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Resumen

Hoy en d́ıa los sistemas informáticos complejos se pueden ver en términos de los

servicios que ofrecen y las entidades que interactúan para proporcionar o con-

sumir dichos servicios. Los sistemas multi-agente abiertos, donde los agentes

pueden entrar o salir del sistema, interactuar y formar grupos (coaliciones

de agentes u organizaciones) de forma dinámica para resolver problemas, han

sido propuestos como una tecnoloǵıa adecuada para implementar este nuevo

paradigma informático. Sin embargo, el amplio dinamismo de estos sistemas

requiere que los agentes tengan una forma de armonizar los conflictos que

surgen cuando tienen que colaborar y coordinar sus actividades. En estas

situaciones, los agentes necesitan un mecanismo para argumentar de forma

eficiente (persuadir a otros agentes para que acepten sus puntos de vista, ne-

gociar los términos de un contrato, etc.) y poder llegar a acuerdos.

La argumentación es un medio natural y efectivo para abordar los conflictos

y contradicciones del conocimiento. Participando en diálogos argumentativos,

los agentes pueden llegar a acuerdos con otros agentes. En un sistema multi-

agente abierto, los agentes pueden formar sociedades que los vinculan a través

de relaciones de dependencia. Estas relaciones pueden surgir de sus interaccio-

nes o estar predefinidas por el sistema. Además, los agentes pueden tener un
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conjunto de valores individuales o sociales, heredados de los grupos a los que

pertenecen, que quieren promocionar. Las dependencias entre los agentes y

los grupos a los que pertenecen y los valores individuales y sociales definen el

contexto social del agente. Este contexto tiene una gran influencia en la forma

en que un agente puede argumentar y llegar a acuerdos con otros agentes. Por

tanto, el contexto social de los agentes debeŕıa tener una influencia decisiva en

la representación computacional de sus argumentos y en el proceso de gestión

de argumentos.

La principal contribución de esta tesis es la propuesta de un marco para la

argumentación en sociedades de agentes que hace uso de la metodoloǵıa de

razonamiento basado en casos. El razonamiento basado en casos es especial-

mente conveniente cuando se tiene poco conocimiento a priori sobre el dominio

de aplicación, pero sin embargo, en la práctica se puede disponer fácilmente

de casos o ejemplos. La mayoŕıa de los sistemas argumentativos producen

argumentos mediante la aplicación de un conjunto de reglas de inferencia. El

dinamismo de los sistemas multi-agente hace que sea dif́ıcil definir previamente

el conjunto de reglas que modelan el comportamiento de los agentes. Por tanto,

mientras que el razonamiento con un conjunto predefinido de reglas puede ser

complejo, el seguimiento de los argumentos que los agentes proponen durante

los diálogos argumentativos es relativamente simple. El marco propuesto per-

mite a los agentes representar argumentos y razonar sobre ellos, teniendo en

cuenta su contexto social en la forma en la que los agentes pueden dialogar.

Aśı, las dependencias sociales entre los agentes y sus valores individuales y

sociales también son consideradas. Además, los agentes que soportan este

marco pueden participar en diálogos de argumentación siguiendo estrategias

de diálogo diferentes. Con estas estrategias, los agentes pueden seleccionar en

cada momento el argumento más adecuado para alcanzar sus objetivos.

El marco de argumentación propuesto proporciona a los agentes los recursos

de conocimiento necesarios para generar posiciones y argumentos de forma
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individual. Por un lado, los agentes disponen de una base de casos de do-

minio, con casos que representan problemas anteriores y las soluciones que

fueron aplicadas para resolverlos. Por otra parte, los agentes disponen de

una base de casos de argumentos, con casos que representan experiencias de

argumentación previas y su resultado final. Además, los agentes pueden acce-

der a un conjunto de esquemas de argumentación, que representan patrones

estereotipados de razonamiento común en el dominio de aplicación donde se

implementa el marco. Todos estos recursos están representados mediante el

uso de ontoloǵıas. Por lo tanto, en esta tesis se ha desarrollado una ontoloǵıa

de argumentación basada en casos que actúa como lenguaje de representación

para los recursos de conocimiento propuestos. Finalmente, se ha definido el

proceso de razonamiento que los agentes de nuestro marco pueden utilizar para

generar posiciones y argumentos.

Para permitir a los agentes interactuar y controlar el proceso de argumentación

entre ellos, se ha desarrollado un protocolo de juego de diálogo. Además, se

ha propuesto un conjunto de estrategias de diálogo que los agentes pueden

utilizar para mejorar el rendimiento de los diálogos en los que participan.

Por último, nuestra propuesta ha sido evaluada en dos casos de estudio. Por

un lado, la especificación formal del marco ha sido aplicada en el dominio de un

sistema de transferencia de derechos de agua, donde los agentes participan en

diálogos argumentativos para llegar a acuerdos sobre la asignación de recursos

h́ıdricos. Este es un ejemplo teórico donde las propiedades semánticas del

marco han sido validadas. Por otro lado, el marco se ha implementado en un

sistema de atención al cliente. Este caso consiste en un servicio de asistencia

implementado en un centro de llamadas en el que varios operadores deben

llegar a un acuerdo para resolver las incidencias recibidas por el centro.
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Resum

Actualment els sistemes informàtics complexos es poden veure en termes dels

serveis que ofereixen i les entitats que interactuen per proporcionar o con-

sumir aquests serveis. Els sistemes multi-agent oberts, on els agents poden

entrar o sortir del sistema, interactuar i formar grups (coalicions d’agents o

organitzacions) de manera dinàmica per a resoldre problemes, han estat pro-

posats com una tecnologia adequada per implementar aquest nou paradigma

informàtic. No obstant això, l’ampli dinamisme d’aquests sistemes requereix

que els agents tinguen una forma d’harmonitzar els conflictes que sorgeixen

quan han de col.laborar i coordinar les seues activitats. En aquestes situa-

cions, els agents necessiten un mecanisme per argumentar de manera eficient

(persuadir altres agents perquè accepten els seus punts de vista, negociar els

termes d’un contracte, etc.) i poder arribar a acords.

L’argumentació és un medi natural i efectiu per abordar els conflictes i con-

tradiccions del coneixement. Participant en diàlegs argumentatius, els agents

poden arribar a acords amb altres agents. En un sistema multi-agent obert,

els agents poden formar societats que els vinculen a través de relacions de

dependència. Aquestes relacions poden sorgir de les seves interaccions o estar

predefinides pel sistema. A més a més, el agents poden tindre una serie de
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valors individuals o socials, heretats dels grups als que pertanyen, que volen

promoure. Les dependències entre els agents i els grups als quals pertanyen i

els valors individuals i socials defineixen el context social de l’agent. Aquest

context té una gran influència en la forma en què un agent pot argumentar

i arribar a acords amb altres agents. Per tant, el context social dels agents

hauria de tenir una influència decisiva en la representació computacional dels

seus arguments i en el procés de gestió d’arguments.

La principal contribució d’aquesta tesi és la proposta d’un marc per l’argumen-

tació en societats d’agents que utilitza la metodologia del raonament basat en

casos. El raonament basat en casos és especialment convenient quan es té

poc coneixement a priori sobre el domini d’aplicació, però no obstant això,

en la pràctica es pot disposar fàcilment de casos o exemples. La majoria dels

sistemes argumentatius produeixen arguments mitjançant l’aplicació d’un con-

junt de regles d’inferència. El dinamisme dels sistemes multi-agent fa que sigue

dif́ıcil definir prèviament el conjunt de regles que modelen el comportament

dels agents. Per tant, mentre que el raonament amb un conjunt predefinit de

regles pot ser complex, el seguiment dels arguments que els agents proposen

durant els diàlegs argumentatius és relativament simple. El marc proposat

permet als agents representar arguments i raonar sobre ells, tenint en compte

el seu context social en la forma en què els agents poden dialogar. Aix́ı, les de-

pendències socials entre els agents i els seus valors individuals i socials també

es consideren. A més a més, els agents que suporten aquest marc poden par-

ticipar en diàlegs d’argumentació seguint estratègies de diàleg diferents. Amb

aquestes estratègies, els agents poden seleccionar en cada moment l’argument

més adequat per assolir els seus objectius.

El marc d’argumentació proposat proporciona als agents els recursos de co-

neixement necessaris per generar posicions i arguments de forma individual.

D’una banda, els agents disposen d’una base de casos de domini, amb casos que

representen problemes anteriors i les solucions que van ser aplicades per resol-
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dre’ls. D’altra banda, els agents disposen d’una base de casos d’arguments,

amb casos que representen experiències d’argumentació prèvies i el seu resul-

tat final. A més a més, els agents poden accedir a un conjunt d’esquemes

d’argumentació, que representen patrons estereotipats de raonament comú en

el domini d’aplicació on s’implementa el marc. Tots aquests recursos estan

representats mitjançant l’ús d’ontologies. Per tant, en aquesta tesi s’ha de-

senvolupat una ontologia d’argumentació basada en casos que actua com a

llenguatge de representació per als recursos de coneixement proposats. Final-

ment, s’ha definit el procés de raonament que els agents del nostre marc poden

utilitzar per generar posicions i arguments.

Per a permetre als agents interactuar i controlar el procés d’argumentació

entre ells, s’ha desenvolupat un protocol de joc de diàleg. A més a més, s’ha

proposat un conjunt d’estrategies de diàleg que els agents poden utilitzar per

a millorar el rendiment dels diàlegs en què participen.

Finalment, la nostra proposta ha estat avaluada en dos casos d’estudi. D’una

banda, l’especificació formal del marc ha sigut aplicada en el domini d’un sis-

tema de transferència de drets d’aigua, on els agents participen en diàlegs ar-

gumentatius per arribar a acords sobre l’assignació de recursos h́ıdrics. Aquest

és un exemple teòric on les propietats semàntiques del marc han estat vali-

dades. D’altra banda, el marc s’ha implementat en un sistema d’atenció al

client. Aquest cas consisteix en un servei d’assistència implementat en un

centre de trucades en el qual diversos operadors han d’arribar a un acord per

resoldre les incidències rebudes pel centre.
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Abstract

Nowadays large systems are viewed in terms of the services that they offer and

the entities that interact to provide or consume these services. Open multi-

agent systems, where agents can enter or leave the system, interact and dynam-

ically form groups (e.g. agents’ coalitions or organisations) to solve problems,

seems a suitable technology to implement this new computing paradigm of

service-oriented systems. However, the high dynamism of open multi-agent

systems requires agents to have a way of harmonising the conflicts that come

out when they have to collaborate or coordinate their activities. In those

situations, agents need a mechanism to argue (persuade other agents to ac-

cept their points of view, negotiating the terms of a contract, etc.) and reach

agreements.

Argumentation provides a fruitful means of dealing with conflicts and knowl-

edge inconsistencies. Agents can reach agreements by engaging in argumen-

tation dialogues with their opponents in a discussion. In addition, agents in

open multi-agent systems can form societies that link them via dependency

relations. These relations can emerge from agents’ interactions or be prede-

fined by the system. In addition, agents can have individual and social values,

inherited from the groups that they belong to, which they want to promote.
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The dependencies between agents and the group(s) that they belong and the

individual and social values define the agents’ social context. This context

has an important influence in the way agents can reach agreements with other

agents. Therefore, agents’ social context should have a decisive influence in the

computational representation of arguments and in the argument management

process.

The main contribution of this PhD work is the proposal of an argumentation

framework for agent societies, based on the case-based reasoning methodology.

Reasoning with cases is especially suitable when there is a weak (or even

unknown) domain theory, but acquiring examples encountered in practice is

easy. Most argumentation systems produce arguments by applying a set of

inference rules. In multi-agent systems, the domain is highly dynamic and the

set of rules that model it is difficult to specify in advance. Thus, reasoning

with a predefined set of rules can be difficult while tracking the arguments that

agents put forward in argumentation dialogues could be relatively simple. The

framework proposed allows agents to computationally represent arguments

and reason about them, taking into account the agents’ social context in the

way agents can argue. Thus, social dependencies between agents and their

individual and social values are also considered. Also, agents that comply

with this framework are able to engage in argumentation dialogues following

different dialogue strategies. With these strategies, agents can select the most

appropriate argument to bring about their desired outcome of the dialogue.

In addition, the framework proposed provides agents with individual knowl-

edge resources to generate their positions and arguments. On the one hand,

agents have a domain-cases case-base, with domain-cases that represent previ-

ous problems and their solutions. On the other hand, agents have an argument-

cases case-base, with argument-cases that represent previous argumentation

experiences and their final outcome. In addition, agents can accede to a set

of argumentation schemes, which represent stereotyped patterns of common
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reasoning in the application domain where the framework is implemented. All

these resources are represented by using ontologies. Thus, we have developed

the case-based argumentation ontology that acts as a representation language

for the knowledge resources proposed. The reasoning process that agents of

our framework can use to generate positions and arguments is also defined.

To allow agents to interact and control the argumentation process between

them, we have designed a dialogue game protocol. Furthermore, we have

proposed a set of dialogue strategies that agents can use to improve the per-

formance of their dialogues.

Finally, we have tested our proposals with two study cases. On the one hand,

the formal specification of the framework has been applied to a water-right

transfer domain where agents engage in argumentation dialogues to reach

agreements over the allocation of water resources. This is a theoretic ex-

ample where the semantic properties of the framework have been validated.

On the other hand, the framework has been implemented to develop an appli-

cation on the customer support domain. Here, we consider a call centre where

several operators must reach an agreement to solve the incidences received by

the centre.
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”Si piensas que estás vencido, lo estás;

Si piensas que no te atreves, no lo harás.

Si te gustaŕıa ganar, pero piensas que no puedes,

es casi seguro que no lo lograrás.

Si piensas que perderás, ya has perdido. Porque en el mundo

encontrarás, que el éxito comienza con la voluntad del hombre;

Todo está en el estado mental.

Si piensas que estás aventajado, lo estás;

Tienes que pensar bien para elevarte. Tienes que estar seguro de

ti mismo antes de intentar ganar un premio.

La batalla de la vida no siempre la gana el hombre más fuerte o el

más rápido; Porque tarde o temprano, la gana el hombre que cree

poder hacerlo.”

”If you think you are beaten, you are;

If you think you dare not, you don’t.

If you’d like to win, but think you can’t,

it’s almost a cinch you won’t.

If you think you’ll lose, you’re lost. For out in the world we find,

success begins with a fellow’s will;

It’s all in the state of mind.

If you think you’re outclassed, you are;

You’ve got to think high to rise. You’ve got to be sure of yourself

before you can ever win a prize.

Life’s battles don’t always go to the stronger or faster man; But

soon or late the man who wins is the one who thinks he can.”

”Thinking”, Walter D. Wintle
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Chapter

1

Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure of the document . . . . . . . . . . 7

1.1 Motivation

Nowadays large systems are viewed in terms of the services that they offer

and the entities that interact to provide or consume these services. This de-

sign paradigm is known as computing as interaction [Luck and McBurney,

2008]. Open Multi-Agent Systems (MAS), where agents can enter or leave

the system, interact and dynamically form groups (e.g. agent coalitions or or-

ganisations) to solve problems, seems a suitable technology to implement this

new paradigm. However, the high dynamism of open MAS requires agents

to have a way of harmonising the conflicts that come out when they have to

collaborate or coordinate their activities. In those situations, agents need a

mechanism to argue (persuade other agents to accept their points of view,

negotiating the terms of a contract, etc.) and reach agreements. In addition,

agents in open MAS can form societies that link them via dependency rela-
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tions. These relations can emerge from agents’ interactions or be predefined

by the system. Anyway, the dependencies between agents and the group(s)

to which they belong define the agents’ social context. This context has an

important influence in the way agents can reach agreements with other agents

(e.g. subordinates are not as willing to accept tasks from equals as they are

from superiors or workers do not behave in the same way if they are nego-

tiating their own salaries than if they act as representatives of their trade

unions).

Argumentation provides a fruitful means of dealing with conflicts and knowl-

edge inconsistencies. Agents can reach agreements by engaging in argumen-

tation dialogues with their opponents in a discussion. This has made Artifi-

cial Intelligence (AI) researchers pay their attention on argumentation theory

[Rahwan and Simari, 2009]. However, most works in the area assume human

users interacting with software tools, such as the approaches for argument

authoring and diagramming [Rahwan et al., 2007b], OVA1. Others focus on

defining and analysing the properties of abstract argumentation frameworks

[Rahwan and Simari, 2009, Part I]. Many developments in computational ar-

gumentation are motivated by the works on case-based legal argumentation

[Skalak and Rissland, 1992; Bench-Capon and Dunne, 2007]. However, many

case-based computational frameworks for legal reasoning assume humans in-

teracting with the system or agents that have complete knowledge about the

domain (represented in the form of cases that store knowledge about past le-

gal disputes) and play two party dialogues [Bench-Capon and Sartor, 2003].

Hence, the notions of argument and argumentation resources of these systems

are not conceived for being acceded only by software agents that perform au-

tomatic reasoning processes over them and have individual and partial knowl-

edge about the domain. In MAS, researchers have recently studied argumen-

tation as a mechanism for managing dialogues between agents and reaching

agreements [Rahwan and Simari, 2009, Part III]. However, most works on ar-

1OVA at ARG:dundee: www.arg.dundee.ac.uk
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gumentation in MAS take a narrow view on the argument structure [Reed

and Grasso, 2007] or use domain-dependent structures for the computational

representation of arguments. The few current approaches for case-based ar-

gumentation in MAS suffer from this domain-dependency or centralise the

argumentation abilities in a mediator agent [Heras et al., 2009b]. Therefore, a

research challenge on argumentation in MAS is to develop a generic computa-

tional representation of arguments that allow autonomous agents to perform

argumentation dialogues in different domains. In addition, agents should be

able to follow a strategy in the dialogue and decide in each situation which

particular utterance is the best to bring about a desired outcome (e.g. to

persuade an agent to accept an argument, to win a negotiation, etc.).

Moreover, little work has been done to study the effect of the social context

of agents in the way that they argue and manage arguments. Commonly,

the term agent society is used in the argumentation and AI literature as a

synonym for an agent organisation [Ferber et al., 2004] or a group of agents

that play specific roles, follow some interaction patterns and collaborate to

reach global objectives [Oliva et al., 2008]. In addition to the dependency

relations between agents, they can also have values. These values can be

individual values that agents want to promote or demote (e.g. solidarity, peace,

etc.) or also social values inherited from the agents’ dependency relations (e.g.

in a negotiation, a superior could impose their values to his subordinates or, on

the opposite, a trade unionist might have to adopt the values of the collective

that he represents). Thus, we endorse the view of value-based argumentation

frameworks [Bench-Capon and Atkinson, 2009], which stress the importance

of the audience (other participants in the dialogue) in determining whether

an argument is persuasive or not. Therefore, we also consider values as an

important element of the social context of agents.

Starting from the idea that the social context of agents determines the way

in which agents can argue and reach agreements, this context should have a

3
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decisive influence in the computational representation of arguments, in the

argument management process and in the way agents develop strategies to

argue with other agents. While work on argument evaluation and generation

has received much attention, the strategic use of arguments has received little

attention in the literature [Rahwan, 2006]. Moreover, to our knowledge, few

research is done to adapt multi-agent argumentation frameworks to represent

and automatically manage arguments of agents taking into account their so-

cial context. This opens a new research challenge for the development of a

computational framework for design and implementation of MAS in which the

participating software agents are able to manage and exchange arguments be-

tween themselves taking into account the agents’ social context. To deal with

this challenge the reasoning process by which agents can automatically gener-

ate, select and evaluate arguments in an agent society must be specified. Also,

an interesting feature would be to allow agents to learn from argumentation

experiences and in this way, make easier to develop dialogue strategies that

help them to reach their objectives in the argumentation dialogue. To follow

a Case-Based Reasoning (CBR) methodology [Aamodt and Plaza, 1994] could

be appropriate to develop the argument management process. Reasoning with

cases is especially suitable when there is a weak (or even unknown) domain

theory, but acquiring examples encountered in practice is easy. Most argu-

mentation systems produce arguments by applying a set of inference rules.

In MAS the domain is highly dynamic and the set of rules that model it is

difficult to specify in advance. Thus, reasoning with a predefined set of rules

can be difficult. However, tracking the arguments that agents put forward in

argumentation dialogues could be relatively simple.

The discussion above raises several questions that this research is intended to

answer:

Q1 Are the current approaches in case-based argumentation for MAS suit-

able to be applied to open MAS where the agents belong to a society?

4
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Q2 How can the argumentation framework proposed in this research be for-

malised and its properties analysed?

Q3 How can agents in agent societies automatically manage argumentation

processes?

Q4 How can agents learn from argumentation experiences?

Q5 How can agents in agent societies exchange arguments to hold efficient

argumentation dialogues?

Q6 How can agents follow dialogue strategies during the argumentation pro-

cess?

Q7 What is the best technology to apply in this context?

Q8 How can the advantages of applying the framework be tested and anal-

ysed?

1.2 Objectives

With the aim of providing answers to the questions posed in the previous sec-

tion, the objective of this PhD work is to propose a framework for case-based

argumentation in multi-agent societies. This framework will allow agents to

computationally represent arguments and reason about them. The framework

considers the agents’ social context in the way agents can argue. Thus, social

dependencies between agents and their individual and social values are also

considered. Also, agents implementing this framework will be able to engage

in argumentation dialogues following different dialogue strategies. With these

strategies, agents will be able to select the most appropriate argument to bring

about their desired outcome of the dialogue. According to its main objectives,

the contributions of this work are organised on different levels:

5
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1. On the State of the Art Revision Level, related works have been

reviewed and analysed to point out their main handicaps to be applied

in our agent societies scenario. This analysis would provide the answer

to question 1.

2. On the theoretical and Formal Level, an abstract argumentation frame-

work that allows agents to argue and improve their argumentation skills

is proposed. After that, this framework is instantiated by defining a

specific structure for arguments. Question 2 is answered in this level.

3. On the Agent Level, our main aim is to provide agents of agent soci-

eties with the ability of generating arguments, selecting the best ones to

put forward and evaluating incoming arguments and the argumentation

process itself. This level will cope with questions 3 and 4. Here, the first

step to design MAS whose agents are able to perform argumentation

processes is to decide how agents represent and store arguments. There

are some requirements that should be met to make a suitable choice for

the structure to represent arguments in our social environment. Sum-

marising, this structure should:

• be computationally tractable and designed to ease the performance

of automatic reasoning processes over it;

• be rich enough to represent knowledge about the domain and social

information about agents and their groups;

• be generic enough to represent different types of arguments and

• comply with the technological standards of data and argument in-

terchange on the Web.

A knowledge-intensive case-based structure to represent arguments could

suit these requirements, since it can be easily interpreted by machines

and has highly expressive formal semantics to define complex concepts

and relations over them [Diaz-Agudo and Gonzalez-Calero, 2007]. In

6
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addition, the reasoning process that agents perform to generate, select

and evaluate arguments taking into account their social context is also

studied.

4. On the System Level, the objective of this thesis is to develop a di-

alogue game protocol to allow agents in agent societies to engage in

argumentative dialogues. This level is related with question 5, 6 and

7. After reviewing current approaches, we have decided to follow a dia-

logue game approach that could allow agents to use different argumenta-

tion resources in the dialogue, such as distinguishing premises, counter-

examples and argumentation schemes [Bench-Capon and Sartor, 2003;

Walton et al., 2008]. Also, we propose several dialogue strategies that

the agents can follow to select the best utterance to bring out in each

step of the dialogue.

5. Finally, on the Evaluation Level, the hypothesis and proposals of the

thesis will be implemented and tested in different cases of study: a social

network of recommender agents and a system for the water-right transfer

management in a real Spanish river basin. Thus, this level will provide

an answer for question 8.

1.3 Structure of the document

This chapter has introduced the PhD proposal, outlining the motivation and

objectives of the thesis. The rest of the document is structured as follows.

Chapter 2 introduces the uses of argumentation theory in AI and explains the

main concepts of argumentation theory and its applications to AI. This chapter

also reviews the main research approaches in CBR-based argumentation in

MAS and points out some open research issues in the area.

Chapter 3 introduces the case-based argumentation framework proposed, ex-

7
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plaining its knowledge resources. The chapter shows first the abstract frame-

work and then, instantiates it, defining the structure of its elements. Fur-

thermore, it presents the reasoning process that agents can follow to generate,

select and evaluate arguments.

Chapter 4 specifies the dialogue protocol that can use the agents of an agent so-

ciety to exchange arguments and engage in an argumentation process to reach

agreements. The chapter presents the syntax and semantics of the protocol.

In addition, several dialogue strategies that depend on the agents’ profiles and

preferences are devised.

In Chapter 5, an example application of the framework in the domain of water-

rights transfer in a river basin is provided. In this scenario, agents are users of

a river basin that can buy or sell their water-rights to other agents. A water-

right is a contract with the basin administration organism that specifies the

rights that a user has over the water of the basin. This is a theoretic example

that illustrates the type of environment and problem that the framework is

able to deal with and analyses its properties from different perspectives.

Chapter 6 presents an implementation of the framework in the domain of

a helpdesk application, where a group of operators must solve an incidence

reported by a user. Here, the framework is empirically evaluated, testing its

performance under different evaluation criteria.

Chapter 7 summarises the main contributions of this thesis and proposes future

work on this area. Finally, the bibliographical work published during the

development of this PhD thesis is referenced.
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2.1 Introduction

As pointed out in Chapter 1, within the history of research done in argumen-

tation in Artificial Intelligence (AI), there has been a wide variety of mutual

contributions. The argumentation theory has produced important benefits on

many AI research areas, from its first uses as an alternative to formal logic

for reasoning with incomplete and uncertain information to its more recent

applications in Multi-Agent Systems (MAS) [Bench-Capon and Dunne, 2007;

11



2.1. Introduction

Rahwan and Simari, 2009]. Currently, the study of argumentation in this area

has gained a growing interest. The reason behind is that having argumentation

skills increases the agents’ autonomy and provides them with a mechanism to

engage in dialogues with other agents demonstrating an intelligent behaviour.

An autonomous agent should be able to act and reason as an individual entity

on the basis of its mental state (beliefs, desires, intentions, goals, etc.). As

a member of a MAS, an agent interacts with other agents whose goals could

come into conflict with those of the agent. Moreover, if a dynamic and open

MAS is considered, the knowledge that an agent has about the environment,

its neighbours and its mental state can change in the course of time. In ad-

dition, agents can have a social context that imposes dependency relations

between them and preference orders among a set of potential values to pro-

mote/demote. Therefore, agents must have the ability of reaching agreements

that harmonise their mental states and that solve their conflicts with other

agents by taking into account their social context and values. Argumentation

is a natural way of reaching agreements between several parties with opposing

positions about a particular issue. The argumentation techniques, hence, can

be used to facilitate the agents’ autonomous reasoning and to specify interac-

tion protocols between them [Rahwan, 2006].

Case-Based Reasoning (CBR) [Aamodt and Plaza, 1994] is another research

area where the argumentation theory has produced a wide history of successful

applications. According to the CBR methodology, a new problem can be

solved by searching in a case-base for similar precedents and adapting their

solutions to fit the current problem. This reasoning methodology has a high

resemblance with the way by which people argue about their positions, trying

to justify them on the basis of past experiences. The argumentation theory

concepts and techniques have been successfully applied in a great number of

CBR systems, especially in those that work in legal domains, where a plaintiff

and a defendant argue over their opposing positions in court. In this case, if

12
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’common law’ is the legal system that applies, similar cases should be resolved

with similar verdicts.

The work done in the eighties about legal CBR fostered the argumentation

research in the AI community [Rissland et al., 2006]. From then on, the good

results of CBR systems in argumentation domains suggest that this type of

reasoning is suitable to manage argumentation processes. Nowadays, MAS re-

search community is endeavouring to broaden the applications of the paradigm

to more real environments, where heterogeneous agents could enter in (or

leave) the system, form societies and interact with other agents [Ossowski

et al., 2007]. Also, MAS have been proposed as a suitable technology to im-

plement the new paradigm of computing as interaction [Luck and McBurney,

2008], where large systems can be viewed or designed in terms of the services

they offer and the entities that interact to provide or consume these services.

As it was pointed out before, the high dynamism of these open MAS gives

rise to a greater need for a way of reaching and managing agreements that

harmonise conflicts. Moreover, this type of systems also poses other poten-

tial problems to overcome. Common assumptions about the agents of most

MAS, such as honesty, cooperativeness and trustworthiness can no longer be

taken as valid hypothesis in open MAS. Therefore, there is an obvious need

for providing the agents of an open MAS with individual reasoning and learn-

ing capabilities that make them more intelligent and autonomous and prevent

them from the potential attacks of interested agents.

Our aim with this state of the art review is to study the feasibility of using

CBR as the main reasoning and learning method in a framework that allows

the agents of an open MAS to reach agreements via argumentation and to learn

by experience to perform a more effective (strategic) dialogue. We follow a

CBR approach since this methodology is very suitable in domains with a weak

or unknown domain theory, where defining the set of rules that represent the

behaviour of the agents is infeasible, but acquiring examples encountered in

13
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practice is easy. With this purpose, we have reviewed the approaches of hybrid

case-based MAS for argumentation that have been proposed in the literature.

As a result of this work, the current CBR contributions to argumentation in

MAS have been identified. In addition, research challenges in the area have

been specified by pointing out several open research issues that must be taken

into account to develop a case-based argumentation framework for open MAS.

This part of the document shows the conclusions that we have drawn from

the state of the art revision, following this structure: Section 2.2 introduces

important concepts of the argumentation theory that have been adapted to

argue in AI systems; Section 2.3 makes a review of the argumentation study in

the field of AI; Section 2.4 introduces current applications of argumentation

in AI; Section 2.5 analyses the contributions of CBR to argue in MAS and

summarises the conclusions of this analysis; Section 2.6 proposes open issues

for the application of argumentation in agent societies and the uses of CBR

to manage argumentation dialogues in open MAS and finally; Section 2.7

summarises the contributions of this chapter.

2.2 Argumentation Theory

Argumentation theory provides a framework to model such dialogical situa-

tions where a set of participants, which have opposing opinions about a certain

claim, engage in a dialogue by generating arguments that support or attack

this main claim. From its origins in classical philosophy to nowadays, the

argumentation study has given rise to many argumentation theories. A the-

ory for argumentation specifies the elements that define the argumentation

dialogue; such as, for example, the argument components, the argumentation

logic, the inference rules and the argumentation protocol. Currently, one of

the most accepted argumentation theories is the pragma-dialectical, proposed

by Van Eemeren and Grootendorst [van Eemeren and Grootendorst, 2004].
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According to these authors:

’...Argumentation is a verbal, social, and rational activity aimed at convincing

a reasonable critic of the acceptability of a standpoint by putting forward a

constellation of propositions justifying or refuting the proposition expressed in

the standpoint...’

Thus, justifying one’s own opinion or rebutting others’ is the main objective of

argumentation. The argumentation process takes place over the proposition

of a sequence of statements in favour of a claim (proarguments) or against

it (counterarguments). Argumentation is aimed to increment (or decrement)

the acceptability of a controversial point of view, in other words, to persuade

the opponent (but in some situations collaborative decision making and ne-

gotiation are also possible objectives of the argumentation). Following van

Eemeren and Grootendorst’s point of view, the argumentation is part of a

critical discussion. Its objective is to resolve opinion disagreements over a

process that has the following stages:

• Confrontation: where the problem is presented.

• Opening: where the valid rules are determined (how to present evidences,

which sources of facts are valid, how to evaluate differing opinions, ter-

mination rules, etc.).

• Argumentation: where the logical principles are applied in accordance

with the rules that have been established and each party defends its

position or attacks other positions.

• Concluding: where the parties reach an agreement (or do not) and the

process ends.
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Many MAS where the interaction between the agents is defined via an argu-

mentation process (such as those reviewed in this chapter) have characteristics

of the pragma-dialectical theory and, more or less explicitly, show regard for

its stages in the dialogue between the agents. In addition, several well-known

concepts of the argumentation theory have been adopted for the AI commu-

nity to manage the argumentation between the agents of a MAS. Among them,

the dialogue typology of Walton and Krabbe [Walton and Krabbe, 1995], the

theory of dialogue games and the theory of argumentation schemes are the

most widely applied. The next sections provide a revision of these concepts.

2.2.1 Dialogue Typology

The philosophers Walton and Krabbe established in [Walton and Krabbe,

1995] a dialogue typology that distinguishes different types of dialogues re-

garding their initial situation, their main objective and the motivation of the

participants. The main dialogue types identified in this work were: persuasion,

negotiation, information seeking and sharing, deliberation, inquiry and eris-

tics. Table 2.1 shows a summary of the Walton and Krabbe dialogue typology.

Following, each type of dialogue is described:

• The persuasion dialogue is used when a participant tries to convince

another of accepting certain proposition or statement. This could make

the opponent to change its beliefs or to accept an action proposal.

• The negotiation dialogue takes place when several interested parts need

to reach an agreement about sharing some scarce resource to be able to

reach their objectives. Each part can have opposing interests. Therefore,

despite trying to reach the agreement, the negotiating parts hope to

achieve the most beneficial deal for their own interests.

• The information seeking and sharing dialogue occurs when one or more

participants want to obtain an unknown information. In this dialogue it
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is assumed that each participant believes that other participants have no

knowledge about the desired information. Therefore, participants do not

take specific positions and collaborate to find the unknown information.

• The deliberation dialogue takes place when several participants try to

reach a joint decision about an action or course of action to perform.

All participants are responsible to take the final decision and thus, they

collaborate to reach to the best alternative.

• The inquiry dialogue is used when a participant wants to get certain un-

known information, but, in this case, it is assumed that some participant

of the dialogue knows this information (e.g. an expert).

• The eristics dialogue takes place when several participants meet each

other trying to get the victory. In this case, the participants have con-

flicting positions and the objective of each one is to attack the others

and to win the debate in the opinion of an audience.

From a more specific approach, to characterise a dialogue type we need to

specify its main objective and the rules that guarantee the achievement of

this objective. These elements form the normative model of the underlying

dialogue type. Therefore, at this level, the dialogue types would be equivalent

to the dialogue games that we present in the next section. The dialogue types

shown in this section represent, from a more general point of view, the abstract

types of the objectives and agreement rules that a participant should ideally

meet when he or she is engaged in certain type of conversation and is willing

to be reasonable and cooperative.

2.2.2 Dialogue Games

Dialogue games are interactions between two or more players, where each

player ’moves’ by making statements observing a pre-defined set of rules
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Type Subtypes Initial
Situation

Main Goal Objective of
the Participants

Persua-
sion

Dispute; Formal
discussion; Proposal
discussion

Conflicting
points of view

Verbal resolution
of conflicts

Persuade

Negotia-
tion

Make deals; Global
agreements

Conflict of
interests;
Need of
collaboration

Making a deal Take the
maximum benefit

Inquiry Scientific search;
Research;
Examination

General
ignorance

Increase the
knowledge and
the agreement

Find or refute a
proof

Delibera-
tion

Purpose discussion;
Board meetings

Need for
action

Reach a decision Influence outcome

Informa-
tion
seeking
and
sharing

Expert consultation;
Didactic dialogue;
Interview;
Interrogation

Personal
ignorance

Extend the
knowledge;
Reveal positions

Win, share, show
or extend the
personal
knowledge

Eristics Eristic discussion;
Dispute

Conflict;
Antagonism

Reach a
provisional
agreement in a
personal relation

Attack the
opponent; Win in
the opinion of an
audience

Table 2.1: Walton and Krabbe Dialogue Typology[Walton and Krabbe, 1995]

[McBurney and Parsons, 2002a]. They are a specific type of games of the

game theory that are different from the classical games studied in the econ-

omy research area in the sense that the profits or losses for the victory or defeat

are not considered. Another important difference is that in dialogue games

participants are not able to model the potential moves or other participants

by using some uncertainty measure, for instance, some probabilistic measure.

Dialogue games have been used with multiple purposes in computational lin-

guistics, AI [Bench-Capon, 1998] and philosophy (concretely in argumentation

theory [Hamblin, 1970; MacKenzie, 1978]). In CBR systems dialogue games

have been applied to model human reasoning about legal precedents [Prakken

and Sartor, 1998]. In MAS, their more recent and successful application con-

sist in using them as a tool for the specification of communication protocols

between agents. Thus, we can find abundant bibliography that formalises

agent interaction protocols by using different dialogue games [Amgoud et al.,
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2000; Maudet and Chaib-draa, 2002]. Some other examples of dialogue game

protocols about specific types of dialogues are: information seeking [Hulstijn,

2000], persuasion [Prakken and Sartor, 1998; Atkinson, 2005b; Wardeh et al.,

2008], negotiation [McBurney et al., 2003; Sadri et al., 2001a; Karunatillake

et al., 2009], inquiry [McBurney and Parsons, 2001] and deliberation [McBur-

ney et al., 2007].

A particular element of dialogue games, commitment stores, has been widely

used in the area of MAS. The fact that an agent utters certain proposition

during the dialogue means that this agent incurs certain level of commitment

to this proposition and its implications or, at least, that the agent has certain

support to justify this utterance. The concept of commitment stores comes

from the study of fallacies (poor reasoning patterns that in some way imitate

valid reasoning patterns) developed by Hamblin in [Hamblin, 1970]. Accord-

ing to this work, formal reasoning systems have public commitment stores

for each participant, whose commitments can be withdrawn under certain

circumstances. The inclusion of a new commitment gives rise to a previous

verification that guarantees the coherence of the information of the store. Fol-

lowing Hamblin’s approach, commitments have a purely dialogical processing

(he calls them propositional commitments) and represent beliefs that do not

necessary correspond with the actual beliefs of the participant. Furthermore,

commitments may not hold out of the dialogue context.

Other approach for the concept of commitment was provided by Walton and

Krabbe in [Walton and Krabbe, 1995]. In this work commitments are un-

derstood as obligations of participants to incur, maintain or execute certain

course of action (they are action commitments). In this case, the commitments

made during the dialogue can force the participants to perform certain actions

out of the dialogue context. For these authors, commitments can also repre-

sent the fact of uttering statement in the dialogue. Therefore, propositional

commitments are viewed as a specific type of action commitments.
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Finally, a different approach for commitments was presented by Singh in

[Singh, 2000], who proposes a social semantics for the agent communication

languages. According to Singh, the participants of the dialogue have to express

their social commitments. These commitments represent their beliefs about

certain propositions and their intentions to execute actions in the future.

Despite the prolific applications of dialogue games in MAS, as discussed by

Maudet and Evrard in [Maudet and Evrard, 1998], a commonly accepted

theory of dialogue games that is generic and suitable to any type of dialogue

does not exist yet. However, there are a common set of requirements among the

models based on dialogue games which define their syntax. Based on Maudet’s

requirements and the approaches found in the literature, in [McBurney and

Parsons, 2002a] a definition for the components that a dialogue game should

have is proposed. However, a different view of the elements of dialogue games

is presented in [Prakken and Sartor, 1998].

The components of the approach of McBurney and Parsons are the following:

• Commencement rules: rules that define the circumstances under which

the dialogue commences.

• Locutions: rules which indicate what utterances are permitted. In legal

contexts, for instance, locutions allow participants to express proposi-

tions, opponents to refute these propositions and again participants to

refute this rebuttal justifying their propositions. Justifications imply to

present proofs or arguments that defend these propositions.

• Rules for combination of locutions: rules that define the dialogical con-

texts under which particular locutions are permitted or not, or obligatory

or not.

• Commitment rules: rules which define the circumstances under which

participants incur dialogical commitment by their utterances. Also,
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these rules define how commitments are combined when utterances in-

curring conflicting commitments are made.

• Rules for speaker order : rules which define the order in which speakers

can make utterances.

• Termination rules: rules that define the circumstances under which the

dialogue ends.

Following Prakken’s approach the common elements of dialogue systems are:

• A topic language Lt, closed under classical negation.

• A communication language Lc, where the set of dialogues, denoted by

M≤∞, is the set of sequences from Lc, and the set of finite dialogues,

denoted by M<∞, is the set of all finite sequences from Lc.

• A dialogue purpose.

• A set A of participants, and a set R of roles, defined as disjoint subsets of

A. A participant a may or may not have a, possibly inconsistent, belief

base Σa ⊆ Pow(Lt), which may or may not change during the dialogue.

Furthermore, each participant has a, possibly empty set of commitments

Ca ⊆Lt, which usually changes during the dialogue.

• A context K⊆Lt, containing the knowledge that is presupposed and

must be respected during the dialogue. The context is assumed consis-

tent and remains the same throughout a dialogue.

• A logic L for Lt, which may or may not be monotonic and which may

or may not be argument-based.

• A set of effect rules E for Lc, specifying for each utterance ϕ ∈Lc its

effects on the commitments of the participants.
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• A protocol P for Lc, specifying the legal moves at each stage of a dialogue.

It is useful (although not strictly necessary) to explicitly distinguish

elements of a protocol that regulate turntaking and termination.

• Outcome rules O, defining the outcome of the dialogue. For instance, in

a negotiation the outcome is an allocation of resources, in a deliberation

it is a decision on a course of action, and in persuasion dialogue it is a

winner and a loser of the persuasion dialogue.

The approach of McBurney and Parsons is prospective (looking forward to

model systems that do not exist yet). Opposite to this proposal, Prakken’s

approach is retrospective (looking back to reconstruct or explain what hap-

pened in a dialogue). Therefore, McBurney and Parson’s approach can be

considered more suitable for modelling the dialogue between a set of hetero-

geneous agents whose interactions will determine the dynamics and operation

of the system. In addition, Prakken’s approach assumes a presupposed knowl-

edge about the domain, which remains inalterable throughout the dialogue.

However, in open MAS the context can also be changed as new agents enter

in the system and new common knowledge is available.

Together with the definition of the syntax, a definition of semantics must be

specified to provide a formal definition of the dialogue game. This semantics is

concerned with the truth of falsity of utterances. The semantics of a dialogue

game have the following functions [McBurney and Parsons, 2009, Chapter 13]:

• To provide a shared understanding to participants of the meaning of

utterances, sequences of utterances and dialogues.

• To provide a shared understanding to designers of agent protocols of the

meaning of utterances, sequences of utterances and dialogues.

• To provide a means of studying the properties of the protocol formally

and with rigour.
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• To provide a means of comparing protocols formally and with rigour.

• To provide a means of readily implementing protocols in production

systems.

• To help ensure that implementation of agent communications in open

MAS is undertaken uniformly.

There are different types of semantics for agent communication protocols and

dialogue games [van Eijk, 2002]. One type of semantics, the axiomatic seman-

tics, defines each locution of the protocol in terms of the pre-conditions that

must exists before the locution can be uttered and the post-conditions which

apply after its utterance. Axiomatic semantics can be public or private. In the

former, the pre-conditions and post-conditions describe states or conditions of

the dialogue that are publicly observable by all its participants whereas in the

later some pre-conditions or post-conditions describe states or conditions of

the dialogue that are only observable by some participants.

Other type of semantics is called operational semantics. This semantics views

the dialogue game protocol as an abstract state machine and defines precisely

the transitions between states. The transitions are triggered by the utterance

of each locution.

A third type of semantics is the denotational semantics. In this case, each

element of the language syntax is assigned a relationship to an abstract math-

ematical entity (its denotation). The possible worlds of Kripke [Kripke, 1959]

is an example of such semantics. Finally, there are a specific type of de-

notational semantics, the game-theoretic semantics, where each well-formed

statement of the language is associated with a conceptual game between two

players, a protagonist and an antagonist. A statement is considered to be true

if there is a winning strategy for the protagonist in the associated game (a

rule giving that player moves such that executing them guarantees the player

can win the game, no matter what moves are made by the antagonist).
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In this PhD thesis, we use the concept of dialogue games to model the inter-

action between the agents that belong to a society. In doing so, we assume

that the commitments that the agents make during the dialogue are stored

in commitment stores accessible to the participants of the dialogue. Also, we

endorse the view of Hamblin and define our notion of commitments as propo-

sitional commitments that agents incur during the dialogue, with no effect

once the dialogue is terminated. Regarding the elements of the dialogue sys-

tem, we follow the approach of McBurney and Parsons, since our framework

is prospective and intended to model a system that does not exist yet, but

whose operation will be defined by the interaction of its agents.

2.2.3 Argumentation schemes

Argumentation schemes represent stereotyped patterns of common reasoning

whose instantiation provides an alleged justification for the conclusion drawn

from the scheme. These schemes present a structure for the different common

forms of argumentation (precedent-based argumentation, analogies, etc.). The

arguments of argumentation schemes adopt the form of a set of general infer-

ence rules by which, given a set of premises, a conclusion can be inferred. In

addition, they also take into account the non-monotonic nature of arguments.

An implication of this is that arguments can be valid or invalid when new

information is available.

Toulmin’s scheme [Toulmin, 1958] was one of the first works that proposed ar-

gumentation schemes. The main contribution of this scheme was the inclusion

of several elements that allow to describe the roles that the premises can play

in a concrete argument. In this way, arguments win expressiveness. Toulmin’s

scheme is formed by the following elements:

• Affirmation: conclusion that must be shown.

• Data: premises that support the affirmation.
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• Justification: expression that authorises the inference move from the

data to the affirmation.

• Support: credentials that certify the statement expressed in the justifi-

cation.

• Refutation: proposition that, in case of being true, would refute the

affirmation.

• Qualifiers: words or phrases that express the power of the veracity of

the argument for the affirmation.

The main criticism of the Toulmin’s scheme is that it does not propose a clear

way for the opponent to attack its elements neither distinguishes between the

different types of attacks that it can receive (affirmation rebuttal, inference

process rebuttal, etc.). Other foundational works that identified different types

of argumentation schemes are those of Perelman [Perelman and Olbrechts-

Tyteca, 1969] and van Eemeren [van Eemeren and Grootendorst, 1984; van

Eemeren and Grootendorst, 1992].

Finally, the work of Walton [Walton, 1996; Walton et al., 2008], who presented

a set of 25 different argumentation schemes, was an important contribution

that solved the problems that the Toulmin’s scheme arises. Each Walton’s

argumentation schemes has associated a set of critical questions that, if in-

stantiated, questions the elements of the scheme and can represent potential

attacks to the conclusion drawn from it. Elements of Walton’s schemes are:

• Premises: statements from which the conclusion of the scheme is in-

ferred.

• Conclusion: affirmation drawn from the premises.

• Critical questions: different ways in which the conclusion can be at-

tacked.
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Therefore, if the opponent asks a critical question, the argument that supports

this argumentation scheme remains temporally rebutted until the question is

conveniently answered. This characteristic of Walton’s argumentation schemes

makes them very suitable to reflect reasoning patterns that agents can follow

to bring about conclusions and, what is more important, to devise ways of

attack the conclusions drawn from other agents. Therefore, in the case-based

argumentation framework proposed in this PhD work, we include Walton’s

like argumentation schemes as knowledge resources that our agents can use to

generate arguments and attacks to arguments.

2.3 Argumentation in AI

From the beginning of AI research, the development of knowledge-bases, rea-

soning methods and cognitive architectures able to reply human reasoning has

been a core area of interest. The work done in such area is typically known

as common sense reasoning research. A reasoning method of this kind must

include the following features:

• The ability to manage uncertain knowledge.

• The ability to reason with knowledge that is assumed to be true or false

in the absence of any evidence that shows the opposite, which is called

default reasoning.

• The ability to reason quickly over a wide range of domains.

• The ability to reason and take decisions in presence of incomplete knowl-

edge and subsequently, to revise the beliefs and decisions that were taken

when concrete knowledge is acquired, which is called non-monotonic rea-

soning.
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Initially, argumentation theory was adopted in AI due to the inability of the

classic propositional logic to reason and give explanations in presence of uncer-

tain or imprecise information [Reiter, 1980]. The main problem with classical

logic is its monotonic condition, which implies that the acquisition of new in-

formation cannot modify the conclusions that were inferred to that moment

and thus, it is not applicable as common sense reasoning method. This prob-

lem already appeared in rule-based expert systems, where several rules could

conflict or even be invalidated by the acquisition of new information. The

process of drawing conclusions by using rules that can be defeated by new

information is called defeasible reasoning. When defeasible rules are linked up

to reach to a conclusion, the proofs that support such rules turn into argu-

ments. The arguments can defeat each others, given rise to an argumentation

process. To determine the winning arguments, they must be compared by

establishing which beliefs are justified. Therefore, argumentation theory has

been studied in AI to deal with the process of argument searching and more

concretely [Bench-Capon and Dunne, 2007]:

• To define the argument components and their interaction.

• To identify the protocols and rules that manage the argumentation pro-

cesses.

• To distinguish between valid and invalid arguments.

• To determine the conditions under which further discussion becomes

redundant.

[Bench-Capon and Dunne, 2007] and [Rahwan and Simari, 2009] provide an ex-

tensive review of the argumentation research that has been done in AI through-

out history. According to the authors, the foundations of argumentation in AI

lie in the studies done to extend non-classical logic to manage argumentation,

the argumentation models that are based on dialogue processes and the dia-
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grammatic treatments of the argument structure. We refer the reader to this

important work for further details.

However, among the work that promoted the use of argumentation in AI, the

research done in legal reasoning really stands out. In fact, the results ob-

tained in the eighties from the work performed by the CBR researchers on

applying this methodology of reasoning to legal domains fostered the study of

argumentation in the AI community. Law is one of the most important appli-

cation domains of the argumentation theory. In this domain, a case represents

a conflict between two parties that argue about their opposing positions in

court. Each party tries to persuade an external audience (i.e. the judge or

jury) to obtain a verdict that was favourable to its lawsuit. The concepts that

characterise legal cases cannot be universally defined by valid and sufficient

conditions, but they are open-textured. Each case interpretation is arguable

and hence, experts are in disagreement about what its verdict should be. An

AI system suitable for working with legal cases must be able to store and

manage uncertain and incomplete information.

CBR fits these conditions perfectly. Moreover, the CBR methodology has a

high resemblance with the way in which people argue about their experiences.

Therefore, CBR has been successfully applied in many legal reasoning systems

that are based on precedents. This is the case of Anglo-American law, which

follows a common law legal system whose judicial standard, stare decisis, or-

ders that similar cases must be resolved with similar verdicts. In this domain,

CBR is the most common reasoning mode. However, the judicial standard

does not specify how to measure the similarity between cases. In fact, the

similarity is not static, but it depends on each person’s point of view and

objectives. Rissland [Rissland et al., 2003] report this and other features that

make the legal domain an excellent area to study the CBR typical research

issues (indexing, retrieval, similarity measurement, etc.).
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In Europe, the research on legal domains of the argumentation research com-

munity has historically followed a different approach, centred on the design of

Rule-Based Systems (RBS) and the specification of logical models of legal rea-

soning. This trend is mainly due to the civil law legal system of most European

countries, by which the legal code is specified in the form of laws transcribed in

a statute or constitution that is not based on precedent cases. Among the first

contributions in this area are the works of Gordon [Gordon, 1987], who devel-

oped a hybrid system of knowledge representation for defeasible reasoning and

Prakken [Prakken, 1993], who studied the concept of preference among con-

flicting arguments. Subsequently, a model of legal reasoning among precedents

was proposed in [Prakken and Sartor, 1998]. Also, Bench-Capon did research

into the defeasibility of legal arguments, the concept of explanation on expert

legal systems, the building of arguments by means of dialogue games and the

definition of ontologies in legal systems of information [Bench-Capon, 1989;

Bench-Capon and Visser, 1997; Bench-Capon, 1998]. Other important Euro-

pean contribution to argumentation in legal domains was the Reason-Based

Logic (RBL) theory about legal reasoning proposed by Hage and Verheij in

[Hage and Verheij, 1995]. Finally, Dialaw [Lodder and Herczog, 1995; Lodder,

1998], an interesting framework that models legal reasoning as a dialogical

process, was presented by Lodder and Herczog.

In 1991, the seminal works of the CBR researchers Ashley, Branting, Rissland

and Skalak were published. The ideas that were spread on their projects

established the basis of what is known today as interpretive CBR. The first

and probably the most important interpretive CBR system of that time was

Ashley’s HYPO system [Ashley, 1991]. HYPO generates legal arguments by

citing previous cases (precedents) as justifications of the conclusions about

who should win a dispute in the domain of the American trade secrets law.

Concretely, the system generates 3-ply arguments that show the best cases to

cite for each party, their distinctions (the differences between the current and

the previous case) and their counterexamples (previous cases that are similar
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to the current case and that were resolved in the other party’s favour).

The main contributions of HYPO were the definition of several dimensions,

in terms of which arguing in law is common, and the design of methods to

compare and contrast cases on the basis of their applicable dimensions. In

HYPO, the most similar cases (most on-point cases) are those that share a

major number of dimensions. Therefore, the disputes in HYPO are repre-

sented by their dimensions, in view of the lack of a sound domain theory that

prescribes rules for taking decisions over any legal problem. The dimensions

show a set of facts that reinforce or weaken the argument of a plaintiff for a

certain conclusion. However, legal experts do not reach an agreement about

the relative importance of the dimensions. HYPO, thus, helps in the resolu-

tion of a new legal dispute by relating it with previous cases and by generating

the whole argumentation process that might be followed. In addition to this,

HYPO also offers a list of hypothesis (or hypos) that modify the problem by

reinforcing or weakening the position of each party. These hypos may be very

useful for the plaintiff or the defendant when preparing themselves for dealing

with the potential arguments that the other party might generate against his

position during the trial.

HYPO’s success gave rise to the subsequent development of several systems

that share its problem analysing style. The most direct descendant of HYPO

and probably the most elaborated is Aleven’s CATO system [Aleven and Ash-

ley, 1997], an intelligent learning environment that teaches law students to

build arguments from cases. In addition to the typical functionalities of argu-

mentation systems, CATO also includes other abilities that legal experts have

and that law students must learn: such as to organise a written argument by

topics using multiple cases and to generate arguments about the similarity

between cases. To perform that, CATO extended the argumentation model

of HYPO with a factor hierarchy. This hierarchy is a representation of the

domain normative knowledge about the meaning of the case factors that ex-
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perts have. CATO’s factors are a simplification of HYPO’s dimensions and

represent a set of stereotyped facts that, according to the experts, influence

the resolution of a case. Thus, a case in CATO is a set of unary factors that

are labelled as favourable to the plaintiff or to the defendant. Other impor-

tant contribution of CATO was the definition of methods to generate and

select arguments having the knowledge contained in the factor hierarchy into

account.

Initially, CATO was deployed to work in the HYPO’s domain, the American

trade secrets law. However, CATO’s factor-represented case-based argumen-

tation model was used afterwards in other systems that operated in different

legal domains. The system BankXX [Rissland et al., 1993], which generates

arguments in the domain of American bankruptcy law by performing a best-

first heuristic search in a high-interconnected network of legal knowledge, is an

example. Moreover, the work done in HYPO and CATO systems also gave rise

to several projects whose research objectives were centred in the development

of some specific processing functionality of the legal information contained in

the cases. Some examples are the systems: SPIRE [Daniels and Rissland,

1997], which mixes CBR with retrieval information techniques to extract pas-

sages from textual legal cases that could contain relevant information of the

opinion of several courts about certain legal cases; SMILE [Brüninghaus and

Ashley, 2001], which uses text classifiers to automatically decide the factors

that are applicable to a specific legal case and; IBP [Brüninghaus and Ashley,

2003], which determines the underlaying issues of a case and, on the basis

of them, predicts the verdict of case-based legal processes. Recently, SMILE

and IBP systems have been integrated in a new system that is able to reason

directly with textual legal cases. This system analyses the cases to extract the

relevant legal information, then predicts their verdicts and finally, shows such

prediction with an explanation [Brüninghaus and Ashley, 2005].
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Other kind of argumentation systems that have their roots in the eighties

and early nineties are the hybrid CBR-RBR (case-based and rule-based rea-

soning) systems. One of the first real hybrid CBR-RBR system is another

descendant of HYPO, the CABARET system [Rissland and Skalak, 1991],

which produces legal arguments in the domain of the American tax law. Be-

fore CABARET’s development, ’hybrid’ systems had a main reasoning mode

and when it failed, the systems switched to the secondary mode of reasoning.

However, CABARET has a domain-independent architecture that includes

two reasoners (one case-based and other rule-based) that are managed by an

agenda controller that uses heuristic rules to dynamically alternate the con-

trol over them. The system uses various knowledge sources: a database of

legal cases, a database of rules and legal predicates and a set of domain-

independent control rules, which determine the sequence of tasks to perform

by using the information gathered by the controller. Finally, other important

hybrid CBR-RBR argumentation system is GREBE [Branting, 1991], which

was a pioneer system in using the justifications of legal cases to create new

arguments. GREBE is a system for legal analysis that reasons with portions

of precedent cases in the domain of the Texas workers compensation law. The

system builds explanations for the classification of legal cases as instances of

specific legal predicates by using a back-chaining technique that combines rules

and portions of precedents.

2.4 Current Applications of Argumentation in AI

Nowadays, the argumentation research in AI is experiencing a new reactiva-

tion, mainly motivated by recent and interesting contributions developed in

MAS. On the one hand, the argumentation theory has been studied in MAS to

manage the agent’s practical reasoning. Practical reasoning is a well-known

area in philosophy, but which historically has received less attention in AI

than the theoretical reasoning. This type of reasoning analyses which specific
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action should be performed in a particular situation, instead of the theoretical

reasoning objective of deciding the truthfulness of beliefs. Moreover, practical

reasoning does not presuppose, as theoretical reasoning does, that the fact

of reaching an objective is always adequate or profitable, but it must select

the best objectives to perform and decide afterwards whether their realization

is worthwhile. This fits the reality of a MAS, where each individual agent

has its own point of view and its particular objectives and interests. How-

ever, the theoretical reasoning about the state of the world and the effects

of the potential actions to perform is also essential. Therefore, both types

of reasoning must be considered in MAS. In [Rahwan and Amgoud, 2006],

an argumentation-based approach for practical reasoning has been proposed.

In this work, Dung’s abstract argumentation framework [Dung, 1995] is in-

stantiated to generate consistent desires and plans to achieve them. Dung’s

framework is defined as a pair < A,R > where A is a set of arguments and

R ⊆ A × A is a binary attack relation on A. It will be explained in more

detail in Chapter 3. The works developed by Atkinson in her thesis and her

subsequent research are also other important contributions to the modelling

of argumentation processes that allow the agents to reason about what is the

best action to execute [Atkinson, 2005b].

In addition, the argumentation techniques have been applied to manage the

agents’ autonomous reasoning and the interaction between them [Rahwan,

2006]. In open MAS, the introduction of new information may giving rise to

new arguments that reinforce or weaken certain beliefs. Therefore, the argu-

mentation techniques can be used as a way of revising the agents’ beliefs in

presence of incomplete or uncertain information. The work proposed in [Capo-

bianco et al., 2005], for example, applies argumentation to keep the consistency

of the agents’ mental state in changing environments by using an appropriate

representation of the environment and a mechanism that integrates the new

information in the beliefs update process. Argumentation has also been ap-

plied in MAS as a selection means between conflicting desires [Amgoud, 2003]
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and objectives [Amgoud and Kaci, 2004], as a qualitative means of reasoning

about the expected value of the realisation of certain actions [Fox and Par-

sons, 1998] and as generator of plans [Hulstijn and van der Torre, 2004; Simari

et al., 2004].

Moreover, argumentation provides MAS with a framework that assures a ra-

tional communication. The dialogue typology of Walton and Krabbe [Walton

and Krabbe, 1995] has been adopted in MAS to classify the different types of

dialogues between the agents depending on the objective of the interaction.

Other concepts of the argumentation theory (i.e. dialogue games [Hamblin,

1970; MacKenzie, 1978] and argumentation schemes [Walton, 1996; Walton

et al., 2008] have also been applied to structure the dialogue between agents

with different points of view according to the interaction rules that have been

previously agreed. Recently, a wide range of approaches that formalise interac-

tion protocols by using different dialogue games have been published [McBur-

ney and Parsons, 2002a]. Some examples of dialogue game protocols about

specific types of dialogues are: inquiry [Hulstijn, 2000; Black and Hunter,

2009], persuasion [Atkinson, 2005a], negotiation [Sadri et al., 2001b] and de-

liberation [McBurney et al., 2007]. As pointed out before, argumentation

schemes have several characteristics that make them very useful in defining

the communication between agents. In the case of Walton’s argumentation

schemes, the critical questions are arguments that can be presented by an

opponent to criticise the claim that the scheme poses, thus providing the

argument with a clear structure that reduces the computational cost of gener-

ating and evaluating arguments. [Reed and Walton, 2005] proposes a formal

framework to specify argumentation schemes for agent’s communication by

using the markup language AML, based on XML. Also, the work presented in

[Atkinson and Bench-Capon, 2007] provides firm foundations for an approach

to practical reasoning based on presumptive argument.

Among current research on argumentation in MAS, to study the effect of ar-
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gumentation strategies in the interaction between agents is also a recent trend.

Here, there are different approaches to the study of strategies in argumentation

frameworks. On the one hand, preliminary works studied the concept of strat-

egy as developing heuristics for move selection in argumentation dialogues. A

first contribution was provided in [Bench-Capon, 1998]. In this work the au-

thor defines a Toulmin dialogue game machine and proposes some heuristics

for move selection. The acceptability of the arguments is computed by using

some Toulmin-like rules. A similar work is the one presented in [Amgoud and

Maudet, 2002], which proposes heuristics for move selection on the context of

persuasion and negotiation dialogues. This research defends a three-level ap-

proach of strategy, inspired on naturally occurring dialogues between humans.

The levels identified are:

• maintaining the focus of the dispute.

• building one’s point of view or destroying the opponent’s one.

• selecting the method to fulfil the objective set at levels 1 and 2.

While levels 1 and 2 refer to strategy (planning the line of argumentation),

level 3 refers to tactic (the mean to reach the aims fixed at the strategical

level). Then, the account for strategy proposed follows three steps to develop

strategies:

• define some agent profile: agreeable (accept whenever possible), disagree-

able (only accept when there is no reason not to), open-minded (only

challenge when necessary), argumentative (challenge whenever possible),

or elephant child (question whenever possible).

• choose to build or destroy.

• choose some appropriate argumentative content.
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Opposite to the former work, this work computes argument acceptability by

using a more general Dung-like argumentation framework. In a subsequent

work, the author studied the notion of strategy for selecting offers during

a negotiation dialogue [Amgoud and Kaci, 2005], proposing different agent’s

profiles and different criteria for the notions of acceptability and satisfiability

of offers. Also, in [Amgoud and Hameurlain, 2006] it is argued that there is no

consensus on the definition of a strategy and on the parameters necessary for

its definition. Consequently, there are no methodology and no formal models

for strategies. This work defends that a strategy is a two steps decision process:

i) to select the type of act to utter at a given step of a dialogue, and ii) to

select the content which will accompany the act. Thus, an agent tries to

choose among different alternatives the best option, which according to its

beliefs, will satisfy at least its most important goals. There are two types of

goals: strategic goals, which help an agent, on the basis of the strategic beliefs,

to select the type of act to utter; and functional goals, which help an agent to

select, on the basis of the basic beliefs, the content of a move. Then, the work

proposes a formal model for defining strategies. The model takes as input the

strategic and the functional goals together with the strategic and basic beliefs

and returns the next move (act plus its content) to play. Then, the model

assesses each alternative by constructing the set of supporting arguments for

each one and evaluating their quality.

The agent profiles of [Amgoud and Maudet, 2002] were also considered in

[Kakas et al., 2005] to develop different types of strategies. This work pro-

poses an argument-based framework for representing communication theories

of agents that can take into account the conformance to society protocols,

private tactics of individual agents, strategies that reflect different types of

personal attitudes (agents’ profiles) and adaptability to the particular exter-

nal circumstances at the time when the communication takes place. Although

the authors do not provide a clear structure and definition for their notion

of agent society, social relations between agents are captured in the form of
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preference rules that affect the tactic component of an agent and help it to

decide the next move in a dialogue.

On the other hand, a different approach follows a game-theoretic view to the

study of argumentation strategies. This is the case of the work proposed in

[Roth and Rotolo, 2007], where the probability of a conclusion is calculated

using a standard variant of defeasible logic, in combination with standard

probability calculus. In this approach the exchange of arguments is anal-

ysed with game-theoretic tools, yielding a prescriptive account of the actual

course of play. Other game-theoretic approach for the study or argumenta-

tion strategies in negotiation dialogues was presented in [Rahwan and Larson,

2009]. This approach uses the paradigm of Argumentation Mechanism Design

(ArgMD) for designing and analysing argument evaluation criteria among self-

interested agents using game-theoretic techniques. Mechanism design (MD)

is a sub-field of game theory concerned with determining the game rules that

guarantee a desirable social outcome when each self-interested agent selects

the best strategy for itself.

The approach analyses strategy-proofness under grounded semantics for a spe-

cific type of arguments, the so-called focal arguments (the arguments that

agents are especially interested in being accepted). In a preliminary work

[Rahwan and Larson, 2008], the authors restricted the analysis to the case

where agents use a specific type of preference criteria, the individual accept-

ability maximising preference criteria. Following this criteria, every agent at-

tempts to maximise the number of its arguments that are accepted. In further

research [Rahwan et al., 2009] the ArgMD approach has been applied to more

realistic situations in which each agent has a single focal argument it wishes

to have accepted.

The authors demonstrate for both preference criteria that if each agent’s type

(characterised as the set of argument that an agent can bring up) corresponds

to a conflict-free set of arguments which does not include (in)direct defeats, the
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grounded direct argumentation mechanism for this argumentation framework

is strategy-proof.

Opposite to the heuristic-based approaches, the goal of this game-theoretic

approach is to design rules that ensure, under precise conditions, that agents

have no incentive to manipulate the outcome of the game by hiding arguments

or lying (how to ensure the truth in an argumentation framework).

Within this section it has been shown how the argumentation techniques have

been successfully used to reach agreements that assure the coherence of the

agents’ mental state and to structure their interaction in disagreement sit-

uations. Parsons et al. [Parsons et al., 1998] proposed a seminal theoretical

framework that unifies argumentation-based reasoning and communication for

negotiation in MAS. More recently, Rahwan et al. [Rahwan et al., 2003] anal-

yses this and other argumentation-based negotiation frameworks. A wide re-

view of the current situation of the argumentation research in AI has also

been published in the special issue on argumentation of the journal Artificial

Intelligence [Bench-Capon and Dunne, 2007] and in the book [Rahwan and

Simari, 2009]. Moreover, an effort to consolidate the work done in argumen-

tation languages and protocols, argument visualisation and editing tools and,

generally, in argumentation frameworks for MAS, was performed by the AS-

PIC project1. As a result, a new standard for argument interchange in MAS,

the Argument Interchange Format (AIF), has been proposed to serve as a con-

vergence point for theoretical and practical work in this area [Willmott et al.,

2006]. All these advances show how the study of argumentation in AI, and

more concretely in MAS, is currently a research area that has a high activity

and a growing interest.

Furthermore, as it was shown in Section 2.3, the work done in CBR argumenta-

tion systems in the eighties and nineties promoted the study of argumentation

in AI. From then on, the successful application of CBR to reach agreements

1European Union’s 6th Framework ASPIC Project (IST-002307)
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in case-based legal confrontations suggests the power of this methodology to

manage this kind of disagreement situations. Nowadays, the argumentation

research in CBR continues being very active [Rissland et al., 2006] and, in

fact, some approaches that integrate CBR in MAS to help argumentation pro-

cesses have already been proposed. However, the contributions are still scarce

and many research in the area remains to be done. Our point of view is that

CBR can be very useful to manage argumentation in open MAS and devise

argumentation strategies. To demonstrate the foundations of this suggestion

and to clarify the work that has already been done, the next section reviews

the uses of CBR for argumentation in MAS. Regarding dialogue strategies

for argumentation, our objective in this PhD thesis is to contribute on the

development of this area of research by providing case-based heuristic strate-

gies and evaluating its performance in a real scenario. The reviewed works

about strategies for argumentation dialogues are mainly theoretic and with

this evaluation, we try to empirically prove the advantages of following heuris-

tic argumentation strategies in MAS.

2.5 Research approaches in CBR-based argumentation

for MAS

Argument management (generation, selection, evaluation etc. of the compo-

nents of arguments and the management of the dialogue itself) is a key issue to

deal with in argumentation-based dialogues in MAS. Our view, supported by

the successful applications reported in the previous section, is that CBR is a

suitable methodology to argue in two-party disagreement situations. Further-

more, if the use of CBR is extended to manage argumentation in multi-party

dialogues (dialogues between a group of agents), argumentation can also be en-

hanced with the reasoning and learning capabilities that CBR provides. These

features could promote and distinguish CBR from other approaches for argu-
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ment management. Note that in what follows, our research is focused on the

applications of CBR in dialogical contexts in MAS. Therefore, we assume that

there are a set of agents engaged in an argumentation in a multi-agent envi-

ronment. The applications of CBR to manage agents’ autonomous reasoning

are out of the scope of the research performed in this PhD work.

To date, little research has dealt with the use of CBR methodology to facilitate

the argumentation between the agents of MAS. The current approaches are

focused on managing two types of dialogues between agents: argumentation-

based negotiation and collaborative deliberation. In addition, none of these

approaches consider the social context of agents. Thus, this section analyses

them in an attempt to show the promising advantages of using CBR to aid

argumentation in open MAS. Despite the scarcity of applications in this area,

the frameworks that have been proposed still introduce important features

and interesting advances to analyse.

However, the language employed by the authors to present their approaches is

very varied. Therefore, before dealing with the analysis, we introduce several

dimensions that aim at establishing a common terminology for our research,

some of them inspired by the characteristics used in [Rahwan et al., 2003] to

compare several argumentation-based negotiation frameworks. These dimen-

sions are organised and studied in three areas of analysis (context, argumen-

tation model and discussion) and show how each framework deals with the

argumentation related issues:

Context:

• Implementation domain: domain where the framework has been

implemented and tested.

• Dialogue type: type of dialogue according to the classification pro-

posed in [Walton and Krabbe, 1995].
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Argumentation Model:

• CBR objective: what are the main purposes for applying the CBR

methodology in the framework.

• Case-base contents: what kind of information is stored in the cases.

• Argument generation: method used to generate arguments in the

framework.

• Argument selection: method used to select arguments in the frame-

work.

• Argument evaluation: method used to evaluate arguments in the

framework.

• Interaction protocol: method used to control the interactions be-

tween the agents of the framework.

Discussion:

• Argumentation style: theoretical framework that has inspired the

argumentation style employed by the authors.

• Assumptions: main assumptions made by the authors in the design

of the system that implements the framework proposed.

For clarity purposes, the analysis performed in this section is mainly centred

on the CBR features that support the argumentation functionalities. The spe-

cific details about the design of each system have little interest for the review

performed in this chapter and we refer the reader to the related bibliography

for further information. Finally, note that not every dimension is mentioned

when explaining each framework, since some of them remain unclear or un-

specified by the authors.
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2.5.1 The PERSUADER system

Context

In her thesis, Katia Sycara developed the PERSUADER system, which acts

as a mediator in the implementation domain of labour management disputes

between a company and its trade union [Sycara, 1987], [Sycara, 1989], [Sycara,

1990]. This was a seminal framework that integrated for the first time concepts

of argumentation theory and CBR to create a negotiation model in a MAS.

PERSUADER uses a mediator agent that manages the negotiations between

two agents representing the company and the trade union. The mediator

dialogues with the parties trying to reach an agreement, which is a contract

that is accepted by both agents. A contract consists of a set of attributes

(e.g. salaries, pensions and holidays) whose value must be decided. Opposite

to many systems of its time, PERSUADER studied the argumentation in a

non-cooperative domain, where each agent has its own objectives and tries to

derive its maximum own benefit from the negotiation. The main objective of

the mediator and hence, the objective of the dialogue in this framework, is to

negotiate with both agents and persuade them to collaborate.

Argumentation Model

The agents’ negotiation model consists of: (a) an iterative process that implies

the identification of potential interactions (either by communicating with the

other agents or by reasoning about the current state of the negotiation and

the agents’ intentions) and (b) the modification of the agent’s own intentions

to avoid the interactions that could hinder the agreement process. Thus,

the model favours cooperation. In addition, the mediator agent is able: (a)

to represent and keep models of the agents’ beliefs and preferences, (b) to

reason with these beliefs and (c) to modify them to influence their behaviour.

Therefore, in order to perform a persuasive negotiation, the mediator agent
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keeps a model of the company and trade union agents and by reasoning over

it, tries to find all possible ways of affecting the behaviour of these agents.

In PERSUADER, one of the CBR objectives is to infer the model of beliefs

and preferences of an unknown agent. In this way, the mediator retrieves the

information about past negotiations with similar agents that was stored in

precedent cases and adapts it to fit to the current context. Moreover, during

the negotiation, the mediator agent can update the agents’ models by observ-

ing their reactions to the arguments that it offers to them. To manage the

negotiation process, the mediator agent has available two types of knowledge:

• Domain knowledge stored in the case-base: the contents of the case-base

consist of negotiation concepts represented by attributes that are hierar-

chically organised in networks (negotiation issues, concrete negotiators,

negotiators’ objectives, negotiation context and final agreement).

• Reasoning knowledge: is the knowledge needed to evaluate the fairness

of a contract or to improve it. This knowledge is represented in terms of

multi-attribute utilities that are associated with the objectives of each

agent and express its preferences and criteria for selecting among pro-

posals.

The argument generation is performed by integrating several techniques: the

search in an objective graph, the use of the multi-attribute utilities and the use

of the case-base of precedent negotiations. In PERSUADER, persuading an

agent to change its assessment about the proposal of certain contract entails

producing an argument that increases the benefits that this agent receives with

that contract. The received benefits can be inferred as a linear combination of

the utilities that will be received for the value of each attribute that composes

the contract. This also determines whether the objectives of the agent have

been fulfilled or not. Therefore, the global benefit that an agent will receive

can be increased (and hence, the agent can be persuaded) by following two
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types of persuasion strategies:

1. Strategies to change the importance of a concrete objective:

• To indicate a change (increment or decrement) in the contribution

of the objective to fulfil an objective of highest level.

• To indicate a change in the viability or efficiency of the objective.

2. Strategies to change the utility value of a concrete objective:

• To retrieve from the case-base a counterexample that shows an

opposite behaviour of the agent in a similar past negotiation.

• To retrieve from the case-base examples of similar agents that ac-

cepted the proposed value of the objective in similar past negotia-

tions.

Therefore, another CBR objective in PERSUADER is to retrieve past cases

that act as arguments for persuading an agent to accept a specific contract. In

case that one part tried to prematurely withdraw from the negotiation without

having reached an agreement, in addition to these appealing arguments, the

system is able to generate threats.

The negotiation process in PERSUADER starts with the introduction of the

set of objectives of the company and the trade union that conflicts and the fac-

tors that define the negotiation context. Initially, the mediator agent generates

a contract proposal and shows it to the agents. If the proposal is accepted, the

negotiation ends. Otherwise, the mediator chooses either to generate another

contract proposal (if none of the parts accept it) or to start a persuasive argu-

mentation trying to persuade the agent that does not accept the proposal (if it

is accepted by one of the agents). The output of the negotiation is the agree-

ment of a contract or an indication that the negotiation failed after certain

number of proposals.
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Discussion

The PERSUADER argumentation style is based on the persuasion psychology

of Karlins and Abelson [Karlins and Abelson, 1970] and, as it is pointed out

before, there are two types of possible arguments: appeals or threats. The

main contribution of the system was the creation of the first model of persua-

sive argumentation between several, by default, non-cooperative agents with

different interests that integrates elements of CBR, utility theory and argu-

mentation theory. However, this was a foundational work where the agent’s

model was somehow specified by abstractions. Although the author justified

such design decision by saying that it reduces the overload of building and

maintaining real agent’s models, the multi-agent condition of the system could

be debatable. Anyway, the system is completely designed for two party me-

diated argumentation, which is inapplicable to open MAS, where the number

of participants in the argumentation dialogue can change and the presence

of a mediator cannot be assumed by default. Moreover, PERSUADER is

highly domain-dependent and user-oriented, with reasoning algorithms based

on the knowledge introduced on the system, argument selection completely

determined by a pre-established hierarchy of argument types and user-based

evaluation of arguments.

2.5.2 CBR for Argumentation with Multiple Points of View

Context

Nikos Karacapilidis et al. developed a model that integrates CBR and ar-

gumentation for supporting decision making in discussion processes. This

model was implemented in the Argument Builder Tool (ABT) of the multi-

agent framework for collaborative deliberation HERMES [Karacapilidis and

Papadias, 2001], [Karacapilidis et al., 1997]. This is an Argumentation-based
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Decision Support System (ADSS) that helps a group of users (human agents)

to build sound arguments to defend their positions in favour or against other

alternative positions in a discussion. HERMES maps the argument process

into a discussion graph with tree structure and shows graphically the possi-

ble discourse acts that the agents could instance. The system uses CBR to

make the appropriate queries to the (internal or external) databases that store

information that support the positions of the agents that participate in the

argument and, thus, to generate discourse acts that successfully show their

interests and intentions. However, as it is only a support system, afterwards

the agents are free to adopt or not the ABT’s proposals.

Argumentation Model

In this framework is the system itself who manages the interaction between

the agents, being the CBR engine a reasoning component integrated in it.

Therefore, the case-base is common for all agents and belongs to the system.

The cases are flexible entities that store a set of argumentation elements that

can be interpreted depending on the state of the discourse and each agent’s

point of view. The argumentation elements that HERMES considers are the

following:

• Issues: decisions to take or objectives to fulfil. They consist of a set of

alternatives.

• Alternatives: potential choices.

• Positions: predicates that either advocate for the choice of a concrete

alternative or deviate the agents’ interest for it. They can also refer to

other positions and give additional information about them.

• Constraints: which represent preference relations over arguments (<

position, preference relation, position >), where the preference relation
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can be more (or less) important than or of equal importance to certain

alternative.

The arguments in HERMES are either tuples < position, link, position > or <

position, link, alternative >, where a positive link denotes an argument favour-

ing an alternative and a negative link denotes a counterargument to it. The

system evaluates them by using constraints that the users of the system in-

troduce, checking previously the consistence of the new constraints in relation

with the constraints that have been introduced before. This checking gives rise

to new argumentation processes to solve the possible conflicts between con-

straints. The constraints establish a partial ordering over the positions and,

in this way, the position with a highest weight (highest preference) becomes

the winning argument.

The argumentation process in HERMES is performed by means of several dis-

course acts with different functions and roles. There are two types of discourse

acts: (1) agents’ acts, which represent the user’s actions and correspond to the

functions that the user interface of HERMES supports (e.g. opening of new

issues, alternatives submission, etc.) and, (2) system’s internal acts, which are

consequence of the agents’ acts and represent functions for discourse consis-

tency checking, discussion update and solution recommendation. The latter

functionality is performed by using CBR.

Therefore, the main objective of the CBR methodology in the system is to ex-

amine the current discussion and to suggest the participants the best discourse

acts to fire, according with their points of view and preferences. Thus, the

contents of the HERMES case-base represent past argumentation processes.

The cases consist of the following elements:

• Situation: relevant part of the discussion at the time when the case was

stored in the case-base. It characterises the concrete problem that the

case represents and consists of the elements:
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– Target: element to be argued about by the agent (issue, alternative

or position).

– Discussion: discussion that the case has been extracted from (rep-

resented by a link to the relevant part of the discussion tree that

the case refers to).

• Solution: alternative or position that the system proposes to argue about

the target.

• Evaluation: suitability of the case to the agent’s agenda.

The case-based argumentation process in HERMES consists of the following

phases:

1. Intention submission: first, agents submit their intentions by declaring

the arguments that they want to include in the argumentation and by

mapping their point of view about the current discussion. Therefore,

the arguments are manually generated by instantiating some of the pre-

established discourse acts that the system has.

2. Cases retrieval and selection: then, HERMES retrieves those cases for

which the target coincides with the agents’ current argumentation ob-

jective. Afterwards, the system performs a case selection based on the

agents’ point of view and the current state of the argumentation.

3. Cases adaption: this is a semi-automatic process, being the user who

selects the cases that need adaption among the set of similar cases that

the system has proposed.

4. Argument assertion: finally, by using the retrieved and adapted cases,

the agents provide warrants to their assertions. Argument assertion in-

volves firing the appropriate discourse acts to propagate the information

in the discussion graph and to retain the new case.
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Discussion

The argumentation style of HERMES is inspired by the ZENO’s model of

argumentation [Gordon and Karacapilidis, 1997], which is based on the IBIS

informal-logic argumentation framework [Rittel and Webber, 1973]. Therefore,

HERMES interprets arguments on the basis of their intentional context by

using an informal logic. The authors view the system as a MAS because it

can be used by several human agents that interact between them and with the

system by means of the HERMES user interfaces. An important contribution

of HERMES was the proposition of this new case-based argumentation support

functionality, which, in view of the discussion current state, produces the best

arguments to support the assertions of the participants taking their points

of view and preferences into account. Moreover, the user interface allows to

follow easily the course of the argumentation. However, the framework does

not define a specific interaction protocol between the agents. In addition,

the arguments evaluation depend on constraints that determine a preference

relation among them, also introduced by the users. Therefore, the good-

end of the argumentation process entirely depends on the honesty, experience

and disposition to collaborate of the users, which cannot be assured in open

environments. Human intervention is compulsory almost at any time. These

assumptions pose heavy difficulties to adapt this framework to work in open

MAS with a changing number of heterogeneous software agents participating

in the dialogue.

2.5.3 Case-based Negotiation Model for Reflective Agents

Context

Leen-Kiat Soh and Costas Tsatsoulis designed a case-based negotiation model

for reflective agents (agents aware of their temporal and situational context).
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This model uses CBR to plan/re-plan the negotiation strategy that allows the

most effective negotiation on the basis of past negotiations [Soh and Tsat-

soulis, 2001a], [Soh and Tsatsoulis, 2001b], [Soh and Tsatsoulis, 2005]. In this

framework, a set of situated agents that control certain sensors try to track

several mobile targets. The aim of the agents is to coordinate their activi-

ties and collaborate to track the path to as many targets as possible. The

agents’ sensors have limited power and coverage and each agent only controls

a subset of sensors. Although the cooperativeness is assumed, each agent has

individual tasks to fulfil. Therefore, when an agent has not enough coverage or

power capabilities to track a target, it needs to negotiate and persuade other

agents and achieve that they leave their tasks and help it to track the target.

Hence, the framework was implemented to solve a typical problem of limited

resources allocation.

Argumentation Model

The agents of this model are autonomous entities that own two separated and

private case-bases. Each agent has a CBR manager that performs 3 functions:

(1) retrieves past negotiation cases that are similar to the current negotiation,

(2) uses them to determine new negotiation strategies and (3) maintains the

case-base. The CBR manager allows agents to learn to negotiate more effec-

tively by using the knowledge of past negotiations. The cases contents store

descriptions that characterise the agents’ context in a previous negotiation.

Concretely, a case is composed by the following elements:

• Description of the part of the world relevant to the case: information

about the sensors and the target.

• Agent’s profile: sensor power, activated sensor sector, state of the com-

munication channels, task list, etc.

• Neighbours’ profile: agent’s knowledge about its neighbours.
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• Negotiation outcome.

An agent can play two possible roles: as initiator or as responder of the

negotiation. As initiator, the agent tries to negotiate with its neighbours to

reach its targets. As responder, the agent receives a negotiation proposal and

answers it. Therefore, the information gathered by the agent when playing

each role is stored in the corresponding case-base. When an agent determines

that it cannot reach a target by its own, it tries to collaborate with other agents

initiating an argumentation dialogue. In this framework, the arguments are

pieces of information that an agent sends to its neighbours to persuade them

to share certain resource with it. Persuasion implies to surpass the negotiation

threshold of an agent and convince it to share some of its resources.

In order to achieve it, the initiator agent retrieves cases that represent nego-

tiations that are similar to the current one from its initiator case-base. The

cases are retrieved by comparing their case descriptors with the characteristics

of the new negotiation. The negotiation strategy that will follow the agent,

which is deduced from the negotiation parameters of the cases, specifies which

type of information should be sent to convince quickly a particular responder

agent. Initially, the initiator agent retrieves several strategies and afterwards,

it uses Multivalued Utility Theory. By using this theory agents are able to

relate constraint satisfaction criteria of the negotiation at hand with the po-

tential negotiation strategies and to select the one that optimises such criteria

while minimising the risky behaviour.

In this model the cases are situated, thus, the CBR manager must adapt

the negotiation parameters to fit to the current negotiation. To that pur-

pose, it uses certain domain-dependent adaption rules that the framework

pre-establishes and, once the adaption is performed, the negotiation starts.

The arguments to send to other agents are ranked and selected on the ba-

sis of certain selection rules also pre-established in the framework. Following

them, the initiator agent selects which piece of information (arguments about
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the world, the target or the agent itself) can be most effective to persuade a

specific agent in the current context. In each negotiation step, the initiator

agent sends an argument to the responder agent. In its turn, the responder

agent evaluates the evidence of each argument by using the information of

its responder case-base and a relaxed constraint satisfaction approach. The

process continues until a maximum number of steps is reached or an argument

surpasses the negotiation threshold of the responder agent and it is accepted.

The interaction protocol is defined by means of a series of states over which

the negotiation takes place. At any time, the negotiation parameters that the

CBR manager adapts have a high influence in the sequence of states that the

negotiation follows.

Discussion

The framework of Soh and Tsatsoulis does not interpret persuasion as most le-

gal argumentation systems do [Jakobovits and Vermeir, 1999]. These perform

a detailed study about the dialectical context of legal arguments and their

condition of proposals, defenses, positions or attacks. However, the argumen-

tation style of this framework views persuasion as a negotiation protocol of

information interchange between two agents that try to reach an agreement by

using an argumentation process. To describe the logical framework, the mul-

ticontext BDI framework of [Parsons et al., 1998] was extended. In addition,

temporal characteristics were included by using a temporal logic that defines

relations over time intervals. Other important contribution of this framework

was the introduction of learning capabilities for the agents by using the CBR

methodology. Moreover, the negotiation strategy is inferred dynamically from

the information of the case-base and concurrent negotiations are allowed.

However, the model assumes certain characteristics that can pose several draw-

backs to its application to open MAS. On the one hand, the neighbours and

their controlled sensors must be known in advance. On the other hand, de-
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spite concurrency being admitted, the agents can only negotiate about one

issue at the same time. Finally, the framework has strong assumptions about

the honesty, cooperativeness and rationality of the agents that do not fit the

reality of open MAS.

2.5.4 Argument-based selection Model (ProCLAIM)

Context

Pancho Tolchinsky et al. extended the architecture of the decision support

MAS for the organ donation process CARREL+ [Vázquez-Salceda et al., 2003]

with ProCLAIM, a new selection model based on argumentation [Tolchinsky

et al., 2006a; Tolchinsky et al., 2006c; Tolchinsky et al., 2006b; Tolchinsky

et al., 2011]. In CARREL+, a donor agent (DA) and a set of recipient agents

(RAs) argue about the viability of the organ transplant to some recipient.

If an agreement is not reached, the organ is discarded. ProCLAIM includes

a mediator agent (MA) that controls the collaborative deliberation dialogue

and uses a CBR engine to evaluate the arguments about organ viability that

the agents submit. The final decision must fulfil several guidelines that, in

ProCLAIM case, are the human organs acceptability criteria that CARREL

stores in the Acceptability Criteria Knowledge Base (ACKB).

Argumentation Model

The mediator agent uses a case-base to store all relevant information about

past donation processes. The cases contents consist of a description of the

transplant medical information and an argument graph that shows the argu-

ments that were submitted by the agents that participated in the donation

process. Different cases can share the same argument graph. In addition, an

argument graph has an evidential support < F,K >, where F stands for the
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certainty on the correctness of the final decision that was made and K for the

number of cases that share the graph. This certainty corresponds to the trans-

plant phase when the decision was made; phase 1 includes potential arguments

that were submitted before the organ extraction, phase 2 includes conclusive

arguments that were submitted after the organ extraction and phase 3 includes

conclusive arguments about the final result after the organ transplant.

The MA tasks consist of (1) directing the possible dialectical movements of

each agent, (2) ensuring that the submitted arguments observe the guidelines

and (3) using CBR to assign intensities to the arguments, offer new relevant

arguments and take a final decision about the winning arguments. ProCLAIM

arguments are instantiations of the argument schemes and critical questions

of the CARREL+ knowledge resource Argument Scheme Repository (ASR).

This repository completely characterises the space of possible arguments that

the agents can submit. Moreover, agents use a 1st order logic programming

language to generate arguments [Modgil et al., 2005]. When a new organ is

offered, the DA submits to the MA its arguments about the organ viability.

Afterwards, the RAs counterargue and the MA must take a final decision. To

that moment, the arguments are of phase 1. Once the organ is extracted, a

RA can change its mind and consider it as non-viable. Therefore, the RA

must submit more phase 2 arguments to support its position. Finally, if the

organ is transplanted and complications arise, the RA submits more phase 3

arguments to explain the failure or the actions performed to solve them and

achieve a successful transplant.

When the DA and the RAs have submitted their arguments for the organ

transplant, the MA evaluates them. If there are conflicts, the MA compares

the resulting argument graph with those stored in its case-base to retrieve

similar graphs and decide the winning arguments. Once the similar argu-

ment graphs are obtained, the MA checks the descriptors of the cases that the

graphs have associated and rules out the ones that contain arguments that do
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not observe the guidelines. In addition, the graphs whose evidential support

falls below certain threshold are also rejected. In some exceptional cases, the

CBR engine could find valid arguments that were turned down by the guide-

lines. Even arguments that were rejected by both the CBR engine and the

guidelines can be accepted because the agent who submitted them has either

a high reputation, a specific role that increases the confidence on its opinion

or a certificate that supports its arguments. This knowledge is encoded in the

Argument Source Manager (ASM) resource and can be acceded by the MA to

readjust the strengths of the arguments. The potential conflicts between the

evaluation of arguments proposed by the different CARREL+ knowledge re-

sources are solved with a pre-established resource preference relation. Finally,

the resulting set of argument graphs is put together in a solution graph that

represents the CBR engine decision concerning the viability of the transplant

to a specific recipient agent. If this argument graph was already included in

the mediator’s case-base, the description of the new case is associated with it

and, hence, its evidential support increases. Otherwise, the new graph and its

associated case are added to the case-base.

Discussion

ProCLAIM argumentation style is based on Dung’s abstract argumentation

framework (explained in more detail in Chapter 3). An interesting contribu-

tion of this model is that it can increase the organ acceptance rate by allowing

the donor and the recipients to argue about their decisions. In addition, it

also allows exceptions over the human organ transplant acceptability guide-

lines. The ProCLAIM model has also been recently applied to wastewater

management [Aulinas et al., 2007] (also a collaborative decision making do-

main with critical features) and to deliberate over action proposals [Tolchinsky

et al., 2007]. However, in all applications the argumentation process depends

on the contents of the knowledge resources that the MA accedes. Therefore,

55



2.5. Research approaches in CBR-based argumentation for MAS

an intensive effort to acquire and maintain such knowledge must be performed.

Moreover, as pointed out before, the space of possible arguments to submit is

completely characterised by the ASR. This implies that the agents have limited

expressiveness, although the authors state that this decision has been taken

for security reasons in the safety critical domains where the model operates.

As Sycara’s PERSUADER system, this is also a framework that was designed

for performing a mediated argumentation, but opposite to PERSUADER, the

cooperative nature of the agents is assumed by default. Therefore, this heavy

assumption hinders again the adaption of this system to open MAS.

2.5.5 Argumentation-based Multi-Agent Learning (AMAL)

Context

Santiago Ontañón and Enric Plaza developed the Argumentation Based Multi-

Agent Learning (AMAL) framework [Ontañón and Plaza, 2006], [Ontañón and

Plaza, 2007]. The agents of this framework are autonomous entities able to

independently solve classification problems and to learn by experience, storing

the knowledge acquired during the solving process in their private case-bases.

The set of possible classification classes is predefined in the framework. The

aim of the interaction between the agents is to increase the solution quality

by aggregating the knowledge of a group of expert agents. Therefore, they

engage in a collaborative deliberation dialogue.

Argumentation Model

When an agent receives a new problem to solve, it firstly uses the CBR method-

ology to retrieve the most similar cases from its case-base and provide an initial

solution to the problem. In this way, the problem is classified into the class

that the most similar cases belong. In this framework, the cases contents con-
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sist of a set of attributes that describe a problem and the solution class that

classifies it (C =< P,S >). Moreover, the AMAL agents are able to pro-

vide a justified prediction (J =< A,P, S,D >) that explains the reason why

a certain solution has been proposed to solve a specific problem. An agent

A generates the justified prediction J to assert its belief that S is the correct

solution for the problem P and D is the evidence support for such statement.

This evidence is a symbolic description that contains the relevant information

(common attributes) shared by the problem and the retrieved cases whose

class is S. Therefore, D stands for the claim that all or most of the cases

that are similar to P in the agent’s case-base belong to the class S. The

justified predictions can be generated by using CBR in combination with any

other learning method, as decision trees or Lazy Induction of Descriptions,

LID [Armengol and Plaza, 2001], the latter being the method used in AMAL.

Both cases and justified predictions are information pieces that AMAL agents

use to generate three types of arguments:

• Justified Predictions, as previously explained.

• Counterarguments, which show the evidence that other agent has for

classifying the problem as belonging to a different class.

• Counterexamples, which are cases sent by other agent to contradict an

argument by showing an example case that classifies the problem into a

different class.

By means of the arguments, agents get involved in a global solving process that

increases the quality of the initial solutions proposed by each agent by reaching

an agreement about the correct solution for the problem. To achieve this, a

preference relation to evaluate the arguments that bring into conflict is needed.

In AMAL, this preference relation is based on a global confidence measure that

is computed for each justified prediction. In the face of several conflicting

57



2.5. Research approaches in CBR-based argumentation for MAS

arguments, the winning argument is that with higher global confidence (the

one that classifies the problem into the class that has been predicted by the

major number of agents).

The deliberation process in AMAL takes place across an interaction protocol

that defines a series of rounds. In each one a token passing mechanism is used

to specify which agent is authorised to interact with the others. During its

round, an agent can either assert an argument or rebut it with a counterargu-

ment (or counterexample). Agents can also assert arguments when they accept

an incoming argument and change their prediction. The AMAL protocol al-

lows agents to include the counterexamples that receive in their case-bases

and, hence, to increase their knowledge. The interaction ends when an agree-

ment is reached or when a maximum number of rounds is surpassed. In the

latter case, the final solution for the problem is decided by using a weighted

voting mechanism.

Discussion

The AMAL framework is a new contribution to the study of argumentation-

based learning models for MAS whose agents have individual learning capa-

bilities. This model also differs from many other argumentation frameworks

on its dynamic computation of the relation preference between arguments.

In addition, the argumentation style is completely case-based. However, the

framework assumes honesty, cooperativeness and rationality in the agents’ in-

teractions, which cannot be assured in open MAS. All agents must have at

least some knowledge about the problem to solve. Therefore, this framework

is not conceived for open distributed environments, where the heterogeneity

of agents makes non-assumable that all participants in a dialogue have a min-

imum knowledge about the problem at hand. Obviously, in order to take

the maximum profit from this approach of learning from communication, the

knowledge must be conveniently distributed over the agents’ case-base. If all
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agents become experts, collaboration and learning from others would be a

nonsense.

2.5.6 General Analysis

The main properties of the frameworks that this chapter has reviewed are sum-

marised in the Table 2.2 (referring the dimensions previously presented and

analysed in this section). The diversity of domains and purposes in apply-

ing both argumentation and the CBR methodology on each framework makes

difficult to perform a formal comparison that expresses which is better at solv-

ing a particular type of problems. Therefore, the table aims at summarising

and clarifying how each framework deals with the argumentation related is-

sues. Nevertheless, some similarities and differences between them can still be

identified.

hhhhhhhhhhhDimensions

Framework
PERSUADER HERMES SOH’s PRoCLAIM AMAL

Implementation domain Labour conflicts

mediation

Decision sup-

port (e.g.

Deciding

treatments

for patients

and Planning

cyclepaths)

Dynamic

resource as-

signment in

a sensorised

environment

with mobile

targets

Decision sup-

port (e.g.

Organ trans-

plant and

Wastewater

management)

Classification

problems

Dialogue type Negotiation &

Persuasion

Deliberation Negotiation Deliberation Deliberation

CBR objective Provide informa-

tion for building

agent’s mod-

els. Generate

precedent-based

arguments

Provide argu-

ment warrants.

Assist in ar-

gument gener-

ation

Select negotia-

tion strategies

Argument

evaluation.

Offer other

relevant argu-

ments

Individually

solve the prob-

lem. Select the

global solu-

tion. Learn by

experience

Case-base contents Concepts of

previous negoti-

ations hierarchi-

cally organised

in networks

Set of at-

tributes rep-

resenting past

argumentation

processes

Descriptions

of the agents’

context in

a previous

negotiation

Medical infor-

mation of past

transplants

and argu-

ment graph of

their donation

processes

Description of

previous prob-

lems and their

solution class

Continued on next page
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Table 2.2 – continued from previous pagehhhhhhhhhhhDimensions

Framework
PERSUADER HERMES SOH’s PRoCLAIM AMAL

Argument generation Case-based,

objective graphs

search and

multiattribute

utilities

Manual gener-

ation

Multivalued

attribute

utility theory

Instantiation

of the argu-

ment schemes

and critical

questions of

Walton (1996).

1st order

logic program-

ming language

(Modgil et al.,

2005)

Lazy Induction

of Descriptions

(Armengol &

Plaza, 2001)

Argument selection Pre-established

conviction power

hierarchy

Helped by the

ABT proposals

Domain-

dependent

selection rules

Preference

relation among

knowledge

resources

Selection im-

plicit in CBR

cycle

Argument evaluation User-based eval-

uation

User-based

evaluation

Constraint

relaxed sat-

isfaction.

Context-

dependent

rules

Guidelines-

based and

precedent-

based evalua-

tion performed

by the MA

Preference

relation based

on a case-

based dynamic

confidence

measure

Interaction protocol Non-specified.

Defined by

the mediator’s

decisions

Non-specified.

Defined by the

discourse acts

Defined by the

state diagram.

Influenced by

the CBR man-

ager decisions

Guided by the

MA. Dialogical

movements

determined by

the ASR argu-

ment schemes

instantiation

Argumentation-

based Multi-

Agent Learn-

ing Protocol

Argumentation style Karlins persua-

sion psychology

(Karlins & Abel-

son, 1970)

Zeno’s in-

formal logic

(Gordon &

Karacapilidis,

1997)

Persuasion.

Parson’s et al.

logic frame-

work (Parsons

et al., 1998)

Dung’s ar-

gumentation

framework

(Dung, 1995)

Case-based

multi-agent

learning

Assumptions Human agents.

Unique media-

tor’s case-base

Unique system

case-base. Hu-

man agents.

CBR is a

system compo-

nent

Shared ontol-

ogy, Agents are

Homogeneous,

cooperative,

autonomous,

reflective,

honest and

rational. 2 pri-

vate case-bases

per agent

Agents are

collabora-

tive. Control

centralised

by the MA.

Unique MA’s

case-base

Shared on-

tology, coop-

erative and

autonomous

agents, shared

objective.

One private

case-base per

agent

Table 2.2: Main features of the analysed CBR-based argumentation frameworks

As pointed out before, the implementation domain differs almost on each

framework, with HERMES and ProCLAIM being the ones that somehow share
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a common purpose: to provide decision support for group decision-making. In

addition, among other applications, both have been implemented and tested

in the medical domain [Karacapilidis and Papadias, 2001], [Tolchinsky et al.,

2006b]. In this dimension, the main difference between them is that HERMES

helps agents to select the best argument to instantiate in a particular context

and hence, to win the discussion, while in ProCLAIM the system assists the

mediator agent (and not the donor agents) to decide which agent has posed

the best argument and should be the winner of the discussion. Therefore,

although working in a similar domain, these systems are aimed at solving

different subproblems inside the more general problem of supporting group

decision-making.

Similarly, although HERMES, ProCLAIM and also the AMAL framework

share the same dialogue type (deliberation), the final objective of the interac-

tion between the agents of these systems is quite different: HERMES is mainly

centred on the argument diagramming and its graphical representation, help-

ing agents to follow the discussion and supporting them with tools to pose

better arguments; ProCLAIM deals with the internal deliberation of the me-

diator agent, supporting only this agent to make the best decision among

the set of potential winners and finally; in the AMAL framework all agents

have the common objective of deciding the best classification tag for a spe-

cific object and act as a group of experts that cooperate by aggregating their

knowledge in the deliberation process. In the same way, PERSUADER and

Soh’s frameworks also share the dialogue type (negotiation), but from a differ-

ent perspective. Thus, while in PERSUADER the mediator agent completely

centralises the negotiation process and the company and the trade union do

not keep a direct interaction, in Soh’s framework all agents are autonomous

and able to play an initiator role that starts and manages a direct dialogue

with other agents.
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With respect to the CBR objective, in all frameworks the CBR methodology

has been mostly used to generate, select or evaluate arguments on the face

of previous similar experiences. Consequently, as in any CBR system, the

contents of the case-base in each framework consist of a set of elements that

describe these previous experiences. However, the power of case-based learn-

ing can be better well-spent and could be used, for example, to perform a

strategic argumentation. PERSUADER and Soh’s frameworks have proposed

the first preliminary attempts to develop case-based argumentation strate-

gies by learning agent’s profiles and hence, easily persuading specific types of

agents. In these frameworks, the contents of the agent’s case-base store some

features about other agents that were observed during previous negotiations.

These features are used afterwards to enhance similar negotiations by taking

agents’ beliefs and preferences into account (e.g. PERSUADER) or by sending

the most useful information to persuade a specific agent (e.g. SOH’s frame-

work). However, in both frameworks the application domain has a decisive

influence on the argumentation strategy. Thus, in PERSUADER arguments

are presented following a domain dependent argument hierarchy while in Soh’s

framework cases are situated and need domain-specific adaption rules to devise

strategies that are applicable to the current negotiation context from them.

As will be shown in the next section, argumentation strategies have to be

further elaborated and future work remains to be done in this area.

Moreover, the application domain of each concrete framework and the contents

of the case-base have a decisive influence in the entire argument management

process (case-based generation, selection and evaluation of arguments). Only

the AMAL framework performs a completely case-based argument manage-

ment. Note that the agents of this framework use their case-base at every step

of the argument management process (although they generate arguments by

using the LID technique [Armengol and Plaza, 2001], this method makes use

of the information stored in the cases). The other frameworks include different

techniques to manage the generation, selection or evaluation of arguments (or
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the user manually performs them). Furthermore, in PERSUADER, HERMES

and ProCLAIM, all responsibility about the management of the argumentation

process falls on one agent or on the system itself, while the rest of participants

in the dialogue are human entities that are only in charge of posing argu-

ments in favour of their objectives. It is not demonstrated that the methods

and argumentation theories that are valid for a single agent were also valid if

the system was entirely automated by creating real autonomous software that

act on humans behalf. In most cases, the argumentation that is conducted

by a mediator totally depends on its capabilities and features. Therefore,

multi-agent argumentation and moderated argumentation could need differ-

ent argumentation theories and methods with every likelihood. The differences

between both types of argumentation can be even greater when working with

open MAS.

In the argumentation style dimension, all approaches differ. On the one hand,

although PERSUADER and Soh’s frameworks are based on the theory of per-

suasion, the former follows a formal psychological theory proposed by Karlins

and Abelson [Karlins and Abelson, 1970], which studies the different types of

arguments that are thought to be persuasive in negotiation processes between

humans, while the latter views persuasion as a negotiation protocol to coordi-

nate the interaction between two agents that want to reach an agreement in

a resource allocation problem. This protocol is based on the formal argumen-

tation framework for negotiation and reasoning proposed by Parsons [Parsons

et al., 1998]. On the other hand, the frameworks intended for deliberation also

show important differences in the foundations of their argumentation style:

HERMES is based on Zeno’s informal logic [Gordon and Karacapilidis, 1997]

and IBIS model of reasoning [Rittel and Webber, 1973], which proposes an

argument-based labelling function to evaluate the quality of the potential po-

sitions proposed as solutions in a group decision-making problem; ProCLAIM

uses Dung’s acceptability criteria [Dung, 1995] to determine the winning argu-

ments among the set of all proposed ones; and the AMAL framework follows
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an informal argumentation theory where cases are used to create the different

argument types of the framework and also to evaluate the preferred ones.

Finally, regarding the main assumptions made by the frameworks, PERSUA-

DER and HERMES mostly rely on the existence of human agents that interact

with the system. In the case of PERSUADER, this fact is probably due to the

time when the framework was developed, when multi-agent systems were still

in their early beginnings. In HERMES’ case, the focus of the system on devel-

oping a Web interface to support group decision-making and not on replacing

human judgement motivates this strong assumption on the existence of hu-

man users. In addition, most frameworks assume collaborative or cooperative

agents and do not tackle with reputation and trust issues. In fact, none of

the reviewed frameworks takes into account the possibility to allow malicious

and interested agents to come into the system. In this case, the honesty and

cooperative predisposition of these agents cannot be assured. The agents of

Sycara’s PERSUADER system are not cooperative by default, but honesty

and rationality in their actions are still assumed. In the ProCLAIM model,

the mediator agent can accede to the argument source manager to evaluate

the arguments submitted by an agent in view of its reputation. However, the

concept of reputation here seems to be a pre-defined value for each agent that

stands for its expertise in a specific domain. Again, malicious behaviours are

not prevented. Therefore, all these frameworks are not intended for operating

in open environments with heterogeneous and possibly unreliable agents.

2.6 Open Research Issues

According to the bibliographical analysis performed throughout this chapter,

this section introduces open research issues to perform argumentation in agent

societies, following a CBR methodology to implement the agents’ reasoning

capabilities. As pointed out in Chapter 1, in open MAS tracking the arguments
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that agents put forward in argumentation dialogues and performing a CBR

cycle over them could be relatively simple. On the contrary, the domain is

highly dynamic and the set of rules that model it is difficult to specify in

advance. Thus, a CBR approach to reason about arguments seems to be more

suitable than a rule-based approach.

First, the challenge of applying argumentation in agent societies is introduced.

This is a new area of research that has to be further investigated. In the pre-

vious section, different CBR systems for argumentation have been analysed,

trying to identify their important contributions and the research challenges

that are dealt with. Then, based on this analysis, we have specified several

broad areas that the research community has to further investigate. This

section poses open issues in these areas that must be tackled in order to pro-

mote the work on argumentation in open MAS with CBR capabilities. Theses

open issues offer a wide range of research possibilities to produce interesting

advances in CBR, argumentation and open MAS. However, they are not in-

tended to be a comprehensive list of all possible applications of CBR in the

wide field of multi-agent argumentation systems, but a set of purposes for

promoting new research in the area that inspire the development of this PhD

work. Finally, the section provides a conclusion for the state of the art review.

2.6.1 Argumentation in Agent Societies

The application of argumentation to agent societies is a new area or research

with few contributions to date. Commonly the term agent society is used in

the argumentation and AI literature as a synonym for an agent organisation

or a group of agents that play specific roles, follow some interaction patterns

and collaborate to reach global objectives. Many works in argumentation in

MAS that refer to the term ’agent societies’ follow this approach, which is not

targeted to the study of the structure of agent societies and the underlying

social dependencies between agents.
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This is the case of [Ferber et al., 2004], which points out some of the drawbacks

of classical ’agent centered multi-agent systems’. To resolve these difficulties

the authors propose a set of principles and an example methodology to design

organization centered multi-agent systems. Also, [Oliva et al., 2008] com-

bines multi-agent argumentation with the agents and artifacts meta-model

to design an argumentation component based on Dung’s preferred semantics

[Dung, 1995]. This component manages arguments and provides a coordina-

tion service for argumentation processes in a MAS.

Other works are focused on the study of argumentation in social networks,

with a focus on the network structure (or the structure of the group) rather

than in the actual social dependencies between software agents or human users.

An example of this type is the work presented in [Ontañón and Plaza, 2009],

which investigates how argumentation processes among a group of agents may

affect the outcome of group judgments in prediction markets. Also, a report

on how argumentation can enhance dialogues in social networks can be found

in [Heras et al., 2009a].

However, the influence of the agent group and the social dependencies between

agents in the way agents can argue must be further investigated. For instance,

an agent playing the role of PhD student could accept arguments from an agent

playing the role of supervisor that it would never accept in another situation,

such as playing the role of researcher. In the same way, an agent representing

a group of employees (playing the role of trade unionist) is not expected to

behave in the same way when arguing with an agent playing the role of the

employer’s representative than it does when arguing as an individual employee.

2.6.2 Case-based Argument Representation

A fundamental decision to make in the design of a CBR system that will deter-

mine its final operation is the case structure and contents. Bylander and Chan-
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drasekaran stated the interaction problem [Bylander and Chandrasekaran,

1987] by which:

’...representing knowledge for the purpose of solving some problem is strongly

affected by the nature of the problem and the inference strategy to be applied

to the problem...’

In the argumentation domain, how to reason about arguments, how to inter-

pret them and how to represent their relations are key issues. A CBR system

whose purpose is to perform argumentation tasks in MAS must facilitate the

reasoning in this domain. Therefore, the underlying semantics of argumen-

tation dialogues must be taken into account when deciding the structure and

the representation language of the cases.

If the arguments that have been submitted in a dialogue are only stored as data

in cases of the type attribute-value, or similarly, if the cases are simple struc-

tures that store information that will be used later to generate arguments, the

semantic knowledge acquired during the argumentation is lost. This knowl-

edge could be crucial to develop argumentation strategies able to persuade,

for instance, agents with specific profiles or to enhance the interaction proto-

col (see Section 2.6.3). As pointed out in Section 2.5.6, PERSUADER and

Soh’s frameworks made the first steps to devise argumentation strategies from

the information stored in the cases. In both frameworks, cases store informa-

tion about the context of previous argumentation processes (e.g. participants’

objective, environmental data, negotiation issues, final agreement, etc.). How-

ever, the structure and representation language of the cases do not allow to

define semantic relations between such concepts.

In addition, if general argumentation knowledge is stored in the cases together

with the information about previous argumentation processes (arguments or

information pieces to generate them), this knowledge could ease its later in-

terpretation. Our suggestion is to use Knowledge-Intensive CBR [Aamodt,

2004], a specific type of CBR methodology that would allow agents to reason
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with semantic knowledge in addition to the syntactic properties of cases. A

possible way to use KI-CBR to argue in open MAS is following an ontological

approach to develop systems of this type [Diaz-Agudo and Gonzalez-Calero,

2007]. In this way, ontologies can be used as case representation languages

that integrate general terminological knowledge about CBR, argumentation

and specific application domains. Further research to specify how to store

arguments and dialogues in the cases of a KI-CBR system and how to reason

with them must be carried out. Moreover, an intensive study to determine

which type of ontology would be suitable for describing the argumentation

concepts in the cases must be performed.

Another challenge that must be dealt with is how to communicate arguments

between the agents of a particular MAS or between the agents of different

systems. When working with open MAS, where the system dynamicity and

the heterogeneity between agents is assumed by default, this functionality is

particularly challenging. The research in this area has already been started by

the ASPIC community, which is developing its standardisation proposal for

an argument interchange format (AIF) [Chesñevar et al., 2006]. The format

introduces an abstract formalism for representing concepts about arguments,

argument networks, communication and argumentation context in MAS ca-

pable of argumentation-based reasoning. Since the AIF is being agreed upon

within the argumentation and MAS expert research communities, it is likely to

be adopted by many researchers as an standard for argument communication.

Therefore, considering this proposal when deciding how to represent the syn-

tax and semantics of the cases in a case-based argumentation framework would

be advisable for preserving compatibility with other different frameworks.
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2.6.3 CBR Roles in the Argumentation Process

CBR-based Argument Generation, Selection and Evaluation

Depending on the contents of the case-base, the CBR methodology can play

different roles in the argumentation process. The most obvious role (and

the one that appears in all frameworks analysed in this research) is to use

the case-based reasoning cycle to perform the entire or part of the argument

management process (generate, select and evaluate arguments). However, this

process has been implemented by using a wide range of techniques without any

standardisation in each current approach (see Table 2.2). Furthermore, the se-

lection process in almost all frameworks (except for the AMAL framework) re-

lies on domain-dependent rules and pre-established preference relations. This

fact makes increasingly difficult to compare and evaluate the strengths and

weaknesses of the CBR-based frameworks for argumentation in MAS.

Over the last years, explanation techniques that make the CBR solving process

more understandable have gained an increasing interest [Sørmo et al., 2005].

If case-based arguments are conceived as explanations that justify the posi-

tion of an agent in a discussion, the explanation techniques developed in CBR

systems could be a good alternative to standardise the generation, selection

and evaluation of arguments in MAS. A preliminary work in this direction

has been developed in the AMAL framework with the use of LID to generate

justified predictions about the class of new problems, but it only applies to

classification domains. Also, in the HERMES framework the case-base of the

system is used to generate warrants that support the arguments asserted by

the users. However, these cases only provide additional information that helps

the user to select the best argument to instantiate and do not provide a for-

mal explanation for the generation of specific arguments. Note that anyway,

the user is the one who finally decides which argument poses at any step of

the argumentation dialogue, no matter which is the recommendation provided
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by HERMES. In the rest of frameworks considered, the only explanation (or

justification) for generating particular arguments among the set of all possi-

bilities is the similarity between the current and the previous argumentation

dialogues.

Other interesting application of explanations could be that the recipient agent

uses them to check the correctness of the argument generation process when

arguments are generated from the contents of the sender agent’s case-base.

In that way, these explanations could act as warrants for their associated

arguments and ease the argument evaluation process for the recipient agent.

Besides that, if a knowledge intensive approach is used to store arguments

(or pieces of information to generate arguments) in the agent’s case-base, the

implicit semantic knowledge of the relations between arguments could be also

considered in the argument management process. From our point of view,

there is a need for intensive research that specifies how to apply explanation

techniques for argument generation, selection and evaluation in different types

of argumentation dialogues.

CBR-based Argumentation Strategies

The few theoretic research performed to date in the area of argumentation

strategies in MAS was reviewed in Section 2.4 and follows two differentiated

approaches, the heuristic and the game-theoretic. Other interesting role that

the CBR methodology can play in argumentation processes in MAS is to

generate heuristic argumentation strategies based on previously acquired ex-

perience. Note that one of the main advantages of using CBR to manage

argumentation in MAS is that it allows agents to learn from the process. In

the applied research performed in each framework studied in this chapter, the

underlying information about the current argumentation dialogue is partially

stored in the form of cases when the process finishes. In addition, the agents
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of the AMAL framework can also learn during the argumentation dialogue by

storing in their case-bases the cases that they receive from other agents. How-

ever, they do not learn how to predict the behaviour of particular agents or the

expected development of the dialogue, but only increase their own knowledge

with the knowledge that other agents share with them.

CBR could also be used to learn agents’ profiles and generate arguments to

perform a strategic argumentation that would easily persuade specific types of

agents. Some preliminary steps in this way have already been taken. The fist

attempt to use CBR to provide information for building agents’ profiles was

performed in PERSUADER. In this framework the mediator agent uses the

information about previous negotiation processes stored in the case-base to de-

velop the behavioural model of an unknown agent and devise the best way to

persuade it. Similarly, in Soh’s framework the information of the cases is used

to decide which type of arguments are best suited to convince an agent with

a specific profile and to infer other parameters that influence the negotiation

process (e.g. time constraints, resources usage, etc.). Nevertheless, in both

cases the argumentation strategy is highly domain dependent and completely

relies on previous knowledge. Although in PERSUADER the agents’ mod-

els can be dynamically updated, the preference order that determines which

argument must be ultimately posed depends on a pre-established hierarchy.

In a more dynamic and online way, the case-base could be used to store infor-

mation about the agents’ profile that could be gathered either by observing

the current agents’ behaviour, by learning information that the agents send

during the dialogue or as a result of inquiry and information seeking processes.

Therefore, this information could be used in the current argumentation pro-

cess to generate and select better arguments to put forward and to evaluate

the incoming ones. Case-based argumentation strategies have to be further

investigated and there is still much work to do in this area.
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CBR as Guide of the Interaction Protocol

The interaction protocol between the agents of a MAS needs rules to govern

the dialogue (e.g. the agents’ entries and withdraws from the dialogue, the

validity of proposals, the fulfilment of commitments and the termination of

the dialogue). Our view is that CBR can play an important role as a useful

tool to define such rules. For instance, the acceptable time to terminate an

argumentation dialogue could be inferred from the information stored in the

case-base about past similar arguments that ended in disagreement due to their

excessive duration. On the other way round, the time to reach an agreement

could be inferred from the time that took to reach similar agreements in the

past.

When defining the current negotiation strategy, Soh’s framework already con-

siders information about the time, number of steps and resources usage in

previous negotiation processes. However, as pointed out before, the cases are

completely situated and to be applicable in current negotiations they need to

be adapted by using domain dependent adaption rules. In addition, only one

case (the one that is potentially most similar to the current situation) is used

to define the negotiation strategy. Our purpose is to develop algorithms that

take into account the argumentation parameters of not only one specific case,

but of a set of previous similar cases.

In addition, if CBR is used to generate and evaluate arguments, infinite di-

alogues can be avoided by introducing certain rules in the reasoning cycle.

The AMAL framework, for example, does not allow an agent to generate the

same case-based argument twice during a dialogue. This is a basic strategy,

but still very effective. More elaborated rules could avoid circular arguments

and prevent the introduction of fallacies that could deviate the argumentation

dialogue from its main objective of reaching an agreement.

Finally, CBR could warrant the argumentation success by stopping the pro-
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cess or modifying certain parameters when the agents notice that the current

dialogue is developing in a similar way to another precedent that found insu-

perable obstacles to reach a profitable agreement.

Note that the case-based guide of the interaction protocol could also be consid-

ered as another type of argumentation strategy and then, it should be included

in the previous section. For clarity purposes, since this strategy is focused on

the interaction process itself and not on the argumentation management, we

have decided to study it in this separate section.

2.6.4 Case-base Consistency Matters

An important open issue that we have identified and that has received little

attention in the literature is how to update arguments that were generated

from past experiences to fit current argumentation dialogues. The case-base

consistency is a critical issue to ensure the proper operation of a CBR system

along the time. In the dynamic context of an open dialogue, where the agents

can enter as new participants or successfully finish the interaction with the

other agents, how a change of this type (environmental, in the agents’ points

of view, etc.) can affect the validity of the case-base information must be con-

sidered. Otherwise, the arguments inferred from the case-base could become

obsolete.

To ensure consistency, powerful algorithms to adapt and maintain the case-

base must be implemented. Such algorithms must be able to adapt situated

cases and make them applicable to the current problem or otherwise, elimi-

nate them. Soh’s model deals with this functionality to a certain extent, by

using domain-specific adaption rules. However, due to the dynamism of the

argumentation domain, such rules can quickly become obsolete. Therefore,

the adaption methods must be as domain-independent as possible.
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2.6.5 Trust and Reputation

None of the models that have been studied in this paper have taken repu-

tation and trust issues into account as tools for preventing the system from

unintentionally wrong or malicious behaviours. If the case-based argumenta-

tion framework is conceived to operate in open MAS these functionalities are

important. Before storing any information in the case-base during an argu-

mentation dialogue between several agents, an agent must check the trustwor-

thiness of such information. The opposite process is also necessary. If the

profile that an agent has about other agent changes, resulting in a decrease

of the other’s reputation, the information that comes from the interactions

with this untrustworthy agent stored in the former’s case base must be re-

vised. Other important question that needs from further research is whether

an agent must trust the information that it generates from its case-base by

default. Trust and reputation issues must not be underestimated in argumen-

tation frameworks in open MAS environments.

2.7 Conclusions

This chapter has introduced several concepts of argumentation theory that

have been applied to model the reasoning and behaviour of agents in MAS.

Among them, we use dialogue games, commitment stores and argumentation

schemes as elements of the framework proposed in this PhD thesis. Argu-

mentation in AI has historically followed two different approaches based on

rule-based or case-based systems. The dynamics of open MAS makes difficult

to specify in advance the set of rules that govern the behaviour of agents.

Thus, a case-based approach to track arguments exchanged among agents and

learn from the experience is a most suitable option to perform argumentation

in agent societies. Therefore, we have focused the state of the art analysis on

the few research approaches on case-based argumentation in MAS proposed
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to date.

The literature review shows that a formal and context-independent framework

that defines an argumentation theory for agents with learning capabilities

that are situated in a society and have values to promote/demote does not

already exist. This motivates the development of the framework proposed

in the next chapter. The examples about systems that successfully apply

CBR to manage argumentation in MAS demonstrate the suitability of this

reasoning methodology to provide agents with the ability to argue. However,

the current approaches are domain dependent and some assume the interaction

of humans with the system. Therefore, they are not suitable to be applied in

a general domain where agents argue in the context of a society in a MAS.

Also, none of the systems reviewed has the ability of managing agents’ values

and dependency relations in the argumentation process. This ability is crucial

in agent societies, where these are important concepts of the social context of

agents.

As will be shown in Chapters 3 and 4, the case-based argumentation frame-

work proposed in this thesis makes an innovative contribution on some of the

open issues identified in this chapter. Concretely, our framework is addressed

to agent societies and the representation, generation, selection and evaluation

of arguments is completely case-based. Also, by taking into account previ-

ous argumentation knowledge stored in the form of cases, agents can follow

different argumentation strategies.

75





Part III

Proposal





Chapter

3

Proposed Framework

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 79

3.2 Requirements for an Argumentation

Framework for Agent Societies . . . . . . . 80

3.3 Knowledge Resources . . . . . . . . . . . . . . 86

3.4 Abstract Argumentation Framework

for Agent Societies . . . . . . . . . . . . . . . . 106

3.5 Case-based Argumentation

Framework for Agent Societies . . . . . . . 111

3.6 Reasoning Process . . . . . . . . . . . . . . . . 119

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . 144

3.1 Introduction

In this chapter we propose a computational framework for design and im-

plementation of MAS in which the participating software agents are able to

manage and exchange arguments between themselves taking into account the

agents’ social context. First, we propose a formal definition for an agent society

and analyse the necessary requirements for an argumentation framework for
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agent societies. After that, we introduce the knowledge resources that agents

can use to manage their positions and arguments. The knowledge resources of

the framework and other argumentation related concepts are defined by using

an OWL-DL ontology called ArgCBROnto. Also, we follow a case-based ap-

proach to represent arguments. Thus, our knowledge resources are designed

as cases with the common structure of cases in CBR systems.

Then, we provide an abstract argumentation framework for agent societies by

extending abstract value-based argumentation frameworks to work with agent

societies. After that, the case-based argumentation framework proposed is

instantiated by defining the structure and relations of its elements. Subse-

quently, the reasoning process by which agents can automatically generate,

select and evaluate arguments is presented. This process allows agents to

learn from argumentation experiences and makes it easier to develop dialogue

strategies.

3.2 Requirements for an Argumentation Framework for

Agent Societies

In this section, we introduce the formal definition of the concepts that define

our approach for agent societies. Then, we analyse the issues that have been

considered to choose a suitable argumentation framework for agent societies.

3.2.1 Society Model

In this thesis, we follow the approach of [Dignum, 2003] and [Artikis et al.,

2009], who define an agent society in terms of a set of agents that play a set

of roles, observe a set of norms and a set of dependency relations between

roles and use a communication language to collaborate and reach the global

objectives of the group. This definition is generic enough to fit most types
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of agent societies, such as social networks of agents or open agent organisa-

tions. Broadly speaking, it can be adapted to any open MAS where there are

norms that regulate the behaviour of agents, roles that agents play, a common

language that allow agents to interact defining a set of permitted locutions

and a formal semantics for each of these elements. Here, we differentiate the

concept of agent society from the concept of group of agents, in the sense

that we consider that the society is the entity that establishes the dependency

relations between the agents, which can dynamically group together to pursue

common objectives in a specific situation. Moreover, the set of norms in open

MAS define a normative context (covering both the set of norms defined by

the system itself as well as the norms derived from agents’ interactions)[Criado

et al., 2009].

However, we consider that the values that individual agents or groups want

to promote or demote and preference orders over them have also a crucial im-

portance in the definition of an argumentation framework for agent societies.

These values could explain the reasons that an agent has to give preference

to certain beliefs, objectives, actions, etc. Also, dependency relations between

roles could imply that an agent must change or violate its value preference

order. For instance, an agent of higher hierarchy could impose its values

to a subordinate or an agent could have to adopt a certain preference order

over values to be accepted in a group. Therefore, we endorse the view of

[Perelman and Olbrechts-Tyteca, 1969], [Searle, 2001] and [Bench-Capon and

Sartor, 2003; Bench-Capon and Atkinson, 2009], who stress the importance

of the audience in determining whether an argument (e.g. for accepting or

rejecting someone else’s beliefs, objectives or action proposals) is persuasive

or not. Thus, we have included in the above definition of agent society the

notion of values and preference orders among them. Next, we provide a formal

definition for the model of society that we have devised:
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Definition 3.2.1 (Agent Society) An Agent society in a certain time t is

defined as a tuple St = < Ag, Rl, D, G, N, V, Roles, Dependency, Group, val,

V alprefQ > where:

• Ag = {ag1, ag2, ..., agI} is a finite set of I agents members of St in a

certain time t.

• Rl = {rl1, rl2, ..., rlJ} is a finite set of J roles that have been defined in

St.

• D = {d1, d2, ..., dK} is a finite set of K possible dependency relations

among roles defined in St.

• G = {g1, g2, ..., gL} is a finite set of groups that the agents of St form,

where each gi, 1 ≤ i ≤ L, gi ∈ G consist of a set of agents ai ∈ Ag of St.

• N is a finite set of norms that affect the roles that the agents play in St.

• V = {v1, v2, ..., vP } is a set of P values predefined in St.

• Roles : Ag → 2Rl is a function that assigns an agent its roles in St.

• DependencySt : ∀d ∈ D,<St
d ⊆ Rl × Rl defines a reflexive, symmetric

and transitive partial order relation over roles.

• Group : Ag → 2G is a function that assigns an agent its groups in St.

• val : Ag → V is a function that assigns an agent the set of values that

it has.

• V alprefQ : ∀q ∈ Ag∪G,<St
q ⊆ V ×V defines a reflexive, symmetric and

transitive partial order relation over the values of an agent or a group.

That is, ∀r1, r2, r3 ∈ R, r1 <St
d r2 <St

d r3 implies that r3 has the highest

rank with respect to the dependency relation d in St. Also, r1 <
St
d r2 and
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r2 <
St
d r1 implies that r1 and r2 have the same rank with respect to d. Finally,

∀v1, v2, v3 ∈ V, V alprefag = {v1 <
St
ag v2 <

St
ag v3} implies that agent ag prefers

value v3 to v2 and value v2 to value v1 in St. Similarly, V alprefg = {v1 <
St
g

v2 <
St
g v3} implies that group g prefers value v3 to v2 and value v2 to value v1

in St.

3.2.2 Computational Requirements for Arguments in Agent Soci-

eties

An argumentation process is conceived as a reasoning model with several steps:

1. Building arguments (supporting or attacking conclusions) from knowl-

edge bases.

2. Defining the strengths of those arguments by comparing them in conflict

situations.

3. Evaluating the acceptability of arguments in view of the other arguments

that are posed in the dialogue.

4. Defining the justified conclusions of the argumentation process.

The first step to the design MAS whose agents are able to perform argu-

mentation processes is to decide how agents represent arguments. According

to the interaction problem defined in [Bylander and Chandrasekaran, 1987],

“...representing knowledge for the purpose of solving some problem is strongly

affected by the nature of the problem and the inference strategy to be applied to

the problem...”. Therefore the way in which agents computationally represent

arguments should ease the automatic performance of argumentation processes.

Some research effort on the computational representation of arguments is per-

formed in the area of developing models for argument authoring and diagram-

ming [Rahwan et al., 2007b][Rowe and Reed, 2008](OVA1). However, these
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systems assume human users interacting with the software tool and are not

conceived for performing agents’ automatic reasoning processes. Other re-

search works where the computational modelling of arguments has been stud-

ied are those on case-based argumentation. From the first uses of argumenta-

tion in AI, arguments and cases are intertwined [Skalak and Rissland, 1992].

As pointed out in Chapter 2, case-based argumentation particularly reported

successful applications in American common law [Bench-Capon and Dunne,

2007], whose judicial standard orders that similar cases must be resolved with

similar verdicts. In [Bench-Capon and Sartor, 2003] a model of legal reason-

ing with cases is proposed. But, again, this model assumed human-computer

interaction and cases were not thought to be only acceded by software agents.

Case-Based Reasoning (CBR) systems [Aamodt and Plaza, 1994] allow agents

to learn from their experiences. In MAS, the research in case-based argu-

mentation is quite recent with just a few proposals to date. These proposals

are highly domain-specific or centralise the argumentation functionality in a

mediator agent that manages the dialogue between the agents of the system

[Heras et al., 2009b].

As pointed out before, we focus on argumentation processes performed among

a set of agents that belong to an agent society and must reach an agreement

to solve a problem taking into account their social dependencies. Each agent

builds its individual position in view of the problem (a solution for it). At

this level of abstraction, we assume that this could be a generic problem of

any type (e.g. a resource allocation problem, an agreed classification, a joint

prediction, etc.) that could be characterised with a set of features. Thus, we

assume that each agent has its individual knowledge resources to generate a

potential solution. Also, agents have their own argumentation system to create

arguments to support their positions and defeat the ones of other agents.

Taking into account the above issues, there are a set of requirements that a

suitable framework to represent arguments in agent societies should meet:
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• be computationally tractable and designed to ease the performance of

automatic reasoning processes over it.

• be rich enough to represent general and context dependent knowledge

about the domain and social information about the agents’ dependency

relations or the agents’ group.

• be generic enough to represent different types of arguments.

• comply with the technological standards of data and argument inter-

change on the Web.

These requirements suggest that an argumentation framework for agent so-

cieties should be easily interpreted by machines and have highly expressive

formal semantics to define complex concepts and relations over them. Thus,

we propose a Knowledge-Intensive (KI) case-based argumentation framework

[Diaz-Agudo and Gonzalez-Calero, 2007], which allows automatic reasoning

with semantic knowledge in addition to the syntactic properties of cases. Rea-

soning with cases is especially suitable when there is a weak (or even unknown)

domain theory, but acquiring examples encountered in practice is easy. Most

argumentation systems produce arguments by applying a set of inference rules.

Rule-based systems require to elicit a explicit model of the domain.

In open MAS the domain is highly dynamic and the set of rules that model it

is difficult to specify in advance. However, tracking the arguments that agents

put forward in argumentation processes could be relatively simple. Other im-

portant problem with rule-based systems arises when the knowledge-base must

be updated (e.g. adding new knowledge that can invalidate the validity of a

rule). Updates imply to check the knowledge-base for conflicting or redundant

rules. Case-based systems are in most cases easier to maintain than rule-based

systems and hence, more suitable for being applied in dynamic domains.

Next section makes a proposal for the type of knowledge resources that agents

in agent societies could have to generate, select and evaluate positions and
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arguments taking into account the identified requirements.

3.3 Knowledge Resources

In open multi-agent argumentation systems the arguments that an agent gen-

erates to support its position can conflict with arguments of other agents and

these conflicts are solved by means of argumentation dialogues between them.

In our framework we propose three types of knowledge resources that the

agents can use to generate, select and evaluate arguments in view of other

arguments:

• Domain-cases database, with domain-cases that represent previous prob-

lems and their solutions. The structure of these cases is domain-dependent

and thus is not detailed in this chapter.

• Argument-cases database, with argument-cases that represent previous

argumentation experiences and their final outcome.

• Argumentation schemes [Walton et al., 2008], with a set of argumenta-

tion schemes, which represent stereotyped patterns of common reasoning

in the application domain where the framework is implemented. Also,

each argumentation scheme has associated a set of critical questions that

represent potential attacks to the conclusion supported by the scheme.

The concrete argumentation schemes to be used depend on the applica-

tion domain.

In addition, arguments in our framework can be attacked by putting forward

the following attack elements:

• Critical questions: when the conclusion of the argument was drawn by

using an argumentation scheme, this conclusion can be attacked by pos-

ing a critical question attached to this scheme.
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• Distinguishing premises: which are premises that can invalidate the ap-

plication of a knowledge resource to generate a valid conclusion for an

argument.

• Counter-examples: which are cases that are similar to a case (their de-

scriptions match) but have different conclusions.

In this section we describe the above knowledge resources by using an ontolog-

ical approach that observes the requirements put forward in the last section.

Thus, this ontology uses Description Logics (DLs) to provide a common lan-

guage to represent the resources that is computationally tractable, rich enough

to represent different types of domain-specific and general knowledge, generic

enough to represent different types of arguments and compliant with the tech-

nological standards of data and argument interchange in the Web.

Description Logics (DLs) are a family of formal knowledge representation lan-

guages that are used in AI for formal reasoning on the concepts of an appli-

cation domain (terminological knowledge). In DL the knowledge base consist

of a set of terminological axioms (or TBox ) that contains sentences describing

relations between concepts and a set of assertional axioms (or ABox ) that

describes the relations between individuals and concepts (where in the hier-

archy of concepts the individuals belong). Thus, DL distinguishes between

concepts, roles, which are properties of these concepts and individuals, which

are instances of the concepts. Table 3.1 shows the syntax and interpretation of

the DL definitions provided in this paper. In the table, C and D are concepts,

R is a role, a and b are individuals and n is a positive integer.

3.3.1 ArgCBROnto Ontology: General Concepts

We have designed an ontology called ArgCBROnto to define the representation

language of the above knowledge resources. Thus, the vocabulary of domain-

cases, argument-cases and argumentation schemes is defined by using this
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Description Example Interpretation

All concept names > Top
Empty concept ⊥ Bottom
Intersection of concepts C uD C and D
Union of concepts C tD C or D
Negation of concepts ¬C not C
Concept inclusion C v D All C are D
Universal restriction ∀R.C All concepts with the role R are in C
Minimal cardinality ≥ nR At least n concepts have the role R
Range > v ∀R.C The range of the role R is C
Domain > v ∀R−.C The domain of the role R is C

Table 3.1: DL Notation

ontology, which follows the approach of the case-based KI approach proposed

in [Diaz-Agudo and Gonzalez-Calero, 2007] and the Argument Interchange

Format (AIF) ontology [Willmott et al., 2006]. KI-CBR enables automatic

reasoning with semantic knowledge in addition to the syntactic properties of

cases. This allows making semantic inferences with the elements of cases and

using more complex measures to compute the similarity between them. In

addition, the AIF ontology provides a common vocabulary to represent ar-

gumentation concepts between different argumentation frameworks. In this

sense, AIF provides an abstract representation framework for argumentation

systems while our ArgCBROnto is designed to facilitate case-based reasoning

in an argumentation framework designed to be used by agents societies. How-

ever, both formalisms are compatible, as will be discussed in Section 3.7. Next,

we provide a general view of the ArgCBROnto ontology for the argumentation

framework proposed in this chapter, with focus on the concepts that define

the knowledge resources presented in this section.

In the top level of abstraction, the terminological part of the ontology distin-

guishes between several disjoint concepts. Among them we have the concepts

of Case, which is the basic structure to store the argumentation knowledge of

agents; CaseComponent, which represents the usual parts that cases have in
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CBR systems and ArgumentationScheme, which represents the argumentation

schemes that the framework has.

Case v Thing Case v ¬CaseComponent

CaseComponent v Thing CaseComponent v ¬ArgumentationScheme

ArgumentationScheme v Thing ArgumentationScheme v ¬Case

As pointed out before, there are two disjoint types of cases, domain-cases and

argument-cases (see Figure 3.1).

ArgumentCase v Case DomainCase v Case

ArgumentCase v ¬DomainCase

Figure 3.1: ArgCBROnto Case

Cases have the three possible types of components that usual cases of CBR

systems have (see Figure 3.2): the description of the state of the world when

the case was stored (Problem); the solution of the case (Conclusion); and the

explanation of the process that gave rise to this conclusion (Justification).

These concepts are disjoint.
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Problem v CaseComponent Solution v CaseComponent

Justification v CaseComponent

Problem v ¬Solution Conclusion v ¬Justification

Problem v ¬Justification

Figure 3.2: ArgCBROnto CaseComponent

Domain-cases have the usual problem, conclusion and justification parts, as

shown in Figure 3.1.

DomainCase v ∀hasProblem.Problem

DomainCase v ∃hasProblem.Problem

DomainCase v= 1hasProblem

DomainCase v ∀hasSolution.Solution

DomainCase v ∃hasSolution.Solution

DomainCase v≥ 1hasSolution

DomainCase v ∀hasJustification.Justification
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DomainCase v≤ 1hasJustification

However, argument-cases have a more specialised description for these com-

ponents (ArgumentProblem, ArgumentSolution and ArgumentJustification),

which includes an extended set of properties (see Figure 3.1).

ArgumentProblem v Problem ArgumentSolution v Solution

ArgumentJustification v Justification

ArgumentCase v ∀hasArgumentProblem.ArgumentProblem

ArgumentCase v ∃hasArgumentProblem.ArgumentProblem

ArgumentCase v= 1hasArgumentProblem

ArgumentCase v ∀hasArgumentSolution.ArgumentSolution

ArgumentCase v ∃hasArgumentSolution.ArgumentSolution

ArgumentCase v= 1hasArgumentSolution

ArgumentCase v ∀hasArgumentJustification.ArgumentJustification

ArgumentCase v ∃hasArgumentJustification.ArgumentJustification

ArgumentCase v= 1hasArgumentJustification

Also, cases have as properties a unique identifier ID and a creation date, with

its corresponding range and domain. Note that these properties have as do-

main several concepts of the ArgCBROnto ontology which will be introduced

later.

> v ∀hasID.Integer
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> v ∀ hasID−.(Case t SocialEntity t Value t Norm t Argument t Argu-

mentationScheme t Premise)

> v ∀ hasCreationDate.Date > v ∀hasCreationDate−.(Case t Argumen-

tationScheme)

As pointed out in the previous section, argumentation schemes represent

stereotyped patterns of common reasoning in the application domain where

the framework is implemented. Each argumentation scheme consists of a set of

premises, a conclusion drawn from these premises and a set of critical questions

that represent potential attacks to the conclusion supported by the scheme.

These critical questions can be classified as presumptions that the proponent

of the argumentation scheme has made or exceptions to the general inference

rule that the scheme represents [Prakken et al., 2005]. In the former case, the

proponent has the burden of proof if the critical question is asked (it has to

provide evidence for the conclusion drawn from the scheme), whereas in the

later the burden of proof falls on the opponent that has questioned the conclu-

sion of the scheme. Figure 3.3 shows the representation of an argumentation

scheme in the ArgCBROnto ontology. Note that we characterise critical ques-

tions as premises that identify exceptions and presumptions of the scheme and

hence, they are represented as premises in the figure.

ArgumentationScheme v Thing

ArgumentationScheme v ∀hasPremise.Premise

ArgumentationScheme v ∃hasPremise.Premise

ArgumentationScheme v≥ 1hasPremise

ArgumentationScheme v ∀hasConclusion.Conclusion

ArgumentationScheme v ∃hasConclusion.Conclusion
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ArgumentationScheme v= 1hasConclusion

ArgumentationScheme v ∀hasPresumption.Premise

ArgumentationScheme v ∀hasException.Premise

Figure 3.3: ArgCBROnto ArgumentationScheme

In addition, for each argumentation scheme the ArgCBROnto ontology stores

information about its unique ID (which ontological definition was provided

before in this section), its title, its creation date and its author.

> v ∀argT itle.String

> v ∀argT itle−.ArgumentationScheme

> v ∀creationDate.Date

> v ∀creationDate−.ArgumentationScheme

ArgumentationScheme v ∀hasAuthor.Author

The argument-cases are the main structure that we use to implement our

framework and computationally represent arguments in agent societies. Also,

their structure is generic and domain-independent. Thus, the next section

presents the ontological description for argument-cases in detail.
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PROBLEM

Domain Context [Premises]*

Social Context

Proponent

ID
Role
Norms
ValPref

Opponent

ID
Role
Norms
ValPref

Group

ID
Role
Norms
ValPref

Dependency Relation

SOLUTION

Argument Type
Conclusion
Value
Acceptability State

Received Attacks
[Critical Questions]*
[Distinguishing Premises]*
[Counter Examples]*

JUSTIFICATION
[Cases]*
[Argumentation Schemes]*
Associated Dialogue Graphs

Table 3.2: Structure of an Argument-Case

3.3.2 Argument-case Description

Argument-cases have two main objectives:

1. They can be used by agents as knowledge resources used to generate new

arguments and to select the best position to put forward in view of past

argumentation experiences.

2. They can be used to store new argumentation knowledge that agents

gain in each dialogue, improving the agents’ argumentation skills.
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Table 3.2 shows the structure of a generic argument-case. As pointed out be-

fore, the argument-cases have three main parts: the description of the problem

that the case represents, the solution applied to this problem and the justifi-

cation why this particular solution was applied. An argument-case stores the

information about a previous argument that an agent posed in certain step of

a dialogue with other agents.

Problem:

The problem description has a domain context that consists of the premises of

the argument and represents the context of the domain where the argument

was put forward. Each premise has a unique identifier ID (the ontological

definition was provided before), a name and a content, which can be of several

types depending on the application domain.

Context v Thing

DomainContext v Context

Problem v ∀hasDomainContext.DomainContext

Problem v ∃hasDomainContext.DomainContext

Problem v= 1hasDomainContext

Premise v Thing

> v ∀hasName.String > v ∀hasName−.P remise

> v ∀hasContent.Type > v ∀hasContent−.P remise

In addition, if we want to store an argument and use it to generate a persuasive

argument in the future, the features that characterise the audience of the

previous argument (the social context) must also be kept. Thus, we have two
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disjoint types of contexts in our ontology, the usual domain context and the

social context (shown in Figure 3.4).

SocialContext v Context

DomainContext v ¬SocialContext

ArgumentProblem v ∀hasSocialContext.SocialContext

ArgumentProblem v ∃hasSocialContext.SocialContext

ArgumentProblem v= 1hasSocialContext

Figure 3.4: ArgCBROnto Context

For the definition of the social context of arguments, we follow our model of

society presented in Section 3.2.1. Therefore, we store in the argument-case

the social information about each social entity related with the argument.

This social entity can be an agent (the proponent of the argument and the

opponent to which the argument is addressed) or else the group to which both

agents belong. Figure 3.5 shows this part of the ArgCBROnto ontology.
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SocialEntity v Thing

Agent v SocialEntity Group v SocialEntity

Agent v ¬Group

Figure 3.5: ArgCBROnto SocialEntity

For the sake of simplicity, in this chapter we assume that in each step of

the dialogue, one proponent agent generates an argument and sends it to one

opponent agent that belongs to its same group. However, either the proponent

or the opponent’s features could represent information about agents that act

as representatives of a group and any agent can belong to different groups at

the same time. Thus, the social context of argument-cases include information

about the proponent and the opponent of the argument (which can be an agent

or a group) and information about their group. Also, groups are formed by at

least two agents.

SocialContext v ∀hasProponent.(Agent tGroup)

SocialContext v ∀hasOpponent.(Agent tGroup)

SocialContext v ∀hasGroup.Group
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Group v ∀hasMember.Agent

Group v ∃hasMember.Agent

Group v≥ 2hasMember

Concretely, each social entity of the argument-case has a unique ID that iden-

tifies it in the system (the ontological definition was provided before) and the

role that the agent or the group was playing when it sent or received the ar-

gument (e.g. trade unionist, business manager, etc, do not confuse with the

role of proponent and opponent from the argumentation perspective).

> v ∀hasRole.String > v ∀hasRole−.SocialEntity

In addition, for each social entity a reference to the set of norms that governed

the behaviour of the agents at this step of the dialogue is also stored, since

the normative context of agents could force or forbid them to accept certain

facts and the arguments that support them (e.g. a norm could invalidate a

dependency relation or a value preference order). In addition, since agents are

autonomous, they can try to violate norms. In that case, sanctioning mech-

anisms can be applied, for instance, enabling the agent platform to impose a

set of predefined sanctions [Criado et al., 2010]. Also, each norm has a unique

ID that identifies it (the ontological definition was provided before) and a

description with the semantics of the norm.

Norm v Thing

SocialEntity v ∀hasNorm.Norm

> v ∀hasDescription.String

> v ∀hasDescription−.(Conclusion t V alue tNorm t Justification)
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Moreover, if known, we also store the preferences of each agent or group over

the pre-defined set of general values in the system (e.g. security, solidarity,

economy, etc.). As pointed out before, these preferences (ValPref ) affect the

persuasive power of the proponent’s argument over the opponent’s behaviour.

In the case of the group, we use this feature to store its social values1.

V alue v Thing

V alPref v Thing

V alueNode v Thing

V alueNode v ∀hasV alue.V alue

V alueNode v ∃hasV alue.V alue

V alueNode v= 1hasV alue

V alueNode v ∀hasPrevious.V alueNode

V alueNode v ∀hasNext.V alueNode

V alPref v ∀hasPreferred.V alue

V alPref v ∃hasPreferred.V alue

V alPref v= 1hasPreferred

V alPref v ∀hasV alueNode.V alueNode

SocialEntity v ∀hasV alPref.V alPref

Finally, the dependency relation between the proponent’s and the opponent’s

roles is also stored in the social context of the argument-cases. To date, we

1We use the term social values to refer those values that are agreed by (or commanded
to) the members of a society as the common values that this society should promote (e.g.
justice and solidarity in an ideal society) or demote.
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define the possible dependency relations between roles as in [Dignum and

Weigand, 1995]:

• Power : when an agent has to accept a request from another agent be-

cause of some pre-defined domination relationship between them (e.g.

in a society St that manages the water of a river basin, Farmer <St
Power

BasinAdministrator, since farmers must comply with the laws an-

nounced by the basin administrator 2.

• Authorisation: when an agent has committed itself to another agent for a

certain service and a request from the latter leads to an obligation when

the conditions are met (e.g. in the society St, Farmeri <
St
Authorisation

Farmerj , if Farmerj has contracted a service that offers Farmeri).

• Charity : when an agent is willing to answer a request from another

agent without being obliged to do so (e.g. in the society St, by default

Farmeri <
St
Charity Farmerj).

Therefore, in our ArgCBROnto ontology we have these three types of depen-

dency relations:

> v ∀hasDependencyRelation.(Power tAuthorisation t Charity)

> v ∀hasDependencyRelation−.SocialContext

Solution:

In the solution part, the conclusion of the case (for both domain-cases and

argument-cases) and the value promoted in this specific situation are stored

(see Figure 3.6).

2This example will be explained in detail in Chapter 5.
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Conclusion v Thing

Solution v ∀hasConclusion.Conclusion

Solution v ∃hasConclusion.Conclusion

Solution v= 1hasConclusion

Solution v ∀promotesV alue.V alue

Solution v ∃promotesV alue.V alue

Solution v= 1promotesV alue

Figure 3.6: ArgCBROnto Solution

Also, for argument-cases we have a more specialised description for the solution

part (ArgumentSolution), including the argument type that defines the method

by which the conclusion of the argument was drawn is stored. By default, we

do not assume that agents have a pre-defined set of rules to infer deductive

arguments from premises, which is difficult to maintain in open MAS. In our

framework, agents have the following ways of generating new arguments:

• Presumptive arguments: by using the premises that describe the problem

to solve and an argumentation scheme whose premises match them.
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• Inductive arguments: by using similar argument-cases and/or domain-

cases stored in the case-bases of the system.

• Mixed arguments: by using premises, cases and argumentation schemes.

ArgumentSolution v Solution

> v ∀hasArgumentType.(Inductive t Presumptive tMixed)

> v ∀hasArgumentType−.ArgumentSolution

Moreover, the solution part of the argument-cases stores the information about

the acceptability status of the argument at the end of the dialogue. This feature

shows if the argument was deemed acceptable, unacceptable or undecided in

view of the other arguments that were put forward during the dialogue (see

Section 3.5 for details).

> v ∀hasAcceptabilityStatus.(Acceptable t Unacceptable t Undecided)

> v ∀hasAcceptabilityStatus−.ArgumentSolution

Regardless of the final acceptability status of the argument, the argument-case

also stores in its solution part the information about the possible attacks that

the argument received. These attacks could represent the justification for an

argument to be deemed unacceptable or else reinforce the persuasive power

of an argument that, despite being attacked, was finally accepted. Argument-

cases can store different types of attacks, depending on the type of argument

that they represent:

• For presumptive arguments: critical questions (presumptions or excep-

tions) associated with the scheme [Walton et al., 2008].
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• For inductive arguments, as proposed in [Bench-Capon and Sartor, 2003],

either:

– Premises which value in the context where the argument was posed

was different (or non-existent) than the value that it took in the

cases used to generate the argument (distinguishing premises) or

– Cases which premises also match the premises of the context where

the argument was posed, but which conclusion is different than the

conclusion of the case(s) used to generate the argument (counter-

examples).

• For mixed arguments: any of the above attacks.

Thus, the ArgCBROnto ontology represents the different types of attacks that

arguments can receive as follows:

ArgumentSolution v ∀hasPresumption.Premise

ArgumentSolution v ∀hasException.Premise

ArgumentSolution v ∀hasDistinguishingPremise.Premise

ArgumentSolution v ∀hasCounterExample.Case

Justification:

In the ArgCBROnto ontology, the justification part of a case stores a descrip-

tion that can explain why this particular solution was applied to solve the case

and what was the final results achieved. Figure 3.7 shows the concepts of the

ArgCBROnto ontology that are related with this part of argument-cases.

> v ∀hasDescription.String
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Figure 3.7: ArgCBROnto Justification

> v ∀hasDescription−.Justification

In the special case of argument-cases, the justification specialises in an Argu-

mentJustification, which stores the information about the knowledge resources

that were used to generate the argument represented by the argument-case

(e.g. the set argumentation schemes in presumptive arguments, the set of

cases in inductive arguments and both in mixed arguments).

ArgumentJustification v Justification

ArgumentJustification v ∀ hasArgumentationScheme.ArgumentationScheme

ArgumentJustification v ∀hasCase.Case

In addition, the justification of each argument-case has associated a dialogue-

graph that represents the dialogue where the argument was posed. The same

dialogue graph can be associated with several argument-cases and an argument-

case can be associated to several graphs. Each dialogue graph has a root and
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a set of nodes, which we call argument nodes. An argument node has an

argument-case, a parent argument node and a child argument node. In this

way, the ArgCBROnto ontology represents the sequence of arguments that

were put forward in a dialogue, storing the complete conversation as a di-

rected graph that links argument-cases. This graph can be used later to de-

velop dialogue strategies. For instance, to improve efficiency in a negotiation

an argumentation dialogue could be finished if it is being similar to a previous

one that didn’t reach an agreement. Else, opponent moves in a dialogue (the

arguments that it is going to present) could be inferred by looking a similar

previous dialogue with the same opponent.

DialogueGraph v Thing

ArgumentNode v Thing

ArgumentNode v ∀hasArgumentC.ArgumentCase

ArgumentNode v ∃hasArgumentC.ArgumentCase

ArgumentNode v= 1hasArgumentC

ArgumentNode v ∀hasParent.ArgumentNode

ArgumentNode v ∀hasChild.ArgumentNode

DialogueGraph v ∀hasRoot.ArgumentNode

DialogueGraph v ∃hasRoot.ArgumentNode

DialogueGraph v= 1hasRoot

DialogueGraph v ∀hasNode.ArgumentNode

ArgumentJustification v ∀hasDialogueGraph.DialogueGraph

ArgumentJustification v ∃hasDialogueGraph.DialogueGraph
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ArgumentJustification v≥ hasDialogueGraph

Following a CBR methodology, the proposed knowledge resources allow agents

to automatically generate, select and evaluate arguments. However, the spec-

ification of this case-based reasoning process is out of the scope of this chap-

ter. Here we have focused on defining how agents can represent arguments

and argumentation related information to be able to perform an efficient and

automatic management of this information. The argument-case structure pre-

sented is flexible enough to represent different types of arguments (created

from cases or from argumentation schemes, as will be explained in Section

3.6) and their associated information. Also, the KI approach followed allows a

semantic reasoning with the concepts that represent the cases. However, the

value of some features on argument-cases and domain-cases could remain un-

specified in some domains. For instance, in some open MAS, the preferences

over values of other agents could not be previously known, although agents

could try to infer the unknown features by using CBR adaptation techniques

[López de Mántaras et al., 2006]. This and other open questions will be deal

with again in Section 3.7. Once the knowledge resources of our framework and

the ArgCBROnto ontology that describes them have been presented in this

section, next section provides an abstract definition for the framework.

3.4 Abstract Argumentation Framework for Agent So-

cieties

Most abstract argumentation frameworks (AFs) are based on Dung’s frame-

work [Dung, 1995], which is defined as a pair < A,R > where A is a set of

arguments and R ⊆ A×A is a binary attack relation on A. For two arguments

A and B, R(A,B) means that the argument A attacks the argument B. AF

abstract the structure and meaning of arguments and attacks between them
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and focus their research efforts on analysing generic properties and argumenta-

tion semantics. This semantics is the formal definition of the method by which

arguments are evaluated in view of other arguments [Baroni and Giacomin,

2009]. Semantics can be extension-based, which determine the extensions or

sets of arguments that can be collectively acceptable or labelling-based, which

label each argument of A with a specific status in a predetermined set of

possible status of an argument.

Based on Dung’s AF, we define an Argumentation Framework for an Agent

Society (AFAS) as:

Definition 3.4.1 (Argumentation Framework for an Agent Society)

An argumentation framework for an agent society is a tuple AFAS = <A, R,

St > where:

• A is a set of arguments.

• R is an irreflexive binary attack relation on A.

• St is a society of agents as defined in Definition 3.2.1.

Next, we specialise AFAS considering them for a specific agent, since each

agent of an open MAS can have a different preference order over values. Thus,

an audience is defined as a preference order over values. For the definition of

our Agent specific Argumentation Framework for Agent Societies we start from

the definition of Audience specific Value-based Argumentation Frameworks

(AVAF) [Bench-Capon and Atkinson, 2009]. This is also based on Dung’s and

we will extend and adapt it to take into account the social context of agents.

Definition 3.4.2 (Audience-specific Value-based AF) An audience-

specific value-based argumentation framework is a 5-tuple AV AFa = < A, R,

V , val, V alprefa > where:
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• A, R , V and val are as defined for a Value-based Argumentation Frame-

work (VAF) [Bench-Capon and Atkinson, 2009].

• a ∈ P is an audience of the set of audiences P .

• V alprefa ⊆ V ×V is a transitive, irreflexive and asymmetric preference

relation that reflects the value preferences of the audience a.

Then, we extend AVAFs and define our abstract Agent-specific Argumentation

Framework in an Agent Society (AAFAS) as follows:

Definition 3.4.3 (Agent-specific AF for an Agent Society) An agent-

specific argumentation framework for an agent society is a tuple AAFAS =

< Ag, Rl, D, G, N , A, R, V , Role, DependencySt, Group, V alues, val,

V alprefagi > where:

• Ag, Rl, D, G, N , A, R, V , DependencySt, Group and V alues are

defined as in Definition 3.2.1.

• Role(ag, a) : Ag×A→ Rl is a function that assigns an agent the specific

role that it plays (from its set of roles) when it has put forward a specific

argument.

• val(ag, a) : Ag×A→ 2V is a function that assigns an agent’s argument

the value(s) that it promotes.

• V alprefagi ⊆ V × V , defines a irreflexive, transitive and asymmetric

relation <St
agi over the agent’s agi values in the society St.

The aim of AAFAS is to determine which agents’ arguments attack other

agents’ arguments in an argumentation process performed in a society of agents

and in each case, which argument would defeat the other. To do that, we have

to consider the values that arguments promote and their preference relation as
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in AVAFs, but also the dependency relations between agents. These relations

could be stronger than value preferences in some cases (depending on the

application domain). For the time being, as in [Dignum and Weigand, 1995],

we only consider the following dependency relations:

- Power : when an agent has to accept a request from another agent be-

cause of some pre-defined domination relationship between them. For in-

stance, in a society St that manages the water-rights transfer of a river basin,

Farmer <St
Pow BasinAdministrator, since farmers must comply with the laws

announced by the basin administrator.

- Authorisation: when an agent has committed itself to another agent for a

certain service and a request from the latter leads to an obligation when the

conditions are met. Thus, this relation is based on the deontic notions of

permission and violation, in the sense that this relation permits an agent to

request services from another agent, whose refusal leads to a violation of the

agreement. For instance, in St, Farmeri <
St
Auth Farmerj , if Farmerj has

contracted a service that offers Farmeri.

- Charity : when an agent is willing to answer a request from another agent

without being obliged to do so. For instance, in St, by default Farmeri <
St
Ch

Farmerj and Farmerj <
St
Ch Farmeri.

Thus, we can now define the agent-specific defeat relation of AAFAS as:

Definition 3.4.4 (Defeat) An agent’s ag1 argument a1 ∈ AAFAS put for-

ward in the context of a society St defeatsag1 other agent’s ag2 ∈ AAFAS

argument a2 iff

attack(a1, a2) ∧ (val(ag1, a1) <St
ag1

val(ag1, a2) /∈ V alprefag1) ∧
(Role(ag1)<St

PowRole(ag2) ∨ Role(ag1)<St
AuthRole(ag2) /∈ DependencySt)

Therefore, we express that the argument a1 defeatsag1 from the ag1 point of

view the argument a2 as defeatsag1(a1, a2) if a1 attacks a2, ag1 prefers the
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value promoted by a1 to the value promoted by a2 and ag2 does not have a

power or authority relation over ag1. Thus, based on Dung’s acceptability

semantics, we can define some acceptability concepts. Note that in them we

compare arguments of different agents. However, since dependency relations

are partial order relations (reflexive, asymmetric and transitive), an agent

has equal power, authorisation and dependency relations over itself (ag ≤ ag

(reflexivity)→ ag = ag (antisymmetry)) and, in case of comparing arguments

of the same agent, the AAFAS would be equivalent to an AVAF and the

acceptability criteria of this AVAF would apply. Let ai, aj , ak ∈ A be the

arguments of agents agi, agj , agk ∈ Ag respectively and a ∈ A the argument

of a generic agent.

Definition 3.4.5 (Conflict-free) A set of arguments ARG ∈ A is conflict−
freeagi for an agent agi in the society St if

@ai, aj ∈ ARG / (attacks(ai, aj) ∨ attacks(aj , ai)) ∧
((val(agi, ai) <

St
agi val(agi, aj) /∈ V alprefagi) ∧

(val(agi, aj) <
St
agi val(agi, ai) /∈ V alprefagi) ∧

(Role(agi) <
St
Pow Role(agj) /∈ DependencySt) ∧

(Role(agj) <
St
Pow Role(agi) /∈ DependencySt) ∧

(Role(agi) <
St
Auth Role(agj) /∈ DependencySt) ∧

(Role(agj) <
St
Auth Role(agi) /∈ DependencySt)).

That is, if there is no pair of arguments that attack each other, without a value

preference relation or a dependency relation that invalidates the attack. Note

that agent agi and agj can be the same, to consider the case of arguments put

forward by the same agent.

Definition 3.4.6 (Acceptability) An argument ai ∈ A is acceptableagi(ai)

in a society St wrt a set of arguments ARG ∈ A iff ∀aj ∈ A ∧ defeatsagi(aj , ai)
→ ∃ak ∈ ARG ∧ defeatsagi(ak, aj).
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That is, if the argument is defeatedagi by another argument of A, some argu-

ment of the subset ARG defeatsagi this other argument.

Definition 3.4.7 (Admissibility) A conflict-free set of arguments ARG ∈
A is admissible for an agent agi iff ∀a ∈ ARG→ acceptableagi(a).

Definition 3.4.8 (Preferred Extension) A set of arguments ARG ∈ A
is a preferred-extensionagi for an agent agi if it is a maximal (wrt set inclusion)

admissibleagi subset of A.

Then, for any AAFAS = < Ag, Rl, D, G, N , A, R, V , Role, DependencySt ,

Group, V alues, val, V alprefagi > there is a corresponding AFAS = <A,

R, St >, where R = defeatsagi . Thus, each attack relation of AFAS has a

corresponding agent specific defeatagi relation in AAFAS. These properties

will be illustrated in the mWater study case that will be presented in Chapter

5. The following section instantiates the proposed abstract argumentation

framework for agent societies. Thus, it provides a formal specification for the

framework and defines the structure and property relations of its elements.

3.5 Case-based Argumentation Framework for Agent

Societies

Following our case-based computational representation of arguments, we have

designed a formal argumentation framework (AF) as an instantiation of Dung’s

AF [Dung, 1995]. The main advantages that our framework contributes over

other existent AFs is that it deals with the requirements suggested in Section

3.2.2. These advantages are: 1) the ability to represent social information in

arguments; 2) the possibility of automatically managing arguments in agent

societies; 3) the improvement of the agents’ argumentation skills; and 4) the
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easy interoperability with other frameworks that follow the argument and data

interchange Web standards. According to Prakken [Prakken and Sartor, 1996],

the elements that characterise an AF are: the notion of argument used in the

framework, the logical language that represents argumentation concepts, the

concept of conflict between arguments, the notion of defeat between arguments

and the acceptability status of arguments. Next, these elements are specified

by using the knowledge resources defined in this section and the ArgCBROnto

ontology.

3.5.1 The Notion of Argument: Case-Based Arguments

We have adopted the Argument Interchange Format (AIF) [Willmott et al.,

2006] view of arguments as a set of interlinked premiss-illative-conclusion se-

quences. The notion of argument is determined by our KI case-based frame-

work to represent arguments. In our framework agents can generate arguments

from previous cases (domain-cases and argument-cases), from argumentation

schemes or from both. However, note that the fact that a proponent agent uses

one or several knowledge resources to generate an argument does not imply

that it has to show all this information to its opponent. The argument-cases of

the agents’ argumentation systems and the structure of the actual arguments

that are interchanged between agents is not the same. Thus, arguments that

agents interchange are defined as tuples of the form:

Definition 3.5.1 (Argument) Arg = {φ, v,< S >}, where φ is the conclu-

sion of the argument, v is the value that the agent wants to promote with it

and < S > is a set of elements that support the argument (support set).

In the ArgCBROnto ontology, in addition of the above elements (see Figure

3.8), arguments have a unique identifier ID (which ontological definition was

provided in Section 3.3.1):
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Argument v Thing

SupportSet v Thing

Argument v ∀hasConclusion.Conclusion

Argument v ∃hasConclusion.Conclusion

Argument v= 1hasConclusion

Argument v ∀promotesV alue.V alue

Argument v ∃promotesV alue.V alue

Argument v= 1promotesV alue

Argument v ∀hasSupportSet.SupportSet

Argument v ∃hasSupportSet.SupportSet

Argument v= 1hasSupportSet

Figure 3.8: ArgCBROnto Argument

This support set can consist of different elements, depending on the argument

purpose. On the one hand, if the argument provides a potential solution for

a problem, the support set is the set of features (premises) that describe the

problem to solve and optionally, any knowledge resource used by the proponent

to generate the argument (domain-cases, argument-cases or argumentation
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schemes). On the other hand, if the argument attacks the argument of an

opponent, the support set can also include any of the allowed attacks in our

framework (critical questions (presumptions and exceptions), distinguishing

premises or counter-examples). Then, the support set consists of the following

tuple of sets of support elements 3:

Definition 3.5.2 (Support Set) S = < {premises}, {domainCases},
{argumentCases}, {argumentationSchemes}, {criticalQuestions},
{distinguishingPremises}, {counterExamples} >

In the ArgCBROnto ontology, the elements of the support set are represented

with the following properties (see Figure 3.9):

SupportSet v ∀hasPremise.Premise

SupportSet v ∀hasDomainCase.DomainCase

SupportSet v ∀hasArgumentCase.ArgumentCase

SupportSet v ∀hasArgumentationScheme.ArgumentationScheme

SupportSet v ∀hasPresumption.Premise

SupportSet v ∀hasException.Premise

SupportSet v ∀hasDistinguishingPremise.Premise

SupportSet v ∀hasCounterExample.Case

3This representation is only used for illustrative purposes and efficiency considerations
about the implementation are obviated.
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Figure 3.9: ArgCBROnto SupportSet

3.5.2 The Logical Language

The logical language represents argumentation concepts and possible relations

among them. In our framework, these concepts are represented in the form of

KI cases and argumentation schemes. Therefore, the logical language of the

AF is defined in terms of the vocabulary to represent these resources.

The vocabulary of cases and schemes is defined by using the ArgCBROnto

ontology previously presented. We have selected the Ontology Web Language

OWL-DL4 as the formal logics to represent the vocabulary of cases. This

variant is based on Description Logics (DL) and guarantees computational

completeness and decidability. Thus, it allows automatic description logic

reasoning over argument-cases and domain-cases. In addition, it facilitates

the interoperability with other systems. In Sections 3.3 and 3.5.1, we have

provided a partial view of the ontology for the AF proposed5.

3.5.3 The Concept of Conflict between arguments

The concept of conflict between arguments defines in which way arguments

can attack each other. There are two typical attacks studied in argumenta-

tion: rebut and undercut. In an abstract definition, rebuttals occur when two

4www.w3.org/TR/owl-guide
5The complete specification of the ontology is available at

users.dsic.upv.es/∼vinglada/docs.
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arguments have contradictory conclusions. Similarly, an argument undercuts

another argument if its conclusion is inconsistent with one of the elements

of the support set of the latter argument or its associated conclusion. This

section shows how our AF instantiates these two attacks. Taking into account

the possible elements of the support set, rebut and undercut attacks can be

formally defined as follows.

Let Arg1 = {φ1, value1, < S1 >} and Arg2 = {φ2, value2, < S2 >} be two

different arguments, where S1 =< {Premises}1, ..., {CounterExamples}1 >,

S2 =< {Premises}2, ..., {CounterExamples}2 >, ∼ stands for the logical

negation, ⇒ stands for the logical implication and conc(x) is a function that

returns the conclusion of a formula x. Then:

Definition 3.5.3 (Rebut) Arg1 rebuts Arg2 iff

φ1 =∼φ2 and {Premises}1 ⊇ {Premises}2

That is, if Arg1 supports a different conclusion for a problem description that

includes the problem description of Arg2.

Definition 3.5.4 (Undercut) Arg1 undercuts Arg2 if

1)φ1 =∼conc(ask)/

∃cq ∈ {CriticalQuestions}1 ∧ ∃ask ∈ {ArgumentationSchemes}2∧
cq ⇒∼conc(ask), or

2)φ1 = dp/

(∃dp ∈ {DistinguishingPremises}1 ∧ ∃prek ∈ {Premises}2 ∧ dp =∼prek)∨
(dp 6∈ {Premises}2), or

3)φ1 = ce/

(∃ce ∈ {CounterExamples}1 ∧ ∃dck ∈ {DomainCases}2
∧ conc(ce) =∼conc(dck))∨
(∃ce ∈ {CounterExamples}1∧
∃ack ∈ {ArgumentCases}2 ∧ conc(ce) =∼conc(ack))
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That is, if the conclusion drawn from Arg1 makes one of the elements of the

support set of Arg2 or its conclusion non-applicable in the current context

of the argumentation dialogue. In case 1 Arg1 undercuts Arg2 by posing a

critical question that attacks the conclusion of Arg2, inferred by using an

argumentation scheme. In case 2, Arg1 undercuts Arg2 by showing a new

premise which value conflicts with one of the premises of Arg2 or else, does not

appear in the problem description of Arg2. Finally, in case 3 Arg1 undercuts

Arg2 by putting forward a counter-example for a domain-case or an argument-

case that was used to generate the conclusion of Arg2.

3.5.4 The Notion of Defeat between arguments

Once possible conflicts between arguments have been defined, the next step in

the formal specification of an AF is to define the defeat relation between a pair

of arguments. This comparison must not be misunderstood as a strategical

function to determine with which argument an argumentation dialogue can

be won [Prakken and Sartor, 1996]. A function like this must also consider

other factors, such as other arguments put forward in the dialogue or agents’

profiles. Therefore, it only tells us something about the relation between two

arguments. Hence, the relation of defeat between two arguments is defined in

our AF as follows.

LetArg1 = {φ1, value1, < S1 >} posed by agent ag1 andArg2 = {φ2, value2, <

S2 >} posed by agent ag2 be two conflicting arguments and V alprefagi ⊆
V xV , defines an irreflexive, antisymmetric and transitive relation <St

agi over

the agent’s agi values in the society St. Then:

Definition 3.5.5 (Defeat) Arg1 defeats Arg2

if ((rebuts(Arg1,Arg2) ∧ ∼ undercut(Arg2,Arg1)) ∨ undercuts(Arg1,Arg2))

∧ (value1 <
St
ag1

value2 /∈ V alprefag1)

∧ (Role(ag1) <St
Pow Role(ag2) /∈ DependencySt
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∧ Role(ag1) <St
Auth Role(ag2) /∈ DependencySt)

Therefore, we express that the argument Arg1 defeatsag1 from the ag1 point

of view the argument Arg2 as defeatsag1(Arg1, Arg2) if Arg1 rebuts Arg2 and

Arg2 does not undercut Arg1 or else Arg1 undercuts Arg2 and ag1 does not

prefer the value promoted by Arg2 to the value promoted by Arg1 and ag2

does not have a power or authority relation with ag1. The first type of defeat

poses a stronger attack on an argument, directly attacking its conclusion. In

addition, an argument can strictly defeat another argument if the first defeats

the second and the second does not defeat the first.

Definition 3.5.6 (Strict Defeat) Arg1 strictly defeats Arg2 if Arg1 defeats

Arg2 and Arg2 does not defeat Arg1

3.5.5 The Acceptability Status of arguments

The acceptability status of arguments determines their status on the basis of

their interaction. Only comparing pairs of arguments is not enough to decide

if their conclusions are acceptable, since defeating arguments can also be de-

feated by other arguments. Taking into account the underlying domain theory

of a dialectical system, arguments can be considered acceptable, unacceptable

and undecided [Dung, 1995]. However, the acquisition of new information in

further steps of the dialogue could change the acceptability status of argu-

ments.

Therefore, to decide the acceptability status of arguments a proof theory that

takes into account the dialogical nature of the argumentation process is nec-

essary. To evaluate the acceptability of arguments by using a dialogue game

is a common approach. Dialogue games are interactions between two or more

players, where each one moves by posing statements in accordance with a set

or predefined rules [McBurney and Parsons, 2002a]. In our AF, the accept-
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ability status of arguments is decided by using a dialogue game and storing

in the argument-case associated to each argument its acceptability status at

the end of the dialogue. The definition of this dialogue game is provided in

Chapter 4.

3.6 Reasoning Process

This section presents the reasoning process that agents of our AF follow to

generate and select their positions and arguments and to evaluate them in

view of the other agents’ positions and arguments. With this process, agents

are able to automatically argue and learn from the argumentation experience.

Here, we first define some concepts that will be used in the following sections.

Let F be a set of features, C a set of cases and V a set of values.

Definition 3.6.1 (Function Value) The function value is defined as

valuek(x) : C × F → V and returns for a case k ∈ C the value of the feature

x ∈ Fk (from a set of features Fk of the case k).

Definition 3.6.2 (Match) A match between two cases i, j ∈ C is defined as

match(i,j): C × C → true iff Fi∩Fj 6= ∅ and ∀f ∈ Fi∩Fj, vali(f) = valj(f).

Hence, two cases match if their common features match. Note that this does

not mean that both cases have the same features, since any of them can have

extra features that do not appear in the other case.

Definition 3.6.3 (Subsumption) A subsumption relation between a case

cl ∈ C and another case cm ∈ C is defined as

subsumes(cl, cm) : C × C → true iff match(cl, cm) and ∀fm ∈ cm, ∃fl ∈ cl
such that valcl(fl) = valcm(fm).
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Therefore, we also describe problems as cases without solution and assume

that a match between the problem to solve and a stored case means that the

latter has some features of the problem and with the same values6. A total

match between a problem and a case or between two cases means that both

cases have the same features and with the same values.

Definition 3.6.4 (Counter-Example) A counter-example for a case is a

previous domain-case or an argument-case that was deemed acceptable, where

the problem description of the counter-example matches the current problem

to solve and also subsumes the problem description of the case, but proposing

a different solution.

Definition 3.6.5 (Distinguishing Premise) A distinguishing premise x

with respect to a problem P between two cases c1, c2 ∈ C is defined as: ∃x ∈
c1 ∧ @x ∈ P / ∃x ∈ c2 ∧ valuec1(x) 6= valuec2(x) or else, ∃x ∈ c1 ∧ ∃x ∈
P / valuec1(x) = valueP (x) ∧ @x ∈ c2, where P ⊆ F , x ∈ F and c1, c2 ∈ C.

That is a premise that does not appear in the problem description and has dif-

ferent values for two cases or a premise that appears in the problem description

that does not appear in one of the cases. Note that distinguishing premises

are sometimes implicit in counter-examples, when the counter-example has

features that do not appear in the original description of the problem to solve

or in the description of the case that the counter-example rebuts.

3.6.1 Position Management

In the first step to reach an agreement about the best solution for a problem

to solve, an agent can generate its individual position, which represents the

6Different types of matches could define other types of similarity between cases. For
instance, a different match function could establish the threshold under which two features
can be considered as similar or when a feature subsumes another feature in a hierarchy (and
hence the more specific feature could be considered as a matching feature).
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best solution for the problem from the agent’s point of view. At this level

of abstraction, we assume that this is a generic problem of any type (e.g. a

classification, a prediction, etc.) that could be described with a set of features.

This is not a compulsory step for agents to engage in the argumentation process

to reach the agreement, since some agents could argue about positions of

others’ without having necessarily generated their own. Then, with the set

of generated positions agents generate associated argument-cases to support

them. After that, they can use their case-bases of argument-cases to select

the best position to propose. Finally, agents evaluate their positions in view

of the others’ positions and their previous experience.

3.6.1.1 Position Generation

In our AF, agents have several ways to generate positions, depending on their

design or even on strategical considerations. Thus, an agent could follow

different mechanisms to generate positions:

1. From the Problem Description and Domain-Cases: This option

would be followed by agents that rely more on their experiences. The

agent retrieves from the domain case-base those cases that match with

the specification of the current problem. With the solutions that were

applied in these cases, the agent generates a potential solution for the

problem at hand, which represents its position with respect to the prob-

lem. Note that the set of retrieved cases could provide different so-

lutions for the same problem. For instance, assuming that the agent

has to provide a solution for the problem p = (f1, f2, f3) that partially

matches with two cases c = (f1, f2, sc) and d = (f2, f3, sd) of its case-base

with solutions sc and sd respectively. Then, positions pos1 = (f1, f2, sc)

and pos2 = (f2, f3, sd) can be created. Thus, in this situation we have

that valuep(f1) = valuec(f1), valuep(f2) = valuec(f2) = valued(f2) and

valuep(f3) = valued(f3).
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2. From the Problem Description and Argumentation Schemes:

This option would be followed by agents that rely more on their pre-

defined argumentation schemes. Then, an agent can generate its position

as the conclusion drawn by using the problem description to match (to-

tally or partially) the premises of a scheme. For instance, assuming that

there is a scheme AS1 = (premise1, premise2, conclusion) that partially

matches the problem p (with premise1 matching f1 and premise2 match-

ing f2), the position pos3 = (f1, f2, sAS1), where sAS1 = conclusion

could be created. Also, several positions could be generated if the de-

scription matches the premises of several schemes.

3. From the Problem Description, Cases and Argumentation

Schemes: This option would be selected by agents that prefer to exploit

all their resources and follow an hybrid generation policy. The agent re-

trieves from its domain case-base the cases that match the current prob-

lem. Then, it can extend the problem description by adding the set of

attributes of the retrieved cases that are consistent with this description

(do not appear in the problem description) and with the set of retrieved

cases (have the same value in all retrieved cases that they appear). For

instance, assume that the agent has to provide a solution for the problem

p that matches again with case c and d, but this time, the cases have two

extra features f5 and f6 (c = (f1, f2, f5, f6, sc) and d = (f2, f3, f5, f6, sd)).

Also, both cases have the same value for f5, but different values for f6

(valuec(f5) = valued(f5) but valuec(f6) 6= valued(f6)). Thus, features

f6 in cases c and d are considered inconsistent and only feature f5 would

be added to the extended problem description (p′ = (f1, f2, f3, f5)). Fi-

nally, from this new problem description and the argumentation schemes

the agent can generate its position (or positions), as explained above.

This method for generating positions follows the idea of broadening the

space of possible solutions by considering features that, despite not being

specified in the current problem, have been observed in similar problems
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in the past. Note that only the cases that match the problem descrip-

tion are retrieved and hence, the space of potential positions could not

be extended if we only consider positions generated from cases. However,

the extended problem description could add a new feature that makes

the description match an argumentation scheme that was not considered

before.

Algorithms 3.1 and 3.2 show the pseudocode of the process to generate po-

sitions from domain-cases, argumentation schemes or both of them. In the

algorithm, DomainCasesCB represents the case-base of domain-cases and Ar-

gumentationSchemesOnt represents the ontology of argumentation schemes. If

the generation method to follow is “D”, the algorithm generates positions from

the case-base of domain-cases. In case that the method is “S”, the algorithm

generates positions from the ontology of argumentation schemes. Similarly, if

the method to follow is “M”, the algorithm generates positions from both the

case-base of domain-cases and the ontology of argumentation schemes.

Also, computeSimilarity is a domain-dependent function that computes the

similarity between a current problem and the description of the domain-cases

or argumentation schemes stored in the knowledge resources of the system.

This similarity degree is stored for each potential position to solve the prob-

lem (when the similarity degree exceeds a pre-defined threshold). generateSo-

lutions is a domain-dependent function that generates potential solutions for

the problem to solve from the solutions of the domain-cases that are deemed

similar to the current problem or the conclusions of the similar argumentation

schemes. addPosition is a function that adds a new position to the list of

potential solutions for the problem to solve. aggregateDescriptions is a func-

tion that adds to the problem description the extra consistent features that

are found in the problem description of the similar domain-cases. Finally, ad-

dGenerationMethod is a function that forces the algorithm to execute a specific

generation method.
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Algorithm 3.1 generatePositions Part 1

Require: ProblemDescription, n, generation method (D, S, M) //The description of the

problem to solve, the maximum number n of positions to generate (all possible if n=0)

and the method to generate positions

1: matchCases = ∅
2: solutions = ∅
3: positions = ∅
4: argSchemes = ∅
5: extendedDesc = ∅
6: similarity = 0

7: SD = ∅
8: i = 0; j = 0; k = 0

9: if D ∈ GenerationMethod then

10: for all c ∈ DomainCasesCB do

11: similarity = computeSimilarity(ProblemDescription, c)

12: if similarity > δ then

13: matchCases[i] = c //If the similarity exceeds certain threshold, the domain-case

is selected to generate the position

14: SD[i] = similarity //The similarity degree of this domain-case is stored

15: i++

16: end if

17: end for

18: solutions = generateSolutions(matchCases)

19: if lenght(solutions) ≥ 1 then

20: for [s = 0;s < lenght(solutions);s+ +] do

21: positions = addPosition(ProblemDescription, solutions[s], SD[i])

22: end for

23: end if

24: end if

25: if M ∈ GenerationMethod then

26: for all c ∈ DomainCasesCB do

27: similarity = computeSimilarity(ProblemDescription, c)

28: if similarity > δ then

29: matchCases[i] = c //If the similarity exceeds certain threshold, the domain-case

is selected to generate the position

30: SD[i] = similarity //The similarity degree of this domain-case is stored

31: i++

32: end if

33: end for
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Algorithm 3.2 generatePositions Part 2

34: extendedDesc = aggregateDescriptions(matchCases)

35: if ProblemDescription 6= extendedDesc then

36: ProblemDescription = extendedDesc

37: if S /∈ GenerationMethod then

38: addGenerationMethod(S)

39: end if

40: else

41: solutions = generateSolutions(matchCases)

42: end if

43: if lenght(solutions) ≥ 1 then

44: for [s = 0;s < lenght(solutions);s+ +] do

45: positions = addPosition(ProblemDescription, solutions[s], SD[i])

46: end for

47: end if

48: end if

49: if S ∈ GenerationMethod then

50: for all as ∈ ArgumentationSchemesOnt do

51: similarity = computeSimilarity(ProblemDescription, as)

52: if similarity > η then

53: argSchemes[j] = k //If the similarity exceeds certain threshold, the argumentation-

scheme is selected to generate the position

54: SD[j] = similarity //The similarity degree of this argumentation-scheme is stored

55: j++

56: end if

57: end for

58: solutions = generateSolutions(argSchemes)

59: if lenght(solutions) ≥ 1 then

60: for [s = 0;s < lenght(solutions);s+ +] do

61: positions = addPosition(ProblemDescription, solutions[s], SD[i])

62: end for

63: end if

64: end if

65: Return positions
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3.6.1.2 Argument-case Generation

For each position generated, the agent creates an argument-case that repre-

sents this position (recalling, a potential solution for the problem) and its

support. Thus, it fills the argument-case structure with the available informa-

tion for each element. Note that, depending on the actual problem to solve and

the type of dialogue, the proponent agent could not know some data about its

opponent (e.g. in negotiation dialogues agents are usually unwilling to share

information about its values or preferences with other agents). The effects of

this knowledge uncertainty will be discussed in Section 3.7.

To show all possibilities that the argument-case structure offers, in this sec-

tion we assume a two-party dialogue between agents of the same group, as

pointed out in Section 3.3. Moreover, we assume that the agents have previ-

ous knowledge about each other, so the proponent can fill in the social context

information of the opponent. However, in this new argument-case, the accept-

ability status and attacks features in the solution part of the argument-case

cannot still be filled in. Note that, actually, positions are subsets of elements

of argument-cases that include the features of the domain context and the

conclusion.

3.6.1.3 Position Selection

With the set of potential positions, the agent has to decide the one it will

propose first. Even when the agent has generated only one position, this step

allows it to check if this position is worth to defend and until which extent.

The first step for this selection is to order the positions in subsets, taking into

account the value that promotes each position. Thus, the agent will assign each

set a Suitability Level (SL). Positions that promote the value most preferred

by the agent will be labelled with suitability level 1, positions that promote

the second most preferred value will be labelled with suitability level 2 and so
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on. After that, positions will be ordered in each level by its Similarity Degree

(SimD) with the problem to solve.

Finally, the agent will consider the argumentation knowledge stored in its

argument-cases case-base. Therefore, the agent compares the argument-case

of each position generated with its case-base of argument-cases and retrieves

in the set arg those which problem description match the problem descrip-

tion of the current argument-case. To do that, the agent extends the position

description with the current social context and retrieves the set of similar

argument-cases. This set represents the previous experience of the agent in

similar argumentation processes, taking into account the social context. Then,

the agent can assign each position a (Support Factor (SF )) from the argumen-

tation point of view.

Actually, what the agent does is to decide which argument-case (and thus,

which position) is most suitable in view of its past experience. We consider

the parameters shown in the following formulas as criteria for making such

decision. In the formulas, argC is the number of argument-cases in arg with

the same conclusion than the current argument-case, argAccC are those in

argC that were deemed acceptable, argAccCAtt are those in argAccC that

were attacked, minAtt andmaxAtt are the minimum and maximum number of

attacks received by any position generated, minS and maxS are the minimum

and maximum number of steps from any retrieved argument-case to the last

node of its dialogue graph and minKr and maxKr are the minimum and

maximum number of knowledge resources used to generate any position.

• Persuasiveness Degree (PD): is a value that represents the expected

persuasive power of a position by checking how persuasive an argument-

case with the same problem description and conclusion that the position

associated argument-case was in the past. To compute this degree, the

number argAccC of argument-cases that were deemed acceptable out

of the total number of argument-cases argC with the same problem
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description and conclusion retrieved is calculated:

PD =

 0, if argC = ∅
argAccC

argC
, otherwise

(3.1)

with argAccC, argC ∈ N and PD ∈ [0, 1], from less to more persuasive

power. Note that we do not decrease the persuasiveness degree of a

position if positions with the same problem description and different

conclusions are found in the argument-base, since this difference does not

necessarily implies that the current position is wrong or less persuasive.

In fact, there are many possible reasons for having different conclusions

for the same problem description (e.g. different background knowledge,

different reasoning algorithms to generate positions or even a domain

admitting several solutions for the same problem).

• Support Degree (SD): is a value that provides an estimation of the

probability that the conclusion of the current argument-case was accept-

able at the end of the dialogue. It is based on the number of argument

cases argAccC with the same problem description and conclusion that

where deemed acceptable out of the total number of argument-cases arg

retrieved.

SD =

 0, if arg = ∅
argAccC

arg
, otherwise

(3.2)

with argAccC, arg ∈ N and SD ∈ [0, 1] from less to more support

degree.

• Risk Degree (RD): is a value that estimates the risk for a position

to be attacked in view of the attacks received for a position(s) with the

same problem description and conclusion in the past. It is based on

the number of argument cases argAccCAtt that were attacked out of
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the total number of argAccC argument cases with the same problem

description and conclusion retrieved that were deemed acceptable.

RD =

 0, if argAccC = ∅
argAccCAtt

argAccC
, otherwise

(3.3)

with argAccCAtt, argAccC ∈ N and RD ∈ [0, 1], from less to more risk

of attack.

• Attack Degree (AD): is a value that provides an estimation of the

number of attacks att received by a similar position(s) in the past. To

compute this degree, the set of arguments with the same problem de-

scription that were deemed acceptable is retrieved. Then, this set is

separated in several subsets, one for each different conclusion. The sets

whose conclusion match with the conclusions of the positions to assess

are considered, while the other sets are discarded. Thus, we have a

set of argument-cases for each different position we want to evaluate.

For each argument-case in each set, the number of attacks received is

computed (the number of critical questions, distinguishing premises and

counter-examples received). Then, for each set of argument-cases, the

average number of attacks received is computed. The attack degree of

each position is calculated by a linear transformation:

AD =

 0, if maxAtt = minAtt
att−minAtt

maxAtt−minAtt
, otherwise

(3.4)

with minAtt, maxAtt, att ∈ N and AD ∈ [0, 1] from less to more degree

of attack.

• Efficiency Degree (ED): is a value that provides an estimation of the

number of steps that took to reach an agreement posing a similar posi-

tion(s) in the past. It is based on the depth n from the node representing
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the argument-case of the similar position to the node representing the

conclusion in the dialogue graphs associated to the similar argument-

cases retrieved. To compute this degree, the same process to create the

subsets of argument-cases than in the above degree is performed. Then,

for each argument-case in each subset, the number of dialogue steps

from the node that represents this argument-case to the end of dialogue

is computed. Also, the average number of steps per subset is calculated.

Finally, the efficiency degree of each position is calculated by a linear

transformation:

ED =

 0, if maxS = minS

1− n−minS
maxS −minS

, otherwise
(3.5)

with minS, maxS, n ∈ N and ED ∈ [0, 1] from less to more efficiency.

• Explanatory Power (EP ): is a value that represents the number of

pieces of information each position covers. It is based on the number kr

of knowledge resources were used to generate each position. To compute

this number, the same process to create the subsets of argument-cases

than in the above degrees is performed. Then, for each argument-case in

each set, the number of knowledge resources in the justification part is

computed (the number of domain-cases, argument-cases and argumenta-

tion schemes). Then, for each set of argument-cases, the average number

of knowledge resources used is computed. The explanatory power of each

position is calculated by a linear transformation:

EP =

 0, if maxKr = minKr
kr −minKr

maxKr −minKr
, otherwise

(3.6)

with minKr, maxKr, kr ∈ N and EP ∈ [0, 1] from less to more ex-

planatory power.
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Finally, the support factor of a new argument-case and its associated position

is computed by the formula:

SF =wPD ∗ PD + wSD ∗ SD + wRD ∗ (1−RD)

+ wAD ∗ (1−AD) + wED ∗ ED + wEP ∗ EP
(3.7)

where wi ∈ [0, 1],
∑
wi = 1 are weight values that allow the agent to give more

or less importance to each decision criteria. Finally, positions are ordered from

more to less suitability degree by following the equation:

Suitability = wSimD ∗ SimD + wSF ∗ SF (3.8)

where wi ∈ [0, 1],
∑
wi = 1 are weight values that allow the agent to give more

or less importance to the similarity degree or the support factor. Finally, the

most suitable position of suitability level 1 is selected as the one that the

proponent agent is going to propose and defend first. Then, we assume that

agents follow their value preference criteria when they select the positions to

propose.

Algorithm 3.3 shows the pseudocode of the algorithm that implements the

generation of positions, the generation of the associated argument-cases and

the selection of positions. In the algorithm, the function generatePositions

generates the n first positions by using the Algorithms 3.1 and 3.2; gener-

ateArgumentCase is a function that generates for each position its associated

argument-case; retrieveSimilarityDegree is a function that retrieves the simi-

larity degree of each position with regard to the problem to solve; selectPo-

sition is a domain-dependent function that orders the set of positions from

more to less suitable with respect to some domain-dependent criteria; and

mostSuitable is a domain-dependent function that returns the most suitable

position to solve the problem.

Also, computeSF, as shown in Algorithms 3.4 and 3.5, is a function that com-
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Algorithm 3.3 positionGenerationAndSelection

Require: ProblemDescription, generation method (D, S, M), wSimD, wPD, wSD, wRD,
wAD, wED, wEP //The description of the problem to solve, the generation method for
generating cases from domain-cases (D), argumentation-schemes (S) or from both (M)
and the weights for each element of the similarity degree and the support factor

1: positions = ∅
2: argumentCases = ∅
3: SimD = ∅
4: SF = ∅
5: selectedPositions = ∅
6: positions = generatePositions(ProblemDescription, n)
7: for [i = 1;i ≤ lenght(positions);i+ +] do
8: argumentCases[i] = generateArgumentCase(ProblemDescription, positions[i])
9: SimD[i] = retrieveSimilarityDegree(positions[i])

10: end for
11: for [i = 1;i ≤ lenght(argumentCases);i+ +] do
12: SF[i] = computeSF(ProblemDescription, argumentCases[i], argumenCases, wPD,

wSD, wRD, wAD, wED, wEP )
13: end for
14: selectedPositions = selectPosition(positions, argumentCases, SD, SF)
15: Return mostSuitable(selectedPositions)

putes the support factor for each position by means of its associated argument-

case. In this algorithm, the function retrieveSameProblem retrieves from the

case-base of argument-cases those that have the same problem description than

the current argument-case; retrieveSameConclusion retrieves those argument-

cases that have the same problem description and conclusion than the current

argument-case; retrieveAccepted retrieves those argument-cases that have the

same problem description and conclusion than the current argument-case and

were deemed acceptable; retrieveAcceptedAttacked retrieves those argument-

cases that have the same problem description and conclusion than the current

argument-case, were deemed acceptable and were attacked; computeNumberO-

fAttacks computes the number of attacks received by an argument-case; com-

puteNumberOfSteps computes the number of steps from an argument-case to

the node that represents the final conclusion in its associated dialogue-graph;

and computeNumberOfKR computes the number of knowledge resources used

to generate an argument-case.
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Algorithm 3.4 computeSF Part 1

Require: ProblemDescription, argCase, argumentCases, wPD, wSD, wRD, wAD, wED, wEP

//The description of the problem to solve, an argument case, the set of all argument-

cases that represent all potential positions and the weights for each element of the support

factor

1: SF=0; PD=0; SD=0; RD=0; AD=0; ED=0; EP=0

2: att=0; minAtt=0; maxAtt=0; attAC=0

3: n=0; minS=0; maxS=0; stepsAC=0

4: kr=0; minKr=0; maxKr=0; krAC=0

5: arg = ∅
6: argC = ∅
7: argAccC = ∅
8: argAccCAtt = ∅
9: arg = retrieveSameProblem(argCase, ArgumentCasesCB)

10: argC = retrieveSameConclusion(argCase, ArgumentCasesCB)

11: argAccC = retrieveAccepted(argCase, ArgumentCasesCB)

12: argAccCAtt = retrieveAcceptedAttacked(argCase, ArgumentCasesCB)

13: if lenght(argC) 6= 0 then

14: PD = argAccC/argC

15: end if

16: if lenght(arg) 6= 0 then

17: SD = argAccC/arg

18: end if

19: if lenght(argC) 6= 0 then

20: RD = argAccCAtt/argC

21: end if

22: att = computeNumberOfAttacks(argCase)

23: minAtt = att

24: maxAtt = att

25: for all [ac ∈ argumentCases] do

26: attAC = computeNumberOfAttacks(ac)

27: if minAtt > attAC then

28: minAtt = attAC

29: end if

30: if maxAtt < attAC then

31: maxAtt = attAC

32: end if

33: end for
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Algorithm 3.5 computeSF Part 2

34: if maxAtt 6= minAtt then

35: AD = (att - minAtt)/(maxAtt - minAtt)

36: end if

37: n = computeNumberOfSteps(argCase)

38: minS = n

39: maxS = n

40: for all [ac ∈ argumentCases] do

41: stepsAC = computeNumberOfSteps(ac)

42: if minS > stepsAC then

43: minS = stepsAC

44: end if

45: if maxS < stepsAC then

46: maxS = stepsAC

47: end if

48: end for

49: if maxS 6= minS then

50: ED = 1 - ((n - minS)/(maxS - minS))

51: end if

52: kr = computeNumberOfKR(argCase)

53: minKr = kr

54: maxKr = kr

55: for all [ac ∈ argumentCases] do

56: krAC = computeNumberOfKR(ac)

57: if minKr > krAC then

58: minKr = krAC

59: end if

60: if maxKr < krAC then

61: maxKr = krAC

62: end if

63: end for

64: if maxKr 6= minKr then

65: EP = (kr - minKr)/(maxKr - minKr)

66: end if

67: Return SF = wPD ∗ PD + wSD ∗ SD + wRD ∗ (1 − RD) + wAD ∗ (1 − AD) + wED ∗
ED + wEP ∗ EP
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3.6.1.4 Position Evaluation

In addition to generating its position, a proponent agent can evaluate it in view

of the positions that other opponent agents put forward in the dialogue. This

step is only performed if the proponent has knowledge about the opponents’

positions. Otherwise, it could just try to defend its position when it receives

attacks from them (see Section 3.6.2). The first step to evaluate an agent’s

position is to check if it is consistent with the opponents’ positions. This

is performed by means of a similarity function that is domain-dependent.

Generally, we assume that a position is consistent with another position if

they are the same (they totally match)7. As the original description of the

problem is the same for every agent in the dialogue, the proponent only needs

to check if the opponent’s position matches with one of the positions that it

generated. Then:

• If the opponent’s position matches the proponent’s position, the oppo-

nent is considered as a supporter and both agents agree in the solution

for the problem. Thus, no attacks are necessary, but the proponent can

generate an argument to defend its positions if the position is attacked

by another agent.

• If the opponent’s position is in the set of positions generated by the

proponent, but not ranked as the most suitable position, the opponent

could either accept it and change its mind or, on the contrary, try to

generate an attack argument to the opponent’s position. In this case, we

assume that the proponent would accept the position of the opponent if

the latter has a power or authorisation8 relation over the proponent and

attack the opponent’s position otherwise.

7Broader notions of consistency, such as one position being part or a more general position
(e.g. an action that is part of a course of action proposed to solve a problem), can be
considered in specific domains.

8We assume that these power and authorisation dependency relations hold for the issue
under discussion.
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• If the opponent’s position is not in the set of positions generated by the

proponent and the opponent does not have a power or an authorisation5

relation over the proponent, the proponent can generate an argument to

attack the opponent’s position. Otherwise, it must accept the opponent’s

position.

The decision mechanisms that an agent can use to perform a specific action in

each case will be explained in Chapter 4. The next section explains the type

of arguments that agents can generate and how these arguments are selected

and evaluated.

Algorithm 3.6 shows the pseudocode of the position evaluation process. In

the algorithm, the function checkDependencyRelation checks the dependency

relation between the proponent and the opponent. As explained above, if the

opponent’s position is in the list of potential positions of the proponent but

not ranked first, the proponent can use the function decideAttack to decide

if it would attack the incoming position or just change its preferences. Also,

askForSupport is a function that an agent can use to ask another agent to

support its position.

3.6.2 Argument Management

Depending on their purposes, agents can generate different types of argu-

ments, select the best argument to put forward in view of a specific situation

and evaluate the arguments of other agents. In our AF, arguments that agents

interchange are tuples of the form of Definition 3.5.1. In addition, the argu-

ment management process depends on the type of information that an agent

receives from another agent. Here, we assume that this type can be identi-

fied from the type and content of the locutions that agents receive from other

agents.
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Algorithm 3.6 positionEvaluation

Require: position, incPosition, positions //The position of an agent, an incoming position
and the set of potential positions generated by the agent

1: dependencyR = checkDependencyRelation(opponent, proponent)
2: if (dependencyR =! ”Power”) && (dependencyR =! ”Authorisation”) then
3: if position = incPosition then
4: acceptPosition(incPosition) //If the positions are the same, the agent accepts the

incoming position
5: end if
6: if (position 6= incPosition) && (incPosition ∈ positions) then
7: decideAttack(incPosition)
8: end if
9: if incPosition notin positions then

10: askForSupport(incPosition)
11: end if
12: else
13: acceptPosition(incPosition) //If the opponet agent has a power or an authorisation

relation over the proponent, it changes its position and accepts the incoming position
14: end if

3.6.2.1 Argument Generation

Agents generate arguments when they are asked to provide evidence to support

a position (support arguments) or when they want to attack others’ positions

or arguments9 (attack arguments).

The first case happens because, by default, agents are not committed to show

evidences to justify their positions. Therefore, an opponent has to ask a

proponent for an argument that justifies its position before attacking it. Then,

if the proponent is willing to offer support evidences, it can generate a support

argument whose support set is the set of features (premises) that describe the

problem and match the knowledge resources that it has used to generate and

select its position and any of these resources (domain-cases, argument-cases,

argumentation schemes or partial views of them). Note that the set of premises

could be a subset of the features that describe the problem to solve (e.g. when

9For the time being, we do not consider arguments that agents could generate to support
others’ positions and arguments.
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a position has been generated from a domain-case that has a subset of features

of the problem in addition to other different features).

The second case happens when the proponent of a position generates an ar-

gument to justify it and an opponent wants to attack the position or more

generally, when an opponent wants to attack the argument of a proponent.

Algorithm 3.7 shows the pseudocode of the argument generation process. In

the algorithm, the function evaluateIncomingRequest evaluates the type of

the incoming request received. If the agent’s position has been asked for

support, the agent can decide to generate it by using the domain-dependent

function decideSupport. If the agent receives an attack, it must evaluate its

current argument in view of the attacking argument by using the function

evaluateArgument, explained in Section 3.6.2.4.

Algorithm 3.7 argumentGeneration

Require: position, incArgument //The position of the agent and the incoming argument
1: requestType = evaluateIncomingRequest()
2: if requestType = supportAsked then
3: decideSupport(position)
4: end if
5: if requestType = attackReceived then
6: evaluateArgument(incArgument)
7: end if

The attack arguments that the opponent can generate depend on the elements

of the support set of the argument of the proponent:

• If the justification for the conclusion of the argument consists of a set

of premises, the opponent can generate an attack argument with a dis-

tinguishing premise that it knows. It can do it, for instance, if it is in a

privileged situation and knows extra information about the problem or

if it is implicit in a case that it used to generate its own position, which

matches the problem specification. In the latter, the opponent could

generate an attack argument with this case as counter-example.
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• If the justification has an argumentation scheme and if the opponent

knows the scheme (e.g. the system shares an ontology of argumentation

schemes with all agents), it can generate an argument that invalidates

the proponent’s argument proposing a critical question associated to the

scheme. The specific process depends on the ontology and the applica-

tion domain and is not specified here. On the contrary, the opponent

can temporally store the scheme to decide later if it should be added to

its argumentation schemes ontology.

• If the justification has a domain-case or an argument-case, then the

opponent can check its case-bases of domain-cases and argument-cases

and try to find counter-examples to generate an attack argument with

them. Alternatively, it can also try to generate an attack argument with

a distinguishing premise from its own known premises and cases that

invalidates the proponent’s justification.

However, even if the proponent was not willing to show any evidence (there

is no support set) the opponent can still attack the proponent’s position by

showing an own domain-case or argument-case that acts as a counter-example

for the position. The same happens when the justification of the argument

that the proponent offers is an argumentation scheme that the opponent does

not know. In this case, the opponent can also generate an attack argument

with a counter-example for the conclusion of the proponent’s argument.

Algorithm 3.8 presents the pseudocode of the attack generation process. In the

algorithm, the function checkSupportSet checks the elements of the support

set of the incoming argument. With the function selectElementToAttack, the

agent selects which element(s) of the support set it wants to attack. By means

of genetateDPAttack the agent tries to attack the incoming argument with a

distinguishing premise or a counter-example with a distinguishing premise.

The function generateASAttack tries to attack the incoming argument with a

critical question of the argumentation scheme that supports the incoming ar-
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gument. Also, storeAS is a function that agents can use to store an unknown

scheme and decide later if it will be added to the ontology of argumentation

schemes. With the function generateCounterExample the agent tries to gener-

ate a counter-example from its case-bases of domain-cases or argument-cases

and with generateCEAttack the agent tries to attack the incoming argument

with the counter-example.

Algorithm 3.8 generateAttack

Require: incArgument, DomainCasesCB, ArgumentCasesCB, ArgumentationSchemes

//The argument to attack, the case-bases of domain-cases and argument-cases and the

argumentation-schemes ontology

1: support = checkSupportSet(incArgument)

2: supportElement = selectElementToAttack(support)

3: if supportElement = Premises then

4: generateDPAttack(incArgument)

5: end if

6: if supportElement = ArgumentationSchemes then

7: if ArgumentationScheme ∈ ArgumentationSchemesOnt then

8: generateASAttack(incArgument)

9: else

10: storeAS(ArgumentationScheme)

11: end if

12: end if

13: if (supportElement = Domain-Case) or (supportElement = Argument-Case) then

14: CE=generateCounterExample(incArgument)

15: if CE 6= ∅ then

16: generateCEAttack(incArgument)

17: else

18: generateDPAttack(incArgument)

19: end if

20: end if

21: if support = ∅ then

22: generateCEAttack(incArgument)

23: end if
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3.6.2.2 Argument-case Generation

As explained in the above section, an agent can generate support arguments

to support its position or attack arguments to attack others’ position and

arguments. In the case of support arguments, the argument shows information

of the argument-case associated to the agent’s position. Depending on the

specific implementation, the agent can generate a support argument that shows

all the information that the agent has used to generate the position (stored

in the associated argument-case) or only partial information. However, in any

case the agent has generated yet the argument-case that supports its position,

as explained in Section 3.6.1.2 and generating a new argument-case associated

to the support argument is not necessary.

For attack arguments, a new argument-case must be generated to store the

information about this step of the argumentation process. This argument-

case can be generated from the context of the current argumentation process

by following a process like the one explained in Section 3.6.1.2. However, in

this case the conclusion of the argument-case is a rebut or an undercut to the

conclusion of the argument that the agent wants to attack and not a solution

for the problem at hand.

3.6.2.3 Argument Selection

Depending on the content of their knowledge resources, agents can generate

different arguments for supporting their positions or for attacking positions

and arguments of other agents. An agent could have generated several ar-

guments by using different knowledge resources of the same type or different

combinations between them. Thus, the agent has to select the best argument

to put forward from the set of potential candidate arguments.

In the case of argument-cases associated to support arguments, we assume that

arguments that provide more justifications for a position are more persuasive
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and should be proposed first. However, agents can follow different domain-

dependent strategies to select the best support argument to put forward. Note

that the criteria defined in Section 3.6.1.3 cannot be used since all possible

support arguments generated are represented by the same argument-case and

have the same conclusion (the position proposed by the agent to solve the

problem). We do not generate a new argument-case for each possible support

argument to avoid the overload of the case-base of argument-cases.

In the case of attack arguments, the agent can use the information gained from

previous argumentation processes to decide which argument would have more

Suitability degree, just as done for positions selection in Section 3.6.1.3. In case

of a draw in the suitability degrees of the most suitable arguments, the agent

has to decide which argument it is going to put forward. Many times, this

decision depends on the implementation of the agent and the dialogue strategy

that it follows. However, in our AF at least there is a reflexive and transitive

pre-order relation <p among the persuasive power of the knowledge resources

used to generate an argument: premises <p distinguishing − premises <p

argumentation − schemes <p critical − questions <p domain − cases <p

argument− cases. Accepted argument-cases are the most persuasive knowl-

edge resource to show as a justification for an argument, since they store the

maximum quantity of information about past arguments and argumentation

processes (domain context, social context, if it was attacked and still remained

accepted, etc.). Domain-cases are also very persuasive, since they store the fi-

nal solution applied for a problem, but they do not provide information about

the argumentation process and the social context. Like them, critical questions

and argumentation schemes do not provide these information and besides, they

store general knowledge about argumentation, but do not show any real past

experience. Also, critical questions can invalidate the conclusion drawn from

argumentation schemes and hence, they have more persuasive power. Finally,

the premises that describe the problem to solve are known by any agent in the

argumentation process and have the lowest persuasive power. In the case of
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attack arguments, distinguishing premises are more persuasive than descrip-

tion premises, since they provide information that. Therefore, argument-cases

with at least one argument-case in the justification part would be preferred

to others and so on. If even in these case the draw persists, a random choice

could be made.

3.6.2.4 Argument Evaluation

When agents receive arguments from other agents, they have to evaluate them

in view of the current problem to solve and their knowledge resources. Then,

a proponent agent can decide if an opponent’s argument conflicts with its

argument and hence, its argument is deemed acceptable, non-acceptable or

undecided (it cannot make a decision over it) from its point of view. This

decision can be determined by many factors. For instance, in systems where

dependency relations must be always observed, subordinates could always have

to accept arguments from superiors. Here, we assume a less restrictive domain

and define some concepts that agents of our AF use to evaluate arguments.

In our AF, we define the two typical types of attacks between arguments in

argumentation theory (rebuts and undercuts) and the notion of defeat as ex-

plained in Sections 3.5.3 and 3.5.4. Finally, if the proponent considers that

its argument defeats the opponent’s argument, it can try to generate a new

argument to attack the opponent’s, which would change the preliminary ac-

ceptability status of the opponent’s argument to non-accepted. Then, the

opponent would evaluate the proponent’s argument and try to rebut or un-

dercut the attack. On the contrary, if the proponent’s argument cannot defeat

the opponent’s, it can still try to withdraw it and send the opponent’s a differ-

ent argument to support its position. In this case, the proponent’s argument

acceptability status would preliminary change to undecided. The defeat rela-

tion must not be misunderstood as a strategical function to determine with

which argument an argumentation process can be won. A function like this is
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domain-dependent and must also consider other factors, such as other argu-

ments put forward in the dialogue, social contexts, etc. Therefore, agents only

use it to make partial decisions about the relation between two arguments.

The final acceptability status of arguments would be set at the end of the

dialogue when the agreement process is reached (or the dialogue just ended

without agreement).

Algorithm 3.9 shows the pseudocode of the argument evaluation process. As

pointed out above, if the proponent argument defeats the opponent argument,

it can try to attack it by using the function generateAttack, shown in Algorithm

3.8. With the function generateNewSupport the agent can try to generate a

new support for its position (since it cannot defeat the opponent argument).

However, if no new support can be generated, the agent has to withdraw its

position from the dialogue by using the function withdraw.

Algorithm 3.9 evaluateArgument

Require: incArgument //The incoming argument to evaluate

1: if defeats(currArgument, incArgument) then

2: generateAttack(incArgument)

3: else

4: newS = generateNewSupport(position)

5: if newS == 0 then

6: withdraw(position)

7: end if

8: end if

3.7 Conclusions

In this chapter we proposed a computational framework for argumentation

in open MAS where agents can form societies and have values and preference

relations over them. First, we provide an abstract definition of the framework,

a an extension of abstract value-based argumentation frameworks. Then, the
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framework is instantiated by providing a concrete definition of the notion of

argument, the logical language used to characterise arguments, the conflict

relation over arguments, the notion of defeat and the acceptability status of

arguments. A generic KI case-based structure for computational argument

representation has been presented. This structure was inspired by the standard

for argument interchange on the Web (AIF) and hence, an argumentation

system based on it can interact with other systems that comply with the

standard. Moreover, elements of cases are specified by using an ontologic case

representation language, the ArgCBROnto ontology. Although agents in open

MAS are heterogeneous, by only sharing this ontology they can understand

the arguments interchanged in the system. An example of the translation

between some concepts of ArgCBROnto and their equivalent concepts in AIF

(in the version reported in [Rowe and Reed, 2008]) is shown in table 3.3.

ArgCBROnto Concepts AIF Concepts

<Premise ID, Premise Content> <Premise Description, I-Node Premise>
Argument Type Rule of Inference Scheme
Conclusion <Conclusion Description, I-Node Conclusion>
Presumptions <Presumption Description, I-Node Premise>
Exceptions <ConflictScheme, Premise Description, I-Node

Premise>
Distinguishing Premise <Conflict Scheme, Premise Description, I-Node

Premise>
Counter-Examples <Conflict Scheme, Premise Description, I-Node

Premise>

Table 3.3: Correspondence between ArgCBROnto and AIF concepts

AIF represents actual arguments as graphs with interlinked nodes that stand

for the different concepts of the AIF ontology [Willmott et al., 2006] [Rowe and

Reed, 2008]. For instance, premises in AIF are specified by using a descrip-

tion, which stands for the scheme that matches that premise and a description

content, which is the actual information represented in the premise. Similarly,

in ArgCBROnto premises have a name, which could be translated into the
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AIF description concept and a content, which corresponds to the AIF I-Node

with the content of the premise. The same holds for presumptions and con-

clusions. The ArgCBROnto argument type has the same functionality as the

AIF rule of inference scheme, which is the application of a specific type of

inference (inductive, presumptive or mixed in our framework). In the case

of exceptions, AIF represents them as relations between two concepts of the

ontology interlinked via a special type of node called conflict scheme. This

can be translated in the ArgCBROnto concepts of exceptions, distinguishing

premises and counter-examples, which are represented by a a name, which

again, could be translated into the AIF description concept and a content,

which corresponds to the AIF I-Node with the content of the specific concept.

Finally, this work also presents the automatic reasoning process to generate,

select and evaluate positions and arguments, providing the pseudocode of the

algorithms used in each of these processes.

For simplicity purposes, we have assumed in this chapter that a proponent

agent addresses its arguments to an opponent of its same group, having com-

plete knowledge of the social context. However, in real systems, some features

of argument-cases could be unknown. For instance, the proponent of an ar-

gument obviously knows its value preferences, probably knows the preferences

of its group but, in a real open MAS, it is unlikely to know the opponent’s

value preferences. However, the proponent could know the value preferences

of the opponent’s group or have some previous knowledge about the value

preferences of similar agents playing the same role as the opponent. If agents

belong to different groups, the group features could be unknown, but the pro-

ponent could use its experience with other agents of the opponent’s group and

infer them.

Moreover, either the proponent or the opponent’s features could represent

information about agents that act as representatives of a group and any agent

can belong to different groups at the same time. In any case, the framework
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is flexible enough to work with this lack of knowledge, although the reliability

of the conclusions drawn from previous experiences would be worse.

Also for simplicity, the chapter does not show how agents can use the dialogue

graphs associated to argument-cases to take strategic decisions about which

arguments are more suitable in a specific situation or about whether continuing

with a current argumentation dialogue is worth. For instance, to improve

efficiency in a negotiation an argumentation dialogue could be finished if it is

being similar to a previous one that didn’t reach an agreement. Else, opponent

moves in a dialogue could be inferred by looking a similar previous dialogue

with the same opponent. These issues will be dealt with in Chapter 4.

We have not presented in this chapter the storage of new cases and the main-

tenance of case-bases. This depends on the application domain and will be

explained in detail latter with the study cases. In our AF, cases are stored at

the end of the argumentation process, but not all cases are necessarily stored.

As in most CBR systems, argument and domain-cases would be only stored

if there is no similar enough case in the case-bases and the new domain and

argumentation knowledge acquired must be stored. However, slightly differ-

ent arguments could be represented with the same past argument-case by only

updating its attacks information or attaching a new dialogue graph to its jus-

tification. Nevertheless, if the problem description, the acceptability of the

argument or the conclusion change, a new argument-case has to be created.

Also, to improve efficiency in searches, case-bases require a constant update

to eliminate outdated cases, generalise and merge cases in a unique case when

they are always indistinctly used, etc.

The actual algorithms to implement the agents’ reasoning process depend on

the application domain and the design of the real system that implements

the framework. Also, the communication protocol that defines the dialogue,

commitment and termination rules and the locutions that agents use to inter-

change arguments is presented in the next chapter. These locutions depend
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on the agents’ communication language and determine the intention of the

argument (e.g. pose an attack or ask for justifications), the argument’s sender

and receiver, the format of the argument’s content (e.g. if complete knowledge

resources or parts are sent), etc. Also, the process to put critical questions

depends on the actual ontology of argumentation schemes that agents imple-

ment and the interaction protocol that agents follow. These issues will be

dealt with in the implementation of the case of study that will be proposed in

Chapter 6.

148



Chapter

4

Dialogue Game Protocol

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . 150

4.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3 Dialogue Strategies . . . . . . . . . . . . . . . . 168

4.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . 175

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . 194

In this chapter we present the communication protocol that agents of our

argumentation framework uses to interact when they engage in argumenta-

tion dialogues. Considerable research has been performed on the design of

artificial agent communication languages, such as DARPA’s Knowledge Query

and Manipulation Language (KQML)1 and the IEEE Foundation for Intelli-

gent Physical Agents Agent Communications Language (FIPA ACL)2. These

languages provide agents with a high flexibility of expression. However, in a

dialogue agents can have too many choices of what to utter in each step of the

conversation. Therefore, this flexibility can also be an important downside if

it gives rise to a state-space explosion and leads agents to engage in unending

1www.cs.umbc.edu/research/kqml/
2www.fipa.org/repository/aclspecs.html
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dialogues [McBurney et al., 2002][McBurney and Parsons, 2009, chapter 13].

A possible solution for this problem consists in limiting the allowed set of ut-

terances for each step of the dialogue by defining the agents communication

protocol with a dialogue game. As shown in Chapter 2, formal dialogue games

are interactions between several players (agents in our case) where each player

moves by making utterances in accordance to a defined set of rules [McBurney

and Parsons, 2002a].

The structure of this chapter is as follows: first, Section 4.1 introduces the

notation used along the chapter; Section 4.2 presents the syntax of the pro-

tocol, as the set of defined locutions, their combinatorial properties and the

rules that govern the dialogue; After that, Section 4.3 defines several dia-

logue strategies that can follow the agents of our case-based argumentation

framework to take advantage over other participants of the dialogue; Then,

Section 4.4 provides the axiomatic semantics and the operational semantics

of the locutions. The former defines the pre-conditions that should be met to

put forward each locution (or set of locutions) and the post-conditions that

apply before their utterance. The latter views each locution as a transition

in an abstract state-machine that represents the possible stages that can be

reached during the dialogue; Finally, section 4.5 summarises the contents of

this chapter.

4.1 Preliminaries

Throughout this chapter we follow the standard that views utterances as com-

posed by two layers: an internal layer that represents the topics of the dialogue

and an external layer that consists of the locutions or performatives that de-

fine the allowed speech acts. On one hand, we assume that the topics of the

inner layer can be represented with well-formed formulae of the Description

Logic (DL) SHOIN(D) [Horrocks and Patel-Schneider, 2004], which forms
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the basis of the Web Ontology Language OWL-DL used in the ArgCBROnto

ontology to define the semantics of concepts and relations between concepts.

On the other hand, we use the standard operators and axioms of modal log-

ics of knowledge and belief [Shoham and Leyton-Brown, 2009, chapter 13] to

define the semantics of locutions.

In DLs, the important notions of the domain are described by concept de-

scriptions, which are expressions that are built from atomic concepts (unary

predicates) and atomic roles (binary predicates relating concepts) using the

concept and role constructors provided by the particular DL. The semantics

of DLs is given in terms of interpretations [Baader et al., 2007]:

Definition 4.1.1 (Interpretation:) An interpretation I = (∆I , ·I) consists

of a non-empty set ∆I , called the domain of I, and a function ·I that maps

every concept to a subset of ∆I , and every role name to a subset of ∆I ×∆I

such that, for all concepts C, D and all role names R,

>I = {∆I | for all CI ∈ ∆I , then >I = CI ∪ ¬CI},
⊥I = {∅| for all C ∈ ∆I , then ⊥I = CI ∩ ¬CI},
(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,

(∃R.C)I = {x ∈ ∆I | there is some y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ∆I | for all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI}. We say that

CI (RI) is the extension of the concept C (role name R) in the interpretation

I. If x ∈ CI , then we say that x is an instance of C in I.

Table 4.1 shows the syntax and semantics of the constructors of SHOIN(D),

using Roman upper-case letters to represent concepts, datatypes and roles and

Roman lower-case letters to represent individuals and data values.

As any description logic, SHOIN(D) uses concept descriptions to build state-

ments in a DL knowledge base K (the analogue of an ontology in OWL-DL),

which typically comes in two parts: a terminological (TBox) and an assertional

(ABox). In the TBox, we can describe the relevant notions of an application
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Constructor Name Syntax Semantics

atomic concept A A AI ⊆ ∆I

datatypes D D DD ⊆ ∆ID
abstrac role RA R RI ⊆ ∆I ×∆I

datatype role RD U UI ⊆ ∆I ×∆ID
individuals I o oI ∈ ∆I

data values v vI = vD

inverse role R− (R−)I = (RI)−

conjunction C1 u C2 (C1 u C2)I = CI1 ∩ CI2
disjunction C1 t C2 (C1 t C2)I = CI1 ∪ CI2
negation ¬C1 (¬C1)I = ∆I \ CI1
oneOf {o1, ...} {o1, ...}I = {oI1 , ...}
exists restriction ∃R.C (∃R.C)I = {x|∃y. 〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x|∀y. 〈x, y〉 ∈ RI → y ∈ CI}
atleast restriction ≥ nR (≥ nR)I = {x|#({y. 〈x, y〉 ∈ RI}) ≥ n}
atmost restriction ≤ nR (≤ nR)I = {x|#({y. 〈x, y〉 ∈ RI}) ≤ n}
datatype exists ∃U.D (∃U.D)I = {x|∃y. 〈x, y〉 ∈ UI and y ∈ DD}
datatype value ∀U.D (∀U.D)I = {x|∀y. 〈x, y〉 ∈ UI → y ∈ DD}
datatype atleast ≥ nU (≥ nU)I = {x|#({y. 〈x, y〉 ∈ UI}) ≥ n}
datatype atmost ≤ nU (≤ nU)I = {x|#({y. 〈x, y〉 ∈ UI}) ≤ n}
datatype oneOf {v1, ...} {v1, ...}I = {vI1 , ...}
Axiom Name Syntax Semantics

concept inclusion C1 v C2 CI1 ⊆ CI2
object role inclusion R1 v R2 RI1 ⊆ RI2
object role transitivity Trans(R) RI = (RI)+

datatype role inclusion U1 v U2 UI1 ⊆ UI2
individual inclusion4 a : C aI ∈ CI
individual equality a = b aI = bI

individual inequality a 6= b aI 6= bI

concept existence ∃C #(CI) ≥ 1

Table 4.1: Syntax and Semantics of SHOIN(D) [Horrocks and Patel-Schneider, 2004]

domain by stating properties of concepts and roles and relationships between

them. For instance, as pointed out in Chapter 3, the notions of agents and

arguments are defined in our argumentation framework with the concepts of

Agent and Argument of the ArgCBROnto and the following axioms:

SocialEntity v Thing

Agent v SocialEntity
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Argument v Thing

Furthermore, the properties of an argument are defined with the roles has-

Conclusion, promotesValue and hasSupportSet and the following axioms and

value restrictions:

Argument v ∀hasConclusion.Conclusion

Argument v ∀promotesV alue.V alue

Argument v ∀hasSupportSet.SupportSet

which say that arguments can have three properties that relate them with

objects of the class Conclusion, V alue and SupportSet. Correspondingly, the

ABox represents the concrete data of the database K, with the individuals

of concepts (instances) and their properties. For instance, the ABox of the

ArgCBROnto ontology can include an argument arg that promotes a value

solidarity:

Argument(arg)

promotesV alue(arg, solidarity)

On the other hand, the syntax of the external layer of utterances (locutions)

is as proposed in [McBurney and Parsons, 2004]:

locution(as, φ) or locution(as, ar, φ)

where Agent(as) (the sender) and Agent(ar) (the receiver) are individuals

of the Agent concept and φ is the content of the utterance. The former

locution is addressed to all participants in the dialogue, whereas the latter is
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specifically sent to Agent(ar). We denote the set of well-formed formulae in

SHOIN(D) as D. Then, φ ∈ D can represent statements about problems

to solve, facts about the world or different types of arguments. Also, we

denote the set of individuals members of the concept Argument as A such

that ∀arg ∈ A, Argument(arg). Therefore, Φ is said to be an argument in

support of φ if Φ ∈ A/Φ `+ φ. Correspondingly, Φ is said to be an argument

against φ if Φ ∈ A/Φ `− φ.

Also, agents make propositional commitments (also known as dialogical com-

mitments) with each locution that they put forward. Therefore, if an agent

asserts some locution and other agent challenges it, the first has the commit-

ment to provide reasons (or arguments) to justify the validity of such assertion

or else, has to retract it. All commitments made by an agent during the dia-

logue are commonly stored in an individual database called commitment store

(CS) [Hamblin, 1970] (there is one commitment store per agent), which is

accessible by other agents that are engaged in a dialogue with the agent.

As pointed out before, we follow the standard notation of modal logics of

knowledge and belief described in [Shoham and Leyton-Brown, 2009, chapter

13]. Thus, we use the modal operators

Kiφ: “Agent ai knows φ”

Biφ: “Agent ai believes that φ is true”

Cgφ: “φ is common knowledge for any agent in the group g if any agent of

the group knows it and knows that it is common knowledge”

and the modal connective

♦φ is satisfied now if φ is satisfied either now or at some future moment.

Note that here we make a distinction between what agents know (which is

considered to be true) and what agents believe (which forms part of the mental
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state of an agent and can be true or not).For instance, all agents that belong

to a society that represents the workers of a car rental company can know

that the business manager believes that Volvo is the safest brand that they

can offer to its customers. The workers know what the manager believe, and

the fact that everybody knows the opinion of the manager is true. However,

this doesn’t mean that such opinion has to be true and in fact, any worker can

believe that BMW is safer than Volvo. Therefore, the belief of the manager is

subjective and depends on its individual knowledge.

In addition, as proposed in [McBurney and Parsons, 2004], we use the following

simplified elements of FIPA’s communicative act library specification5:

Done[locution(as, φ), preconditions]

which indicates that locution(as, φ) (or correspondingly locution(as, ar, φ))

has been put forward by agent as (addressed to agent(s) ar) with content φ

and the specified preconditions hold before this utterance and

Feasible[condition, locution(as, φ)]

which means that if condition can take place, locution(as, φ) (or correspond-

ingly locution(as, ar, φ)) will be put forward by agent as (addressed to agent(s)

ar) with content φ.

Further notation that we use throughout this chapter is the next:

as: the Agent(as) sender of the locution.

ar: the Agent(ar) receiver of the locution.

argi: an Argument(argi) of an Agent(ai).

5http://www.fipa.org/specs/fipa00037/SC00037J.html
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SSi: the SupportSet(SSi) of the Argument(argi) that has put forward an

Agent(ai).

CSi: the commitment store of an Agent(ai).

q: the Problem(q) under discussion.

pi: the Solution(pi) (or position) proposed by an Agent(ai) to solve the

Problem(q).

4.2 Syntax

In this section we provide the syntax of the communication protocol that fol-

low the agents of our argumentation framework. To formalise it, we follow

the dialogue game approach proposed in [McBurney and Parsons, 2002b] and

extended in [McBurney and Parsons, 2009]. This approach is prospective (in-

tended to modeling systems to represent the reality and that do not exist yet),

which fits the objective of most open MAS. Other approaches to formalise di-

alogue systems are reviewed in [Prakken, 2006] (concretely, formal systems

for persuasion dialogue). However, most of these proposals are retrospective

(intended to reconstruct/explain what happened in a dialogue, using a le-

gal dispute as typical example). Furthermore, they assume a consistent and

presupposed context that represents fixed and indisputable knowledge that

cannot be changed during the dialogue. This assumption cannot be made

in open MAS where heterogeneous agents with potentially partial knowledge

about the context of the dispute can enter or leave the system (and hence the

dialogue) at any time.

Next, we present the elements of the dialogue: the set of allowed locutions,

the commencement rules, the combination rules that govern the course of

the dialogue, the commitment rules that define the commitments that each

agent makes when it utters each locution and how these commitments can be
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combined, the rules for speaker order and the termination rules. The dialogue

game presented in this section is aimed at providing a communication protocol

for agents that engage in an agreement process. This process can be seen as

a collaborative deliberation, where all agents follow to select the best solution

for a problem at hand and do not perceive any reinforcement or reward if

their position is selected as the final solution to apply, or also as a negotiation,

where agents try to convince other agents to apply its solution as the best

for solving the problem and have individual utility functions that increase its

perceived utility in that case.

Locutions

The set of allowed locutions of our dialogue game are the following:

• L1: open dialogue(as, φ), where φ is a problem q to solve in the system

application domain. With this locution, an agent as opens the argumen-

tation dialogue, asking other agents to collaborate or negotiate to solve

a problem that it has been presented with.

• L2: enter dialogue(as, φ), where φ is a problem q to solve in the system

application domain. With this locution, an agent as engages in the

argumentation dialogue to solve the problem.

• L3: withdraw dialogue(as, φ), where φ is a problem q to solve in the

system application domain. With this locution, an agent as leaves the

argumentation dialogue to solve the problem.

• L4: propose(as, φ), where φ is a position p. With this locution, an

agent as puts forward the position p as its proposed solution to solve the

problem under discussion in the argumentation dialogue.

• L5: why(as, ar, φ), where φ can be a position p or an argument arg ∈ A.
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With this locution, an agent as challenges the position p or the argument

arg of an agent ar, asking it for a support argument.

• L6: noCommit(as, φ), where φ is a position p. With this locution, an

agent as withdraws its position p as a solution for the problem under

discussion in the argumentation dialogue.

• L7: assert(as, ar, φ), where φ can be an argument arg ∈ A that supports

a position, other argument or an objectively verifiable evidence about

the system application domain. With this locution, an agent as sends

to an agent ar an argument or an evidence that supports its position or

a previous argument that ar has put forward.

• L8: accept(as, ar, φ), where φ can be an argument arg ∈ A or a posi-

tion p to solve a problem. With this locution, an agent as accepts the

argument arg or the position p of an agent ar. Also, this locution can

be used at the end of the dialogue to inform all agents about the final

position agreed as the best position to solve the problem. In that case,

ar denotes all individuals that belong to the concept Agent, except for

the sender as (all : ∀ai, ai 6= as/Agent(ai)).

• L9: attack(as, ar, φ), where φ is an argument arg ∈ A of an agent as.

With this locution, an agent as challenges an argument of an agent ar

with its argument arg.

• L10: retract(as, ar, φ), where φ is an argument arg ∈ A. With this

locution, an agent as informs an agent ar that it withdraws the argument

arg that it put forward in a previous step of the argumentation dialogue.

Commencement Rules

The dialogue starts when an agent as is presented with a new problem q to

solve. First, the agent tries to solve it by using its own knowledge resources.
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Then, it opens a dialogue with other agents by sending them the locution

open dialogue(as, ar, q), where ar can be any agent ai that as knows. After

that, ai enters in the dialogue by posing the locution enter dialogue(as, q)

(where as = ai). After that, if ai has been able to found a solution for q,

it proposes this initial position p to solve the problem q with the locution

propose(as, p) (where as = ai) and waits for the challenges of other agents

or for other position proposals. Otherwise, it can challenge the positions of

other agents engaged in the dialogue with the locution why(as, ar, p) (where

as = ai).

Rules for the Combination of Locutions

The rules for the combination of locutions define which locution can be put

forward at each step of the dialogue game. Figure 4.1 represents a state

machine with the possible stages of our dialogue game protocol. As shown in

the figure, the protocol has three main stages: the opening stage, where the

agent that initiates the dialogue opens the argumentation process to solve a

problem; the argumentation stage, where agents argue to reach an agreement

about the best solution to apply to solve the problem; and the closing stage,

where the final decision about the position selected to solve the problem is

reported to all agents that have participated in the dialogue. Next, the stages

of our dialogue game and the rules for the combination of locutions in each

stage are presented.

Opening Stage:

The opening stage commences when an agent as wants to establish an agree-

ment process with other agents to solve a problem q that it has been faced

with. Then, it uses the locution open dialogue(as, q) to start the dialogue.

Argumentation Stage:

The argumentation stage follows the opening stage. Here, agents argue to
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open_dialogue(as, q)

accept(as, all, p)

OPENING

STAGE

ARGUMENTATION

STAGE

CLOSING

STAGE

Figure 4.1: State Machine of the Dialogue Game

R1 R2 R3 R4 R5 R6

R7

withdraw_dialogue(as, q)

propose(as, p)

withdraw_dialogue(aj, q)

why(as,ar, p)

noCommit(as, p)

assert(as, ar, arg)

accept(as, ar, arg)

attack(as, ar, arg) 

retract(as, ar, arg)

assert(as, ar, arg)/

[arg = CQ ∧

CQ.type = presumption]

why(as,ar, arg)/

[arg = CQ ∧

CQ.type = exception]

retract(as, ar, arg)

R8
assert(as, ar, arg)

retract(as, ar, arg)

attack(as, ar, arg) /

 [arg = DP ∨ CE]

enter_dialogue(as, q)

attack(as, ar, arg)

accept(as, ar, p)

noCommit(as, p)

retract(as, ar, arg)

retract(as, ar, arg)

why(as,ar, p)

Figure 4.2: State Machine of the Argumentation Stage
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reach an agreement about the solution to apply to the problem q. As shown

in Figure 4.2, this stage is divided into a set of substages which activation is

defined by the following rules (for clarity reasons, substages are labelled with

the name of the rule that applies in each case):

• R1: Once the dialogue has been opened, any agent that has been in-

formed about it can enter in by using the locution enter dialogue(as, q).

• R2: After entering the dialogue, an agent can propose its position p

to solve the problem q by putting forward the locution propose(as, p).

Alternatively, the agent can challenge the positions of other agents en-

gaged in the dialogue (without being proposed its own position) with the

locution why(as, ar, p). Also, in this substage the agent can withdraw

from the dialogue by using the locution withdraw dialogue(as, q).

• R3: In this substage, an agent that has proposed its position p to solve

the problem q can be asked by other agent for an argument to support

this position with the locution why(as, ar, p). Also, p can be accepted

by an agent engaged in the dialogue, which reports the proponent agent

with the locution accept(as, ar, p). Furthermore, the proponent agent

can withdraw its position p with the locution noCommit(as, p). Alter-

natively, it can leave the dialogue with the locution withdraw dialogue(as,

q).

• R4: After being asked for an argument to support its position p, an agent

can use its knowledge resources to provide the requester agent with this

argument arg by means of the locution assert(as, ar, arg). Alternatively,

it can withdraw its position p by using the locution noCommit(as, p).

• R5: An agent that has received a support or an attack argument from

other agent can use its knowledge resources to create an attack argument

arg and send it to the other agent with the locution attack(as, ar, arg).

Also, the agent can accept the support argument and report to the other
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agent with the locution accept(as, ar, arg), where arg is the support

argument received. In its turn, an agent that has asserted the argument

arg can withdraw it with the locution retract(as, ar, arg).

• R6: When an agent receives an attack argument from other agent, it

analyses the type of the attack and can use its knowledge resources to

try to rebut the attack. Therefore, if the attacking argument arg was

a distinguishing premise or a counter-example (arg = (DP ∨ CE)), the

agent can distinguish the argument of the other agent with other dis-

tinguishing premise, or else counter-attack with other counter-example

by using the locution attack(as, ar, arg). If the attacking argument was

a critical question of the type presumption (arg = CQ ∧ CQ.type =

presumption), the agent can use its knowledge resources to create and

show to the other agent an argument arg with an evidence that supports

that presumption by using the locution assert(as, ar, arg). Finally, if

the attacking argument was a critical question of the type exception

(arg = CQ ∧ CQ.type = exception), the agent can ask the other agent

for an argument to support such critical question by stating the locution

why(as, ar, arg). Alternatively, if the agent cannot rebut the attack, it

can retract its argument with the locution retract(as, ar, arg). In its

turn, any agent that has asserted the argument arg can withdraw it

with the locution retract(as, ar, arg).

• R7: If an agent is asked by another agent to provide a support argument

for its critical question of the type exception, this agent must use the

locution assert(as, ar, arg) to assert an argument arg with an evidence

to support such critical question attack (since it has the burden of proof

in this case) or else, retract the attack by putting forward the locution

retract(as, ar, arg).

• R8: Once an agent has been provided by other agent with an evidence

that supports the other agent’s critical question of the type exception,
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this agent can retract its argument arg and report to the other with

the locution retract(as, ar, arg) or else can try to generate an attack

argument arg for the other agent’s argument and send it the locution

attack(as, ar, arg).

Also, note that any agent can withdraw its position at any stage of the di-

alogue. It implies that there are a transaction labelled with the locution

noCommit(as, p) from substages R5...R8 to substage R2, although they do

not appear in Figure 4.2 for clarity purposes.

Closing Stage:

The closing stage can be activated at any time of the dialogue by the agent

ai that opened it. This stage is reached by putting forward the locution

accept(as, all, p) (where as = ai) that informs all participating agents about

the final position p agreed as the solution for the problem q. Here, the com-

mitment store of all agents is deleted.

Commitment Rules

As pointed out before, agents make dialogical commitments with each locu-

tion that they put forward. These commitments are stored in an individual

commitments database called commitment store (CS). Also, the inclusion of

a new commitment in the commitment store can make previous commitments

to be inconsistent or invalid. Next, the commitment rules that define the

commitments associated with each locution and how their inclusion in the

commitment store affect to previous commitments are presented.

• CR1: The locution enter dialogue(as, q) gives rise to the creation of

the commitment store CSs of the sender agent.

• CR2: The locution propose(as, p) inserts the position p into the com-

mitment store CSs of the sender agent. If there is a previous position in
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CSs, this position is replaced with the new position p. Thus, only one

position can prevail in any commitment store.

• CR3: The locution withdraw dialogue(as, q) deletes the commitment

store CSs of the sender agent. This implies that the final agreement is

only taken among the agents that remain listening in the substages R2 or

R3. Also, agents cannot withdraw the dialogue before withdrawing any

position that they have proposed with the locution noCommit(as, p).

• CR4: The locution accept(as, ar, p) inserts the position p into the com-

mitment store CSs of the sender. If there is a previous position in CSs,

this position is replaced with the new position p.

• CR5: The locution noCommit(as, p) deletes p from the commitment

store CSs of the sender.

• CR6: The locution why(as, ar, p) commits the receiver to provide the

sender with a supporting argument arg for p or else, to withdraw p with

the locution noCommit(as, p).

• CR7: The locution assert(as, ar, arg) inserts the argument arg in the

commitment store CSs of the sender. Also, commitment stores cannot

have inconsistent arguments. Then, if the conclusion of arg contradicts

the conclusion of a previous argument stored in CSs, the sender cannot

put forward the locution assert(as, ar, arg) before deleting the inconsis-

tent argument from CSs with the locution retract(as, ar, arg) addressed

to any agent that is maintaining a dialogue with the sender.

• CR8: The locution accept(as, ar, arg) inserts the argument arg into the

commitment store CSs of the sender. Again, commitment stores cannot

have inconsistent arguments. Then, if the conclusion of arg contradicts

the conclusion of a previous argument stored in CSs, the sender cannot

put forward the locution assert(as, ar, arg) before deleting the inconsis-
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tent argument from CSs with the locution retract(as, ar, arg) addressed

to any agent that is maintaining a dialogue with the sender.

• CR9: The locution retract(aj , ak, arg) deletes the argument arg from

the commitment store CSj of aj .

• CR10: The locution attack(as, ar, arg) inserts the argument arg in the

commitment store CSs of the sender. As pointed out before, commit-

ment stores cannot have inconsistent arguments. Then, if the conclu-

sion of arg contradicts the conclusion of a previous argument stored

in CSs, the sender cannot put forward the locution attack(as, ar, arg)

before deleting the inconsistent argument from CSs with the locution

retract(as, ar, arg) addressed to any agent that is maintaining a dia-

logue with the sender. Also, if arg is a critical question of the type

presumption, the locution attack(as, ar, arg) commits the receiver to

providing an argument as evidence to support its last argument or else

to retracting it.

• CR11: The locution why(as, ar, arg) where arg is an attack argument

of the type exception put forward by the receiver to the last argument

of the sender commits the receiver to having an argument to support its

challenge or else to retracting it.

• CR12: The locution accept(as, all, p) (all : ∀ai, ai 6= as/Agent(ai))

deletes the commitment stores of all agents that are still participating

in the dialogue (including the initiator).

Rules for Speaker Order

During the dialogue, agents take turns to put forward locutions. Each time

an agent as sends a locution to other agent ar, it waits for an answer from ar.

However, any agent can hold parallel argumentation dialogues with several
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agents. Then, in each of these dialogues, the argumentation succeeds as a two

party dialogue between two agents, the one sending a locution to the other

and waiting for a response. Nevertheless, the locution open dialogue(as, q)

is received by all agents of the society St. The locutions accept(as, all, p),

propose(as, p), noCommit(as, p) and withdraw dialogue(as, p) are received

by all agents that are engaged in the dialogue. Also, with these locutions, the

sender agent does not wait for any response.

In this dialogue game protocol, we assume that all participating agents are

able to see at each time the positions of the other agents by looking at their

commitment stores. Also, when two agents are engaged in a dialogue, each

agent has full access to the commitment store of the other. In this way, these

agents can see the commitments associated to the arguments of their part-

ners, but other agents can only have access to the positions proposed by each

agent in the dialogue (also stored in the commitment stores). This preserves

the privacy of the arguments that an agent puts forward in its argumentation

dialogue with other agent. Note that if an agent wants to ask other agents for

an opinion about an argument that it has received, it only has to send to these

agents the argument, as it was its own argument. This simple rule allow us to

use the same dialogue game to govern collaborative deliberations, persuasion

dialogues and negotiations. In the former, all agents follow the common objec-

tive of proposing the best solution for a problem at hand. Therefore, there are

not interested agents trying to take profit from the information interchanged

between other agents to get a greater benefit with the final agreement reached.

However, it could be the case in a persuasion or a negotiation, where each

agent tries to persuade other agents to change their point of view or tries to

increase its utility value perceived with the final agreement, thus using any

extra information about other agents’ knowledge and preferences to achieve

that.
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Termination Rules

The normal termination of the dialogue occurs when the argumentation pro-

cess ends with all participating agents having proposed a prevailing position

or having accepted the position of other agent. Then, agents may reach a de-

cision about the final solution for the problem under discussion. In the ideal

case, only the position of one participating agent prevails, while the other

agents have withdrawn theirs and accepted this position by using the locution

accept(as, ar, p). However, if at the end of the dialogue more than one po-

sition are still undefeated, agents can use a voting mechanism (selecting the

position most accepted) or a random selection to decide the final outcome of

the agreement process.

In any case, the agent ai that opened the dialogue is responsible for reporting

all participating agents the final position p selected as solution for the problem

q at hand, by using the locution accept(as, all, p) (where as = ai). To avoid

infinite dialogues, agents cannot put forward the same argument twice dur-

ing a dialogue with other agent. Furthermore, a maximum time to reach an

agreement can be established and agents must accept a position among those

available at that moment to solve the problem.

Note that agents can maintain several parallel dialogues with other agents.

Thus, once an agent has entered in the argumentation process with the locution

enter dialogue(as, q) it remains waiting to propose a position in the substage

R2 or listening to incoming locutions of other agents in the substage R3.

Then, the specific dialogue with an agent that has asked other agent for a

support argument for its position p follows to the subsequent substages, but

the agent still remains listening in R3 to other requests. Finally, the locution

noCommit(as, p) commits the sender to terminate any dialogue that its has

started to defend p.
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4.3 Dialogue Strategies

As pointed out in [Amgoud and Hameurlain, 2006], there is no consensus on

the definition of a strategy and on the parameters necessary for its definition.

Consequently, there are no standard methodology and no formal models for

strategies. A first attempt to model the process of strategy construction for

negotiation dialogues was published in [Rahwan et al., 2007a]. This work pro-

poses a methodology for designing heuristic negotiation strategies that guides

the strategy designer along several stages to produce modular specifications

of tactics and strategies.

The literature on strategies for argumentation provides different definitions

for the notion of strategy. Several examples are:

“The strategy is a decision problem in which an agent tries to

choose among different alternatives the best option, which accord-

ing to its beliefs, will satisfy at least its most important goals

[Amgoud and Hameurlain, 2006].”

“Private strategies, as adopted by an individual agent, specify the

dialogue move(s) the agent is willing to utter, according to its own

objectives and other personal characteristics.[Kakas et al., 2005]”

“A strategy of an agent specifies a complete plan that describes

what action the agent takes for every decision that a player might

be called upon to take, for every piece of information that the

player might have at each time that it is called upon to act. Thus

a strategy for an agent would specify for each possible subset of

arguments that could define its type (the set of arguments that

the agent is capable of putting forward), what set of arguments to

reveal.[Rahwan and Larson, 2009, Chapter 16]”
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In this section we propose several dialogue strategies for different types of agent

profiles (agent attitudes) in our case-based argumentation framework. In doing

so, we are closer to the heuristic approach of [Amgoud and Hameurlain, 2006]

rather than to the game theoretic one. There are several reasons behind this

decision. One one hand, game theoretic approaches are usually applied to

abstract argumentation frameworks where the strategies of agents determine

which argument(s) they will reveal in each argumentation step. Common

objectives of these works are to study the conditions under which the outcome

of the game is not affected by the strategic decisions of the agents or to predict

the outcome of the game. In contrast, we define dialogue strategies on basis

of the knowledge that agents have about the domain, previous argumentation

experiences and the social context (the roles, norms, preferences over values

and dependency relations among agents and groups). In doing so, we take

into account the specific structure of arguments and the knowledge resources

of our framework and design strategies to help agents to take advantage over

other participants in the argumentation dialogue.

On the other hand, in our application domain there is not a pre-defined util-

ity function about the payoff that an agent gets for the fact of winning the

dialogue or having accepted more or less arguments, which is one of the com-

mon assumptions in game theoretic approaches for strategic argumentation.

Finally, game theory assumes complete knowledge of the space of arguments

proposed in the argumentation framework. This assumption is unrealistic in

an argumentation dialogue between heterogeneous agents which have individ-

ual and private knowledge resources to generate arguments.

Further disadvantages of applying game theory to devise dialogue strategies in

argumentation frameworks are the same as those reported in [Jennings et al.,

2001] for the problem of applying game theory to automated negotiation.

First, game theoretic studies of rational choice in multi-agent encounters typi-

cally assume that agents are allowed to select the best strategy from the space
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of all possible strategies, by considering all possible interactions. This is com-

putationally intractable when the space of possible choices grows. Also, game

theory assumes that it is possible to characterise an agent’s preferences about

possible outcomes. This is hard to define for agents that represent humans

that are engaged in an argumentation process. Our alternative solution is to

define preferences over values instead of preferences over dialogue outcomes

and use them to guide the agents’ choices.

In each step of the dialogue of our case-based argumentation framework an

agent would choose a specific locution and a content for it depending on its

profile and the strategy that follows. Assuming that L represents the set

of available locutions of the dialogue game, let us suppose that the function

Replies returns for each locution the legal replies to it:

Replies : L→ 2L

Recalling that D represents the set of well-formed formulae in our content

language SHOIN(D), the function Content returns for a given locution, the

set of possible contents:

Content : L→ 2D

In each step of the argumentation dialogue, agents exchange moves.

Definition 4.3.1 (Move) A move is a pair (l, φ), where l ∈ L and φ ∈
Content(l).

Thus, the strategy problem is formalised as in [Amgoud and Hameurlain,

2006]:

Definition 4.3.2 (Strategy Problem) Let (l, φ) be the current move in a

dialogue. What is the next move (l’, φ’) to utter such that l’ ∈ Replies(l)?

170



4. Dialogue Game Protocol

The answer for this question implies to find the best locution and content that

the agent can utter in each step of the dialogue, given the profile of the agent

and its knowledge. Therefore, a dialogue strategy is defined as follows:

Definition 4.3.3 (Dialogue Strategy) A dialogue strategy is defined as a

function S: 2L×D → L×D where (l, φ) ∈ L×D.

Given a move m=(l, φ), S(m) = m’ such that m’ = (l’, φ’) is the best move

that an agent can utter in the next step of the dialogue taking into account

its profile and experience. In our case-based argumentation framework, agents

select the best locution to bring up depending on their profile and the content

of this locution depending on the knowledge that they have in their knowledge

resources and the tactic that they follow.

We consider the following agent profiles [Amgoud and Parsons, 2001]:

• Agreeable: accept whenever possible.

• Disagreeable: only accept when there is no reason not to.

• Open-minded: only attack when necessary.

• Argumentative: attack whenever possible.

• Elephant’s child: challenge whenever possible.

An agreeable agent will initially accept positions and arguments from peers

(other agents that it has a charity dependency relation with them) whenever

is possible. This means that it will accept any position that is in the list of

its potential positions (even if it is not ranked as the most suitable) and it

will accept any argument from a peer if it does not have a counter-argument,

a distinguishing premise or a critical question that attack it. Therefore, if

the agent cannot rebut an argument from a peer, it will accept it and also
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its associated position. Agreeable agents do not challenge positions of other

agents, but just try to defend theirs if attacked. In the case that an agreeable

agent cannot generate a position, it does not participate in the dialogue.

A disagreeable agent will initially accept the position of a peer if it is ranked

first in its list of potential positions. Regarding arguments, this type of agent

will try to generate an attack to any argument that it receives from other

agents. If it is not able to generate such an attack, the agent will accept the

argument of its peer, but it still will not accept the peer’s position. Disagree-

able agents do not challenge positions of other agents, but just try to defend

theirs if attacked. In the case that a disagreeable agent cannot generate a

position, it does not participate in the dialogue.

An open-minded agent challenges different positions of other peers. Also, it

waits for challenges from other peers and will try to rebut their attack argu-

ments. If a peer wins the discussion, this type of agent accepts its argument

and its associated position. If it cannot generate positions, it does not engage

in the dialogue.

An argumentative agent will not initially accept any position from a peer.

This type of agent will challenge positions of other peers when they are dif-

ferent from its position, even if they appear in its list of potential positions to

propose. Also, it will try to generate an answer for any attack that it receives,

but opposite to open-minded agents, argumentative agents do not accept the

position of the peer that generated the attack if the last wins the debate. If

an argumentative agent cannot generate positions, it will not participate in

the dialogue.

An elephant’s child agent will always challenge the positions of other peers

(even if they have proposed the same position than it or if it cannot generate

positions). If it can generate attacks, it will put forward them to rebut the

arguments of other agents, but if they win the debate, this type of agent does

not accept their positions. In fact, the only way an elephant’s child agent
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accepts the position of other agent is when it attacks this position and the

attacked agent wins the debate.

Independently of their profile, agents will accept arguments from other agents

that have a power or authorisation dependency relation over them. Recall that

in any case the acceptance of an argument is subjected to the defeat relation

defined in the argumentation framework proposed in Chapter 3. Table 4.2

summarises the behaviour of these agent profiles.

Profile ASP APL CSP CPL CDP AAP CP∅
Agreeable

√ √

Disagreeable
√

Open-Minded
√ √

Argumentative
√ √

Elephant’s Child
√ √ √ √

Table 4.2: Agents’ Profiles

The legends of the columns of Table 4.2 are the following:

• ASP (Accept Same Position): Initially accept the position of a peer

that matches the agent’s current position.

• APL (Accept Position in List): Initially accept the position of a peer

that is in the agent’s list of potential positions (although not ranked as

the most suitable position to propose).

• CSP (Challenge Same Position): Challenge the position of a peer

that has proposed the same position than the agent’s one.

• CPL (Challenge Position in List): Challenge the position of a peer

that has proposed a position that is in the agent’s list of potential posi-

tions (although not ranked as the most suitable position to propose).
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• CDP (Challenge Different Position): Challenge the position of peer

that has proposed a different position (and this position is not in the

agent’s list of potential positions to propose).

• AAP (Accept Attacked Position): When the agent has held a dis-

cussion with other agent and the later wins the debate, accept its posi-

tion.

• CP∅ (Challenge other Positions if no position can be gener-

ated).

Depending on its profile, the agent will choose the next locution to put for-

ward on the dialogue game. For instance, let us assume that an agent ai has

proposed a position q to solve the problem p under discussion (propose(as, q)),

an agreeable agent aj has entered in the dialogue (enter dialogue(aj, p)) and

proposed a position q′ (propose(as, q
′)) and ai has challenged the position of

aj (why(ai, aj, q
′)). In this case, the agreeable agent aj will try to generate a

support argument for its position by searching its domain and argument-cases

case-bases. Now, Saj (enter dialogue, Problem(p)) = (assert, φ). Then, among

the potential arguments that aj could generate, it has to select one to support

the position. This implies to select the content φ of the locution to assert

the support argument. To make this selection, agents can use the following

tactics, which consist on assigning more or less weight to the elements of the

support factor used to select positions and arguments:

• Persuasive Tactic: the agent selects such positions and arguments whose

associated argument-cases were more persuasive in the past (have more

persuasiveness degree).

• Maximise-Support Tactic: the agent selects such positions and argu-

ments that have higher probability of being accepted at the end of the

dialogue (their associated argument-cases have more support degree).
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• Minimise-Risk Tactic: the agent selects such positions and arguments

that have a lower probability of being attacked (their associated argument-

cases have less risk degree).

• Minimise-Attack Tactic: the agent selects such positions and arguments

that have received a lower number of attacks in the past (their associated

argument-cases have less attack degree).

• Maximise-Efficiency Tactic: the agent selects such positions and argu-

ments that lead to shorter argumentation dialogues (their associated

argument-cases have higher efficiency degree).

• Explanatory Tactic: the agent selects such positions and arguments that

cover a bigger number of domain-cases or argumentation schemes. That

is, the positions and arguments that are similar to argument-cases that

have more justification elements (more domain-cases or argumentation

schemes in the justification part).

Both profile and tactic form the strategy of an agent. The performance of

different strategies will be evaluated in the study case proposed in Chapter 6.

4.4 Semantics

In this section, we provide the formal semantics for the locutions of our dia-

logue game protocol, which are based on the approach proposed in [McBur-

ney and Parsons, 2004]. This semantics provides a common understanding

about the properties of the communication language between agents. There

are different methods to provide a communication language with a seman-

tics [Tennent, 1991], for instance, the axiomatic approach and the operational

approach. The semantics of the locutions that define the communication lan-

guage of the dialogue game are presented in this chapter are provided in the

following sections.
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4.4.1 Axiomatic Semantics

The basic approach of semantics for communication languages is the axiomatic

approach. With this approach, the meaning of the language is not explicitly

defined but given in terms of properties that the language concepts satisfy

[van Eijk, 2002]. Thus, in axiomatic semantics the semantics of a locution L

is defined as a triple:

{pre} L {post}

where pre represents the preconditions that must hold before the locution is

uttered and post represents the postconditions that apply after this utterance.

Also, following [McBurney, 2002] we can distinguish between private axiomatic

semantics, where some preconditions or postconditions describe conditions of

the dialogue that can only be observed by some agents and public axiomatic

semantics, where all conditions are accessible to all agents. In our dialogue

game protocol, the preconditions and postconditions of some locutions can

only be observed by the sender and receiver agents. Thus, we present in this

section the private axiomatic semantics for the locutions of our dialogue game.

For clarity purposes, the preconditions that hold before the utterance of each

locution in the communicative act Done are assumed to be the preconditions

specified in the axiomatic semantics definition of the locution and thus, are

omitted in the text.

Locutions Axiomatic Semantics

• {pre} open dialogue(as, φ) {post}

pre : Agent(as) wants to inform other agents of the society St (as

it was defined in Chapter 3) about the proposition φ, which is a

Problem(q) to solve. Note that until agents enter the dialogue,
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their commitment stores CS are not created.

(Ksq) ∧ (@CSs)

post : All agents in the society St know that Agent(as) wants to solve

Problem(q).

(♦CStKsq)

• {pre} enter dialogue(as, φ) {post}

pre : Agent(as) knows φ (the Problem(q) reported by Agent(ai)) and

informs other participants of the Group(g)6 that are engaged in the

dialogue that it is willing to enter the dialogue to solve Problem(q).

(Done[open dialogue(ai, q), ...]) ∧ (Ksq)

post : Other participants of the Group(g) are informed that Agent(as)

is willing to engage in a dialogue to solve Problem(q). Also, the

commitment store CSs is created and Agent(as) starts to belong

to the Group(g) of agents engaged in the dialogue.

(♦Cg(as ∈ g)) ∧ (∃CSs)

• {pre} withdraw dialogue(as, φ) {post}

pre : Agent(as) that has engaged in the argumentation dialogue to

solve φ (the Problem(q)) wants to leave from the dialogue and

report it to the other agents of the Group(g) that are engaged in

the dialogue. Note that agents cannot withdraw the dialogue before

withdrawing any position Solution(p) that they have proposed.

(Done[enter dialogue(as, q),Ksq]) ∧ (@p ∈ CSs)

post : Other participating agents of the Group(g) know that Agent(as)

no longer participates in the dialogue to solve Problem(q). Also,

the commitment store CSs of Agent(as) is deleted.

(♦Cg(as 6∈ g)) ∧ (@CSs)
6Agents know which other agents are participating in the dialogue by looking at their

commitment stores.

177



4.4. Semantics

• {pre} propose(as, φ) {post}

pre : An Agent(as) that has engaged in a dialogue to solve φ (the

Problem(q)) wants to propose its position Solution(p) as a solution

for the problem and reports it to the other agents of the Group(g).

An agent cannot propose a new position without withdrawing a

previous Solution(r) from its commitment store, if any.

(Done[enter dialogue(as, q), ...]) ∧ (Bsp) ∧ (∀r 6= p)(@r ∈ CSs)

post : Other participating agents of the Group(g) know that Agent(as)

has proposed position Solution(p) as solution for Problem(q) and

it is inserted in the commitment store CSs of Agent(as).

(♦CgBsp) ∧ (p ∈ CSs)

• {pre} why(as, ar, φ) {post}
This locution has different semantics depending on its content φ. On one

hand, if φ is a position Solution(p) to solve the problem under discussion

we have the following conditions:

pre : Agent(as) wants to challenge Agent(ar) to provide a justification

for the position Solution(p).

(Done[propose(ar, p), Brp]) ∧ (KsBrp) ∧ (p 6∈ CSs)

post : Agent(ar) knows that Agent(as) does not believe Solution(p)

and has the dialogical commitment of justifying it with an Argu-

ment(arg) `+ Solution(p) or else of withdrawing it.

(♦Kr¬Bsp) ∧ ((Feasible[∃arg/arg `+ p, assert(ar, as, arg)]) ∨
(Feasible[@arg/arg `+ p, noCommit(ar, p)]))

On the other hand, if φ is an attacking Argument(argr) of Agent(ar)

that poses a critical question Premise(exc) of the type exception to a

previous Argument(args) of Agent(as) (such that hasSupportSet(argr,
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SSr) ∧ hasException(SSr, exc) ∧ Argument(argr) `− Argument(args)

we have the following conditions:

pre : Agent(as) wants to challenge Agent(ar) to provide a justification

Argument(argr′) for its attackArgument(argr) toArgument(args).

(Done[attack(ar, as, argr),¬Brargs]) ∧ (KsBrargr) ∧ (argr 6∈ CSs)

post : Agent(ar) knows that Agent(as) does not believe its

Argument(argr). Thus, it is committed to providing a justification

Argument(argr′) for its attacking argument Argument(argr) such

that Argument(argr′) `+ Argument(argr) or else, to withdrawing

the it.

(♦Kr¬Bsargr) ∧ ((Feasible[∃argr′/argr′ `+ argr), assert(ar, as,

argr′)]) ∨ (Feasible[@argr′/argr′ `+ argr), retract(ar, as, argr)]))

• {pre} noCommit(as, φ) {post}

pre : Agent(as) that has put forward φ (the position Solution(p)) wants

to withdraw it and report this change to the other participating

agents of the Group(g) engaged in the dialogue.

(p ∈ CSs) ∧ (CgBsp)

post : Other participating agents of the Group(g) know that Agent(as)

no longer proposes Solution(p) as its position to solve the problem

at hand. Also, Solution(p) is deleted from the commitment store

CSs of Agent(as).

(♦Cg¬Bsp) ∧ (p 6∈ CSs)

• {pre} assert(as, ar, φ) {post}
This locution has different semantics depending on its content φ. How-

ever, in any case an argument cannot be inserted in the commitment

store of an agent without deleting first any inconsistent argument. Then,

on one hand, it could be the case that Agent(ar) has challenged the po-

sition Solution(p) of Agent(as). In this case, φ is an Argument(arg)
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that supports this position, such that Argument(arg) `+ Solution(p).

pre : An Agent(as) wants to provide a justification for its position

Solution(p) and reports it to an agent Agent(ar) that has chal-

lenged it.

(Done[why(ar, as, p), ...]) ∧ (∃arg) (arg `+ p) ∧
(@args ∈ CSs)(arg `− args)

post : Agent(ar) knows that Agent(as) has provided Argument(arg) as

a justification for its position and it is inserted in the commitment

store CSs of Agent(as).

(♦KrBsarg) ∧ (arg ∈ CSs)

On the other hand, Agent(ar) could have attacked the argument

Argument(args) with an Argument(argr) that poses a critical question

Premise(pre) of the type presumption such that

hasSupportSet(argr, SSr) ∧ hasPresumption(argr, pre) ∧
Argument(argr) `− Argument(args).

In this case, φ is an Argument(args′) of Agent(as) that supports its

previous argument Argument(args), such that

Argument(args′) `+ Argument(args).

pre : Agent(as) wants to rebut a critical question attack of the type

presumption posed by Agent(ar), such that Argument(argr) `−

Argument(args), but Argument(args′) `+ Argument(args) and

hence rebuts Argument(argr).

Done[attack(ar, as, argr), ...] ∧ (∃args′)(args′ `+ args) ∧
(@args′′ ∈ CSs)(args′ `− args′′)

post : Agent(ar) knows that Agent(as) has provided Argument(args′)

as a justification for its Argument(args) and it is inserted in the

commitment store CSs of Agent(as).

(♦KrBsargs′) ∧ (args′ ∈ CSs)
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Finally, Agent(ar) could have challenged the argument Argument(args)

that poses a critical question Premise(exc) of the type exception to its

Argument(argr) such that hasSupportSet(args, SSs) ∧
hasException(SSs, exc) ∧ Argument(args) `− Argument(argr).
In this case, φ is an Argument(args′) of Agent(as) that supports its

critical question attack posed with Argument(args), such that

Argument(args′) `+ Argument(args).

pre : Agent(as) wants to support a critical question attack of the

type exception, such that Argument(args) `− Argument(argr)

and Argument(args′) `+ Argument(args).

Done[why(ar, as, args), ...] ∧ (∃args′)(args′ `+ args) ∧
(@args′′ ∈ CSs)(args′ `− args′′)

post : Agent(ar) knows that Agent(as) has provided Argument(args′)

as a justification for its Argument(args) and it is inserted in the

commitment store CSs of Agent(as).

(♦KrBsargs′) ∧ (args′ ∈ CSs)

• {pre} attack(as, ar, φ) {post}
This locution has different semantics depending on its content φ, which

represents different types of arguments. Again, in any case an argument

cannot be inserted in the commitment store of an agent without deleting

first any inconsistent argument. With the attack locution, the Agent(as)

puts forward an Argument(args) to attack the Argument(argr) of an

Agent(ar), such that Argument(args) `− Argument(argr).
Argument(args) can be of different types.

On one hand, if Argument(argr) is a support argument with one or

more premises in its support set, such that hasSupportSet(argr, SSr) ∧
Premise(prr) ∧ hasPremise(SSr, prr), Argument(args) can be a

distinguishing-premise attack.

pre : Agent(as) wants to attack the support Argument(argr) of an
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Agent(ar) with an Argument(args), such that

hasSupportSet(arg, SSs) ∧ Premise(DP) ∧
hasDistinguishingPremise(SSs, DP).

(Done[assert(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧ (@args′ ∈
CSs) (args `− args′)

post : Agent(ar) knows that Agent(as) does not believe its support

Argument(argr) and Argument(args) is inserted into the commit-

ment store CSs of Agent(as).

(♦Kr¬Bsargr) ∧ (KrBsargs) ∧ (args ∈ CSs)

On the other hand, if Argument(argr) is a support argument with one

or more argument-cases or domain-cases in its support set, such that

hasSupportSet(argr, SSr) ∧ Case(cr) ∧ (hasDomainCase(SSr, cr) ∨
hasArgumentCase(SSr, cr)), then Argument(args) can be a counter-

example attack. In that case, the axiomatic semantics coincide with the

previous case.

Alternatively, if Argument(argr) is a support argument with one or more

argumentation-schemes in its support set, such that hasSupportSet(argr,

SSr) ∧ ArgumentationScheme(asr) ∧ hasArgumentationScheme(SSr,

asr), then Argument(args) can be a critical question attack. In the

case of critical questions of the type presumption the locution has the

semantics specified next:

pre : Agent(as) wants to attack the support Argument(argr) of an

Agent(ar) with an Argument(args), such that hasSupportSet(arg,

SSs) ∧ Premise(pres) ∧ hasPresumption(SSs, pres) ∧
hasPresumption(asr, pres).

(Done[assert(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧
(@args′ ∈ CSs)(args `− args′)

post : Agent(ar) knows that Agent(as) does not believe its support

Argument(argr) and it is committed to provide anArgument(argrr)
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to support it or else to withdrawing it. Also, Argument(arg) is in-

serted into the commitment store CSs of Agent(as).

(♦Kr¬Bsargr) ∧ (KrBsarg) ∧ ((Feasible[∃argrr `+ argr),

assert(ar, as, argrr)]) ∨ (Feasible[@argrr `+ argr), retract(ar, as,

argr)])) ∧ (arg ∈ CSs)

In the case of critical questions of the type exception the locution has

the following semantics:

pre : Agent(as) wants to attack the support Argument(argr) of an

Agent(ar) with an Argument(args), such that hasSupportSet(args,

SSs) ∧ Premise(pres) ∧ hasException(SSs, pres) ∧
hasException(asr, pres).

(Done[assert(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧
(@args′ ∈ CSs)(args `− args′)

post : Agent(ar) knows that Agent(as) does not believe its support

Argument(argr). Also, Argument(args) is inserted into the com-

mitment store CSs of Agent(as).

(♦Kr¬Bsargr) ∧ (KrBsargs) ∧ (args ∈ CSs)

Finally, Argument(argr) can be an attack argument to the

Argument(args′) ofAgent(as) with a distinguishing-premise or a counter-

example in its support set such that hasSupportSet(argr, SSr) ∧
((Premise(prr) ∧ hasDistinguishingPremise(SSr, prr) ∨ (Case(cr) ∧
hasCounterExample(SSr, cr))). Then, Argument(args) can be an at-

tack argument that rebuts Argument(argr) with other counter-example

or distinguishing-premise.

pre : Agent(as) wants to rebut the attack Argument(argr) of an

Agent(ar) with an Argument(args), such that hasSupportSet(args,

SSs) ∧ ((Case(cs) ∧ hasCounterExample(SSs, cs)) ∨
((Premise(prs) ∧ hasDistinguishingPremise(SSs, prs))).
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(Done[attack(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧
(@args′′ ∈ CSs)(args `− args′′)

post : Agent(ar) knows that Agent(as) does not believe its attack

Argument(argr). Also, Argument(args) is inserted into the com-

mitment store CSs of Agent(as).

(♦Kr¬Bsargr) ∧ (KrBsargs) ∧ (args ∈ CSs)

• {pre} accept(as, ar, φ) {post}
This locution has different semantics depending on the content of φ. On

one hand, φ can be a position Solution(p) proposed by Agent(ar).

pre : Agent(as) wants to accept a position Solution(p) proposed by

Agent(ar).

(KsBrp) ∧ (Bsp)

post : Agent(ar) knows that Agent(as) has accepted its position. Also,

this position is inserted into the commitment store CSs ofAgent(as)

(and replaces a previous position if any).

(♦KrBsp) ∧ (p ∈ CSs) ∧ (@ps ∈ CSs)(ps 6= p)

On the other hand, φ can be an argument Argument(argr) proposed by

Agent(ar).

pre : Agent(as) wants to accept the Argument(argr) proposed by

Agent(ar) and there is not any inconsistent argument in the com-

mitment store CSs of Agent(as).

(KsBrargr) ∧ (Bsargr) ∧ (@args ∈ CSs)(argr `− args)

post : Agent(ar) knows that Agent(as) has accepted its argument. Also,

this argument is inserted into the commitment store CSs of

Agent(as).

(♦KrBsargj) ∧ (argr ∈ CSs)

• {pre} retract(as, ar, φ) {post}
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pre : Agent(as) wants to withdraw φ, which is an Argument(args)

from its commitment store CSs and reports it to any agent of the

Group(g) that is engaged in a dialogue with it.

(¬Bsargs) ∧ (CgBsargs)

post : Every agent of the Group(g) knows that Agent(as) no longer

believes Argument(args) and it is deleted from its commitment

store.

(♦Cg¬Bsargs) ∧ (args 6∈ CSs)

• {pre} accept(as, all, φ) {post}

pre : Agent(as) wants to close the dialogue and report all agents of the

Group(g) engaged in it the final Solution(p) agreed to apply to the

Problem(q) at hand.

(Cgq) ∧ (Cgp)

post : All agents Agent(ag) of Group(g) know that Agent(as) believes

Solution(p). Also, their commitment stores are deleted and the

dialogue ends.

(♦CgBsp) ∧ (∀ag ∈ g)(@CSag)

The axiomatic semantics is typically used to provide preliminary specifica-

tions of communication languages, but the knowledge of only its properties is

not sufficient to understand a language.Thus, next section complements this

semantics with an additional form of semantics that provide meaning for the

transitions between the stages of the dialogue.

4.4.2 Operational Semantics

The operational semantics views the dialogue game protocol as an abstract

state machine and defines precisely the transitions between states. These

transitions are triggered by the utterance of each locution. However, from some
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stages an agent can utter different locutions following different agent decision

mechanisms, which are reasoning mechanisms that agents can use to choose

the locution to utter in the next step of the dialogue among a set of candidates.

These mechanisms depend on the knowledge that agents can infer from their

knowledge resources or even on the specific design of agents. For instance,

agents that are designed to be more competitive and, if possible, always put

forward attack arguments or agents that are designed to remain listening and

only engage in a dialogue if their positions or arguments are attacked. Figure

4.3 shows the decision mechanisms that agents can use in each substage of

the argumentation stage of our protocol. For clarity purposes, arrows labelled

with the decision mechanism D8 (presented below) from substages R5, R6,

R7 and R8 to substage R2 are omitted in the figure.

R1 R2 R3 R4 R5 R6

R7

D3: withdraw_dialogue(as, q)

D4: propose(as, p)

D3: withdraw_dialogue(aj, q)

D5: why(as,ar, p)

D6: noCommit(as, p)

D6: assert(as, ar, arg)

D9: accept(as, ar, arg)

D9: attack(as, ar, arg) 

D13: retract(as, ar, arg)

D11: assert(as, ar, arg)/

[arg = CQ ∧

CQ.type = presumption]

D11: why(as,ar, arg)/

[arg = CQ ∧

CQ.type = exception]

D11: retract(as, ar, arg)

R8
D12: assert(as, ar, arg)

D12: retract(as, ar, arg)

D11: attack(as, ar, arg) /

 [arg = DP ∨ CE]

D2: enter_dialogue(as, q)

D13: attack(as, ar, arg)

D5: accept(as, ar, p)

D8: noCommit(as, p)

D7: retract(as, ar, arg)

D10: retract(as, ar, arg)

D4: why(as,ar, p)

D1: open_dialogue(as, q)

D12: close_dialogue(as, all, p)

Figure 4.3: Decision Mechanisms of the Dialogue Game

To define the transition rules of our protocol we follow the notation of [McBur-

ney and Parsons, 2004]:

〈ai,K, o〉

where ai is an agent, K is a decision mechanism (or the terminal state T )
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and o is the output of the mechanism K (send a locution or remain listening

to incoming locutions). Some transitions are labelled with the locutions that

trigger them while others, which occur between the mechanisms of a single

agent, remain unlabeled. Also, if no specific output is invoked we denote this

by a period in the third parameter of the triple (〈ai,K, .〉).

Concretely, we have identified the following decision mechanisms:

• D1 Open Dialogue: A mechanism that allows an agent to open a

dialogue with other agents of the society St that the agent belongs to,

uttering the locution open dialogue(as, q) or not. The output of this

mechanism is: send(open dialogue(as, φ)).

• D2 Enter or Close Dialogue: A mechanism that allows an agent to

decide to engage in a dialogue and utter the locution enter dialogue(as, q)

or not. By this mechanism, the agent makes a query to its knowledge

resources, trying to find a solution for the problem to solve. If the

agent can provide a solution for the problem, the agent uses the mech-

anism to decide whether it enters in the dialogue or not. Alternatively,

the agent that started the dialogue can also close it with the locution

accept(as, all, p). The outputs of this mechanism are:

send(enter dialogue(as, φ)), listen() or send(close dialogue(as, all, φ)).

• D3 Withdraw from Dialogue: A mechanism that allows an agent to

withdraw from the dialogue and put forward the locution withdraw

dialogue(as, q). The mechanism first checks that the agent has not any

active position to solve the problem (agents cannot withdraw from the

dialogue before withdrawing their positions). Possible outputs are:

send(withdraw dialogue(as, φ)).

• D4 Propose or Challenge: A mechanism that allows an agent to

make a proposal to solve the problem under discussion and utter the
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locution propose(as, p) or to challenge the positions of other agents ut-

tering the locution why(as, ar, p). By this mechanism the agent uses its

knowledge resources to generate and select the position to propose. If

the agent has been able to generate a position to solve the problem, it

uses the mechanism to decide whether to put forward that position. In

any case, the agent can challenge other positions or remain listening to

the utterances of other agents. The outcomes for this mechanism are:

send(propose(as, φ)), send(why(as, ar, φ)) or listen().

• D5 Accept or Challenge: A mechanism that allows an agent to query

its knowledge resources and decide to accept or challenge the position

of other agent. If the agent is able to generate the same position as its

candidate to solve the problem, it can utter the locution accept(as, ar, p)

to accept the other’s position. Else, if the position cannot be generated

or is generated but not ranked as the most suitable solution for the

problem, the agent can use this mechanism and decide to accept the

other agent’s position or to challenge it with the locution why(as, ar, p).

Thus, possible outcomes are: send(accept(as, φ)) or send(why(as, ar,

φ)).

• D6 Defend Position: A mechanism that allows an agent to defend its

position from a challenge or else, to withdraw it. By this mechanism the

agent decides if it is able to use its knowledge resources to provide the

challenger with an argument that supports its position. In that case, it

can utter the locution assert(as, ar, arg). Otherwise, the agent has to

withdraw the position by using the locution noCommit(as, p). Also, the

agent that put forward the challenge can use this mechanism to listen

for the answer to its challenge. The outcomes of this mechanism are:

send(assert(as, ar, φ)), send(noCommit(as, φ)) or listen().

• D7 Withdraw Argument: This mechanism allows an agent to decide

whether to withdraw an argument that it has put forward, using the
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locution retract(as, ar, φ). Possible outcomes are: send(retract(as, ar,

φ)).

• D8 Withdraw Position: A mechanism that allows an agent to decide

whether to withdraw its proposed position with the locution

noCommit(as, p). The output of this mechanism is: send(noCommit(as,

φ)).

• D9 Accept or Attack: A mechanism that allows an agent to query

its knowledge resources and decide to accept or attack the argument of

other agent. If the argument is consistent with the information inferred

from the knowledge resources of the agent, it can utter the locution

accept(as, ar, arg) to accept the other’s argument. Else, if the argument

is inconsistent and an attack argument can be generated from the knowl-

edge resources, the agent can use this mechanism to decide to attack

the argument by uttering the locution attack(as, ar, arg). Otherwise,

if the argument cannot be decided (there is not enough information in

the knowledge resources to support or rebut the argument) the agent

also accepts it. Thus, possible outcomes are: send(accept(as, φ)) or

send(attack(as, ar, φ)).

• D10 Withdraw Attack: This mechanism allows an agent to decide

whether to withdraw an attack that it has put forward, using the locu-

tion retract(as, ar, φ). Possible outcomes are: send(retract(as, ar, φ))

or listen().

• D11 Rebut Attack: A mechanism that allows an agent to rebut an

attack to its argument. By this mechanism the agent evaluates the at-

tack argument received and queries its knowledge resources to search

for information that supports or rebuts the attack. If the attack argu-

ment poses a critical question of the type presumption, the agent can
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rebut the attack by showing information that supports its argument

with the locution assert(as, ar, φ). If the attack argument poses a crit-

ical question of the type exception, the agent can rebut the attack by

challenging it with the locution why(as, ar, φ). Otherwise, if the attack

argument poses a distinguishing-premise or a counter-example to the

agent’s argument, it can use the locution attack(as, ar, arg) to rebut

the attack by counter-attacking with another distinguishing-premise or

counter-example. In any case, if the agent is not able to rebut the attack

with the information inferred from its knowledge resources, it can retract

its argument by uttering the locution retract(as, ar, φ). Therefore, the

outcomes of this mechanism are: send(assert(as, ar, φ)), send(why(as,

ar, φ)), send(attack(as, ar, φ)) or send(retract(as, ar, φ)).

• D12 Defend Argument: This mechanism allows an agent to rebut

a challenge to its argument, which poses a critical question of the type

exception. With this mechanism, the agent queries its knowledge re-

sources an tries to find information that supports its attack argument

(since it has the burden of proof to show evidences for the exception).

In that case, the agent can rebut the attack by showing this informa-

tion uttering the locution assert(as, ar, arg). Otherwise, the agent has

to withdraw the attack by uttering retract(as, ar, arg). Also, the agent

that put forward the challenge can use this mechanism to listen for the

answer to its challenge. Possible outcomes are: send(assert(as, ar, φ)),

send(retract(as, ar, φ)) or listen().

• D13 Retract or Attack: This mechanism allows an agent to counter-

attack a critical question attack of the type exception posed to its ar-

gument. With this mechanism, the agent queries its knowledge re-

sources to search for information that rebuts the attack. Then, if the

agent finds such information, it can counter-attack uttering the locu-
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tion attack(as, ar, φ). Otherwise, the agent has to withdraw its argu-

ment uttering the locution retract(as, ar, φ). Thus, the outcomes of the

mechanism are: send(attack(as, ar, φ)) or send(retract(as, ar, φ)).

Now, we define the transition rules of the operational semantics of our protocol.

• TR1: 〈as, D1, send(open dialogue(as, φ))〉 L1−→ 〈as, D2, .〉

• TR2: 〈as, D2, send(enter dialogue(as, φ))〉 L2−→ 〈as, D3, .〉

• TR3: 〈as, D2, send(enter dialogue(as, φ))〉 L2−→ 〈as, D4, .〉

• TR4: 〈as, D2, listen()〉 −→ 〈as, D2, .〉

• TR5: 〈as, D2, send(close dialogue(as, all, φ))〉 L8−→ 〈all, T, .〉

• TR6: 〈as, D3, send(withdraw dialogue(as, φ))〉 L3−→ 〈as, D2, listen()〉

• TR7: 〈as, D4, send(propose(as, p))〉
L4−→ 〈as, D8, .〉

• TR8: 〈as, D4, send(propose(as, p))〉
L4−→ 〈as, D5, .〉

• TR9: 〈as, D4, send(propose(as, p))〉
L4−→ 〈ar, D5, .〉

• TR10: 〈as, D4, send(why(as, ar, φ))〉 L5−→ 〈as, D4, listen()〉

• TR11: 〈as, D4, send(why(as, ar, φ))〉 L5−→ 〈ar, D6, .〉

• TR12: 〈as, D4, listen()〉 −→ 〈as, D4, .〉

• TR13: 〈as, D8, send(noCommit(as, φ))〉 L6−→ 〈as, D4, listen()〉

• TR14: 〈as, D8, send(noCommit(as, φ))〉 L6−→ 〈as, D3, .〉

• TR15: 〈as, D5, send(accept(as, ar, φ))〉 L8−→ 〈as, D5, .〉

• TR16: 〈as, D5, send(accept(as, ar, φ))〉 L8−→ 〈ar, D5, .〉
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• TR17: 〈as, D5, send(why(as, ar, φ))〉 L5−→ 〈as, D6, listen()〉

• TR18: 〈as, D5, send(why(as, ar, φ))〉 L5−→ 〈ar, D6, .〉

• TR19: 〈as, D6, listen()〉 −→ 〈as, D6, .〉

• TR20: 〈as, D6, send(assert(as, ar, φ))〉 L7−→ 〈as, D7, .〉

• TR21: 〈as, D6, send(assert(as, ar, φ))〉 L7−→ 〈as, D8, .〉

• TR22: 〈as, D6, send(assert(as, ar, φ))〉 L7−→ 〈ar, D9, .〉

• TR23: 〈as, D6, send(noCommit(as, φ))〉 L6−→ 〈as, D3, .〉

• TR24: 〈as, D6, send(noCommit(as, φ))〉 L6−→ 〈as, D4, listen()〉

• TR25: 〈as, D7, send(retract(as, ar, φ))〉 L10−−→ 〈as, D6, .〉

• TR26: 〈as, D9, send(accept(as, ar, φ))〉 L8−→ 〈as, D3, .〉

• TR27: 〈as, D9, send(accept(as, ar, φ))〉 L8−→ 〈as, D5, .〉

• TR28: 〈as, D9, send(accept(as, ar, φ))〉 L8−→ 〈ar, D8, .〉

• TR29: 〈as, D9, send(attack(as, ar, φ))〉 L9−→ 〈as, D10, .〉

• TR30: 〈as, D9, send(attack(as, ar, φ))〉 L9−→ 〈ar, D8, .〉

• TR31: 〈as, D9, send(attack(as, ar, φ))〉 L9−→ 〈ar, D11, .〉

• TR32: 〈as, D10, listen()〉 −→ 〈as, D10, .〉

• TR33: 〈as, D10, send(retract(as, ar, φ))〉 L10−−→ 〈as, D9, .〉

• TR34: 〈as, D10, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D7, .〉

• TR35: 〈as, D10, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D8, .〉

• TR36: 〈as, D11, send(assert(as, ar, φ))〉 L7−→ 〈as, D7, .〉
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• TR37: 〈as, D11, send(assert(as, ar, φ))〉 L7−→ 〈as, D8, .〉

• TR38: 〈as, D11, send(assert(as, ar, φ))〉 L7−→ 〈ar, D9, .〉

• TR39: 〈as, D11, send(why(as, ar, φ))〉 L5−→ 〈as, D12, listen()〉

• TR40: 〈as, D11, send(why(as, ar, φ))〉 L5−→ 〈ar, D8, .〉

• TR41: 〈as, D11, send(why(as, ar, φ))〉 L5−→ 〈ar, D12, .〉

• TR42: 〈as, D11, send(attack(as, ar, φ))〉 L9−→ 〈as, D7, .〉

• TR43: 〈as, D11, send(attack(as, ar, φ))〉 L9−→ 〈as, D8, .〉

• TR44: 〈as, D11, send(attack(as, ar, φ))〉 L9−→ 〈ar, D9, .〉

• TR45: 〈as, D11, send(retract(as, ar, φ))〉 L10−−→ 〈as, D6, .〉

• TR46: 〈as, D11, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D6, listen()〉

• TR47: 〈as, D12, listen()〉 −→ 〈as, D12, .〉

• TR48: 〈as, D12, send(assert(as, ar, φ))〉 L7−→ 〈as, D8, .〉

• TR49: 〈as, D12, send(assert(as, ar, φ))〉 L7−→ 〈ar, D13, .〉

• TR50: 〈as, D12, send(retract(as, ar, φ))〉 L10−−→ 〈as, D7, .〉

• TR51: 〈as, D12, send(retract(as, ar, φ))〉 L10−−→ 〈as, D8, .〉

• TR52: 〈as, D12, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D9, .〉

• TR53: 〈as, D13, send(attack(as, ar, φ))〉 L9−→ 〈as, D7, .〉

• TR54: 〈as, D13, send(attack(as, ar, φ))〉 L9−→ 〈as, D8, .〉

• TR55: 〈as, D13, send(attack(as, ar, φ))〉 L9−→ 〈ar, D9, .〉

• TR56: 〈as, D13, send(retract(as, ar, φ))〉 L10−−→ 〈as, D6, .〉
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• TR57: 〈as, D13, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D6, listen()〉

These transition rules provides the operational semantics of the dialogue, defin-

ing which is the range of potential decisions that agents can make in each stage

of the dialogue.

4.5 Conclusions

This chapter has presented the dialogue game protocol that agents of our

framework can use to interact and engage in argumentation dialogues. First,

the syntax of the protocol has been detailed by defining its locutions, com-

mencement rules, rules for the combination of locutions, commitment rules,

rules for the speaker order and termination rules.

Then, we present our concept of dialogue strategies as a combination of the

agents’ profile and tactics. These strategies will select the best locution and

content to put forward in each step of the argumentation dialogue. The ap-

proach presented here is based on the work presented in [Amgoud and Parsons,

2001][Amgoud and Hameurlain, 2006]. The latter work bases the selection of

next moves in the dialogue on the agent’s strategic goals and the selection of

the content on the agent’s functional goals. In our framework, the agent’s

strategic goals are represented by the knowledge stored in the argument-cases

case-base and the agent’s functional goals by the knowledge stored in the

domain-cases case-base.

Finally, the axiomatic semantics and the operational semantics of the locutions

are defined. The former specifies the pre-conditions that should be met to put

forward each locution (or set of locutions) and the post-conditions that apply

before their utterance. The latter views each locution as a transition in an

abstract state-machine that represents the possible stages that can be reached

during the dialogue.
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5.1 mWater: Water-rights Negotiation Prototype

In this chapter, we apply our case-based argumentation framework to anal-

yse, design and solve a resource allocation problem. The application domain

consists of a social network of agents that must reach an agreement over a

water-right transfer in a water market scenario like the one proposed in the

mWater prototype [Botti et al., 2009b; Botti et al., 2009a; Botti et al., 2010;

Garrido et al., 2009]. As reported in [Giret et al., 2010], it has been said that

clean fresh water will be the ”gold” of the 21st century [Honey-Roses, 2007].

Only 3% of the Earth’s water is salt free. Of that 3%, approximately 2.7%

is frozen in polar ice caps or deep underground. This leaves only 0.3% of
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5.1. mWater: Water-rights Negotiation Prototype

all the water on the planet available for human use [Schneider, 1996]. Water

scarcity is especially problematic in dry climates such as the Mediterranean.

Already Spain suffers from severe water shortages [Honey-Roses, 2007; Panay-

otou, 2007]. During the last years, the dramatical change of the Spanish Water

Law has given rise to many water problems. Spain needs to improve its wa-

ter management to meet the needs of different types of users (e.g. farmers,

cities and private companies) and to deal with its important water scarcity

problems.

In this scenario, agents are users of a river basin that can buy or sell their

water-rights to other agents. A water-right is a contract with the basin ad-

ministration organism that specifies the rights that a user has over the water

of the basin (e.g. the maximum volume that he can spend, the price that he

must pay for the water or the district where it is settled1). For instance, a

particular water-right could allow its holder to pump out up to 10 m3 of water

per day during the next cotton season.

The purpose of mWater is to test and prove that the paradigm of agree-

ment technologies can be successfully used in the construction of a prototype

that will address the Water Rights Transfer problem. This application is of

strategic importance for the Spanish society and economy. mWater will pro-

vide an efficient allocation of water resources based on a system of voluntary

trade in water, which brings potentially large benefits to all parties involved.

One implication of these complex requirements is the need for flexible on-

demand negotiation, initiation, co-ordination, and supervision of various ac-

tivities represented either through persons, or non-human actors (i.e. agents

and services).

mWater will be a virtual market-based system, in which water-right transfer

agreements will be executed by autonomous normative entities. In this market

based environment different autonomous entities, representing individual or

1Following the Spanish Water Law, a water-right is always associated to a district.
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group of farmers, industries, or other water user entities, will get in contact

with water-right holders that want to transfer their rights. They will be able

to negotiate the terms and conditions of the transfer agreement following the

National Hydrological Plan and Basin Hydrological Plan normative laws. At

the same time, the Basin Administration entities will be represented in the

mWater system as normative or referee entities that will assure the correct

execution of the water balanced distribution and usage. The focus of mWater

will be on developing a good water-right market design that can take into

account the dynamics inherent in the water sector in a real aquifer of la Mancha

Oriental (Spain).

The water market in Spain is strongly regulated and imposes several con-

straints. Firstly, water-rights can only be transferred between users of the

same or higher preference order defined by the Basin Hydrological Plan. For

example, irrigation rights can only be transferred for alternative irrigation or

human water supply but not for industrial uses. Furthermore, in this scenario

we focus just on trading with water-rights only for irrigation use and do not

consider water trading for industrial uses, agriculture, leisure or navigation.

Secondly, non consumptive rights can only be transferred to other non con-

sumptive uses. Finally, both parts of the transfer (the seller and the buyer)

must have the concession of the water-right in property, thus preventing non-

holders from participating in the market. This means that in our scenario

only users that have previous irrigation rights can participate in the market.

The right-holders that participate in the market are allowed by law to establish

the economic compensation by means of a private agreement process, signing

a formal contract that is used as an official record. This record is publicly

available to the other members of the basin in case some of them want to

allege its applicability. When this transfer is detrimental to a third party, it can

complain against this transfer. In such a case, the administrative organisms of

the basin study the effects of the transfer and decide whether it is applicable.
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In this scenario, it is possible to consider both the seller and the buyer as

grouped entities (instead of having only one member playing the role of seller

or buyer, a set of members may join together to participate in the market at

a higher scale). For instance, a given seller has a water-right of 2 m3 per day,

which is clearly insufficient for a buyer that needs 10 m3 of water. If more

sellers are grouped it would be possible to have water-rights to fit the require-

ment of the buyer, which analogously can be grouped in a larger buyer entity.

Now, the stakeholders of this scenario will need to take into consideration the

seller/buyer entity and model the interactions among the particular members

of each entity. Also, we can make differences among the water-rights to be

traded depending on the river section. For instance, upstream water can be

more valuable than downstream as its quality is significantly better.

Our domain scenario assumes that several users are arguing to reach an agree-

ment over a water-right transfer. In this, agents can play the following roles

[Giret et al., 2010]:

• Water User: a water-right holder of the basin.

• Buyer: a Water User that wants to transfer its right and or buy a trans-

portation resource.

• Seller: a Water User that wants to purchase rights and or sell a trans-

portation resource.

• Third party: a Water User that can be affected by a water-right transfer

agreement.

• Basin regulating authority (Basin Administrator): the Basin Adminis-

tration representative that can authorize a water-right transfer agree-

ment.

• Jury: the referee entity in problems among the contracting parties and

(possibly) third parties of a water-right transfer agreement.
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• Market facilitator: a management entity for assuring the execution of

the different activities in the market scenario.

The dependency relation over these roles in an agent society St are the follow-

ing (see Figures 5.1 to 5.7 for a graphical representation):

• Water User <St
charity Water User; Water User <St

charity Buyer; Water User

<St
charity Seller; Water User <St

authorisation Third Party; Water User <St
power

Administrator; Water User <St
power Jury; Water User <St

power Market fa-

cilitator

Buyer

Market
Facil.

AdminJury

Third
Party

Seller

Water
User

Water
User

Charity

Charity

Charity

Authorisation

PowerPower

Power

Figure 5.1: Water User Dependency Relations

• Buyer <St
charity Buyer; Buyer <St

charity Water User; Buyer <St
charity Seller;

Buyer <St
authorisation Third Party; Buyer <St

power Administrator; Buyer

<St
power Jury; Buyer <St

power Market facilitator

• Seller <St
charity Seller; Seller <St

charity Water User; Seller <St
charity Buyer;

Seller <St
authorisation Third Party; Seller <St

power Administrator; Seller

<St
power Jury; Seller <St

power Market facilitator
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Figure 5.2: Buyer Dependency Relations

Buyer

Market
Facil.

AdminJury

Third
Party

Seller

Water
User

Seller

Charity

Charity Charity

Authorisation

PowerPower

Power

Figure 5.3: Seller Dependency Relations

• Third party <St
charity Third party; Third party <St

power Administrator;

Third party <St
power Jury; Third party <St

power Market facilitator

• Administrator <St
charity Administrator; Administrator <St

power Jury; Ad-

ministrator <St
power Market facilitator
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Figure 5.4: Third Party Dependency Relations
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Figure 5.5: Administrator Dependency Relations

• Jury <St
charity Jury; Jury <St

power Market facilitator

• Market facilitator <St
charity Market facilitator

Also, users and groups have their own normative context defined by a set of

norms, a set of associated values (e.g. solidarity, economy, ecology) and a
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Figure 5.6: Jury Dependency Relations
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Figure 5.7: Market Facilitator Dependency Relations

preference order over them. These are specified in the definition provided in

next section for the example scenario.

This scenario has been entirely placed within a formal setting, where the

operation of the system has the following phases:
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1. A new trading table for the water market is opened by the market facil-

itator.

2. Users register in the market.

3. A new water-right transfer is offered to all users in the market.

4. Users argue to reach an agreement about the beneficiary of a water-right

transfer by following a negotiation dialogue controlled by a dialogue

game protocol. Here, third parties can allege the implications of the

water-right assignment and a jury can take part if necessary.

5. A contract is signed.

6. An economic transaction is performed in the form of a compensation.

7. A record is publicly available in the given organisms to third parties.

By applying our argumentation framework in this system agents are able to

reach agreements over water-right transfers and decide the best transfer to

perform according to different criteria. The next section introduces a partic-

ular setting in the mWater prototype according to a system that implements

the argumentation framework proposed. Here, two farmers playing the role

of buyers are arguing to be the beneficiary a water-right transfer with a basin

administrator. Then, Section 5.3 shows an example where the abstract argu-

mentation framework proposed in Chapter 3 is applied to this scenario. After

that, Section 5.4 illustrates the reasoning process to generate, select and eval-

uate positions in this setting. Therefore, Sections 5.3 and 5.4 makes use of the

example proposed in Section 5.2 to demonstrate the viability and use of the

framework and the underlying reasoning process. Finally, Section 5.5 provides

a discussion for the contributions of this chapter.
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5.2 Example Scenario

Let us propose an example scenario in the mWater prototype, where two

agents that play the role of buyers and represent farmers (F1 and F2) in a

group (the river basin RB) are arguing to decide over a water-right transfer

agreement that will grant an offered water-right of a farmer F3 playing the

role of seller to another farmer. Figure 5.8 shows a graphical representation

of this scenario.

BA

F1 F2

Domain-cases

DC

Argument-cases

AC

Domain-cases

DC1

Argument-cases

AC1

Domain-cases

DC2

Argument-cases

AC2

RIVER BASIN RB

ValPref = SO < EC < J

Farmer <
Ch
 Farmer

Farmer <
Pow

 BasinAdministrator

BasinAdministrator

BA

ValPref = SO < EC < J

Farmer F1

ValPref = SO < J < EC

Farmer F2

ValPref = EC < J < SO

Argumentation

Schemes

AS

Argumentation

Schemes

AS1

Argumentation

Schemes

AS2

F3

F4

Figure 5.8: Water Market Scenario

Here, a basin administrator (BA) controls the process and makes a final de-

cision. The behaviour of the basin is controlled by a certain set of norms

NRB. As pointed out in the previous section, the society commands a charity

(Ch) dependency relation between two water users (farmers) (Farmer <St
Ch
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Farmer) and power (Pow) dependency relation between an administrator

(basin administrator) and a buyer (farmer) (Farmer<St
PowBasinAdministrator).

In addition, farmers prefer to reach an agreement before taking legal action

to avoid the intervention of a jury (J). Also, F1 prefers economy (EC) over

the intervention of a jury and this over solidarity (SO) (SO <St
F1 J <

St
F1 EC),

F2 prefers solidarity over the intervention of a jury and this over economy

(EC <St
F2 J <St

F2 SO) and by default, BA has the value preference order of

the basin, which promotes saving money in each transfer over being supportive

with the personal needs of the basin users and tries to avoid the intervention

of a jury in any case (SO <St
BA EC <St

BA J).

The framework can be easily extended to work with farmers that belong to dif-

ferent groups, representing farmer cooperatives (which group together farmers

that grow the same products) or irrigation cooperatives (which group together

farmers that use the same irrigation channel). In addition, agents can play dif-

ferent roles in each group and even act as representatives of a group. Thus, this

is a complex scenario that requires an AF that is able to take into account the

social context of agents to properly manage the argumentation process. For

clarity purposes, in this example all agents belong to the same group (the river

basin RB). Also, all agents have their own knowledge resources (domain-cases

case-base, argument-cases case-base and argumentation schemes ontology).

5.3 Abstract Argumentation Framework

This section applies the abstract argumentation framework of Chapter 3 in the

example presented in the previous section. With this example, we illustrate

the properties of the proposed argumentation framework for agent societies.

In this scenario, F1 puts forward the argument:

“I should be the beneficiary of the transfer because my land is

adjacent to the owner’s land”.
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Here, we suppose that the closer the lands the cheaper the transfers between

them and then, this argument could promote economy. However, F2 replies

with the argument:

“I should be the beneficiary of the transfer because there is a

drought and my land is almost dry”.

In this argument, we assume that crops are lost in dry lands and helping

people to avoid losing crops promotes solidarity. Also, agents know that if no

agreement is reached, a jury must have to interfere and they want to avoid it.

Then, they can also put forward the following arguments:

“F2 should allow me (F1) to be the beneficiary of the water-right

transfer to avoid the intervention of a jury (J)”

and

“F1 should allow me (F2) to be the beneficiary of the water-right

transfer to avoid the intervention of a jury (J)”.

In addition, the BA knows that the jury will interfere if the agreement vio-

lates the value preferences of the river basin (which promotes solidarity over

economy) and puts forward the argument:

“F2 should allow F1 to be the beneficiary of the water-right trans-

fer to avoid the intervention of a jury (J)”.

In view of this context, the BA could generate an argumentation framework

for an agent society defined as:

AFAS = <A, R, St >
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Thus, we have the following arguments, which are all possible solutions for the

water-right transfer agreement process:

A1 (posed by F1): F1 should be the beneficiary of the water transfer (denoted

by F1w) to promote economy (EC).

A2 (posed by F2): F1 should not be the beneficiary of the water transfer

(denoted by F1nw) to promote solidarity (SO).

A3 (posed by F2): F2 should be the beneficiary of the water transfer (denoted

by F2w) to promote solidarity (SO).

A4 (posed by F1): F2 should not be the beneficiary of the water transfer

(denoted by F2nw) to promote saving (EC).

A5 (posed by F1 and BA): F2 should allow F1 to be the beneficiary of the

water transfer (F1w&F2nw) to avoid the intervention of a Jury (J).

A6 (posed by F2): F1 should allow F2 to be the beneficiary of the water

transfer (F1nw&F2w) to avoid the intervention of a Jury (J).

The water transfer cannot be decided in favour of both water users, so at-

tacks(A1, A3) and vice versa and we assume that a decision favouring at least

one part must be taken, so attacks(A2, A4) and vice versa. In addition, a wa-

ter user cannot be the beneficiary and not be the beneficiary of a water transfer

at the same time, so attacks(A1,A2) and attacks(A3,A4) and vice versa. Also,

attacks(A5, A2), attacks(A5, A3) and attacks(A5, A6) and all these argu-

ments attack A5 and attacks(A6, A1), attacks(A6, A4) and attacks(A6, A5)

and all these arguments attack A6. Then:

A={A1, A2, A3, A4, A5, A6}

R ={attacks(A1, A3), attacks(A3, A1), attacks(A2, A4), attacks(A4, A2),

attacks(A1, A2), attacks(A2, A1), attacks(A3, A4), attacks(A4,A3), at-
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tacks(A5, A2), attacks(A5, A3), attacks(A5, A6), attacks(A2, A5), at-

tacks(A3, A5), attacks(A6, A5), attacks(A6, A1), attacks(A6, A4), at-

tacks(A1, A6), attacks(A4, A6)}

St = < Ag, Rl, D, G, N, V, Role, DependencySt, Group, Values, V alprefQ

> where:

• Ag = {F1, F2, BA}

• Rl = {Farmer, BasinAdministrator}

• D = {Power, Charity}

• G = {RB}

• N = NRB

• V = {EC, SO, J}

• Role(F1) = Role(F2) = Farmer and Role(BA) = BasinAdminis-

trator

• DependencySt = {Farmer <St
Pow BasinAdministrator, Farmer <St

Ch

Farmer}

• Group(F1) = Group(F2) = Group(BA) = RB

• Values(F1) = Values(F2) = Values(BA) = {EC, SO, J}

• ValprefF1 = {SO <St
F1 J <St

F1 EC}, ValprefF2 = {EC <St
F2 J <St

F2

SO}, ValprefBA = {SO<St
BA EC <St

BA J}

Therefore, the AFAS for this example is shown in Figure 5.9.

Now, let us consider what happens with specific agents by creating their

AAFAS. For instance, recalling that F1 prefers economy to other values

and gives solidarity the lesser value (SO <St
F1 J <

St
F1 EC) we have that:

AAFASF1 = < Ag, Rl, D, G, N , A, R, V , Role, DependencySt,

Group, V alues, val, V alprefF1 >
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Figure 5.9: AFAS Example

Then, eliminating the unsuccessful attacks (due to value preferences of F1

and the power dependency relations) we have the equivalent AFASF1 for

AAFASF1 as:

AFASF1 = < A, {attacks(A1, A3), attacks(A1, A2), attacks(A1,

A6), attacks(A4, A2), attacks(A4, A3), attacks(A4, A6), attacks(A5,

A2), attacks(A5, A3), attacks(A5, A6)}, St >

which is shown in the graph of Figure 5.10.

Now, we can compute the preferred extension(s) [Dung, 1995] of AFASF1 by

taking into account the value preferences of F1 and the dependency relation-

ships of the river basin, as performed in [Bench-Capon, 2003]. Then, from the

F1 point of view, the AFAS has the following preferred extension:

PEF1 = {A1, A4, A5}
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Figure 5.10: AFASF1 Example

meaning that F1 should be the beneficiary of the water-right transfer to pro-

mote economy and the none intervention of a jury.

In its turn, F2 gives the highest value to solidarity, but prefers to avoid a jury

over economy (EC <St
F2 J <

St
F2 SO). Therefore,

AAFASF2 = < Ag, Rl, D, G, N , A, R, V , Role, DependencySt,

Group, V alues, val, V alprefF2 >.

Then, eliminating the unsuccessful attacks we have the equivalent AFASF2

for AAFASF2 as:

AFASF2= < A, {attacks(A2, A1), attacks(A2, A4), attacks(A2,

A5), attacks(A3, A1), attacks(A3, A4), attacks(A3, A5), attacks(A5,

A2), attacks(A5, A3), attacks(A5, A6), attacks(A6, A1), attacks(A6,

A4)}, St >

which is shown in the graph of Figure 5.11.
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Figure 5.11: AFAS F2 Example

For this case, the preferred extension would be:

PEF2 = {A1, A4, A5}

which means again that F1 should be the beneficiary of the water trans-

fer. This demonstrates how the power dependency relation of BA prevails

over farmers and their arguments. Otherwise, if we change the environment

and set a charity dependency relation of basin administrators over farmers

Farmer <St
Ch BasinAdministrator, the preferences of F2 would prevail and

the graph would be as the one of Figure 5.12.

In this case, the preferred extension would be:

PEF2modified = {A2, A3, A6}

that would defend F2 as the beneficiary of the transfer agreement. Then,

we have analysed under preferred semantics the strengths of the arguments

submitted in the argumentation framework. This shows how each agent has its
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Figure 5.12: AFASF2 Modified Example

own view about the winning arguments (due to its value preferences [Modgil,

2009]) but, at the end, the dependency relations of the framework prevail and

the basin administrator’s arguments defeat the farmers’.

5.4 Reasoning Process

Once the abstract argumentation framework for the mWater proposed scenario

has been proposed, we instantiate it by defining a particular structure for the

arguments, based in the knowledge resources proposed in Chapter 3. Then, the

reasoning process to generate, select and evaluate arguments is shown. During

the process, agents use their own knowledge resources to manage arguments

and follow the dialogue game protocol of Chapter 4 to interact.

In this example, the premises of the domain context would store data about

the water-right transfer offer and another domain-dependent data about the

current problem. For instance, the premises of the original problem could be
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Figure 5.13: Generation of Positions

as shown in Figure 5.13 and represent the identifier of the water-right owner

(owner), the offered volume in liters of water (volume), the price in Euros per

liter of water (price), the district where the water-right is settled (district)

and the area of this district in acres (area).

After the opening of the trading table by the market facilitator, in the first

step of the argumentation process, the basin administrator BA opens the
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dialogue to solve the water-right transfer problem. Thus, it sends the locution

open dialogue(BA, q) (where q contains the premises of the problem) to all

agents of the group, which is the river basin RB. Then, it enters in the

dialogue by putting forward the locution enter dialogue(BA, q).

Assuming that both farmers F1 and F2 are interested in entering in the di-

alogue and arguing to win the transfer, they will assert the locutions en-

ter dialogue(F1, q) and enter dialogue(F2, q) respectively. After that, they

will search their case-bases of domain-cases (DC1 and DC2 respectively) to

generate their potential positions. To query the case-bases, the problem is

formatted as a target case without solution and justification, as shown in the

left side of Figure 5.13. In this case, the solution consists of the identifier of

the water-right transfer beneficiary (beneficiary) and the district of his land

where the water has to be transferred (tr district). Figure 5.13 also shows how

F1 has found a similar domain-case C1 that represents a similar water-right

transfer that was granted to F1 to promote economy since its land DF1 was

adjacent (was closer than 100 meters) to the land where the water-right was

offered. Therefore, F1 can generate position posF1 that is on the side of F12

and report this to the other participants of the dialogue with the locution

propose(F1, posF1).

In the case of F2, the figure shows that it has retrieved also a similar domain-

case C2, which shows how the same water-right transfer was granted to F2 to

promote solidarity and irrigate his dry land during a drought. Therefore, F2

can generate a position that is on its side, posF2, and it will communicate it

by putting forward the locution propose(F2, posF2).

Once the agents have proposed their positions, the basin administrator BA

has to decide between them. Therefore, it asks F1 and F2 to provide an

argument for supporting their positions by using the locutions why(BA, F1,

2In this example we assume that agents only propose such positions that are on their
side.
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posF1) and why(BA, F2, posF2). Assuming that F1 and F2 are willing to

collaborate, they can answer the BA with the locutions to put forward the

following arguments (according with the structure proposed in Chapter 3):

Support argument of F1 (with the locution assert(F1, BA, SAF1)):

SAF1 == {F1tr, EC,< Premises, {C1}, ∅, ∅, ∅, ∅, ∅ >}

Support argument of F2 (with the locution assert(F2, BA, SAF2)):

SAF2 = {F2tr, SO,< Premises, {C2}, ∅, ∅, ∅, ∅, ∅ >}

where the support set includes the premises of the problem description and

the domain-cases used by F1 (C1) and F2 (C2) to generate their positions.

F1tr and F2tr means that the transfer is granted to F1 and F2 respectively.

According with the values of the agents, we suppose that the closer the lands

the cheaper the transfers between them and then, SAF1 would promote econ-

omy. Also, we assume that crops are lost in dry lands and helping people to

avoid losing crops promotes solidarity. Thus, SAF2 would promote solidarity.

Now, the BA has to evaluate the arguments of F1 and F2, attack them if

possible and decide the beneficiary of the water-right transfer. Also, suppose

that as basin administrator it knows an extra premise that states that there

is a drought in the basin. First, this new premise matches an argumentation

scheme of its ontology, S1, which changes the value preference order of the

basin in case of drought (inspired in the Waltons’s argument for an exceptional

case [Walton et al., 2008]):

Major Premise: if the case of x is an exception, then the value

preference order of the basin can be waived and changed by EC <St
RB

J <St
RB SO in the case of x.

Minor Premise: the case of drought is an exception.

Conclusion: therefore the value preference order of the basin can

217



5.4. Reasoning Process

be waived and changed by EC <St
RB J <St

RB SO in the case of

drought.

Thus, this scheme will change the social context of the attack argument that

the BA is going to create. As the support set of SAF1 and SAF2 contains a

domain-case, the BA will try to propose a counter-example or a distinguishing

premise for these cases.

Thus, the BA will check its case-base of domain-cases (DC) to find counter-

examples for C1 and C2. As shown in Figure 5.14, suppose that the BA finds

one counter-example for each case (C3 for C1 and C4 for C2). Thus, it could

generate the following attack arguments by using the locutions:

attack(BA, F1, AA1), where AA1 = {∼C1, SO, <Premises ∪
{Drought}, ∅, ∅, S1, ∅, ∅, ∅, {C3}>}

Here, AA1 undercuts SAF1 by attacking its support element C1 with the

counter-example C3. We assume that by attacking the argument of F1, the

BA supports the argument of F2 and then promotes solidarity (SO).

attack(BA, F2, AA2), where AA2 = {∼C2, EC, <Premises ∪
{Drought}, ∅, ∅, S1, ∅, ∅, ∅, {C4}>}

AA2 undercuts SAF2 by attacking its support element C2 with the counter-

example C4. Here we assume that by attacking the argument of F2, the BA

supports the argument of F1 and then promotes economy (EC).

Then, it will try to find distinguishing premises and will check that the problem

description of domain-cases C1 and C2 matches the extended description of

the problem (the original description plus the new premise drought). Then,

the BA realises that C1 does not match with the extended description and

generates an attack argument to F1:
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BA
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Figure 5.14: Counter-examples for C1 and C2

attack(BA, F1, AA3), where AA3 = {∼C1, SO, <Premises ∪
{Drought}, ∅, ∅, S1, ∅, {Drought}, ∅, ∅ >}

In this case, AA3 undercuts SAF1 by attacking its support element C1 with

the distinguishing premise drought. Again, we assume that attacking the argu-

ment of F1, the BA supports the argument of F2 and then promotes solidarity
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(SO).

Now, the BA has to select the argument that it will pose to attack the positions

of the farmers. Note that, if we assume that agents always observe their value

preference orders to put forward arguments, the BA would prefer to pose AA1

and AA3 first than AA2 (since the BA has the value preference order of the

basin, which has been changed to EC <St
RB J <St

RB SO). However, it has still

to decide which AA1 or AA3 would select to attack SAF1. To do that, it

generates an argument-case for each argument and checks its argument-cases

case-base to decide which is the best argument to pose in view of the previous

experience. Now, let us suppose that the BA finds a similar argument-case

for AA3 that was unaccepted at the end of the dialogue, shown in Table

5.1. However, the information of the group that the agents belong does not

match with the current one. Therefore, the BA can infer that in the argument

represented by this argument-case the agents belonged to a different river basin

where solidarity is not promoted in case of drought. Finally, the BA finds a

similar argument-case for AA1 that was accepted in the past. In this case,

the social context and the value promoted match the current one. Thus, the

BA will pose AA1 to attack the position of F1 and put forward the locution

attack(BA, F1, AA1). Note that if the social context of the argument-case

retrieved for AA3 would have matched the current social context, the basin

administrator would have a powerful reason to propose AA1 to attack SAF1.

Also, it would never propose AA3 as an alternative candidate if AA1 were

rejected.

When F1 receives the attack, it has to evaluate the attack argument in view

of its preferences and knowledge resources and the dependency relations of

the society. Then, it will realise that SAF1 does not defeat AA1 from its

point of view, since the BA has a power dependency relation with any farmer

(Farmer <St
Power Basin Administrator). Then, it would try to generate more

support for its position. In case that it cannot find such support, the F1 would
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PROBLEM

Domain Context Premises = {owner=F3, volume=225000, .... drought=yes}

Social Context

Proponent

ID = BA
Role = Basin Administrator
Norms = NBA

ValPref = EC <
St
BA

J <
St
BA

SO

Opponent

ID = F1
Role = Farmer
Norms = NF1

ValPref = SO <
St
F1

J <
St
F1

EC

Group

ID = G
Role = River Basin
Norms = NG

ValPref = SO <
St
BA

EC <
St
BA

J
Dependency Relation = Power

SOLUTION

Argument Type = Inductive
Conclusion = F2tr
Value = SO
Acceptability State = Unaccepted

Received Attacks
Critical Questions = ∅
Distinguishing Premises = ∅
Counter Examples = ∅

JUSTIFICATION
Cases = {C5, C7}
Argumentation Schemes = ∅
Associated Dialogue Graphs

Table 5.1: Argument-case retrieved for AA3

have to withdraw posF 1 with the locution nocommit(F1, posF1). If no more

positions and arguments are provided, the BA will close the dialogue and send

the locution accept(BA, all, posF2), which grants F2 the water-right transfer

agreement.

5.5 Discussion

With the scenario presented in this chapter we have demonstrated how agents’

arguments can be computationally managed in the proposed argumentation

framework. First, the abstract framework for the example scenario is presented

and its properties analysed. From this analysis, we can compute the preferred

extensions of the framework from the point of view of each agent, taking into

account their preferences and the dependency relations of the society.

Then, the example shows the way in which agents can use the knowledge

resources of the framework to generate, select and evaluate positions and ar-

guments. Also, it takes into account the social context of agents to perform
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these activities and meets the requirements identified in Chapter 3. This is a

theoretic example where the semantic properties of the framework have been

validated. This application domain is complex enough to be used for illustrat-

ing these properties. However, many water-right transfers are usually agreed

upon the water users, without any recording of the terms and outcome of the

agreement. Therefore, due to this fact and to restrictive privacy laws to access

these type of data, the actual implementation of the system has not been still

possible.

On the one hand, the framework is completely case-based, which makes it

computationally tractable and eases the performance of automatic reasoning

processes over it, taking advantage of previous argumentation experiences.

On the other hand, the framework allows representing domain-dependent in-

formation in the premises and social information about the agents and their

group. This information is used to select the best positions and arguments

to put forward in each step of the argumentation process. In addition, the

framework allows generating arguments from different knowledge resources

and represent different types of arguments, supporting positions or attacking

other arguments.

In real systems, some features of argument-cases could be unknown. For in-

stance, the proponent of an argument obviously knows its value preferences,

probably knows the preferences of its group but, in a real open MAS, it is

unlikely to know the opponent’s value preferences. However, the proponent

could know the value preferences of the opponent’s group or have some previ-

ous knowledge about the value preferences of similar agents playing the same

role as the opponent. If agents belong to different groups, the group features

could be unknown, but the proponent could use its experience with other

agents of the opponent’s group and infer them. In any case, the framework is

flexible enough to work with this lack of knowledge, although the reliability

of the conclusions drawn from previous experiences would be worse.
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For simplicity of the example proposed in this chapter, we have assumed that

a proponent agent addresses its arguments to an opponent of its same group,

having complete knowledge of the social context. However, either the propo-

nent or the opponent’s features could represent information about agents that

act as representatives of a group and any agent can belong to different groups

at the same time. In addition, the argumentation dialogue is centralised by the

basin administrator and agents do not speak to each other directly, although

the basin administrator could use the information provided by an agent to

attack the arguments of another agent. However, our framework is conceived

to serve both for mediated and for face-to-face argumentation dialogues.

Also for simplicity of the example, it does not show how agents can use the

dialogue graphs associated to argument-cases to take strategic decisions about

which arguments are more suitable in a specific situation or about whether

continuing with a current argumentation dialogue is worth. For instance, to

improve efficiency in a negotiation an argumentation dialogue could be finished

if it is being similar to a previous one that didn’t reach an agreement. Else,

opponent moves in a dialogue could be inferred by looking a similar previous

dialogue with the same opponent. The influence of strategical issues will be

evaluated in the study case proposed in the next chapter.
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6.1 Call Center Study Case

In this chapter, we evaluate the case-based argumentation framework pre-

sented in this thesis by running a set of empirical tests. With this objective,

the framework has been implemented in the domain of a customer support

application. Concretely, we consider a society of agents that act on behalf

of a group of technicians that must solve problems in a Technology Manage-

ment Centre (TMC). TMCs are entities which control every process implicated

in the provision of technological and customer support services to private or

public organisations. Usually, TMCs are managed by a private company that

communicates with its customers via a call centre. This kind of centres al-

low customers to obtain general information, purchase products or lodge a
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complaint. They can also efficiently communicate public administrations with

citizens. In a call centre, there are a number of technicians attending to a big

amount of calls with different objectives –sales, marketing, customer service,

technical support and any business or administration activity–. The call cen-

tre technicians have computers provided with a helpdesk software and phone

terminals connected to a telephone switchboard that manages and balances

the calls among technicians. The current implementation is based on previ-

ous work that deployed a case-based multi-agent system in a real TCM [Heras

et al., 2009c]. This system was implemented and is currently used by the TCM

company to provide its technicians with potential solutions for the problems

that they must solve. In the original implementation, agents were allowed to

use their case-bases to provide experience-based customer support. In this

thesis, the system has been enhanced by allowing agents to argue about the

best way of solving the incidents that the call centre receives.

Nowadays to differentiate a company over other companies competing in the

same market is very difficult. Products, prices and quality are very similar

and companies try to obtain an advantage over their competitors by offering

a careful attention to their customers. Most commercial activity is done via

phone and it is necessary to avoid non-answered calls, busy lines, to ask the

customer for repeating the query several times or to give incoherent answers.

Moreover, a good customer support depends, in many cases, on the experience

and skills of its technicians. A quick and accurate response to the customers

problems ensures their satisfaction and a good reputation for the company

and, therefore, it can increase its profits. Also, less experienced technicians

are cheaper for the company. Thus, it is interesting to provide them with

means to argue and solve (collaboratively if necessary) as many requests as

possible. To store, and reuse later, the solution applied to each problem and

the information about the problem-solving process could be a suitable way to

improve the customer support offered by a company.
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In a TMC, there are a number of technicians whose role is to provide the

customers with technical assistance –microcomputing, security and network

management among other services–. This help is typically offered via a call

centre. Usually, the staff of a call centre is divided into three levels:

• First level operators (or Operators), who receive customer queries and

answer those ones from which they have background training or their

solution is registered in the company manuals of action protocols.

• Second level operators (or Experts), who are expert technicians that have

more specialised knowledge than the first level operators and are able to

solve problems that the operators cannot solve.

• Administrators, who are in charge of organising working groups, of as-

signing problems to specific operators and of creating generic solutions,

which will be registered and used later by the operators of lower levels.

Therefore, we consider a society St composed by call-centre technicians with

three possible roles: operator, expert and administrator. The defined depen-

dency relations are the following:

• Operator <St
charity Operator; Operator <St

authorisation Expert; Operator

<St
power Administrator

• Expert <St
charity Expert; Expert <St

power Administrator

• Administrator <St
charity Administrator

Also, each technician can have his own values (e.g. efficiency, accuracy, sav-

ings), his own preferences over them and belong to different groups intended

to solve specific types of problems or assigned to specific projects. Also, these

groups can have their own social values.

227



6.1. Call Center Study Case

To guarantee a high-quality service, the company subscribes to Service Level

Agreements (SLAs) with the customer, where the different characteristics of

the services to provide are specified –service descriptive labels that identify

each request as belonging to a certain type (category trees), service priority,

attention and assistance maximum times and certain parameters that measure

the fulfilment degree of these services–. In case of breach of the agreements,

the company is economically penalised.

Once the SLAs have been established, the customer can request the supply of

the services that have been agreed by means of several entry channels –phone

call, website, e-mail, post and fax–. When the centre receives the request, the

so-called incident register or ticket is generated with the customer data and

a description of the incident. Hence, this ticket is the problem to be solved.

From the customer point of view, the tickets are fundamentally characterised

by their state –assigned, in progress, solved, closed, pending, require external

provider or require software development– and by the problem-solving time,

which allows the customer to know the degree of the agreements fulfilment. For

the centre, the tickets are also characterised by other parameters, such as the

type or category of the incident (e.g. network error, OS exception, hardware

failure, etc.), data about the actual problem occurred inside each category (e.g.

OS, hardware brand, customer observations, etc.), to which group the ticket

has been assigned or work-notes about the incident. The problem-solving

process generates more information that helps to explain the solution that

has been applied–solving-method, operator level, keywords, URL’s, attached

documents or observations–. Table 6.1 shows the current attributes that have

been used to characterise tickets in the tests performed in this section.

In this application domain we assume that each technician has a helpdesk

application to manage the big amount of information that processes the call

centre. The basic functions of this helpdesk are the following:

• To register the ticket information: customer data, entry channel and
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Parameter Definition

Ticket ID Ticket identifier.
Category Incidence type.
Attributes Data that defines the specific incident. The number and type of attributes depends on the

category.
Problem
description

Textual description about the incident.

Project Project or contract that binds the company running the call center to provide support to
the customer that reports the incident.

Solving
groups

Group(s) of technicians that have attended the incident.

Solving
technicians

Technician(s) that have attended the incident.

Solution ID Identifier of the solution applied to solve the incident.
Solution
description

Textual description of the solution applied to the incident.

Times used Number of times that this solution has been applied to solve this type of incident.
Promoted
value

Value promoted with the solution applied to this incident.

Table 6.1: Call Center Ticket Attributes

related project, which identifies the customer and the specific service

that is being provided.

• To track each ticket and to scale it from one technician to a more spe-

cialised one or to a different technician in the same level.

• To warn when the maximum time to solve an incident is about to expire.

• To provide a solution for the ticket. This means to generate an own

position or to ask for help to the members of a group.

In addition, this helpdesk would implement an argumentation module to solve

each ticket as proposed in our framework. Hence, we assume the complex

case where a ticket must be solved by a group of agents representing techni-

cians that argue to reach an agreement over the best solution to apply. Each

agent has its own knowledge resources (acceded via his helpdesk) to generate

a solution for the ticket. The data-flow for the problem-solving process (or

argumentation process) to solve each ticket is the following:

1. The system presents a group of technicians with a new ticket to solve.
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2. If possible, each technician generates his own position by using the argu-

mentation module. This module supports the argumentation framework

proposed in this thesis.

3. All technicians that are willing to participate in the argumentation pro-

cess are aware of the positions proposed in each moment.

4. The technicians argue to reach an agreement over the most suitable

solution by following a persuasion dialogue controlled by the proposed

dialogue game protocol.

5. The best solution is proposed to the user and feedback is provided and

registered by each technician helpdesk.

To date, the helpdesk of each technician is provided with a case-based reason-

ing engine that helps them to solve the ticket. The new argumentation module

will allow different technicians to reach agreements over the best solution to

apply in each specific situation. In this example application, we assume that

the most efficient technicians are acknowledged and rewarded by the company.

Therefore, each technician follows a persuasion dialogue with their partners,

trying to convince them to accept its solution as the best way to solve the

ticket received, while observing the common objective of providing the best

solution for a ticket from its point of view.

6.2 Implementation Details

A system that provides support to the technicians of a call centre were imple-

mented in a helpdesk application [Heras et al., 2009c]. In this thesis, this work

has been extended by integrating an argumentation module that implements

the case-based argumentation framework proposed. In the current system, the

technicians are represented by agents that access an automated helpdesk and
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argue to solve an incident. Every agent has individual CBR resources and

preferences over values.

Also, each agent can have its own values (e.g. efficiency, accuracy, etc.), its

own preferences over them and belong to different groups intended to solve

specific types of problems or assigned to specific projects. These groups can

have their own social values.

Subsequently, we describe the different modules of the system and their func-

tionality:

• Magentix2: to develop this system we have used the Magentix2 agent

platform1. Magentix2 is an agent platform that provides new services

and tools that allow for the secure and optimized management of open

MAS.

• Domain CBR module: consists of a CBR module with data about

previous problems solved in the call centre (domain-cases). This CBR

is initialised with past tickets of the helpdesk application. The CBR

module used to perform the tests is an improved version of the module

used in [Heras et al., 2009c]. To make a query to the domain CBR, the

user has to provide a ticket and a threshold of similarity. The domain

CBR module searches the domain case-base and returns a list of sim-

ilar domain-cases to the given ticket. In addition, with every request

attended and every CBR cycle performed, the module adds, modifies or

deletes one or more domain-cases of the domain case-base. In the cur-

rent version of the system, if the ticket that has been solved is similar

enough (over certain similarity threshold) to a case of the domain-cases

case-base, the update algorithm updates this case with the new data

acquired. Otherwise, a new domain-case is created and added to the

case-base.

1http://users.dsic.upv.es/grupos/ia/sma/tools/magentix2/index.php
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• Argumentation CBR module: consists of a CBR module with ar-

gumentation data (previous arguments stored in the form of argument-

cases). Once an agent has a list of potential solutions for a current

incident, it has to select the best position to put forward among them.

Also, the agent can generate arguments to support its position and at-

tack another agent’s arguments and positions. Then, this module is used

to look for previous argumentation experiences and use this knowledge

to select the best positions and arguments to propose. Thus, argument-

cases store information related to the domain and the social context

where previous arguments (and their associated positions) were used.

The information about the domain consists of a set of features to com-

pare cases (e.g. the type of incident or the affected equipment) and infor-

mation about the social context where the proposed solution was applied

(e.g. the agents that participated in the dialogue to solve the problem,

their roles or their value preferences). The latter information can deter-

mine if certain positions and arguments are more persuasive than others

for a particular social context and hence, agents can select the best ones

to propose in the current situation. As for the domain-cases case base,

if the argument-cases created during the problem solving process are

similar enough to previous argument-cases stored in the argument-cases

case-base, the update algorithm updates those cases with the new data

acquired. Otherwise, new argument-cases are created and added to the

case-base.

• Argumentation Schemes Ontology: consists in a OWL 22 ontol-

ogy with the argumentation-schemes used to generate positions and ar-

guments. In the current version of the system, the agents only use a

simplified version of the Argument from Expert Opinion [Walton, 1996].

Among the critical questions of this argumentation-scheme, agents can

use the Consistency question, in the case that the attacking agent is

2http://www.w3.org/TR/owl2-overview/
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also an expert but has a different conclusion for the same argument or

the Backup Evidence question, to ask the proponent of the argument

for evidences that support its proposal. These attacks can be rebutted

with distinguishing premises or counter-examples, which are shown as

evidences that support the argument of the proponent agent.

• Ontology parsers: The contents of the case-bases of the domain CBR

and the argumentation CBR are stored as objects in OWL 2 ontologies.

In this way, heterogeneous agents can use these ontologies as common

language to interchange solutions and arguments generated from the

case-bases of the argumentation framework. The main advantage of

using ontologies is that the structures and features of the cases are well

specified and agents can easily understand them. The ontology parsers

developed provide an API to read and write data in the case-bases of

the argumentation module.

• Argumentation agent: is an agent with a domain CBR and an ar-

gumentation CBR capable to engage in an argumentation dialogue to

solve an incident. This agent learns about the domain problem and the

argumentation dialogue adding and updating cases into the domain and

argumentation case-bases with each CBR run. Moreover, the agent can

play any role defined before. In our implementation, this agent is a

extension of Magentix2 Base-Agent3.

• Commitment Store: is a resource of the argumentation framework

that stores all the information about the agents participating in the

problem solving process, argumentation dialogues between them, posi-

tions and arguments. By making queries to this resource, every agent

of the framework can read the information of the dialogues that it is

involved in.

3http://users.dsic.upv.es/grupos/ia/sma/tools/magentix2/archivos/javadoc/-
es/upv/dsic/gti ia/core/BaseAgent.html
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Figure 6.1: Data-flow for the argumentation process of the helpdesk application

In order to show how the developed system works, the data-flow for the

problem-solving process (or argumentation process) to solve each ticket is

shown in Figure 6.1 and described below (arrows in the figure are labelled

with the number of the data-flow step that they represent):

1. First, we have some argumentation agents running in the platform and

representing the technicians of the call centre. An agent of the group

(randomly selected) acts as the initiator of the argumentation dialogue.

This kind of agent has a special behaviour to receive tickets to solve

and create a new dialogue with the agents of its group. The process

begins when a ticket that represents an incident to solve is received by

the initiator agent. Then, this agent sends the ticket to their partners

in the group.

2. Each agent evaluates individually if it can engage in the dialogue of-

fering a solution. To do that, the agent makes a query to its domain

CBR to obtain potential solutions to the ticket based on previous solu-
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tions applied to similar tickets. To compute such similarity, agents use

a weighted Euclidean algorithm that searches their domain-cases case-

bases for previous problems that semantically match the category of the

current ticket to solve. Thus, the algorithm retrieves all problems of the

same category and of related categories and select those that syntacti-

cally match (assign the same values to the attributes that match the

ticket attributes) and overpass a defined similarity threshold. If one or

more valid solutions can be generated from the selected domain-cases,

the agent will be able to defend a position in the dialogue. We consider a

valid solution any domain case from the domain CBR with one or more

solutions and with a similarity degree greater than the given threshold.

Moreover, the agent makes a query to its argumentation CBR for each

possible position to defend. With these queries the suitability degree of

the positions is obtained as explained in Chapter 3. This degree repre-

sents if a position will be easy to defend based on past similar argumen-

tation experiences. Then, all possible positions to defend are ordered

from less to more suitability degree.

3. When the agents have a position to defend (a proposed solution), these

positions are stored by the commitment store, such that other agents

can check the positions of all dialogue participants. Every agent tries to

attack the positions that are different from its position.

4. The argumentation process consists on a series of steps by which agents

try to defend its positions by generating counter-examples and distin-

guishing premises for the positions and arguments of other agents. A

counter-example for a case is generated by retrieving from the domain

case-base another case that matches the features of the former, but has

a different conclusion. Similarly, distinguishing premises are computed

by selecting such premises that the agent has taken into account to gen-

erate its positions, but that other agents did not considered. If different
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attacks can be generated, agents select the best attack to rebut the

position of another agent by making a query to their argument-cases

case-base, extending the characterisation of each case with the current

social context. In this way, agents can gain knowledge about how each

potential attack worked to rebut the position of an agent in a past ar-

gumentation experience with a similar social context. When an agent is

able to rebut an attack, the opponent agent makes a vote for its posi-

tion. Otherwise, the agent must withdraw its position and propose an

alternative position, if possible.

5. The dialogue finishes when no new positions or arguments are generated

after a specific time. The initiator agent is in charge of making queries

to the commitment store agent to determine if the dialogue must fin-

ish. Then, this agent retrieves the active positions of the participating

agents. If all agents agree, the solution associated to the agreed posi-

tion is selected. Otherwise, the most frequent position wins. In case of

draw, the most voted position in selected. If even in this case the draw

persists, a random choice is made. Finally, the initiator agent commu-

nicates the final solution (the outcome of the agreement process) to the

participating agents.

6.3 Evaluation Criteria

To evaluate the proposed case-based argumentation framework, a set of em-

pirical tests have been performed. For the tests, we assume that there are

several agents engaged in an agreement process and that these agents have an

individual argumentation system that complies with our case-based argumen-

tation framework. Testing a CBR system involves two separated processes:

verification (concerned with building the system right) and validation (con-

cerned with building the right system) [Watson, 1997]. Validation is a complex
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socio-technical problem that involves to ensure that the developed system is

the right system for the problem to solve. Here we cope with the verification

problem and more concretely, with the problem of verifying the performance

of the system. The set of variables that can be modified in the tests to verify

the framework from different perspectives are shown in Table 6.2:

Variable Name Definition

#Agents Number of participating agents
Relations Dependency relations among different roles (charity, authorisation or power)
Agent Profiles Profile of the participating agents (agreeable, disagreeable, open-minded,

argumentative or elephant’s child)
Similarity Threshold Threshold over which two cases are considered as similar
#Domain-cases Number of cases in the domain-cases case-base
#Argument-cases Number of cases in the argument-cases case-base
Similarity Degree Weight
(wSimD)

The weight of the similarity degree to compute the suitability degree

Support Factor Weight
(wSF )

The weight of the support factor to compute the suitability degree

Persuasion Degree Weight
(wPD)

The weight of the persuasion degree to compute the suitability degree

Support Degree Weight
(wSD)

The weight of the support degree to compute the suitability degree

Risk Degree Weight
(wRD)

The weight of the risk degree to compute the suitability degree

Attack Degree Weight
(wAD)

The weight of the attack degree to compute the suitability degree

Efficiency Degree Weight
(wED)

The weight of the efficiency degree to compute the suitability degree

Explanatory Power
(wEP )

The weight of the explanatory power to compute the suitability degree

Table 6.2: Experimental Variables for the Tests

For the tests, a real database of 200 tickets solved in the past is used as do-

main knowledge. Translating these tickets to domain-cases, we have obtained

a tickets case-base with 48 cases. Despite the small size of this case-base, we

have rather preferred to use actual data instead of a larger case-base with sim-

ulated data. The argument-cases case-bases of each agent are initially empty

and populated with cases as the agents acquire argumentation experience in

execution of the system. To diminish the influence of random noise, for each

round in each test, all results report the average and confidence interval of 48

simulation runs at a confidence level of 95%, thus using a different ticket of

the tickets case-base as the problem to solve in each run. The results report

the mean of the sampling distribution (the population mean) by using the

237



6.4. Evaluation Tests

formula:

µ = x̄± t ∗ s√
n

(6.1)

where, x̄ is the sample mean (the mean of the 48 experiments), t is a parameter

that increases or decreases the standard error of the sample mean (
s√
n

), s is

the sample standard deviation and n is the number of experiments. For small

samples, say below 100, t follows the Student’s t-distribution, which specifies

certain value for the t parameter to achieve a confidence level of 95% for

different sizes of population. In our case, with a population of 48 experiments

the Student’s t-distribution establishes a value of 2.0106 for t.

In each simulation experiment, an agent is selected randomly as initiator of

the discussion. This agent has the additional function of collecting data for

analysis. However, from the argumentation perspective, its behaviour is ex-

actly the same as the rest of agents and its positions and arguments do not

have any preference over others (unless there is a dependency relation that

states it). The initiator agent receives one problem to solve per run. Then,

it contacts its partners (the agents of its group) to report them the problem

to solve. If the agents do not reach an agreement after a maximum time, the

initiator chooses the most supported (the most voted) solution as the final de-

cision (or the most frequent in case of draw). If the draw persists, the initiator

makes a random choice among the most frequent solutions.

6.4 Evaluation Tests

The case-based argumentation framework proposed in this thesis has been

evaluated from different perspectives. On the one hand, the performance of

the system that implements the framework in the customer support application

domain is tested and analysed. This systems consists of a module that allows
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agents that support our case-based argumentation framework to communicate

and solve tickets together. On the other hand, we have run a set of tests

intended to evaluate the suitability of each strategy proposed in Chapter 4.

Finally, the ability of the system to take into account the social context of the

participating agents is also verified.

6.4.1 Testing the Performance

The performance tests have been repeated and their results compared for the

following decision policies:

• Random policy (CBR-R): each agent uses its Domain CBR module to

propose a solution for the problem to solve. Then, a random choice

among all solutions proposed by the agents is made. Agents do not have

an Argumentation CBR module.

• Majority policy (CBR-M): each agent uses its Domain CBR module to

propose a solution for the problem to solve. Then, the system selects the

most frequently proposed solution. Agents do not have an Argumenta-

tion CBR module.

• Argumentation policy (CBR-ARG): agents have Domain and Argumen-

tation CBR modules. Each agent uses its Domain CBR module to pro-

pose a solution for the problem to solve and its Argumentation CBR

module to select the best positions and arguments to propose in view of

its argumentation experience. Then, agents perform an argumentation

dialogue to select the final solution to apply.

To evaluate the effect of the available argumentative knowledge that agents

have, some tests are also repeated for the following specific settings of the argu-

mentation policy. These settings cover the more interesting options regarding

which agents have argumentation skills:
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• CBR-ARG All-Argument-Cases (CBR-ARG AAC): All participating agent

have argument-cases in their argument-cases case-base.

• CBR-ARG Initiator-Argument-Cases (CBR-ARG IAC): Only one agent,

say the initiator agent, has argument-cases in its argument-cases case-

base. Note that the selection of the initiator as the agent that has

argumentative knowledge is just made for the sake of simplicity in the

nomenclature. The behaviour of this agent only differs from the other

agents’ in the fact that it is in charge of starting the dialogue process

and conveying the information about the final outcome. This does not

affect its performance as dialogue participant and does not grant this

agent any privileges over their partners.

• CBR-ARG Others-Argument-Cases (CBR-ARG OAC): All agents ex-

cept from one, say the initiator, have argument-cases in their argument-

cases case-bases.

With these tests, we evaluate the efficiency of the system that implements our

framework under the different decision policies. By default, all agents know

each other, all are in the same group and the dependency relation between

them is charity. The values of each agent have been randomly assigned and

agents know the values of their partners. Also, all agents play the role of oper-

ator. The influence of the social context will be evaluated in the Section 6.4.3.

In addition, the agents that follow the argumentation policy assign weights to

the similarity degree (wSimD) and the support factor (wSF ) proportionally to

the number of domain-cases and argument-cases that they have in their case-

bases. Depending on the application domain, a different assignment for the

weights could influence the performance of the system. However, due to the

reduced size of our tickets case-bases, a proportional assignment is be suitable

enough for the objectives of this performance evaluation. Equation 6.2 shows
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the simple rule that has been used in the tests.

wSimD =
#domaincases

#domaincases+ #argumentcases
(6.2)

wSF =
#argumentcases

#domaincases+ #argumentcases

Also, by default agents do not follow any dialogue strategy, setting the same

weight for all elements of the support factor.

6.4.1.1 Number of cases that the framework learns with respect of time.

To perform this test, all agents follow the argumentation policy, with an initial

number of 5 domain-cases in their domain-cases case-bases. The argument-

cases case-base of all agents are initially empty. In each iteration, the agents

use their CBR modules to propose and select positions and arguments and

after this process, each agent updates its case-bases with the knowledge ac-

quired.

If the system works properly, the knowledge acquired about past problem

solving processes should increase with the time until some threshold, where

the learning process should stabilize (because the cases in the case-bases of

the agents cover most possible problems and arguments in the domain). To

perform this test, we have executed several rounds to simulate the use of

the system over certain period of time. For each repetition, we compute the

average number of domain-cases and argument-cases in the case-bases of the

agents. Figure 6.2 shows the results obtained in this test. The experiment

has been repeated for 3, 5, 7 and 9 agents and the average number of domain-

cases (DC) and argument-cases (AC) that all agents learn in each iteration has

been computed. As expected, in all cases, the agents are able to learn the 48

domain-cases of the tickets case-base. However, if more agents participate in

the dialogue, the quantity of domain knowledge that agents have available and
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Figure 6.2: Number of domain-cases (left) and argument-cases (right) that agents learn

interchange among them increases and the domain-cases case-bases are more

quickly populated. Also, the quantity of argument-cases that agents are able

to learn increases with the number of agents, since more potential positions

and arguments give rise to more complex argumentation dialogues. As shown

in the figure, the learning curve for the argument-cases is less soft than for the

domain-cases, presenting peaks at some points. This is due to the fact that

at some points of the dialogue, the agents can learn a specific domain-case

that change its opinion about the best solution to apply for a specific category

of problem. Therefore, the outcome of subsequent dialogues differ from the

outcome that could be expected taking into account past similar dialogues

and the argument-cases learning rate of the agents in those situations notably

increases.

The results of this test have helped us to set the value of some parameters of

the subsequent evaluation tests. The test shows that in 48 simulation runs, 3

agents are able to learn an average of the 54.8 % domain-cases of the tickets

case-base, 5 agents the 56.6 %, 7 agents the 66.9 % and 9 agents the 73.1

%. The maximum number of argument-cases that agents are able to learn

reaches an average of 20 argument-cases when 9 agents participate in the

dialogue (18 argument-cases in the worst case). Therefore, due to the small

size of the whole tickets case-base and the learning rates obtained in this

test, the evaluation tests have been executed with a maximum number of 9
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agents participating in the dialogue, with domain-cases case-bases populated

with a maximum number of 45 domain-cases and argument-cases case-bases

populated with a maximum number of 20 argument-cases (except from the

social context tests, where a more varied choice of social contexts enables the

learning of a larger number of argument-cases). Thus, the domain-cases of the

case-bases of the agents will be randomly populated and increased from 5 to

45 cases in each experimental round. The argument-cases case-bases of the

agents for the argumentation-based policy are populated with 20 randomly

selected argument-cases (from those acquired during the performance of the

present test). Also, to evaluate the influence of the quantity of argumentative

knowledge that the agents have in some tests, those tests are repeated for the

case of 7 agents, setting the number of domain-cases of the case-bases of the

agents to 20 (approximately the half part of the available cases in the tickets

case-base), while varying the number or argument-cases of the argumentative

agents from 0 to 18 cases, with an increase of 2 randomly selected argument-

cases in each round. The number of the agents for these tests has been set to 7

to allow complex enough argumentation dialogues where the use of argument-

cases can be useful, while having a reasonable case learning rate to avoid filling

the case-bases with all the available knowledge for this case of study with a

small number of simulations.

6.4.1.2 Percentage of problems that were solved with respect to the

knowledge of the agents.

In this test, the percentage of problems that the system is able to solve (provide

a solution, regardless of its level of suitability) has been tested under the

different decision policies. The test has been repeated for different assignments

of the domain and argumentative knowledge that agents have. One can expect

that having more domain and argumentative knowledge (more domain and

argumentation cases in the case-bases) will prevent less problems from being
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Figure 6.3: Percentage of Problems that are solved by 3 (to-left), 5 (top-right), 7 (bottom-
left) and 9 (bottom-right) agents ([5, 45]∆5 domain-cases; 20 argument-cases)

undecided.

As shown by Figure 6.3, in all cases all policies achieve the same results.

As expected, the percentage of problems solved by the system increases with

the number of domain-cases and argument-cases. In addition, the quantity

of problems that remain undecided decreases as the number of participating

agents increases. Obviously, with more agents in the system the probability

that an agent has a suitable solution for the problem at hand in its case-bases

increases. In addition, if the number of domain-cases is fixed and the quantity

of argumentative knowledge of the agents that follow the argumentation policy
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increases, we also achieve the same results for all policies, as shown in Figure

6.4. Therefore, this test demonstrates that the advantage of learning from

argumentation experiences lies in the quality of the solution applied and not

in the quantity of solutions achieved, as will be shown in the next section.

Figure 6.4: Percentage of Problems that are solved by 7 agents (20 domain-cases; [0, 18]∆2
argument-cases)

6.4.1.3 Percentage of problems that were properly solved with respect to

the knowledge of the agents.

In this test, the percentage of problems that the system is able to solve, pro-

viding a correct solution, are computed. To check the solution accuracy, the

solution agreed by the agents for each ticket requested is compared with its

original solution, stored in the tickets case-base. One can expect that with

more knowledge stored in the case-bases the number of problems that were

correctly solved should increase. Figure 6.5 shows how as the number of agents

participating in the dialogue increases, the solution proposed by them is more

appropriate and similar to the actual solution registered in the tickets case-base

for the ticket that has been requested to the agents (the mean error percentage
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in the solution predicted decreases). Obviously, if more agents participate in

the problem solving process, the probability that one or more of them have

a suitable domain-case that can be used to provide a solution for the current

problem increases. The same happens if the number of domain-cases of the

agent’s case-base increases. This applies also in the case of the random policy,

although this policy never achieves the 100% of correct solution predictions.

Also, the results achieved by the argumentation policy improve those achieved

by the other policies, even when the domain-cases case-bases are populated

with a small number of cases. The argumentation policy achieves more than

a 50% of improvement for a domain-cases case-base size up to 25 cases if 3

agents participate in the dialogue, up to 20 cases if 5 agents participate and up

to 15 cases if there are 7 or 9 agents participating. These results demonstrate

that if agents have the ability of arguing, the agents whose solutions are more

supported by evidence have more possibilities of wining the argumentation

dialogue and hence, the quality of the final solution selected among all poten-

tial solution proposed by the agents increases. Finally, Figure 6.6 shows the

results of this test if the number of domain-cases is set to 20 and the number

of argument-cases that the agents have is increased in each round. The results

show that the argumentative knowledge has no substantial influence on the

accuracy of the solution proposed, at least for the data used in this case of

study.

6.4.1.4 Percentage of agreements reached with respect to the knowledge

of the agents.

In this test, we evaluate the percentage of times that an agreement is reached

and a frequency-based or a random choice among all possible solutions pro-

posed by the agents is not necessary. Figure 6.7 shows the results obtained.

For all policies, the overall trend of the agreement percentage is to increase

as the knowledge about the domain that agents have increases. Nevertheless,
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Figure 6.5: Solution prediction accuracy achieved by 3 (top-left), 5 (top-right), 7 (bottom-
left) and 9 (bottom-right) agents ([5, 45]∆5 domain-cases; 20 argument-cases)

figures show slight fluctuations between results. This behaviour can be ex-

plained since the addition of a small quantity of new domain-cases between

two simulation rounds can give rise to temporary situations, such as some

agents changing temporarily their opinions until new information is gained or

obtaining the same suitability degree for several positions and arguments. In

the last case random choices are made, which can have a slight negative effect

on the overall performance of the system.

For the case of 3 agents, the small number of participants in the dialogue re-

sults in all policies achieving similar agreement percentages. However, when

the number of agents grows up to 5, if agents follow an argumentative policy
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Figure 6.6: Solution prediction accuracy achieved by 7 agents (20 domain-cases; [0, 18]∆2
argument-cases)

that allows them to argue and persuade other agents, those who have more

support for their positions win the dialogue and convince the others to accept

them. Thus, the percentage of agreements reached increases. In addition,

the improvement on the agreement percentage grows more quickly for a larger

number of agents, reaching more than the 80% with little knowledge about

the domain (e.g. 10 domain-cases) for 7 and 9 agents participating in the

dialogue. These results capture the fact that with more participating agents,

the knowledge available among all of them to solve tickets increases and more

useful argument-cases improve the performance of complex argumentation di-

alogues.

More interesting results can be observed if we compare the agreement per-

centage that the argumentation policy achieves when useful argument-cases

are available. To perform this test, the percentage of agreement that agents

reach in those cases that they have been able to find useful argument-cases

(argument-cases which problem description matches the current situation) has

been computed. Note that the fact that agents have argument-cases in their
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Figure 6.7: Percentage of agreement reached by 3 (top-left), 5 (top-right), 7 (bottom-left)
and 9 (bottom-right) agents ([5, 45]∆5 domain-cases; 20 argument-cases)

argument-cases case-bases does not necessarily mean that these cases match

the current dialogue context and are actually used by the agents to make their

decisions. Therefore, Figure 6.8 shows the percentage of agreements that the

argumentation policy achieves when one or more agents use their argumenta-

tive knowledge. In these tests, the fluctuations between subsequent simulation

rounds are notably greater than in the previous tests. These fluctuations are

due to the fact that the percentage of useful argument-cases highly depends

on the domain knowledge that agents have and on the dialogue context.

In the case of 3 agents, the small number of dialogue participants give rise to
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very simple dialogues and no argument-cases are actually used. This explains

that the CBR-ARG policy gets the same results in the agreement percentage

as the other policies, as shown in Figure 6.7. For 5, 7 and 9 agents, we can

observe that when enough domain knowledge is available and agents engage

in more complex dialogues (up to 30 domain-cases for 5 agents and up to 15

domain-cases for 7 and 9 agents), the agreement percentage has a global trend

to increase when the initiator agent is the only agent that has useful argument-

cases. This behaviour shows how the use of argumentative knowledge allows

the initiator to argue better and persuade the other agents to accept their

positions and reach an agreement. However, if more agents are also able to

improve their argumentation skills by using their argumentative knowledge

(CBR-ARG AAC and CBR-ARG OAC policies), less agents are persuaded to

accept other agents’ positions and hence, no agreement is reached in almost all

simulations (except for the case of 45 domain-cases in the agents domain-cases

case-bases).

As in Figure 6.7, Figure 6.8 shows that when the number of agents that par-

ticipate in the dialogue increases, the agreement percentage also increases for

the CBR-ARG IAC policy. This can be observed by comparing the agree-

ment percentage achieved between 5 and 7 agents. Between 7 and 9 agents,

no significant changes in the agreement percentage for the CBR-ARG IAC

policy are observed, while the CBR-ARG AAC and CBR-ARG OAC policies

improve their results when agents have a high amount of domain knowledge.

However, this increase has less to do with the use of argumentative knowledge

than with the fact that more agents participate in the dialogue with almost

full knowledge about the domain. Thus, most of them are able to provide the

same accurate solution for the problem to solve.

Figure 6.8 also shows the average number of locutions interchanged among

the agents during the argumentation dialogue. As expected, results demon-

strate that more locutions are needed to solve tickets if there are more agents
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Figure 6.8: Percentage of agreement reached by 5 (top), 7 (bottom-left) and 9 (bottom-
right) agents when useful argument-cases are available ([5, 45]∆5 domain-cases; 20 argument-
cases)

participating in the process. However, the number of interchanged locutions

seems to stabilize when the percentage of agreements reached approaches to

100%. Also, when only one agent has argumentative knowledge, the number

of locutions (or let us say, the number of dialogue steps) that are necessary to

reach a final decision among agents is more stable than in the cases where more

agents use their argument-cases. In fact, the dialogue steps in the cases of 7

and 9 agents are almost the same for this policy. Therefore, the CBR-ARG

IAC policy is also the more efficient policy, achieving the best performance

results with shorter argumentation dialogues among the agents.

Finally, to evaluate the influence of the amount of argumentative knowledge of

the agents on the agreement percentage, Figure 6.9 shows the results obtained

by the argumentation policy when the number of argument-cases available for
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one or more agents is increased. When the initiator agent is the only agent that

uses argumentative knowledge, as this knowledge increases, the probability of

finding useful argument-cases to apply in each argumentation dialogue also

increases. Therefore, this agent improves its argumentation skills and it is

able to persuade the others to reach an agreement and accept its position

as the best solution to apply for the ticket to solve. However, when several

agents have a small quantity of argument-cases, the probability of finding

a useful argument-case is very low. In these cases (CBR-ARG AAC with 6

argument-cases and CBR-ARG OAC with 2 argument-cases), the performance

of the system suffers from a high randomness, and this agent that finds a

useful argument-case has a higher advantage over the others, being able to

persuade them to reach an agreement that favours its preferences. Regarding

the number of locutions interchanged among the agents, Figure 6.9 shows how

the number of locutions to reach the agreement is stable for all policies and

does not depend on the argumentation knowledge that agents have. Thus,

as pointed out before, the CBR-ARG IAC policy gets higher percentage of

agreement when useful argument-cases are actually used.

Figure 6.9: Percentage of agreement reached by 7 agents when useful argument-cases are
available (20 domain-cases; [0, 18]∆2 argument-cases)

252



6. Application to Customer Support

6.4.1.5 Percentage of agents that agree in the best solution to apply.

In this test, we evaluate the percentage of agents that agree in the best so-

lution to apply when an agreement is reached. As shown in Figure 6.10, as

the knowledge about the domain increases, all policies get higher percentages

of agents that agree in the solution to apply. This expected behaviour is pro-

duced due to the fact that if agents have more knowledge to generate their

positions, most accurate positions are generated and more agents coincide in

their predictions. However, the CBR-ARG policy shows a more stable be-

haviour, showing an almost polynomial growth as the number of domain-cases

that agents have increases.

Both CBR-R and CBR-M policies also improve their results as the number of

agents participating in the dialogue increases, since, again, with more agents

participating there are more information about the domain distributed across

the agents’ domain-cases case-bases and thus, there are more probability of

agreeing in more accurate solutions. However, the CBR-ARG policy, despite

getting higher percentages in the number of agents that agree than the other

policies, presents a slightly variable behaviour, especially when agents have

more than the 50% of domain knowledge (over 20 domain-cases). Thus, we

can observe in Figure 6.10 that the argumentative policy gets more than the

50% of agents agreeing in the solution for the case of 3, 5 and 7 agents partici-

pating, while the percentage slightly decreases to exactly the 50% for the case

of 9 agents. Similarly, for 35 domain cases the percentages fluctuate around

the 75% of agents agreeing. This variable behaviour can arise from the influ-

ence that the number of useful argument-cases has in the results obtained fro

the argumentative policy. Therefore, depending on the domain knowledege,

which agents participate in the dialogue, and the contents of the argument-

cases case-bases, more or less argument-cases can store useful information that

matches the current dialogue. The amount of useful argument-cases has a di-

rect influence on the persuasive power of the agents and thus, on the number
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Figure 6.10: Percentage of agents that agree among 3 (top-left), 5 (top-right), 7 (bottom-
left) and 9 (bottom-right) agents ([5, 45]∆5 domain-cases; 20 argument-cases)

of agents that agree in a specific solution. Nevertheless, the CBR-ARG pol-

icy still obtains the same or better results than the CBR-R and the CBR-M

policies in all cases.

To evaluate the influence that useful argumentative knowledge has in the per-

centage of agents that agree in a solution, Figure 6.11 shows the results of

this test when agents are able to find argument-cases in their argument-cases

case-bases that match the current dialogue context. In the case of 3 agents

participating in the dialogue, no matching argument-cases are found, due to

the little number of participants resulting in simple argumentation dialogues.
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Figure 6.11: Percentage of agents that agree among 5 (top), 7 (bottom-left) and 9 (bottom-
right) agents when useful argument-cases are available ([5, 45]∆5 domain-cases; 20 argument-
cases)

However, as the number of participants and domain knowledge increases, if

one agent has useful argumentative knowledge, it effectively persuades the

other agents to accept its position as the best solution to apply to solve the

ticket requested and the results of policy CBR-ARG IAC show a clear grow-

ing trend. However, if all or most agents agents have useful argument-cases

in their argument-cases case-bases, their persuasive power is the same and

they do not agree in a unique solution to apply until they have almost full

knowledge about the domain (45 domain-cases). This can be observed in the

results shown in Figure 6.11 for the CBR-ARG AAC and the CBR-ARG OAC

policies.

Finally, to evaluate the influence of the amount of argumentative knowledge of

the agents on the percentage of agents that agree in the final solution, Figure
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6.12 shows the results obtained by the argumentation policy when the number

of argument-cases available for one or more agents is increased. When the

initiator agent is the only agent that uses argumentative knowledge, as this

knowledge increases, the probability of finding useful argument-cases to apply

in each argumentation dialogue also increases. Therefore, this agent improves

its argumentation skills and its persuasive power to convince the other agents

to agree in a unique solution (its position) as the best to solve the ticket

requested. However, when several agents have a small quantity of argument-

cases, the probability of finding a useful argument-case is very low. In these

cases, as for the results shown in Figure 6.9 for the agreement percentage,

the performance of the system suffers from a high randomness, and this agent

that finds a useful argument-case has a bigger advantage over the others, being

able to persuade them to reach an agreement that favours its preferences. This

explains the results obtained by the CBR-ARG AAC policy with 6 argument-

cases and the CBR-ARG OAC policy with 2 argument-cases.

Figure 6.12: Percentage of agents that agree among 7 agents when useful argument-cases
are available (20 domain-cases; [0, 18]∆2 argument-cases)
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6.4.1.6 Percentage of positions accepted with respect to the number of

argument-cases.

This test evaluates the percentage of positions that an agent (the initiator,

for instance) gets accepted by the other agents in different settings of the

argumentative policy, when useful argument-cases are used. The CBR-R and

the CBR-M policies do not allow agents to argue and hence, they do not

accept or defeat the position of other agents. Therefore, these policies are not

considered for this test. Figure 6.13 shows how, independently of the number

of agents participating in the dialogue, once the knowledge about the domain

overpasses certain threshold (15 domain-cases), if an agent has argument-cases

that match the current dialogue context, it gets its position accepted, even if

the other participants have also useful argument-cases. However, if this agent

does not have argumentative knowledge, but the other agents do have, the

percentage of acceptance depends on how useful the argumentative knowledge

of the others is and it varies until the agent has enough domain knowledge

to propose a good enough solution, as shown by the results obtained by the

CBR-ARG OAC policy.

Finally, to evaluate the influence of the amount of argumentative knowledge

that an agent has in the percentage of acceptance of its positions, Figure 6.14

shows the results obtained by setting the number of domain-cases to 20 and

increasing the number of argument-cases by 2 in each round. Results show

that if only one agent has argumentative knowledge (CBR-ARG IAC policy),

once it has argument-cases that apply to the current dialogue situation and

enough domain knowledge, it gets its position accepted. If other agents also

have argumentative knowledge (CBR-ARG AAC policy), the percentage of

acceptance varies until enough useful argument-cases can be used (from 10

forwards), since this percentage depends also on how good are the argumen-

tation skills of the other participants. Finally, if all participants have useful

argumentative knowledge (CBR-ARG OAC policy), the percentage of accep-
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Figure 6.13: Percentage of positions accepted for 3 (top-left), 5 (top-right), 7 (bottom-left)
and 9 (bottom-right) agents when useful argument-cases are available ([5, 45]∆5 domain-
cases; 20 argument-cases)

tance of the initiator’s position depends on which agent is able to create more

persuasive arguments and convince the others to accept its position as the

best to solve the requested ticket.

6.4.2 Testing the Argumentation Strategies

In the following tests, we have compared different argumentation strategies (as

combinations of an agent profile and different tactics) that an agent can follow
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Figure 6.14: Percentage of positions accepted for 7 agents (20 domain-cases; [0, 18]∆2
argument-cases)

to argue with other agents. The argumentative profile presented in Chapter

4 complies with the reasoning process and dialogue protocol proposed for the

case-based argumentation framework presented in this thesis. Other agent

profiles involve different modifications of them. Therefore, to perform these

tests, an agent (say the initiator agent) has been set to have an argumentative

profile and to follow different tactics to argue with agents of different profiles.

Also, these agents do not follow any specific tactic. As in the performance

tests, by default, all agents know each other, all are in the same group and

the dependency relation between them is charity. The values of each agent

have been randomly assigned and agents know the values of their partners.

Also, all agents play the role of operator. In addition, agents assign weights

to the similarity degree (wSimD) and the support factor (wSF ) proportionally

to the number of domain-cases and argument-cases that they have in their

case-bases.

The different strategies evaluated represent the combination of the argumen-

tative profile for the initiator with the tactics proposed in Chapter 4:
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• ST1: Persuasive Strategy: with this strategy, the agent selects such

positions and arguments whose associated argument-cases were more

persuasive in the past (have more persuasiveness degree).

• ST2: Maximise-Support Strategy: with this strategy, the agent selects

such positions and arguments that have higher probability of being ac-

cepted at the end of the dialogue (their associated argument-cases have

more support degree).

• ST3: Minimise-Risk Strategy: with this strategy, the agent selects such

position and arguments that have a lower probability of being attacked

(their associated argument-cases have less risk degree).

• ST4: Minimise-Attack Strategy: with this strategy, the agent selects

such positions and arguments that have received a lower number of at-

tacks in the past (their associated argument-cases have less attack de-

gree).

• ST5: Maximise-Efficiency Strategy: with this strategy, the agent selects

such positions and arguments that lead to shorter argumentation dia-

logues (their associated argument-cases have higher efficiency degree).

• ST6: Explanatory Strategy: with this strategy, the agent selects such

positions and arguments that cover a bigger number of domain-cases,

argument-cases or dialogue graphs. That is, the positions that are similar

to argument-cases that have more justification elements.

These strategies are evaluated by computing the agreement percentage ob-

tained by the agents when they have a low (from 5 to 15 domain-cases),

medium (from 20 to 30 domain-cases) or high (from 35 to 45 domain-cases)

knowledge about the domain. Also, the argumentative agent has a full case-

base of 20 argument-cases. Then, the percentage of agents that an argumenta-

tive agent (the initiator, for instance) is able to persuade to reach an agreement
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to propose its solution as the best option to solve a ticket is computed for the

same settings (from low to high knowledge about the domain). To be able

to follow effectively an argumentation tactic, an agent needs to have useful

argument-cases to reuse these experiences for the current argumentation sit-

uation. Thus, all strategic tests report results obtained when the initiator

agent has some argument-cases that match the current situation and actually

uses them to select the best position and arguments to propose. The following

tables show the results obtained.

Table 6.3 shows the percentage of times that an agreement about the best

solution to apply is reached when the argumentative agent is arguing with

agents that have an agreeable profile. Also, Table 6.4 shows the percentage

of agreeable agents that the argumentative agent (the initiator) is able to

persuade to propose its solution as the best option to solve a ticket. Agreeable

agents do not challenge the positions of other agents, but only try to defend

their positions if they are attacked. However, an agreeable agent accepts the

position of another agent that has proposed its same position or a position

that it has generated, although it has not ranked it as the best solution to

apply. That means that in these cases, the agreeable agent votes the position

of other agents and withdraws its own.

hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 25.00% 16.67% 33.33% 33.33% 0.00% 16.67%
HIGH 63.89% 55.56% 50.00% 25.00% 38.89% 19.44%

Table 6.3: Agreement Percentage with Agreeable agents

For low knowledge about the domain, no useful argument-cases are found and

agents cannot reach an agreement about the best solution to apply to solve

the ticket at hand, whatever strategy is followed. This does not means that

the system is not able to propose a solution at all, but the solution proposed
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is not agreed by all agents. In the case of having a medium amount of knowl-

edge about the domain, the best results are achieved for these strategies that

minimise the probability or the number of potential attacks that an argument

can receive (ST3 and ST4). Remember that an agreeable agent does not at-

tack any position and if attacked, if it cannot defend itself, it just withdraw

its position. Therefore, if the initiator uses arguments to generate its position

and arguments that the agreeable agent cannot defeat, the initiator will have

less agreeable agents competing in the dialogues and an agreement is reached

more easily. However, if the agents have more knowledge about the domain,

the agreeable agents increase their options to generate potential attacks to re-

but the attacks that they receive, and hence, following a strategy that selects

those positions and arguments that are expected to have a higher acceptabil-

ity degree from the other agents (ST1) makes the initiator to be able to reach

most agreements.

The results of Table 6.4 show again how ST3 and ST4 perform better for a

medium amount of knowledge about the domain and ST1 for a high amount

of knowledge. This reinforces our hypothesis that these strategies make the

initiator agent to reach to a higher number of agreements by persuading other

agents to accept its position as the best solution to apply for a ticket requested.

hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 14.29% 11.90% 22.62% 22.62% 0.00% 11.90%
HIGH 52.38% 45.24% 38.89% 21.03% 30.95% 14.68%

Table 6.4: Percentage of Agreeable agents persuaded

Table 6.5 shows the percentage of times that an agreement about the best so-

lution to apply is reached when the argumentative agent is arguing with agents

that have a disagreeable profile. In addition, Table 6.6 shows the percentage

of agents that the argumentative agent (the initiator) is able to persuade to
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propose its solution as the best option to solve a ticket when it is arguing with

disagreeable agents. Disagreeable agents act similarly to agreeable agents, do

not challenging any position proposed by other agents, but in this case, this

profile of agents only accept the position of a partner (voting it and withdraw-

ing its own), if it exactly coincides with the position that they have proposed

as the best solution to apply.

hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 16.67% 0.00% 8.33% 25.00% 8.33% 16.67%
HIGH 36.11% 30.56% 11.11% 38.89% 30.56% 25.00%

Table 6.5: Agreement Percentage with Disagreeable agents

Again, low knowledge about the domain prevents the use of useful argument-

cases. However, for both medium and high amounts of knowledge about the

domain, the initiator agent is able to convince more agents if it follows an

strategy that minimises the number of potential attacks that its position and

arguments can receive, getting thus to higher agreement percentages. This

results in selecting those positions that, although still serve to the initiator’s

agent objectives, are more similar to the positions proposed by the disagreeable

agents and hence, these have less potential attacks to put forward and are more

easily persuaded to reach an agreement to accept the initiator’s position (as

shown in Table 6.6). Nevertheless, disagreeable agents are difficult to convince

and both agreements and agents that agree percentages are low independently

of the strategy followed by the initiator.

Table 6.7 shows the percentage of times that an agreement about the best

solution to apply is reached when the argumentative agent is arguing with

agents that have an elephant’s child profile. In addition, Table 6.8 shows

the percentage of elephant’s child agents that the argumentative agent (the

initiator) is able to persuade to propose its solution as the best option to
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hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 11.90% 0.00% 5.95% 15.48% 5.95% 11.90%
HIGH 30.56% 25.40% 9.52% 31.35% 25.79% 23.02%

Table 6.6: Percentage of Disagreeable agents persuaded

solve a ticket. Elephant’s child agents have a weird profile that challenges any

position proposed by other agents, whatever this position is. These agents are

used to overload the system with useless interactions between the agents. An

elephant’s child agent only accepts the position of another agent if it challenges

it and the other agent wins the debate. This has more probability of occurring

when agents have less knowledge about the domain and thus, less knowledge to

generate positions and arguments. Therefore, whatever strategy the initiator

follows, the percentage of agreement overpass only the 50% if agents have

low knowledge about the domain and the initiator is able to persuade the

28.57% of agents, as shown in the tables, and decreases as the amount of

domain knowledge increases. However, in most cases elephant’s child agents

are attacking positions that they are able to generate and support and thus,

the attacked agents are defeated and withdraw their positions, which prevents

the effective development of agreement processes, especially when agents have

more domain knowledge and are able to propose more solutions.

hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 66.67% 66.67% 66.67% 66.67% 66.67% 66.67%
MEDIUM 16.67% 16.67% 16.67% 16.67% 16.67% 16.67%
HIGH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 6.7: Agreement Percentage with Elephant’s Child agents

Table 6.9 shows the percentage of times that an agreement about the best

solution to apply is reached when the argumentative agent is arguing with
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hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 28.57% 28.57% 28.57% 28.57% 28.57% 28.57%
MEDIUM 15.48% 15.48% 15.48% 15.48% 15.48% 15.48%
HIGH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 6.8: Percentage of Elephant’s Child agents persuaded

agents that have an open-minded profile. Also, Table 6.10 shows the percent-

age of open-minded agents that the argumentative agent (the initiator) is able

to persuade to propose its solution as the best option to solve a ticket. An

open-minded agent only challenges the positions of other agents if it has not

been able to generate such positions (they are not its proposed position or a

position in its list of potential positions to propose). However, what especially

distinguishes the behaviour of this agent from other agent profiles is the fact

that it accepts the position of an agent that has started and won a dialogue

with it, although this position is not in its list of potential positions.

hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 41.67% 33.33% 25.00% 33.33% 16.67% 41.67%
HIGH 47.78% 61.11% 47.78% 52.22% 50.00% 62.78%

Table 6.9: Agreement Percentage with Open-Minded agents

hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 28.57% 23.81% 16.67% 23.81% 11.90% 27.38%
HIGH 37.46% 48.57% 37.86% 44.21% 38.89% 51.19%

Table 6.10: Percentage of Open-Minded agents persuaded

As for agreeable and disagreeable agents, if the knowledge that the agents
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have about the domain is low, no agreement is reached. For the case of having

a medium amount of domain knowledge, the agreement is reached easily if

the initiator follows a strategy that selects the most potentially persuasive

arguments or those that cover as much justification elements as possible (ST1

and ST6). If the initiator is able to better defend its position with more

persuasive arguments or more support elements, it ensures that its position

will prevail accepted and thus, the defeated open-minded agents will withdraw

their positions and agree to propose the initiator’s as the best solution to

apply. Thus, Table 6.10 shows a higher percentage of agents persuaded if the

initiator follows ST1 and ST6. However, if agents have high knowledge about

the domain, the percentage of agreements and agents persuaded are clearly

higher when the initiator follows ST2 and ST6. This demonstrates that when

the initiator agent has more knowledge and hence, more support degree (higher

probability of being accepted at the end of the dialogue) and more elements

to justify its positions and arguments, open-minded agents easily accept the

position of the initiator and withdraw theirs when they attack the initiator’s

position.

Table 6.11 shows the percentage of times that an agreement about the best

solution to apply is reached when the argumentative agent is arguing with

agents that also have an argumentative profile. Also, Table 6.12 shows the

percentage of agents with its same profile that an argumentative agent (the

initiator) is able to persuade to propose its solution as the best option to solve

a ticket. An argumentative agent only challenges positions of other agents

when they have proposed a position different from its position. In addition,

this agent profile accepts such positions that it attacks when the opponent

wins the confrontation.

Again, as in most strategy tests, low knowledge about the domain results in

simple dialogues that do not reach any agreement and the solution proposed

is not agreed by all agents. For a medium amount of knowledge about the
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hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 38.89% 47.22% 50.00% 33.33% 33.33% 41.67%
HIGH 82.22% 100.00% 82.22% 100.00% 100.00% 86.11%

Table 6.11: Agreement Percentage with Argumentative agents

hhhhhhhhhhhhhhhhDomain Knowledge

Strategy
ST1 ST2 ST3 ST4 ST5 ST6

LOW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MEDIUM 22.22% 29.76% 30.95% 21.43% 23.81% 29.76%
HIGH 68.57% 80.56% 66.98% 81.35% 80.56% 71.43%

Table 6.12: Percentage of Argumentative agents persuaded

domain, the percentage of agreements reached is higher when the initiator

follows a strategy that minimises the probability that their positions and ar-

guments are attacked (ST3). In fact, if positions are not attacked at all, they

prevail as potential candidates to be selected as the final solution for the ticket

requested. Note that in this test, all agents accept positions and arguments of

other agents under the same circumstances, so decreasing the probability of a

position to be attacked, increases its probability of being accepted at the end

of the dialogue.

If argumentative agents have a high knowledge about the domain, many of

them are able to propose accurate solutions and defend them against attacks.

Therefore, such strategies that allow the initiator to better defend its posi-

tions and arguments by increasing the probability of being accepted (ST2) or

by reducing the number of potential attacks get better agreement percentages

(ST4). If we understand that more acceptable and less attackable arguments

lead to shorter dialogues, the good results achieved when the initiator follows

a strategy that selects those positions and arguments that produced shorter

dialogues in the past (ST5) can be viewed as a logical consequence of the good
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performance of ST2 and ST4. Table 6.12 shows a slightly higher percentage

of persuaded agents when the initiator has deep knowledge about the domain

and the number of potential attacks is decreased. As less attacks are received,

less effort the initiator needs to convince other agents that attack its posi-

tion to agree and accept it as the best solution to apply for the requested

ticket. Nevertheless, all ST2, ST4 and ST5 strategies get good percentages of

persuaded agents for this amount of domain knowledge.

Summarizing, Tables 6.13 and 6.14 show, for each strategy, the agent pro-

files that have achieved in average (for all amounts of domain knowledge) the

highest percentage of agreement and the highest percentage of agents that

the argumentative agent is able to persuade, respectively. For all strategies,

the best results in the number of agreements reached and agents persuaded

are obtained when all agents are argumentative. Among them, the strategy

that guides the agent to propose positions and arguments that have a higher

potential probability of being accepted (ST2) is the winning strategy for our

customer support domain, followed closely by the strategy that makes the

agent to minimise the number of potential attacks that its positions and ar-

guments can receive (ST4). It seems reasonable that if we are measuring the

percentage of agreements reached and the percentage of agents persuaded to

reach them, that strategy that increases the acceptance probability of posi-

tions and arguments performs better. Also, if agents receive lower number

of attacks, it can be understood as a consequence of proposing positions and

arguments that suit the objectives of more agents.

For the rest of profiles, agreeable agents are more easily persuaded with posi-

tions and arguments that have a low probability of being attacked (probably

because agreeable agents are also able to generate them); disagreeable agents

are more easily persuaded with positions and arguments that will potentially

get less number of attacks (probably because they are the same that disagree-

able agents have proposed); and open-minded agents are easily persuaded with
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hhhhhhhhhhhhhhAgent Profile
Strategy

ST1 ST2 ST3 ST4 ST5 ST6

Agreeable 38.10% 30.95% 35.71% 25.00% 16.67% 19.05%
Disagreeable 29.76% 13.10% 8.33% 34.52% 16.67% 17.86%
Elephant’s Child 7.14% 7.14% 7.14% 7.14% 7.14% 7.14%
Open-Minded 41.90% 47.62% 38.33% 40.24% 35.71% 48.33%
Argumentative 51.90% 66.67% 60.24% 64.29% 57.14% 58.33%

Table 6.13: Average agreement percentage for all agent profiles

hhhhhhhhhhhhhhAgent Profile
Strategy

ST1 ST2 ST3 ST4 ST5 ST6

Agreeable 28.57% 24.49% 26.36% 18.71% 13.27% 12.93%
Disagreeable 22.28% 10.88% 6.63% 24.15% 13.61% 14.97%
Elephant’s Child 6.63% 6.63% 6.63% 6.63% 6.63% 6.63%
Open-Minded 30.85% 35.10% 27.45% 31.70% 25.85% 36.22%
Argumentative 38.91% 49.83% 44.52% 48.13% 44.73% 45.92%

Table 6.14: Average percentage of agents persuaded for all agent profiles

positions and arguments that have more elements that justify them (and hence

the initiator has more elements to rebut attacks and win the dialogue). As

pointed out before, elephant’s child agents show a weird behaviour that gets

low percentages of agreement and agents persuaded no matter which strat-

egy the initiator follows. However, in most cases elephant’s child agents are

attacking positions that they are able to generate and support and thus, the

attacked agents are defeated and withdraw their positions, which prevents the

development of an effective agreement process.

6.4.3 Testing the Social Context

The ability of the framework to represent the social context of the system has

also been evaluated. To perform these tests, the system has been executed

with 7 participating agents, following the argumentative policy that complies

with the proposals of this thesis (CBR-ARG). These settings are selected by
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taking into account the results of the performance tests, which show that

this configuration allows agents to argue with a fair amount of information

to provide suitable positions and arguments, but leaving room for the argu-

mentation to make sense. The knowledge about the domain that each agent

has is increased by 5 domain-cases in each round, from 5 to 45 domain-cases.

Argumentative agents have a full argument-cases case-base populated with 20

cases. By default, all agents know each other, all are in the same group and

the dependency relation between them depends on the specific test. The in-

fluence of different degrees of friendship and group membership are difficult to

evaluate with the limited amount of data of our tickets case-base and remains

future work. The values of each agent have been randomly assigned from a

set of pre-defined values (efficiency of the problem solving process, accuracy

of the solution provided and savings in the resources used to solve the ticket).

In addition, argumentative agents assign weights to the similarity degree

(wSimD) and the support factor (wSF ) proportionally to the relation between

the number of domain-cases and argument-cases that they have in their case-

bases, as it was done in the performance tests. Also, by default agents do not

follow any dialogue strategy, setting the same weight for all elements of the

support factor.

Subsequently, the influence of the presence of an expert, the presence of a

manager, and the knowledge about the values of other agents in the system

performance is evaluated.

6.4.3.1 Presence of an Expert

In this test, an agent has been allowed to play the role of an expert, while

the rest of agents play the role of operators. An expert is an agent that has

specific knowledge to solve certain types (categories) of problems and has its

case-base of domain-cases populated with cases that solve them. Thus, the
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expert domain-cases case-base has as much knowledge as possible about the

solution of past problems of the same type. That is, if the expert is configured

to have 5 domain-cases in its domain-cases case-base, and there are enough

suitable information in the original tickets case-base, these cases represent

instances of the same type of problems. In the case that the tickets case-base

has less than 5 cases representing such category of problems, 3 for instance,

the remaining two cases are of the same category (if possible).

In our case, the expert agent has an authorisation dependency relation over

other technicians. Therefore, if it is able to propose a solution for the ticket

requested, it can generate arguments that support its position and that will

defeat other operators’ arguments, due to the defeat relation among arguments

defined in Chapter 3. This relation assigns more importance to the arguments

of an agent that has an authorisation dependency relation over other agents.

All simulation tests have been executed and their results compared for the

random based decision policy (CBR-R Expert), the majority based decision

policy (CBR-M Expert) and the argumentation based policy (CBR-ARG Ex-

pert). For these policies, the domain-cases case-base of the expert has been

populated with expert domain knowledge. To evaluate the global effect of this

expert knowledge, the results obtained for the accuracy of predictions when

the domain-cases case-base of all agents are populated with random data are

also shown for each policy (CBR-R, CBR-M and CBR-ARG).

Figure 6.15 shows how all policies are able to solve the same percentage of

problems, but the accuracy of predictions is higher if agents are allowed to

argue following the CBR-ARG Expert policy. Comparing the results obtained

when the initiator has (CBR-R Expert, CBR-M Expert and CBR-ARG Ex-

pert) or does not have expert knowledge (CBR-R, CBR-M and CBR-ARG),

as expected, agents are able to reach better accuracy in their final predic-

tion when they are able to argue and there is an expert participating in the

argumentation dialogue (CBR-ARG Expert). This demonstrates that the de-
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Figure 6.15: Percentage of problems that are solved by 1 expert and 6 operators (left) and
accuracy of their predictions (right) ([5, 45]∆5 domain-cases; 20 argument-cases)

cisions of the expert prevail and, as it has more specialised domain-knowledge

to propose solutions, the predictions of the system are more accurate.

6.4.3.2 Presence of a Manager

In this test, an agent has been allowed to play the role of a manager, another

agent plays the role of expert (with the same configuration for its domain-

cases case-base as in the previous test) and the other agents play the role of

operators. A manager is an agent which decisions have to be observed by other

agents with an inferior role in the system, due to its higher position in the

company hierarchy of roles. A manager can be an expert, with specialised

knowledge about the best solution to apply to specific types of problems, or

else, a technician that has access to more information than an operator, due to

its highest rank in the company. To simulate the presence of a manager in the

system, we have considered the last case and populated the manager domain-

cases case-base with twice the information that the domain-cases case-base of

the operators (until a maximum amount of 45 domain-case).
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Figure 6.16: Percentage of problems that are solved by 1 manager and 6 operators (left)
and accuracy of their predictions (right) ([5, 45]∆5 domain-cases; 20 argument-cases)

In our case, the manager agent has a power dependency relation over other

technicians. Therefore, if it is able to propose a solution for the ticket re-

quested, it can generate arguments that support its position and that will de-

feat other technicians’ arguments, due to the defeat relation among arguments

defined in Chapter 3. This relation assigns more importance to the arguments

of an agent that has a power dependency relation over other agents.

All simulation tests have been executed and their results compared for the

random based decision policy (CBR-R Manager), the majority based decision

policy (CBR-M Manager) and the argumentation based policy (CBR-ARG

Manager). For these policies, the domain-cases case-base of the manager has

been populated with more domain knowledge and the domain-cases case-base

of the expert agent (another agent selected randomly) bas been populated

with expert knowledge, as explained before. To evaluate the global effect of

these different configurations of the domain knowledge, the results obtained for

the accuracy of predictions when the domain-cases case-base of all agents are

populated with random data are also shown for each policy (CBR-R, CBR-M

and CBR-ARG).
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Figure 6.16 shows that although the manager has more domain knowledge, as

this in not specialised knowledge to solve any type of problems, its predictions

can have less quality than the operators’ predictions. However, as the defeat

relation of our case-based argumentation framework assigns higher priority to

its decisions (even when there is an expert participating in the dialogue), these

low quality solutions are accepted as the final solutions that the system pro-

poses. Therefore, until all agents have enough amount of domain knowledge to

provide accurate solutions (up to 20 domain-cases), the argumentative policy

gets worse results both in percentage of problems solved and in mean error

than the other policies. In fact, the percentage of problems that the system

is able to solve is lower when agents argue and have low knowledge about

the domain. Also, when agents have low knowledge about the domain, as the

positions of the manager are selected over the expert’s positions, the systems

gets a poor accuracy in its predictions, quite worse than in the case that all

agents have the same amount of random knowledge about the domain.

6.4.3.3 Knowledge about Other Agents’ Social Context

With these tests, we have evaluated the influence that the knowledge about

the social context has in the performance of the system. Therefore, we have

compared the performance of the system when the participating agents follow

an argumentation policy and have full information about the social context

of their partners (CBR-ARG), or on the contrary, do not know the preference

over values that their partners have (CBR-ARG NV). In a real company, the

dependency relations over technicians and the group that they belong are

known by the staff. Hence, we assume that agents know this information

about their partners.

In our evaluation domain, an agent assigns the same importance (weight) to

both domain and argumentation knowledge to generate and select positions

and arguments. However, if it does not know the value preferences of their
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Figure 6.17: Percentage of problems that are solved by 7 agents (left) and accuracy of
their predictions (right) ([5, 45]∆5 domain-cases; 20 argument-cases)

partners, many times the agent uses argument-cases that are not suitable for

the current situation. This makes the agent make wrong decisions that worsen

the global performance of the system.

Figure 6.17 shows clearly that the performance of the system is negatively af-

fected when argumentative agents use incorrect argument-cases to make their

decisions. Then, for instance, the percentage of solved problems that argu-

mentative agent are able to solve when they have full knowledge about the

social context of their partners reaches almost the 100% with low knowledge

about the domain (15 domain-cases), while it barely reaches the 50% when

agents do not know the values of their partners. Similarly, the prediction error

for well-informed agents is almost null with 15 domain-cases, while it still has

a 5% error percentage with a high amount of knowledge about the domain (45

domain-cases) when agents ignore the values of the other agents.

Finally, Figure 6.18 shows also how the system presents a poor performance

in terms of the agreement percentage and the percentage of agents that agree

when argumentative agents ignore the values of their partners. Again, the use

of wrong argument-cases makes argumentative agents to propose solutions
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Figure 6.18: Percentage of agreement reached by 7 agents (left) and percentage of agents
that agree (right) ([5, 45]∆5 domain-cases; 20 argument-cases)

and arguments that hinder to reach agreements. This could be avoided if the

system assigns less importance to the argumentative knowledge, by reducing

the weight of the support factor (wSF ). In this way, a system that supports

our framework can also perform well in domains where acquiring social context

information about competitors is difficult, although this would significantly

reduce the advantages of learning this type of information.

6.5 Conclusions

In this chapter, several tests to evaluate the case-based argumentation frame-

work proposed have been developed. With this aim, the framework has been

implemented and tested in a real customer support application currently run

by a company. This company receives tickets about user problems that have to

be solved by a group of technicians. The case-based argumentation framework

presented in this thesis has been integrated as an argumentation module that

agents that represent technicians can use to argue and persuade other agents

to accept their proposed solutions as the best way to solve each problem.
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To perform the tests we have used a 48 tickets case-base with real domain

knowledge stored by a customer support company. The small size of this case-

base has influenced the choice of several evaluation parameters, such as the

number of agents to make the tests, the number of simulations and the weight

for the similarity degree and the support factor. Also, in the company the

group that the operators belong and their dependency relations are known by

all technicians. Concretely, we have assumed that all agents belong to the

same group to allow them to populate their domain-case bases with random

cases extracted from the same tickets case-base. We plan to extend the evalu-

ation of our framework by updating the tickets case-base, as the company will

provide us with new information, and by applying them to different domains,

where different assumptions need to be make. In addition, in the current im-

plementation of the argumentation schemes ontology the agents only use a

simplified version of the Argument from Expert Opinion. However, it would

also be useful to use a scheme for practical reasoning since the application do-

main involves figuring out what to do to solve a problem, as well as consulting

expert opinion. Future work will include this interesting feature.

On the one hand, the performance of the system has been evaluated under dif-

ferent settings. The tests show how those agents that follow an argumentation

policy based on the proposals of this thesis are able to provide more accurate

solutions to the problems that the system receives. The ability of the agents

to argue allows those who have better arguments to support their decisions to

win the argumentation dialogue. Therefore, the solutions with higher quality

are selected among those proposed.

In terms of the percentage of agreement, the argumentative agents get better

results than agents following other policies, especially when the number of

technicians that are arguing to solve the problem increases. Also, the num-

ber of agents that agree is clearly higher when agents have the ability to

argue. In this case, agents that have proposed less accurate solutions are
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persuaded to withdraw them and accept other agents’ proposals, resulting in

more agreements reached and more agents supporting the same final decisions.

In addition, it has been demonstrated that if an agent uses its argumentation

knowledge and has enough domain-knowledge, its positions are accepted by

other agents.

The influence of the amount of argumentation knowledge that argumentative

agents have has also been evaluated. If only one agent has argumentation

knowledge that matches the context of current argumentation processes, as

this knowledge increases, the amount of agreements reached and the number

of agents that agree also increases. This demonstrates that this agent is ef-

fectively using its argumentation knowledge to select the best positions and

arguments to put forward in a dialogue with other agents. Thus, as many

useful arguments an agent has, as more proficient the agent is to persuade

other agents to accept its proposals. However, if all or most agents have the

ability of learning from argumentation dialogues, all of them have the same

(high) persuasive power to defend their decisions and the agreement is difficult

to achieve.

The different argumentation strategies (as combinations of an agent profile

and different tactics) that an agent can follow to argue with other agents have

been also compared. The tests performed evaluate the percentage of agree-

ments reached and the percentage of agents of different profiles persuaded

by an argumentative agent, which complies with the reasoning process and

dialogue protocol proposed for the case-based argumentation framework pre-

sented in this thesis. The results obtained demonstrate that if all participants

of the argumentation process have an argumentative profile, more agreements

are reached and more agents support the final solutions provided by the sys-

tem. For all strategies, the best results are obtained when all agents are

argumentative. Among them, the strategies that guide the agent that follows

them to propose positions and arguments that have a higher potential prob-
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ability of being accepted (ST2) and that minimise the number of potential

attacks that an agent can receive (ST4) are the winning strategies. Future

work will evaluate further combinations of profile-tactic for the initiator and

also for the rest of the agents participating in the dialogue.

Finally, the influence of the knowledge that an agent has about the social

context of their partners has been also evaluated. Results show that our defeat

relation among arguments of agents with different dependency relations makes

an expert’s or a manager’s arguments more important than the arguments

of operators. Therefore, is an expert actually is better informed to assign

better solutions to specific types of problems, the performance of the system

improves. However, if a manager just has more amount of information than

the operators, but this information do not make the manager to propose more

accurate solutions, the performance of the system is adversely affected. The

quantity of knowledge that agents has about the values of other agents also

determines the good performance of the system. Therefore, if an agent assigns

the same importance (weight) to both domain and argumentation knowledge

to generate and select positions and arguments, but it does not know the value

preferences of their partners, many times the agent uses argument-cases that

are not suitable for the current situation. This makes the agent to make wrong

decisions that worsen the global performance of the system.

We have assumed in this example that agents do their best to win the argumen-

tation dialogue, thus following a persuasion dialogue, since in this way they

get economical rewards and increase prestige. Despite that, those solutions

that are better supported prevail. Hence, if agents do not follow a dialogue

strategy that deviates the final outcome of the dialogue to fit their individual

objectives, the system reaches agreements that produce high quality solutions

for the tickets received. This assumption has allowed us to perform more

comprehensive tests with the small amount of data that we have and to check

the advantages of following different dialogue strategies and of the amount
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of available knowledge about the preferences of other agents. However, a co-

operative approach where agents do not pursue their individual benefit and

collaborate to reach the best agreement would be appropriate for this example

and will be implemented and evaluated in the future.
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This chapter summarises the main contributions of this PhD research and

identifies future work to extend these contributions. The chapter also presents

the list of publications where the main results of the PhD thesis have been

presented.

7.1 Contributions

This PhD work presents an hybrid AI system that mixes different AI tech-

niques and methods, such as case-based reasoning, semantic reasoning with

ontologies, argumentation and multi-agent systems. Our main contribution

consists of the proposal of a case-based argumentation framework that allows

agents to argue in agent societies, taking into account their roles, preferences

over values and dependency relations. The work developed in this thesis covers
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the objectives proposed in Chapter 1 at different levels.

On the State of the Art Revision Level, the thesis reviews the main concepts of

argumentation theory that have been applied to AI and specifically, to MAS.

The argumentation framework proposed in this research makes use of several

of these concepts. Concretely it considers argumentation schemes as a knowl-

edge resource that agents can use to generate and attack arguments. Also, the

communication protocol between the agents of the framework is modelled as a

dialogue game, which uses commitment stores to track the positions and argu-

ments that the agents engaged an argumentation dialogue have taken during

it. As part of the state of the art revision, the challenges of the CBR methodol-

ogy applied to argumentation in MAS have also been analysed. First, the few

approaches that make this innovative integration are presented and discussed

following different perspectives to compare them. Then, open research issues

in this area are highlighted. These are: 1) the opportunities of argumentation

to coordinate the interaction between agents that belong to a society; 2) the

advantages to represent arguments in the form of cases; 3) the possible roles

that the CBR methodology can play in the argumentation process; and 4) the

advantages that agents can get by following different argumentation strategies.

This PhD thesis deals with these open issues.

On the Formal Level, we have analysed the concept of agent society provided

in the literature. From this analysis, we have concluded that in most cases the

concept is quite ambiguous and is basically used as a synonym of a group a

agents. However, we consider that the formal characterisation of an agent so-

ciety should be enriched with extra features, such as the dependency relation

that exists between the agents or the values that they want to promote with

their decisions and actions. Our formal definition of agent society includes

these features. Also, we have identified a set of desired requirements that an

argumentation framework for agent societies should meet. These are: 1) be

computationally tractable and designed to ease the performance of automatic
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reasoning processes over it; 2) be rich enough to represent general and con-

text dependent knowledge about the domain and social information about the

agents’ dependency relations or the agents’ group; 3) be generic enough to

represent different types of arguments and 4) comply with the technological

standards of data and argument interchange on the Web. These requirements

suggest that an argumentation framework for agent societies should be eas-

ily interpreted by machines and have highly expressive formal semantics to

define complex concepts and relations over them. Thus, we have followed a

knowledge-intensive case-based argumentation framework, where the case rep-

resentation language is specified as an OWL 2 ontology. Most argumentation

systems produce arguments by applying a set of inference rules. In open MAS

the domain is highly dynamic and the set of rules that model it is difficult

to specify in advance. However, tracking the arguments that agents put for-

ward in argumentation processes could be relatively simple. Finally, we have

provided an abstract formalisation for our argumentation framework for agent

societies by extending abstract value-based argumentation frameworks to work

with agent societies. After that, we have also instantiated the framework by

defining its elements.

On the Agent Level, our framework proposes individual knowledge resources

for each agent to generate its positions and arguments. On the one hand,

agents have a domain-cases case-base, with domain-cases that represent previ-

ous problems and their solutions. On the other hand, agents have an argument-

cases case-base, with argument-cases that represent previous argumentation

experiences and their final outcome. In addition, agents can accede to a set

of argumentation schemes, which represent stereotyped patterns of common

reasoning in the application domain where the framework is implemented. All

these resources are represented by using ontologies. Concretely, the framework

uses a domain-dependent ontology to represent domain-cases and argumenta-

tion schemes and a generic argumentation ontology to represent argument-

cases and arguments that the agents interchange. Thus, we have developed
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the case-based argumentation ontology called ArgCBROnto with this thesis.

The reasoning process that agents of our framework can use to manage po-

sitions and arguments has been also defined. Here, we have shown a series

of generic algorithms whose low level functions (e.g. concrete similarity mea-

sures, values of weights, etc.) can be instantiated depending on the application

domain. By following this reasoning process, agents are able to generate posi-

tions and arguments, select the best positions and arguments to put forward in

view of their argumentation experience, and evaluate other agents’ proposals.

On the System Level we have proposed a dialogue game protocol to control the

argumentation process between the agents of the framework. This protocol

includes the definition of the locutions that agents can utter, the rules for

making these utterances, the rules for maintaining the commitment store of

each agent, the rules for speaker order and the commencement and termination

rules. Furthermore, we have proposed a set of heuristic dialogue strategies that

agents can use to improve the performance of their argumentation dialogues.

Also at this level, we provide the formal axiomatic and operational semantics

for the locutions of our dialogue game protocol. This semantics provides a

common understanding about the properties of the communication language

between agents.

Finally, on the Evaluation Level we have tested our proposals in two cases of

study. On the one hand, the formal specification of the framework has been

applied to a water-right transfer domain where agents engage in argumenta-

tion dialogues to reach agreements over the allocation of water resources. This

is a theoretic example where the semantic properties of the framework have

been validated. This application domain is complex enough to be used for

illustrating these properties. However, many water-right transfers are usually

agreed upon the water users, without any recording of the terms and outcome

of the agreement. Therefore, due to this fact and to restrictive privacy laws

to access these type of data, the actual implementation of the system has
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not been still possible. On the other hand, the framework has been imple-

mented to develop an application on the customer support domain. Here, we

consider a helpdesk of a call center where several operators must interact to

solve jointly an incidence received by the center. In this domain several tests

have been developed to analyse the performance of the framework in a real

system. Concretely, we have tested the suitability of the solutions agreed by

the operators, the influence of the argumentation strategies on the outcome

and efficiency of the dialogue and the influence of different social context on

the performance of the system.

7.2 Future Lines of Research

Due to the hybrid approach followed in this PhD thesis, there is a wide range

of open issues for extending its contribution by advancing research in any of

the research areas that it covers, such as argumentation, case-based reasoning,

ontological reasoning and multi-agent systems. Here, we highlight those that

we consider that are the most interesting from our point of view.

When we identified the research challenges for a case-based argumentation

framework we noticed that due to the dynamism of the argumentation domain

applied to open MAS, cases can quickly become obsolete. Therefore, there is an

important opportunity here to investigate new methods for the maintenance

of the case-bases that improve the adaptability of the framework. In this

research, we have followed the basic approach to update cases when a new

case that is similar enough to an existent case in the case-base has to be

added. However, we acknowledge that this can give rise to too large databases

with obsolete cases that can hinder the performance of the whole system.

On the formalisation of multi-agent dialogues there are multiple possibilities

that can be still investigated. One disadvantage of dialogue games is that they

depend on the locutions of the game and, in most real implemented cases, these
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depend on the knowledge resources of the system. An alternative could be to

develop a generic theory for modelling the way in which agents can argue in

their societies based on the work presented in [Perelman and Olbrechts-Tyteca,

1969] about the arguments based on the structure of reality. There, several

stereotyped patterns of the way that humans argue by taking into account

their belonging to a society were analysed.

Also, along this thesis we have avoided to deal with trust and reputation issues

that can compromise the veracity of the beliefs and utterances of agents. In

real open MAS, malicious agents could communicate false knowledge or try

to prevent the reach of an agreement on purpose. The literature on trust and

reputation methods for MAS is extensive [Sierra and Sabater-Mir, 2005]. This

paves the way for the adaption of some of these well-known methods for the

particular setting of a society of agents that argue by using argumentation

techniques.

For clarity purposes, we have assume in this thesis that agents are in the

same groups to participate in an argumentation dialogue with other agents.

However, agents can belong to several groups. Nevertheless, in real scenarios

agents from different groups that have different preferences over values can

engage in the same conversation. In this case, it is unlikely that the agent

of a group knows the preferences of another group. The same happens when

agents of the same group do not know the social features of their fellows due

to restrictive privacy policies. Thus, new algorithms to infer unknown values

about the social context of the opponent have to be developed.

Depending on the application domain, the preferences over values of each agent

or group, the same values or even the dependency relations between the agents

of the framework could change with the course of the time. Again, this requires

for new adaption methods that allow the agent society to reconfigure its social

parameters dynamically. In addition, the concrete algorithms used in this

thesis for performing each phase of the CBR cycle (retrieve, reuse, revise and
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retain) have been selected for their simplicity and suitability to the customer

support application domain. The development of new and efficient learning

algorithms was not in our research objectives. However, a more comprehensive

analysis could compare the performance of these algorithms with different

approaches, since the work performed by the CBR community to devise new

methods to implement the CBR phases produces interesting and better results

continuously.

Finally, in this work we have not considered temporal restrictions in the agents’

reasoning process and in the argumentative dialogues that they have. How-

ever, real application scenarios can impose these temporal bounds to reach

agreements. In fact, for some systems, like route planing or medical diagnosis,

to reach an agreement before a deadline can be crucial. As the next step for

our research, we plan to investigate how to adapt the case-based argumen-

tation framework proposed in this thesis to be used in real time application

scenarios.

7.3 Related Publications

This section presents the publications associated with the PhD thesis that

have been published to date. They are organised in chronological order and

separated by the type of the publication.

Journals

• S. Heras, V. Botti and V. Julián. Argument-based Agreements in Agent

Societies. Neurocomputing, doi:10.1016/j.neucom.2011.02.022, pp. In

Press. JCR 2010 1.429 - Q2.

• M. Navarro, S. Heras, V. Julián and V. Botti. Incorporating Temporal-

Bounded CBR techniques in Real-Time Agents. Expert Systems with
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1.924 - Q1.
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• S. Heras, J. A. Garćıa-Pardo, R. Ramos-Garijo, A. Palomares, V. Botti,

M. Rebollo and V. Julián. Multi-domain case-based module for customer

support. Expert Systems with Applications Vol. 36 N. 3 pp. 6866-6873.

Elsevier (2009) JCR 2009 2.908 - Q1.

• S. Heras, M. Navarro and V. Julián. Hybrid Reasoning and Coordination

Methods on Multi-Agent Systems. Journal of Physical Agents Vol. 3 N.

3 pp. 1-2. (2009)

• S. Heras, N. Criado, E. Argente and V. Julián. Norm Emergency through

Argumentation. Journal of Physical Agents Vol. 3 N. 3 pp. 31-38.

(2009)

Conferences and Workshops

• J. Jordán, S. Heras and V. Julián. A Customer Support Application

Using Argumentation in Multi-Agent Systems. 14th International Con-

ference on Information Fusion (FUSION-11) pp. 772-778. International

Society of Information Fusion (ISIF) CORE C

• J. Jordán, S. Heras, S. Valero and V. Julián. An Argumentation Frame-

work for Supporting Agreements in Agent Societies Applied to Customer

290



7. Conclusions

Support 6th International Conference on Hybrid Artificial Intelligence

Systems (HAIS-11). LNAI Vol. 6678 pp. 396-403, Springer CORE C

• S. Heras, K. Atkinson, V. Botti, F. Grasso, V. Julian and P. McBur-

ney. How Argumentation can Enhance Dialogues in Social Networks.

3rd International Conference on Computational Models of Argument

(COMMA-10) Vol. 216 pp. 267-274. IOS Press (2010)

• S. Heras, K. Atkinson, V. Botti, F. Grasso, V. Julian and P. McBur-

ney. Applying Argumentation to Enhance Dialogues in Social Networks.

ECAI 2010 workshop on Computational Models of Natural Argument

(CMNA-10) pp. 10-17. (2010)

• S. Heras, M. Navarro, V. Botti and V. Julián. Applying Dialogue Games

to Manage Recommendation in Social Networks. Argumentation in

Multi-Agent Systems, LNAI Vol. 6057 pp. 256-272. Springer (2010)

• S. Heras, V. Botti and V. Julián. An Abstract Argumentation Frame-

work for Supporting Agreements in Agent Societies. 5th International

Conference on Hybrid Artificial Intelligence Systems (HAIS-10) LNAI

Vol. 6077 N. 2 pp. 177-184. Springer (2010) CORE C

• S. Heras. Strategic Argumentation in Open Multi-Agent Societies. 9th

International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS-10) pp. 1663-1664. ACM Press (2010) CORE A

• S. Heras, V. Botti and V. Julián. On a Computational Model of Argu-

ment for Agent Societies. 7th International Workshop on Argumentation

in Multi-Agent Systems (ArgMAS-10) at (AAMAS-10) pp. 55-72. ACM

Press (2010)

• N. Criado, S. Heras, E. Argente and V. Julián. Normative Argumenta-

tion. 8th International Conference on Practical Applications of Agents

291



7.3. Related Publications

and Multi-Agent Systems (PAAMS). Advances in Soft Computing Vol.

71 pp. 29-36. Springer (2010)

• N. Criado, S. Heras, E. Argente and V. Julián. Contract Argumentation

in Virtual Organizations. 5th International Workshop on Normative

Multi-Agent Systems, (NORMAS-10) pp. 55-59. (2010)

• S. Heras, M. Navarro, V. Botti and V. Julián. Applying Dialogue Games

to Manage Recommendation in Social Networks. 7th European Work-

shop on Multi-Agent Systems, EUMAS-09 pp. 1-15. (2009) CORE

C

• S. Heras, M. Navarro, V. Botti and V. Julián. Applying Dialogue Games

to Manage Recommendation in Social Networks. AAMAS 6th Interna-

tional Workshop on Argumentation in Multi-Agent Systems (ArgMAS-

09) pp. 55-70. ACM Press (2009)

• S. Heras, N. Criado, E. Argente and V. Julián. A Dialogue-Game Ap-

proach for Norm-based MAS Coordination. 4th International Confer-

ence on Hybrid Artificial Intelligence Systems (HAIS-09) LNAI Vol. 5572

pp. 468-475. Springer (2009) CORE C

• S. Heras, M. Rebollo and V. Julián. Arguing About Recommendations

in Social Networks. Proceedings of the IEEE/WIC/ACM International

Conference on Intelligent Agent Technology pp. 314-317. IEEE Press

(2008) CORE B

• S. Heras, M. Rebollo and V. Julián. A Dialogue Game Protocol for

Recommendation in Social Networks. 3rd International Workshop on

Hybrid Artificial Intelligence Systems (HAIS-08). LNAI Vol. 5271 pp.

515-522. Springer (2008) CORE C

• S. Heras, V. Julián and V. Botti. CBR Contributions to Argumentation

in MAS. 2nd International Workshop on Hybrid Artificial Intelligence

292



7. Conclusions

Systems (HAIS-07). Advances in Soft Computing Vol. 44 pp. 304-311.

Springer (2007) CORE C

• S. Heras, J. A. Garćıa-Pardo, M. Rebollo, V. Julián and V. Botti. Intel-

ligent Customer Support for Help-Desk Environments. Hybrid Artificial

Intelligence Systems pp. 73-80. Universidad de Salamanca (2007)
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• J. A. Garćıa-Pardo, S. Heras, R. Ramos-Garijo, A. Palomares, V. Julián,

M. Rebollo and V. Botti. CBR-TM: A New Case-Based Reasoning Sys-

tem for Help-Desk Environments. 17th European Conference on Arti-

ficial Intelligence (ECAI-06) Vol. 141 pp. 833-834. IOS Press (2006)

CORE A

293





Bibliography

Aamodt, A. (2004). Knowledge-intensive case-based reasoning in creek. In 7th

European Conference on Case-Based Reasoning, ECCBR-04, pages 1–15.

Springer.

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: foundational issues,

methodological variations and system approaches. AI Communications,

7(1):39–59.

Aleven, V. and Ashley, K. D. (1997). Teaching case-based argumentation

through a model and examples, empirical evaluation of an intelligent

learning environment. In Artificial Intelligence in Education, AIED-97,

volume 39 of Frontiers in Artificial Intelligence and Applications, pages

87–94. IOS Press.

Amgoud, L. (2003). A formal framework for handling conflicting desires. In

7th European Conference on Symbolic and Quantitative Approaches to

Reasoning with Uncertainty, ECSQARU-03, volume 2711 of LNAI, pages

552–563. Springer.

Amgoud, L. and Hameurlain, N. (2006). A formal model for designing dialogue

strategies. In 5th International Joint Conference on Autonomous Agents

and Multiagent Systems, AAMAS-06, pages 414–416. ACM Press.

Amgoud, L. and Kaci, S. (2004). On the generation of bipolar goals in

argumentation-based negotiation. In In Argumentation in Multi-Agent

295



Bibliography

Systems: State of the art survey, volume 3366 of LNAI, pages 192–207.

Springer.

Amgoud, L. and Kaci, S. (2005). On the study of negotiation strategies. In

AAMAS 2005 Workshop on Agent Communication, AC-05, pages 3–16.

ACM Press.

Amgoud, L. and Maudet, N. (2002). Strategical considerations for argumen-

tative agents (preliminary report). In 9th International Workshop on

Non-Monotonic Reasoning, NMR-02, LNAI, pages 399–407. Springer.

Amgoud, L., Maudet, N., and Parsons, S. (2000). Modelling dialogues using

argumentation. In 4th International Conference on MultiAgent Systems,

ICMAS-00. IEEE Press.

Amgoud, L. and Parsons, S. (2001). Agent dialogues with conflicting prefer-

ences. In 5th International Workshop on Agent Theories, Architectures

and Languages, ATAL-01, LNAI, pages 1–17. Springer.

Armengol, E. and Plaza, E. (2001). Lazy induction of descriptions for re-

lational case-based learning. In 12th European Conference on Machine

Learning, ECML-01, pages 13–24. Springer-Verlag.

Artikis, A., Sergot, M., and Pitt, J. (2009). Specifying norm-governed com-

putational societies. ACM Transactions on Computational Logic, 10(1).

Ashley, K. D. (1991). Reasoning with cases and hypotheticals in hypo. Inter-

national Journal of Man-Machine Studies, 34:753–796.

Atkinson, K. (2005a). A dialogue game protocol for multi-agent argument

over proposals for action. Autonomous Agents and Multi-Agent Systems.

Special issue on Argumentation in Multi-Agent Systems, 11(2):153–171.

Atkinson, K. (2005b). What Should We Do?: Computational Representation

of Persuasive Argument in Practical Reasoning. PhD thesis, Liverpool

University.

Atkinson, K. and Bench-Capon, T. (2007). Practical reasoning as presumptive

argumentation using action based alternating transition systems. Artifi-

cial Intelligence, 171(10-15):855–874.

Aulinas, M., Tolchinsky, P., Turon, C., Poch, M., and Cortés, U. (2007). Is

my spill environmentally safe? towards an integrated management of

296



Bibliography

wastewater in a river basin using agents that can argue. In 7th Interna-

tional IWA Symposium on Systems Analysis and Integrated Assessment

in Water Management, WATERMATEX-07.

Baader, F., Horrocks, I., and Sattler, U. (2007). Handbook of Knowledge

Representation, chapter Description Logics, pages 135–179. Elsevier.

Baroni, P. and Giacomin, M. (2009). Argumentation in Artificial Intelligence,

chapter Semantics of Abstract Argument Systems, pages 25–44. Springer.

Bench-Capon, T. and Atkinson, K. (2009). Argumentation in Artificial Intelli-

gence, chapter Abstract argumentation and values, pages 45–64. Springer.

Bench-Capon, T. and Dunne, P. (2007). Argumentation in artificial intelli-

gence. Artificial Intelligence, 171(10-15):619–938.

Bench-Capon, T. and Sartor, G. (2003). A model of legal reasoning with cases

incorporating theories and values. Artificial Intelligence, 150(1-2):97–143.

Bench-Capon, T. J. (1989). Deep models, normative reasoning and legal expert

systems. In 2nd iInternational Conference on Artificial Intelligence and

Law, ICAIL-89, pages 37–45. ACM Press.

Bench-Capon, T. J. (1998). Specification and implementation of toulmin dia-

logue game. In International Conferences on Legal Knowledge and Infor-

mation Systems, JURIX-98, Frontiers of Artificial Intelligence and Appli-

cations, pages 5–20. IOS Press.

Bench-Capon, T. J. and Visser, P. (1997). Ontologies in legal information

systems: The need for explicit specifications of domain conceptualisations.

In 6th International Conference on Artificial intelligence and Law, ICAIL-

97, pages 132–141. ACM Press.

Bench-Capon, T. J. M. (2003). Persuasion in Practical Argument Using Value-

based Argumentation Frameworks. Journal of Logic and Computation,

13(3):429–448.

Black, E. and Hunter, A. (2009). An inquiry dialogue system. Autonomous

Agents and Multi-Agent Systems, 19(2):173–209.

Botti, V., Garrido, A., Gimeno, J. A., Giret, A., Igual, F., and Noriega, P.

(2010). An Electronic Institution for Simulating Water-Right Markets.

In 3rd Workshop on Agreement Technologies, WAT-10, pages 3–18.

297



Bibliography

Botti, V., Garrido, A., Giret, A., Igual, F., and Noriega, P. (2009a). On

the design of mWater: a case study for Agreement Technologies. In 7th

European Workshop on Multi-Agent Systems - EUMAS-09.

Botti, V., Garrido, A., Giret, A., and Noriega, P. (2009b). Managing water

demand as a regulated open MAS. In Workshop on Coordination, Organi-

zation, Institutions and Norms in agent systems in on-line communities,

COIN-09, volume 494 of LNCS, pages 1–10. Springer.

Branting, L. K. (1991). Building explanations from rules and structured cases.

International Journal of Man-Machine Studies, 34(6):797–837.
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Heras, S., Garćıa-Pardo, J. A., Ramos-Garijo, R., Palomares, A., Botti, V.,

Rebollo, M., and Julián, V. (2009c). Multi-domain case-based module for

customer support. Expert Systems with Applications, 36(3):6866–6873.

Honey-Roses, J. (2007). Assessing the potential of water trading in Spain. ENR

319 Advanced International Environmental Economics. Prof. T. Panay-

otou at Harvard’s John F. Kennedy School of Government.

Horrocks, I. and Patel-Schneider, P. (2004). Reducing OWL entailment to

description logic satisfiability. Journal of Web Semantics, 1(4):345–357.

Hulstijn, J. (2000). Dialogue Models for Inquiry and Transaction. PhD thesis,

University of Twente.

300



Bibliography

Hulstijn, J. and van der Torre, L. (2004). Combining goal generation and

planning in an argumentation framework. In 10th International Workshop

on Non-Monotonic Reasoning, NMR-04, LNAI. Springer-Verlag.

Jakobovits, H. and Vermeir, D. (1999). Dialectic semantics for argumentation

frameworks. In 7th International Conference on Artificial Intelligence and

Law, ICAIL-99, pages 53–62. ACM Press.

Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Sierra, C., and

Wooldridge, M. (2001). Automated negotiation: prospects, methods and

challenges. International Journal of Group Decision and Negotiation,

10(2):199–215.

Kakas, A., Maudet, N., and Moraitis, P. (2005). Modular Representation

of Agent Interaction Rules through Argumentation. Autonomous Agents

and Multi-Agent Systems, 11:189–206.

Karacapilidis, N. and Papadias, D. (2001). Computer supported argumenta-

tion and collaborative decision-making: the HERMES system. Informa-

tion Systems, 26(4):259–277.

Karacapilidis, N., Trousse, B., and Papadias, D. (1997). Using case-based

reasoning for argumentation with multiple viewpoints. In 2nd Interna-

tional Conference on Case-Based Reasoning Research and Development,

ICCBR-97, pages 541–552. Springer.

Karlins, M. and Abelson, H. I. (1970). Persuasion: How Opinions and Atti-

tudes are Changed. Springer.

Karunatillake, N. C., Jennings, N. R., Rahwan, I., and McBurney, P. (2009).

Dialogue Games that Agents Play within a Society. Artificial Intelligence,

173(9-10):935–981.

Kripke, S. (1959). A completeness proof in modal logic. Journal of Symbolic

Logic, 24:1–14.

Lodder, A. and Herczog, A. (1995). DIALAW - a dialogical framework for

modelling legal reasoning. In 5th International Conference on Artificial

Intelligence and Law, ICAIL-95, pages 146–155. ACM Press.

Lodder, A. R. (1998). DiaLaw. On legal justification and dialogue games. PhD

thesis, Universiteit Maastricht.

301



Bibliography
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and argument schemes for collaborative decision making. In 1st Interna-

tional Conference on Computational Models of Argument, COMMA-06,

volume 144, pages 71–82. IOS Press.

Toulmin, S. E. (1958). The Uses of Argument. Cambridge University Press.

van Eemeren, F. H. and Grootendorst, R. (1984). Speech acts in argumentative

discussions. Foris Publications.

van Eemeren, F. H. and Grootendorst, R. (1992). Argumentation, commu-

nication, and fallacies: a pragma-dialectical perspective. Routledge Pub-

lishers.

van Eemeren, F. H. and Grootendorst, R. (2004). A Systematic Theory of

Argumentation: The pragma-dialectical approach. Cambridge University

Press.

van Eijk, R. M. (2002). Semantics of Agent Communication: An Introduction.

In Foundations and Applications of Multi-Agent Systems, UKMAS 1996-

2000, Selected Papers, volume 2403 of LNAI, pages 152–168. Springer-

Verlag.

Vázquez-Salceda, J., Cortés, U., Padget, J., López-Navidad, A., and Ca-
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