

Then, a possible computation between the browsers and the server is
as follows.

s0
ReqIni(A)→ s1

ReqFin(A)→ s2
ReqIni(B)→ s3

ReqFin(B)→ s4
Evl(B)→ s5

Evl(A)→ s6
ResIni(B)→ s7 . . .

where, by abuse of notation, we write r(A) (resp. r(B)) to represent the
fact that the variable representing the browser identifier in the rule r is
instantiated with A (resp. B).
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Browser navigation features

We formalize browser navigation features as follows.

Refresh : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, emptyPage, ∅, {s},midb,idt, h, i + 1), br || (m,midb,idt) || sv

where lm = B2S(idb, idt, np, q, i) and midb,idt = B2S(idb, idt, np, q, i + 1)

OldMsg : B(idb, idt, pc, {urls}, {s}, lm, h, i), br || (S2B(idb, idt, p
′, urls′, {s′}, k),

m) || sv⇒ B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv if i 6= k

NewTab : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, pc, {urls}, {s}, lm, h, i),B(idb, idnt, pc, {urls}, {s}, ∅, ∅, 0), br ||m || sv

where idnt is a new fresh value of the sort Id.

Backward : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

where (ph, {urlh}, lmh) = prev(h)

Forward : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

where (ph, {urlsh}, lmh) = next(h)

where idb, idt, idnt : Id, br : Browser, sv : Server, urls, urls′, urlsh : URL,
q : Query, h : History m, lm, lmh,midb,idt : Message, i, k : Nat,
pc, p

′, np, ph : PageName, and s, s′ : Session are variables.

Rules Refresh and OldMsg model the behavior of the refresh button
of a Web browser. Rule Refresh applies when a Web page refresh is
invoked. Basically, it increments the browser internal counter i by one
unit and a new version of the last request message lm, containing the
updated internal counter, is inserted into the channel queue. Note that
the browser internal counter keeps track of the number of repeated refresh
button clicks. Rule OldMsg is used to consume all the response messages
in the channel, which might have been generated by repeated clicks of
the refresh button, with the exception of the last one. This allows us to
deliver just the response message corresponding to the last click of the
refresh button (by using the rules ResIni and ResFin).

Finally, rules NewTab, Backward and Forward specify the behaviors of
the browser buttons with regard to the generation of new tabs/windows,
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and the forward and backward navigation through the browser history
list. The rules are quite intuitive: an application of NewTab simply
generates a new Web application state containing a new fresh tab in the
soup of browsers, while Backward (resp. Forward)) extracts the previous
(resp. next) Web page from the history list and sets it as the current
browser Web page.

It is worth noting that applications of rules in Rext might produce
and infinite number of (reachable) Web application states. For instance,
infinite applications of the rule newTab generate an infinite number of
states each of which represents a distinct finite number of open tabs.
Therefore, in order to make the analysis and verification feasible on our
framework, we set some restrictions that limit the number of reachable
states (e.g., we fixed upper bounds on the length of the history list, and
on the number of windows/tabs the user can open).

An alternative approach we plan to pursue in the future, is to define
a state abstraction through an equational theory, following the approach
of [MPMO08], which will allow us to deal with infinite-state systems in
an effective way.

6.4 Model Checking Web Applications

Using LTLR

The formal specification framework presented so far is particularly suit-
able for verification purposes, since its fine-grained structure allows us
to specify a number of subtle aspects of the Web application semantics
which can be naturally verified by using model-checking techniques. To
this respect, the Linear Temporal Logic of Rewriting (LTLR)[Mes08] can
be fruitfully employed to model-check Web applications that are formal-
ized via the extended rewrite theory (Σext, Eext, Rext) of Section 6.3. In
particular, the chosen “tandem” LTLR/(Σext, Eext, Rext) allows us to for-
malize properties which are either not expressible or difficult to express
by using other verification frameworks.
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6.4.1 The Linear Temporal Logic of Rewriting

LTLR is a sublogic of the family of the Temporal Logics of Rewriting
TLR∗ [Mes08], which allows one to specify properties of a given rewrite
theory in a simple and natural way. In the following, we provide an intu-
itive explanation of the main features of LTRL; for a thorough discussion,
we refer to [Mes08].

LTLR extends the standard Linear Temporal Logic (LTL) with state
predicates and spatial action patterns. Given a system modeled as a
rewrite theory R, a state predicate is an equation of a specific sort
Prop whose form is statePattern |= property(a1, . . . , an) = booleanValue.
Roughly speaking, a state predicate formalizes a property
property(a1, . . . , an) = booleanValue over all the states specified by R
which match the statePattern.

Example 6.4.1
Let (Σp, Ep, Rp) be the rewrite theory specified in Section 6.2, which
models the Web application states as terms b||m||s of sort WebState where
b is a browser, m is a message, and s is a server. Then, we can define the
state predicate

B(page, {urls}, {session})||m||s |= curPage(page) = true

which holds (i.e., evaluates to true) for any state such that page is the
current Web page displayed in the browser.

Note that, in standard LTL propositional logic, state propositions are
defined via atomic constants. Instead, LTLR supports parametric state
propositions via state predicates, which allows us to define complex state
propositions in a very concise and simple way.

Spatial action patterns allow us to localize rewrite rule applications
w.r.t. a given context and a partial substitution. Spatial action patterns
have the general form C[l(t1, . . . , tn)], where l is a rule label, C is a
context in which the rule with label l has to be applied, and t1, . . . , tn are
terms that constrain the substitutions which instantiate the parameters
of the rule l. When the context is empty, the spatial action reduces
to [l(t1, . . . , tn)], and specifies the applications of rule l where only the
substitution constraints have to be fulfilled.
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Example 6.4.2
Let (Σext, Eext, Rext) be the rewrite theory introduced in Section 6.3 that
specifies our extended model for Web applications. Then, the spatial
action pattern ReqIni(id\A) asserts that the general action2

ReqIni(id, pc, np, q, urls, br,m, sv)

corresponding to applying the ReqIni rule has taken place with the rule’s
variable id instantiated to A. Therefore, ReqIni(id\A) allows us to iden-
tify all the applications of the rule ReqIni referring to the browser with
identifier A.

The syntax of the LTLR language generalizes the one of LTL[MP92]
by adding state predicates and spatial action patterns to standard con-
structs representing logical connectives and LTL temporal operators.
More precisely, LTLR is parametrized as LTLR(SP,Π), where SP is
a set of spatial action patterns, and Π is a set of state predicates. Then,
LTLR formulae w.r.t. SP and Π can be defined by means of the following
BNF-like syntax.

ϕ ::= δ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ϕUϕ | ♦ϕ |�ϕ

where δ ∈ SP , p ∈ Π, and ϕ ∈ LTLR(SP,Π).

6.4.2 LTLR properties for Web Applications

This section shows the main advantages of coupling LTLR with Web
applications specified via the extended rewrite theory (Σext, Eext, Rext)
for verification purposes.

Concise and parametric properties

As LTLR is a highly parametric logic, it allows one to define complex
properties in a concise way by means of state predicates and spatial action
patters.

2Note that the variables of a given rewrite rule are listed in their textual order of
appearance in the left–hand side of the rule.
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As an example, consider the Webmail application given in Exam-
ple 6.1.1 and the property “Incorrect login info is allowed only 3 times,
and then login is forbidden”.

This property might be formalized as the following standard LTL
formula:

♦(welcomeA)→ ♦(welcomeA ∧©(¬(forbiddenA) ∨ (welcomeA∧
©(¬(forbiddenA) ∨ (welcomeA ∧©(¬(forbiddenA)∨

©(forbiddenA ∧�(¬welcomeA))))))))

where welcomeA and forbiddenA are atomic propositions respectively de-
scribing (i) user A displaying the welcome page, and (ii) forbidden login
for user A. Although the property to be modeled is rather simple, the
resulting LTL formula is textually large and demands a hard effort to be
specified. Moreover, the complexity of the formula would rapidly grow
when a higher number of login attempts was considered3.

By using LTLR we can simply define a login property which is para-
metric w.r.t. the number of login attempts as follows. First of all, we
define the state predicates: (i) curPage(id,pn) which holds when user id4

is displaying Web page pn; (ii) failedAttempt(id,n) which holds when user
id has performed n failed login attempts; (iii) userForbidden(id) which
holds when a user is forbidden from logging on to the system. Formally,

B(id, idt, pn, {urls}, {s}, lm, h, i), br ||m|| sv |= curPage(id, pn) = true

br ||m || S(wapp, {BS((id, {failed = n}), bs}, {db}, fiforeq, fifores)
|= failedAttempt(id, n) = true

br ||m || S(wapp, {BS((id, {forbid = true}), bs}, {db}, fiforeq, fifores)
|= userForbidden(id) = true

Then, the security property mentioned above is elegantly formalized
by means of the following LTLR formula

♦(curPage(A,welcome) ∧©(♦failedAttemp(A, 3)))→ �userForbidden(A)

Observe that the previous formula can be easily modified to deal
with a distinct number of login attempts —it is indeed sufficient to

3Try thinking of how to specify an LTL formula for a more flexible security policy
permitting 10 login attempts.

4We assume that the browser identifier univocally identifies the user.
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change the parameter counting the login attempts in the state predicate
failedAttempt(A, 3). Besides, note that we can define state predicates (and
more in general LTLR formulae) which depend on Web script evaluations.
For instance, the predicate failedAttempt depends on the execution of the
login script αhome which may or may not set the forbid value to true in
the user’s browser session.

Unreachability properties

Unreachability properties can be specified as LTLR formulae of the form

�¬ 〈State〉

where State is an unwanted state the system has not to reach. By using
unreachability properties over the extended rewrite theory
(Σext, Eext, Rext), we can detect very subtle instances of the multiple win-
dows problem mentioned in [MM08].

Example 6.4.3
Consider again the Webmail application of Example 6.1.1. Assume that
the user may interact with the application by using two email accounts,
MA and MB. Now, let us consider a Web application state in which the
user is logged in the home page with her account MA, together with the
following sequence of actions: (1) the user opens a new browser window;
(2) the user changes the account in one of the two open windows and
logs in by using MB credentials; (3) the user accesses the emailList page
from both windows.

After applying the previous sequence of actions, one expects to see
in the two open windows the emails corresponding to the accounts MA
and MB. However, the Webmail application of Example 6.1.1 shows
the emails of MB in both windows. This is basically caused by action
(2), which makes the server override the browser session with MB data
without notifying the state change to the windows associated with the
MA account.

This unexpected behavior can be recognized by using the following
LTLR unreachability formula

�¬ inconsistentState
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where inconsistentState is a state predicate defined as:

B(id, idA, pA, {urlsA}, {(user = MA), sA}, lmA, hA, iA),
B(id, idB, pB, {urlsB}, {(user = MB), sB}, lmB, hB, iB), br ||m|| sv

|= inconsistentState = true if(MA 6= MB)

Roughly speaking, the property �¬ inconsistentState states that we
do not want to reach a Web application state in which two browser
windows refer to distinct user sessions. If this happens, one of the two
session is out-of-date and hence inconsistent.

Finally, it is worth nothing that by means of LTLR formulae ex-
pressing unreachability statements, we can formalize an entire family of
interesting properties such as:

� mutual exclusion
(e.g., �¬ (curPage(A, administration) ∧ curPage(B, administration));

� link accessibility
(e.g., �¬ curPage(A,PageNotFound));

� security properties,
(e.g., �¬ (curPage(A, home) ∧ userForbidden(A))).

Liveness through spatial actions

Liveness properties state that something good keeps happening in the
system. In our framework, we can employ spatial actions to detect good
rule applications. For example, consider the following property “user A
always succeeds to access her home page from the welcome page”. This
amount to saying that, whenever the protocol rule ReqIni is applied to
request the home page of user A, the browser will eventually display the
home page of user A. This property can be succinctly specified by the
following LTLR formula:

�([ReqIni(Idb\A, pc\welcome, np\home)]→ ♦curPage(A, home))
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6.5 Related Work

Web applications are complex software systems playing a primary role of
primary importance nowadays. Not surprisingly that a significant work
has been invested in the modeling and verification of such systems. A
variant of the µ-calculus (called constructive µ-calculus) is proposed in
[Alf01] which allows one to model-check connectivity properties over the
static graph-structure of a Web system. However, this methodology does
not support the verification of dynamic properties— e.g., reachability
over Web pages generated by means of Web script executions.

Both Linear Temporal Logic (LTL) and Computational Tree Logic
(CTL) have been used for the verification of dynamic Web applications.
For instance, [FLV08] and [HSP08] support model-checking of LTL prop-
erties w.r.t. Web application models represented as Kripke structures.
Similar methodologies have been developed in [MZ07] and [DMRT06] to
verify Web applications by using CTL formulae. All these model-checking
approaches are based on coarse Web application models which are con-
cerned neither with the communication protocol underlying the Web in-
teractions nor the browser navigation features. Moreover, as shown in
Section 6.4, CTL and LTL property specifications are very often textually
large and hence difficult to formulate and understand. [HH06] presents
a modeling and verification methodology that uses CTL and considers
some basic adaptative navigation features. In contrast, our framework
provides a complete formalization which supports more advanced adap-
tive navigation capabilities.

Finally, both [GFKF03] and [Que04] do provide accurate analyses of
Web interactions which point out typical unexpected application behav-
iors which are essentially caused by the uncontrolled use of the browser
navigation buttons as well as the shortcomings of HTTP. Their approach
however is different from ours since it is based on defining a novel Web
programming language which allows one to write safe Web applications:
[GFKF03] exploits type checking techniques to ensure application cor-
rectness, whereas [Que04] adopts a semantic approach which is based on
program continuations. None of these provide a full-equipped verification
framework comparable to ours.



Chapter 7

Backward Trace Slicing for
Rewriting Logic Theories

Trace slicing is a widely used technique for execution trace analysis that
is effectively used in program debugging, analysis and comprehension. In
this chapter, we present a backward trace slicing technique [ABER11a;
ABER11b] that can be used for the analysis of Rewriting Logic theories.
Our trace slicing technique allows us to systematically trace back rewrite
sequences modulo equational axioms (such as associativity and commu-
tativity) by means of an algorithm that dynamically simplifies the traces
by detecting control and data dependencies, and dropping useless data
that do not influence the final result. Our methodology is particularly
suitable for analyzing complex, textually-large system computations such
as those delivered as counter-example traces by Maude model-checkers.

7.1 Introduction

The analysis of execution traces plays a fundamental role in many pro-
gram manipulation techniques. Trace slicing is a technique for reducing
the size of traces by focusing on selected aspects of program execution,
which makes it suitable for trace analysis and monitoring [CR09].

Rewriting Logic (RWL) is a very general logical and semantic frame-
work, which is particularly suitable for formalizing highly concurrent,
complex systems (e.g., biological systems [BBF09; Tal08] and Web sys-
tems [ABER10; ABR09]). RWL is efficiently implemented in the high-
performance system Maude [CDE+07]. Roughly speaking, a rewriting
logic theory seamlessly combines a term rewriting system (TRS) together
with an equational theory that may include sorts, functions, and algebraic
laws (such as commutativity and associativity) so that rewrite steps are
applied modulo the equations. Within this framework, the system states
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are typically represented as elements of an algebraic data type that is
specified by the equational theory, while the system computations are
modeled via the rewrite rules, which describe transitions between states.

Due to the many important applications of RWL, in recent years,
the debugging and optimization of RWL theories have received grow-
ing attention [ABBF10; MOM02; RVCMO09; RVMO10]. However, the
existing tools provide hardly support for execution trace analysis. The
original motivation for our work was to reduce the size of the counter-
example traces delivered by Web-TLR, which is a RWL-based model-
checking tool for Web applications proposed in [ABER10; ABR09]. As a
matter of fact, the analysis (or even the simple inspection) of such traces
may be unfeasible because of the size and complexity of the traces under
examination. Typical counter-example traces in Web-TLR are 75 Kb
long for a model size of 1.5 Kb, that is, the trace is in a ratio of 5.000%
w.r.t. the model.

To the best of our knowledge, this chapter presents the first trace
slicing technique for RWL theories. The basic idea is to take a trace
produced by the RWL engine and traverse and analyze it backwards to
filter out events that are irrelevant for the rewritten task. The trace
slicing technique that we propose is fully general and can be applied to
optimizing any RWL-based tool that manipulates rewriting logic traces.
Our technique relies on a suitable mechanism of backward tracing that is
formalized by means of a procedure that labels the calls (terms) involved
in the rewrite steps. The backward traversal is preferred to a forward
one because a causal relation is computed. This allows us to infer, from
a term t and positions of interest on it, positions of interest of the term
that was rewritten to t. Our labeling procedure extends the technique in
[BKdV00], which allows descendants and origins to be traced in orthog-
onal (i.e., left-linear and overlap-free) term rewriting systems in order to
deal with rewrite theories that may contain commutativity/associativity
axioms, as well as nonleft-linear, collapsing equations and rules.

As in dynamic tracing [FT94; TeR03], our definition of labeling uses a
relation on contexts derived from the reduction relation on terms, where
the symbols in the left-hand side of a rule propagate to all symbols of
its right-hand side. This labeling relation allows us to make precise the
dynamic dependence of function symbols occurring in the terms of a re-
duction sequence on symbols in previous terms in that sequence [FT94].
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Plan of the chapter. In Section 7.2, we recall the essential notions
concerning rewriting modulo equational theories. Section 7.3 describes
the main kinds of labeling and tracing in term rewrite systems. In Sec-
tion 7.4, we formalize our backward trace slicing technique for rewriting
logic theories, which computes the reverse dependence among the sym-
bols involved in a rewrite step and removes all data that are irrelevant
with respect to a given slicing criterion. Section 7.5 extends the trace slic-
ing technique of Section 7.4 by considering extended rewrite theories, i.e.,
rewrite theories that may include collapsing, nonleft-linear rules, associa-
tive/commutative equational axioms, and built-in operators. Section 7.6
describes a software tool that implements the proposed backward slicing
technique and presents an experimental evaluation of the tool that al-
lows us to assess the practical advantages of the trace slicing technique.
In Section 7.7, we discuss some related work, and Section 7.8 concludes.
Appendix C illustrates our trace slicing technique by means of a practical
example that allows one to assess the advantages of our approach.

7.2 Rewriting Modulo Equational Theories

An equational theory is a pair (Σ, E), where Σ is a signature and E =
∆∪B consists of a set of (oriented) equations ∆ together with a collection
B of equational axioms (e.g., associativity and commutativity axioms)
that are associated with some operator of Σ. The equational theory E
induces a least congruence relation on the term algebra τ(Σ,V), which
is usually denoted by =E.

A rewrite theory is a triple R = (Σ, E,R), where (Σ, E) is an equa-
tional theory, and R is a TRS. Examples of rewrite theories can be found
in [CDE+07].

Rewriting modulo equational theories [MOM02] can be defined by
lifting the standard rewrite relation →R on terms to the E-congruence
classes induced by =E. More precisely, the rewrite relation →R/E for
rewriting modulo E is defined as =E ◦ →R ◦ =E. A computation in
R using →R∪∆,B is a rewriting logic deduction, in which the equational
simplification with ∆ (i.e., applying the oriented equations in ∆ to a term
t until a canonical form t ↓E is reached where no further equations can
be applied) is intermixed with the rewriting computation with the rules
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of R, using an algorithm of matching modulo1 B in both cases.

Formally, given a rewrite theory R = (Σ, E,R), where E = ∆ ∪B, a
rewrite step modulo E on a term s0 by means of the rule r : λ→ ρ ∈ R
(in symbols, s0

r→R∪∆,B s1) can be implemented as follows: (i) apply
(modulo B) the equations of ∆ on s0 to reach a canonical form (s0 ↓E);
(ii) rewrite (modulo B) (s0 ↓E) to term v by using r ∈ R; and (iii),
apply (modulo B) the equations of ∆ on v again to reach a canonical
form for v, s1 = v ↓E.

Since the equations of ∆ are implicitly oriented (from left to right),
the equational simplification can be seen as a sequence of (equational)
rewrite steps (→∆/B). Therefore, a rewrite step modulo E s0

r→R∪∆,B s1

can be expanded into a sequence of rewrite steps as follows:

equational rewrite equational
simplification step/B simplification

s0

︷ ︸︸ ︷
→∆/B ..→∆/B s0↓E

︷ ︸︸ ︷
=B u

r→R v
︷ ︸︸ ︷
→∆/B ..→∆/B v↓E = s1

Given a finite rewrite sequence S = s0 →R∪∆,B s1 →R∪∆,B . . . → sn
in the rewrite theory R, the execution trace of S is the rewrite sequence
T obtained by expanding all the rewrite steps si →R∪∆,B si+1 of S as is
described above.

The computability of →R∪∆,B as well as its equivalence w.r.t. →R/E

are assured by enforcing some conditions on the considered rewrite the-
ories [MOM02; Vir94], specifically, coherence between the rules and the
equations as well as the assumption of Church–Rosser and termination
properties of ∆ modulo the equational axioms B2.

A rewrite theory R = (Σ, B ∪ ∆, R) is called elementary if R does
not contain equational axioms (B = ∅) and both rules and equations are
left-linear and not collapsing.

1A subterm of t matches l (modulo B) via the substitution σ if t =B u and u|q = lσ
for a position q of u.

2These conditions are quite natural in practical rewriting logic specifications, and
can generally be checked by using the Maude Church–Rosser, Termination, and Co-
herence tools [CDE+07].
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7.3 Labeling and Tracing in Term Rewrite

Systems

Labeling an object allows us to distinguish it within a collection of iden-
tical objects. This is a useful means to keep track of a given object in
a dynamic system. In the following, we introduce a rather intuitive ex-
ample that allows us to illustrate how the labeling and tracing process
work.

Example 7.3.1
Let r1 : f(x)→ b, and r2 : g(b)→ m(a) be two rewrite rules. Let g(f(a))
be an initial term. Then, by applying r1 and r2 we get the execution trace
T = g(f(a))

r1→ g(b)
r2→ m(a).

In term rewriting, we distinguish three kinds of labeling according to
the information recorded by them in an execution trace.

(i) The Hyland–Wadsworth labeling [Hyl76; Wad76] records the cre-
ation level of each symbol. Roughly speaking, from an initial (de-
fault) creation level, the accomplishment of a rewrite step increases
by one the creation level of the affected symbols. For example, con-
sider the execution trace T of Example 7.3.1 together with an initial
level 0 for all symbols. Then,

g0(f 0(a0))
r1→ g0(b1)

r2→ m2(a2)

(ii) The Boudol–Khasidashvili labeling [Bou86; Kha90; Kha93] records
the history of the term in execution traces. The general idea is to
record in the history the applied rule and the symbols of the redex
pattern. This information is taken as the label for the head symbol
of the contractum pattern. Consider again Example 7.3.1. First,
the set of rules is labeled as follows:

r1f(x) : f(x)→ r1f(x) r2g(b) : g(b)→ r2g(b)(a)

Then, the labeling of the execution trace T is:

g(f(a))→ g(r1f(x))→ r2g(b)(a)

Note that the initial term of this sequence is not labeled, i.e., the
initial label is the identity.
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(iii) The Lévy labeling [Lév76] records the history of each symbol in the
term. Basically, this labeling combines the previous two labellings
and attaches the history on every symbol of the contractum pattern.
Let us show an example. As before, consider Example 7.3.1. The
labeled rules are as follows:

r1
f(x)λ

: f(x)λ → rλ1
f(x)λ

r2
g(b)λ

: g(b)λ → rλ2
g(b)λ

(r1
2
g(b)λ

)

and the labeled trace of T is:

g(f(a))λ(g(f(a))1(g(f(a))1.1))→ g(f(a))λ(r1
1
f(x)λ

)→ rλ2
g(b)λ

(r1
2
g(b)λ

)

Note that due to the accumulation of labels, Lévy labels soon be-
come neither readable nor legible. Note also that this labeling keeps
the maximal information in a rewrite step.

In this work, we rely on Klop labeling [BKdV00], which is inspired by
Lévy labeling. Roughly speaking, Klop labeling employs Greek letters
and concatenation of Greek letters as labels. That is, given a rewrite step
t → s, the symbols of t are decorated by using Greek letters as labels.
Then, a new label l is formed by concatenating the labels of the redex
pattern. Finally, l is attached to every symbol of the contractum pattern
of s. A formal definition of this labeling adapted to deal with rewriting
logic theories is given in Section 7.4.1.

Given a rewrite step t→ s, tracing allows one to establish a mapping
among symbols of t and symbols of s. Each symbol is mapped according
to its location. For example, occurrences of symbols in the context of
t, or in the computed substitution, are traced to the same occurrences
in s. On the contrary, the mapping for the symbols in the redex and
contractum patterns depend on the kind of tracing we adopt. Namely,
in static tracing the symbols do not persist through the execution trace.
On other hand, in dynamic tracing the symbols of the redex pattern are
mapped to all symbols of the contractum pattern. Let us illustrate this
by means of an example.

Example 7.3.2
Consider the rewrite step g(f(a))

r1→ g(b) into the trace T of Exam-
ple 7.3.1. By considering the static tracing, the symbol f within the
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term g(f(a)) does not leave a trace to the term g(b) since f belongs
to redex pattern of r1. Contrarily, f dynamically traces to b. Finally,
in both cases the symbol a is discarded without leaving a trace in the
rewrite step.

As for the dynamic tracing relation, the symbols can be partitioned
into needed and non-needed. A symbol is called needed if it leaves a
trace in the considered rewrite sequence. For instance, in the previous
example, f is a needed symbol. Instead a, which belongs to substitution
σ = {x/a}, is a non-needed symbol. Given an execution trace, the set of
needed symbols in a term of the trace forms a prefix which is also called
needed prefix.

Typically, tracing is implemented by means of labeling, i.e., the ob-
jects are labeled to be traced along the execution trace. For instances,
let us consider Klop labeling for a rewrite step t → s. A symbol in t
traces to a symbol in s, if and only if the label of the former is a sublabel
of the label of the latter. Note that this tracing relation is independent
of the chosen tracing, while it is strictly tied to the labeling strategy.

Labeling and tracing relations in term rewriting systems have been
studied in [TeR03]. In order to study the orthogonality of execution
traces, [TeR03] investigates the equivalence of labeling and tracing along
with other characterizations such as permutation, standardization, and
projection. As far as we know, the use of labeling and tracing for model
checking and debugging purposes has not been previously discussed in
the related literature.

7.4 Backward Trace Slicing for

Elementary Rewrite Theories

In this section, we formalize a backward trace slicing technique for ele-
mentary rewrite theories that is based on a term labeling procedure that
is inspired by [BKdV00]. Since equations in ∆ are treated as rewrite rules
that are used to simplify terms, our formulation for the trace slicing tech-
nique is purely based on standard rewriting. In Section 7.5, we will drop
all these restrictions in order to consider more expressive rewrite theories.
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7.4.1 Labeling Procedure for Rewrite Theories

Let us define a labeling procedure for rules similar to [BKdV00] that
allows us to trace symbols involved in a rewrite step. First, we provide
the notion of labeling for terms, and then we show how it can be naturally
lifted to rules and rewrite steps.

Consider a set A of atomic labels, which are denoted by Greek letters
α, β, . . .. Composite labels (or simply labels) are defined as finite sets of
elements of A. By abuse, we write the label αβγ as a compact denotation
for the set {α, β, γ}.

A labeling for a term t ∈ τ(Σ ∪ {2},V) is a map L that assigns a
label to (the symbol occurring at) each position w of t, provided that
root(t|w) 6= 2. If t is a term, then tL denotes the labeled version of
t. Note that, in the case when t is a context, occurrences of symbol 2

appearing in the labeled version of t are not labeled. The codomain of a
labeling L is denoted by Cod(L) = {l | (w 7→ l) ∈ L}.

An initial labeling for the term t is a labeling for t which assigns
distinct fresh atomic labels to each position of the term. For example,
given t = f(g(a, a),2), then tL = fα(gβ(aγ, aδ),2) is the labeled version
of t via the initial labeling L ={Λ 7→ α, 1 7→ β, 1.1 7→ γ, 1.2 7→ δ}. This
notion extends to rules and rewrite steps in a natural way as shown below.

Labeling of Rules

Let us introduce the notions of redex pattern and contractum pattern of
a rule. Let r : λ → ρ be a rule. We call the context λ2 (resp. ρ2) redex
pattern (resp. contractum pattern) of r.

Example 7.4.1
Given the rule r : f(g(x, y), a)) → d(s(y), y), where a is a constant
symbol, the redex pattern of r is the context f(g(2,2), a), while the
contractum pattern of r is the context d(s(2),2).

Definition 7.4.2 (rule labeling) [BKdV00] Given a rule r : λ → ρ, a
labeling Lr for r is defined by means of the following procedure.

r1. The redex pattern λ� is labeled by means of an initial labeling L.
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r2. A new label l is formed by joining all the labels that occur in the
labeled redex pattern λ� (say in alphabetical order) of the rule r.
Label l is then associated with each position w of the contractum
pattern ρ�, provided that root(ρ�|w) 6= 2.

Example 7.4.3
Consider the rule r of Example 7.4.1. The labeled version of rule r
using the initial labeling L = {(Λ 7→ α, 1 7→ β, 2 7→ γ} is as follows:
fα(gβ(x, y), aγ)→ dαβγ(sαβγ(y), y).

The labeled version of r w.r.t. Lr is denoted by rLr . Note that the
labeling procedure shown in Definition 7.4.2 does not assign labels to
variables but only to the function symbols occurring in the rule.

Labeling of Rewrite Steps

Before giving the definition of labeling for a rewrite step, we need to
formalize the auxiliary notion of substitution labeling.

Definition 7.4.4 (substitution labeling) Let σ = {x1/t1, . . . , xn/tn} be a
substitution. A labeling Lσ for the substitution σ is defined by a set of
initial labellings Lσ = {Lx1/t1 , . . . , Lxn/tn} such that (i) for each binding
(xi/ti) in the substitution σ, ti is labeled using the corresponding initial
labeling Lxi/ti, and (ii) the sets Cod(Lx1/t1), . . . ,Cod(Lxn/tn) are pairwise
disjoint.

By using Definition 7.4.4, we can formulate a labeling procedure for
rewrite steps as follows.

Definition 7.4.5 (rewrite step labeling) Let r : λ→ ρ be a rule, and let

µ : t
r,σ→ s be a rewrite step using r such that t = C[λσ]q and s = C[ρσ]q,

for a context C and position q. Let σ = {x1/t1, . . . , xn/tn}. Let Lr be
a labeling for the rule r, let LC be an initial labeling for the context C,
and let Lσ = {Lx1/t1 , . . . , Lxn/tn} be a labeling for the substitution σ such
that the sets Cod(LC),Cod(Lr), and Cod(σ) are pairwise disjoint, where
Cod(σ) =

⋃n
i=1 Cod(Lxi/ti).

The rewrite step labeling Lµ for µ is defined by successively applying
the following steps:
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s1. First, positions of t or s that belong to the context C are labeled by
using the initial labeling LC.

s2. Then positions of t|q (resp. s|q) that correspond to the redex pattern
(resp. contractum pattern) of the rule r rooted at the position q are
labeled according to the labeling Lr.

s3. Finally, for each term tj, j = {1, . . . , n}, which has been introduced
in t or s via the binding xj/tj ∈ σ, with xj ∈ V ar(λ), tj is labeled
using the corresponding labeling Lxj/tj ∈ Lσ

The labeled version of a rewrite step µ w.r.t. Lµ is denoted by µLµ .
Let us illustrate it by means of a rather intuitive example.

Example 7.4.6
Consider again the rule r : f(g(x, y), a)) → d(s(y), y) of Example 7.4.1,
and let µ : C[λσ]

r→ C[ρσ] be a rewrite step using r, where
C[λσ] = d(f(g(a, h(b)), a), a), C[ρσ] = d(d(s(h(b)), h(b)), a), and
σ = {x/a, y/h(b)}.

Assume that r is labeled by means of the rule labeling of Exam-
ple 7.4.3, that is

rL : fα(gβ(x, y), aγ)→ dαβγ(sαβγ(y), y)

Let LC = {Λ 7→ δ, 2 7→ ε}, Lx/a = {Λ 7→ ζ}, and Ly/h(b) = {Λ 7→
η, 1 7→ θ} be the labelings for C and the bindings in σ, respectively.
Then, the corresponding labeled rewrite step µL is as follows

µL : dδ(fα(gβ(aζ , hη(bθ)), aγ), aε)→ dδ(dαβγ(sαβγ(hη(bθ)), hη(bθ)), aε)

Now, we are ready to define our labeling-based, backward tracing re-
lation on rewrite steps.

Definition 7.4.7 (origin positions) Let µ : t
r−→ s be a rewrite step, and

let L be a labeling for µ where Lt (resp. Ls) is the labeling of t (resp. s).
Given a position w of s, the set of origin positions of w in t w.r.t. µ and
L (in symbols, �L

µw) is defined as follows:

�L
µw = {v ∈ Pos(t) | ∃p ∈ Pos(s), (v 7→ lv) ∈ Lt, (p 7→ lp) ∈ Ls

s.t. p ≤ w and lv ⊆ lp}



7.4. Backward Trace Slicing for Elementary Rewrite Theories 139

Roughly speaking, a position v in t is an origin of w, if the label of
the symbol occurring in tL at position v is contained in the label of a
symbol occurring in sL in the path from its root to the position w.

Example 7.4.8
Consider again the rewrite step µL : tL→sL of Example 7.4.6, and let w
be the position 1.2 of sL. The set of labeled symbols occurring in sL in
the path from its root to position w is the set z = {hη, dαβγ, dδ}. Now,
the labeled symbols occurring in tL whose label is contained in the label
of one element of z is the set {hη, fα, gβ, aγ, dδ}. By Definition 7.4.7, the
set of origin positions of w in µL is �L

µw = {1.1.2, 1, 1.1, 1.2, Λ}.

Note that the origin positions of w in the rewrite step µ : t
r−→ s are

not the antecedent positions of w in µ [R8́7]; one main difference is the
fact that we consider all positions of s in the path from its root to w
for computing the origins, and we use the labeling to trace back every
relevant piece of information involved in the step µ.

7.4.2 The Backward Trace Slicing Algorithm

First, let us formalize the slicing criterion, which basically represents the
information we want to trace back across the execution trace in order to
find out the “origins” of the data we observe. Given a term t, we denote
by Ot the set of observed positions of t, which point to the symbols of t
that we want to trace/observe.

Definition 7.4.9 (slicing criterion) Given a rewrite theoryR = (Σ,∆, R)
and an execution trace T : s→∗ t in R, a slicing criterion for T is any
set Ot of positions of the term t.

In the following, we show how backward trace slicing can be performed
by exploiting the backward tracing relation �L

µ that was introduced in
Definition 7.4.7. Informally, given a slicing criterion Otn for T : t0 →
t2 → . . .→ tn, at each rewrite step ti−1 → ti, i = 1, . . . , n, our technique
inductively computes the backward tracing relation between the relevant
positions of ti and those in ti−1. The algorithm proceeds backwards, from
the final term tn to the initial term t0, and recursively generates at step
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i the corresponding set of relevant positions, Ptn−i . Finally, by means
of a removal function, a simplified trace is obtained where each tj is
replaced by the corresponding term slice that contains only the relevant
information w.r.t. Ptj .

Definition 7.4.10 (sequence of relevant position sets) LetR = (Σ,∆, R)
be a rewrite theory, and let T : t0

r1→ t1 . . .
rn→ tn be an execution trace in

R. Let Li be the labeling for the rewrite step ti → ti+1 with 0 ≤ i < n.
The sequence of relevant position sets in T w.r.t. the slicing criterion
Otn is defined as follows:

relevant positions(T ,Otn) = [P0, . . . , Pn]

where

{
Pn = Otn
Pj =

⋃
p∈Pj+1

�
Lj
(tj→ tj+1)p, with 0 ≤ j < n

Now, it is straightforward to formalize a procedure that obtains a
term slice from each term t in T and the corresponding set of relevant
positions of t. We introduce the fresh symbol • 6∈ Σ to replace any
information in the term that is not relevant (i.e., those symbols that
occur at any position of t that is not above a relevant position of the
term), hence does not affect the observed criterion.

Definition 7.4.11 (term slice) Let t ∈ τ(Σ) be a term, and let P be a
set of positions of t. A term slice of t with respect to P is defined as
follows:

slice(t, P ) = sl rec(t, P,Λ), where

sl rec(t, P, p) =


f(sl rec(t1, P, p.1), . . . , sl rec(tn, P, p.n))

if t = f(t1, . . . , tn) and there exists w s.t. (p.w) ∈ P
• otherwise

In the following, we use the notation t• to denote a term slice of the
term t. Roughly speaking, the symbol • can be thought of as a variable,
so that any term t′ ∈ τ(Σ) can be considered as a possible concretization
of t• if it is an “instance” of [t•], where [t•] is the term that is obtained
by replacing all occurrences of • in t• with fresh variables.
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Figure 7.1: A term slice and one possible concretization.

Definition 7.4.12 (term slice concretization) Given t′ ∈ τ(Σ) and a
term slice t•, we define t• ∝ t′ if [t•] is (syntactically) more general than
t′ (i.e. [t•]σ = t′, for some substitution σ). We also say that t′ is a
concretization of t•.

Figure 7.1 illustrates the notions of term slice and term slice con-
cretization for a given term t w.r.t. the set of positions {1.1.2, 1.2}.

Let us define a sliced rewrite step between two term slices as follows.

Definition 7.4.13 (sliced rewrite step) Let R = (Σ,∆, R) be a rewrite
theory, and let r be a rule of R. The term slice t• rewrites to the term
slice s• via r (in symbols, t•

r→ s•) if there exist two terms t and s such
that t• is a term slice of t, s• is a term slice of s, and t

r→ s.

Using Definition 7.4.13, backward trace slicing is formalized as fol-
lows.

Definition 7.4.14 (backward trace slicing) Let R = (Σ,∆, R) be a
rewrite theory, and let T : t0

r1→ t1 . . .
rn→ tn be an execution trace in

R. Let Otn be a slicing criterion for T , and let [P0, . . . , Pn] be the se-
quence of the relevant position sets of T w.r.t. Otn. A trace slice T •
of T w.r.t. Otn is defined as the sliced rewrite sequence of term slices
t•i = slice(ti, Pi) which is obtained by gluing together the sliced rewrite
steps in the set

K• = {t•k−1

rk→ t•k | 0 < k ≤ n ∧ t•k−1 6= t•k}.
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Note that in Definition 7.4.14, the sliced rewrite steps that do not
affect the relevant positions (i.e., t•k−1

rk→ t•k with t•k−1 = t•k) are discarded,
which further reduces the size of the trace.

A desirable property of a slicing technique is to ensure that, for any
concretization of the term slice t•0, the trace slice T • can be reproduced.
This property ensures that the rules involved in T • can be applied again
to every concrete trace T ′ that we can derive by instantiating all the
variables in [t•0] with arbitrary terms.

Theorem 7.4.15 (soundness) Let R be an elementary rewrite theory.
Let T be an execution trace in the rewrite theory R, and let O be a
slicing criterion for T . Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the corresponding

trace slice w.r.t. O. Then, for any concretization t′0 of t•0, it holds that
T ′ : t′0

r1→ t′1 . . .
rn→ t′n is an execution trace in R, and t•i ∝ t′i, for

i = 1, . . . , n.

The proof of Theorem 7.4.15 relies on the fact that redex patterns are
preserved by backward trace slicing. Therefore, for i = 1, . . . , n, the rule
ri can be applied to any concretization t′i−1 of term t•i−1 since the redex
pattern of ri does appear in t•i−1, and hence in t′i−1. A detailed proof of
Theorem 7.4.15 is given in following section.

Proof of Theorem 7.4.15

We first demonstrate some auxiliary results which facilitate the proof of
Theorem 7.4.15. The following auxiliary result is straightforward.

Lemma 7.4.16 Let t• be a term slice, and let t′ be a term such that
t• ∝ t′. For every position w ∈ Pos(t′), it holds that, either root(t′|w) =

root(t•|w), or there exists a position u of t• such that u ≤ w and root(t•|u) =
•.

Proof. Immediate by Definition 7.4.12.

The following definitions are auxiliary. Let C be a context. We define
the set of positions of C as the set Pos(C) = {v | root(C|v) 6= 2}. Given
a term t, by pathw(t), we denote the set of symbols in t that occur in the
path from its root to the position w of t, e.g., path(2.1)(f(a, g(b), c)) =
{f, g, b}.
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Definition 7.4.17 Let r : λ → ρ be a rule of R. Let µ : s
r,σ→ t be a

rewrite step such that s = C[λσ] and t = C[ρσ]. Given a position w, we
say that w is involved in µ, if there exist w′ and w′′ such that w = w′.w′′,
C|w′ = 2 and w′′ ∈ Pos(ρσ).

The following lemma establishes that, if a relevant position is involved
in a rewrite step, then the origin position relation preserves the redex
pattern of the rule.

Lemma 7.4.18 Let r : λ→ ρ be a rule of an elementary rewrite theory
R. Let µ : s

r,σ→ t be a rewrite step such that s = C[λσ] and t = C[ρσ],
where σ is a substitution and C is a context. Let L be a labeling for the
rewrite step µ, and w ∈ Pos(t).

1. if w ∈ Pos(C), then �L
µw = {v ∈ Pos(C) | w = v.v′}

2. if w = w′.w′′, C|w′ = 2, and w′′ ∈ Pos(ρσ), then �L
µw ⊇ {w′.v′ ∈

Pos(s) | v′ ∈ Pos(λ)}

Proof. Given the rule r : λ→ ρ and the labeling L for the rewrite step

µ : s
r,σ→ t, let us consider the labeled rewrite step µL : sL

rL,σL→ tL. By
Definition 7.4.5, we can decompose the labeling L into three labelings
LC , Lr, and Lσ that respectively label the context C, the redex and
the contractum patterns appearing in µ, and the terms in µ introduced
by the substitution σ. In other words, we have sL = CLC [λLrσLσ ] and
tL = CLC [ρLrσLσ ].

Let us prove the two claims independently.
Claim 1. We assume that w ∈ Pos(t) and w ∈ Pos(C). Since the
context C has the same initial labeling CLC in both s and t, and the sets
Cod(LC), Cod(Lr), and Cod(Lσ) are pairwise disjoint, the set of origin
positions �L

s→tw in s is the set of positions lying on the path from the
root position of s to w. Hence, �L

µw = {v ∈ Pos(C) | w = v.v′}.
Claim 2. We assume that w = w′.w′′, C|w′ = 2, and w′′ ∈ Pos(ρσ).
Then, since r belongs to an elementary rewrite theory R, r is non-
collapsing. This implies that there exists a labeled symbol f l

′ ∈ pathw(tL)
belonging to the contractum pattern of the rule r. By Definition 7.4.2,
for each labeled symbol gl in the redex pattern of r, we have that l ⊆ l′.
Now, since the redex pattern of r is embedded into s and the contractum
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pattern of r is embedded into t, the inclusion �L
µw ⊇ {v.v′ ∈ Pos(s) |

v′ ∈ Pos(λ)} trivially holds by Definition 7.4.7.

The following lemma establishes that, given the rewrite step µ : t0
r→

t1 and a term slice t•0 of t0, any concretization of t•0 is reduced by the rule
r to the corresponding term slice concretization of t1.

Lemma 7.4.19 Let r : λ→ ρ be a rule of an elementary rewrite theory
R. Let µ : t0

r,σ→ t1 be a rewrite step such that t0 = C[λσ] and t1 = C[ρσ],
where σ is a substitution and C is a context. Let L be a labeling for the
rewrite step µ, and let [P0, P1] be the sequence of the relevant position

sets for µ : t0
r,σ→ t1 w.r.t. the slicing criterion O. Let t•0 = slice(t0, P0),

and t•1 = slice(t1, P1).

1. if P1 ⊆ Pos(C) then t•0 = t•1.

2. if P1 ∩ {w|w = v.v′, C|v = 2, and v′ ∈ Pos(ρσ)} 6= ∅, then for any

concretization t′0 of t•0, we have that t′0
r,σ′→ t′1 where t•1 ∝ t′1.

Proof. We prove the two claims separately.
Claim 1. Let P1 ⊆ Pos(C). Then, by Lemma 7.4.18 (Claim 1), for any
w ∈ P1, �L

µw = {v ∈ Pos(C) | w = v.v′}. Additionally, by Definition
7.4.10, P0 =

⋃
w∈P1

(�L
µw), and hence P0 =

⋃
w∈P1
{v ∈ Pos(C) | w =

v.v′}. Therefore, it holds that (i) P1 ⊆ P0 ⊆ Pos(C), and for any
v ∈ P0 \P1, there exists a position v′ such that w = v.v′ for some w ∈ P1;
(ii) by Definition 7.4.11, the function slice(t, P ) delivers a term slice t•

where all the symbols of t that do not occur in the path connecting
the root position of t with some position w ∈ P are abstracted by the
• symbol. Now, since t•0 = slice(t0, P0) and t•1 = slice(t1, P1), by (i)
and (ii), we can conclude that λσ and ρσ are abstracted by •, and the
context C is abstracted by the term slice C• in both t0 and t1. Hence,
t•0 = C•[•] = t•1.
Claim 2. We assume P1∩{w|w = v.v′, C|v = 2, and v′ ∈ Pos(ρσ)} 6= ∅.
Then, there exists a position w ∈ P1 such that w ∈ {w|w = v.v′, C|v = 2,
and v′ ∈ Pos(ρ)}. By Lemma 7.4.18 (Claim 2), it follows that �L

µw ⊇
{v.v′ ∈ Pos(t0) | v′ ∈ Pos(λ)}. By Definition 7.4.10, P0 =

⋃
w∈P1

(�L
µw),

and hence P0 ⊇ {v.v′ ∈ Pos(t0) | v′ ∈ Pos(λ)}. Now, by Definition
7.4.11 and the fact that P0 ⊇ {v.v′ ∈ Pos(t0) | v′ ∈ Pos(λ)}, the
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redex pattern of the rule r is embedded into t•0 = slice(t0, P0). In other
words, t•0 = C•[λσ•], where C• is a term slice for the context C, and σ•

represents the term slices for the terms introduced by the substitution
σ. Thus, by Lemma 7.4.16, any concretization t′0 of t•0 has the form
t′0 = C ′[λσ′], where C• ∝ C ′ and for each x/t ∈ σ′, there exists x/t• ∈ σ•
such that t• ∝ t. Note also that t•0 embeds the redex pattern λ2 of r.
Furthermore, since r belongs to the elementary rewrite theory R, r is

left-linear. Thus, the following rewrite step t′0
r,σ′→ t′1 can be executed for

any substitution σ′. The rewrite step t′0
r,σ′→ t′1 can be decomposed as

follows: t′0 = C ′[λσ′]
r,σ′→ C ′[ρσ′], for some context C ′ and substitution

σ′. Moreover, by definition of rewrite step, t′1 embeds the contractum
pattern of r. Finally, t•1 = C•[ρ•σ•], and thus t′1 is a concretization of t•1.

The following proposition allows the soundness of our methodology
to be proved for one-step traces on an elementary rewrite theory.

Proposition 7.4.20 Let R be an elementary rewrite theory. Let T be
an execution trace in R, and let O be a slicing criterion for T . Let
T • : t•0

r1→ t•1 be the trace slice w.r.t. O of T . Then, for any concretization
t′0 of t•0, it holds that T ′ : t′0

r1→ t′1 is an execution trace in R such that
t•1 ∝ t′1.

Proof. Given the trace slice T • : t•0
r1→ t•1 w.r.t. O of T , let [P0, P1] be

the sequence of the relevant position sets of T w.r.t. O. We have (i)
t•0 = slice(s0, P0) and t•1 = slice(s1, P1), where s0

r1→ s1 is a rewrite step
occurring in T ; (ii) t•0 6= t•1. Let r1 be the rule λ → ρ. The rewrite step
s0

r1→ s1 can be decomposed as follows: s0 = C[λσ]
r1→ C[ρσ] = s1, for

some context C and substitution σ.
Since R is elementary and t•0 6= t•1, by Claim 1 of Lemma 7.4.19,

P1 6⊆ Pos(C). Hence, there exists a position w ∈ P1 such that w = v.v′

and v′ ∈ Pos(ρσ). Also, because R is elementary, we can apply Claim 2
of Lemma 7.4.19, and for any concretization t′0 of t•0, we get t′0

r1→ t′1 such
that t′1 is a concretization of t•1.

Theorem 7.4.15. (soundness) Let R be an elementary rewrite theory.
Let T be an execution trace in R, and let O be a slicing criterion for T .
Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the corresponding trace slice w.r.t. O. Then,
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for any concretization t′0 of t•0, it holds that T ′ : t′0
r1→ t′1 . . .

rn→ t′n is an
execution trace in R, and t•i ∝ t′i, for i = 1, . . . , n.

Proof. The proof proceeds by induction on the length of the trace slice
T • and exploits Proposition 7.4.20 to prove the inductive case. Routine.

7.5 Backward Trace Slicing for Extended

Rewrite Theories

In this section, we consider an extension of our basic slicing methodol-
ogy that allows us to deal with extended rewrite theories. An extended
rewrite theory R = (Σ, E,R) is a rewrite theory where the equational
theory (Σ, E) may contain associativity and commutativity axioms, and
R may contain collapsing as well as nonleft-linear rules. Moreover, we
provide a further extension to deal with the built-in operators exist-
ing in Maude, that is, operators that are not equipped with an explicit
functional definition (e.g., Maude arithmetical operators and if-then-else
conditional operators).

It is worth noting that all the proposed extensions are restricted to the
labeling procedure of Section 7.4.1, leaving the backbone of our slicing
technique unchanged.

7.5.1 Dealing with Collapsing and Nonleft-linear
Rules

Collapsing Rules. The main difficulty with collapsing rules is that they
have a trivial contractum pattern, which consists in the empty context 2;
hence, it is not possible to propagate labels from the left-hand side of the
rule to its right-hand side. This makes the rule labeling procedure of
Definition 7.4.2 completely unproductive for trace slicing.

In order to overcome this problem, we keep track of the labels in the
left-hand side of the collapsing rule r, whenever a rewrite step involv-
ing r takes place. This amounts to extending the labeling procedure of
Definition 7.4.5 as follows.
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Definition 7.5.1 (rewrite step labeling for collapsing rules) Let µ : t
r,σ→

s be a rewrite step s.t. σ = {x1/t1, . . . , xn/tn}. Let Lr be a labeling for
the rule r. For the case of a rewrite step given by using a collapsing
rule r : λ → xi, the labeling procedure formalized in Definition 7.4.5 is
extended as follows:

s4. Let ti be the term introduced in s via the binding xi/ti ∈ σ, for
some i ∈ {1, . . . , n}. Then, the label li of the root symbol of ti in
s is replaced by a new composite label lcli, where lc is formed by
joining all the labels appearing in the redex pattern of rLr .

Example 7.5.2
Consider again the labeled collapsing rule fα(aβ, x) → x, together with
the rewrite step µ : f(a, h(b)) → h(b) and matching substitution σ =
{x/h(b)}. Let Lσ = {{Λ 7→ γ, 1 7→ δ}} be the labeling for σ. Then, by
applying Definition 7.5.1, the labeling of µ is

fα(aβ, hγ(bδ))→ hαβγ(bδ)

and the trace slice for f(a, h(b)) → h(b) w.r.t. the slicing criterion {Λ}
is f(a, h(•))→ h(•).

Note that if we had merely applied Definition 7.4.5 instead of Defini-
tion 7.5.1, we would have got the following labeling for µ: fα(aβ, hγ(bδ))→
hγ(bδ), which is undesirable since it does not correctly record the redex
pattern information that we need for backward trace slicing: e.g., if we
slice the rewriting step µ w.r.t. {Λ} using this wrong labeling, we would
get f(•, h(•))→ h(•).

Nonleft-linear Rules. The trace slicing technique we described in Sec-
tion 7.4 does not work for nonleft-linear TRS. Consider the rule: r :
f(x, y, x)→ g(x, y) and the one-step trace T : f(a, b, a)→ g(a, b). If we
are interested in tracing back the symbol g that occurs in the final state
g(a, b), we would get the following trace slice T • : f(•, •, •) → g(•, •).
However, f(a, b, b) is a concretization of f(•, •, •) that cannot be rewrit-
ten by using r. In the following, we augment Definition 7.5.1 in order to
also deal with nonleft-linear rules.

Definition 7.5.3 (rewrite step labeling procedure for nonleft-linear rules)

Let µ : t
r,σ→ s be a rewrite step s.t. σ = {x1/t1, . . . , xn/tn}. Let Lσ =
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{x1/t1, . . . , xn/tn} be a labeling for the substitution σ. For the case of a
rewrite step given by using a nonleft-linear rule r, the labeling procedure
formalized in Definition 7.5.1 is extended as follows:

s5. For each variable xj that occurs more than once in the left-hand
side of the rule r, the following steps should be performed:

– we form a new label lxj by joining all the labels in Cod(Lxj/t)
where Lxj/t ∈ Lσ;

– let ls be the label of the root symbol of s. Then, ls is replaced
by a new composite label lxj ls.

Example 7.5.4
Consider the nonleft-linear (labeled) rule fα(x, y, x)→ gα(x, y) together
with the rewrite step µ : f(g(a), b, g(a))→ g(g(a), b), and matching sub-
stitution σ = {x/g(a), y/b}. Then, for the labeling Lσ = {Lx/g(a), Ly/b},
with Lx/g(a) = {Λ 7→ β, 1 7→ γ} and Ly/b = {Λ 7→ δ}, the labeled version
of µ is

fα(gβ(aγ), bδ, gβ(aγ))→ gαβγ(gβ(aγ), bδ).

Finally, by considering the criterion {1}, we can safely trace back the
symbol g at the position 1 of the term g(g(a), b) and obtain the following
trace slice

f(g(a), •, g(a))→ g(g(•), •).

7.5.2 Built-in Operators

In practical implementations of RWL (e.g., Maude [CDE+07]), several
commonly used operators are pre-defined (e.g., arithmetic and boolean
operators, if-then-else constructs). Obviously, backward trace slicing of
function calls involving built-in operators is not supported by our ba-
sic technique. This would require an explicit (rule-based or equational)
specification of every single operator involved in the execution trace. To
overcome this limitation, we further extend the labeling procedure of
Definition 7.5.3 in order to deal with built-in operators.
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Definition 7.5.5 (rewrite step labeling procedure for built-in operators)
For the case of a rewrite step µ : C[op(t1, . . . , tn)]→ C[t′] involving a call
to a built-in, n-ary operator op, we extend Definition 7.5.3 by introducing
the following additional case:

s6. Given an initial labeling Lop for the term op(t1, . . . , tn),

– each symbol occurrence in t′ is labeled with a new label that
is formed by joining the labels of all the (labeled) arguments
t1, . . . , tn of op;

– the remaining symbol occurrences of C[t′] that are not con-
sidered in the previous step inherit all the labels appearing in
C[op(t1, . . . , tn)].

For example, by applying Definition 7.5.5, the addition of two natural
numbers implemented through the built-in operator + might be labeled
as +α(7β, 8γ)→ 15βγ.

7.5.3 Associative-Commutative Axioms

Let us finally consider an extended rewrite theory R = (Σ,∆ ∪ B,R),
where B is a set of associativity (A) and commutativity (C) axioms that
hold for some function symbols in Σ. As described in Section 7.2, an exe-
cution trace inR may contain rewrite steps modulo B that have the form
t =B t

′ → t′′, where =B is the congruence relation induced by the set of
axioms B. Now, since B only contains associativity/commutativity (AC)
axioms, terms can be represented by means of a single representative of
their AC congruence class, called AC canonical form [Eke03]. This rep-
resentative is obtained by replacing nested occurrences of the same AC
operator by a flattened argument list under a variadic symbol, whose
elements are sorted by means of some linear ordering. In other words,
if a function symbol f is declared to be associative, then the subterms
rooted by f of any term t are flattened; and if f is also commutative, the
subterms are sorted with respect to a fixed (internal) ordering 3.

The inverse process to flat transformation is unflat transformation,
which is nondeterministic in the sense that it generates all the unflattened
terms that are equivalent (modulo AC) to the flattened term.

3Specifically, Maude uses the lexicographic order of symbols.
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For example, consider a binary AC operator f together with the
standard lexicographic ordering over symbols. Given the B-equivalence
f(b, f(f(b, a), c)) =B f(f(b, c), f(a, b)), we can represent it by using the
“internal sequence”

f(b, f(f(b, a), c))→∗flatB
f(a, b, b, c)→∗unflatB

f(f(b, c), f(a, b))

where the first one corresponds to the flattening transformation sequence
that obtains the AC canonical form, while the second one corresponds to
the inverse, unflattening one.

These two processes are typically hidden inside the B-matching algo-
rithms4 that are used to implement rewriting modulo B.

The key idea for extending our labeling procedure in order to cope
with B-equivalence =B is to exploit the flat transformation (→∗flatB

) and
unflat transformation (→∗unflatB

) mentioned above. Without loss of gen-
erality, we assume that flat/unflat transformations are stable w.r.t. the
lexicographic ordering over positions v5 (i.e., the relative ordering among
the positions of multiple occurrences of a term is preserved).

This assumption allows us to trace back arguments of commutative
operators, since multiple occurrences of the same symbol can be precisely
identified.

Definition 7.5.6 (AC Labeling) Let f be an associative-commutative
operator, and let B be the AC axioms for f . Consider the B-equivalence
t1 =B t2 and the corresponding (internal) flat/unflat transformation
T : t1 →∗flatB

s →∗unflatB
t2. Let L be an initial labeling for t1. The

labeling procedure for t1 =B t2 is as follows.

1. (flattening) For each flattening transformation step t|v →flatB t
′
|v in

T for the symbol f , a new label lf is formed by joining all the labels
attached to the symbol f in any position w of tL such that w = v or
w ≥ v, and every symbol on the path from v to w is f ; then, label
lf is attached to the root symbol of t′|v.

4See [CDE+09] (Section 4.8) for an in-depth discussion on matching and simplifi-
cation modulo AC in Maude.

5The lexicographic ordering v is defined as follows: Λ v w for every position w,
and given the positions w1 = i.w′1 and w2 = j.w′2, w1 v w2 iff i < j or (i = j and
w′1 v w′2). Obviously, in a practical implementation of our technique, the considered
ordering among the terms should be chosen to agree with the ordering considered by
flat/unflat transformations in the RWL infrastructure.
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2. (unflattening) For each unflattening transformation step t|v →unflatB

t′|v in T for the symbol f , the label of the symbol f in the position

v of tL is attached to the symbol f in any position w of t′ such that
w = v or w ≥ v, and every symbol on the path from v to w is f .

3. The remaining symbol occurrences in t′ that are not considered in
cases 1 or 2 above inherit the label of the corresponding symbol
occurrence in t.

Example 7.5.7

Consider the transformation sequence

f(b, f(b, f(a, c)))→∗flatB
f(a, b, b, c)→∗unflatB

f(f(b, c), f(a, b))

by using Definition 7.5.6, the associated transformation sequence can be
labeled as follows:

fα(bβ, fγ(bδ, f ε(aζ , cη)))→∗flatB
fαγε(aζ , bβ, bδ, cη)→∗unflatB
fαγε(fαγε(bβ, cη), fαγε(aζ , bδ))

Note that the original order between the two occurrences of the con-
stant b is not changed by the flat/unflat transformations. For example,
in the first term, bβ is in position 1 and bδ is in position 2.1 with 1 v 2.1,
whereas, in the last term, bβ is in position 1.1 and bδ is in position 2.2
with 1.1 v 2.2.

Finally, observe that the methodology described in this section can be
easily extended to deal with other equational attributes such as identity
(U) by explicitly encoding the internal transformations performed by
Maude via suitable rewrite rules.

7.5.4 Extended Soundness

Soundness of the backward trace slicing algorithm for the extended rewrite
theories is established by the following theorem which properly extends
Theorem 7.4.15.
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Theorem 7.5.8 (extended soundness) Let R = (Σ, E,R) be an extended
rewrite theory. Let T be an execution trace in the rewrite theory R, and
let O be a slicing criterion for T . Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the

corresponding trace slice w.r.t. O. Then, for any concretization t′0 of t•0,
it holds that T ′ : t′0

r1→ t′1 . . .
rn→ t′n is an execution trace in R, and t•i ∝ t′i,

for i = 1, . . . , n.

Proof of Theorem 7.5.8

In order to prove Theorem 7.5.8, we use the same proof scheme as for
elementary rewrite theories, since the extended technique described in
Section 7.5 is only concerned with suitable extensions of the labeling
procedure given in Definition 7.4.5, which do not affect the overall back-
ward trace slicing methodology.

Let us start by proving an extension of Lemma 7.4.18 (Claim 2),
which holds for nonleft-linear as well as collapsing rules.

Lemma 7.5.9 Let r : λ → ρ be a rule that is either nonleft-linear or
collapsing. Let µ : s

r,σ→ t be a rewrite step such that s = C[λσ] and
t = C[ρσ], where σ is a substitution and C is a context. Let L be a
labeling for the rewrite step µ, and w ∈ Pos(t). Then,

1. if w ∈ Pos(C), then �L
µw = {v ∈ Pos(C) | w = v.v′}

2. if w = w′.w′′, C|w′ = 2, and w′′ ∈ Pos(ρσ), then �L
µw ⊇ {w′.v′ ∈

Pos(s) | v′ ∈ Pos(λ)}

Proof. We prove the two claims separately.
Claim 1. The proof is identical to the proof of Claim 1 of Lemma 7.4.18.
Claim 2. To prove the lemma, we distinguish three cases.

Case 1: Rule r is collapsing. Given the collapsing rule r = λ → ρ
where ρ = x with x ∈ Var(λ), let us consider the term ti in-
troduced by the substitution σ via the binding x/ti, and we have
µ = C[λσ]

r→ C[ti]. Let us also consider the labeled rewrite step

µL : sL
rLr ,σLσ→ tL via the labeling L. By Definition 7.4.5, we have

sL = CLC [λLrσLσ ] and tL = CLC [tLσi ].
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Let f l
′

be the labeled root symbol of tLσi . By Definition 7.5.1 (Step
s4), we have that l′ = lλli, where lλ is formed by joining all the labels
appearing in the redex pattern λLr and li is the label of the root
of the labeled term tLσi . This implies that, for each labeled symbol
gl in the redex pattern of r, we have that l ⊆ l′. Furthermore,
by hypothesis, we have that w ∈ C[ti] and w′′ ∈ Pos(ti). Hence,
by Definition 7.4.7, the inclusion �L

µw ⊇ {v.v′ ∈ Pos(s) | v′ ∈
Pos(λ)} trivially holds.

Case 2: rule r is nonleft-linear. Given the nonleft-linear rule r, the
proof is perfectly analogous to the proof of Lemma 7.4.18 since, by
Definition 7.5.3 (Step s5), the label of each symbol in the contrac-
tum pattern of the rule r includes all the labels appearing in the
redex pattern of r.

Case 3: rule r is collapsing and nonleft-linear. Since r is both col-
lapsing and nonleft-linear, µ is labeled according to Definition 7.5.1
(Step s4) and Definition 7.5.3 (Step s5). Therefore, we can prove
the claim by simply combining the arguments used to prove Case
1 ad Case 2.

The following Lemma extends Lemma 7.4.19 to deal with collapsing
and nonleft-linear rules.

Lemma 7.5.10 Let r : λ → ρ be a rule which is either left-linear or
collapsing. Let µ : t0

r,σ→ t1 be a rewrite step such that t0 = C[λσ]
and t1 = C[ρσ], where σ is a substitution and C is a context. Let L
be a labeling for the rewrite step µ, and [P0, P1] be the sequence of the

relevant position sets for µ : t0
r,σ→ t1 w.r.t. the slicing criterion O. Let

t•0 = slice(t0, P0), and t•1 = slice(t1, P1). Then,

1. if P1 ⊆ Pos(C) then t•0 = t•1.

2. if P1 ∩ {w|w = v.v′, C|v = 2, and v′ ∈ Pos(ρσ)} 6= ∅, then for any

concretization t′0 of t•0, we have that t′0
r,σ′→ t′1 where t•1 ∝ t′1.



154 Chapter 7. Backward Trace Slicing for Rewriting Logic Theories

Proof. We prove the two claims separately.

Claim 1. The proof is identical to the proof of Claim 1 of Lemma 7.4.19.
Claim 2. To prove the lemma, we distinguish three cases.

Case 1: rule r is collapsing. Given the collapsing rule r, the proof is
perfectly analogous to the one of Lemma 7.4.19 Claim 2. By using
Lemma 7.5.9 instead of Lemma 7.4.18, we are still able to prove
that the redex pattern of r embedded in t0 is also embedded in t•0,

and hence for any concretization t′0 of t•0, the rewrite step t′0
r,σ′→ t′1

can be proved. Finally, by using the same argument of Lemma
7.4.19 Claim 2, we conclude that t•1 ∝ t′1.

Case 2: rule r is nonleft-linear. Given the nonleft-linear rule r, the
proof is similar to the one of Lemma 7.4.19. By exploiting Lemma
7.5.9 and Definition 7.5.3 (Step s5), we can show that (i) the redex
pattern of r embedded in t0 is also embedded in t•0, and (ii) for each
term t introduced in t0 by a binding x/t ∈ σ such that x occurs
multiple times in λ, t is preserved in t•0 (i.e., t is not abstracted
by • in t•0). By (i) and (ii), it is immediate to prove that, for any

concretization t′0 of t•0, the rewrite step t′0
r,σ′→ t′1 can be proved.

Finally, by using the same argument of Lemma 7.4.19 Claim 2, we
can show that t•1 ∝ t′1.

Case 3: rule r is collapsing and nonleft-linear. Firstly we observe
that, as the rule r is collapsing, by Lemma 7.5.9 the redex pat-
tern of r embedded in t0 is also embedded in t•0, and hence for any
concretization t′0 of t•0, the redex pattern of r is embedded in t′0 as
well. Secondly, since r is nonleft-linear, by Lemma 7.5.9 and Defi-
nition 7.5.3 (Step s5), for each term t introduced in t0 by a binding
x/t ∈ σ such that x occurs multiple times in λ, t is preserved in
t•0. Hence, t is also embedded in t′0, for any concretization t′0 of t•0.
From the two facts above, it directly follows that for any t′0 such

that t•0 ∝ t′0, the rewrite step t′0
r,σ′→ t′1 can be proved. Finally, by

using the same argument of Lemma 7.4.19 Claim 2, we can show
that t•1 ∝ t′1.
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The following proposition allows us to prove the soundness of our
methodology for one-step traces on an extended rewrite theory.

Proposition 7.5.11 Let R be an extended rewrite theory. Let T : t0
r1→

t1 be an execution trace in R, and let O be a slicing criterion for T . Let
T • : t•0

r1→ t•1 be the trace slice w.r.t. O of T . Then, for any concretization
t′0 of t•0, it holds that T ′ : t′0

r1→ t′1 is an execution trace in R such that
t•1 ∝ t′1.

Proof. Consider the rewrite step µ : t0
r1→ t1. In the case when r1 is left-

linear and non-collapsing (i.e., a rule belonging to an elementary rewrite
theory), the proof is identical to the proof of Proposition 7.5.11. Hence
w.l.o.g. we assume that r corresponds to a collapsing or nonleft-linear
rule, built-in operator evaluation, or AC axiom.

Nonleft-linear/collapsing rules. In this case, the proof of Proposi-
tion 7.5.11 is analogous to the proof of Proposition 7.4.20, by using
Lemma 7.5.10 in the place of Lemma 7.4.19.

Built-in Operators. Let t0 = C[op(t1, . . . , tm)] and t1 = C[t′]. Hence,
µ : C[op(t1, . . . , tm)]→ C[t′] is a rewrite step mimicking the evalua-
tion of the built-in operator call op(t1, . . . , tm). By Definition 7.5.5
and Definition 7.4.7, it is immediate to show that op(t1, . . . , tm) is
embedded in t•0, and thus for any concretization t•0 ∝ t′0, t′0

r1→ t′1
and t•1 ∝ t′1.

Associative-Commutative Axioms. Flat/unflat transformations are
interpreted as rewrite steps that reduce AC symbols. Let us first
consider the flat transformation t →flatB t′ that reduces the AC
symbol f . By Definition 7.5.6, the label of the occurrence of f in
t′ contains all the labels of the different occurrences of f appearing
in t that have been reduced by the transformation. In other words,
the label of f in t′ keeps track of all the occurrences of f that have
been reduced in t, and therefore the claim holds directly. The claim
for unflat transformations can be proved in a similar way.
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Finally, we exploit Proposition 7.5.11 in order to prove the extended
soundness of our methodology on extended rewrite theories.

Theorem 7.5.8. (extended soundness) Let R = (Σ, E,R) be an ex-
tended rewrite theory. Let T be an execution trace in the rewrite theory
R, and let O be a slicing criterion for T . Let T • : t•0

r1→ t•1 . . .
rn→ t•n be

the corresponding trace slice w.r.t. O. Then, for any concretization t′0
of t•0, it holds that T ′ : t′0

r1→ t′1 . . .
rn→ t′n is an execution trace in R and

t•i ∝ t′i, for i = 1, . . . , n.

Proof. The proof proceeds by induction on the length of the trace slice
T • and exploits Proposition 7.5.11 in order to prove the inductive case.
Routine.

7.6 Experimental Evaluation

We have developed a prototype implementation of our slicing methodol-
ogy which is publicly available at http://www.dsic.upv.es/~dromero/
slicing.html. The implementation is written in Maude and consists of
approximately 800 lines of code. Maude is a high-performance, reflective
language that supports both equational and rewriting logic programming,
which is particularly suitable for developing domain-specific applications
[EMS03; EMM06]. The reflection capabilities of Maude allow metalevel
computations in RWL to be handled at the object-level. This facility
allows us to easily manipulate computation traces of Maude itself and
eliminate the irrelevant contents by implementing the backward slicing
procedures that we have defined in this chapter. Using reflection to im-
plement the slicing tool has one important additional advantage, namely,
the ease to rapidly integrate the tool within the Maude formal tool en-
vironment [CDH+07], which is also developed using reflection.

We developed the operator slice that implements the slicing process.
This operator is invoked as follows:

slice(〈moduleName〉, 〈initialState〉, 〈finalState〉, 〈criterion〉)

where moduleName is the name of the Maude module that includes the
rules and the equations to be considered in the slicing process;
initialState and finalState are the initial state and the final state,

http://www.dsic.upv.es/~dromero/slicing.html
http://www.dsic.upv.es/~dromero/slicing.html
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respectively, of the execution trace; and criterion is the slicing criterion.
The operator works as follows. First, by considering the rules and equa-
tion in moduleName, the instrumented execution trace stemming from the
initial state that leads to the final state is computed. Then, the slicing
procedure is executed with the instrumented computation trace and the
slicing criterion as inputs. Finally, a pair that contains the sliced trace
and the original execution trace is delivered as outcome of the process.

The prototype takes a Maude execution trace and a slicing criterion
as input, and delivers a trace slice together with some quantitative infor-
mation regarding the reduction achieved. The outcome is formatted in
HTML, so it can be easily inspected by means of a Web browser.

In order to evaluate the usefulness of our approach, we benchmarked
our prototype with several examples of Maude applications:

War of Souls (WoS)
WoS is a nontrivial producer/consumer example that is modeled as
a game in which an angel and a daemon fight to conquer the souls of
human beings. Basically, when a human being passes away, his/her
soul is sent to heaven or to hell depending on his/her faith as well
as the strength of the angel and the daemon in play.

Fault-Tolerant Communication Protocol (FTCP)
FTCP is a Maude specification borrowed from [Mes08] that models
a fault-tolerant, client-server communication protocol. There can
be many clients and many servers, where a server can serve many
clients; however, each client communicates with a single server.
Also, the communication environment might be faulty —that is,
messages can arrive out of order, can be duplicated, or can be lost.

Web-TLR: The Web application verifier
Web-TLR [ABR09; ABER10] is a software tool designed for model-
checking real-size Web applications (Web-mailers, Electronic fo-
rums, etc.) which is based on rewriting logic. Web applications
are expressed as rewrite theories which can be formally verified by
using the Maude built-in LTL(R) model checker [BM08].

A detailed description of these Maude applications and the Maude code
are available at the URL mentioned above.
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We have tested our tool on some execution traces which were gen-
erated by the Maude applications described above by imposing different
slicing criteria. For each application, we considered two execution traces
that were sliced using two different criteria. Table 7.1 summarizes the
results we achieved.

As for the WoS example, we have chosen criteria that allow us to
backtrace both the values produced and the entities in play — e.g., the
criterion WoS.T1.O2 isolates the angel and daemon behaviors along the
trace T1.

Execution traces in the FTCP example represent client-server inter-
actions. In this case, the chosen criteria aim at (i) isolating a server
and/or a client in a scenario which involves multiple servers and clients
(FTCP.T2.O1), and (ii) tracking the response generated by a server ac-
cording to a given client request (FTCP.T1.O1).

In the last example, we have used Web-TLR to verify two LTL(R)
properties of a Webmail application. The considered execution traces are
much bigger for this program, and correspond to the counter-examples
produced as outcome by the built-in model-checker of Web-TLR. In this
case, the chosen criteria allow us to monitor the messages exchanged by
the Web browsers and the Webmail server, as well as to focus our atten-
tion on the data structures of the interacting entities (e.g., browser/server
sessions, server database).

For each criterion, Table 7.1 shows the size of the original trace and
that of the computed trace slice, both measured as the length of the
corresponding string. The %reduction column shows the percentage of
reduction achieved. These results are very encouraging, and show an
impressive reduction rate (up to ∼ 95%). Actually, sometimes the trace
slices are small enough to be easily inspected by the user, who can restrict
her attention to the part of the computation she wants to observe getting
rid of those data which are useless or even noisy w.r.t. the considered
slicing criterion.

7.7 Related Work

Tracing techniques have been extensively used in functional programming
for implementing debugging tools [CRW00]. For instance, Hat [CRW00]
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Example
Example Original Slicing Sliced %

trace trace size criterion trace size reduction

WoS

WoS.T1 776
WoS.T1.O1 201 74.10%
WoS.T1.O2 138 82.22%

WoS.T2 997
WoS.T2.O1 404 58.48%
WoS.T2.O2 174 82.55%

FTCP

FTCP.T1 2445
FTCP.T1.O1 895 63.39%
FTCP.T1.O2 698 71.45%

FTCP.T2 2369
FTCP.T2.O1 364 84.63%
FTCP.T2.O2 707 70.16%

Web-TLR
Web-TLR.T1 31829

Web-TLR.T1.O1 1949 93.88%
Web-TLR.T1.O2 1598 94.97%

Web-TLR.T2 72098
Web-TLR.T2.O1 9090 87.39%
Web-TLR.T2.O2 7119 90.13%

Table 7.1: Summary of the reductions achieved.

is an interactive debugging system that enables exploring a computation
backwards, starting from the program output or an error message (with
which the computation aborted). Backward tracing in Hat is carried
out by navigating a redex trail (that is, a graph-like data structure that
records dependencies among function calls), whereas tracing in our ap-
proach does not require the construction of any auxiliary data structure.

Our backward tracing relation extends a previous tracing relation
that was formalized in [BKdV00] for orthogonal TRSs. In [BKdV00], a
label is formed from atomic labels by using the operations of sequence
concatenation and underlining (e.g., a, b, ab, abcd, are labels), which are
used to keep track of the rule application order. Collapsing rules are
simply avoided by coding them away. This is done by replacing each
collapsing rule λ→ x with the rule λ→ ε(x), where ε is a unary dummy
symbol. Then, in order to lift the rewrite relation to terms containing ε
occurrences, infinitely many new extra-rules are added that are built by
saturating all left-hand sides with ε(x). In contrast to [BKdV00], we use
a simpler notion of labeling, where composite labels are interpreted as
sets of atomic labels, and in the case of collapsing as well as nonleft-linear
rules we label the rewrite steps themselves so that we can deal with these
rules in an effective way.

The work that is most closely related to ours is [FT94], which for-
malizes a notion of dynamic dependence among symbols by means of
contexts and studies its application to program slicing of TRSs that may
include collapsing as well as nonleft-linear rules. Both the creating and
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the created contexts associated with a reduction (i.e., the minimal sub-
context that is needed to match the left-hand side of a rule and the
minimal context that is “constructed” by the right-hand side of the rule,
respectively) are tracked. Intuitively, these concepts are similar to our
notions of redex and contractum patterns. The main differences with re-
spect to our work are as follows. First, in [FT94] the slicing is given as a
context, while we consider term slices. Second, the slice is obtained only
on the first term of the sequence by the transitive and reflexive closure of
the dependence relation, while we slice the whole execution trace, step by
step. Obviously, their notion of slice is smaller, but we think that our ap-
proach can be more useful for trace analysis and program debugging. An
extension of [BKdV00] is described in [TeR03], which provides a generic
definition of labeling that works not only for orthogonal TRSs as is the
case of [BKdV00] but for the wider class of all left-linear TRSs. The
nonleft-linear case is not handled by [TeR03]. Specifically, [TeR03] de-
scribes a methodology of static and dynamic tracing that is mainly based
on the notion of sample of a traced proof term —i.e., a pair (µ, P ) that
records a rewrite step µ = s → t, and a set P of reachable positions in
t from a set of observed positions in s. Since the formal definition of
its labeling is based on edges, in order to avoid the problem of collaps-
ing rules, [TeR03] adopts the solution of expanding the right-hand side
of rules (as in [BKdV00]) In contrast, our labeling formulation is based
on nodes, which allows us to efficiently deal the collapsing rules without
resorting to right-hand side expansion. The tracing in [TeR03] proceeds
forward, while ours employs a backward strategy that is particularly con-
venient for error diagnosis and program debugging. Finally, [FT94] and
[TeR03] apply to TRSs whereas we deal with the richer framework of
RWL that considers equations and equational axioms, namely rewriting
modulo equational theories.

7.8 Conclusions

Trace slicing has been widely studied in imperative languages, where
the dependence among program statements is generally determined by a
program dependency graph (e.g., see [RH05] and the references therein).
However, the notion of “dependence” in term rewriting languages, and
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particularly in RWL, is much more involved due to the combination of
equations and rules. To the best of our knowledge, no trace slicing
methodology for rewriting logic theories has yet been proposed.

The key idea behind our backward trace slicing technique consists in
tracing back —through the rewrite sequence— all the relevant symbols
of the final state that we are interested in. Given a slicing criterion O
for a trace T , our algorithm computes a trace slice T • that contains only
the relevant information of T with respect to O. The trace slicing tech-
nique can be applied to execution trace analysis of sophisticated rewrite
theories, which can include equations and equational axioms as well as
nonleft-linear and collapsing rules.

The proposed slicing technique has been implemented in a prototype
system. Preliminary experiments demonstrate that the system works
very satisfactorily on our benchmarks; e.g., we obtained trace slices that
achieved a reduction of up to almost 95% in reasonable time (max. 0.5s
on a Linux box equipped with an Intel Core 2 Duo 2.26GHz and 4Gb of
RAM memory). Naturally, there is still much room for improvement, and
we are currently working on increasing the efficiency of the tool. Also, as
future work, we plan to deal with the execution traces of more sophisti-
cated theories that may include membership and conditional equations.
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Chapter 8

Model-checking
Web Applications with

Web-TLR

This chapter describes Web-TLR [ABER10; ABE+11], which is a model-
checking tool that implements the theoretical framework of Chapter 6.
Web-TLR is written in Maude and is equipped with a freely accessible
graphical Web interface written in Java, which allows users to introduce
and check their own specification of a Web application, together with
the properties to be verified. In order to check the properties against
the specifications, the Maude built-in LTLR model-checker is used. In
the case when the property is proven to be false (refuted), an online
facility can be invoked that dynamically generates the navigation trace
(from the counter-example trace given by the model-checker), which is
ultimately responsible for the erroneous Web application behavior. In
order to improve the understandability and usability of the system and
since the textual information associated with counter-example traces is
usually rather large and poorly readable, the checker has been endowed
with the capability to generate and display on-the-fly slideshows that
allow the erroneous navigation trace to be visually reproduced step by
step. This graphical facility provides deep insight into Web application
behavior and is extremely effective for debugging purposes. Web-TLR
focuses on the Web application tier (business logic), and thus handles
server-side scripts.

To provide better support for the analysis of counter-example traces
and since the counter-examples are expressed as a sequence of rewrite
steps, Web-TLR is also coupled with a slicing tool that implements
the backward trace slicing technique presented in Chapter 7 that allows
one to accurately identify those parts of the trace that influence a given
slicing criterion.
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8.1 The Web-TLR System

Our verification methodology for dynamic Web applications has been
implemented in the Web-TLR system by using the high-performance,
rewriting logic language Maude [CDE+07] (around 750 lines of code with-
out including third-party components). Web-TLR is available on-line
via its friendly Web interface at http://www.dsic.upv.es/~dromero/

web-tlr.html. The Web interface frees users from having to install any
application on their local computer and hides the hardest technical de-
tails of the tool operation. After introducing the Maude specification of
a Web application (which can be done by customizing a default one),
together with an initial Web state st0 and the LTLR formula ϕ to be ver-
ified, ϕ can be automatically checked at state st0. Once all inputs have
been entered into the system, we can automatically check the considered
property by just clicking the button Check, which invokes the Maude
built-in operator tlr check [BM08] that supports model checking of LTLR
formulas in rewrite theories.

In the case when ϕ is refuted by the model-checker, a counter-example
is provided, which is expressed as a model-checking computation trace
starting from st0. The counter-example is graphically displayed by means
of an interactive slideshow that supports forward and backward naviga-
tion through the computation’s Web states. Each slide contains a graph
that models the structure of (a part of) the Web application. The nodes
of the graph represent the Web pages, and the edges that connect the
Web pages specify Web links or Web script continuations1. The graph
also shows the current Web page of each active Web browser. The graph-
ical representation is combined with a detailed textual description of the
current configurations of the Web server and the active Web browsers.

In order to improve the understandability of the counter-examples
generated, Web-TLR also includes a Web debugging facility that greatly
facilitates the inspection of counter-example traces. This facility is based
on a backward trace-slicing technique for rewriting logic theories formal-
ized in Chapter 7 that allows us to trace back the pieces of information
that we are interested in through the inversed rewrite sequence. The slic-

1To obey the stateless nature of the Web, the structure of Web applications has
traditionally been “inverted”, resembling programs written in a continuation–passing
style [GFKF03].

http://www.dsic.upv.es/~dromero/web-tlr.html
http://www.dsic.upv.es/~dromero/web-tlr.html
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Figure 8.1: The navigation model of an Electronic Forum

ing process drastically simplifies the computation traces by dropping use-
less data that do not influence the final result. We provide a convenient,
handy notation for specifying the slicing criterion that is successively
propagated backwards at locations selected by the user. Preliminary ex-
periments reveal that the slicing facility of Web-TLR is fast enough
to enable smooth interaction and helps the users to locate the cause of
errors accurately without overwhelming them with bulky information.
By using the slicing facility, the Web engineer can focus on the relevant
fragments of the failing application, which greatly reduces the manual
debugging effort.

8.2 A Case Study in Web Verification

We tested our tool on several complex case studies that are available at
the Web-TLR Web page and within the distribution package. In order
to illustrate the capabilities of the tool, in the following we discuss the
verification of an electronic forum equipped with a number of common
features, such as user registration, role-based access control including
moderator and administrator roles, and topic and comment management.

The navigation model of such an application, that includes both the
navigation links and the Web continuations, is given in Figure 8.1. This
shows the navigation links and the Web application continuations. For
example, the navigation link (solid arrow) that connects the Login and
Access Web pages is always enabled and requires two input parameters
(user and pass). Moreover, the Access Web page has got two possible
continuations (dashed arrows) whose labels are reg=yes and reg=no, re-
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spectively. The former continuation specifies that the login attempt suc-
ceeds, and thus, the Index Web page is delivered to the browser; in the
latter case, the login fails and the Login page is sent back to the browser.
Figure 8.2 details the formal description of the navigation model of the
electronic forum application and the Web scripts involved.

In LTLR, we can define the state predicate curPage(idb, page) by
means of a boolean-value function as follows,

[B(idb, idt, page, urls, session, sigma, lm, h, i), br][m][sv] |= curPage(idb, page)

which holds (i.e., evaluates to true) for any Web state such that page is
the current Web page displayed in the browser with identifier idb.

By defining elementary state predicates, we can build more complex
LTLR formulas that express mixed properties containing dependencies
among states, actions, and time. These properties intrinsically involve
both action-based and state-based aspects that are either not express-
ible or difficult to express in other temporal logic frameworks (see Sec-
tion 6.4.2). For example, consider the administration Web page Admin
of the electronic forum application. Let us consider two administrator
users whose identifiers are bidAlfred and bidAnna, respectively. Then, the
mutual exclusion property “no two administrators can access the admin-
istration page simultaneously” can be defined as follows.

�¬(curPage(bidAlfred,Admin) ∧ curPage(bidAnna,Admin)) (8.1)

Any given LTLR property can be automatically checked by using the
built-in LTLR model-checker [BM08]. If the property of interest is not
satisfied, a counter-example that consists of the erroneous trace is re-
turned. This trace is expressed as a sequence of rewrite steps that leads
from the initial state to the state that violates the property. Unfortu-
nately, the analysis (or even the simple inspection) of these traces may
be unfeasible because of the size and complexity of the traces under ex-
amination. Typical counter-example traces in Web-TLR consist in a
sequence of around 100 states, each of which contains more than 5.000
characters. As an example, one of the Web states that corresponds to the
electronic forum example given in Section 8.4.2 is shown in Figure 8.3,
which demonstrates that the manual analysis of counter-example traces
is generally impracticable for debugging purposes.
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Formal description of the navigation model of the electronic forum:

PIndex = (Index, αindex, {∅}, {(reg = no)→ (Login?[∅]) : (reg = yes)→ (Logout?[∅]) :
(adm = yes)→ (Admin?[∅]) : (can-read = yes)→ (View-Topic?[topic])
: (can-create = yes)→ (New-Topic?[topic]))
: (mod = yes)→ (Del-Topic?[topic])})

PLogin = (Login, skip, {∅}, {(∅ → (Index?[∅])) : (∅ → (Access?[user, pass]))})
PAccess = (Access, αaccessScript, {((reg = yes)⇒ Index) : ((reg = no)⇒ Login)}, {∅})
PLogout = (Logout, αlogout, {(∅ ⇒ Index)}, {∅})
PAdmin = (Admin, αadmin, {∅}, {(∅ → (Index?[∅]))})

PAddComment = (AddComment, skip, {∅}, {(∅ → ViewTopic?[∅])})
PDelComment = (DelComment, skip, {∅}, {(∅ → ViewTopic?[∅])})

PViewTopic = (ViewTopic, skip, {∅}, {(∅ → (Index?[∅]))
: ((can-write = yes)→ (AddComment?[∅]))
: ((mod = yes)→ (DelComment?[∅]))})

PNewTopic = (NewTopic, skip, {∅}, {(∅ → ViewTopic?[∅])})
PDelTopic = (DelTopic, skip, {∅}, {(∅ → Index?[∅])})

Electronic forum Web scripts:

αaccess
setSession(”adm”,”no”); setSession(”mod”, ”no”) ;
setSession(”reg”, ”no”) ; ’u := getQuery(’user) ;
’p := getQuery(’pass) ; ’p1 := selectDB(’u) ;
’createlvl := selectDB(”create-level”) ;
’writelvl := selectDB(”write-level”) ;
’readlvl := selectDB(”read-level”) ;
if (’p = ’p1) then

setSession(”user”, ’u) ;
’r := selectDB(’u ’. ”-role”) ;
setSession(”reg”, ”yes”) ;
if (’createlvl = ”reg”) then

setSession(”can-create”, ”yes”) fi ;
if (’writelvl = ”reg”) then

setSession(”can-write”, ”yes”) fi ;
if (’readlvl = ”reg”) then

setSession(”can-read”, ”yes”) fi ;
if (’r = ”adm”) then

setSession(”adm” , ”yes”) ;
setSession(”mod” , ”yes”) ;
setSession(”can-create”, ”yes”) ;
setSession(”can-write”, ”yes”) ;
setSession(”can-read”, ”yes”)

else
setSession(”adm” , ”no”) ;
if (’r = ”mod”) then

setSession(”mod”, ”yes”) ;
if (’createlvl = ”mod”) then

setSession(”can-create”, ”yes”) fi ;
if (’writelvl = ”mod”) then

setSession(”can-write”, ”yes”) fi ;
if (’readlvl = ”mod”) then

setSession(”can-read”, ”yes”) fi
else

setSession(”mod”, ”no”)
fi fi fi

αindex

setSession(”adminPage”, ”free”) ;
— Set default levels
’r := getSession(”reg”) ;
if (’r = null) then

setSession(”reg”, ”no”) ;
setSession(”mod”, ”no”) ;
setSession(”adm”, ”no”) ;
setSession(”can-create”, ”no”) ;
setSession(”can-write”, ”no”) ;
setSession(”can-read”, ”no”)

fi ;
— Set capabilities available
’createlvl := selectDB(”create-level”) ;
’writelvl := selectDB(”write-level”) ;
’readlvl := selectDB(”read-level”) ;
if (’createlvl = ”all”) then

setSession(”can-create”, ”yes”)
fi ;
if (’writelvl = ”all”) then

setSession( ”can-write”,”yes”)
fi ;
if (’readlvl = ”all”) then

setSession(”can-read”, ”yes”)
fi

αlogout

setSession(”reg”, ”no”) ;
setSession(”mod”, ”no”) ;
setSession(”adm”, ”no”) ;
setSession(”can-create”, ”no”) ;
setSession(”can-write”, ”no”) ;
setSession(”can-read”, ”no”)

αadmin setSession(”adminPage”, ”busy”)

Figure 8.2: Specification of the electronic forum application in Web-
TLR
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{[ B(bidAlfred, tidAlfred, ’Admin, ’Index ? query-empty, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”),
s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”)), (’pass / ”secretAlfred”)

: ’user / ”alfred”, m(bidAlfred, tidAlfred, ’Admin ? query-empty, 1), history-empty, 1) : B(bidAnna, tidAnna, ’Admin, ’Index
? query-empty, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-
write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”)), (’pass / ”secretAnna”) : ’user / ”anna”, m(bidAnna, tidAnna, ’Admin
? query-empty, 1), history-empty, 1)]bra-empty[mes-empty][S((’Access, setSession(s(”adm”), s( ”no”)); setSession(s(”mod”), s(”no”));
setSession(s(”reg”), s(”no”)); ’u := getQuery(’user); ’p := getQuery(’pass); ’p1 := selectDB(’u); ’createlvl := selectDB(s(”create-level”));
’writelvl := selectDB(s(”write-level”)); ’readlvl := selectDB(s(”read-level”)); if ’p = ’p1 then ’r := selectDB(’u ’. s(”-role”)); setSes-
sion(s(”reg”), s(”yes”)); if ’createlvl = s(”reg”) then setSession(s(”can-create”), s(”yes”))fi ; if ’writelvl = s(”reg”) then setSession(s(”can-
write”), s(”yes”))fi ; if ’readlvl = s(”reg”) then setSession(s(”can-read”), s(”yes”))fi ; if ’r = s(”adm”) then setSession(s( ”adm”),
s(”yes”)); setSession(s(”mod”), s(”yes”)); setSession(s( ”can-create”), s(”yes”)); setSession(s(”can-write”), s(”yes”)); setSession(s( ”can-
read”), s(”yes”))else setSession(s(”adm”), s(”no”)); if ’r = s( ”mod”) then setSession(s(”mod”), s(”yes”)); if ’createlvl = s(”mod”)
then setSession(s(”can-create”), s(”yes”))fi ; if ’writelvl = s(”mod”) then setSession(s(”can-write”), s(”yes”))fi ; if ’readlvl = s(”mod”)
then setSession(s(”can-read”), s(”yes”))fi else setSession(s(”mod”), s(”no”))fi fi fi, {(s(”reg”) ’== s(”no”) => ’Login) : (s(”reg”) ’==
s(”yes”) => ’Index)}, { nav-empty}) : (’Add-Comment, skip, {cont-empty}, {(TRUE -> ’View-Topic ? query-empty)}) : (’Admin,
setSession(s(”adminPage”), s(”busy”)), {cont-empty}, {( TRUE -> ’Index ? query-empty)}) : (’Delete-Comment, skip, {cont-empty},
{(TRUE -> ’View-Topic ? query-empty)}) : (’Delete-Topic, skip, {cont-empty}, {(TRUE -> ’Index ? query-empty)}) : (’Index,
setSession(s(”adminPage”), s(”free”)); ’r := getSession(s(”reg”)); if ’r = null then setSession(s(”reg”), s(”no”)); setSession(s(”mod”),
s(”no”)); setSession(s(”adm”), s(”no”)); setSession(s( ”can-create”), s(”no”)); setSession(s(”can-write”), s(”no”)); setSession(s( ”can-
read”), s(”no”))fi ; ’createlvl := selectDB(s(”create-level”)); ’writelvl := selectDB(s(”write-level”)); ’readlvl := selectDB(s( ”read-level”));
if ’createlvl = s(”all”) then setSession(s(”can-create”), s( ”yes”))fi ; if ’writelvl = s(”all”) then setSession(s(”can-write”), s( ”yes”))fi ; if
’readlvl = s(”all”) then setSession(s(”can-read”), s( ”yes”))fi, {cont-empty}, {(s(”adm”) ’== s(”yes”) -> ’Admin ? query-empty) : (s(
”can-create”) ’== s(”yes”) -> ’New-Topic ? ’topic ’= ””) : (s(”can-read”) ’== s( ”yes”) -> ’View-Topic ? ’topic ’= ””) : (s(”mod”)
’== s(”yes”) -> ’Delete-Topic ? ’topic ’= ””) : (s(”reg”) ’== s(”no”) -> ’Login ? query-empty) : (s(”reg”) ’== s(”yes”) -> ’Logout ?
query-empty)}) : (’Login, skip, {cont-empty}, {(TRUE -> ’Access ? (’pass ’= ””) : ’user ’= ””) : (TRUE -> ’Index ? query-empty)})
: ( ’Logout, setSession(s(”reg”), s(”no”)); setSession(s(”mod”), s(”no”)); setSession(s(”adm”), s(”no”)); setSession(s(”can-create”),
s(”no”)); setSession(s(”can-write”), s(”no”)); setSession(s(”can-read”), s(”no”)), {( TRUE => ’Index)}, {nav-empty}) : (’New-Topic,
skip, {cont-empty}, {(TRUE -> ’View-Topic ? query-empty)}) : (’View-Topic, skip, {cont-empty}, {(TRUE -> ’Index ? query-empty)
: (s(”can-write”) ’== s(”yes”) -> ’Add-Comment ? query-empty) : (s(”mod”) ’== s(”yes”) -> ’Delete-Comment ? query-empty)}),
us(bidAlfred, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-
write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”))) : us(bidAnna, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”))
: (s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”))),
mes-empty, readymes-empty, (s(”alfred”) ; s(”secretAlfred”)) (s(”alfred-role”) ; s(”adm”)) (s(”anna”) ; s(”secretAnna”)) (s(”anna-role”)
; s(”adm”)) (s(”create-level”) ; s(”reg”)) (s(”marc”) ; s(”secretMarc”)) (s(”marc-role”) ; s(”mod”)) (s(”maude”) ; s(”secretMaude”))
(s(”maude-role”) ; s(”mod”)) (s(”rachel”) ; s(”secretRachel”)) (s(”rachel-role”) ; s(”reg”)) (s(”read-level”) ; s(”all”)) (s(”robert”) ;
s(”secretRobert”)) (s(”robert-role”) ; s(”reg”)) (s(”write-level”) ; s(”reg”)))] , ’ReqFin }

Figure 8.3: One Web state of the counter-example trace of Section 8.4.2.

The detailed specification of the electronic forum, together with some
example properties are available at http://www.dsic.upv.es/~dromero/
web-tlr.html.

8.3 Web-TLR Graphical Web interface

The Web-TLR online checker is a Web tool that allows us to specify
and verify Web applications in a simple and friendly way. Web-TLR
is equipped with a user-friendly, graphical Web interface that shields
the user from unnecessary technical information. Whenever a property
is refuted, an interactive slideshow is generated that allows the user to
visually reproduce, step by step, the erroneous navigation trace that un-
derlies the failing model checking computation. In order to assist Web
engineers in the debugging task, Web-TLR includes a trace-slicing tech-
nique whose aim is to reduce the amount of information recorded by the
textual description of counter-examples. This provides deep insight into

http://www.dsic.upv.es/~dromero/web-tlr.html
http://www.dsic.upv.es/~dromero/web-tlr.html
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the system behavior, which helps to debug Web applications. In the fol-
lowing we describe the major features of the Web-TLR online checker.

We consider again the Web application that implements an electronic
forum given in Section 8.2. In order to model-check the considered
Web application, the user must provide the following inputs by using
the Web-TLR Graphical Web interface: i) Web application and state
predicates; ii) initial Web states; iii) selected initial state; and iv) prop-
erty (LTLR formula) to be checked. A snapshot of the input form of the
Web-TLR user interface is given in Figure 8.6.

i) Web application and state predicates. In this field, two Maude
modules must be entered that respectively contain the Web appli-
cation navigation model and the definitions of the desired state
predicates. Optionally, these modules can be loaded from a file.

Figure 8.4 details (the core part of) the Maude module specify-
ing the navigation model of the electronic forum example. Fig-
ure 8.5 displays the Maude definition of the state predicate cur-
Page(bid,p), which holds when browser bid is currently displaying
the Web page p.

ii) Initial Web states. This field is filled with a Maude module
specifying the initial Web state, including the active browsers, the
substitution (predefined answers used to feed user input in forms)
associated to each of them, the communication channel, the Web
server, and the data base connected with the Web application.

The initial state describes the system at the start of the model
checking process, and it is possible to define more than one initial
state which are univocally identified by a label, but only one is
selected for checking the property. In the electronic forum example,
we have defined several alternative initial configurations that the
user can play with.

iii) Selected initial state. In this field, we insert the label of the
chosen initial Web state.

As an initial Web state example, consider the Web state that is la-
beled with name initial, which logs two administrator users (whose
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(fmod WEBAPP is inc PROTOCOL .

--- Names of the web pages

ops INDEX LOGIN ACCESS LOGOUT ADMIN ADDCOMMENT DELCOMMENT VIEWTOPIC

NEWTOPIC DELTOPIC : -> Qid .

op wapp : -> Page . --- Web application

eq wapp = adminPage : addCommentPage : delCommentPage : indexPage :

loginPage : accessPage : logoutPage : viewTopicPage :

newTopicPage : delTopicPage .

--- The access page processes the login request.

--- Upon success, the user is redirected to the index page.

--- Otherwise, the user is redirected back to the login page.

op accessPage : -> Page .

eq accessPage = (ACCESS, accessScript, {((s("reg")’== s("yes")) => INDEX)

: ((s("reg")’== s("no")) => LOGIN)},

{nav-empty}) .

op accessScript : -> Script .

eq accessScript =

’u := getQuery(’user) ; --- get user name

’p := getQuery(’pass) ; --- get password

’p1 := selectDB(’u) ; --- get the password from DB

if ( ’p = ’p1 ) then --- check password

’r := selectDB( ’u ’. s("-role") ) ; --- get user role

setSession( s("reg"), s("yes") ) ; --- set user capabilities

fi

.

--- ...

endfm)

Figure 8.4: Maude specification of the navigation model

(fmod WEBAPP-CHECK is pr TLR[WEBAPP] .

subsorts WebState < State .

vars idb idw : Id . vars z : Sigma .

vars urls : URL . vars sv : Server .

vars ms lms : Message . vars ss : Session .

vars brs : Browser . vars h : History .

vars idlm : Nat . vars page : Qid .

vars ba : BrowserActions .

--- current page

op curPage : Id Qid -> Prop .

eq [B(idb, idw, page, urls, ss, z, lms, h, idlm) : brs]

ba [ms] [sv] |= curPage(idb, page) = true .

eq [brs] ba [ms] [sv] |= curPage(idb, page) = false [owise] .

--- ...

endfm)

Figure 8.5: Maude specification of the curPage state predicate
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identifiers are bidAlfred and bidAnna, respectively) onto the elec-
tronic forum.

iv) Property (LTLR formula) to be checked. In this field, the
user has to enter the property s/he wants to check. This property
must be expressed as an LTLR formula in Maude notation, and
is built up using the LTLR logic operators along with the state
predicates introduced in the first field.

By using the state predicates defined above, here we define in LTLR
syntax the property to be verified by means of Web-TLR. For
example, the mutual exclusion property “No two administrators
can access the administration page simultaneously’ is given by the
following LTLR formula:

�¬ (curPage(bidAlfred,Admin) ∧ curPage(bidAnna,Admin))

Finally, when all the textual fields have been filled in, we can au-
tomatically check the property by just clicking the button Check, which
invokes the Maude built-in operator tlr check [BM08] that supports model
checking of rewrite theories w.r.t. LTLR formulas.

The result of the verification is displayed in a new, dynamically gen-
erated Web page. Since the above property is not satisfied, a counter-
example trace with the erroneous information is delivered. This counter-
example is expressed as a navigation trace (rewrite sequence) and can be
navigated by using an interactive slideshow, which is illustrated in Fig-
ure 8.7. The slideshow supports both forward and backward navigation
through the execution trace and combines a graphical representation of
the application’s navigation model with a detailed textual description of
the Web states. Roughly speaking, each slide contains a graph and a
table. The graph shows which pages are being viewed by which browsers
in the sequence of states represented by the table below the graph.
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Figure 8.6: Electronic Forum Application in Web-TLR
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Figure 8.7: Slideshow of the Web-TLR execution
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8.4 Debugging of Web Applications

Although Web-TLR provides a complete picture of both, the application
model and the generated counter-example, this information is hardly
exploitable for debugging Web applications. Actually, the graphical rep-
resentation provides a very coarse-grained model of the application’s
dynamics, while the textual description conveys too much information.
Therefore, in several cases both representations may result in limited use.

In Chapter 7, a backward-tracing slicing technique for rewriting the-
ories is developed. Roughly speaking, this technique consists in tracing
back, over a rewrite sequence, all the relevant symbols of the term (or
state) that we are interested in. This way, the user can pay attention only
to those subterms of the state that s/he wants to inspect. This technique
has been implemented in a tool that supports the manipulation of traces
of rewrite theories that are written in Maude.

By coupling Web-TLR with this tool, we can focus on the relevant
information of each Web state and reduce the effort that is required
for debugging the Web application via the analysis of a given counter-
example trace. To achieve this, the external slicing routine is fed with
the given counter-example, the selected Web state s where the backward-
slicing process is required to start, and the slicing criterion for s —that
is, the symbols of s we want to trace back. It is worth noting that, for
model checking Web applications with Web-TLR, we have developed a
specially–tailored, handy filtering notation that allows us to easily specify
the slicing criterion and automatically select the desired information by
exploiting the powerful, built-in pattern-matching mechanism of Rewrit-
ing Logic. The outcome of the slicing process is a sliced version of the
textual description of the original counter-example trace that facilitates
the interactive exploration of error scenarios when debugging Web appli-
cations.

8.4.1 Filtering Notation

In order to select the relevant information to be traced back, we intro-
duce a simple, pattern-matching filtering language that frees the user
from explicitly introducing the specific positions of the Web state that
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s/he wants to observe 2. Roughly speaking, the user introduces an in-
formation pattern p that has to be detected inside a given Web state s.
The information matching p that is recognized in s, is then identified by
pattern matching and is kept in s•, whereas all other symbols of s are
considered irrelevant and then removed. Finally, the positions of the Web
state where the relevant information is located are obtained from s•. In
other words, the slicing criterion is defined by the set of positions where
the relevant information is located within the state s that we are observ-
ing and is automatically generated by pattern-matching the information
pattern against the Web state s.

The filtering language allows us to define the relevant information
as follows: (i) by giving the name of an operator (or constructor) or a
substring of it; and (ii) by using the question mark “?” as a wildcard
character that indicates the position where the information is considered
relevant. On the other hand, the irrelevant information can be declared
by using the wildcard symbol “ ” as a placeholder for uninteresting ar-
guments of an operator.

Let us illustrate this filtering notation by means of a rather intuitive
example.

Example 8.4.1
Let us assume that the electronic forum application allows one to list
some data about the available topics. Specifically, the following term t
specifies the names of the topics available in our electronic forum together
with the total number of posted messages for each topic.

topic info(topic(astronomy, ]posts(520)), topic(stars, ]posts(58)),
topic(astrology, ]posts(20)), topic(telescopes, ]posts(290)) )

Then, the pattern
topic(astro, ]posts(?))

defines a slicing criterion that allows us to observe the topic name as well
as the total number of messages for all topics whose name includes the
word astro. Specifically, by applying such a pattern to the term t, we
obtain the following term slice

topic info(topic(astronomy, ]posts(520)), •, topic(astrology, ]posts(20)), •)
2Terms are viewed as labeled trees in the usual way. Positions are represented by

sequences of natural numbers denoting an access path in a term. The empty sequence
Λ denotes the root position of the term.
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which ignores the information related to the topics stars and telescopes,
and induces the slicing criterion

{Λ.1.1, Λ.1.2.1, Λ.3.1, Λ.3.2.1}.

Note that we have introduced the fresh symbol • to approximate any
output information in the term that is not relevant with respect to a
given pattern.

8.4.2 A Debugging Session with Web-TLR

In this section, we illustrate our methodology for interactive analysis of
counter-example traces and debugging of Web applications.

Let us consider an initial state that consists of two administrator
users whose identifiers are bidAlfred and bidAnna, respectively. Let us
also recall the mutual exclusion Property 8.1 of page 166

�¬ (curPage(bidAlfred,Admin) ∧ curPage(bidAnna,Admin))

which states that “no two administrators can access the administration
page simultaneously”. Note that the predicate state
curPage(bidAlfred,Admin) holds when the user bidAlfred logs into the
Admin page (a similar interpretation is given to predicate
curPage(bidAnna,Admin)). By verifying the above property with Web-
TLR, we get a huge counter-example that proves that the property is
not satisfied. The trace size weighs around 190kb.

In the following, we show how the considered Web application can be
debugged using Web-TLR. First of all, we specify the slicing criterion
to be applied on the counter-example trace. This is done by using the
wildcard notation on the terms introduced in Section 8.4.1. Then, the
slicing process is invoked and the resulting trace slice is produced. Fi-
nally, we analyze the trace slice and outline a methodology that helps
the user to locate the errors.

Slicing Criterion

The slicing criterion represents the information that we want to trace
back through the execution trace T that is produced as the outcome of
the Web-TLR model-checker.
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For example, consider the final Web state s shown in Figure 8.3 of
page 168. In this Web state, the two users, bidAlfred and bidAnna, are
logged into the Admin page. Therefore, the considered mutual exclusion
property has been violated. Let us assume that we want to diagnose
the erroneous pieces of information within the execution trace T that
produce this bug. Then, we can enter the following information pattern
as input,

B(?, , ?, , , , , , )

where the operator B restricts the search of relevant information in-
side the browser data structures, the first question symbol ? represents
that we are interested in tracing the user identifiers, and the second
one calls for the Web page name. Thus, by applying the considered
information pattern to the Web state s, we obtain the slicing criterion
{Λ.1.1.1, Λ.1.1.3, Λ.1.2.1, Λ.1.2.3} and the corresponding sliced state

s• = [B(bidAlfred, •,Admin, •, •, •, •, •, •) :
B(bidAnna, •,Admin, •, •, •, •, •, •)][•][•]

Note that Λ.1.1.1 and Λ.1.2.1 are the positions in s• of the user iden-
tifiers bidAlfred and bidAnna, respectively, and Λ.1.1.3 and Λ.1.2.3 are
the positions in s• that indicate that the users are logged into the Admin

page.

Trace Slice

Let us consider the counter-example execution trace T = s0 → s1 →
. . . → sn, where sn = s. The slicing technique proceeds backwards,
from the observable state sn to the initial state s0, and for each state
si recursively generates a sliced state s•i that consists of the relevant
information with respect to the slicing criterion.

By running the backward-slicing tool with the execution trace T and
the slicing criterion given above as input, we get the trace slice T • as
outcome, where useless data that do not influence the final result are
discarded. Figure 8.8 shows a part of the trace slice T •.

It is worth observing that the slicing process greatly reduces the size
of the original trace T , and allows us to center on those data that are
likely to be the source of an erroneous behavior.
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T • = s•0 . . . → s•n−6
ScriptEval→ s•n−5

flat/unflat→ s•n−4
ResIni→ s•n−3

flat/unflat→ s•n−2
ResF in→ s•n−1

flat/unflat→ s•n

where

s•n = [B(bidAlfred, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗][∗]

s•n−1 = [B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗) : B(bidAlfred, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗][∗]

s•n−2 = [B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗) : B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1)]∗
[S2B(bidAlfred, tidAlfred, Admin, ∗, ∗, 1) : ∗][∗]

s•n−3 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)]∗
[∗ : S2B(bidAlfred, tidAlfred, Admin, ∗, ∗, 1)][∗]

s•n−4 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗]
[S(∗, ∗ : us(bidAlfred, ∗), ∗, (rm(S2B(bidAlfred, tidAlfred, Admin, ∗, ∗, 1), ∗, ∗) : ∗), ∗]

s•n−5 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗]
[S(∗, us(bidAlfred, ∗) : ∗, ∗, (∗ : evalScript(WEB-APP, SESSION,
B2S(bidAlfred, tidAlfred, Admin?query-empty, 1), DB)), ∗)]

s•n−6 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗]
[S(WEB-APP, (∗ : us(bidAlfred, SESSION)),
B2S(bidAlfred, tidAlfred, Admin?query-empty, 1) : ∗, ∗, DB]

Figure 8.8: Trace slice T •.

Let |T | be the size of the trace T , namely the sum of the number of
symbols of all trace states. In this specific case, the size reduction that is
achieved on the the subsequence s(n−6) . . . sn of T , in symbols T[s(n−6)..sn]

is:
|T •[s•

(n−6)
...s•n] |

|T[s(n−6)...sn] |
=

121

1458
= 0.083 (i.e., a reduction of 91.7%)

Trace Slice Analysis

Let us analyze the information recorded in the trace slice T •. In order
to facilitate understanding, the main symbols involved in the description
are underlined in Figure 8.8.

- The sliced state s•n is the observable state that records only the
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relevant information defined by the slicing criterion.

- The slice state s•n−1 is obtained from s•n by the flat/unflat transfor-
mation.

- In the sliced state s•n−2, the communication channel contains a re-
sponse message for the user bidAlfred. This response message
enables the user bidAlfred to log into the Admin page. Note that
the identifier tidAlfred occurs in the Web state. This identifier
signals the open window that the response message refers to. Also,
the number 1 that occurs in the sliced state s•n−2 represents the ack
(acknowledgement) of the response message. Finally, the reduction
from s•n−2 to s•n−3 corresponds again to a flat/unflat transformation.

- In the sliced state s•n−4, we can see the response message stored in
the server that is ready to be sent, whereas, in the server config-
uration of the sliced state s•n−5, the operator evalScript occurs.
This operator takes the Web application (WEB-APP), the user session
(SESSION), the request message, and the database (DB) as input.
The request message contains the query string that has been sent
by the user bidAlfred to ask for admission into the Admin page.
Observe that the response message that is shown in the slice state
s•n−4 is the one given as the outcome of the evaluation of the oper-
ator evalScript in the sliced state s•n−5.

- Finally, the sliced state s•n−6 shows the request message waiting to
be evaluated.

Note that the outcome delivered by the operator evalScript, when
the script αadmin is evaluated, is not what the user would have expected,
since it allows the user to log into the Admin page, which leads to the
violation of the considered property. This identifies the script αadmin as
the script that is responsible for the error. Note that this conclusion is
correct because αadmin has not implemented a mutual exclusion control
(see Figure 8.2). A snapshot of Web-TLR that shows the slicing process
is given in Figure 8.9.

This bug can be fixed by introducing the necessary control for mutual
exclusion as follows. First, a continuation (”adminPage” = ”busy”) →
Index?[∅]) is added to the Admin page, and the αadmin is replaced by a new
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Web script that checks whether there is another user in the Admin page.
In the case when the Admin page is busy because it is being accessed by
a given user, any other user is redirected to the Index page. If the Admin
page is free, the user asking for permission to enter is authorized to do
so (and the page gets locked). Furthermore, the control for unlocking
the Admin page is added at the beginning of the script αindex. Hence, the
fixed Web scripts are as follows:

PAdmin = (Admin, αadmin,
{(”adminPage” = ”busy”)→ Index?[∅])},
{(∅ → (Index?[∅]))})

where the new αAdmin is:

αadmin

’u := getSession(”user”) ;
’adm := selectDB(”adminPage”) ;
if ( ’adm != ’u) then

setSession(”adminPage”, ”busy”)
else

setSession(”adminPage”, ”free”)) ;
updateDB( ”adminPage”, ’u) )

fi

and the piece of code that patches αindex is:

αindex

’adm := getSession(”adminPage”) ;
if (’adm = ”free”) then

updateDB(”adminPage”, ”free”)
fi ;
. . .

Finally, by using Web-TLR again we get the outcome “Property is
fulfilled, no counter-example given”, which guarantees that now the Web
application satisfies Property 8.1. Figure 8.10 shows a snapshot of WEB-
TLR for the case when a property is fulfilled.

To conclude, by using our backward trace slicing tool, the debugging
of counter-example traces given by Web-TLR is more intuitive and easy.
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Slicing Process

Selected State

State Browser Messages Server Rule

S41

B(bidAlfred, tidAlfred, 'Admin, url-empty, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-write"),
s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")), Z, m(bidAlfred, tidAlfred, 'Index ?
query-empty, 1), history-empty, 1) : B(bidAnna, tidAnna, 'Admin, 'Index ? query-
empty, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) : (s("can-create"), s("yes")) :
(s("can-read"), s("yes")) : (s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"),
s("yes")), Z, m(bidAnna, tidAnna, 'Admin ? query-empty, 1), history-empty, 1)

m(bidAlfred,
tidAlfred, 'Index
? query-empty,
1)

S(WebSite, us(bidAlfred, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) :
(s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")))
: us(bidAnna, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) :
(s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-
write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes"))),
mes-empty, readymes-empty, Db)

'ReqIni

Filtering

Filtering
pattern: B(?, _, ?, _, _, _, _, _, _) Check

Trace Slice

Positions: {!, !.1.1.1, !.1.1.3, !.1.2.1, !.1.2.3}

State State detail Rule

S!n-15
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(WebSite,:(us(bidAlfred,
Session),us(bidAnna,Session)),m(bidAnna,tidAnna,?( Admin,query-empty),s(0)),rm(m(bidAlfred, tidAlfred,Admin,?(*,*),*,s( 0)),*,*),DB)))

Start

S!n-14
(( :(B(bidAlfred,tidAlfred,*,*,*, *,*,*,s(0)),B(bidAnna,tidAnna, *,*,*,*,*,*,s(0))), *,*,S(WebSite,:(us(bidAlfred,Session),us( bidAnna,Session)),:
(m(bidAnna,tidAnna,?(Admin, query-empty),s(0)),*),rm(m(bidAlfred, tidAlfred,Admin,?(*,*),*,s( 0)),*,*),DB)))

EquationalSimplification-
Flat-UnFlat

S!n-13
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(*,:(us(bidAlfred, *),us(bidAnna,*)),*,:(rm(m(bidAlfred,
tidAlfred,Admin,?(*,*),*,s( 0)),*,*),evalScript(WebSite,Session,m(bidAnna, tidAnna,?(Admin,query-empty),s(0)),DB)), *)))

ScriptEval

S!n-12
((:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(*,:(us(bidAnna, *),us(bidAlfred,*)),*,:(rm(m(
bidAlfred,tidAlfred,Admin,?(*,*), *,s(0)),*,*),rm(m(bidAnna, tidAnna,Admin,?(*,*),*,s(0)), *,*)),*)))

EquationalSimplification-
Flat-UnFlat

S!n-11
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(*,m(bidAlfred,tidAlfred, Admin,?(*,*),*,s(0))),S(
*,:(us(bidAnna,*),*),*,rm(m( bidAnna,tidAnna,Admin,?(*,*),*, s(0)),*,*),*)))

ResIni

S!n-10
(( :(B(bidAlfred,tidAlfred,*,*,*, *,*,*,s(0)),B(bidAnna,tidAnna, *,*,*,*,*,*,s(0))), *,m(bidAlfred,tidAlfred,Admin,?(*, *),*,s(0)),S(*,:(*,us( bidAnna,*)),*,:
(rm(m(bidAnna,tidAnna, Admin,?(*,*),*,s(0)),*, *),*),*)))

EquationalSimplification-
Flat-UnFlat

S!n-9
( (:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(m(bidAlfred,tidAlfred,Admin, ?(*,*),*,s(0)),m(bidAnna,
tidAnna,Admin,?(*,*),*,s(0))), *))

ResIni

S!n-8
((:(B(bidAnna,tidAnna,*,*, *,*,*,*,s(0)),B(bidAlfred, tidAlfred,*,*,*,*,*,*, s(0))),*,:(m(bidAlfred,tidAlfred,Admin, ?(*,*),*,s(0)),m(bidAnna,
tidAnna,Admin,?(*,*),*,s(0))), *))

EquationalSimplification-
Flat-UnFlat

S!n-7 ((:(B( bidAnna,tidAnna,*,*,*,*,*, *,s(0)),B(bidAlfred,*,Admin,?( *,*),*,*,*,*,*)), *,m(bidAnna,tidAnna,Admin,?(*,*), *,s(0)),*)) ResFin

S!n-6 (( :(B(bidAlfred,*,Admin,?(*,*), *,*,*,*,*),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(m(bidAnna,tidAnna,Admin,?( *,*),*,s(0)),*),*))
EquationalSimplification-
Flat-UnFlat

S!n-5 ((:(B(bidAlfred, *,Admin,?(*,*),*,*, *,*,*),B(bidAnna,*,Admin,?( *,*),*,*,*,*,*)), *,*,*)) ResFin

S!n-4 (( :(B(bidAnna,*,Admin,?(*,*), *,*,*,*,*),B(bidAlfred, *,Admin,:(*,?(*,*)),*, *,*,*,*)),*,*,*))
EquationalSimplification-
Flat-UnFlat

S!n-3 ((:(B(bidAnna, *,Admin,?(*,*),*,*, *,*,*),B(bidAlfred,*,Admin, *,*,*,*,*,*)),*, *,*)) ReqIni

S!n-2 ((:(B(bidAlfred,*, Admin,*,*,*,*,*,*), B(bidAnna,*,Admin,:(*,?(*, *)),*,*,*,*,*)),*, *,*))
EquationalSimplification-
Flat-UnFlat

S!n-1 (( :(B(bidAlfred,*,Admin,*,*,*, *,*,*),B(bidAnna,*,Admin, *,*,*,*,*,*)),*, *,*)) ReqIni

S!n deleted
EquationalSimplification-
Flat-UnFlat

Slicing Process http://localhost:8080/webtlr/debug.jsp

1 de 1 11/04/11 16:19

Figure 8.9: Snapshot of the Web-TLR System.
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Figure 8.10: Snapshot of the Web-TLR System for the case of no
counter-examples.
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Conclusions

Maintaining the consistency of Web contents is an open and urgent prob-
lem since outdated, incorrect, and incomplete information is becoming
more and more frequent in the World Wide Web. Furthermore, the dy-
namic features of Web systems raise new challenges for Web verification
techniques that intersect many other areas. In order to promote the
technological transfer of such techniques to the industry, it is necessary
to provide tools that are able to detect mistakes with precision and to
give prompt solutions on real examples. In this thesis, we have presented
some techniques that (hopefully) contribute a step forward in the Web
verification area.

Static Web Verification

Repairing Faulty Web Sites. We presented a semi–automatic method-
ology for repairing Web sites that has a number of advantages over other
approaches (and hence can be used as a useful complement to them).
Here we highlight the main advantages of our repair methodology.

� Our methodology can be smoothly integrated on top of existing
rewriting-based Web verification frameworks such as [ABF06], which
offers the expressiveness and computational power of functions and
allows one to avoid the encumbrances of DTDs and XML rule lan-
guages.

� By solving the constraint satisfaction problem associated to the
conditions of the Web specification rules, we are also able to aid
users to fix erroneous information by suggesting ranges of correct
values.

� In contrast to the active database Web management techniques,
we are able to predict whether a repair action can raise new errors,
and hence assist the user in reformulating the action.
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We also described a significant optimization that improves several
aspects of our basic repair technique. More specifically,

� we provided a detailed analysis of the errors in a Web site that
clarified the relation among them. By exploiting the results of such
analysis, we formulated two correction/completeness strategies that
reduce the number of repair actions and the amount of information
needed to fix a given Web site;

� the considered correction/completeness strategies increase the level
of automation of the repairing method, since the user just has to fix
a small number of errors to make a Web site correct and complete
whit respect to a given Web specification.

Automated Verification of Web Sites. We presented a powerful Web
verification/repair engine called Verdi-M [ABE+07], which greatly im-
proves the original Verdi system [BV05]. Verdi-M is implemented in
Maude and exploits the specific Maude capabilities that are particularly
suitable for our implementation, such as associative commutative pattern
matching and metaprogramming. In order to assess the performance of
our system, we extensively tested the Verdi-M core engine. The pro-
duced benchmark reports an impressive performance, e.g., less than one
second for evaluating a tree of 30,000 nodes. We also proposed a service-
oriented architecture that makes the Web verification/repair capabilities
of the system easily accessible to Internet requesters. The resulting pro-
totype WebVerdi-M [ABF+07a] is publicly available together with a set
of examples and its XML API. Another important factor that we have
considered was how to reduce the learning costs to the user. For this
reason, we developed a friendly and innovative interface for our system.

Although WebVerdi-M shows excellent performance for correctness
checking, unfortunately, for the verification of completeness, a (finite)
fixpoint computation is typically needed, which leads to unsatisfactory
performance for XML documents bigger than 1Mb. To overcome this
drawback, we proposed a novel abstract methodology for analyzing and
verifying Web sites that offsets the high execution costs of analyzing the
completeness of complex Web documents. The framework is formalized
as a source-to-source transformation that is parametric with respect to



Conclusions 185

the abstraction, and translates the Web documents and their specifica-
tions into constructions of the same language, so that an efficient imple-
mentation can be easily derived with very little effort. The key idea for
the abstraction is to exploit the substructure similarity that is commonly
found in HTML/XML documents.

We also have ascertained the conditions that ensure the correctness
of the approximation, so that the resulting abstract rewrite engine safely
supports accurate Web site verification. In other words, we can conclude
that:

� there are no concrete completeness errors in the case when no ab-
stract completeness errors are detected;

� whenever an abstract correctness error is detected, a corresponding
correctness error must exist in the concrete counterpart.

Finally, we tested our approximation with several examples, which
demonstrated a considerable improvement in the WebVerdi-M’s perfor-
mance.

Dynamic Web Verification

We formulated a detailed navigation model in rewriting logic that accu-
rately formalizes the behavior of Web applications. The proposed model
allows us to specify several critical aspects of Web applications such
as concurrent Web interactions, browser navigation features, and Web
scripts evaluations in an elegant, high-level rewrite theory. We also cou-
pled our formal specification with LTLR, which is a linear temporal logic
designed to model-check rewrite theories. The proposed technique was
implemented in the prototype Web-TLR [ABR09; ABER10], which is
written in Maude. We conducted several experiments that demonstrated
the practicality of our approach.

Web-TLR distinguishes itself from related tools in a number of
salient aspects:

� a rich Web application core model, which considers the commu-
nication protocol underlying for Web interactions as well as the
common browser navigation features;
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� an efficient and accurate model checking of dynamic properties, e.g.,
reachability of Web pages generated by means of Web script exe-
cutions, at low cost. The verification includes a property checking
analysis that provides diagnostic traces (counter-examples) when-
ever a given property does not hold;

� a friendly visualization of counter-examples via an interactive
slideshow, which allows the user to explore the model by perform-
ing forward and backward transitions. At each slide, the interface
shows the values of relevant variables of the Web state. This on–
the–fly exploration does not require installation of the checker itself
and is provided entirely by the graphical Web interface.

Counter-examples often include a huge amount of information, which
makes the debugging of a Web application a hard task. In order to
ease Web application debugging, we defined a backward trace slicing
technique that can significantly reduce the size of the counter-examples
given as outcome by Web-TLR. This is achieved by dropping useless
data that do not influence the detected wrong application’s behavior.

Future Work

There are several interesting directions for continuing the research pre-
sented in this thesis. Let us briefly comment on some of them.

� In our repairing methodology, the repair actions are based on chang-
ing or removing the subterms that produce the failure. In order to
preserve the original structure of the Web page, we plan to use
our experience in handling XML documents [BR07a] as well as in
analyzing the structure of Web pages [AR08; AR10] in order to
refine our repairing methodology. Roughly speaking, the idea is to
consider repair actions that affect only the label of the nodes where
the error occurs. This improvement will allow us to minimize the
changes done by a repair action on a wrong Web site.

� With regard to the abstract verification framework, we plan to
investigate how to maximize the accuracy of the abstraction func-
tion. For example, in [CGJ+00] an adaptive algorithm guided by
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spurious counter-examples is proposed. In our framework, these
spurious counter-examples correspond to the spurious errors (false
alarms) detected into the abstract domain.

� Since Web-TLR works at an abstract level, we plan to complement
it by giving support to synthesizing correct-by-construction [BV07;
PT10] Web applications. We also plan to deal with client-side
scripts, e.g., scripts written in JavaScript or similar languages.

� The prototype of our backward-trace slicing technique showed to
be helpful for debugging of rewrite theories. We plan to cope with
the execution traces of other sophisticated tools developed on top of
the language Maude, such as theorem provers, program debuggers,
and program certifiers.
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[RH05] G. Roşu and K. Havelund. Rewriting-Based Techniques
for Runtime Verification. Automated Software Engineering,
12(2):151–197, 2005.

[RVCMO09] A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet.
Declarative Debugging of Rewriting Logic Specifications.
In Proc. of the Recent Trends in Algebraic Development
Techniques, 19th Int’l Workshop (WADT 2008), volume
5486 of Lecture Notes in Computer Science, pages 308–325.
Springer, 2009.

[RVMO10] A. Riesco, A. Verdejo, and N. Mart́ı-Oliet. Declarative De-
bugging of Missing Answers for Maude. In Proc. of the 21st
Int’l Conference on Rewriting Techniques and Applications
(RTA 2010), volume 6 of LIPIcs, pages 277–294. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[SBRS03] J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz.
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[SRBS04b] J. Scheffczyk, P. Rödig, U. M. Borghoff, and L. Schmitz. S-
dags: Towards efficient document repair generation. In Proc.
of the Int’l Conference on Computing, Communications and
Control Technologies, volume 2, pages 308–313, 2004.

[SWK+02] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for xml
data management. In Proc. of the 28th Int’l Conference on
Very Large Data Bases (VLDB 2002), August 20-23, 2002,
Hong Kong, China, pages 974–985, 2002.

[Tal08] C. Talcott. Pathway logic. Formal Methods for Computa-
tional Systems Biology, 5016:21–53, 2008.

[TeR03] TeReSe, editor. Term Rewriting Systems. Cambridge Uni-
versity Press, Cambridge, UK, 2003.

[Vir94] P. Viry. Rewriting: An effective model of concurrency. In
Proc. of the 6th Int’l Conference on Parallel Architectures
and Languages Europe (PARLE’94), pages 648–660, Lon-
don, UK, 1994. Springer-Verlag.

[Wad76] C. P. Wadsworth. The Relation Between Computational
and Denotational Properties for Scott’s D∞-Models of the
Lambda-Calculus. SIAM J. Comput., 5(3):488–521, 1976.



202 Bibliography



Appendix A

Formal Specification of the
Operational Semantics of the

Web Scripting Language

The equational theory (Σs, Es), which we presented in Section 6.2.1, is
formally defined by means of the following Maude specification that con-
sists of two functional modules. The former module (called EXPRESSION)
specifies the syntax as well as the semantics of the language expressions.
The latter module (called SCRIPT) formalizes the syntax and semantics
of the language statements. The evaluation function

[[ ]] : ScriptState→ ScriptState

is encoded via the operator evlSt : ScriptState -> ScriptState

which is contained in the functional module SCRIPT.

(fmod EXPRESSION is inc MEMORY + QUERY + SESSION + DATABASE .

sorts Expression Test .

subsorts Test Value Qid < Expression .

--- Signature of the Expression operators

op TRUE : -> Test .

op FALSE : -> Test .

op _=_ : Expression Expression -> Test .

op _!=_ : Expression Expression -> Test .

op _’+_ : Expression Expression -> Expression .

op _’*_ : Expression Expression -> Expression .

op _’._ : Expression Expression -> Expression .

op getSession : Expression -> Expression .

op getQuery : Qid -> Expression .

op selectDB : Expression -> Expression .

op updateDB : Expression Expression -> Script .

op evlEx : Expression Memory Session Query DB -> Expression .

--- Semantics of the Expression operators

vars ex ex1 ex2 : Expression .
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vars m ms : Memory .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

vars qid : Qid .

vars v : Value .

vars str : String .

vars sql : SqlDB .

vars t : Test .

--- Exp: value

eq evlEx ( v, m, s, q, db ) = v .

--- Exp: boolean conditions = and !=

ceq evlEx ( ex1 = ex2, m, s, q, db ) = TRUE

if ((evlEx(ex1, m, s, q, db)) == (evlEx(ex2, m, s, q, db))) .

ceq evlEx ( ex1 = ex2, m, s, q, db ) = FALSE

if ((evlEx(ex1, m, s, q, db)) =/= (evlEx(ex2, m, s, q, db))) .

ceq evlEx ( ex1 != ex2, m, s, q, db ) = FALSE

if ((evlEx(ex1, m, s, q, db)) == (evlEx(ex2, m, s, q, db))) .

ceq evlEx ( ex1 != ex2, m, s, q, db ) = TRUE

if ((evlEx(ex1, m, s, q, db)) =/= (evlEx(ex2, m, s, q, db))) .

--- Exp: evaluation of private memory identifiers

eq evlEx ( qid, ([qid, v] : ms), s, q, db ) = v .

ceq evlEx ( qid, m, s, q, db ) = null if qid in m =/= true .

--- Exp: arithmetic operators

eq evlEx ( ex1 ’+ ex2, m, s, q, db )

= evlEx(ex1, m, s, q, db) + evlEx(ex2, m, s, q, db) .

eq evlEx ( ex1 ’* ex2, m, s, q, db )

= evlEx(ex1, m, s, q, db) * evlEx(ex2, m, s, q, db) .

--- Exp: attribute selector

eq evlEx ( ex1 ’. ex2, m, s, q, db )

= evlEx(ex1, m, s, q, db) v+ evlEx(ex2, m, s, q, db) .

-- Exp: getSession

eq evlEx ( getSession(ex), m, s, q, db )

= getSessionValue( s, evlEx(ex, m, s, q, db) ) .

-- Exp: getQuery

eq evlEx ( getQuery(qid), m, s, (qid ’= str) : qs, db ) = s(str) .

ceq evlEx ( getQuery(qid), m, s, q, db ) = null if qid in q =/= true .

--- Exp: selectDB

eq evlEx ( selectDB(ex), m, s, q, db ) = select(db, evlEx(ex, m, s, q, db)) .

--- Exp: null value

eq evlEx ( ex, m, s, q, db ) = null [owise] .

endfm)

(fmod SCRIPT is inc EXPRESSION .
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--- Signature of the Statement operators

sorts Script ScriptState .

op skip : -> Script .

op _;_ : Script Script -> Script [prec 61 assoc id: skip] .

op _:=_ : Qid Expression -> Script .

op if_then_else_fi : Test Script Script -> Script .

op if_then_fi : Test Script -> Script .

op while_do_od : Test Script -> Script .

op repeat_until_od : Script Test -> Script .

op ‘[_‘,_‘,_‘,_‘,_‘] : Script Memory Session Query DB -> ScriptState .

op setSession : Expression Expression -> Script .

op clearSession : -> Script .

op evlSt : ScriptState -> ScriptState .

--- Semantics of the Statement operators

vars ex ex1 ex2 : Expression .

vars m ms : Memory .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

vars qid : Qid .

vars v : Value .

vars str : String .

vars p p1 p2 ps : Script .

vars t : Test .

vars sql : SqlDB .

--- Statement: skip

eq evlSt ( [ skip, m, s, q, db ] ) = [ skip, m, s, q, db ] .

--- Statement: assignment (:=)

eq evlSt ( [ (qid := ex ); ps, [qid, v] : ms, s, q, db ] ) =

evlSt ( [ ps, [qid, evlEx(ex, [qid, v] : ms, s, q, db ) ] : ms, s, q, db]) .

ceq evlSt ( [ (qid := ex ); ps, ms, s, q, db ] ) =

evlSt ( [ ps, [qid, evlEx(ex, ms, s, q, db ) ] : ms, s, q, db ] )

if qid in ms =/= true .

--- Statement: if then else fi

ceq evlSt ( [ ( if t then p1 else p2 fi ) ; ps, m, s, q, db ] ) =

evlSt ([ p1 ; ps, m, s, q, db ]) if (TRUE == evlEx(t, m, s, q, db)) == true .

ceq evlSt ( [ ( if t then p1 else p2 fi ) ; ps, m, s, q, db ] ) =

evlSt ([ p2 ; ps, m, s, q, db ]) if (TRUE == evlEx(t, m, s, q, db)) =/= true .

--- Statement: while do od

ceq evlSt ( [ ( while t do p od ); ps, m, s, q, db ] ) =

evlSt ([ p ; while t do p od ; ps, m, s, q, db ])

if (TRUE == evlEx(t, m, s, q, db)) == true .

ceq evlSt ( [ ( while t do p od ); ps, m, s, q, db ] ) = evlSt ([ ps, m, s, q, db ])

if (TRUE == evlEx(t, m, s, q, db)) =/= true .

--- Statement: setSession

eq evlSt ([ ( setSession(ex1, ex2) ); ps, m, s, q, db ]) =
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evlSt ([ ps, m, setSessionValue (s, evlEx(ex1, m, s, q, db),

evlEx(ex2, m, s, q, db) ) , q, db ]) .

--- Statement: clearSession

eq evlSt ([ clearSession ; ps, m, s, q, db ])

= evlSt ([ ps, m, session-empty, q, db ]) .

--- Statement: updateDB

eq evlSt ([ ( updateDB (ex1, ex2) ); ps, m, s, q, db ]) =

evlSt ([ ps, m, s, q, update (db, evlEx(ex1, m, s, q, db),

evlEx(ex2, m, s, q, db) ) ]) .

endfm)



Appendix B

Formal Specification of the
Evaluation Protocol Function

The protocol evaluation function eval, which we presented in Section
6.2.3, is formally specified by means of the following Maude functional
module.

(fmod EVAL is inc WEB_MODEL .

vars page wapp wapps w : Page .

vars np qid np1 np2 nextPage : Qid .

vars q q1 : Query .

vars sc sc1 : Script .

vars cont conts : Continuation .

vars nav : Navigation .

vars ss nextS : Session .

vars cond conds : Condition .

vars url urls nextURLs : URL .

vars id idw : Id .

vars uss : UserSession .

vars db nextDB : DB .

vars m : Memory .

vars idmes : Nat .

op pageNotFound : -> Qid .

op pageNotContinuation : -> Qid .

op holdContinuation : Qid Continuation Session -> Qid .

op holdNavigation : Qid Page Session -> URL .

op holdCont : Qid Continuation Session -> Qid .

op whichQid : Qid Qid -> Qid .

op getURLs : Navigation Session -> URL .

op evalScript : Page UserSession Message DB -> ReadyMessage .

--- Evaluation of the enabled continuations

eq holdContinuation(np, (cond => np) : conts, ss)

= holdCont (np, (cond => np) : conts, ss) .

ceq holdContinuation(np, conts, ss) = qid

if np1 := holdCont (np, conts, ss) /\ qid := whichQid ( np, np1 ) [owise] .

eq holdCont (np, cont-empty, ss) = pageNotContinuation .

ceq holdCont (np, (cond => qid) : conts, ss)

= qid if ( holdCondition(cond,ss) ) == true .

eq holdCont (np, (cond => qid) : conts, ss) = holdCont (np, conts, ss) [owise] .

eq whichQid ( np, pageNotContinuation ) = np .
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eq whichQid ( np, np1 ) = np1 [owise] .

--- Evaluation of the enabled navigations

eq holdNavigation(np, (( np, sc, { cont }, { nav } ) : wapp ), ss )

= getURLs (nav, ss) .

eq holdNavigation(np, wapp, ss ) = url-empty [owise] .

eq getURLs ( nav-empty, ss ) = url-empty .

ceq getURLs ( ( cond -> url) : nav, ss ) = url : getURLs ( nav, ss )

if ( holdCondition(cond,ss) ) == true .

eq getURLs ( ( cond -> url) : nav, ss ) = getURLs ( nav, ss ) [owise] .

--- Eval definition

ceq eval ((( np, sc, { cont }, { nav } ) : wapps ), us( id, ss ) : uss,

m( id, idw, (np ? q), idmes ), db)

= rm( m( id, idw, nextPage, nextURLs, idmes), nextS, nextDB)

if [sc1, m, nextS, q1, nextDB] := eval([sc, none, ss, q, db] ) /\

nextPage := holdContinuation (np, cont, nextS) /\

nextURLs := holdNavigation (nextPage, (( np, sc, { cont },

{ nav } ) : wapps ), nextS)

.

eq eval ( wapp, us( id, ss ) : uss, m( id, idw, (np ? q), idmes ), db ) =

rm( m( id, idw, pageNotFound, url-empty, idmes ), ss, db ) [owise] .

endfm)
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Example: The War of Souls

Let us illustrate our backward trace slicing technique for rewrite theories
by means of a nontrivial producer/consumer example.

The War of Souls (WoS) is a game where an angel and a daemon
fight to conquer the souls of human beings. Basically, when a human
being passes away, his/her soul is sent to heaven or to hell depending
on his/her faith as well as the strength of the angel and the daemon in
play. Human beings with a higher level of faith are more likely to go to
heaven.

This game is specified as a rewrite theory whose implementation,
which is written in Maude, is shown in Figure C.11. The angel (resp.
the daemon) is modeled by using the constructor term A(strength) (resp.
D(strength)), where A (resp. D) is a constructor function symbol (i.e.,
a function symbol which doesn’t appear as root symbol of the left-hand
side of any equation or rule) and strength is a natural number specifying
the strength of goodness of the angel (resp. the strength of evilness of
the daemon). A human being is formalized by means of the constructor
term H(faith), where H is a constructor function symbol and faith is a
natural number in the range 0..100 modeling his/her faith. Basically, the
dynamic of the game is specified by means of two rules — namely, the
creation rule and the death rule. The creation rule generates a new human
being with a random faith, provided that there are at least two living
human beings. The auxiliary equation newFaith allows us to consider a
random value for the faith. The death rule selects a human being H and
judges whether H should be sent to heaven or to hell. This decision is

1Operator declarations in Maude may include equational attributes, such as assoc,
comm, and id, stating, for example, that the operator is associative and commutative
and has a certain identity element. Such attributes are used to represent certain kinds
of equational axioms in a way that allows Maude to use these equations efficiently in a
built-in way. The operator attribute ctor declares that the operator is a constructor,
as opposed to a function defined by means of rules or equations.
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mod war-of-souls is inc

INT + RANDOM + COUNTER .

sorts Human Angel Daemon Soul .

subsorts Human Angel Daemon < Soul .

vars faith good bad f1 f2 : Int .

var a : Angel . var d : Daemon .

var h h1 h2 : Human .

op H : Nat -> Human [ctor] .

op A : Nat -> Angel [ctor] .

op D : Nat -> Daemon [ctor] .

--- constants

ops HEAVEN HELL : -> Soul [ctor] .

--- equations

op MAX-FAITH : -> Int .

eq MAX-FAITH = 100 .

op . : Soul Soul -> Soul [assoc comm] .

op newFaith : -> Int .

eq newFaith = random(counter) rem MAX-FAITH .

op judgment : Angel Daemon Human -> Soul .

eq judgment (A(good), D(bad), H(faith)) =

if ( (good * faith) >=

(bad * (MAX-FAITH - faith)) )

then HEAVEN

else HELL

fi .

--- rewrite rules ----

rl [creation] : .(H(f1), H(f2)) =>

.(H(newFaith), H(f1), H(f2)) .

rl [death] : .(h, a, d) =>

.(a, d, judgment(a, d, h)) .

endm

Figure C.1: Maude specification of the WoS game.

taken by using the auxiliary equation judgment that weights the faith
of H w.r.t. both the goodness of the angel and evilness of the daemon
involved.

The Backward Trace Slicing Technique in

Action

Let us consider the execution trace T : t0 → . . . .. → t9 given in
Figure C.2, which reaches the state t9 = .(HEAVEN, D(30), A(40), H(70),
H(80), H(90)) from the initial state t0 = .(A(40), D(30), H(70), H(80), H(90)).
This is done by running the frew command of Maude, which ensures both
local fairness and rule fairness. The bracketed number between the com-
mand and the term to be rewritten (see Figure C.2), provides an upper
bound for the number of rule applications that are allowed.

In Figure C.2, the application of every rule, equation, and axiom
is displayed, showing the corresponding substitution, the current state,
and the subterm where the next axiom is applied, before and after its
application. Note that, since the equational simplification hides some
basic steps, the original trace delivered by Maude has been extended
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| Maude> set trace select on .

| Maude> trace select creation death newFaith judgment .

t0| Maude> frew [3] .(A(40), D(30), H(70), H(80), H(90)) .

t1| frewrite in war-of-souls : .(D(30), A(40), H(70), H(80), H(90)) .

| *********** rule

| rl :(H(f1), H(f2)) => .(H(newFaith), H(f1), H(f2)) [label creation] .

| f1 --> 70;

| f2 --> 80

| .(D(30), A(40), H(70), H(80), H(90))

t2| ============= intermediate term: .(.(D(30), A(40), H(90)), .(H(70), H(80)))

| --->

t3| .(.(D(30), A(40), H(90)), .(H(newFaith), H(70), H(80)))

| *********** equation

| eq newFaith = random(counter) rem MAX-FAITH .

| empty substitution

| newFaith

| --->

| 44

t4| ============= intermediate term: .(.(D(30), A(40), H(90)), .(H(44), H(70), H(80)))

| *********** rule

| rl :(h, d, a) => .(d, a, judgment(a, d, h)) [label death] .

| h --> H(44); d --> D(30); a --> A(40)

t5| :(D(30), A(40), H(44), H(70), H(80), H(90))

t6| ============= intermediate term: .(.(H(70), H(80), H(90)), .(H(44), D(30), A(40)))

| --->

t7| .(.(H(70), H(80), H(90)), .(D(30), A(40), judgment(A(40), D(30), H(44))))

| *********** equation

| eq judgment(A(good), D(bad), H(faith)) =

| if faith * good >= bad * (MAX-FAITH - faith)

| then HEAVEN else HELL fi .

| good --> 40; bad --> 30; faith --> 44

| judgment(A(40), D(30), H(44))

| --->

| HEAVEN

t8| ============= intermediate term: .(.(H(70), H(80), H(90)), .(D(30), A(40), HEAVEN))

t9| result Soul: .(HEAVEN,D(30),A(40),H(70),H(80),H(90))

Figure C.2: Trace given by the frew command of Maude.

with the sequence of intermediate terms that allows one to explicitly
handle the B-equivalence by means of flat/unflat transformations as well
as the equational computations. Such extension has been implemented
by augmenting the original specification with suitable rewrite rules. For
example, in Figure C.2 the term t4 stems from the term t3 where the
operator newFaith has been replaced with its outcome 44.

We can write the trace of Figure C.2 simply as follows:

T : t0 →∗flatB
t1 →∗unflatB

t2
creation,σ1→ t3

newFaith,σ2→ t4 →∗flatB
t5 →∗unflatB

t6
death,σ3→ t7

judgment,σ4→ t8 →∗flatB
t9
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where

σ1 = {h1/H(70), h2/H(80)}, σ2 = ∅, σ3 = {h/H(44), a/A(40), d/D(30)},
and σ4 = {good/40, bad/30, faith/44}.

In the following, we apply our slicing technique to the trace T w.r.t.
the rewrite theory R of Figure C.1. Specifically, we employ backward
trace slicing to observe how the symbol HEAVEN of t9 is produced.

Step 1: Rule and equation labeling.

First of all, we label the rules and the equations according to the proposed
labeling procedure. For the sake of readability, the equation judgment

containing an if-then-else construct has been simplified by splitting it into
two different labeled equations representing the two possible branches.
Furthermore, in the equation newFaith, we consider the same labeling
for any randomly created number.

creationL = .a(Hb(f1), Hc(f2))→ .abc(Habc(newFaithabc), Habc(f1), Habc(f2))
deathL = .a(h, a, d)→ .a(a, d, judgmenta(a, d, h))

judgmentL = judgmenta(Ab(good), Dc(bad), Hd(faith))→ HEAVENabcd

judgmentL = judgmenta(Ab(good), Dc(bad), Hd(faith))→ HELLabcd

newFaithL = newFaitha → [a random number]a

Step 2: Slicing criterion.

Assume we want to discover which pieces of information in T contribute
to the generation of the value HEAVEN in t9. Therefore, since the symbol
HEAVEN occurs at position 1, we feed our slicing procedure with the slicing
criterion {1}.

Step 3: Rewrite step labeling and sequence of relevant position
sets.

Figure C.3 shows the labeling inferred for every rewrite step along with
the sequence of relevant position sets [P0, . . . , P9] which have been com-
puted w.r.t. the slicing criterion {1}.
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Step : Slicing criterion
P9 = {1}

Step : t8 →∗flatB
t9

tL8
8 = .a(.b(Hc(70d), He(80f), Hg(90h)),

.i(Dj(30k), Al(40m), HEAVENn))

tL8
9 = .abi(HEAVENn, Dj(30k), Al(40m), Hc(70d),

He(80f), Hg(90h))
P8 = {1, 2.3}

Step : t7
judgment,σ4→ t8

tL7
7 = .h(.i(Hj(70k), Hl(80m), Hn(90o)),

.p(Dq(30r), As(40t),
judgmenta(Ab(40c), Dd(30e), Hf(44g))))

tL7
8 = .h(.i(Hj(70k), Hl(80m), Hn(90o)),

.p(Dq(30r), As(40t), HEAVENceg))
P7 = {1, 2.3.1.1, 2.3.2.1, 2.3.3.1}

Step : t6
death,σ3→ t7

tL6
6 = .b(.c(Hd(70e), Hf(80g), Hh(90i)),

.a(Hj(44k), Dl(30m), An(40o)))

tL6
7 = .b(.c(Hd(70e), Hf(80g), Hh(90i)),

.a(Dl(30m), An(40o),
judgmenta(An(40o), Dl(30m), Hj(44k))))

P6 = {1, 2.1.1, 2.2.1, 2.3.1}

Step : t5 →∗unflatB
t6

tL5
5 = .abi(Dc(30d), Ae(40f), Hj(44k), Hl(70m),

Hn(80o), Hg(90h))

tL5
6 = .abi(.abi(Hl(70m), Hn(80o), Hg(90h)),

.abi(Hj(44k), Dc(30d), Ae(40f)))
P5 = {1.1, 2.1, 3.1}

Step : t4 →∗flatB
t5

tL4
4 = .a(.b(Dc(30d), Ae(40f), Hg(90h)),

.i(Hj(44k), Hl(70m), Hn(80o)))

tL4
5 = .abi(Dc(30d), Ae(40f), Hj(44k), Hl(70m),

Hn(80o), Hg(90h))
P4 = {1.1.1, 1.2.1, 2.1.1}

Step : t3
newFaith,σ2→ t4

tL3
3 = .b(.c(Dd(30e), Af(40g), Hh(90i)),

.j(Hk(newFaitha), Hl(70m), Hn(80o)))

tL3
4 = .b(.c(Dd(30e), Af(40g), Hh(90i)),

.j(Hk(44a), Hl(70m), Hn(80o)))
P3 = {1.1.1, 1.2.1, 2.1.1}

Step : t2
creation,σ1→ t3

tL2
2 = .d(.e(Df(30g), Ah(40i), Hj(90k)),

.a(Hb(70l), Hc(80m)))

tL2
3 = .d(.e(Df(30g), Ah(40i), Hj(90k)),

.abc(Habc(newFaithabc), Habc(70l),
Habc(80m)))

P2 = {1.1.1, 1.2.1, 2.1, 2.2, 2}

Step : t1 →∗unflatB
t2

tL1
1 = .a(Dd(30e), Ab(40c), Hf(70g), Hh(80i),

Hj(90k))

tL1
2 = .a(.a(Dd(30e), Ab(40c), Hj(90k)),

.a(Hf(70g), Hh(80i)))
P1 = {λ, 1.1, 2.1, 3, 4}

Step : t0 →∗flatB
t1

tL0
0 = .a(Ab(40c), Dd(30e), Hf(70g), Hh(80i), Hj(90k))

tL0
1 = .a(Dd(30e), Ab(40c), Hf(70g), Hh(80i), Hj(90k))
P0 = {λ, 1.1, 2.1, 3, 4}

Figure C.3: Labeling and sequence of relevant position sets. In order to
facilitate the understanding, the terms involved in each step are under-
lined.

Step 4: Trace slice.

Finally, the trace slice T • is obtained by computing the term slices

t•0 = slice(t0, P0), . . . , t•9 = slice(t9, P9)

with respect to the sequence of relevant position sets [P0, . . . , P9]. The
outcome delivered by our tool is the trace slice T • = t•0 →∗ t•9 that is
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Original Execution Trace T Trace slice T •

t0
.(A(40), D(30), H(70), H(80), H(90))

t•0 .(A(40), D(30), H(•), H(•), •)

t1
.(D(30), A(40), H(70), H(80), H(90))

t•1 .(D(30), A(40), H(•), H(•), •)

t2
.(.(D(30), A(40), H(90)), .(H(70), H(80)))

t•2 .(.(D(30), A(40), •), .(H(•), H(•)))

t3
.(.(D(30), A(40), H(90)), .(H(newFaith),
H(70), H(80)))

t•3 .(.(D(30), A(40), •), .(H(newFaith), •, •))

t4
.(.(D(30), A(40), H(90)), .(H(44), H(70),
H(80)))

t•4 .(.(D(30), A(40), •), .(H(44), •, •))

t5
.(D(30), A(40), H(44), H(70), H(80),
H(90))

t•5 .(D(30), A(40), H(44), •, •, •)

t6
.(.(H(70), H(80), H(90)), .(H(44), D(30),
A(40)))

t•6 .(.(•, •, •), .(H(44), D(30), A(40)))

t7
.(.(H(70), H(80), H(90)), .(D(30), A(40),
judgment(A(40), D(30), H(44))))

t•7
.(.(•, •, •), .(•, •, judgment(A(40), D(30),

H(44))))

t8
.(.(H(70), H(80), H(90)), .(D(30), A(40),
HEAVEN))

t•8 .(.(•, •, •), .(•, •, HEAVEN))

t9
.(HEAVEN, D(30), A(40), H(70), H(80),
H(90))

t•9 .(HEAVEN, •, •, •, •, •)

Figure C.4: The execution trace T and its corresponding trace slice T •.

shown in Figure C.4 together with the corresponding original trace T .

Trace Slice Analysis

Let us briefly comment on our results. First of all, we note that the trace
slice T • is much simpler than the original execution trace T , since T •
only keeps track of those symbols that influence the generation of the
value HEAVEN. Also, we can observe that HEAVEN refers to the judgment
of the human being H(44) (see term slice t•7), who has been created by
the pair (H(70),H(80)) (through the sliced rewrite step t•2 → t•3).

On one hand, it can be observed that the strength values good and
bad (40 and 30, respectively) appear to influence the observed symbol
HEAVEN. This is correct, because these values are used in the operation
judgment to define the value HEAVEN. Finally, the generation of the ob-
served outcome implies the existence of two human beings, whereas the
values of their initial faith are irrelevant for the result, as shown in the
term slice t•0. This is also correct, because these values are not used to
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compute the faith for H(44), which simply depends on a random value.
Regarding the size reduction of the execution trace, we can conclude

the following facts. We denote by |T | the size of the trace T , namely the
sum of the number of symbols of all trace states. Then, the reduction
given by the slicing technique is:

|T • |
|T |

=
75

139
= 0.54 (i.e., a reduction of 46%)

for this simple example. It is worth noting that, when we fix the slicing
criterion {2.1, 3.1}, which allows us to observe the daemon D(30) and
angel A(30) in play, the reduction achieved is about 71%. In this case,
a relevant part of the original execution trace is discarded, since the
behaviors of D(30) and A(30) are not affected by any other operator
across the whole trace. This example along with other test cases can be
found at the URL http://www.dsic.upv.es/~dromero/slicing.html.

http://www.dsic.upv.es/~dromero/slicing.html
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Appendix D

Web-TLRmini

Web-TLRmini is a toy version of Web-TRL (Chapter 6) that models
(and allows us to play with) a simplified Web verification environment
in which the Web server can interact with one Web browser.

mod Mini-WebTLR is

sort Browser Message Server WebState Link Name WebApp Page Request Response .

subsort Request Response < Message .

vars browser : Browser . vars server : Server .

vars webApp : WebApp . vars msg request response : Message .

vars link links : Link . vars page newPage : Page .

vars name newName n1 n2 : Name .

op NoMsg : -> Message .

op _:_ : Message Message -> Message [assoc comm id: NoMsg] .

op NoLink : -> Link .

op _:_ : Link Link -> Link [assoc comm id: NoLink] .

op NoPage : -> Page .

op _:_ : Page Page -> Page [assoc comm id: NoPage] .

op B : Page -> Browser .

op S : WebApp -> Server .

op WP : Page -> WebApp .

op _,_ : Name Link -> Page .

op PageNotFound : -> Page .

op L : Name Name -> Link .

op _||_||_ : Browser Message Server -> WebState .

op Rsp : Page -> Response .

op Req : Link -> Request .

op eval : Request WebApp -> Response .

eq eval(Req(L(n1, n2)), WP((n2, link) : page)) = Rsp(n2, link) .

eq eval(Req(L(n1, n2)), WP(page)) = Rsp(PageNotFound) [owise] .

rl [REQUEST] : B(name, link : links ) || msg || server

=> B(name, links) || Req(link) : msg || server .

crl [EVAL] : browser || msg : request || S(webApp)

=> browser || response : msg || S(webApp)

if response := eval(request, webApp) .
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rl [RESPONSE] : B(page) || Rsp(newPage) : msg || server

=> B(newPage) || msg || server .

endm

mod Mini-WebMail is inc Mini-WebTLR .

ops W H E A L : -> Name .

ops Welcome Home Email Admin Logout : -> Page .

eq Welcome = (W, L(W, H)) .

eq Home = (H, L(H, E) : L(H, A): L(H, L) ) .

eq Email = (E, L(E, W)) .

eq Admin = (A, L(A, H)) .

eq Logout = (L, L(L, W)) .

op WebMail : -> WebApp .

eq WebMail = WP( Welcome : Home : Email : Admin : Logout) .

op NoMessage : -> Message .

op Initial : -> WebState .

eq Initial = B(Welcome) || NoMessage || S(WebMail) .

var msg : Message .

var server : Server .

endm



March 29, 1977
Beware of bugs in the above code;

I have only proved it correct, not tried it.
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