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Abstract

One of the most exciting aspects of transcriptome biology is the con-
textual adaptability of eukaryotic transcriptomes and proteomes by
post-transcriptional regulation (PTR). PTR mechanisms such as al-
ternative splicing (AS) and alternative polyadenylation (APA) have
emerged as tightly regulated processes playing a key role in gen-
erating transcriptome complexity and coordinating cell differentiation
or tissue development. However, how these mechanisms imprint dis-
tinct functional characteristics on the resulting set of isoforms to de-
fine the observed phenotype remains poorly understood. The num-
ber of PTR variants and their resulting range of potentially functional
consequences makes their functional validation an impractical task if
done on a case-by-case basis. Besides, the lack of isoform-oriented
functional profiling approaches has made that much of the compu-
tational work done to elucidate transcriptome-wide functional ques-
tions has either involved ad hoc computational pipelines applied to
specific biological systems or has relied on simple GO-enrichment
analysis that are not informative about the PTR impact on isoform
properties.

Thus, even though more than 60,000 publications on AS, a few num-
ber of existing isoforms have been associated with specific proper-
ties while the number of novel AS/APA variants with unknown and
even unexplored functions is exponentially increasing thanks to the
use of next-generation sequencing (NGS). Due to the technical limi-
tations of NGS to reconstruct the transcript structure, high-throughput
sequencing of full-length transcripts using third-generation technolo-
gies (TGS) is opening up a new transcriptomics era that enhances
the definition of gene models and, for the first time, enables to pre-
cisely associate functional events within the RNA molecule.



This thesis addresses three major challenges to the progression of
the study of isoform function. First, with the emergence and increas-
ing popularity of TGS, the accurate definition and comprehensive
characterisation of de novo transcriptomes is essential to ensure
the quality of any conclusions on transcriptome diversity drawn from
these data. The lack of long-read oriented quality aware analysis
motivated the development of SQANTI (https://bitbucket.org/
Conesalab/sqanti)), an automated pipeline for the structural charac-
terization and quality assessment of full-length transcriptomes. Sec-
ondly, the gene-centric nature of functional resources remained the
major limitation to the extended study of functional isoform variabil-
ity, especially for novel isoforms, which cannot be characterised by
static databases. Thus, we designed IsoAnnot, which dynamically
constructs an isoform-resolved rich database of functional annota-
tions by using as input transcript sequences and integrating infor-
mation disseminated across several databases and prediction meth-
ods. Finally, because no methods to interrogate the functional impact
of PTR were available, we developed novel approaches and user-
friendly tools such as tappAS |(http://tappas.org/), designed to
facilitate researchers the transcriptome-wide functional study of context-
specific isoform regulation.

Thereby, this thesis describes the development of an analysis frame-
work that tackles the fundamental challenges of the isoform func-
tional analysis by providing a set of novel methods and tools that
offer an unique opportunity to explore how the phenotype is speci-
fied by altering the functional characteristics of expressed isoforms.
Applied to a murine neural differentiation system, our pipeline pro-
filed the effect of isoform regulation on the inclusion of several func-
tional elements within transcripts between motor-neuron and oligo-
dendrocyte differentiation systems and specifically, we discovered
isoform-specific transmembrane regions whose modulation by PTR
might contribute to control cell type-specific mitochondrial dynamics

during neural fate determination.


(https://bitbucket.org/ConesaLab/sqanti)
(https://bitbucket.org/ConesaLab/sqanti)
(http://tappas.org/)

Resumen

Uno de los aspectos méas apasionantes de la transcripcion es la plas-
ticidad transcriptémica y protedmica mediada por los procesos de
regulacién post-transcripcional (PTR). Los mecanismos PTR como
el splicing alternativo (AS) y la poliadenilacién alternativa (APA) han
emergido como procesos estrechamente regulados que juegan un
papel clave en la generacién de la complejidad transcriptémica y
estan asociados con la coordinacién de la diferenciacion celular o
el desarrollo de tejidos. Sin embargo nuestro conocimiento sobre
coémo estos mecanismos regulan las propiedades de los productos
resultantes para definir el fenotipo es aliin muy reducido. La cantidad
de variantes existentes y el amplio rango de posibles consecuen-
cias funcionales, hacen su validacion funcional una tarea impracti-
cable si se realiza caso por caso. Ademas, la falta de herramien-
tas para la evaluacién funcional orientada a isoformas ha provocado
que gran parte del trabajo computacional haya empleado pipelines
ad-hoc aplicadas a sistemas biolégicos especificos o simplemente
hayan confiado en analisis de enriquecimiento GO, los cuales no
son informativos del impacto en las propiedades de las isoformas
gue hay detras de la regulacién PTR.

De hecho, a pesar de las mas de sesenta mil publicaciones relativas
al AS, muy pocas isoformas se han asociado con propiedades es-
pecificas, mientras que el numero de nuevas variantes AS/APA con
function desconocida crece exponencialmente debido a las técnicas
de secuenciacién de segunda generacién (NGS). Ademas, y debido
a limitaciones técnicas de las NGS para reconstruir la estructura
de los transcritos, las tecnologias de secuenciacion de tercera gen-
eracion (TGS) estan definiendo una nueva era en la que, por primera



vez, es posible conocer la secuencia de elementos estructurales y
funcionales en los mRNAs.

En esta tesis se han abordado tres propositos principales para poder
avanzar en el estudio funcional de las isoformas. En primer lugar,
con las TGS siendo cada vez mas utilizadas, la evaluacién de la
calidad de los transcriptomas de novo es esencial para asegurar la
fiabilidad de la diversidad transcriptémica encontrada. La falta de
analisis de calidad orientados a secuencias largas ha motivado el
desarrollo de SQANTI, una pipeline automatizado para la exhaus-
tiva evaluacion de TGS transcriptomas. En segundo lugar, la infor-
macién a nivel de gen de la mayoria de bases de datos funcionales
sigue siendo el principal escollo para el estudio de la variabilidad en-
tre isoformas, especialmente en el caso de las isoformas nuevas, en
las que las bases de datos estaticas impiden su caracterizacion. Asi,
hemos disenado IsoAnnot, que construye una base de datos de an-
otaciones funcionales con resolucion a nivel de isoformas integrando
informacion diseminada por multiples bases de datos y métodos de
prediccion. Finalmente, la indisponibilidad de métodos para estudiar
el impacto funcional de la regulacién de isoformas, nos ha motivado
a desarrollar tappAS, una herramienta dinamica, flexible y disefiada
para facilitar el abordaje de este tipo de estudios.

Por lo tanto, durante esta tesis hemos desarrollado una infraestruc-
tura que resuelve los retos principales del analisis funcional de iso-
formas, proporcionando un conjunto de nuevos métodos y herramien-
tas que ofrecen una oportunidad Unica para explorar como el fenotipo
se especifica post-transcripcionalmente, mediante la alteracion de
las propiedades funcionales de las isoformas expresadas. La apli-
cacion de nuestro analisis a un doble sistema de diferenciacion neu-
ronal en ratén definié el efecto de la regulacién de isoformas entre
la diferenciacion de motoneuronas y oligodendrocitos para multiples
elementos funcionales. Entre ellos, hemos descubierto regiones
transmembrana que son diferencialmente incluidas en las isoformas
expresadas entre ambos tipos celulares y cuya regulacion podria
estar contribuyendo al control de las dinamica mitocondrial.



Resum

Un dels aspectes més emocionants de la biologia del transcriptoma
és I'adaptabilitat contextual de transcriptomes i proteomes eucari-
otes mitjangant la regulacié post-transcripcional (PTR). Els mecan-
ismes PTR, com el splicing alternatiu (AS) i la poliadenilacié alter-
nativa (APA), s’han convertit en processos molt regulats que juguen
un paper clau en la generacié de la complexitat del transcriptoma
i en la coordinacio de la diferenciacié cel-lular o del desenvolupa-
ment de teixits. No obstant aix0, el nostre coneixement de com
aquests mecanismes imprimeixen caracteristiques funcionals difer-
ents al conjunt resultant d’isoformes per definir el fenotip observat
és encara escas. El nombre de variants de PTR i les seues con-
seqglencies potencialment funcionals fa que la validacié funcional
sigui una tasca poc practica si es fa cas per cas. A més, la manca
d’enfocaments funcionals orientats a isoformes ha fet que gran part
del treballs computacionals per esbrinar qliestions funcionals a niv-
ell de transcriptoma siguen estrategies computacionals ad hoc apli-
cades a sistemes biologics especifics o bé basats en un simple
analisi d’enriquiment GO, que no aporten informaci6 sobre I'impacte
de la PTR sobre les propietats de les isoformes.

Aixi, malgrat les més de 60.000 publicacions existents sobre AS,
poques de les isoformes existents s’han associat a propietats es-
pecifiques, mentre que el nombre de noves variants AS/APA amb
funcions desconegudes i fins i tot inexplorades augmenta de manera
exponencial gracies a la seqglienciacié de nova generacié (NGS). A
causa de les limitacions técniques del NGS per reconstruir I'estructura
dels transcrits, la seqlienciacié d’alt rendiment de transcrits de lon-
gitud completa mitjangant tecnologies de tercera generacié (TGS)
obre una nova era en la transcriptdmica, ja que millora la definicié



dels models genétics i, per primera vegada, permet associar amb
precisié esdeveniments funcionals dins de la molécula d’ARN.

Aquesta tesi aborda tres grans reptes per a progressar en I'estudi de
la funcié de les isoformes. En primer lloc, amb I'aparicié i la popular-
itat creixent del TGS, la definici6 precisa i la caracteritzacié completa
dels transcriptomes de novo sén essencials per garantir la quali-
tat de qualsevol conclusié sobre la diversitat del transcriptoma. La
manca d’analisis de qualitat orientats a lectures llargues va motivar
el desenvolupament de SQANTI (https://bitbucket.org/ Conesalab /
sganti), una estrategia computacional automatitzada per a la carac-
teritzacié estructural i 'avaluacié de la qualitat dels transcriptomes
de longitud completa. En segon lloc, els recursos funcionals exis-
tents centrats en el gen suposen una gran limitacié per a I'estudi
extensiu de la variabilitat funcional de les isoformes, especialment
en les noves isoformes, que no es poden caracteritzar per bases de
dades estatiques. Per tant, vam dissenyar IsoAnnot, que construeix
dinamicament una base de dades amb anotacions funcionals a niv-
ell d’isoforma, que utilitza com a informacié d’entrada les seqiiéncies
dels transcrits i integra informacié de diverses bases de dades i
métodes de predicci6. Finalment, com no hi havia cap métode per
interrogar I'impacte funcional del PTR, vam desenvolupar nous enfo-
caments i eines facils d’utilitzar, com ara tappAS (http://tappas.org/),
dissenyada per facilitar als investigadors els estudis funcionals de
transcriptoma complet i de regulacié d’isoformes en contexts es-
pecifics.

Per tant, aquesta tesi descriu el desenvolupament d’'un marc d’analisi
que aborda els reptes fonamentals de I'analisi funcional d’isoformes,
proporcionant un conjunt de nous metodes i eines que ofereixen una
oportunitat Unica per explorar com l'alteracié de les caracteristiques
funcionals de les isoformes expressades defineix el fenotip. Apli-
cada a un sistema de diferenciacié neuronal murina, la nostra es-
trategia va descriure I'efecte de la regulacio de les isoformes en la in-
clusié de diversos elements funcionals en els transcrits al comparar
els sistemes de diferenciacié a motor-neurona i oligodendrocits i,



concretament, vam descobrir regions transmembrana especifiques
d’isoformes, la modulacié de les quals per PTR podria contribuir a
controlar la dinamica mitocondrial especifica del tipus cel-lular du-

rant la determinacio del desti neuronal.
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1.1 Alternative Splicing

"DNA makes RNA makes protein.” For many years the central dogma of molec-
ular biology explained the flow of genetic information in this two-step process.
However, we now know that, after transcription, ribonucleaic acids (RNAs) un-
dergo a series of intertwining processes that allow the generation of multiple
messenger RNA (mRNA) types from only one pre-mRNA molecule. Thereby,
post-transcriptional regulation (PTR), which includes the control of splicing and
polyadenylation (polyA), provides cells with a mechanism to dramatically diver-
sity and fine-tune transcriptomes and proteomes [288].

The most well-studied PTR mechanism is the alternative splicing (AS). mMRNA
splicing is a highly conserved biological process in which introns from nascent
RNA molecules are removed and exons are ligated to form mature mRNAs [242]
[297]. The basic patterns of AS include exon skipping, the use of alternative
5" and 3’ splice sites, mutually exclusive exons, intron retention, and alterna-
tive splicing coupled with alternative first or last exons (Figure [T.1]A). Besides
these basic patterns involving the alternative use of single splicing events, eu-
karyotic transcriptomes can also combine several alternative events, resulting in
mRNA variants with complex splicing patterns [332] [289] (Figure [1.]B). This
combinatorial control of AS provides a powerful mechanism for expanding the
regulatory and functional complexity of eukaryotic organisms from a reduced
number of genes. Genome-wide studies estimate that 90%-95% of multi-exon
human genes undergo some level of AS, most of them resulting in mMRNA vari-
ants with tissue specific expression patterns [348] [237]. However, although AS
has been most frequently observed in vertebrates, it is also present in inverte-
brates (80% in Drosophila melanogaster [116][335]), plants (40%-60% in Ara-
bidopsis thaliana [170][204]) and fungi (50% in Verticillium dahliae [154]), and
so represents a widely used mechanism for the generation of molecular diversity

in eukaryotes.
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Alternative splicing regulation

Alternative splicing is regulated in a cell-type and developmental-stage specific
manner [374][348][94]. This regulation is dictated by a finely regulated pro-
gram of protein-RNA interactions that involves cis elements within pre-mRNA se-
guences and trans-acting factors that bind to these cis-elements [242][348] (Fig-
ure[T.7]C). Cis elements include the 5’ and 3’ splice sites (GU-AG dinucleotides)
that define the boundary of an intron with its upstream and downstream exon,

respectively, as well as the branch site (A) and polypyrimidine tract (Y(n)), both

A Basic alternative splicing patterns
Exon skipping Alternative 5’ splice site Alternative 3’ splice site
Mutually exclusive exons Intron retention

@

Alternative first exons Alternative last exons
Poly(A) Poly(A)
i ! _ 2 I v
B Complex alternative splicing patterns

Exon  5'ss Intron 3¥ss  Exon 5SS Intron 3ss  Exon

Figure 1.1: Alternative splicing. Figure adapted from Park et al. [242]. A. Basic
and B. complex patterns of alternative splicing. Dark-blue boxes represent constitutively-
spliced exons. Red, light-blue, and green boxes represent alternatively spliced exons.
C. Alternative splicing is regulated by an extensive program of protein-RNA interactions
involving cis elements within pre-mRNAs and trans-acting factors that bind to these cis
elements.
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located upstream of the 3’ splice site [242]. These elements are all recognised
by the spliceosome (the core splicing mechinery), which plays an essential role
in defining exon and intron events [348]. Additionally, auxiliary cis elements in
exons or flanking introns can act as splicing enhancer elements (ESEs) or splic-
ing silencer elements (ESSs) to promote or repress exon splicing through their
interaction with trans-acting splicing regulators. These include RNA-binding pro-
teins (RBPs), whose combinatorial repertoire within pre-mRNAs determines the
splicing-site choice [242][108] and whose coordinated and close regulation is
essential to generate context-specific splicing programs such as those seen for
the MBNL gene in differentiated cells [132], RBFOX in brain development [115]
or NOVA in neurons [86].

Alternative polyadenylation

3’ end processing is an essential step of eukaryotic mMRNA maturation, which
typically involves the cleavage of the 3’ end of pre-mRNAs and addition of a
poly(A) tail. A large proportion of eukaryotic genes can recognise multiple alter-
native polyA sites (PAS) within pre-mRNAs, a phenomenon known as alternative
polyadenylation (APA) [317]. Together with AS, APA is one of the main sources
of transcriptome and proteome diversity in several species. [317][385][386].
In mammalian systems, two different motifs are known to provide the signals
that define PASs: (1) the AAUAAA sequence located 20-30 nucleotides (nt)
upstream the cleavage site where the poly(A) is added, and (2) a GU-rich re-
gion downstream of the previous signal [21] [260]. In all cases, recognition of
these sequences by specific proteins leads to mRNA cleavage and subsequent
polyadenylation. However, the regulatory mechanisms governing global and
gene-specific APA are only starting to be deciphered.

Depending on the location of the PAS, APA can be classified into two major
categories. First, coding region-APAs (CR-APAs) are located within internal ex-
ons or introns and involve the alteration of the coding region. Thus, CR-APA gen-
erates proteins with different C terminals (Figure [5.24]B). Second, untranslated
regions (UTR) APAs (UTR-APAs) are located in the 3° UTR and generate tran-
scripts with APA but identical coding regions (Figure 5.24]A) [52][76]. APA has
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recently emerged as a widespread mechanism to modulate RNA transcription
and fate by the generation of transcripts with alternative 3’ UTRs and protein-
coding potential. Context-specific global profiling studies have also illustrated
how APA landscape is tissue-specific [228] and its regulation plays key roles in
numerous physiological processes such as neurogenesis or cell differentiation
[153][103].

untranslated region APA (UTR-APA) coding region APA (CR-APA)
proximal distal proximal distal
cleavage site cleavage site cleavage site cleavage site

/ /

alternative C-terminal sequence
from use of intronic stop codon

—— -

miRNA sites

different 3'UTR lengths, with potential

consequences for protein levels different protein isoforms

Figure 1.2: Types of alternative polyadenylation. Figure adapted from Hardy et
al. 2016 [135] A. Untranslated region alternative polyadenylation (UTR-APA) involves
the presence of more than one cleavage site within the 3 UTR whose alternative use
changes the 3" UTR length. B. In coding-region alternative polyadenylation (CR-APA),
the use of polyA sites upstream to the 3° UTR are used, which alters the resulting coding
sequence.
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1.2 High-throughput technologies to characterise tran-
scriptome complexity

The genome-wide analysis of transcriptomes has been performed using exon
microarrays first and more recently RNA-seq. The development of exon microar-
rays in the early 2000s allowed researchers to overcome the low-throughput
constraints of previous approaches such as the reverse transcription polymerase
chain reaction [251] (RT-PCR) and the sequencing of expressed sequence tags
[212](ESTs) and address the quantification and characterisation of global splic-
ing regulatory programs across many tissue types, organisms and physiological
stages [184]. However, since microarrays are based on sequence hybridisation,
they generate high levels of noise in expression estimates and cannot be used
to discover novel splicing events.

In the late 2000s sequencing experienced a revolution because of the emer-
gence of Next Generation Sequencing (NGS) platforms. Applied to the sequenc-
ing of RNA [220], high-throughput sequencing rapidly demonstrated its ability
to study transcriptome complexity and accurately quantifying splicing events
[348][237] and soon became the standard approach for transcriptome profil-
ing. NGS platforms have evolved and some of them, such as Roche/454 and
ABI/SOLID, became quickly obsolete because of continuous improvements in
the technology. The most widely used NGS sequencing platforms are currently
those supported by lllumina, which are characterised by their high-throughput
and accuracy as well as the short length of sequenced reads (50-200 nt). To-
day, the new era of lllumina platforms (e.g. the NovaSeq6000 system) can reach
up to 10 billion sequenced single-reads per flow cell in a single run.

In transcriptomics, the standard procedure for transcript identification from
short-reads is either to map them to the reference genome followed by compu-
tational determination of the set expressed transcripts or, to infer them by de
novo assembly when no reference genome is available. However, even though
dozens of isoform reconstruction algorithms for short-read data have been pub-
lished (e.g., Cufflinks [323] for genome-guided reconstruction or Trinity[125] for

de novo assembly), accurate transcript inference remains far from accurate [305]



1. INTRODUCTION

[319]. This is mainly because short-reads do not usually span multiple splice
junctions. This breaks the continuity of the transcript sequence and hinders the
resolution of assembly ambiguities (Figure [1.3). Particularly complicated is the
analysis of complex transcriptomes where multiple, highly similar isoforms are
expressed from the same gene. Thus, despite being extremely valuable to iden-
tify and quantify individual splicing events, short-reads have serious limitations

in the full-length (FL) reconstruction of expressed transcripts.

sene — - S

mMRNA

Isoforms

Short-read e
technologies —_

Isufficient Connectivity S;ae:r?iig

Splice Isoform Uncertainty splice
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Long-read — R — O —
technologies ~— ————

Full-length cDNA Sequence Reads
Splice Isoform Certainty - No Assembly Required

Figure 1.3: Differences between short-read and long-read sequencing approaches in
the characterisation of transcriptome complexity.

To overcome these short-read limitations in the identification of FL splicing
variants, Tilgner et al. developed a novel "synthetic long-read” RNA-seq ap-
proach based on short-read sequencing [320], which became llumina’s TruSeq
synthetic long-read technology. This protocol divides the sample into small pools
containing a limited number of molecules (less than 1,000) which reduces the
probability of any one pool containing variants from the same gene. Hence, de
novo assembly of the short-reads generated from single pools greatly reduces
the issues of ambiguity arising from the use of short-reads. However, the as-

sumption that each pool contains only one RNA molecule per gene in each pool
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cannot be guaranteed, especially for genes with very high expression levels and
s0, mis-assembly and repetitive-region problems associated with de novo as-
sembly algorithms remain [44].

Third Generation Sequencing (TGS) has recently emerged as a technology
capable of solving most of the issues of short-read data to define transcriptome
complexity. When applied to transcriptome sequencing, TGS provides both the
FL combination of splicing events of each expressed molecule without requiring
assembly steps, and detects variability at the 3’ ends [387][51], thus facilitat-
ing a comprenhensive analysis of the alternative PTR mechanisms that gen-
erate transcriptome complexity. The most notable TGS platforms are PacBio,
which was unveiled in 2010 by Pacific Biosciences [273] and the portable Min-
ION sequencer, presented by Oxford Nanopore Technologies (ONT) in 2014
[234]. PacBio generates reads averaging around 10 kb at the expense of a
higher error rate (15%) than short-reads. Nanopore technology produces even
longer reads (up to a few hundreds of thousand base pairs long), but with even
a lower read accuracy than PacBio.

PacBio RNA-seq (Iso-Seq) has been already used to resolve transcriptome
complexity across multiple organisms including human [319], insects [112], ani-
mals [178] and plants [84][1][347][53]). However, the MinlON nanopore system
has been applied just in a few number of transcriptomic studies [113] [39] and,
often, has been used to only characterise a bunch of genes of interest [136] [29].
To date, more than 100 publications have reported using PacBio Iso-Seq, mak-
ing it the most proven and widely used technology to resolve isoform diversity at

complex loci and across multiple organisms.

1.2.0.1 PacBio Iso-Seq sequencing

PacBio sequencing is also known as single-molecule real-time (SMRT) sequenc-
ing because of its ability to read individual cDNA molecules while replication is
taking place. RNA sequencing (Iso-Seq) using PacBio SMRT relies on the FL
cDNA sample enrichment by using the the Clontech SMARTer PCR cDNA syn-

thesis kit, which generates around 60% of FL cDNA molecules. The bias of RSII
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systems towards preferentially loading smaller fragments requires sample size-
fractionation by BluePippin™ or SageELF™ systems (Figure [1.4]A). However,
the new Sequel system has a lower loading bias, which eliminates the size-
fractionation of transcripts smaller than <4kb and simplifies the Iso-Seq sample
preparation workflow.

Next, complementary DNA (cDNA) is converted into a SMRTbell library by
ligation with SMRTbell hairpin adapters (Figure[1.4]C), resulting in single-stranded
circular molecules that are subsequently attached to zero-mode waveguides
(ZMWs) and sequenced (Figure[T.4] B). Depending on the length of the molecule,
the polymerase may pass the sequence several times, generating reads that
are frequently longer than the FL cDNA sequence. The sequence generated
by each individual molecule pass is termed as subread while the consensus of
these passes is called a circular consensus sequence (CCS) read and is com-
puted bioinformatically (Figure [1.4]C). The FL status of a CCS requires both the
presence of both 5 and 3° SMARTer primers (ligated during retrotranscription
(RT)) and the polyA tail, which indicate the full-length cDNA sequencing and
the 3 end mRNA completeness, respectively. Based on these signals, CCS
sequences can be catalogued into FL CCSs if the primers and the polyA tail
are present and into non-FL (nFL) CCSs when any of these elements is miss-
ing (nFL). Despite that, FL reads do not necessarily indicate the FL status of
the transcript molecule since thse signals do not guarantee 5-end complete-
ness. Factors such as 5’-end degradation before RT or incomplete 5’-end RT
during library preparation result in the FL classification of reads originated from
incomplete 5’-end cDNAs.

The main limitation of PacBio sequencing is its high read-error rate. CCS
computation increases the quality of reads by taking advantage of the multi-
ple posible passes of the polymerase over the cDNA molecule. The shorter
the insert between the SMRTbell™ adapters, the higher number of full passes
through the molecule will be competed, and thus, the more accurate and con-
fident the read will be. Therefore, improvements in PacBio chemistry focus

on increasing sequencing lengths (now >10 kb in the Sequel System) to pro-
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duce CCSs with sufficient passes to eventually allow the direct determination of
isoform-resolved transcriptomes from single CCS reads without requiring extra

correction steps [64].
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Figure 1.4: PacBio Iso-Seq sequencing. A. Iso-Seq sample preparation workflow. B.
Single-molecule real-time (SMRT) templates are attached to the zero-mode waveguides
(ZMWs). When a nucleotide is incorporated by the DNA polymerase, the fluorescent tag
is cleaved off and monitored by the PacBio system in real time. SMRT cells contain up
to a million ZMWs. C. Definition of the circular template molecule, the polymerase read
and its set of subreads, and the bioinformatically generated circular consensus sequence
(CCS). The DNA template is labeleld in yellow and purple and the adapters in green.

Current CCS sequences are still insufficient for the study of transcriptome
complexity. This has boost the development of error-correction algorithms for
long-reads, most of them taking advantage of highly accurate short-reads, such
as LSC [12], proovread [130] and LoRDEC [286]. Moreover, three main pipelines
have been recently developed to deliver comprehensive and non-redundant sets
of high-quality FL isoforms by Iso-Seq data. These are described in the following

sections:
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IDP pipeline

The isoform detection and prediction pipeline (IDP) [13] was the first to appear
(in 2013). It is known as a “hybrid” approach because it relies on lllumina short-
reads to correct long-reads using the large-scale consensus (LSC) algorithm
[12] to align short-reads to long-reads, replacing any bases that do not match.
Complementary, short-reads are used to detect splice junctions by mapping
them to a reference genome with the SpliceMap tool [11]. Finally, IDP module is
run both to detect and predict isoforms.

Isoform are detected when an error-corrected long-read spans a reference
transcript from the 5’ end to 3’ end and so, the detection step requires a refer-
ence transcriptome. Conversely, isoforms are predicted when the combination
of spliced junctions is inferred by statistical modelling (using both short-read
junction and long-read genome alignment information), which allows the char-
acterisation of long transcript variants that are very difficult for PacBio to fully

sequence.
Iso-Seq™ Analysis

Iso-Seq™ RNA isoform sequencing analysis, also known as ToFU (for ‘Tran-
script isOforms: Full-length and Unassembled’), was presented by PacBio in
collaboration with other institutions of USA in 2015 [123]. The pipeline com-
prises two main steps. First, in the iterative clustering for error correction (ICE)
step, FL reads are divided into different clusters by similarity: reads clustered to-
gether are highly likely to belong to the same transcript variant and so they are
merged to correct randomly-distributed sequencing errors. Thus, ICE provides
high-quality, low error-rate consensus sequences and dramatically reduces the
number of redundant isoforms. Although ICE filters out non-FL reads because
they would otherwise cause the definition of incomplete isoforms, they are used
during 'Quiver polishing’ step to increase the coverage of detected isoforms
and further improve their quality. Iso-Seq™ is the only PacBio transcriptome-
definition approach able to correct sequencing errors and generate a set of

high-quality isoforms without using a reference genome.
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Even though Iso-Seq™ analysis can remove a high proportion of the redun-
dancy found in the data, some sequences may still be redundant isoforms. The
collapsing strategy implemented by PacBio (Cupcake) when reference-genome
is available groups together sequences with both an identical combination of
splice junctions (detected after sequence genome alignment) and 3’ and 5’
ends. However, while short sequence variations (>100 bp) at the 3’ end are
considered biological variability and maintained as different isoforms, Cupcake
minimise the definition of 5’-degraded sequences by evaluating more conserva-
tively differences at 5° end (merging sequences with missing 5’ exons and or
less than 5000 bp difference if same 5’ end exon). For each group of redundant

sequences, the longest one becomes the representative isoform.
TAPIS

TAPIS (‘transcriptome analysis pipeline using isoform sequencing’) was devel-
oped in 2016 as a method for the identification of FL transcript isoforms and APA
events without using short-read sequencing [1]. TAPIS uses an iterative pro-
cess that alternates CCS mapping by GMAP [370] and error correction based
on comparison with the reference genome. During iterations, only sites that are
mapped with a high level of confidence are corrected. Because mismatches de-
tected close to the splicing sites are left uncorrected during the iterative process,
alignments with gaps are eventually evaluated and filtered using SpliceGrapher
[279] in order to minimise the number of false-positive splice junctions. Finally,
similar to Cupcake, TAPIS eliminates read redundancy by collapsing reads ac-
cording to the splice junction combination and PAS detected. Reads with iden-
tical intron patterns and 3’ ends (using 15 nt as a cutoff to define the PAS) are
grouped together. The largest CCS is defined as the representative transcript of
the redundant group.

An overview of the wide range of existing long-read applications and the set
of available bioinformatics tools and opportunities for research is reviewed in

Sedlazeck et al. [292] the we refer to this resource for further reading.
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1.3 Approaches for isoform quantification and differen-
tial isoform usage

Although RNA-seq accurately provides a relatively acurrate estimates of gene
expression, the deconvolution of the expression of a gene into the expression
of its isoform variants using short-reads is challenging because a high rate of
similarity prevents the uniquely association of short-reads with individual iso-
forms. Several approaches using RNA-seq data have been proposed, includ-
ing alignment-dependent tools such as RSEM [188], eXpress [275] or Cufflinks
[323] as well as alignment-free methods as Sailfish [245], Kallisto [32] and
Salmon [246]. Their comprehensive evaluation showed that RSEM and alignment-
free methods performed the best, both in terms of accuracy and computational
resources [387]. RSEM implements iterations of Expectation-Maximization (EM)
algorithms to assign genome-mapped reads to their originating isoforms. In con-
trast, Salmon, Sailfish and Kallisto rely on the so-called pseudo-alignment con-
cept, based on the idea that precise alignments are not required to assign reads
to founder isoforms. Pseudo-alignment does compromise the accuracy of ex-
pression estimates and considerably reduces computational time and memory
requirements.

Additionally, the detection of changes in the use of transcript variants be-
tween experimental conditions is key to define context-specific splicing pro-
grams. There are generally two main types of strategy for testing differences
in the relative abundances of gene isoforms between conditions, depending on
whether they require the estimation of isoform expression or not. The assembly-
based (or isoform deconvolution) strategies integrate isoform expression and
gene models to capture genes with differential isoform usage (DIU). Methods
such as CuffDIFF2 [323] or UITA [230] use information on isoform structure to
estimate the isoform expression levels that best explain the observed reads and
subsequently test genes for DIU between two experimental groups. However,
this strategy is usually hampered by the intrinsic limitations of short-read se-

quencing to correctly identify the structure and event combination of expressed
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isoforms and accurately quantify their absolute expression [64], a factor that re-
mains a challenge in complex models despite the large number of existing tools
[387].

In contrast to the assembly-based approaches, exon-based methods quan-
tify single splicing events such as exons or junctions and them individually com-
pare their relative abundances across conditions. These approaches skip iso-
form quantification and take advantage of the greater accuracy of short reads in
the quantification of individual events, which can simply be addressed by count-
ing how many reads map to each feature, as performed by tools such as HTSeg-
count [262]. The abundance of specific splicing events is generally described as
the percentage splice-in (PSI), which denotes the percentage of isoforms that
include the splicing event (exon or junction) compared to the gene’s total isoform
population. Differential splicing (DS) is then estimated as the difference of these
relative inclusion levels between two given conditions (APSI) [348] [335]. How-
ever, this approach neither accounts for biological variability between replicates
nor estimates the uncertainty of the difference. To try to tackle this limitation,
the SUPPA2 method [325] monitors the uncertainly level of each observed APSI
value to infer the biological relevance of splicing changes. Similarly, several
methods including DEXSeq [6] and DSGSeq [353] adopt a similar idea to de-
tect differentially spliced genes based on single events but fit regression models
directly onto read counts instead of using APSI to determine the significance
of DS. Several alternatives such as the diffSplice function from the limma R
package [274] and rDiff [87] are also available. Even though these exon-based
approaches accurately quantify single splicing events, they are only appropriate
for studying the inclusion and exclusion of specific exons but cannot resolve the
actual behaviour of transcript molecules or be used to investigate the cis-acting

regulation of events within transcripts.
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1.4 Functional impact of isoform regulation

Studies of isoform regulation have progressed from the evaluation of single splic-
ing or APA events to genome-wide analysis describing global post-transcriptional
patterns and their context-specific regulation. Published data indicate that post-
transcriptional patterns in metazoan organisms constantly change in response
to environmental stresses [255] and that the regulation of specific AS or APA pro-
grams are essential for lineage determination, cell differentiation and tissue or
organ development [18]. Moreover, the functional relevance of these PTR mech-
anisms is further supported by the large number of human diseases that have
been associated with splicing abnormalities such as mutations or dysregulation
of cis-acting sequence elements, trans-acting factors or spliceosome compo-
nents and include neurodegenerative disorders, the autism spectrum disorder,
neuromuscular abnormalities, diabetes and cancer [18][291][58](70]. Further-
more, experimental validation of hundreds of isoforms has revealed the wide
range of effects arising from the expression of alternative isoforms [165][304].
AS or APA events can modulate transcript expression levels by subjecting mR-
NAs to nonsense-mediated decay (NMD), impacting the function of gene prod-
ucts by modifying the amino acid (aa) sequence (Figure [1.5]A), or, shorten-
ing/lengthening 5’ and 3’ UTRs, which are essential for the regulating the mRNA

fate (Figure[1.5B).

1.4.0.1 Functional impact on protein properties

Hundreds of experimental validations of isoform variants have shown that the
magnitude of AS regulation ranges from subtle functional effects to completely
losses of function, as seen in apoptosis genes [333]. Protein isoforms may
even acquire novel functions different from the canonical isoform of same gene
[165][304]. The functional impact of protein isoforms can alter enzymatic activity
by deletion of the active site or loss of the substrate binding region, both pre-
venting product formation (Figure [T.5/A.1). Different transcription factors (TF)

components can also undergo AS, producing well-studied effects in TF activity



1.4 Functional impact of isoform regulation

17

such as DNA-binding modulation (Figure[T.5A) or transactivation domain struc-

ture alterations, influencing the activation of transcription polymerase Il (Figure

[[5A.2).
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Figure 1.5: Functional impact of isoform modifications. Figure modified from Kele-
men et al. [165]. A. Functional divergence of protein isoforms. AS and APA events
impact proteins and lead to (1) the loss of active sites, thus altering enzymatic activity,
(2) changes in transcription factors affecting the DNA binding domain, the transactivation
domain or transcriptional cofactor binding, (3) the regulation of protein-protein interac-
tions and (4) changes in the intracellular localisation of proteins. B. Functional effect of
transcript isoforms. UTR regulation of transcripts involves the gain and loss of cis ele-
ments which alters mRNA stability, localisation or tranlation rates by interacting with trans
elements such as RBPs, miRNAs or long non-coding RNAs.

Moreover, aside from modulating of protein properties and activation levels,
intracellular protein localization is also subjected to regulation by APA and AS,
what can lead to the acquisition of new functions or new protein interactions.
Alteration of nuclear localisation signals (NLSs), post-translational modification

(PTMSs) or protein interaction sites can lead to the re-distribution of protein iso-
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forms among different cellular compartments (Figure[1.5A.4). Skipping of trans-
membrane regions can also result in the loss of protein attachment to cell mem-
branes and the generation of soluble forms which may acquire novel functions
and interaction partners (Figure [T.5]A.4).

Finally, alternative exons can encode complete or partial interaction domains,
modulating interactions with other proteins. In most cases the binding affinity is
modulated but not completely abolished. Similarly, binding of low molecular-
weight ligands or hormones can be influenced by splicing events. A classical
example of this is the insulin receptor, in which an exon skipping generates a
receptor with a higher affinity to IGF-II [22] (Figure [1.5A.3).

Even though changes caused by individual splicing isoforms interfere with
almost every biological function [165][304] (Figure[1.5A), the contribution of AS
to proteome diversity and complexity remains controversial. Tress et al. claim
that, although extensive AS is found in higher eukaryotes, currently available
proteomics data provides little evidence that most transcript variants are actu-
ally translated into functional proteins and suggest that most detected variants
are not functional [324]. In contrast, based on evidence from several studies for
active translation of variants and their presence in polysome fractions [105][306]
or bound to ribosomes [358], others claim that gene isoforms significantly con-
tribute to both proteome composition and diversity [27]. Indeed, recent large-
scale proteomic studies suggest that the proteome actually explains a significant

proportion of RNA-level diversity [196].
1.4.0.2 Functional impact on UTR properties

Not all transcript variants necessarily result in the production of new protein
isoforms. Alternative transcription initiation (ATI), AS and especially APA con-
tribute to transcriptome complexity by generating isoforms with different UTRs
which can potentially affecting mRNA metabolism or protein localisation [93]
[316] (Figure[1.5B).

Modulating the availability of post-transcriptional control elements within mRNA
UTRs, such as microRNAs or RBP recognition sites, by the shortening or length-

ening of UTRs can produce changes in mRNA half-life, translation efficiency,
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mRNA export, isoform localisation and AS regulation. Moreover, the alternative
processing of UTRs can even lead to the alteration of the RNA secondary struc-
ture, which is essential for controlling the initiation of translation [131]. While
3’ UTRs are preferentially regulated by APA events, 5° UTRs are modulated by
AS and ATI. The most well-known effect is the inclusion of uORFs, repressive
elements found within the 5’ UTR of invertebrate mRNAs that mediate the trans-
lational repression of the main coding sequence (CDS) [55]. The role of UTR
regulation has been highlighted in neurons. While 5° UTR length modulation
influences global translation, transcripts with alternative, extended 3’ UTRs ac-
cumulate regulatory sequences that are crucial to drive cell-type specific trans-
lation [25].

1.4.0.3 Nonsense-mediated decay

Changes caused by individual splicing isoforms can also regulate gene expres-
sion by triggering mRNAs to the nonsense-mediated mRNA decay (NMD) path-
way [248]. NMD was originally discovered as a cellular surveillance pathway
that safeguards the quality of mRNA transcripts in eukaryotic cells. Thus, in
abnormal contexts NMD degrades mRNAs with premature termination codons
(PTCs), preventing the accumulation of such transcripts and the truncate pro-
teins they encode [201]. However, recent studies have shown that NMD has
a much broader role by regulating the stability of many intact transcripts in
order to post-transcriptionally modulate gene expression levels by altering the
mRNA splicing pattern. Thus, coupled to AS, NMD has recently emerged as an
expanded and conserved mechanism of gene expression regulation in natural

contexts and across multiple organisms [248][201].
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2.1 Motivation

A wealth of knowledge has been gathered about how AS and APA are regu-
lated and sufficient evidence exists on the importance of these changes for the
cellular physiology [18][52]. However, our understanding of how these mech-
anisms imprint distinct functional characteristics on the resulting set of tran-
script isoforms and lead to the observed phenotype is still very limited. Only a
few transcript variants have been associated with specific properties [304][165]
while the number of isoforms with unknown and even unexplored functions is
exponentially increasing due to the discovery of hundreds new variants by high-
throughput technologies [296][319][1][13]. Thus, even though more than 60,000
publications on AS, we still do not know the functional impact of most alterna-
tively spliced exons or APA sites. Currently, it is clearly impractical for any single
research group to individually test the differential function of all known isoforms.
Even restricting the study to a particular set of genes (for example TFs or ki-
nases), the remaining number of variants and the range of potentially functional
consequences would still make this an experimentally impractical task if done
on a case-by-case basis.

At computational level, some recent studies have carried out genome-wide
functional studies of isoform regulation. For example, Buljan et al. revealed that
the enrichment of spliced exons in disordered regions mediates new protein in-
teractions [37]. Yang et al. and Ellis et al. showed the impact of splicing variants
on the rewiring of protein-protein interaction networks in a tissue-specific man-
ner [377][94]. Moreover, APA has been highlighted as an spread mechanism to
escape microRNA regulation [206][142][26] and both 3’ and 5 UTR regulation
has been associated with widespread translation changes in Embryonic Stem
Cells [369] and neuronal differentiation [25]. Nevertheless, much of the work
done to answer transcriptome-wide questions in the functional impact of AS and
APA have either involved ad hoc computational pipelines applied to specific or-
ganisms, biological systems and functional properties, or rely on simple GO-
enrichment analysis of the set of genes regulated by AS or APA. Comparatively,

a lot is already known about the functional consequences of differential gene
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expression patterns thanks to the widely extended use of accurate RNA se-
quencing technologies to measure gene expression levels and the availability of
user-friendly bioinformatics tools that support the functional profiling of deferen-
tially expressed genes for virtually any organism. However, no similar situation
exists for the genome-wide functional study of differential isoform usage.

Therefore, although the wealth of data suggest that alternative splicing has
important physiological functions and a rapid progress has been made in the
development of tools for characterising splicing events and profiling their dynam-
ics, strategies for interrogating alternative isoforms from a functional perspective
are still lacking. In consequence, assessing if differential isoform usage is im-
pacting specific functional features such as PTMs or NLSs, or detecting genes
modulating mRNA stability by differential availability of UTR AU-rich elements
are currently tasks difficult to address. Thus, the development of bioinformat-
ics approaches facing some of the main challenges associated with the isoform
analysis becomes essential to dynamically and routinely interrogate the context-
specific functional effect of isoform regulation.

In this thesis we develop a new bioinformatics paradigm for studying the po-
tential functional impact of isoform regulation based on three main pillars: the
accurate definition of de novo isoform-resolved transcriptomes by TGS tech-
nologies (Chapter [3), the dynamic annotation of transcript and protein isoforms
with rich functional information (Chapter [4) and the development of approaches
that, by integration of expression dynamics and functional annotation, provide
transcriptome-wide insights into the context-specific effect of AS and APA on
isoform properties (Chapter [5). In Chapter [6]|we describe the application of our
analysis framework to a multiple time-course differentiation system that includes
neural precursor cells (NPCs), motor-neurons (MNs) and oligodendrocyte pro-
genitor cells (OPCs) in order to decipher the functional effect of isoform regula-

tion on neural cell fate determination.
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2.2 Aims

1) To accurately define and quantify transcriptomes generated by long-
read sequencing.
High-throughput sequencing of full-length transcripts using long-reads has
paved the way for the discovery of thousands of novel transcripts and the
study of transcript co-occurring events. Advances in sequencing technol-
ogy have created a need for studies and tools that can characterise the
isoform diversity generated by long-reads. In particular we address the

following aims:

e Comparatively assess alternative pipelines for the definition of tran-

scriptome complexity using PacBio Iso-Seq data.

e Develop a strategy to comprehensively characterise and describe the

composition and quality of FL transcriptomes.

e Create a bioiformatics pipeline for quality control of long-read data

and curation of full-length transcriptomes.

e Evaluate the ability of long-reads to accurately estimate isoform ex-

pression levels and predict protein-coding potential.

2) To implement a pipeline for the extensive functional annotation of
gene products at isoform-resolution
Even though a wide range of sources providing functional information at
gene-level are available, the systematic annotation of functional properties
at isoform resolution, especially in the case of novel isoforms, is one of
the major limitations to address the genome-wide functional profiling of

post-transcriptional regulation. Three sub-aims are considered:

¢ Rich characterization of transcript and protein isoforms using sequence-
based predictors annotating a wide range of functional and regulatory

properties.
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o Development of a strategy that overcomes disparities between databases
and project experimental functional features compiled from gene-centric

databases onto query isoforms.

e Adaptation of the approach to be potentially applied to any organism,

independently of the transcriptome novelty rate.

3) To develop an analysis framework to address the functional impact
of context-specific isoform regulation.
Despite several tools exist for characterizing AS and APA events and for
modelling isoform regulation, we still lack genome-wide strategies to inter-
rogate alternative isoforms from a functional perspective. We address this

challenge by focusing on the following aspects:

e Design an approach to measure the functional transcriptome com-
plexity resulting from APA, AS and ATI mechanisms by systematically

capturing the functional feature divergence between gene isoforms.

e Develop new approaches to study the context-specific effect of iso-
form regulation on gene properties by profiling the inclusion or exclu-

sion of functional features and UTR shortening and lengthening.

e Adaptation of methods to three different experimental designs: pair-
wise analysis, single-series time courses and multiple-series time

courses.

e Implementation of this analysis framework in a user-friendly software
to facilitate research on isoform function to the broad scientific com-

munity.

4) Understand the functional consequences of isoform usage regula-
tion on neural cell fate determination.
Extensive work in the past few decades has focused on understanding the
molecular mechanisms of neural cell fate decisions. However, the post-
transcriptional landscape underlying fate determination and its functional

impact remains poorly understood. In this thesis we use the developed
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computational approaches to study the process of neural differentiation
from Neural Progenitor Cells to Oligodendrocyes and Motor neurons as a
proof of principle of the power of functional isoform profiling to understand

basic cellular processes. This specific aims consists of the following steps:

¢ Definition of neural transcriptome complexity using PacBio Iso-Seq

sequencing and characterisation of functional isoform divergence.

e Characterise and profile the effect of post-transcriptional regulation
on the inclusion of functional elements between the glial and the neu-

ronal differentiation.

e Capture post-transcriptionally regulated events that could potentially
generate cell-type specific functional readouts for their subsequent

experimental validation.

2.3 Main contributions

During the course of this thesis | have delivered a number of contributions in
the form of manuscripts, posters and talks where high-throughput sequencing
technologies are used to study fundamental aspects of cell biology. Moreover,
| have contributed to teaching of NGS and transcriptomics methods through

participation as lecturer in courses and the direct supervison of Master students.

2.3.1 Journal papers

1. de la Fuente L, Conesa A, Lloret A, Badenes ML and Gabino R. Genome-
wide changes in histone H3 lysine 27 trimethylation associated with bud
dormancy release in peach.

Tree Genetics and Genomes, 11(3), 2015.

2. Ogando, J, Tardaguila M, Diaz-Alderete A, Usategui A, Miranda-Ramos V,
Martinez-Herrera DJ, de la Fuente L, Garcia-Leon, MJ. and Moreno MC,
and Escudero S, Cafiete JD, Toribio ML, Cases |, Pascual-Montano A,
Pablos JL, Maries S. Notch-regulated miR-223 targets the aryl hydrocar-

bon receptor pathway and increases cytokine production in macrophages
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from rheumatoid arthritis patients.
Scientific Reports, 6:20223, 2016.

3. Tardaguila M*, de la Fuente L*, Marti C, Pereira C, Pardo-Palacios FJ, Del
Risco H, Ferrell M, Mellado M, Macchietto M, Verheggen K, Edelmann
M, Ezkurdia |, Vazquez J, Tress M, Mortazavi A, Martens L, Rodriguez-
Navarro S, Moreno-Manzano V, Conesa A.

*Joint first authorship.

SQANTI: extensive characterization of long-read transcript sequences for
quality control in full-length transcriptome identification and quantification.
Genome Research,28(7):1096, 2018.

4. Martin-Expésito M, Gas ME, Mohamad N, Nufo-Cabanes C, Pascual-
Garcia P, de la Fuente L, Merran J, Chaves-Arquero B, Corden J, Conesa
A, Pérez-Canadillas JM, Bravo J, Rodriguez-Navarro S.
Mip6 maintains low levels of Msn2/4 dependent mRNAs through its inter-
action with Mex67 (Submitted)

5. de la Fuente L*, Tardaguila M*, Del Risco H, Tarazona S, Salmeron P,
Moreno V and Conesa A.
*Joint first authorship.
tappAS: a comprehensive computational framework for the analysis of the

functional impact of differential splicing. (In preparation)

2.3.2 Conferences

e HiTSeq14, 22nd Annual International Conference on Intelligent Systems
for Molecular Biology (ISMB). Boston, USA. June, 2014. “Functional Alter-
native Splicing Analysis Using Long Read Technologies” (Oral Communi-

cation).

e SMODIA15, Statistical Methods for Omics Data Integration and Analysis
workshop. Valencia, Spain. September, 2015. “Functional Annotation of

Sequenced Transcripts at Isoform Resolution” (Poster).
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e NGS’16, Next Generation Sequencing Conference in Genome Annotation.
Barcelona, Spain. April, 2016. “Functional Analysis of Sequenced Tran-

scripts at Isoform Resolution” (Poster).

e JBI2016, XIlII Symposium on Bioinformatics. Valencia, Spain. May, 2016.

“FAIR: Functional Analysis at Isoform Resolution” (Oral Communication).

¢ ECCB16, 15th European Conference on Computational Biology. The Hague,
Netherlands. September, 2016. “FAIR, Functional Analysis at Isoform

Resolution.” (Poster).

e PacBio User Group Meeting SMRT Informatics Developers Conference.

Barcelona, Spain. Septiembre, 2016. “Decoding the functional and regula-

tory impact of alternative splicing by using Iso-seq.” (Oral Communication).

¢ | Congreso Nacional Biomedicina Jtévenes Investigadores en Valencia. Va-

lencia, Spain. Octubre, 2016. “Decoding the functional and regulatory
impact of alternative splicing by using long-read sequencing..” (Oral Com-

munication).

o RNA-SIG 2017, 25th Conference on Intelligent Systems for Molecular Biol-
ogy and the 16th European Conference on Computational Biology (ISMB17).
Prague, Czech Republic. July, 2017. “T2GO, deciphering the functional

and regulatory impact of differential splicing.” (Poster).

e HiTSeq17, 25th Conference on Intelligent Systems for Molecular Biology
and the 16th European Conference on Computational Biology (ISMB/ ECCB
17). Prague, Czech Republic. July, 2017. “SQANTI, extensive character-
ization of long read transcript sequences to remove artifacts in transcrip-

tome identification and quantification.” (Oral Communication).

o Florida Genetics Symposium. Florida, USA. October, 2017. “T2GO, deci-

phering the functional and regulatory impact of differential splicing.” (Poster

Communication).
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¢ Bioinformatics@Valencia Meeting. Valencia, Spain. July, 2018. “TappAS:

Tool for the functional analysis of alternative isoform usage.” (Poster).

¢ 2nd International Caparica Conference in Splicing. Lisbon, Portugal. July,

2018. “Regulation of 3’ untranslated regions along neural differentiation

systems.” (Oral Presentation).

e JBI2018, XIV Symposium on Bioinformatics. Granada, Spain. Novem-
ber, 2018. “Bioinformatics approach to decipher the functional conse-
quences of post- transcriptional regulation in neural differentiation sys-

tems.” (Poster).

e JBI2018, XIV Symposium on Bioinformatics. Granada, Spain. Novem-
ber, 2018. “tappAS: a comprenhensive computational framework for the

analysis of the funciotnal impact of differential splicing”(Poster).

2.3.3 Awards

e |ISCB NGS’16 Conference on Genome Annotation, Barcelona.
F1000 Presentation Prize.
2016

e 14th edition of the ISMB RNA-SIG meeting, Prague, Czech Republic.
Poster winner prize.

2017

e Florida Genetics Symposium, University of Florida, USA.
Poster winner prize.
2017

e 2nd International Caparica Conference in Splicing, Portugal.

Winners of the Call for conference grants sponsored by the RNA

Society and the ProteoMass Scientific Society.
2018
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2.3.4 Software

e de la Fuente L, Tardaguila M, and Conesa A.
SQANT], platform-independent tool.
https://bitbucket.org/Conesalab/sqganti

e dela Fuente L, Tardaguila M, Del Risco H, Tarazona S, Salmeron P, Moreno
V and Conesa A
TappAS, platform-independent application.
http://tappas.org/

2.3.5 Master’s Thesis Supervisions

e Alberto Manuel Lerma Aguilera.
Consecuencias funcionales de la regulacion del splicing alternativo medi-
ado por RBPs en sistema de diferenciacién neuronal.
Master’s degree in Bioinformatics, University of Valencia
2018

e Francisco Jose Pardo Palacios
Transcriptome reconstruction with Iso-Seq: a comparison of approaches
using public data.
Master’s degree in Integrated Systems Biology, University of Luxembourg.
2017

2.3.6 Teaching

e Biotechnology BSc (Polytechnic University of Valencia, Valencia). From

2015 to 2018 (120 hours). Lectures on “Genomics and Bioinformatics”.

e Bioinformatics MSc (University of Valencia, Valencia). 2018. Lectures on

“In Silico studies in Biomedicine”.

| have also demonstrated the state of the art in omics analyses to the scien-
tific community by teaching as part of different courses organised at the Centro
de Investigacion Principe Felipe [Principe Felipe Research Centre], in Valencia,
Spain.:
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e International Course of Massive Data Analysis (Centro de Investigacion

Principe Felipe, Valencia). 2014 , lecture on “ChlP-seq Analysis.

e The Genomics of Gene Expression RNA-seq course (Centro de Inves-
tigacion Principe Felipe, Valencia). 2014 and 2015 editions , lectures on
“Bedtools Visualisation”, “Transcript Assembly Quantification”, “Count Ex-

traction”, “Full RNA-seq Analysis”.

e Multi-omic Integrative Anaylysis of Gene Expression (Centro de Investi-
gacion Principe Felipe, Valencia). 2017 and 2018 editions , lectures on
“NGS pipelines”, “Proteomics”, “Matching omics”, “RNA-seq ChIP-seq

Omics Integration”, “Hands on Multiomics Integration”.



Chapter 3

Extensive characterization
and quality control of
long-read sequencing
transcriptomes

Chapter adapted from Tardaguila M*, de la Fuente L*, Marti C, Pereira C, Pardo-

Palacios FJ, Del Risco H, Ferrell M, Mellado M, Macchietto M, Verheggen K,

Edelmann M, Ezkurdia |, Vazquez J, Tress M, Mortazavi A, Martens L, Rodriguez-
Navarro S, Moreno-Manzano V, Conesa A. *Joint first authorship.

SQANTI: extensive characterization of long-read transcript sequences for qual-

ity control in full-length transcriptome identification and quantification. Genome

Research, 28(7):1096, 2018.
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3.1 Introduction

During last years, there has been increasing interest in the use of single-molecule
sequencing to characterise the transcriptome diversity generated by AS in ani-
mals and plants as this it allows direct sequencing of full-length splicing variants,
eliminating the need for short-read assembly and transcript reconstruction. Two
different long read transcriptome sequencing platforms are currently available:
PacBio [319][296], and Nanopore [234], being PacBio RNA-seq (Iso-Seq) the
technology with the highest number of publications so far.

Although PacBio Iso-Seq technology has proven useful for unravelling iso-
form diversity at complex loci, it suffers from a relatively high raw error rate
(~15% [42]) and has a lower throughput compared to lllumina. Different meth-
ods for transcriptome definition using Iso-Seq have recently been developed,
each using different strategies and combining different sources of data to over-
come the limitations of single-molecule sequencing, while leveraging its capac-
ity to generate full-length transcripts (Further details into alternative methods in
Section[1.2.0.9).

During last years, several studies have reported thousands of new transcripts
accumulated in known genes by long-read technologies [296][320][13] [1] [347].
Sequencing the transcriptome of hESCs with long reads followed by IDP anal-
ysis identified over 2,000 novel transcripts (~30%), and discovered new genes
that were proven to be functional [13]. Tilgner et al. used PacBio to sequence
the GM12878 cell line, and found about 12,000 novel transcripts fully supported
either by previous splice-site annotations or by lllumina reads, although they
did not study detected novel junctions in detail [319]. From nearly 1M sorghum
PacBio long-reads, 11,342 novel transcripts (~40% of detected isoforms) were
found in combination with the application of a splice-junction quality filter (Splice-
Grapher [279]); of these, 6/6 random transcripts were confirmed by PCR. Finally,
a maize multi-tissue transcriptome analysis identified over 111,151 transcripts
from among 3.7M CCS, most of which were novel and tissue-specific [347].
Despite the authors found that between 10% and 20% of the PacBio junctions

didn’t show coverage by lllumina reads and around 1% were non-canonical,
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they did not report the number of affected transcripts or carried out any further
experimental validation. Despite most of these long-read transcriptome papers
propose classification strategies to call novel genes by comparing defined iso-
forms to reference annotations in a intron-based mode, they lack in the descrip-
tion and sub-classification of the type of novelties introduced by transcripts not
matching the splice pattern of annotated references. None one of these studies
performed any in-depth characterisation of these novel transcripts and junctions
that could have revealed any potential biases and would have justified their anal-
ysis strategies. Thus, implementing a comprehensive, quality aware analysis of
single molecule sequencing is fundamental at a time when long read methods
are becoming more popular and important conclusions on transcriptome diver-
sity can be drawn from these data.

In this chapter, we compare different strategies for transcritpome definition
using long-read technologies and define an analysis framework for generating
curated transcriptomes at isoforms resolution (Figure [3.1). Moreover, we de-
velop SQANTI (Structural and Quality Annotation of Novel Transcript Isoforms),
a pipeline that maximise the analytical outcome of long-read technologies by
providing the tools which can deliver quality-evaluated and curated full-length
transcriptomes. SQANTI was implemented as a open source software, and is
available at https://bitbucket.org/Conesalab/sganti. SQANTI has been applied
to multiple organisms and long-read sequencing platforms that will be presented

and briefly discussed during this chapter.
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Figure 3.1: Chapter 1 analysis workflow. An strategy of analysis and quality control of
PacBio Iso-Seq data was implemented to characterise and asses the results provided by
alternative PacBio definition pipelines. Based on several quality attributes, we designed
an approach to filter artefactual isoforms. Isoform validations by RT-PCR were performed
in order to evaluate filtering perfomance and compare it to alternative strategies described
in literature. We evaluated open reading frame prediction on PacBio curated transcrip-
tomes as well as the accuracy of PacBio data to quantify and capture low expressed
isoforms. Finally, we assessed the impact of using a reduced and specific transcriptome
on the performace of short-read based isoform quantification methods. The SQANTI tool
was implemented to automatically carry out the quality control and curation of long-read
based transcriptomes.
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3.2 Data

A murine neural differentiation system was used to assess long-read sequencing
transcriptomes and to develop pipelines for the quality-control and characterisa-
tion of transcripts. We chose this system due to the extensive splicing program
repeatly identified during brain development in mammals. In addition, we also
used public datasets from long-read technologies and from different organisms

to validate the use of the pipelines we developed in subsequent analyses.

3.2.1 Neural System in mouse

Experimental design

Neural precursor cells (NPCs) were isolated from the subventricular zone of
4-day old ¢57/BL6 mice and were cultured as neurospheres in media supple-
mented with EGF and bFG. Oligodendrocyte progenitor cells (OPCs) were gen-
erated in vitro from NPCs by adding all-trans retinoic acid (ATRA) to the culture
medium, as previously described by Keirstead et al. [164]. To account for biolog-
ical variability, these In vitro differentiation assays were performed in 2 biologi-
cal replicates at the Neuronal and Tissue Regeneration Lab headed by Victoria

Moreno.

Library preparation and sequencing

Total RNA was transcribed using the Clontech SMARTer cDNA synthesis kit
which, unlike commonly used cDNA synthesis methods, enriches the full-length
cDNAs contained in the final sample. Full-length cDNA from NPCs and OPCs,
two biological replicates each, was obtained and split to prepare lllumina and
PacBio sequencing libraries.

Iso-Seq libraries were sequenced on the PacBio RS Il platform using the
P4-C2 chemistry. To prevent the preferential sequencing of shorter transcripts
caused by loading bias, we used a BluePippin device to produce three transcript-
size fractions (1-2 kb, 2—3 kb, 3-6 kb). A total of 8 SMRT cells per sample were
sequenced (1-2 kb: 3 SMRT cells, 2—3 kb: 3 SMRT cells, 3—6 kb: 2 SMRT cells)

following the Iso-Seq PacBio sequencing protocol.



3.2 Data

39

We also sequenced the same samples using the lllumina Nextseq instrument
in combination with Nextera tagging and 250 paired-end sequencing, which
yielded around 60M single-end reads per sample. PacBio sequencing was per-
formed at the ICBR sequencing facility at the University of Florida and lllumina

data was generated at the University of California Irvine.

3.2.2 Public datasets

3.2.2.1 Maize PacBio

Maize, specifically the B73 cultivar, is a well-studied crop of agricultural rele-
vance. Wang et al. performed deep-sequencing of in six different maize tissues:
root, pollen, embryo, endosperm, immature ear, and immature tassel [347].
PacBio sequencing was performed using RS Il platform with P6-C4 chemistry
and 47 SMRT cells. Tissue-specific barcodes were added before pooling for
amplification and size-fractionation (<1, 1-2, 2-3, 3-5, 4-6 and >5 kb) was per-
formed using a SageELF device before sequencing. We selected ear tissue for
the purposes of this Chapter as Wang et al. reported a high level of ear-specific
splicing variants. SRP067440 and E-MTAB-3826 are the accession numbers for

Iso-Seq and llumina data, respectively.

3.2.2.2 MCF-7 Human PacBio

Pacific Bioscience has made different datasets available to the scientific commu-
nity (https://github.com/PacificBiosciences/DevNet/wiki/lsoSeg-Human-MCF7-
Transcriptome). Among them, the MCF-7 human breast cancer cell line has
one of the highest sequencing depths. We used the most recent release (from
2015) of this dataset consisting of 28 SMRT cells. MCF-7 was sequenced by us-
ing P5-C3 chemistry and sizing was performed by using the SageELF platform
(fractions: 1-2 kb, 2-3 kb, 3-5 kb, and 5-10 kb).

lllumina reads were not available from the same biological original material.
However, numerous lllumina datasets have been generated for this stable im-

mortal cell line and we used the short-read datasets (SRX426377) published
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by Schueler et al. [290]. Of note, Weirather et al. [359] used this combina-
tion of PacBio and lllumina MCF-7 datasets to develop a PacBio-based fusion

transcript discovery tool.
3.2.2.3 B-cell mouse nanopore

To evaluate the ability of Nanopore technology to identify and quantify isoforms
in complex gene models, Byrne et al. performed single-cell sequencing using
the MinlON Nanopore sequencer [39]. Libraries from seven FACS-sorted B1a
cells were generated in a multiplexed manner following the ONT library prepara-
tion protocol. ONT reads were processed using the Metrichor cloud platform 2D
wokflow and subsequently aligned to the genome using BLAT software [166].
Reads from cell number 1 (SRA accession number SRR4048177) were down-

loaded and used to assess out pipeline on Nanopore data.
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3.3 Methods

3.3.1 Transcriptome definition using Iso-Seq PacBio long-reads

In this work we comprehensively evaluated and compared three alternative pipeli—

nes for the definion of Iso-Seq transcriptomes in order to pinpoint their strengths
and weaknesses. Before running these alternative tools, we performed sev-
eral raw PacBio data preprocessing steps using functions in the PacBio Iso-Seq
bioinformatics toolkik to trim primers, generate Consensus Circular Sequences
(CCS) and evaluate CCS full-lengthness.

Regarding CCS generation, we set a minimum predicted accuracy of 0.8
(Iso-Seq Analysis predicted accuracy of a read - ranging from 0 to 1) and a mini-
mum number of 0 full-passes as parameters. This latter setting meant that all the
ZMWs produce a CCS, even if the polymerase did not replicate the entire insert
located between the two SMRTbell adapters. However, in specific subsequent
evaluations, we increased the number of full-passes to 1, retaining consensus
sequences only for the molecules that were entirely sequenced. We used de-
fault parameters to classify CCSs into full-length (FL) and non-full length (nFL)
sets, remove chimeral sequences and trim the SMARTer primers. Moreover, we
also implemented proovread [130] to correct PacBio read errors by short-read
data. The error rate decrease was assessed by identifying the number of mist-
maches and indels contained in the proovread output sequences after reference
genome alignment by GMAP [370]. We used preprocessed Iso-Seq data as the
input for the three different isoform-definition pipelines considered in this work:
IDP [13], ToFU [123] and TAPIS [1].

The ToFU pipeline [123] was used to generate the set of consensus iso-
forms, specifiying the Quiver polishing option. high-quality (HQ) polished iso-
form sequences were aligned to the reference genome (mm10) and subse-
quently collapsed with the cDNA_Cupcake collapse function (https://github.
com/Magdoll/cDNA_Cupcake/wiki) to remove isoform redundancy. Because 5’
end completeness cannot be verified, stringent parameters (1000 bp) and a 5’
merge option were used to avoid the definition of false-positive alternative TSSs.

We maintained the 100 bp cutoff at the 3’ end to define isoforms with the same
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polyA site. This resulted in the "ToFU” set of non-redundant full-length tran-
scripts.

For IDP pipeline [13], we used the SpliceMap aligner [279] with the default
mammalian parameters to map short reads to the reference genome, thus al-
lowing splice junction detection. In addition, we error corrected the CCS long-
reads with short-read data by using the LSC algorithm [12], following the IDP
guidelines. Finally, we input splice-junction coverage information, short-read
corrected long-reads and both the reference genome and the murine RefSeq
[235] gene models into the IDP tool. We used the following parameters to ob-
tain the set of predicted and detected isoforms: GMAP as the aligner, maximum
posteriori probability as the MAP expression-estimator approach, and a mini-
mum isoform fraction of 0.05.

Finally, we ran TAPIS using default parameters except that only the set of
full-length classified long-reads were provided in order to minimize the number
of detected incomplete isoforms. Murine RefSeq gene models were the input for
the TAPIS collapsing step using the default parameters. In all cases, the mm10

reference genome assembly was used.

3.3.2 Iso-Seq PacBio evaluation of isoform quantification and de-
tection

In addition to accurate identification of transcript sequences, accurate expres-
sion level estimation of splicing variants is essential to study their role and rel-
evance. Since transcript isoform quantification by Illumina is limited by the high
levels of ambiguity generated by short reads during isoform identification, we
evaluated whether PacBio reads could be used to quantify the expression of
transcripts. Isoform expression using long and short read data was evaluated by
computing pairwise correlations between sequencing replicates. We also sep-
arated the transcripts into high, medium, and low expression levels to account
for the influence that different noise levels (associated with high and low isoform
expression) could have on this correlation. Isoforms estimations on short-reads

were computed using the ENCODES pipeline consisting in the combination of
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STAR [83] as mapper and RSEM as quantification algorithm [188]. Isoform ex-
pression estimations using PacBio reads alone were estimated by extracting the
number of full-length reads associated with each defined isoform, and normaliz-
ing the values with the total number of FLs in the sample.

Secondly, to evaluate how the magnitude and nature of the transcriptome af-
fects quantification, we compared expression levels obtained using as reference
either the complete mouse transcriptome (ReT) or the set of transcripts identi-
fied by PacBio (PbT). We defined the most expressed gene transcript (MET) as
the gene transcript with the highest average TPM value across all the samples
and compared METs between quantification results using the ReT and the PbT
transcriptomes. This analysis evaluates if quantification on PacBio transcripts
would have a minor or a significant impact in the redistribution of gene expres-

sion across isoforms.

3.3.3 Classification of transcripts to describe long-read captured
novelty

To characterize the nature and magnitude of the novelty found by long-read
sequencing, we developed a classification scheme that capture the range and
main characteristics of novel calls. This scheme compares identified transcripts
to reference annotations in a splice-junction (SJ) based mode (Figure [3.2).
PacBio transcripts matching a reference transcript at all splice junctions were
labelled as full splice match (FSM), while transcripts matching consecutive, but
not all, splice junctions of the reference transcripts were designated as incom-
plete splice match (ISM). Besides, ISM isoforms were divided into different sub-
categories depending on their type of incompleteness (3’ end incomplete, 5’ end
incomplete, internal fragment). Moreover, ISM transcripts with 95% or more of
their sequence within the UTR3 sequence of their cognate reference transcript
are labeled UTR3 Fragment. Monoexonic transcripts matching a monoexonic
reference were included in the FSM category whereas those matching a multi-

exonic reference were placed into the ISM group (Figure [3.2).
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Furthermore, novel transcripts overlapping reference genes were classified
into two categories: novel in catalogue (NIC) and novel not in catalogue (NNC).
NIC transcripts contain new combinations of already annotated JSs in the as-
socitated reference gene or novel SJs formed from already annotated donors
and acceptors (NIC subcategory). On they contrary, NNC transcripts contain
donors and/or acceptors not previously seen in the reference-gene annotations
(Figure[3.2).

Finally, transcripts in novel genes were classified as intergenic, if lying outside
the boundaries of an annotated gene, and as genic intron if lying entirely within
the boundaries of an annotated intron. In addition, the genic genomic cate-
gory encompasses transcripts with partial exon and intron/intergenic overlap in
a known gene (Figure[3.2). Finally, we labeled transcripts as fusion if they span
two annotated loci, and as antisense when poly(A)-containing transcripts over-
lap the complementary strand of an annotated transcript (Figure[3.2). In addition
to classification, which is based on SJs, we also added other features to facilitate
the identification of novel alternative polyadenylation sites (PASs) or fragmenta-
tion levels at the ends of transcripts. Hence, the minimum distance of transcript

3'/5” ends to the reference transcript 3'/5’ ends were annotated.

3.3.4 Extensive isoform characterisation as a means for quality
control

To capture different sources of artefacts, from library preparation to data prepro-
cessing, we defined a quality-evaluation strategy for long-read transcripts based
on the definition of a wide range of attributes to characterise several aspects of
isoforms and their associated SJs. Appendixes 1 and 2 show the total set of

defined features. Among them we highlight:

1. SJ status: We categorized canonical junctions as those with the combi-
nation of GT at the beginning and AG at the end of the intron as well as GC-AG
and AT-AC pairs, which together represent more than 99.9% of all human introns

[240]. Any other possible combination is labelled as non-canonical splicing.
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2. SJ support: The number of uniquely-mapping short-reads at each de-
fined junction was estimated using the STAR aligner [83]. Furthermore, to ac-
count for the relative expression level of transcripts, we defined the relative cov-
erage of a splice junction as its short-read coverage normalised to the total
expression of all the transcripts in which it is present. We summarised the sup-
porting junction information for each transcript by defining the minimum sample
coverage, as the lowest number of samples showing the presence of a SJ from
among all the junctions present in a transcript; the minimum coverage was the
lowest number of short reads supporting the presence of a SJ within the tran-
script and the minimum coverage position was the position of the junction in the

transcript with the minimum coverage.

3. Reverse transcriptase template switching: An RNA with two direct
repeats is a potential template for reverse transcriptase swithching (RTS) from
one repeat to other. This causes gaps during cDNA synthesis [60][145], that
when sequenced result in false transcript detections. These gaps are enriched
for non-canonical junctions. To detect this problem, we developed an algorithm
that identifies junctions that are likely to derive from a RTS event. The algorithm
analyses all the junctions for possible RTS event and checks for a direct repeat
pattern at the end of the SJ 5’ exon which must match the pattern at its 3’ end
SJ intron. Three parameters control pattern matching: (1) the minimum num-
ber of matching nucleotides (4-10 nucleotides); (2) the amount of wiggle room
allowed from the ideal pattern location (0-3 nucleotides); (3) the allowance of
single mismatch or indels or not. In this Chapter, we used repeat sequences at
least 8-bases long, allowed a maximum wiggle of 1, and did not permit any mis-
matches. We assumed that the FSM transcripts with the highest mean expres-
sion in each gene would act as templates for RTS and were therefore excluded

from the analysis.

4, Bite junction: We defined junctions whose associated intron completely
overlaps an annotated intron and that partially overlaps the 3’ and 5’ annotated

exons as bite junctions.
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5. FL isoform coverage: The amount of FL support is representative of
the confidence level in an isoform. FL-count information is provided through the

ToFU pipeline and therefore, are only available for ToFU-defined isoforms.

6. Intra-priming/off-priming: We also evaluated possible off-priming of
the oligo(dTs)in A-rich regions of the mRNA template to account for internal
poly(A) priming during reverse transcription [221]. To investigate these events,
we calculate the percentage of adenine (A) within a established window down-
stream of the genomic coordinates corresponding to the 3’ end of the long-read

defined transcripts. We set a window size of 20 nucleotides.

3.3.5 Using quality control features to build a filter of isoform arte-
facts

We developed a machine learning (ML)-based filtering method to discriminate
potential transcript artefacts from true novel transcripts. The approach takes
advantage of the total set of long-read quality control (QC) attributes previously
defined for quality evaluation. To make the classifier generally applicable and
independent from the availability of validation results, we defined a "best guess”
of true (positive set) and artefact (negative set) transcripts based on the informa-
tion obtained from the classification of the long-read sequencing transcriptome.
FSMs (whose splicing patterns are identical to the reference ones) were used
to define the set of positive transcripts while NNC-NC transcripts (which contain
novel and non-canonical SJs) were used as the negative set. It is important to
mention that the labelled sets (FSM and NNC—-NC) only applied to multi-exonic
transcripts and hence, this classifier cannot be applied to single-exon isoforms.

The labeled data was then separated into to sets: the training set for classi-
fier training (80% of the data) and the test set for subsequent evaluation of the
classifiers (20% of the data). Algorithms were ran using down-sampling to bal-
ance the positive and negative sets and applying a 10x cross-validation. From
the total set of transcript descriptors previously defined, we selected 16 vari-
ables. Attributes related to reference transcripts or those given a structural clas-

sification were removed because they discriminate between novel and known
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transcripts and consequently, are irrelevant to the classifier. Variables related to
canonical junction status were also excluded because they were used to define
the positive and negative transcript sets. Finally, variables with near-zero vari-
ance or with a correlation coefficient higher than 0.9 in the labeled sets were
also removed.

After evaluating different ML methods, we selected the tree-based Random
Forest learning method because it performed the best in our pilot tests (data not
shown). We ran 500 trees and artefacts were defined as those transcripts with
a probability for positive classification exceeding 0.75. The performance of this
ML classifier was evaluated in the test set by using ROC analysis.

Moreover, we evaluated alternative single-feature filtering methods described
in the literature and our ML classifier using a set of 67 PacBio-defined tran-
scripts that were validated by reverse transcription PCR (Further details in Sec-
tion[3.4.4). The confusion matrix shown below [3.1]illustrates the potential clas-

sification errors.

Actual values
Positives Negatives
P N
Positives True Positives | False Positives
Predicted | P’ TP FP
values Negatives | False Negatives | True Negatives
N’ FN TN

Table 3.1: Confusion matrix for two-class classifications

The following performance indicators were used:

¢ Recall, also known as the sensitivity or the true positive rate (TPR):
TP

recall = m

¢ Precision, also known as the positive predicted value:
TP

TP+ FP

precision =

e The false discovery rate (FDR), the percentage of FPs from the total

number of detections:
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__FP__FP

~ TP+FP P

e The F1-score, the harmonic mean of the recall and precision parameters.
2TP _, recall.precision

QTP+ FP+FN  “recall + precision

FDR

Flscore =

e The receiver operating characteristic curve (ROC) is a graphical plot
that illustrates the diagnostic ability of a binary classifier system as its dis-
crimination threshold varies. The area under the curve (AUC) measures
the classifier’s ability to distinguish classes. AUC ranges between 0 and 1
[{01].

We excluded the transcripts assessed by RT-PCR from the training set to

prevent biases during the evaluation of the ML classifier.

3.3.6 Open reading frame prediction benchmarking and assess-
ment of UTR/ORF variability in PacBio-defined transcriptomes

The GeneMarkS-T algorithm (GMST) [30] was used to predict the open reading
frame (ORF) in PacBio transcripts by using AUGs as the initial codon. Because
GMST can predict ORFs in incomplete transcripts, incomplete 5’ transcripts may
produce some truncated ORFs. In these cases, the first in-frame downstream
methionine was detected and identified as the start codon.

We defined different event that characterise the changes between ORF se-
quences in order to benchmark the ORF prediction algorithms and to study up-
stream ORF (UORF) variability in PacBio-defined transcriptomes. Microexon
definition was restricted to novel amino-acid (aa) stretches obtained by in-frame
indels or to substitutions up to 27 nt (9aas) according to previously published
work [149]. N-terminal or C-terminal deletions were labeled as N-Ter deletion
and C-Ter deletion, respectively. Indels and substitutions greater than 9 aas,
whether combined with N-Ter and C-Ter deletions or not, were labelled as major
changes. Finally, ORFs without sequence overlapping were deemed as no align
ORFs.

To assess the coding prediction results, we performed comparisons between
the predicted sequence and its reference ORF sequences for isoforms belongu-

ing to reference-associated catergories (FSM, ISM and 3'UTR fragment). To
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study to what extent alternative splicing affects the coding region of novel tran-
scripts, we compared the predicted ORFs with the ORF encoded by the prin-
cipal isoform (PI) of each gene. Pls were defined based on the information
retrieved from the APPRIS database [277] - which defines the PI ORF as the
ORF isoform with the highest functional load and cross-species conservation. A
non-redundant ORF database encompassing the set of predicted proteins from
our neural transcriptome was generated for subsequent classification into three
groups: (1) Principal Isoform ORF if annotated as such by APPRIS, (2) Alterna-
tive ORF if found in Ensembl or RefSeq databases without being the PI, and (3)
Novel OREF if the protein was present only in our mouse PacBio data. Alternative
and Novel ORFs sets were then compared based on the gene Pl ORF. Finally,
UTR variability was also evaluated by considering UTRs to be different if they
started in different genomic coordinates or if they shared a common start point

but had a difference longer than 30 nt.
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3.4 Results
3.4.1 PacBio Iso-Seq sequencing quality

We used PacBio to sequence both Neural Progenitor Cells (NPCs) and Oligo-
dendrocyte Precursors Cells (OPCs), two biological replicates per condition, in
8 SMRT cells each. SMRT cells were pre-processed independently obtaining
about half a million of circular consensus sequences (CCS) per sample, where
length distribution matches the expected fractionation pattern (Figure[3.3|A). FL
classification yielded 544,184 FL-catalogued CCSs, 25% of the total CCSs that
decreased to 11% in 3-6 kb fraction (Figure [3.3|B). This low rate of FL PacBio-
catalogued transcripts could be the result of degradation of cDNA during library
preparation and pre-processing or due to incomplete sequencing. To further in-
vestigate this, we ran CCS computing and FL classification tools by changing
the minimum number of passes to 1, thereby preventing the generation of CCSs
when the sequencing did not reach a full pass of the molecule. We found a
dramatic decrease on the number of CCSs (30% of total CCSs obtained with
a 0-passes setting, Table [3.3|B) and a concomitant increase in the proportion
of FL reads (74% of FL reads, Figure [3.3/B). Hence, these results revealed
that the high rate of nFL reads in our samples was a consequence of incom-
plete molecule sequencing instead of caused by cDNA degradation during li-
brary preparation. To further check the quality of RNA before RT and library
preparation as well as confirming the true full-length status of isoforms, we run
Blast [4] against RefSeq reference. We found about 60% of FL CCSs with at
least a 90% coverage hit, that agrees agreement with the expected FL enrich-
ment levels of Clontech protocol in FL cDNA and verifies the high quality of our
FL reads.

3.4.2 Transcriptome complexity and transcript full-lengthness as-
sessment across alternative pipelines

Once the quality of the raw Iso-Seq data was evaluated, the PacBio CCSs were

pooled together to obtain a total of 544,184 FL and 1,427,731 nFL reads. The

PacBio reads were then processed by three alternative Iso-Seq transcriptome
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Figure 3.3: Raw Iso-Seq data quality. A. CCS length distribution in function of the
fractionation size of each sequenced SMRT cell. B. Number of CCS, FL non chimeric
yield and proportion with Blast identity above 90% for each of samples being studied.
One OPC replicate was analysed twice using alternative values for the number of passes
required to generate a CCS.

definition pipelines: ToFU, IDP and TAPIS, which identified 16,106, 13,525 and
91,428 isoforms, respectively, indicating that a huge difference in the magnitude
of the transcriptomes is obtained by the alternative strategies.

To understand the nature of these differences, we performed an extensive

characterisation of transcriptome composition, as described in methods section.

ToFU transcritome characterization

The ToFU pipeline generated 33,635 high-quality, but redundant isoforms. Sub-
sequent alignment against the reference genome (assembly mm10) and col-
lapsing in order to remove redundancy generated a final murine neural transcrip-
tome, which included 16,106 unique transcripts resulting from the expression of

7,704 different genes. Classification of ToFU isoforms showed that a small pro-
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portion of isoforms fell outside the boundaries of known genes (640 isoforms
belonging to 511 novel genes, 6% of the total number of expressed genes).
Moreover, in terms of splicing diversity, we found remarkable differences be-
tween known and novel gene models. While novel genes showed low levels of
alternative splicing, 50% of known genes had at least two splicing variant (Fig-
ure [3.4]A). Furthermore, only 13.8% of the novel isoforms had SJs, indicating
that mono-exon isoforms were clearly enriched in novel genes.

Based on the structural classification of isoforms, 49% of them were classi-
fied as FSM (Figure [3.4]B) and the total transcripts mapping a known reference
(FSM, ISM and UTR3-fragment) accounted for 60% of the transcriptome. ISM
transcripts might be a combination of biological shorter versions of long refer-
ence transcripts and partial fragments resulting either from incomplete retrotran-
scription or mRNA decay. Our analysis showed that PacBio transcripts classi-
fied as ISM or UTR3-fragment matched reference transcripts that were longer
(t-test, p = 0, Figure [3.4/C) and had more exons (t-test, p = 0, data not shown)
than FSM sequences, suggesting that they are enriched in retrotranscription
fragments. Novel transcripts assigned to known genes (NIC, NNC) made up
35.6% of our sequences (Figure [3.4]B), a proportion higher than expected in
well-studied model organisms as mouse. Transcripts from novel genes (Inter-
genic and Genic Intron categories) represented about 2.3%. Other categories
as antisense and fusion isoforms only accounted for 1.1% and 0.4%, respec-
tively (Figure [3.4B). Although most isoform categories had a similar median
length (Figure [3.4]D), genic intron transcripts were found significantly shorter
(t-test p = 1.421e-15), and almost entirely composed of single exons (data not
shown) without any predicted coding sequence (Figure [3.4]B), suggesting the
accumulation of non-coding transcriptional events.

Regarding expression features across the transcript categories, transcript
expression levels were significantly lower in ISM, NIC and NNC categories than
in the FSM set (t-test p < 2.2e-16 for all comparisons) and were significantly
lower for novel genes compared to annotated genes (t-test p < 2.2e-16 for both

comparisons), confirming that the novel isoforms discovered in model organ-
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Figure 3.4: Characterisation of the ToFU-defined transcriptome. A. Distribution of
the number of variants derived from annotated and novel genes. B. Distribution of tran-
scripts among the set of defined structural categories. C. Length of the reference tran-
scripts to which FSM, ISM, and UTR3 Fragment PacBio transcripts matched. D. Length
of the PacBio transcripts by structural categories. E-F. Overlap at 3’ and 5’ ends between
the FSM transcripts and their respective matched reference transcripts.
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isms such as mouse are usually minor isoforms of genes already described in
reference databases.

In terms of transcript full-lengthness, the majority of our FSM transcripts
showed a complete or close to complete 3’ end overlap with the 3’ end of the
matched reference transcript: 76% had an exact 3’ end match and 16% were
within 20 nt upstream of the annotated 3’ end (Figure 3.4 E). This contrasts with
the lower proportion of FSM transcripts showing a complete overlap with their
reference 5’ ends (35%) and the higher number of transcripts falling short by
40 to 100 nts (50%, Figure [3.4]F). This finding concurs with the strategy used
during cDNA library preparation and with the Iso-Seq™ analysis pipeline be-
cause both steps have less control over completeness at 5° ends (Oligo(dT)
primming and polyA tail identification to control 3° completeness). Interestingly,
851 and 1,361 FSM transcripts had 3’ end and 5’ end positions that extended
beyond the matched reference transcript, while 1,610 and 1,439 of our FSM se-
quences were shorter by more than 100 nt at their 3’ and 5’ ends, respectively.
These cases could potentially represent alternative polyadenylation/alternative
TSS events.

IDP transcritome characterization

Error correction of long-reads by LSC yielded 99.2% of CCSs corrected by short-
reads. This set of LSC corrected long-reads and the set of splice junctions de-
tected by SpliceMap were fed to the IDP tool, resulting in the detection of 12,521
isoforms and the prediction of 4,387 isoforms. After removing redundancy be-
tween the detection and prediction IDP modules, we obtained 13,525 unique
transcripts.

In contrast with the results from ToFU, most of the isoforms we identified by
IDP were classified as FSMs (96%, Figure [3.5/A). Only 4% of the transcripts
were catalogued as novel isoforms from known genes (Figure [3.5|A). Remark-
ably, the majority of them were categorized as NICs and 97% of them were
composed of known junctions in a novel combination. Moreover, the IDP did not

identify any isoform outside the boundaries of kwown genes and consequently,
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all the isoforms belonged to previously annotated genes. Surprisingly, all of the
3’ and 5’ ends of the IDP-defined transcripts perfectly matched the reference

ends (data not shown).

TAPIS transcritome characterization

Out the aprroximately 204,984 (94,5%) FL CCSs that were properly mapped
to the reference genome, a total of 57,776 transcripts originated from 14,775
expressed genes were defined by TAPIS. Regarding transcript classification, a
small proportion of the total defined transcripts belonged to novel genes (6.5%,
Figure [3.5B). Similar to the ToFU strategy, the novel genes were characterized
by including mono-exon transcripts (data not shown) and a reduced number of
splicing variants compared to the high number of transcript variants detected
in annotated genes (median = 4 isoforms, Figure [3.5]C). Surprisingly, just 9%
of the isoforms fell into the FSM category (Figure [3.5/B) and almost 70% were
classified as NNC category, as characterized by using novel splicing sites.

Moreover, it should be noted that novel transcript categories as NIC, NNC
and Genic Genomic showed a higher length distribution compared to the FSM
category (Figure [3.5]D, t-test p < 2.2e-16), which contrasts with the results ob-
tained using the ToFU strategy. Moreover, the FSM category showed drastic
higher gene expression distribution in comparison to the rest of categories (t-test
p < 2.2e-16 for all comparisons), again revealing the minor expression status of
transcripts not yet annotated in public databases.

Finally, as seen for the ToFU pipeline and in agreement with our cDNA library
preparation, the 3’ end overlaps for the FSM transcripts was almost complete
but was less so for the 5" ends (35% of the transcripts overlapped the annotated
TSS).

Comparative Overview

We systematically compared the strategies in order to highlight the advantages
and disadvantages of each transcriptome-definition strategy. For comparative
purposes, two isoforms were considered identical across pipelines if they shared

the exact splicing junction linkage which enables the association of known and
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Figure 3.5: Characterisation of transcriptomes defined by IDP and TAPIS. A-B. Dis-
tribution of transcripts among the set of defined structural categories for IDP and TAPIS
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transcripts in the TAPIS transcriptome.
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novel isoforms across pipelines, thus excluding mono-exonic genes from this
comparison.

First, we compared the approximate number of genes and transcripts (known
and novel) identified by the three different approaches ((Figure [3.6/A). Even
though around 7,000 genes were identified by each of the different pipelines, the
very high number of transcripts found by TAPIS, as well as its high proportion
of novel isoforms (89.7% novel transcripts) stood out compared to the other
pipelines (Figure[3.6]A). Moreover, while a roughly equal proportion of novel and
known isoforms were identified by ToFU, IDP identified fewer novel transcripts
(4% novel isoforms, Figure [3.6]A).

To further investigate the differences between pipelines and their nature, we
compared the sets of detected genes, transcripts and SJs. Recall rates were
calculated (Figure [3.6]B) to evaluate the ability of each pipeline to identify the
same genes, transcripts or junctions described by other strategies. When known
genes detected by each pipeline were compared, the recall rate by at at least
one other pipeline reached a mean value close to 90% (Figure [3.6]B), revealing
that the three pipelines mostly agree in the set of detected genes. Among them,
ToFU shows the highest number of detected known genes that are also captured
by the other two pipelines (72.33%), suggesting a higher sensitivity compared
to the other two strategies. However, this consensus was no longer achieved
at the transcript level, mainly because of the incredibly high discovery rate of
TAPIS (Figure [3.6/B). Thus, although IDP and ToFU reached more than 70%
recall between pipelines, the recall rate of TAPIS was only 13%, meaning that
only 13% of transcripts defined by TAPIS were identified by another strategy.
When all the novel isoforms were removed from the analysis and the recall rate
was calculated considering only known transcripts, the recall rates of ToFU and
TAPIS reached 94% and 89%, respectively (data not shown), revealing the high
intersection of known isoforms. Meanwhile, IDP pipeline detected mamy more
known transcripts that any other strategy, but only 67% of them were also found

by TAPIS and/or ToFU.
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Next, we analysed differences in the expression levels for different groups of
intersection isoforms. Interestingly, the expression of isoforms found by TAPIS
were lower than that of the other pipelines. Because TAPIS generated a higher
transcript-per-gene ratio, the same short reads were assigned to a more com-
plex gene model with an increased number of alternatively-spliced isoforms,
likely resulting in a significantly decreased expression at the transcript level. In
contrast, the expression levels of isoforms found by more than one pipeline were

higher than the those identified by just one approach (Figure [3:6/C).
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Figure 3.6: Comparison of alternative methods for defining Iso-Seq PacBio tran-
scriptomes. A. Distribution of the number of genes and transcripts, novel and known
obtained with the different approaches. B. Recall summary between approaches at the
gene, transcript and splice-junction levels. C. Transcript expression distribution for the
different intersected sets. D. lllumina short-read splice-junction support across these dif-
ferent pipelines. E. Distribution of canonical and non-canonical splicing motifs across the
junctions which are supported or not supported by short reads. F—G. Histograms repre-
senting the differences in the detected and reference ends for each method in the TSS
and the TTS, respectively.



3. EXTENSIVE CHARACTERIZATION AND QUALITY CONTROL OF LONG-READ
SEQUENCING TRANSCRIPTOMES

We characterised each SJ based on their short-read support and splicing
motif and found important differences in the fraction of supported SJs across
pipelines, with the TAPIS pipeline standing out because almost 50% of the SJs
in this pipeline were not supported by Illlumina data (Figure 3.5.D). Moreover, al-
most 60% of the SJs detected by TAPIS were not detected by the other pipelines,
in contrast to the 10% of junctions specific only to the ToFU and IDP pipelines
(Figure 3.5.B). Furthermore, splicing junction categorisation revealed that in all
cases, more than 98% of the supported junctions presented the most com-
mon canonical motif (GT-AG; Figure 3.5.E). In contrast, unsupported SJ splic-
ing motifs were more diverse; this was especially the case in TAPIS, in which
80% of all unsupported junctions present a non-canonical splicing motif (Figure
[3.6|E). Thereby, TAPIS detected more than 68,000 non-canonical and unsup-
ported junctions, which represents the 40% of the total detected junctions. In
contrast, IDP did not retrieve any non-canonical sites either in supported or non-
supported categories because the aligner discards them before the isoforms are
defined.

Because one of the most important aspects of Iso-Seq is the theoretical abil-
ity to capture entire transcripts from end to end, the full-lengthness status of iso-
forms was compared among pipelines using only the set of FSM transcripts. As
we have already mentioned, FSM isoforms identified by IDP perfectly matched
both the TSS and TTS reference sites (Figure [3.6/F-G), suggesting that the ref-
erence information was preferentially used and may have biased results and
hidden potential APAs and alternative TSS events. In contrast, both Tappis and
ToFU did find transcript end variability between discovered and annotated tran-
scripts (Figure [3.6/F-G), which might represent alternative TSSs and TTSs or
be a consequence of mMRNA degradation prior to sequencing.

In conclusion, the loci detected by these alternative approaches for Iso-Seq
transcriptome reconstruction almost always coincide but differ in the magnitude
and nature of the transcript isoforms they define. This reveals that the com-
putational pipeline chosen strongly impacts transcriptome reconstruction. The

IDP strategy is highly dependent on reference information resulting on transcript
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calls tha faithfully match annotated transcripts (96%) and have very little 3'/5’
end variability. IDP was also unable to detect any of the 16 novel PCR-validated
transcripts, suggesting that this method is highly restrictive for novel isoform
calling. In contrast, TAPIS works without short-read data. The tool returns sig-
nificantly more transcripts (91,428) most of which are NNCs (66%). It also has
the lowest recall rate (13%) of all the pipelines and identified a high proportion
of unsupported non-canonical junctions (40%). We conclude that TAPIS might
have a high rate of false calls. Finally, ToFU defined a balanced proportion of
novel/known transcripts and had the best recall rates at the gene, transcript, and
splice-junction level, without relying on short-read sequencing or high-quality
transcriptome annotation.

These results indicate that, ToFU provides high flexibility to generate full-
length transcriptomes without requiring prior knowledge or the need for short-
read sequencing data. Hence, ToFU appears to be the best existing pipeline for
the purposes of general transcriptome definition using Iso-Seq PacBio data and

so we chose this pipeline as baseline for further analyses.

3.4.3 Characterisation of ToFU-defined novel calls reveals enrich-
ment in artefacts

The descriptive analysis framework provided in previous section for ToFU tran-
scriptome readily indicates that our neural mouse transcriptome, obtained by
PacBio single molecule sequencing, recovered full-length transcripts and had
an important level of novelty (~ 40%). Alignment of ToFU transcripts to the
reference genome showed an average percentage of identity above 99.8%, in-
dicating that most sequencing errors were corrected by the ToFU clustering ap-
proach. However, small indels (average size ~ 1.2 nts) were still detected in
56.2% of the transcripts. To tackle this problem, we first attempted to correct
indels with matching lllumina short reads using Proovreads [130]. Although the
number of transcripts with at least one indel decreased to 2,550 (16% of tran-
scripts), this was still unsatisfactory for posterior ORF prediction since small
indels can provoke a frame shift and consequently a false prediction. Instead,

transcripts were corrected using the reference genome sequence. By virtue of
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this strategy, all indels inside exons were removed, and we obtained what we
called a corrected PacBio transcriptome.

To assess the quality and nature of novel calls, canonical status of SJ was
evaluated in first place. In our ToFU-defined transcriptome, the ratio of canoni-
cal versus non-canonical splicing events fitted the expected genome proportions
when looking at known splice junctions: out of 141,332 known splice junctions,
99.9% were canonical. However, deep inspection revealed that novel splice
junctions showed a very different distribution: out of 3,837 novel splice junctions
31% (1,188) were non-canonical. When analysed across the different transcript
categories, non-canonical splicing was maintained at low rates in FSM (0.1%)
and ISM (0.25%) transcripts, which was expected as both are formed entirely by
known splicing events (Figure [3.7]A). In NIC transcripts, comprising novel com-
binations of known splice junctions or novel splice junctions deriving from anno-
tated donors or acceptors, the percentage of non-canonical splicing was 0.15%
(Figure[3.7]A). However, in NNC transcripts, characterized by the introduction of
alternative donors and/or acceptors, we found 1,155 novel non-canonical junc-
tions, which represented 4.5% of total. Moreover, genic genomic, intergenic,
genic intron and Antisense transcripts, despite rarely being multi-exonic, showed
relatively high percentages of non-canonical splice junctions with 2.3%, 7.28%,
21.57% and 32.65% respectively (Figure[3.7]A). This unusually high level of non-
canonical junctions suggests that experimental artifacts might be accumulating
in these categories. Furthermore, when the percentage of transcripts showing at
least one non-canonical splice junction was considered, the proportion of NNC
affected compared to NIC transcripts became more evident, 41.5% vs. 1.47%,
respectively, strongly indicating that this NNC category of transcripts needed
deeper inspection.

Positional analysis of junctions along the transcript showed that, although
novel junctions could appear at any position in novel transcripts, there was a
higher concentration of occurrences towards 5’ ends, pattern which is not ob-
served for known - whether canonical or not - junctions (Figure [3.7|B, FET p

< 2.2e-16). This could either be the consequence of unannotated variability at
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5’ ends or higher accumulation of errors due to lower sequence support. The

ToFU pipeline is more permissive with clustering conditions at transcript ends

(E. Tseng, personal communication), which accounts for a higher probability of

errors at these areas.
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Short-read junction coverage computed by STAR was used to calculate the

support level for novel junctions called by PacBio. Note that lllumina reads are
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not always equally distributed along the transcript length and are often less
abundant towards the 5’ ends, thus providing less support for junction valida-
tion. We found that, as suspected, splice junction support by short reads de-
creased towards the 5’ end of the transcripts, but was significantly higher for
known junctions (Figure [3.7|C, Wilcoxon Rank Sum test (WRS) p < 2.2e-16).
Novel canonical junctions were in general less frequently covered but still sig-
nificantly more supported than novel non-canonical junctions, which had hardly
any supporting reads if located within the first 120 nts of the transcript 5’ end
(Figure[3.7]C, WRS p < 2.2e-16).

Moreover, events which occur during RNA RT and library generation could
also explain this accumulation of non-canonical junctions. Prediction of RT
switching events confirmed the enrichment of RT switching in novel splice junc-
tions (Figure [3.7]D, FET p < 2.2e-16) and in NNC compared to NIC transcripts
(7.24% versus 1.98%, FET p < 2.2e-16). The described RT switching events
affect minor isoforms of genes co-expressed with a major isoform that serves as
the template for the intra-molecular switching. Accordingly, we found that NNC
transcripts are enriched for being minor transcripts of highly expressed genes
(data not shown).

The number of supporting FL reads (number of raw FL reads used to gener-
ate a given isoform) affects the capacity of the ToFU pipelines to correct errors
and consequently affects the quality level of the final defined isoform. Results
showed that FSM transcripts contain significant higher number of FL reads than
any other isoform category (Figure[3.7}E, t-test p < 2.2e-16 for all comparisons).
Nevertheless, although ISMs and NICs show similar distributions, NNCs present
a clear lower FL distribution and hence, a low chance to be error-corrected by
the ToFU pipeline.

Finally, A-rich genomic DNA regions downstream of the TTS were concen-
trated in the relatively minor transcript categories (Figure [3.7}F). Using a cut-
off of 60% adenines, a total of 601 transcripts were found to be intra-priming
candidates, which affected the antisense and genic intron categories in partic-

ular (50% and 30% of their transcripts were flagged). Remarkably, Incomplete
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Splice Match transcripts that were versions of the reference transcripts short-
ened at the 3 end and monoexon NIC transcripts with intron retention events
were also significantly enriched in intra-priming candidates (WRS p < 2.2e-16
for all tests).

Altogether, out results suggest that a fraction of the novel transcripts found
by ToFU pipeline could be technical artifacts that originated at the cDNA library
construction step or via less confident correction by ToFU at the 5’ ends of tran-

scripts.

3.4.4 Experimental validation of ToFU results verifies the presence
of novel-isoform artifacts

To shed light on whether the transcripts detected by the ToFU analysis were
correct or not we performed RT-PCR amplifications for a total of 67 mRNAs en-
compassing different categories: 23 FSM (3 with non-canonical splice sites), 12
NIC, 30 NNC canonical (11 of them containing at least one non-canonical splice
junction) and 3 Fusion. Importantly, we performed RT-PCRs both on the Clon-
Tech oligo(dT) enriched full-length cDNAs used for PacBio sequencing and, for
positive NIC/NNC/Fusion and 4 FSM transcripts, on new cDNA retrotranscribed
using random hexamers rather than oligo(dT) at both 42 °C and 50 °C. The ratio-
nale behind this approach was to test whether novel transcripts could have been
spuriously generated by RT switching-like mechanisms at the retrotranscription
step of the PacBio protocol. Since higher temperature and/or the use of random
hexamers would complicate the formation of secondary structures in the RNA
template, retrotranscription artifacts would be less favored in these conditions.
We validated by RT-PCR for all of the 23 FSM, including the 3 cases with
non-canonical junctions, (Figure [3.8|A) highlighting the high level of confidence
supporting these transcripts. Novel transcripts showed lower validation rates:
8/12 NIC, 1/3 Fusion and 6/30 NNC, highlighting the low detection rate within
NNC category (Figure [3.8/B). Importantly, 9 of these non-validated NNC tran-
scripts were amplified by oligo(dT) PCR but were lost when random hexamers
and higher temperatures were used (Figure [3.8|C), suggesting the possible oc-
currence of retrotranscription artifacts. Table summarizes the results of the
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Figure 3.8: Representative examples of RT-PCR validation experiments. A. FSM
transcript with a noncanonical SJ successfully amplified at each PCR condition. B. Exam-
ple of a NNC transcript with a noncanonical SJ that failed to be amplified in the oligo(dT)
condition. C. Example of NNC transcript with noncanonical SJ amplified at oligo(dT) but
not when using Random Hexamers conditions.

oligo (dT) Random hexamers

Transcript type Positive Negative Total Positive Negative Total Overall validation

FSM 23(3nc) O 23 4@3nc) O 4 100%
NIC 10 1 11 8 2 10 67%
NNC 15(3nc) 15(8nc) 30 6 9(3nc) 15 20%
Fusion 1 2 3 1 0 1 33%

(nc) Trasncript with non-canonical junctions.

Table 3.2: Summary of RT-PCR isoform validation across different structural categories.
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PCR validation experiment. Our PCR results indicated that an additional fil-
tering strategy would be useful to remove artifactual transcripts from the ToFU

transcriptome output.

3.4.5 Machine learning enables accurate filtering of novel-isoform
artefacts

Previous work applied different criteria to discard artifacts from transcriptome
sequencing, including support by short reads [12], removal of transcripts with
non-canonical splicing [318] or filtering based on sequence features [279]. How-
ever, we found that these approaches do not fully capture the complexity of the
data. For example, a few known and NIC transcript junctions lack lllumina cover-
age (148 out of 67,610, and 20 out of 437 respectively), while most of the novel
non-canonical junctions did had supporting lllumina reads (543 out of 597). We
found that additional features such as RT switching direct repeats and low ex-
pression values accumulated in NNC transcripts, but were not exclusive to them.
Moreover, our RT-PCR analysis revealed an important number of transcripts (16)
having a full set of canonical junctions but failing validation. We hypothesized
that the set of quality control attributes and descriptors previously used to eval-
uate and characterize isoforms ought to be informative of transcript quality and
could be used to define a composite filter to remove artifact transcripts efficiently.

Thus, we decided to train a ML classifier based on these features. As pre-
viously described in Methods section, we defined the FSM transcripts as the
positive set (n = 7,774) and the NNC transcripts with at least one non-canonical
SJ as the negative set (NNC-NC, n=1,110). Figure 3.9 A. shows the features
selected by the classifier, with flags bite transcripts ranking first in order of impor-
tance which we interpret as an indication of the presence of novel SJs caused by
secondary RNA structures. Interestingly, five out of the eight top variables were
associated with junction expression, suggesting that junction coverage patterns
are some of the most useful characteristics for calling bona fide novel transcripts.

Application of the Random Forest classifier to our test set using a probability
for positive classification higher than 0.75 led to AUC of 99.54% for the receiver

operating curve (Figure [3.9B, blue line), indicating that the created classifier
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Figure 3.9: Machine Learning (ML) filter performance. A. Ranking of variables ac-
cording to their relative importance for the ML classifier across different PacBio-defined
transcriptomes. In MCF7 dataset no full-length data were available. B. ROC curves of
the ML filter in our mouse transcriptome for the test set (blue line) and for the set of novel
isoforms assayed by RT-PCRs (red line).

performed well. We then applied this Random Forest classifier to our ToFU-
defined transcriptome using the same classification parameters we used in the
test set. Evaluation of the classifier on the set of 41 novel NNI/NNC isoforms
we had previously assayed by RT-PCR, gave an AUC 82.41% (Figure [3.9]B,
red line). This indicates that our classifier faithfully captured differences be-
tween our baseline set of positive and negative transcripts, and thus it can be
applied to efficiently discriminate true transcripts from artefacts within the set
of long-read novel sequences defined by ToFU. Additionally, we used RT-PCR
data to compare the performance of our ML method to two previous methods:
the non-canonical SJ filter (nc Filter) and SpliceGrapher. Our results indicate
that the classifier approach has a higher F1 score (71.7 versus 57.9 and 41.1
respectively), and a lower FDR (11% versus 53.3% and 58.8% respectively)
than alternative methods (Table[3.3). These notable FDR differences are mostly
due to a high rate of false canonical junction transcripts that are not discarded
by the prior approaches. Moreover, the ML filtering strategy was the only one

that succeeded in lowering both the non-canonical SJ and the no short-read
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coverage quality features in NNC transcripts to levels similar to those of the
high-confidence FSM category (Figure A).

TP TN FP FN F-score FDR
ToFU + SQANTI Filter 8 26 1 6 7.7 11.1%
ToFU + nc Filter 14 11 16 0 57.9 53.3%
ToFU + SpliceGrapher 14 7 20 0 411 58.8%

(nc) Non-canonical junctions.

Table 3.3: Performance summary for alterantive artefact filtering methods. The ML-
based filter, the non-canonical filter, and SpliceGrapher were evaluated using the set of
novel isoforms assayed by RT-PCR. (TP) True Positive, (TN) True Negative, (FP) False
Positive, (FN) False Negative, (FDR) False Discovery Rate.

Based on these results, we curated our ToFU-defined transcriptome using
our classifier. In addition, we added intra-priming filters to discard transcripts
that could have undergone polyA intra-priming, which, as described in section
3.4.3] were enriched in the antisense and ISM categories. When we applied
this approach to the mouse neural transcriptome, this combination of ML and
intra-priming filters removed 4,134 novel transcripts (2,462 NNC, 1,281 NIC, 32
genic genomic, 36 fusion, 116 antisense, 25 intergenic, 129 genic intron and
53 ISM). The adjusted percentages of each category in our final curated tran-
scriptome were: 66.3% FSM, 14.1% ISM, 15.7% NIC, 2% NNC, 0.5% genic
genomic, 0.5% sntisense, 0.2% fusion, 0.3% intergenic and 1.4% genic intron
(Figure [3.10B). Our filter had the strongest impact in the NNC transcript cat-
egory, which considerably diminished from 14% to 2%, while FSM increased
consequently from 49% to 66% in the curated transcriptome (Figure [3.10|B). In
our final dataset 9,626 transcripts (80.4%) are in known categories and 2,058

(17.1%) are novel transcripts of which 286 (2.3%) fall within novel genes.
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Figure 3.10: Comparison of results between alternative artifact filtering methods.
A. Evaluation of quality features in the FSM and NNC categories after the ML-based
method, the non-canonical filter, and SpliceGrapher. Statistical differences were test
using Fisher’s exact tests (FET), (***) P < 0.001, (ns) not significant. B. Structural classi-
fication of transcripts before and after application of our ML-based filter.
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3.4.6 PacBio sequencing unable to accurately quantify low-medium
expressed isoforms but capturing most transcriptional sig-
nal

Although Iso-Seq PacBio sequencing was effective in defining full-length tran-
scripts and discovering new splicing variants, its low throughput (compared to
short-read based sequencing technologies) may be insufficient to compute ac-
curate transcript level expression estimates. Transcript quantification evaluation-
revealed that replicate correlation was significantly lower when quantifiying with
PacBio FL reads (Figure [3.11]A) compared to short-read quantification, espe-
cially at the mid and lower expression ranges, where the correlation dropped
to nearly zero (Figure [3.11]B). Thus, our results show that the number of reads
would be insufficient for an accurate quantification of transcript expression quan-

tification at the PacBio’s current sequencing depth (0.5 M per sample),
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Figure 3.11: Correlation of expression estimates between OPC replicates at three
levels: low (black), medium (red) and high (green). A. Isoform expression quantifica-
tion using short-read data. B. Isoform estimations using PacBio FL data.

Another possible limitation of PacBio sequencing is that transcripts with low
expression levels could be difficult to detect because of their low-throughput
compared to short-read RNA-seq that generates millions of reads at a fraction
of the cost. To test this possibily, we mapped short-reads to both the RefSeq ref-
erence transcriptome (ReT, around 160,000 transcripts) and the curated PacBio-
defined transcriptome (PbT, 12,408 transcripts) ad evaluated the portion of the
signal hidden by PacBio. On average, 87% of our lllumina reads mapped to the

mouse genome. Transcriptome mapping results showed that 81.7% of reads



3. EXTENSIVE CHARACTERIZATION AND QUALITY CONTROL OF LONG-READ
SEQUENCING TRANSCRIPTOMES

had a hit to the ReT and 70.7% to our PbT respectively, indicating that only an
11% in transcriptional signal was missed when considering the PbT alone.
However, this difference in the number of mapped reads translates into a
much bigger difference in the number of detected transcripts, equating to 30,071
versus 11,921 transcripts at a 1 count threshold (Figure 3.172]A). This suggests
that ReT exclusive transcripts had lower expression than PbT, which we con-
firmed after analyzing transcript expression levels (Figure [3.12/B). At the gene
level, ReT-based quantification totally overlapped PbT except for 357 genes that
were a combination of novel, fusion and other reference genes. Further char-
acterisation of PacBio exclusive trancritps revealed that from a total of 3,447

transcripts absent from the ReT, 20.8% of them belong to Ensembl and RefSeq
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Figure 3.12: Isoform detection by Iso-Seq sequencing. A. Venn diagram of the num-
ber of reference transcripts captured by short-read mapping (red, ReT) or Iso-Seq long-
read sequencing (green, PbT). The upper part of the Venn diagram indicates the percent-
age of short reads mapped to each defined transcriptome is indicated. B. Expression
level distribution for ReT exclusive, PbT exclusive and shared transcripts. C. Classifica-
tion of transcripts exclusively detected by PacBio sequencing based on their presence in
reference databases and characterization of PacBio novelty . D. Number of genes and
transcripts detected by short-read mapping to the PbT and ReT, at increasing expression
level cut-offs. m.c., manually curated transcript.
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transcriptome references (Figure [3.12]C). However, the great majority of PbT
exclusive transcripts were catalogued as novel transcripts (n=2,728, 79%), most
of which were NIC transcripts generated by new combinations of already known
splice junctions (61%).

In addition, imposing a filter of 10 counts, we eliminate most of the ReT-
exclusive transcripts and made the number of transcripts and genes detected by
the two mapping approaches similar (Figure[3.12|D). Note that a minimum of 10
counts is required by popular differential expression algorithms such as edgeR
[276] to remove transcriptional noise. Furthermore, the proportion of genes with
multiple transcripts was almost identical for the PbT and the ReT at this 10
count threshold (Data not shown). We concluded that, at reasonable sequencing
depths for long and short-reads technologies (2M and 60M, respectively), the
PacBio transcriptome still captures nearly 90% of the transcriptional signal that
lllumina would find, is able to rescue transcriptional diversity not yet annotated by
the reference databases, and dramatically reduces the calls of transcripts with

very low expression levels that could be at the limits of accurate quantification.

3.4.7 Novel transcripts have a major impact on the accuracy of
transcriptome quantification by short reads

In order to investigate how the magnitude and nature of the transcriptome af-
fects quantification, we compared the quantification results when using a re-
duced transcriptome (our curated PacBio Transcriptome, PbT), and the total set
of Reference Isoforms (ReT). As explained in Section [3.3.2] we addressed the
evaluation of short-read quantification results by comparing the METs in each
transcriptome. The MET was the same for 3,976 genes when quantifying with
PbT and ReT. Interestingly, this was not the case for 1,433 genes, 996 of them
showing a PbT MET transcript already present in ReT but not quantified as MET.

For example, the signal peptidase complex subunit 2 gene (SPCS2) was ex-
pressed as one transcript in our PacBio neural transcriptome (PB.6460.1) and
had two transcripts in ReT quantification (NM_025668 and XM_006508117) (Fig-
ure[3.13|A1). PB.6460.1 is a FSM transcript of NM_025668 and both codify for
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the PI-ORF of the gene (ORF associated to the transcript defined as princi-
pal isoform by APPRIS [277] based on its functional load) but the 3’ exon of
PB.6460.1 is smaller, resulting in a 3° UTR shorter by 1,340 nucleotides, (Figure
[3.13]A1, red dashed box). This shorter 3’ exon is actually the annotated exon
of the RefSeq transcript, XM_006508117, which also uses two alternative 5’ ex-
ons. XM_006508117 was the MET in the ReT quantification while NM_025668
was estimated as poorly expressed (Figure [3.13]A2). Upon RT-PCR ampilifica-
tion with transcript discriminating primers we confirmed the PbT and not the ReT
based quantification scheme (Figure [3.13]A3). When inspecting read coverage
at this locus we observed that neither the unique 5’ junctions of XM_006508117
nor the extra exonic sequence at the 3’exon of NM_025668 were covered by II-
lumina short reads, while the short-read pattern nicely fits the PacBio transcript
model (Figure[3.13|A1). We speculate that this variability at the 3'UTRs creates
a conflict when resolving transcript quantification in the RefSeq gene model that
was decided in favour of transcript XM_006508117 by RSEM, as this transcript
has a more consistent 3’ end coverage. In summary, the transcript quantification
error of the SPCS2 gene when using a reference transcriptome as mapping tem-
plate was due to a discrepancy in the 3’ end annotation between the reference
and the actual expressed transcripts. Similar disagreement patterns were ob-
served for two additional genes, DHRS7B and BDKRB2 with similar outcomes
in terms of MET selection (data not shown).

To estimate how general this pattern was, for all the Mayor Expressed Tran-
script (MET) discrepant genes, we investigated the RefSeq curation status. The
majority of the discrepant genes (57.2%, n = 470 genes) corresponded to situ-
ations where the PbT MET was a FSM of a manually curated RefSeq transcript
and the ReT MET was not manually curated, as in the case of SPC2 gene. Fur-
thermore, in these cases, the RefSeqg-based MET had significantly worse lowest
splice junction coverage and lowest mean exon coverage than the MET called
by the PbT quantification (Figure 3.13|B-C). Similarly to SPCS2, we found that,
for these 470 genes, the differences in the length at the 3 end between the MET

selected at PbT quantification and their matched RefSeq transcripts were signifi-
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cantly higher than in genes where both quantifications selected equivalent METs
(Figure [3.73] D). Moreover, these differences were also observed for transcripts
codifying for the PI-ORF of the genes, indicating that the extensive variability in
the 3’ ends that is not annotated in a global reference such as RefSeq is not
only restricted to secondary/alternative transcripts. These results demonstrate
the relevance of using a full-length reference transcriptome updated with novel

expressed transcripts for correct quantification estimates.
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Figure 3.13: Quantification problems caused by 3’ UTR variability. A. SPCS2 gene
as an example of how 3 UTR variability in a PI-ORF leads to quantification errors.
A1.Transcripts associated with the SPCS2 according to PacBio sequencing (green), Ref-
Seq quantification (red), and the short-reads mapping profile at the SPCS2 locus (grey)
are shown. The positions of transcript-specific primers are indicated by arrows and dif-
ferences at the transcription termination sites are highlighted by a red dashed box; 0
indicates splice junctions lacking any short-read support. A2. Expression level of the
SPCS2 variant in the OPC condition. A3. Validation of SPCS2 transcript expression
by RT-PCR. PB.6460.1/NM_025668 were amplificated but XM_006508117 was not. B-D.
Characterisation of genes expressing different METs in the PbT and ReT transcriptomes.
B. Lowest SJ coverage by short reads in MET genes. C. Lowest mean exon coverage
by short reads in MET genes. D. Distance between the TTS of the MET genes and their
FSM references. (***) P < 0.001, (ns) not significant.
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3.4.8 Open reading frame prediction in long-read defined transcrip-
tomes

The availability of a full-length corrected and curated transcriptome allows us to
predict ORFs with high confidence while also annotating the 3’ and 5° UTRs.
GMST ORF prediction in our curated long-read neural transcriptome generated
9,269 non-redundant ORFs in a total of 10,813 coding transcripts (90.3% of the
total transcripts). Most FSM, NIC and NNC transcripts were predicted to have
ORFs (97%, 90%, 87.8% and 92.8%, respectively), while the remaining cate-
gories were mostly non-coding. To evaluate ORF prediction results, we selected
FSM, ISM and 3’'UTR fragment subsets representing variants already annotated
in reference transcriptomes. The comparison between predicted and reference
coding status revealed a very high true-positive rate and a low true-negative rate
for the FSM and ISM subset (Table [3.4). These results are in agreement with
the protein-coding transcript enrichment performed in the polyA purification step
and demonstrates the capacity of GMST to predict the coding region when the
isoform has coding potential. Besides, the high FN ratio observed in the 3' UTR
fragment subset also suggests that ORF predictors are specific because ORFs
in regions devoid of coding potential such as 3' UTRs cannot be predicted (Table

3.4).

FSM (7,899 Iso) ISM (1,392 Iso) 3'UTR Fragment (339 Iso)

Predicted Predicted Predicted

Coding Non Coding Coding Non Coding Coding Non Coding

Coding 93.7% 1.2% 86.1% 8.4% 18.3 % 80.2%
Reference
Non Coding 3.3% 1.8% 3.9% 1.6% 0% 1.5%

Table 3.4: Confusion matrices evaluating coding prediction across FSM, ISM and UTR3
fragment transcripts.

Moreover, to assess the quality of predictions we compared the protein se-
quence of true positive cases against their cognate references (Figure [3.14]A):
for the FSM subset we found 90.5% of ORFs identical to the reference pro-
tein and 7.8% showing a shorter N-Terminus. Instead, for ISM category, just

14.8% of ORFs were identical to the reference protein and remarkably 55%
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showed a shorter N-Terminus and 21.6% had a shorter C-Terminus, certifying
their fragmented status. Actually, comparison of the size of the N-Ter deletions
between FSM and ISM ORFs classified as N-Ter Deletion reflectes that, when
present, the shortening of the N-Terminus was much smaller in FSM ORFs (Fig-
ure [3.14]B). Finally, the 3'UTR fragment subset were highly enriched in pre-
dicted ORFs with major changes (exceeding 70%) or which do not aligning
with the matched reference ORFs (30%), indicating that they are enriched in
non-coding retrotranscription/degradation fragments. Our results demonstrate
that the GMST algorithm can accurately predict the coding sequence in full-
length sequenced isoforms and provide true partial coding sequences in cases

of partially-sequenced isoforms.
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Figure 3.14: ORF predictor benchmarking. A. Types of differences between predicted
ORFs and matched reference ORFs. B. Size of N-Ter deletions for FSM and ISM tran-
scripts.

Size of N-Ter Deletion

3.4.9 Open reading frame diversity generated by novel long-read
defined isoforms

Most of the novel transcripts from the mouse neural transcriptome belong to
existing genes (98%). We studied to what extent alternative splicing modifies
both coding and non-coding regions of transcripts, and how it impacts the PI
of the gene. Approximately, 36% of the genes expressed in our system were

multi-isoform genes; of these, 1836 expressed the transcript corresponding to
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the gene Pl and in 592 cases (32%), the Pl isoform (57%) was expressed with
multiple, distinct UTR regions. Transcripts corresponding to predicted alternative
ORFs were expressed in 1,429 genes and in contrast, the UTRs of these non-PI
transcripts were much less variable, with only 9% of them showing multiple 3’ or
5" UTR variants. Hence, our neural transcriptome shows a significantly higher
regulation of UTRs in Pl ORFs than in alterantive ORFs, suggesting that further
transcriptional regulation of alternative forms might not be required to modulate
their functionality.

Finally, evaluation of protein differences in our set of curated transcripts re-
garding the Pl of the gene showed that most of the predicted alternative (Alt-
ORF; n = 2127) and novel ORFs (Novel-ORF; n = 1194) are distributed between
N-terminal truncations (around 37% for both categories) and major changes
(around 53% for both categories) with an enrichment of microexons differences

in Alt-ORFs regarding to Novel ORFs (12% vs 3%, respectively).
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3.4.10 SQANTI tool

Given the success of the strategies we followed in this work for the in-depth
characterisation and curation of long-read transcriptomes, we decided to imple-
ment our analysis into an easy-to-use python tool called Structural and Quality
Assessment of Novel Transcript Isoforms (SQANTI). SQANTI is implemented in
Python with calls to R for statistical analyses and to generate descriptive plots.

SQANTI has two major functions: sganti quality control and sqanti filtering (Fig-

ure[3:75).

Reference Reference Genome  ToFU transcripts  Expression Matrix Short-read/ Full-Leng
Genome Annotation Coverage
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Figure 3.15: SQANTI workflow. SQANTI comprises two main functions: sqanti_qgc.py
uses a FASTA file with transcript sequences, the reference genome in FASTA format,
a GTF annotation file, and optionally, full-length and short-read coverage files as in-
puts. It returns a reference-corrected transcriptome, two characterisation files contain-
ing structural classification, transcript and junction-level quality descriptors, and a final
QC graphical report. sqganti_filter.py uses the reference-corrected transcriptome and the
transcript-level attributes file and returns a matching learning-curated transcriptome from
which artefacts have been removed.
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3.4.10.1 SQANTI quality control

The SQANTI inputs are: a transcript dataset (in gtf or fasta file formats), a
genome annotation, and a genome sequence, and it returns a reference-corrected
transcriptome and a wide set of transcript and junction attributes in two tabulated
text files.To correct transcriptomes, SQANTI aligns sequences to genome refer-
ences using the GMAP algorithm [370] to obtain a gtf file and a subsequent fasta
file and avoiding indels along the exons defined by the alignment step.

A fundamental goal of long-read transcriptome sequencing is to capture the
extent of transcriptome complexity while still obtaining full-length transcripts.
Thus, SQANTI includes metrics to readily study these aspects as well as to pro-
vide a deep classification of transcripts by comparing input isoforms to reference-
gene models (Figure[3.2).

Furthermore, QC evaluation of transcripts is sometimes essential to the de-
tection of anomalies in the data or reconstruction pipelines. Thus, all the QC
descriptors mentioned and described during this chapter are evaluated and pro-
vided along with the SQANTI output files. Appendixes 1 and 2 list the set of
descriptors computed by SQANTI at the transcript and junction levels. These
files contain 33 and 20 fields, respectively; the first three fields identify the tran-
script in the reference genome and the remaining fields describe different tran-
script/junction properties, making a total of 47 SQANTI descriptors.

Moreover, different options can be set to allow users to adjust the evaluation
to suit their needs; examples of these options include: the SJ sequences that
SQANTI considers as canonical, the size of the genomic DNA window screened
for adenine content downstream of TTSs, and alignment parameters. Moreover,
extra data can be provided as input so that SQANTI provides an even more ex-
tensive QC analysis. These optional inputs that can be useful in the assessment
of quality of the tested transcriptome include FL number, junction coverage, and
expression quantification data (Figure[3.15).

Thus, in summary, SQANTI QC is implemented in a function called sqant_qc.py
which performs the following tasks: (1) transcript sequence correction based

on the provided reference; (2) comparison of sequenced transcripts with the
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current genome annotation to generate gene models and classify transcripts
according to SJs; (3) ORF prediction using GMST [30]; (4) prediction of RT-
switching events; (5) QC characterisation via the analysis of several transcript

and junction-level attributes.

3.4.10.2 SQANTI filter

After reference-guided error correction, artefacts may still be present in the re-
sulting transcriptome. SQANTI removes potential artefact transcripts by apply-
ing a ML classifier based on the SQANTI features generated beforehand (Figure
[3.15). The definition of the true and the artefact sets can be provided by the user
when a set of reliable sequences known to be true isoforms and another set of
sequences known to be artefacts are available. If not, SQANTI infers these
sets by defining FSM transcripts as the positive set and NNC transcripts with
at least one non-canonical junction as the negative set. The ML filter trains a
Random Forest classifier based on the user’s data and following the strategy
described above. Hence, SQANTI returns a curated transcriptome from which
artefact transcripts have been removed. The SQANTI filter also includes an op-
tion to discard transcripts flagged as intra-priming candidates (60% adenines at
the genomic 3’ end of isoforms) and the curated transcriptome obtained can be
evaluated by using the SQANTI QC function to verify the improvement in qual-
ity parameters. The SQANTI filter has been implemented in a function named
sqanti_filter.py which uses sqanti_gc.py output information to perform filtering of
potential artefacts.

3.4.10.3 Diagnostic plots

SQANTI provides a graphical report generated by R that shows the different
evaluated attributes which helps the user to understand the quality and char-
acteristics of the transcriptome, including the distribution of transcript lengths,
expression levels, number of exons, the position of junctions, full-lengthiness,
and other quality features such as the proportion of non-canonical junctions,
evidence of RT switching, and junction coverage by short reads. In addition,

SQANTI provides most of these graphs with a transcript category breakdown
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in order to facilitate quality assessment of the transcriptome obtained by sin-
gle molecule sequencing. SQANTI is available at https://bitbucket.org/

Conesalab/sqanti.

3.4.11 Generalization of the SQANTI approach

To assess the general usefulness of SQANTI, we applied our approach to pub-
lic datasets from alternative organisms and long-read sequencing technologies
(Section[3.2.2).
First, SQANTI was used to analyse human (MCF7 cells) and maize (ear tissue)
PacBio datasets (Figure A-B). Results indicated that the transcriptome
composition in these datasets was substantially similar to our observation for
the mouse transcriptome: a significant number of novel transcripts in known
genes (50.4% and 38% for MCF7 and ear tissue, respectively, Figure[3.16, A-B)
and enriched in low quality features (Figure [3.16/C-D). In each case, we ap-
plied the SQANTI filtering approach by training our ML classifier in each case
with their sets of FSM and NNC-NC transcripts using default values to remove
intra-priming events. As with the mouse data, we obtained high AUC values in
the test sets (99.3% for maize ear and 99.7% for MCF-7) and we succeeded
in removing a considerable amount of low quality novel transcripts while con-
trolling their enrichment in low quality features (Figure [3.16] C-D). Furthermore,
analysis of the importance of SQANTI descriptors for the ML classifier in these
datasets with respect to the mouse data revealed noticeable differences (Figure
[3.9]A), although in general the top-ranked classification features coincided (i.e.
the top three variables were shared among datasets). For example, the number
of FL reads was not a highly ranked feature for the maize ear data, probably
because the sequencing depth of this dataset was lower and it was absent from
the MCF-7 dataset because these values were not available.

Additionally, we assessed the performance of SQANTI when using alterna-
tive long-read technologies such as Nanopore. As expected, its higher error rate
is probably the cause of the high number of NNC isoforms and exacerbated lev-

els of non-canonical junctions (28.5%) we observed with this technology (Figure
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A). In particular, unlike TSS bias distribution for ToFU PacBio isoforms, we
found a similar non-canonical distribution along transcript sequences (Data not
shown). We should remember that we hypothesize that the clustering conditions
at transcript ends in the ToFU pipeline is more permissive, thus generating this
biased positional pattern. Moreover, Nanopore data showed an exacerbated
representation of genes with more than 6 isoforms, even in novel genes (Figure
B). This is probably because there is no collapsing step to remove redun-
dancy in the Nanopore processing pipeline. Finally, the levels of intra-priming
detected for this dataset were low (Figure C), possibly because of the dif-
ferent cDNA synthesis conditions or preprocessing/filtering read steps in PacBio.
Thus, the results of the quality assessment performed by SQANTI greatly help

to reveal the characteristics of each particular dataset.
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Figure 3.16: SQANTI performance on alternative PacBio datasets. A. SQANTI char-
acterisation of the ToFU-defined transcriptome for the MCF7 human PacBio dataset. B.
SQANTI characterisation of the ToFU-defined transcriptome for the maize ear PacBio
dataset. C. SQANTI filter results on the MCF7 transcriptome. D. SQANTI filter results on
the maize ear transcriptome. * p < 0.05, ** p <0.01, *** p < 0.001. ns = not significant.
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Figure 3.17: Quality control performance by SQANTI on Nanopore sequencing
data. A. Rate of transcripts containing non-canonical junctions across SQANTI structural
categories. B. Distribution in the number of isoforms per gene across novel and reference
genes. C. Intra-priming characterization across SQANTI structural subcategories.

Altogether, this section shows that the SQANTI QC framework is a very use-
ful tool for revealing the structural composition of transcriptomes obtained from
long-read sequencing and for evaluating quality of novel calls across different

organisms and sequencing technologies.
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3.5 Discussion

Long-read sequencing technologies, such as the PacBio platforms or Oxford
Nanopore, have brought novel excitement into the challenge of describing the
complexity of the transcriptome of higher eukaryotes by providing new means
for sequencing full-length transcript models. While early papers concentrated
on demonstrating the dramatic enrichment in full-length transcripts achieved by
long reads [296] [326], there is an increasing number of publications that de-
scribe thousands of new transcripts discovered by this technology. Accordingly,
we found that, when sequencing the mouse neural transcriptome using PacBio,
a large number of novel transcripts could be detected. However, close inspec-
tion of these new transcripts revealed signs of potential errors that required a
thorough and systematic analysis of these sequences before making any new
transcript calls. This motivated the development of SQANTI, a new software for
the structural and quality analysis of transcripts obtained by long-read sequenc-
ing.

The three basic aspects of the SQANTI QC pipeline are (1) the classifica-
tion of transcripts according to the comparison of their junctions to a reference
annotation in order to dissect the origin of transcript diversity, (2) the compu-
tation of a wide range of descriptors to chart transcript characteristics, and (3)
the generation of graphs from descriptors data, frequently with a transcript-type
breakdown, to facilitate interpretation of the sequencing output and reveal po-
tential biases in the novel sequences. Using this analysis framework, we were
able to show that, at least in our mouse experiment, novel transcripts - especially
those in the NNC category - are typically poorly expressed transcripts of known
genes, consistent with previous reports [296][319][320]. We also observed that
novel junctions accumulate at the 5’ end of transcripts, have lower coverage by
lllumina reads, and are enriched in non-canonical splicing and direct repeats
typical of RT switching.

However, none of these features are exclusive of any of the novel transcripts
categories, which invites the question on how best to remove transcript artifacts.

This has been solved in the past by either eliminating all novel transcripts with at
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least one junction not supported by short reads [296], by systematically discard-
ing transcripts with noncanonical splicing [13], or by developing models to esti-
mate the likelihood of a certain splicing event [1]. In our case, we performed an
extensive PCR validation of transcripts belonging to different known and novel
types. We found a significant number of transcripts, both with canonical and
noncanonical junctions, that had complete junction support by lllumina and that
were amplified by RT-PCR of the sequenced cDNA library but that failed to be
validated when PCR conditions were adjusted to avoid secondary RNA struc-
tures. We concluded that these might be cases of retrotranscription artifacts,
which would have escaped filtering solely based on short-read support. This
result may suggest that a revision of library preparation protocols is needed,
which goes beyond the scope of this study. As an alternative, we were able to
combine our set of SQANTI descriptors with a machine learning strategy to build
a filter that discards poor quality transcripts with better performance than alter-
native existing approaches. Moreover, the SQANTI filter is data-adaptive, and
we showed that it can be successfully applied to other long-read transcriptomics
datasets and technologies.

Thereby, SQANTI is designed to leverage genome annotation data to charac-
terize and filter long-read transcriptomes. Where no genome is available or the
assembly is low-quality, reference-guided correction of transcript sequences will
be compromised and therefore also the accurate translation into ORFs. If, addi-
tionally, the gene content annotation is poor, this will impact SQANTI transcript
classification, leading to enrichment in novel isoforms and genes. In these con-
ditions, it might be difficult to define robust FSM positive and NNC-NC negative
training sets for the SQANTI classifier: the first set, because of the low num-
ber of known transcripts, and the second, because of poor correction of PacBio
sequences. Subsampling experiments showed that 150-200 training set tran-
scripts would be sufficient to obtain comparable performance to that in [6.3]B,
indicating that the SQANTI filter can be used confidently even when reduced
training sets are available. Furthermore, the SQANTI set of quality descriptors

will be extremely useful in these cases, as they will provide a comprehensive
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characterization of the quality of the transcript calls in situations where little ad-
ditional data is available. Finally, note that SQANTI is agnostic to the sequencing
technology that generated the transcripts and can accept transcript sequences
from other long-read approaches such as Nanopore and Moleculo (lllumina syn-
thetic long-read technology). Obviously, the results of the quality assessment
will vary as a function of the characteristics of the underlying technology.

The fundamental advantage of single-molecule, long-read technologies over
short reads is their direct detection of full-length isoform diversity including novel
transcripts. The availability of a curated full-length transcriptome data set of
our mouse neural tissue allowed us to explore these aspects confidently. We
found 2,058 novel transcript isoforms, representing 17% of total transcriptome
and most of them falling within reference genes, revealing the relevant tran-
scriptional signal hidden by reference gene models and highlighting the need of
long-read sequencing for whole transcriptome definition in tissues with extensive
post-transcriptional programs as brain.

We also show how high variability at transcript ends is a source of quantifica-
tion errors that can be alleviated when an expressed full-length reference tran-
scriptome is used. Our data suggests that unannotated alternative polyadenyla-
tion events are frequent in mammalian genomes, which, in turn, induce incorrect
quantification estimates. Full-length sequencing of the expressed transcriptome
readily identifies this 3-end diversity to provide the correct templates for tran-
script quantification. On the other hand, variability at the 5 end is still an is-
sue for full-length transcriptome sequencing, as biological variability cannot be
unequivocally differentiated from technical artifacts in cDNA library preparation
protocols. The SMARTer protocol typically used in PacBio sequencing may not
always capture the full extension of the 5’ ends due to transcript degradation or
incomplete retrotranscription. This may account for the lack of 5’-end coverage
observed in FSM and ISM transcripts. Trapping of the 5 CAP prior to the syn-
thesis of the secondary cDNA strand has been shown to increase the overlap

of the 5 end without seriously compromising the yield of long reads [43] and in
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the future may represent the preferred form of library preparation to study 5-end
diversity.

In conclusion, the results presented in this chapter indicate that long-read
technologies, as any other large-scale genome technology, are subjected to the
accumulation of false positives if proper quality evaluations are not established.
However, provided adequate quality control, long-read technologies are effective
tools for the characterization of isoform-resolved transcriptomes, the accurate
estimation of isoform expression as well as enhancing the study of the biological
significance of isoform diversity. Due to effectiveness of SQANTI to maximize
the analytical outcome of long-read technologies and deliver quality-evaluated
transcriptomes, PacBio recommends it as the standard quality control tool for

best practices to analyse Iso-Seq data.
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4.1 Introduction

Functional profiling is by far the most widely adopted genome-wide approach
for those interested in characterising the functional relevance of gene expres-
sion regulation [64]. This has been possible by the availability of structured and
precisely vocabulary describing the functional properties of gene products such
as Gene Ontology (GO) [10], the Kyoto Encyclopedia of Genes and Genome
(KEGG) [158][159][160] or Reactome [98]. Despite these resources currently in-
clude rich annotation for most model species, functional entries are still recorded
at the gene level. Thus, even though both AS and APA mechanisms have
emerged as central mechanisms of proteome and transcriptome diversity and
playing a key role in lineage determination, cell differentiation or tissue devel-
opment [18][52], current gene-centric annotation information impedes to study
the functional consequences of differential splicing in specific contexts and con-
ditions of interest. Therefore, there is a great need for databases and methods
that provide isoform-resolved functional information of gene products.

Trying to cope with functional annotation at isoform resolution, a series of
prediction methods have recently appeared [191], [199] [239] [91]. Unlike gene
function prediction, computational methods for predicting isoform function are
limited by the little functional information available at the isoform level, which
makes traditional supervised learning algorithms such as Bayensian networks
not directly applicable [190]. Thus, alternative approaches such as the Multi-
ple Instance Learning (MIL) [41] have been recently adopted to deliver isoform-
resolved function based on GO terms by mining multiple mouse and human
RNA-seq datasets. However, these methods are limited by: (1) the lack of
isoform-level gold-standard functional annotation, hindering the evaluation of
prediction results and limiting the accuracy of these methods [192]; (2) their
high sensitivity to the initial isoform labels inherited from their host genes [199];
(3) the need of large datasets to increase the applicability and reliability of these
methods, given that most isoforms are known to be tissue- or developmental-
stage specific [94] [374] and their number is steadily growing as the result of ap-

plication of long-read technologies; (4) the high dependency of these methods
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on the complexity of the gene annotation reference being used (e.g. RefSeq,
GENCODE, Ensembl, etc).

Moreover, genome-wide studies indicate that alternative exons do not radi-
cally change or disrupt the function of gene products [351][280] but they do intro-
duce elements that modulate properties such as its enzymatic activity, binding
or stability. Hundreds of experimental validations have demonstrated that almost
all aspects of protein functions are influenced by alternative splicing [165][304],
making the traditional GO annotations not granular enough to characterise the
functional properties that differentiate isoforms.

In that direction, UniprotKB [66] annotates a large set of functional domains,
motifs and topological regions along protein sequences. UniprotKB is biased
towards the annotation of canonical isoforms and fails to capture the divergence
between isoform proteins. In contrast, the APPRIS [278][277], ASPicDB [205],
VastDB [311] databases provide important resources of isoform-resolved func-
tional information by annotating structural information, domains, transmembrane
regions or intracellular location for the different protein isoform sequences de-
fined in reference databases. Nevertheless, the annotation in both these re-
sources is highly biased towards capturing protein-level differences and ignore
how AS/APA mechanisms impact the accumulation of regulatory elements in
mRNA UTRs to control essential properties as stability, translational efficiency or
localization of mMRNAs [206][287[151][182][7]. Moreover, the applicability of all
these databases, including ASpedia [147] is limited because they are restricted
to the annotation of reference gene products in a few range of organisms as
human or mouse. Thereby, they cannot cope with the dynamics of the transcript
novelty being identified by current sequencing technologies, both in model and
non-model organisms [52] [347] [1].

In this chapter we detail the development of IsoAnnot, a new pipeline for the
functional characterization of isoforms which relies on the annotation of isoforms
as a combination of domains, motifs and functionally relevant sites. IsoAnnot

considers an extensive variety of functional properties, both at RNA and protein
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level, to capture the widest possible range of the functional divergence originat-
ing by AS and APA mechanisms. The main advantage of IsoAnnot is its ability
to annotate splicing variants based on sequence, thus eliminating the need for
large experimental datasets and increasing the scope of the method to annotate
novel isoforms obtained from long-read sequencing, both from model and non-
model organisms. IsoAnnot provides a dynamic pipeline to extensively annotate
isoforms by integrating multiple state of the art sequence predictive tools and
are complemented with functional information collected from databases such as
UniprotKB and PhosphositePlus, adding experimentally validated elements to

our annotation.
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4.2 IsoAnnot pipeline

The IsoAnnot pipeline (Figure was developed to populate splicing isoforms
with rich functional information at the RNA and protein level. Importantly, all
the functional labels annotated at isoform variants are defined by protein/RNA
coordinates which enables the direct mapping of splicing events to functional
elements. IsoAnnot is a pipeline comprising several modules that integrate
annotations derived from experimentally validated information stored in public

databases and tools based on sequence-prediction.

4.2.1 Input data

IsoAnnot requires three unique pieces of information as input data (Figure [4.7):

1. Isoform sequences, either de novo or from reference databases.

2. The predicted or reference ORF sequence associated with query isoforms

in order to annotate functional labels at the coding part of isoforms.

3. Gene Models in GTF format so that functional information from public
databases can be transferred and for the prediction of nonsense-mediated

decay (NMD).

4.2.2 Functional annotation at transcript isoform resolution

Untranslated regions (UTR) of mRNAs play crucial roles in the fate of mRNAs
by the presence of cis-regulatory elements and the availability o binding sites
for RNA-binding proteins (RBP) and microRNAs [206][287][151][182][7]. Hence,
annotation of isoform-especific regulatory elements becomes essential to char-
acterize the functional properties of UTRs and facilitate the understanding of the
influence of APA/AS mechanisms in mRNA fate. IsoAnnot implements differ-
ent approaches to generate extensive annotation of RNA regulatory features at

isoform resolution (Figure 4.1).
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Figure 4.1: Overview of the IsoAnnot pipeline. Isoform-resolved functional annotation
is generated by individual interrogation of isoforms using a wide range of methods that
generate functional labels at the transcript and protein level.
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4.2.2.1 Cis-acting UTR regulatory elements

During last decades, specific functional and regulatory elements at UTR regions
have been identified and characterized. Different databases have comprehen-
sively gathered this information and several tools have been developed to an-
notate them at input RNA sequences. Among them we find RegRNA 2.0 [46],
AURA2 [71], AREsite2 [99], UTRsite [252], UTRscan [208] and ScanForMotifs
[24], each of them involving a different set of regulatory elements. The ScanFor-
Motifs tool was implemented to identify 3' UTR motifs and UTRsite and UTRscan
were used to annotate 5° UTR motifs in the IsoAnnot pipeline. Both are based
on the definition of regular expressions and position-frequency matrixes to iden-
tify regulatory signals inside query sequences. Positional motifs along isoform-
defined UTRs were parsed from output files and assigned independently to each
individual splicing variant by IsoAnnot. In the case of ScanForMotifs, a back-
ground expectation cut-off (E-value) of 0.175 was used to filter out motifs with a
high probability of appearing by chance in a test set of human UTRs [24]. UTR
motifs were filtered according to the studied organism. Predicted 3' UTR and 5’
UTR elements were labeled by IsoAnnot as two independent annotation layers

namely 3UTRmotif and 5UTRmotif, respectively.

4.2.2.2 Upstream open reading frame prediction

Upstream Open Reading Frames (UORFs), located in the 5° UTR of mRNAs,
are another mayor category of post-transcriptional gene expression regulatory
elements. Furthermore, several experimental and bioinformatics studies have
revealed that almost half of human transcripts contain uORFs [330][19] and that
they are also a common control element in plants [321][342], thus, indicating a
conserved functional role. They are usually catalogued as translational repres-
sors because they impact expression of the primary ORF (which encodes the
main functional protein) by promoting mRNA decay or decreasing its translation
rate.

uORFs are defined as sequence elements with an initiation and a termi-

nationcodon in frame and upstream of the primary ORF. IsoAnnot uses the
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UTRscan tool [208] to annotate uORFs by prediction of ORFs (setting ATG as
start codon) at 5’ UTR regions of query transcripts. Hits are classified into uORF

annotation category.

4.2.2.3 Repeats and low-complexity elements

Repetitive DNA is a mayor component of eukaryotic genomes. Its regulatory
role in transcriptomes has recently been revealed by different studies. As ex-
ample, Chen et al.reported the gene silencing control effect of a pair of inverted
Alus (primate-specific retrotransposed elements) located in the 3’ UTR of EGFP
transcripts [50].

To account for the functional impact generated by the presence of repeat re-
gions across splicing variants, we implemented RepeatMasker [314], the most
commonly used program to search for repeats and low-complexity regions in ge-
nomic sequences. It provides a detailed report with information about the nature
and the location of each identified repeat within the input sequences. Default
cutoff (250) and sensitive mode were specified to guarantee a low proportion of
false matches. RMBlast algorithm (http://www.repeatmasker.org/RMBlast.html)
was chosen as the search engine to perform the identification of repeats and
RepBase database [16], version 20140131) as the repetitive DNA elements ref-
erence library. RepBase covers over a hundred model organisms and species
of interest including mammalian organisms and plants. Repeat elements were
categorized as repeat and subdivided into different groups depending on their

repeat class or family (low-complexity, LTR, SINE, Simple Repeat,etc).
4.2.2.4 miRNA binding sites

MicroRNAs (miRNAs) are trans-acing elements that post-transcriptionally regu-
late gene expression by mainly promoting mRNA degradation [14][128]. They
are non-coding single-strand RNA molecules (20-25 nt long) which interact with
target MRNAs by continuous base-pairing, usually at 3’ UTRs [100]. Binding
sites are denote as seed regions and are located in position 2-7 from 5’ end
of the miRNAs. Recent experiments have brought new insights into the modu-

lation of pairing affinity based on positional matching and secondary structure
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and these have been used as rules for the development of predictive algorithms.
Thus, currently we find plenty of algorithms that provide miRNA-mRNA inter-
actions based on sequence, physical-chemistry properties or expression levels
[310], including DIANAmicroT [241], miRanda [97], miRDB [368], miRMap [334],
miRNAMap [146], Pictar2 [174], PITA [167], RNA22 [209], RNAhybrid [176] or
Targetscan [2][187]. Moreover, different databases, such as miRWalk [90][307],
miRecords [373], TarBase [293], miRTarBase [57] and starBase [189], collect
experimentally validated miRNA-mRNA interactions.

However, despite the efforts to collect and predict miRNA binding sites, the
miRNA-target annotation remains challenging because of the few number of
experimentally validated interactions and the high number of false positives pro-
duced by sequence based predictors. Furthermore, there is a lack of consensus
among existing predictions meaning that there is very little correlation between
predicted interactions. Moreover, the different nature of rules and scoring sys-
tems used to measure the probability of binding further complicates their com-
parison [310].

Because no method has proven preferential performance [310], several unions
and intersections between different sources of miRNA binding information has
been proposed as a way to improve prediction specificity and sensitivity [293]
[177]. A comparison of prediction algorithms by Sethupathy et al. showed that
the intersection of results from five different algorithms produced the highest
(66.7%) specificity values [293]. Another relevant drawback of several current
sources of miRNA binding sites is their lack of comprehensive information about
the location of the miRNA seed region in the targeted mRNAs, which is obli-
garoty for IsoAnnot annotation so that microRNA binding sites can be associ-
ated with specific splicing or APA events. Moreover, although recently high-
throughput RNA sequencing experiments have led to the definition of a large
set of miRNAs, the evidence for some of these flagged miRNAs is dubious
[355][134][36], meaning that they must be followed up in subsequent control

steps.
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To address these problems, we defined an isoform-resolved miRNA binding

annotation approach that considers:

1. Several sources of miRNA binding information to intersect results.

2. A microRNA binding site source with information about transcript coordi-

nates.

3. Data about miRNA evidence.
The approach comprises on four steps:

(a) Collecting miRNA binding data. The IsoAnnot miRNA binding approach
relies on the mirWalk2.0 database [90], whose predictions are derived from
several algorithms: miRWalk, Microt4, miRanda, mirbridge, miRDB, miRMap,
miRNAMap, Pictar2, PITA, RNA22, RNAhybrid and Targetscan. Moreover, miR-
Walk2.0 implements its own predictor, mirWalk, which provides positional in-
formation about the seed inside the predicted mRNA target. We downloaded
sequence-miRNA interaction information for the total set of annotated genes for
each the organism of study. A minimum seed length of 7 bp and a p-value

threshold of 0.05 were set as requirements to call miRNA binding sites.

(b) miRNA-binding site filtering: Following previous evaluations [293] [177],
we applied a filtering approach for miRNA binding sites based on the number of
sources reporting the association. This intersection method allow to decrease
the false positive rate and thus, increase the sensitivity. For a mRNA-miRNA
interaction to be reported, the association had to be predicted by a minimum
of 5 methods which had to include Targetscan, miRanda, and mirWalk, the last
one providing transcript coordinate information for miRNA binding sites. For ex-
ample, in mouse this approach reduced by 92% the number of binding sites
reported by 12 prediction methods, going from 33,298,719 to 2,480,531 associ-

ations.

(c) Control of miRNA evidence: MirBase [173], a searchable database of

published miRNA sequences and annotations, is currently the most complete
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database of precursorand mature miRNAs. Each miRBae entry represents a
hairpin portion of a miRNA transcript, with information on the genome location
and sequence of the mature miRNA sequence. All miRBase entries requires an
associated publication despite the criteria for calling miRNAs entries can be dif-
ferent. For that reason MirBase annotates the experimental evidence level (non-
experimental, cloned, Northern, gPCR, RAKE, miRNA-seq, etc) to each miRNA
entry. We parsed the miRBase database in order to define our set of high con-
fidence miRNAs by including only those entries with the following experimental
evidence: cloned, Northern, PCR, RT-PCR, gRT-PCR, 5’RACE, RTPCR, in-situ,
gPCR, miRAP cloned, 3'RACE, insitu, RACE, miRAP, primer-extension, RAKE.
Hence, the miRNA information returned from miRWalk2.0 was filtered according

to its miRNA confidence level.

(d) Genomic annotation of binding sites: Transference of miRNA binding
sites from source to query isoforms is performed by genomic mapping, ensuring
seed-region conservation in the 3° UTR region of the query isoforms. As miRNA-
MRNA interaction sites are provided by mirWalk2.0 in transcript coordinates, we
mapped them to genomic coordinates based on the exon-intron information from
the mRNA template. MiRWalk2.0 also uses gene models from RefSeq version
61 as reference templates for the annotation of miRNA binding sites, and so
RefSeq 61 sequences and associated exon coordinates were downloaded and
used to obtain genome positional information for each reported miRNA binding

site, conserving strand and gap alignment information from the seed mapping.

(e) Isoform-specific transference: Finally, the transfer of miRNA binding
sites to query splicing variants is performed by using the genome-coordinate an-
notation generated in the previous step. Only complete, contiguous and strand-
specific matches of the seed region in the query isoform are annotated by IsoAn-
not. The miRNA binding sites are annotated in the final IsoAnnot output file as

miRNA binding site elements.
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4.2.2.5 RNA binding protein binding sites

RNA binding proteins (RBPs) are trans factors that bind to pre-mRNAs, and
play essential roles in the fate and metabolism of RNA, controlling processes
like transport, AS, RNA editing, polyadenylation, stabilisation, and localisation
[198][119]. To study the differential targeting of RPB on transcript variants and
their regulatory and functional implications, IsoAnnot incorporates data from
crosslinking immunoprecipitation (CLIP) sequencing, a technology widely used
for the transcriptome-wide identification of protein binding sites on RNAs [171].

We collected CLIP information data from CLIPdb [378], a public resource that
stores more than 426 CLIP datasets from 119 different RBPs in four different
organisms (mouse, human, worm and yeast) and several tissues. Data is gath-
ered from public repositories such as the Gene Expression Omnibus (GEO), the
National Center of Biotechnology (NCBI) and the European Nucleotide Archive
(ENA) from the European Bioinformatics Institute (EBI). Each CLIP dataset is
provided already analyzed by two alternative peak calling methods (Piranha,
Paralyzer, CIMS, CITS), whose choice depends on their specificity to the CLIP
technology used to generate the data (PAR-clip, HITS-CLIP or iCLIP).

Before mapping RBP binding sites to the IsoAnnot query sequences, we
assessed the quality of the data stored in CLIPdb. Characterisation of the RBP
binding patterns across replicates showed poor binding-site agreement as well
as high variation in the number and location of detected binding sites, which was
dependent on the peak-identification approach used (data not shown).

Given these limitations, we also considered the use of RBP binding site pre-
dictors such as DeepBind, FIMO or Tess. However, evaluation of results re-
vealed a large number of hits for most of the considered RBPs (Data not shown),
which is likely due to the short and degenerate nature of RBP motifs [196].

Therefore, our pipeline for annotating RBP binding sites uses CLIP data and

comprises two main steps:

(a) Curation of data from the CLIP database: To remove potential false-
positive binding sites and improve specificity, we filtered binding sites according

to their genomic intersection across alternative peak calling tools. Based on our
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evaluation of the CLIP data (data not shown), we established a 200 bp window
as the cutoff for considering binding sites as originating from the same event.
Thus, we minimised non-overlapping events resulting from small genomic shifts
during the definition of the binding site across peak-calling strategies and gen-
erate a set of confident binding sites that reduce the impact of using alternative

programs of analysis in the final outcome.

(b) Transfer of RBP binding-sites to query isoforms: We transferred RBP
binding sites to isoforms overlapping genomic positions. As RBPs are known to
bind the pre-mRNA in order to modulate processing mRNA steps such as alter-
native splicing, binding sites falling into intron regions were also considered and
annotated. Furthermore, each mRNA-RBP association is further catalogued
based on the mRNA region it binds: the 3' UTR, the 5 UTR or the CDS and the
intron or the exon. RBP binding sites are annotated within the RBP binding-site

category.

4.2.2.6 Polyadenylation signals

When using sequencing technologies, the identification of PAS is essential be-
cause this allows true APA sites to be discriminated from technical artefacts
such as fragmented 3’ ends, minimizing the definition of false APA novel tran-
scripts. In mammalian systems, two different motifs are known to provide the
signals for the definition of the polyadenylation site: (1) The ubiquitous AAUAAA
element, located 20-30 nucleotides upstream of the cleavage site where the
poly(A) is added, and (2) a more variable GU-rich sequence located immedi-
ately downstream of the previous one [21] [260]. In all cases, the recognition of
these sequences by specific proteins leads to mRNA cleavage and subsequent
polyadenylation. Methods as UTRscan [208] and ScanForMotifs [24], which
make use of sequence patterns and the PatSearch algorithm [252], are avail-
able to identify PAS elements in nucleotide sequences. IsoAnnot incorporates
both methods in order to identify the position of PASs from each individual query

isoform sequence and labels this annotation category as PAS.
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4.2.2.7 Nonsense-mediated decay

Given the spread and relevant role of NMD couple to AS in the regulation of
gene expression programs across eukaryotes and their functional implication in
a wide spectrum of biological processes and physiological circumstances (See
Section[1.4.0.3), IsoAnnot predicts isoforms containing a premature termination
codon (PTC) potencially leading to NMD using the 50-NT rule [389]: a termina-
tion codon that falls more than 50-55 nt upstream of an exon-exon junction is
a general indication of a PTC while normal termination codons are largely lo-
cated in the last exon. Isoforms with PTCs will be potential to be detected and
degraded via the NMD machinery [47][195].

4.2.3 Functional annotation at protein isoform resolution

To define functional regions inside the coding region of query isoforms, IsoAn-
not takes advantage of the wide range of predictive algorithms available and
the experimental information stored in UniprotKB [66] and PhosphoSitePlus
[143] databases. However, of note, the lack of positional information associ-
ated with predicted features considerably limits the spectrum of prediction tools

that IsoAnnot can use.

4.2.3.1 Pfam domains

Pfam is one of the largest collections of protein domain families [261]. Each
Pfam entry identifies a protein family domain that is represented by multiple
sequence alignments and a hidden Markov model (HMMs). Querying a given
protein sequence in the Pfam library of HMMs allows its different structural units
and domains to be determined.

We used InterProScan5 [263], a package that combines different tools for
proteins annotation and which includes a module for predicting functional do-
mains using the HMMERS3 algorithm [102] that interrogates query protein se-
quences with the Pfam HMM database of domains (Pfam version 31). Inter-
ProScan5 was run locally for each query protein to retrieve positional informa-

tion about predicted domains. In-house parser algorithms for InterProScan XML
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files were then used to collect and adapt the results to the IsoAnnot output an-
notation file, in which Pfam predicted domains were catalogued as DOMAIN

entries.

4.2.3.2 Transmembrane domains

Transmembrane (TM) domains are stretches of approximately 25 hydrophobic
residues with an occasional polar residue of integral proteins that pass across
the membrane[268] and play an important role in signalling, molecule trans-
port, energy and cell adhesion [268]. A wide range of tools for predicting TM
regions are currently available (e.g., Phobius, TMHMM, Memsat). We auto-
matically annotate these domains along every query protein isoform by using
TMHMM (default parameters) [175] - the most widely used and best-performing
tool for the prediction of TM regions [214]. These TM regions are then annotated
as TRANSMEM in the final IsoAnnot functional annotation file.

4.2.3.3 Signal peptide

Signal pepides are hydrophobic sequences found at the N-terminal of secretory
pathway proteins that promote their translocation to the reticulum membrane
[343]. Therefore, the presence of these motifs provide information about protein
localisation and their destination after synthesis. Many methods have been de-
veloped for signal peptide prediction, including SignalP, PrediSi, Phobious, and
Signal-BLAST. The IsoAnnot pipeline uses SignalP 4.0 [253] because of its high
prediction accuracy [169]. SignalP uses a neural network-based method that
allows to discriminate signal peptides from N-terminal transmembrane regions,
high hydrophobic regions, and non-contatining signal peptide proteins (cytoplas-
matic proteins). The IsoAnnot pipeline captures this signal peptide information
by locally running InterProScan5, which implements SignalP 4.0 with its default

parameters. We labeled this functional annotation layer as SignalP.

4.2.3.4 Coiled regions

The alpha-helical coiled coil is one of the principal structural subunits in proteins.

Their main characteristic is to follow a heptad repeat pattern of 3-4 residues
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whose composition and hydrophobicity is compatible with the structure of al-
pha helices. Despite their simplicity, coiled-coil motifs have been revealed as a
versatile folding motif with important roles in protein refolding processes, signal-
transducing events, molecular recognition systems and are involved in the me-
chanical stability and movement processes inside cells, among others [38].
IsoAnnot pipeline uses COILS [200] to predict protein coiled-coil regions.
COILS aligns query sequences to a database of known parallel two-stranded
coiled-coils and generates a metric that indicates the probability of a given se-
quence to form a coil structural motif by computing a similarity score and poste-
rior comparison to the distribution of scores in globular (non-coiled-coil proteins)
and coiled-coil proteins. Default parameters and local InterProScan5 were used

to ran COILS. Coiled regions were defined as Coiled-coil in the IsoAnnot output.

4.2.3.5 Disordered regions

It was recently discovered that alternatively-spliced exons are enriched in intrin-
sic disordered regions (IDRs) [62] [280] [250] [126]: protein regions that do not
adopt a well-defined conformation and have structural plasticity [331]. However,
their low evolutionary conservation difficulties their accurately prediction [331].
The IsoAnnot pipeline implements MobiDB Lite [258][224], a novel IDR predic-
tion software that combines 8 different predictors to derive a consensus pre-
diction that discriminates functional IDRs from ambiguous hits and outperforms
single methods when annotating long ID regions. InterProScan5, implement-
ing MobiDB Lite, was used to annotated IDRs along protein sequences, namely
DISORDERED in the IsoAnnot output file.

4.2.3.6 Nuclear localization signals

IsoAnnot also predicts the nuclear localization of proteins by annotating the
main elements promoting the subcellular movement to the nucleus: the nu-
clear localization signal (NLS). There have been many attempts to accurately
predict nuclear localisation of proteins. Despite several different signals have
been reported, most of prediction methods focused on the inference of the best-

characterized nuclear signal, the classical NLS (cNLS), which is recognised by
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importin-alpa [80]. cNLSs can contain one or two regions of basic amino acids
and thus are divided into monopartite and bipartite groups, respectively. How-
ever, the exact identification of NLSs in protein sequences is still a task difficult
to address due to the fact that NLSs are short and remain poorly defined, hin-
dering the design of accurate predictors [203]. Despite these drawbacks, some
NLS prediction tools have been developed, including PredictNLS [61], NucPred
[31], WoLF PSORT [144], cNLS mapper [172], NLStradamus [226]. Most of
them do not provide NLS positional information in the query protein sequence
and hence, cannot be used to associate these motifs to splicing events. Among
these tools, both cNLS mapper and NLStradamus are the only programs that
provide specific coordinates for predicted NLS motifs in proteins. However, we
discarded NLStradamus because it can only be applied to nuclear proteins and
IsoAnnot performs functional annotation of coding sequences without previous
knowledge.

Therefore, we decided to use cNLS mapper [172] in the IsoAnnot pipeline
to predict of cNLS signals. This tool calculates scores for NLS activity instead
of using the conventional similarity search or ML strategies. Following authors
recommendations, we set a minimum cutoff score of 6 to report sequences as
predicted NLSs; scores around 6 are indicators of proteins that are partially lo-
calized in the nucleus, while scores higher than 8 identify proteins with stronger
NLS activity and exclusively localized in the nucleus. IsoAnnot parses NLS map-
per output and extracts the exact localisation of each predicted cNLS signal,

recording it as NLS in IsoAnnot output.

4.2.3.7 Coordinate-based and in-frame transference of protein functional
features

In addition to prediction methods, some protein-centric databases contain a de-

tailed annotation of protein features. Their main drawback is that they are bi-

ased towards the annotation of the canonical or the best-documented isoform

and hence do not capture the the functional diversity of isoforms. Integration

of such a comprehensive set of high-quality manually annotated functional in-

formation is essential to improve the prediction of isoforms functions and their
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contextual modeling. Therefore, we added an extra layer of annotation to the
IsoAnnot pipeline to account for this by implementing a module that can assign

functional features from public databases to the set of query isoforms.

Resources of functional features

Two different sources of functional information were considered:

¢ UniProt Knowledgebase: The Uniprot Knowledgebase (UniprotKB) [8] is
the section of Uniprot that contains one of the main collections of functional pro-
tein information for more than 10k species. UniprotKB is divided into two sec-
tions: Swiss-Prot UniprotKB contains manually-annotated records while Trembl
UniprotKB contains computer-generated proteins enriched with automated clas-
sification and annotation data. Functional information for the representative
canonical sequence is stored in three main sections inside each protein entry:
comment lines (CC), feature table (FT) and keyword lines (KW). FT is the sec-
tion that systematically provides protein coordinates for functional information.
UniprotKB integrates the current state-of-the-art protein functional knowledge
that can be leveraged to generate a more meaningful functional labels for splic-
ing variants. Table shows the different FT categories used for annotation in

query isoforms are shown.

e PhosphoSitePlus: Post-translational modifications (PTMs) play a funda-
mental role in the regulation of protein folding, protein targeting to subcellular
compartments and signalling. The gain or loss of PTM sites by post-transcriptional
mechanisms as APA/AS can increase their molecular versatility by affecting ei-

ther the contextual control of localisation or signaling of a given gene.

PhosphoSitePlus (PSP) [143] is the main resource dedicated to the annota-
tion of PTMs in mammalians. PSP data is mainly derived from mass spectrome-
try experiments and includes a wide range of PTM categories including glycosy-
lation, sumoylation, ubiquitination, methylation, phosphorylation and acetylation.
All of them were considered by IsoAnnot and catalogued as PTM in our output

annotation file.
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FEATURES

UniprotKb Section

UniprotKb Subsection IsoAnnot Category

Description

Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions

Regions

Amino acid modification

Amino acid modification

Amino acid modification

Amino acid modification

Amino acid modification

Sites

Sites

Sites

Sites

Region

Coiled-coil

Motif
Compositional bias
Transmembrane
Intramembrane
Calcium binding
Zinc finger

DNA binding
Nucleotide binding
Cross-link
Modified residue
Glycosylation
Lipidation
Disulfide bond
Active sites

Metal binding
Binding Site

Site

REGION

COILED

MOTIF

COMP_BIAS

TRANSMEM

INTRAMEM

BINDING

BINDING

BINDING

BINDING

BINDING

PTM

PTM

PTM

PTM

ACT_SITE

SITE

SITE

SITE

Region of interest in the sequence

Positions of regions of coiled coil within
the protein

Short (up to 20 amino acids) sequence
motif of biological interest

Region of compositional bias in the protein

Extent of a membrane-spanning region

Extent of a region located in a membrane
without crossing it

Postion of calcium binding region within
the protein

Position of ytpe of zinc fingers within the
protein

Position and type of zinc fingers within the
protein

Nucleotide phosphate binding region

Residues participating in covalent linkage
between proteins

Modified residues excluding lipids,
gycans and protein cross-links

Covalently attached glycan groups

Covalently attached lipid groups

Cysteine residues participating in covalent
linkage between proteins

Amino acid directly involved in the activity
of an enzyme

Binding site for a metal ion

Binding site for anychemical group
(co-enzyme, prosthetic group, etc)

Any interesting single amino acid site on
the sequence

Table 4.1: Sequence annotations in the parsed UniprotKB database and transferred to
query isoforms by IsoAnnot pipeline. UniprotKB functional information describes regions

or sites of interest in protein sequences

As PhosphositePlus contains information only for mammalian genomes, it

will be considered by IsoAnnot pipeline when annotating mammalian proteomes.

Other databases as dbPPT for plants [54], dbPAF for animals and fungi [329] and

dbPSP for procaryotes [238] are being in process of implementation. Neverthe-

less, IsoAnnot currently considers PTM annotation for non-mammalian organ-

isms because UniprotKB provides PTM information for a wide range of available

species.
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Methodology

We obtained the information that describes protein functional features by pars-
ing UniprotKB and PhosphoSitePlus. In both cases, feature coordinates are
referenced to UniProt protein sequences. Therefore, we downloaded the Swis-
sprot, Trembl and VarSplice proteome sequences. Because we are developing
approaches to annotate query sequences without gene reference information,
the feature transference process must ensure that (1) the query and reference
proteins are translated from transcripts belonguing to the same genomic region,
and (2) that the feature protein region has a conserved location and ORF.

The first step in the approach is the genomic mapping of reference proteins to
genomic coordinates (Figure[4.2). UniprotKB does not contain information about
genomic features, but it does provide cross-reference information reporting the
association between UniProt proteins and Ensembl/RefSeq entries. Thus, we
parsed and used gene models and protein sequences from RefSeq and En-
sembl repositories together with cross-reference information in order to translate
Uniprot proteins containing functional features into genomic coordinates (Figure
[4.2). However, because this step involves the integration of isoform information
from different databases (Figure[4.2), discrepancies in their isoform representa-
tion or ID matching possess significant hurdles and provoke some proteins and
features to be discarded from downstream analysis.

These discrepancies include protein differences between cross-linked UniProt
and Ensembl/RefSeq entries. We kept UniprotKB-Ensembl/RefSeq associa-
tions if the UniprotKB protein matched the protein encoded by the associated
Ensembl/RefSeq transcript and allowed a maximum of 3 nt mismatches in order
to account for genomic variability between sources. For example, in mouse, we
discarded 5% of UniProt entries due to missing cross-reference information and
7% because a lack of protein sequence matching, resulting in a total of 88%
of mouse UniProt entries translated into genomic coordinates. Next, the CDS
genomic positions of Ensembl/RefSeq transcripts were associated with UniProt

proteins in order to obtain the genomic coordinates of the containing Unipro-
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tKB or PhosphoSitePlus features (239159 unique functional features mapped to

genomic coordinates in mouse, Figure [4.2).

PhosPhositePlus l— UniprotKB J

Functional Features location inside proteins Proteins Cross-reference inforrmation
e e
VarSplice UniprotkB entry ID €—> RefSeq/Ensembl ID
Protein sequences
Canonical Isoform ,L l’ e
. . RefSeq
Proteins to genome coordinates L
——
'
Feature location inside proteins to genomic coordinates Protein sequences
+
LRIl I Genomic coodinates
—
| [ quw
Isoforms
Frame-conserved transference of features to query proteins Prtotein sequences

¥
? 8 “ 5 Genomic coodinates

Functional features
Query Isoform 1 Query Isoform 2 Query Isoform 3 =

Figure 4.2: Pipeline for the isoform-resolved transference of protein functional informa-
tion contained in UniprotKB and PhosphoSitePlus resources to query isoforms, which
must to be defined by their genomic coordinates and ORF sequence.

Finally, query isoforms are interrogated for annotation with UniprotkKB and
PhosphoSitePlus features by checking that feature coordinates overlap consec-
utive positions in the query CDS and that the reading frame meets. A splicing
event or APA event that either breaks the continuity of the feature or modifies the
readi