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ABSTRACT

The yeast metabolic cycle (YMC) is a phenomenon that occurs in the baking yeast
Saccharomyces cerevisiae. The YMC is produced at low glucose levels with a continuous feeding
of the culture, and it is characterized by a cyclic expression of genes, together with cycles of
oxygen consumption that repeat every 4-5 hours. These cycles feature three clearly differentiated
phases, with sets of genes with characteristic functionalities expressing in each one of them.

The first one is the oxidative phase, in which genes related to ribosome and amino acid synthesis
are upregulated. The reductive/building phase is characterized by peaks in genes related to
mitochondria and cell cycle. The oxygen consumption diminishes in this phase. In the
reductive/charging phase, there is an increase in functionalities related to non-respiratory
metabolism, fatty acids consumption and storage of carbohydrates.

The characterization of the YMC has been performed by metabolic state studies, chromatin
state studies and studies of gene expression, among others. For this study, public data of ChlP-
Seq of three chromatin modifying enzymes, Esal, Gen5 and Setl (two acetyltransferases and one
methyltransferase, respectively), were used. Data of histone modifications have also been
integrated, focusing on the modifications H3K18ac and H3K9ac, because of their relevance in
the regulation of gene expression.

With this study, it was intended to understand the relationship between the chromatin modifying
enzymes and the histone modifications H3K18ac and H3K9ac, and to study their impact on the
gene expression and their importance in the YMC. To do this, ChIP-Seq data of Esal, Gen5 and
Set were processed, and a study of the regions to which their attachment changed with time was
performed, and also a multi-omics integration with histone acetylation data. These results can
help to infer the possible regulation networks in which the chromatin plays an important role in
the regulation of the gene expression during the YMC.

Key words: Yeast Metabolic Cycle; multi-omics integration; epigenetics; gene regulation;
ChlIP-Seq; histone modification



RESUMEN

El ciclo metabdlico de la levadura (YMC) es un fenébmeno que ocurre en la levadura
Saccharomyces cerevisiae. EI YMC se produce con bajos niveles de glucosa en una alimentacion
continua, y se caracteriza por una expresioén ciclica de genes, junto con ciclos de consumo de
oxigeno que se repiten cada 4-5 horas. Estos ciclos tienen tres fases claramente diferenciadas, y
en cada una de ellas se expresa un grupo de genes que caracteriza las funciones predominantes en
cada fase.

La primera fase es la oxidativa, en la que la se ven sobreexpresados genes relacionados con la
sintesis de ribosomas y aminodcidos. La fase reductiva constructiva esta caracterizada por picos
de genes relacionados con las mitocondrias y el ciclo celular. EI consumo de oxigeno disminuye
en esta fase. En la fase reductiva de carga hay un aumento de funcionalidades relacionadas con el
metabolismo no respiratorio, consumo de &cidos grasos y almacenamiento de carbohidratos.

La caracterizacion del YMC se ha hecho a través de estudios de su estado metabélico, de la
cromatina o de la expresion génica, entre otros. Para este trabajo, se utilizaron datos pablicos de
ChIP-Seq de los modificadores de cromatina Esal, Genb y Setl (dos acetiltransferasas y una
metiltranferasa, respectivamente). También se integran datos de modificaciones de histonas,
centrandose en las modificaciones H3K18ac y H3K9ac, por ser las mas relevantes en la regulacion
de la expresion génica.

Con este trabajo, se propuso entender la relacion entre los modificadores de cromatina y la
modificacion de las histonas H3K9 y H3K 18, asi como estudiar su impacto en la expresion génica
y su importancia en el marco del YMC. Para ello, se procesaron los datos de ChIP-Seq de Esal,
Gen5 y Setl, y se hizo un estudio de las regiones en las que su union al genoma cambia a lo largo
del tiempo, asi como una integracion multibmica con los datos de modificaciones de histonas.
Estos resultados pueden ayudar a inferir las posibles redes de regulacién en las que la cromatina
adquiere un papel importante en la regulacion de la expresion génica durante el YMC.

Palabras clave: Ciclo metabdlico de la levadura; integraciéon multiémica; epigenética;
regulacion génica; ChlP-Seq; modificacion de histonas
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Introduction

Y east metabolic cycle

Along the study of the living beings, it has been clearly observed that the organisms, as complex
as they are, do not just function in a random manner: very often, they follow biological clocks,
rhythms with underlying molecular mechanisms that coordinate them with the external conditions
they are exposed to. Several specific cycles have been described for different organisms. The
most known example are the circadian rhythms, which allow the organisms to adapt to ~24 hour
periods and coordinate their internal functions with the environment during the whole day
(Jagannath, Taylor, Wakaf, Vasudevan, & Foster, 2017; Tu & McKnight, 2006).

In 2005, the yeast metabolic cycle (YMC) was described in Saccharomyces cerevisiae (Tu,
Kudlicki, Rowicka, & McKnight, 2005). The YMC is a 4-5 hours long ultradian cycle (meaning
that it is completed within 24 hours or less) that occurs in conditions of very low, but continuous,
glucose supply. It is characterized by the oscillation in oxygen consumption of the yeast culture
(presenting the so called low oxygen consumption (LOC) and high oxygen consumption (HOC)
periods), and the cyclic expression of nearly 50% of yeast genes (Tu, Kudlicki, Rowicka, &
McKnight, 2005; Tu, et al., 2007). The cycle is very robust, being able to oscillate for around 100
cycles (Rowicka, Kudlicki, Tu, & Otwinowski, 2007).

In general, the YMC is divided in three different phases, each one characterized by a particular
set of differentially expressed genes with distinctive functionalities (Figure 1):

OX phase RB phase

« High oxygen consumption « Low oxygen consumption
» DEGs: ribosomes, » DEGs: mitochondria, cell
translation, growth cycle
» ATP generation » Cells enter the cell cycle

RC phase

« Low oxygen consumption
» DEGs: stress response, starvation, survival,
storage carbohydrate breakdown
« Acetyl-CoA and NADP(H) accumulation

Figure 1. Summary of the three phases of the yeast metabolic cycle and their main characteristics:
Oxidative (OX) phase, in red; Reductive/Building (RB) phase, in green; and Reductive/Charging (RC)
phase, in blue.

-The Oxidative phase, or OX phase, is characterized by a quick consumption of oxygen and the
expression of genes related to growth, translation, ribosomes and amino acid biosynthesis
(especially if dependent on NADP(H)). The accumulated acetyl-CoA is used, and ATP is
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generated (Kuang, et al., 2014; Rao & Pellegrini, 2011; Tu, et al., 2007). It is followed by the
Reductive/Building phase.

-The Reductive/Building phase, or RB phase, is characterized by high oxygen consumption
(with a diminishment at its end), and the expression of genes related to mitochondria and the cell
cycle (Kuang, et al., 2014; Rao & Pellegrini, 2011). It is followed by the Reductive/Charging
phase.

-And the Reductive/Charging phase, or RC phase, characterized by little oxygen consumption,
the expression of genes related to stress response, starvation response and survival, and the
accumulation of acetyl-CoA (Kuang, et al., 2014; Rao & Pellegrini, 2011; Tu, et al., 2007). It is
followed by the Oxidative phase again, closing the cycle.

In the OX phase, the oxygen levels in the yeast cell cultures drop, due to its high consumption
rate. The oxidative metabolism is prevalent. The cell uses acetyl-CoA, accumulated in the
previous phase, in order to produce energy in form of ATP molecules, probably preparing for the
cell division in the next phase. NADP(H) also peaks at the beginning of this phase; this is
associated with its role as precursor of reductive compounds, which would be useful to protect
the cell, and especially its DNA, from oxidative damage. Genes related to translation and
ribosome biogenesis are differentially expressed. Several amino acid synthesis processes are also
enriched in this phase, mainly those dependent on NADP(H) (Kuang, et al., 2014; Rao &
Pellegrini, 2011; Tu, et al., 2007).

At the beginning of the RB phase, the oxygen consumption rate is still high. Genes related to
mitochondria and their biogenesis are more expressed. It is in this phase when nearly 50% of the
cells enter the cell cycle; it is though that the remaining cells do not behave the same way as they
come from the immediately previous cell division, so have still not grown enough to divide again
(Burnetti, Aydin, & Buchler, 2016; Rowicka, Kudlicki, Tu, & Otwinowski, 2007). Consequently,
the expressed genes are enriched in those related to the cell cycle. At the end of the phase, the
oxygen consumption abruptly ceases: the metabolism is not oxidative anymore, probably to
protect the DNA during the cell division (other studies, however, suggest that the DNA replication
is connected to the catabolism of storage carbohydrates, and that it is not always separated from
the HOC phase (Burnetti, Aydin, & Buchler, 2016)). Additionally, ethanol and acetate levels rise
in early stage of this phase (Kuang, et al., 2014; Rao & Pellegrini, 2011; Tu, et al., 2007).

In the RC phase, oxygen levels remain low, as in the RB phase. Acetyl-CoA starts to
accumulate, and so does NADP(H); both compounds peak at the end of the phase. Several
enzymes from the pentose phosphate pathway, related to NADP(H) generation, are upregulated.
Many amino acid synthesis processes are relevant, generally involving those not dependent on
NADP(H). Many differentially expressed genes are involved in glycolysis, ethanol usage, fatty
acid oxidation, breakdown of storage carbohydrates and protein degradation. Carnitine is
abundant (Rao & Pellegrini, 2011; Tu, et al., 2007). Also, many genes in RC are enriched in
functions as response to stress, response to starvation and survival (Kuang, et al., 2014).

Although the oscillation among the phases is precise, they are unevenly distributed in time;
normally, the LOC period lasts longer than the HOC one. However, the exact timing of the cycle
phases varies from one experiment to another, depending on the yeast strain or the dilution rate
of glucose (Burnetti, Aydin, & Buchler, 2016).

In the last years, the cycle has been studied at many different levels, and the relation of many
elements with the regulation of the YMC has been discovered. For instance, it has been seen that
Acetyl-CoA levels are very important for the cycle: it is its high levels in the cells what triggers
the transition from the RC to the OX phase, and its accumulation is closely linked to histone
acetylation changes (Cai, Sutter, Li, & Tu, 2011). Different acetyltransferases, as Esal and Gcnb
(Cai, Sutter, Li, & Tu, 2011; Kuang, et al., 2014), histone modifications (Kuang, et al., 2014;
Sanchez Gaya, et al., 2018), and also transcription factors (Rao & Pellegrini, 2011; Sdnchez Gaya,



etal., 2018), have been implicated with the cycle, too. But, despite the different findings, the exact
mechanism of YMC regulation still stays unclear.

It seems very likely that the yeast metabolic cycle is regulated at many different levels in the
cells, and that the precisely orchestrated oscillation is the result of the combination of several
molecular mechanisms. Because of this variability among the cycle regulators, and the variety of
transcribed genes and triggered functionalities, a wide, multi-omics approach seems suitable for
the study of the YMC.

Omics sciences

The high-throughput technologies have rapidly evolved in the last years. From Sanger’s
sequencing to the latest NGS techniques, the last decades supposed a great advance in this field,
both in its capabilities and its price; and the informatic tools, absolutely required for the data
processing, are being developed in parallel with it (Manzoni, et al., 2016).

The capability of obtaining huge amounts of information in an affordable manner is translated
in the availability of lots of data at a global scale. These large amounts of data create the need of
changing the approach by which these data are studied. Now that not only some genes are
sequenced at the same time, but the whole genome, or not only one metabolite is analysed, but
the whole metabolome, the so-called omics sciences are becoming crucial for the study of an
organism as a whole.

While the omics sciences focus on molecules of only one biological level, whether they are
DNA (genomics), RNA (transcriptomics), metabolites (metabolomic), proteins (proteomics),
epigenetic modifications (epigenomics), etc., their study tries to encompass the entirety of these
elements (Schneider & Orchard, 2011). This way, the omics data sets are very large, and offer a
global view of the analysed sample.

In this study, data regarding transcripts, histone acetylation sites and chromatin modifying
enzyme interaction sites are used, combining three different omics sciences: transcriptomics,
epigenomics and cistromics.

Transcriptomics

Transcriptomics is the omics science that studies the transcriptome of an organism, in other
words, all the RNA transcripts that it harbours, whether they are coding or non-coding. The most
obvious applications of transcriptomics are the detection and quantification of the genes that are
expressed in a sample or the discovery of differentially expressed genes (DEGS) in certain
conditions. Other usages include the study of alternative splicing and quantitative assessment of
genotype influence on gene expression (Manzoni, et al., 2016).

The techniques that are usually used in transcriptomics are RNA-microarrays and RNA-Seq.
While the former is cheaper and well adjusted to already known organisms, the latter allows the
discovery of unknown transcripts and variants as it is not based on a predesigned set of sequences
and does not require a priori knowledge, despite being more difficult to process afterwards
(Manzoni, et al., 2016).

Epigenomics

The epigenome, the complement of the different epigenetic modifications that occur in an
organism, is the object of study of epigenomics. This field encompasses all the different reversible
modifications that a genome can suffer without changing the DNA sequence, and which influence
the gene expression, as can be the DNA methylation or the histone modifications (as acetylation,
methylation, phosphorylation, ubiquitination, etc.) (Kouzarides, 2007; nature.com, n.d.).

Just as the transcriptome, the epigenome of a cell is dynamic, meaning that the epigenetic
modifications change depending on many different factor, including developmental state and
environment (Maunakea, Chepelev, & Zhao, 2010). To study the epigenome, experiments that



can detect these modifications are chosen, as can be DNA methylation microarrays, ChIP-chip,
ChIP-Seq, ATAC-Seq assays among others.

Cistromics

It is defined as “cistrome™ the set of cis-acting targets of a trans-acting factor on a genome-wide
scale, referring to the different non-coding sites across the genome where, for example, a
transcription factor, an enzyme or another protein interacts with and binds the DNA (Griffiths,
Miller, Suzuki, Lewontin, & Gelbart, 2000; Liu, et al., 2011).

Cistromics is considered the omics science that studies the cistrome. Its research often uses
assays as ChlP-chip, ChIP-Seq, DNase-Seq or ATAC-Seq among others (Zheng, et al., 2019).
This omics, however, is usually combined with other studies, to obtain a wider picture of the
studied regulatory elements and interactions (Jiang & Mortazavi, 2018; Liu, et al., 2011).

ChlIP-Seq: a tool for omics sciences

Genome-wide studies are crucial for the understanding of the regulation of gene expression.
Since its first usage in 2007, chromatin immunoprecipitation (ChIP) followed by sequencing
(Seq), or ChIP-Seq, has shown to be a very efficient technique to perform genome-wide research,
allowing the detection of a great amount of DNA-regulator interaction sites along the whole
organism’s genome in a single experiment (Park, 2009). This makes ChIP-Seq a very useful
technique in omics sciences like epigenomics and cistromics.

As its own name suggests, ChIP-Seq technique consists in an immunoprecipitation of fragments
of chromatin (linked to a protein) and a massive sequencing of these fragments. This way, the
sample’s DNA is filtered, enriched in the sequences that had a certain interaction.

To perform a ChlIP-Seq, first of all, the interaction of interest has to be defined. It may be a
protein, a chromatin modifying enzyme, a transcription factor (TF), etc., or a histone with a
specific modification on it; this differentiates the non-histone and histone experiments (Park,
2009). Once chosen, formaldehyde application to the cell culture causes the crosslinking of the
interacting proteins with the DNA. The chromatin is then fragmented by sonification, and
purified: first, with immunoprecipitation, by using antibodies specific for the studied interaction,
enriching the sample; and then, without it, so only DNA fragments remain (Nakato & Shirahige,
2017).

After the enriched and purified DNA is obtained, it is sequenced; the huge amount of sequences
resulting from one experiment makes essential the use of high-throughput technologies. The reads
are then aligned to the reference genome of the studied organism, and a peak calling procedure is
performed to identify the peaks, regions of the genome that are enriched in these reads (Nakato
& Shirahige, 2017). Further processing of these peaks makes it possible to infer regions of the
genome that are regulated by the studied molecular elements, perform functional enrichments,
integrate them with gene expression, try to discover motifs... (Park, 2009)

The ChIP-Seq technique presents several advantages. In contrast to its predecessor, the ChlP-
chip assay, the detected sequences are not limited to a predefined set, repetitive regions can be
covered, and smaller quantities of DNA sample are needed. The data coverage and resolution are
also higher (Park, 2009). As hundreds of ChIP samples can be sequenced at the same time, data
from different regulatory elements can be combined, integrating them in a multi-omics manner
(Nakato & Shirahige, 2017).

But, despite the versatility that this assay offers, ChlP-Seq also has to face different challenges
when executed, and many factors have to be taken into account in order to achieve a good result.
On the one hand, the experimental protocol is crucial. The design must establish an adequate
depth of sequencing to detect all the significant peaks, and consider only those with a minimum
fold enrichment; a control experiment must be prepared, in order to contrast the found peaks with
those that appear in a non-enriched sample and to differentiate noise from signal later. The
enrichment highly depends on the immunoprecipitation step, as the antibodies’ quality,



specificity, and possible cross-reactivity are determinant for the correct detection of interaction
sites (Nakato & Shirahige, 2017; Park, 2009; Thomas, Thomas, Holloway, & Pollard, 2017).
Limitations as the capability of the technique of detecting only one histone modification at each
time, even if there are multiple modifications due to ChIP particularities (Kouzarides, 2007), or
the elevated price of its performance, also have to be considered.

On the other hand, the posterior computation analysis of the data also has to be well adjusted.
The large amount of managed data requires specific software for its management. Sequenced
reads’ quality has to be evaluated, and those with insufficient quality must be discarded, in order
to avoid the accumulation of error in the next steps of the analysis. Aligners have to be suitable
for short reads, and allow some mismatches that could appear due to differences with the reference
genome or sequencing errors. The peak calling software must identify the peaks according to the
nature of the studied interaction, considering its corresponding shifting length on the genome and
whether the enriched regions appear as sharp, broad or mixed peaks (Nakato & Shirahige, 2017;
Park, 2009). And, of course, to further associate the peaks with other elements (genes,
transcription factors, binding motifs, functional annotation, etc.), specific software, together with
specialized databases of biological information, must be available for the research.

Multi-omics integration

When the concept of integration is used in the context of bioinformatics, it refers to the process
in which different kinds of biological data, coming from different omics experiments, are
combined in order to obtain a global view of the studied subject, by comparing, contrasting and
connecting the available information. This way, the study becomes a multi-omics analysis
(Manzoni, et al., 2016).

A multi-omics approach is much more realistic than an individual omics study, as every
organism is actually a huge amount of very different biomolecules interacting together and
influencing on each other is a coordinated manner, So, integrating all kind of information to
understand the functioning of an organism seems reasonable. However, this approach implies
huge challenges at the analysis and computation levels (Misra, Langefeld, Olivier, & Cox, 2018).

Several methods are used for the data integration, including exploratory methods based on
dimensional reduction (as principal component analysis, or PCA), clustering, networks learning,
and regression models (Zeng & Lumley, 2018). The existence of tools that are able to perform
these statistical analyses on biological data is very important to understand the molecular
networks that regulate gene expression.

Another essential element to make possible the omics and multi-omics approaches is the
existence of tools, public repositories and databases that can store, provide and share biological
information from previous studies (Schneider & Orchard, 2011). The availability of data to all the
scientific community is key for data integration, and by extent, for the improvement of the
knowledge that we have about the living beings. Ensembl (Zerbino, et al., 2018), BioMart
(Durinck, et al., 2005) or Gene Expression Omnibus (Edgar, Domrachev, & Lash, 2002) are some
examples of this idea.

Gene expression and histone modification in yeast

The process by which the genetic information of a cell flows from DNA to RNA, and then
results in the synthesis of a polypeptide chain, following the main dogma of molecular biology,
is called gene expression (Watson, et al., 2014). This process takes several steps until it yields a
functional protein: transcription of DNA into RNA, previous RNA processing (like splicing or
RNA editing) when needed, translation of the RNA into a polypeptide chain, and even posterior
modifications of the polypeptide. The complete process varies between the prokaryotic and
eukaryotic cells, among the different organisms, and even among the different proteins of the
same cell.




Gene expression can be seen as a complex assembly line that the cell executes at a molecular
level. And, to execute it correctly and synthesize the adequate product, several regulation
mechanisms control the whole process at different levels: changes in chromatin, regulation of
transcription, RNA splicing and processing, RNA transport, RNA degradation, translational
modification, protein modifications (Klug, Cummings, Spencer, & Palladino, 2012)...

Chromatin modification is the first step of genetic expression in eukaryotic cells. The genes that
are about to be expressed must be made accessible for the transcriptional machinery of the cell,
and this is achieved by altering the association of the DNA with other chromatin components.
The alterations that may take place include DNA methylation, chromatin remodelling by histone
repositioning and histone modification (Klug, Cummings, Spencer, & Palladino, 2012).

In the baking yeast Saccharomyces cerevisiae, each one of the four core histones that form the
nucleosome (H2A, H2B, H3 and H4) is encoded by two genes. Their transcription is controlled
by several regulators (Hir, Hpc, Sptl0, Asfl, Swid...), and different post-translational
mechanisms influence their levels in the organism (Rando & Winston, 2012).

The nucleosomes in S. cerevisiae distribute differently through the chromatin depending on the
type genes. In the case of growth genes, the region that harbours transcription factor binding sites
and TATA-less promoters is very depleted in nucleosomes, and it is flanked by two nucleosomes
that are very robustly positioned, while others, upstream, very from cell to cell. In stress genes,
the region dedicated to the regulatory sequences is occluded by the nucleosomes, and the
interaction is possible when a change in their positioning occurs (Rando & Winston, 2012) .

In both cases, the nucleosomes may influence the gene expression not only with their position
in chromatin, but also by the way the histones are modified. The modifications that can occur on
histones include acetylation, methylation, phosphorylation, ubiquitination or sumoylation, among
many other. And, in most of them, different chromatin modifying enzymes are involved
(Kouzarides, 2007).

Acetylation is considered one of the main histone modifications. In consists in the addition of
an acetyl group to the lysine residues of the histones. In general, this modification is associated
with the activation of the transcription (Kouzarides, 2007). Two important chromatin modifying
enzymes that are responsible for histone acetylation are the Genb acetyltransferase, part of the
SAGA HAT complex, and Esal acetyltransferase, part of the NuA4 HAT complex (Rando &
Winston, 2012).

Gcenb has been associated to the acetylation of H3 and H2B histones, while Esal has been
mainly related to the H4 histone, but also to H2A and H2B (Kouzarides, 2007; Rando & Winston,
2012). It is thought that both enzymes act in a redundant manner, affecting similar genes and
functions in the cell (Rando & Winston, 2012).

Histone methylation (addition of a methyl group to a lysine or an arginine residue) is also
considered an important modification. The methyltransferases that perform this modification are
much more specific to the modified residues when compared to the acetyltransferases
(Kouzarides, 2007). One of the many histone methyltransferases present in yeast is Set1, part of
the COMPASS complex, associated to the methylation of the H3K4 residue (Rando & Winston,
2012).



Objective

The intention of this Bachelor’s thesis was to uncover the relationship between chromatin
modifying enzymes, histone acetylation and the transcription factors that might be involved in the
regulation of the yeast metabolic cycle in Saccharomyces cerevisiae. To do so, public data of one
of the widest omics YMC studies up to date (Kuang, et al., 2014) were analysed in a bioinformatic
manner.

Two main objectives were pursued in this study:

e The processing of ChIP-Seq data of three chromatin modifying enzymes -Esal, Gen5
and Set1- obtained from different stages of the YMC, in order to detect their interaction
sites during the cycle in a genome-wide manner.

e The multi-omics integration of the ChlP-Seq data of the three enzymes with ChIP-Seq
data related to the acetylation of two histone residues that have been seen to be
important in the regulation of the YMC, H3K9 and H3k18.



Materials and methods

Data origin

In order to perform this study, public RNA-Seq data and ChlP-Seq data (regarding the histone
acetylations H3K9 and H3K 18, and the chromatin modifying enzymes Esal, Gen5 and Setl) from
yeast cultures undergoing the YMC were used. A ChlIP-Seq of histone H3 was also used as a
control sample for the peak calling procedure. All the data had been obtained at different time
points of the yeast metabolic cycle (YMC).

All these omics datasets were obtained by Kuang et al. (2014) (RNA-Seq, ChlIP-Seq of H3K9,
H3, Esal, Gen5 and Setl) and by Dr. Jane Mellor’s laboratory (ChlP-Seq of H3K18) (Sanchez
Gaya, et al., 2018). Additionally, RNA-Seq data, and ChlIP-Seq data for histone modifications
H3K9 and H3K18 had undergone a previous processing (Sanchez Gaya, et al., 2018), and were
provided directly as processed data. In this work, ChIP-seq sequencing data for chromatin
modifying enzymes and histone H3 were processed, as will be described later in this section.

As described in more detail in Kuang et al. work, Illumina HiSeq 2000 was used to perform the
RNA-Seq (single-end reads, 50 bp long), and lllumina HiSeq 2000 ChlIP, Illumina Genome
Analyzer ChIP, and AB SOLiD System were all used to perform the ChIP-Seq (single-end reads,
read lengths of 35-51 bp).

General plan

In order to better understand the study that was performed on the obtained ChIP-Seq data, it
was divided in four major parts. All the main steps can be seen in Figure 2.
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Figure 2. Scheme of the bioinformatic pipeline followed in this study. Each colour represents a step in
the process: grey for the data retrieval, yellow for the first data preprocessing, green for the peak calling
step (including the sequence alignment and its quality check), blue for the peak-to-gene association, and
the related procedures of statistics summary, functional enrichment, or intersection with acetylation, and
finally magenta for the statistical integration with acetylation data and posterior functional enrichment.



-Firstly, the raw fastq files were preprocessed: their quality was checked and improved with
trimming. This way, the data was prepared to be used in the following steps.

-Next, a peak calling was performed, including a previous sequence alignment to the yeast
genome and its quality control.

-After that, the obtained peaks were associated to yeast genes by proximity. A functional
enrichment on these genes allowed a general, qualitative, view of the sequencing data of the
enzymes, showing the representative functions at each time. Additionally, these genes were
intersected with RNA-Seq and acetylation ChIP-Seq data, and then enriched in transcription
factors.

-Finally, in order to associate the ChlP-Seq data of the enzymes and the ChlIP-Seq data of the
acetylations, linear regression models were made for each gene. To do so, count matrixes for each
ChlIP-Seq data set were generated. This involved a more quantitative approach, yielding a set of
genes with a significant association coefficient. These genes were functionally enriched, too.

All these different procedures are part of a bioinformatic pipeline, being the output of one step
the input of the next one. Note that, as it is reflected in the Figure 2, both the third and the fourth
sections of the study part from the same point (the peak calling output), so could have been
performed in any order.

In the following sections, all the steps of the study will be explained in detail.

Data retrieval

The analysed ChlIP-Seq data of the three histone modifying enzymes and the H3 histone
(Kuang, et al., 2014) were obtained from the gene expression data repository GEO (Edgar,
Domrachev, & Lash, 2002), with the following accession number: GSE52339.

The retrieval of the files was performed by using fastq-dump, a tool from the SRA Toolkit
(SRA Toolkit Development Team, n.d.). This toolkit allows connecting to and using data from
SRA, an international public resource that archives next-generation sequencing data (Leinonen,
Sugawara, Shumway, & International Nucleotide Sequence Database Collaboration, 2011).
Particularly, fastq-dump allows converting the SRA data into fastq format files, which are saved
in user’s working directory by default.

This way, 58 fastq files were obtained: 14 for each histone modifying enzyme (1 per each one
of the 14 time points), and 16 (1 per each time point) for the histone H3, used as control.

Acetylation ChIP-Seq data was originally retrieved from Kuang et al. (2014), but was
previously processed by Sanchez Gaya et al. (2018); H3K18 acetylation ChIP-Seq data was
provided by Dr. Jane Mellor, and was also previously processed by Sanchez Gaya et al. (2018).
Because of that, these data were provided directly in the form of normalized count matrixes. The
raw reads of H3K18 ChlIP-Seq, however, can be retrieved from GEO, with the accession number
GSE118889.

The set of differentially expressed genes in each phase of the YMC was obtained from the RNA-
Seq data of Kuang et al. (2014), and was also processed by Sanchez Gaya et al. (2018). The
original files can also be accessed from GEO, with the same accession number as the ChlP-Seq
of the histone modifying enzymes.

Chromatin modifying enzymes’ ChlIP-Seq data
preprocessing

In order to use the retrieved ChIP-Seq data, the raw data files had to be previously processed.
This included a quality check followed by a trimming step.




Quality analysis
First of all, each fastq file's quality was analysed with FastQC (Andrews, 2010).

FastQC is a tool that provides different controls when given high throughput sequencing data.
These controls help determining whether the considered reads are fit for further bioinformatic
procedures (as could be the sequence alignment). The detection of different problems and biases
at the early stages of the pipeline is very important, as it helps avoiding error accumulation in the
further downstream analysis.

The output of this quality analysis is a report in html format, in which the results are
conveniently shown in a visual manner. The report includes basic statistics of the sequencing;
charts with per base sequence quality, per tile sequence quality, per sequence quality scores, per
base sequence content, per sequence GC content, per base N content, sequence length distribution,
sequence duplication levels and adapter content; and a list of overrepresented sequences.

In case of an analysis in which the reads were to show a poor quality, due to, for example, the
presence of adapter sequences in the reads, trimming the sequencing reads to remove such adapter
sequences would be necessary.

Trimming

Next, fastg files underwent trimming, a procedure that consists in removing the adapter
sequences and the low quality base pairs from the provided reads, improving their quality and
facilitating their correct alignment. The trimming is especially important when reads are of a short
length, since in these cases the adapter contamination is higher.

The trimming was performed with Trimmomatic (Bolger, Lohse, & Usadel, 2014), version
0.36. It is a preprocessing tool for next-generation sequencing data, being capable of working
with both single end and paired end reads, and allowing a significant improvement of the
sequencing data quality by applying different processing steps to the reads.

The parameters used in Trimmomatic were:

java -Xmx512M -jar $<Trimmomatic route>/trimmomatic-0.36.jar SE <fastq file
route> <Route for trimmed file to be saved> ILLUMINACLIP:<Route of fasta file
with adapter sequences>:2:30:10 LEADING:25 TRAILING:25 SLIDINGWINDOW:5:25
MINLEN:25

With the parameter ILLUMINACLIP, the adapter sequences indicated by the fasta file were cut,
with the maximum mismatch allowed of 2 bases, the accuracy of the match between two reads
(in case of palindrome alignment) of 30, and the accuracy of a match between any adapter
sequence against a read of 10. LEADING and TRAILING cut bases off the start and the end of a
read, respectively, if the threshold quality they had was below the selected value (25 in this case).
The SLIDINGWINDOW parameter made Trimmomatic scan a read from the 5’ end and cut it once
the average quality within a window (5 bases) was lower than a threshold (25). Finally, MINLEN
indicated the minimum length that a read should have (25 bases).

The single end reads mode (SE) was chosen for the trimming, as this was the nature of the
analysed data.

The fasta files containing different adapter sequences were constructed specifically for each
enzyme’s ChIP-Seq dataset, and included several adapter sequences that appeared as
overrepresented in the FastQC analysis.

Once the trimming was finished, another quality check with FastQC was performed on each
file. Once the reads displayed an adequate condition, it was possible to continue with the ChIP-
Seq analysis and proceed with the sequence alignment.



Peak calling

The peak calling is an essential step in the analysis of ChlP-Seq data. It consists in the detection
of genomic regions enriched in aligned reads (the so called “peaks”) and the testing of their
statistical significance (Thomas, Thomas, Holloway, & Pollard, 2017). Therefore, this method
allows finding the genomic sites where protein-DNA interactions have occurred with more
confidence.

The performance of a peak calling requires a previous alignment step, where the reads are
mapped to a reference genome, to localize the potential interaction regions. Additionally, it
requires a control or input sample, in order to compare the detected peaks with reads from a
sample that was not enriched in protein-DNA interactions and calculate noise to signal ratio.

Sequence alignment

The processed reads were aligned to the reference genome of Saccharomyces cerevisiae.

To do so, firstly, the fasta file of the reference genome was retrieved from the Ensembl genome
database (Zerbino, et al., 2018), release 91, corresponding to the same genome version that was
used by S&nchez Gaya et al. (2018).

Once obtained, the file was used to create the index of the genome using Bowtie 2 (Langmead
& Salzberg, 2012), which is a sequencing reads aligner aimed at relatively short reads and long
genomes. The indexing tool bowtie2-build gave, as a result, several bt2 files that were used
to make the alignment of ChIP-Seq reads.

The alignment itself was also performed by using Bowtie 2, with the aligner’s default options.
It aligned the previously trimmed reads to the indexed yeast genome, generating one mapped sam
file per each fastq file.

Mapping quality

Once the alignment of all the ChIP-Seq reads was finished, its quality was checked with
Qualimap 2 (Okonechnikov, Conesa, & Garcia-Alcalde, 2016), a tool designed to evaluate the
quality of alignment sequencing data of many types of experiments, including ChIP-Seq. The tool
generates an html report, which includes a statistical summary of the alignment and different
charts regarding the coverage, GC content, mapping quality, etc.

Among the different modes Qualimap features, Multi-sample BAM QC was chosen, as it allows
analysing the quality of multiple alignment files at once, in a combined way.

However, in order to use Qualimap, all the sam files had to be previously converted into bam
format. For this purpose, SAMtools (Li, et al., 2009), a toolkit that offers different utilities for the
processing of read alignments, was used. The conversion (and required assortment and indexing)
was performed with several tools (view, sort and index), using the following commands and
parameters:

samtools view -bS <sam file> > <bam file>
samtools sort <bam file> -o <sorted bam file>
samtools index <sorted bam file>

Once all the sam files were converted into bam files, Multi-sample BAM QC was run, for the
14 samples of each enzyme ChlP-Seq together, with the following parameters:

qualimap multi-bamqc -c -d <List of directories of the files to analyse> -r
-outdir <Output directory for Qualimap 2 report>

As one of the required parameters for Multi-sample BAM QC analysis is a list with all the
directories to the bam files, three txt files (one per each dataset) were previously created, with two



tab-separated columns indicating the name of the sample (the first one) and the route to the
corresponding file (the second one).

Control files merging

All the previous procedures were applied equally to the ChIP-Seq data of the three enzymes,
and to the ChIP-Seq data of histone H3. However, when it came to the peak calling, a problem
with these data was encountered: enzymes’ ChIP-Seq consisted of 14 files for each enzyme, as
the samples were collected at 14 different time points, while in case of histone H3, the number of
files was 16, as the samples were taken at 16 time points, without exact temporal correspondence
to the other ones.

Because of that, in order to use H3 ChlIP-Seq as a control for the peak calling, the corresponding
16 sam files generated from the sequence alignment were merged into one. This was done
considering that H3 data are not supposed to vary significantly with time, so a common file could
be used as control for the peak calling of all 14 time points.

The merging of the 16 sam files was performed with the merge tool, part of the SAMtools
toolkit (Li, et al., 2009), that combines all the input data into one single file.

Peak calling

After the quality control of the alignment, the peak calling was performed on the sam files.
MACS2’s peakcall was the tool used to do it (Zhang, et al., 2008), with the following
parameters:

macs2 callpeak -t <Route to aligned sam file> -c <Route to control file> -f
SAM -g 1.2e7 -p 0.01 -n <Route for output files> -B --nomodel --extsize 147

For the peak calling, a p-value (-p) of 0.01 was chosen, as in other studies that used this
software for ChlP-Seq peak calling (Law & Finger, 2017). The genome size (-g) was set to
1.2-107 base pairs, to correspond to the size of S. cerevisiae genome (Goffeau, et al., 1996). -B
parameter allowed generating bedGraph files.

As initially MACS2 failed to construct a model of the shift size of the ChIP-Seq tags, a sequence
length to which extend the reads in 5°->3" direction had to be defined (- -extsize). A length of
147 bases was chosen (as the length of the core DNA on a nucleosome (Watson, et al., 2014)) for
this purpose, as has been done in other studies with a similar approach (Law & Finger, 2017;
Wang, et al., 2016). As the shift size was defined manually, the parameter - -nomodel had to be
used.

As mentioned previously, the merged file of the H3 histone alignments was used as a control
for all the peak calling procedures.

This gave as an output narrowPeak, bed, xIs and bdg files, one of each per each processed sam
file.

Peak-to-gene association

Once the peak calling was finished and the peak files were generated, the bed files from this
process were passed to the tool RGmatch (Furi6 Tari, Conesa, & Tarazona, 2016). RGmatch is a
Python based software able to associate given genomic regions to their closest genes, transcripts
or exons, and with the regions within which they fall, as could be the TSS, the TTS, the promoter
sites, etc. The associations are reported in the form of a txt file.

As a requirement to do the association of genomic regions (ChlP-Seq peaks, in this case) and
features, RGmatch needed a gft file of S. cerevisiae, the annotation of the organism’s genome.
This annotation was retrieved from Ensembl (Zerbino, et al., 2018), considering the release 91,
the same as for the fasta file of the reference genome.



Once the gtf file was obtained, each bed file obtained in the peak calling was processed with
the tool, using the following parameters:

python rgmatch.py -g <Route to gtf file> -b <Route to bed file> -o <Route for
output txt> -r 'gene' -q 3

As it is indicated, - r was set as gene, in order to report the associations at the gene level. The
maximum distance to report an association (-q) was set at 3 kilobases.

Analysis of RGmatch results with R

The tool RGmatch gave, as output, a txt file for each sample, indicating the peak and the genetic
feature to which it was associated. Given the 42 files, this information was processed with the
programming language R (R Core Team, 2018), through the RStudio software (RStudio Team,
2016).

The analysis pipeline included a statistical summary of the RGmatch results, the functional
enrichment analysis of the associated genes, the intersection of these genes with the differentially
expressed genes of RNA-Seq and H3K9 and H3K 18 acetylations’ ChIP-Seq, and a transcriptional
factor enrichment.

Statistical summary

Some summary statistics were computed from the RGmatch results: numbers of detected and
associated peaks, number of associations, and numbers and percentages of peaks associated to
concrete genic features. To visually represent this information, the data was also represented,
using the ggplot2 package (Wickham, 2016), as a density plot.

Functional enrichment analysis

Genes with an association to a peak where used to study the enrichment of GO terms related to
them (Ashburner, et al., 2000; The Gene Ontology Consortium, 2019). The enrichment was
performed at a time point level and at YMC phase level, separately for each chromatin modifying
enzyme. It was done against the rest of genes of the organism.

However, in order to perform the functional enrichment, the detected genes were previously
filtered. Only genes whose peaks were related to a transcription start site (TSS) or to a promoter
were considered, as these are the ones most likely related to transcriptional regulation.

Functional enrichment at a time point level

The filtered genes of each chromatin modifying enzyme’s sample (14 samples per enzyme,
corresponding to the 14 time points) were enriched separately.

The GO term data for S. cerevisiae, as well as the Ensembl gene identification, was retrieved
from Ensembl (Zerbino, et al., 2018), with the help of the biomaRt package (Durinck, et al., 2005).

The enrichment analysis was performed by applying the Fisher’s Exact Test. This statistical
significance test determines whether two categorical variables are independent, considering the
independency as the null hypothesis. It assigns an according p-value (a probability of the null
hypothesis to be true) to the analysed data (McDonald, 2014).

In this case, the two variables considered were the annotation (or not) of a GO term to a gene,
and the belonging or not of a gene to the set of selected genes. Thus, each sample’s set of genes
was compared to the rest of genes of the whole organism.

Once the enriched GO terms were obtained, those which resulted significant (with a p-value
lower that 0.05, meaning than the probability of the enrichment being due to chance is less than
5%) were taken into account.



Functional enrichment at YMC phase level

To perform the functional enrichment of the genes associated to each enzyme per each one of
the YMC phases (OX phase, RB phase and RC phase), the different time points at which the
samples were taken had to be considered.

According to the timing of the sampling of the ChIP-Seq data (Figure 3), samples 1, 10, 11,
12, 13 and 14 belonged to the RC phase; samples 3 and 4, to the OX phase; and samples 7 and 8,
to the RB phase. However, due to their close location to the phase limits, it was not clear to which
YMC phase attribute the remaining samples (2, 5, 6 and 9). So, in order to assign them to a
concrete phase, their most significant enriched GO terms were compared to those that presented
the other samples, and the known characteristics of each phase (Kuang, et al., 2014; Rao &
Pellegrini, 2011; Tu, et al., 2007). This way, they were included in the phase which was the most
similar to them in terms of GO terms.
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Figure 3. Distribution of the 14 samples of enzymes’ ChIP-Seq along one YMC cycle, and the
corresponding levels of dissolved oxygen (Kuang, et al., 2014).

After the YMC phase was defined for the conflictive samples, all the filtered genes detected at
each time point were used to construct a gene matrix. This matrix comprised all of the gene
identification names, and indicated whether a gene had an association or not at a concrete time
for each analysed enzyme.

Using this matrix, all the genes that appeared in more than a half of the samples that belonged
to the same phase were filtered, and were considered as representative of that phase. Once each
YMC phase was assigned its characteristic set of genes, these sets of genes underwent a GO term
enrichment analysis against the rest of genes in the organism, by applying again a Fisher’s Exact
Test, as described previously, with a m

The obtained GO terms were filtered by their p-value (threshold of 0.05) and only significant
ones were considered.

Intersection with RNA-Seq and acetylation ChlP-Seq data

Next, the filtered genes obtained from the RGmatch association were intersected with the RNA-
Seq and acetylation ChlP-Seq data, already processed by Sanchez Gaya et al. (2018). This was
done in order to detect all the genes that are shared among the enzymes and histone acetylations
and are relevant to the YMC. RNA-Seq data consisted of a list of DEGs in yeast during the YMC,;
each gene was associated to a unique phase of the cycle. On the other hand, the acetylation ChIP-
Seq data was provided as a matrix (resulting from the association of histone acetylations data with
RNA-Seq datacusing MORE linear regression by Sdnchez Gaya et al. (2018)) with all the genes
associated to any of the two acetylations (H3K9 and H3K18), and a correlation coefficient for the
gene-acetylation relation.
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First, the genes associated to each chromatin modifying enzyme were intersected with the DEGs
that correspond to each phase of the YMC. The DEGs of each enzyme were also intersected
among them, for each phase separately, and then functionally enriched against the rest of the
genes of the organism.

This association to the DEGs of each phase was also performed for the genes associated to each
one of the acetylations; in the case of the acetylation data, only genes with a positive correlation
coefficient were considered.

After that, the associated and differentially expressed genes of each enzyme were intersected
with the associated and differentially expressed genes of the two histone acetylations, separately
for each YMC phase. These intersections were made for each histone acetylation and enzymes
combination, and for both acetylation gene sets and each enzyme together. Additionally, the latter
were intersected among themselves, for each YMC phase.

Transcription factors enrichment

The gene subsets obtained from the described intersections were associated to different
transcription factors that are related to them. Concretely, the subsets that integrated DEGs, one
enzyme ChIP-Seq and two acetylation ChIP-Seq per each phase were considered for this
association.

The data related to the yeast transcription factors and their associations to yeast genes was
retrieved from Yeastract (Teixeira, et al., 2018), a database of transcriptional regulators of S.
cerevisiae. These data were used to construct an annotation matrix that would be used in the
following enrichment.

With the Yeastract data and the integrated gene subsets, Fisher’s exact test was applied to these
genes to obtain the transcription factors that are enriched among the different existent TF-gene
relations. The enrichment was performed per enzyme and per phase separately, against all the
DEGs in a particular phase.

Afterwards, the significant TFs (with a p-value < 0.05) were compared among the different
phases and enzymes, and the common TFs were defined and represented with VVenn diagrams.

Statistical integration of enzymes’ and acetylations’
ChlP-Seq data

In addition to the RGmatch data analysis, another integration procedure was applied. This time,
however, a more quantitative approach was chosen: ChlP-Seq data of the two acetylations was
related to data of two of the enzymes (Esal and Gcen5), by means of regression. Setl was not
considered in this part of the study, as the effect of the methylation was not expected to be as
relevant as the acetylation effect.

To perform the omics data integration, read count matrixes of ChIP-Seq data had to be
constructed and properly arranged. Also, a peak-to-gene association matrix had to be created for
all the enzyme ChlIP-Seq data.

Read count matrixes construction

A preliminary step for building of the statistical models was the obtention of read count matrixes
for each set of omics data. While the H3K9 ChIP-Seq and H3K18 ChIP-Seq data were already
processed (S&nchez Gaya, et al., 2018) and provided as normalized matrixes, the ones for Esal
and Gen5 ChIP-Seq had to be constructed.

In order create the matrixes, the different yeast genomic regions that featured peaks during the
peak calling procedure had to Dbe defined. This was achieved with the
makeGRangesFromDataFrame tool, part of the GenomicRanges package for R (Lawrence, et
al., 2013), which generated a saf file for each set of narrowPeak files obtained from MACS2 (one
per each enzyme). These files contained consensus genomic regions of all the time point,
considering close peaks as aligned reads enrichments of the same sites. The narrowPeak files’
data had to be previously combined together in a data frame.




To count the ChlIP-Seq reads to the defined genomic regions, the Subread package (Liao,
Smyth, & Shi, 2019), and concretely, the featureCounts tool, was used. The read counts were
obtained by the software from the set of alignment (sam) files of an enzyme and the correspondent
saf file. These data were then arranged into a matrix, creating a read count matrix for each
chromatin modifying enzyme’s ChIP-Seq.

Data normalization and correction

After the construction of the read count matrixes for Esal and Gen5 ChlIP-Seq, their count
values had to be corrected to remove potential technical biases.

For this purpose, Esal and Gcn5 read counts were normalized by RPKM (with rpkm, part of
the NOISeq package (Tarazona, et al., 2015; Tarazona, Garcia Alcalde, Dopazo, Ferrer, &
Conesa, 2011)). This normalization methods corrects the difference in sequencing depth (total
amount of reads) of each sample, and also the different length of the considered region, since
longer peaks tend to accumulate more reads, which does not imply a stronger signal, but it is an
unwanted effect of the sequencing technique. A logarithmic transformation was applied to the
values, to obtain a more symmetrical distribution of peak counts which worked better in statistical
models, and then they were centred, following the same idea as in the acetylations’ read counts
from Sanchez Gaya et al. (2018) study.

To explore the read count data of the enzymes and track their correct transformation, principal
component analysis (PCA) was applied to the matrixes, before and after the correction. The PCA
is a type of statistical analysis that diminishes the dimensionality of data, by detecting the
directions (principal components, or PC) in which the variation of the data is maximal. These
directions are a linear combination of the original variables of the samples; the different PCs are
uncorrelated among them. This way, a sample can be represented with relatively few numbers,
and plotting the PCs of the samples results in an easy way to identify similarities and clusters
among the dataset. This analysis is frequently used for genome-wide expression studies (Ringnér,
2008).

Time point arrangement

To build the linear regression models, the read count matrixes for Esal and Genb had to be
made comparable to the already processed H3K9 and H3K18 count matrixes. This means that
observations had to match between the predictor and the response omics in order to relate both of
them. Direct correlation was not possible, as the enzymes samples’ values corresponded to 14
time points, while the acetylations’ values were made for 15 time points (16 originally (Kuang,
et al., 2014), but time points 13 and 14 were averaged into one in Sanchez Gaya et al. (2018)
study, and were provided as such), without exact time equivalence among them (Figure 4).
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Figure 4. Sampling time points during the YMC of the chromatin modifying enzymes ChlP-Seq (on the
left) and of the histone acetylations ChlP-Seq (on the right), and the corresponding levels of dissolved
oxygen measured at each time (Kuang, et al., 2014).

To make the data comparable, some time points’ values were averaged into one (11 and 12 from
the enzyme ChIP-Seq matrixes), and some of them (7 and 9 from the acetylation ChlIP-Seq
matrixes) were excluded from the study. In the end, 13 time points were considered for enzyme
and acetylation read counts data, as it is reflected in Table 1.
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Table 1. Correspondence of the new time points considered for the linear regression models and the
original sampling time pints of histone acetylation and enzyme ChlP-Seq experiments. The dash (“-*)
between two values indicates the time point which values were averaged; the brackets (““()”) indicate the
points which values had been already averaged by Sanchez Gaya et al. (2018).

Considered time point 1(2|3|4|5|6[7| 8|9 |10 11 12 | 13
Acetylation ChIP-Seq timepoint | 1|2 |3|4|5|6 (8|10 |11 |12 | (13-14) | 15| 16
Enzyme ChIP-Seq timepoint (1|23 |4 (5|6|7| 8 | 9 |10 | 11-12 | 13| 14

Integration of acetylation and enzyme ChIP-Seq data by
regression models

In statistics, regression models are a way of estimating the relationship that exists between a
variable of interest (response variable) and other variables (predictors or explanatory variables).
Regression models provide a mathematical equation that relates the response and the predictors.
The statistical significance of the coefficients of the predictors in such model will indicate whether
the predictor has an important effect on the response. In the field of omics integration, the
regression equations are used to explain the relations and interactions among different analysed
elements of a biological system (Zeng & Lumley, 2018).

To construct regression models and evaluate the correlation of the acetylation of a gene with
the attachment of a chromatin modifying enzyme to that gene, MORE software was used
(Tarazona, Tomas Riquelme, Martinez Mira, Clemente Ciscar, & Conesa, 2018). This tool allows
the modelling and integration of different omics data in order to detect the potential regulators of
the system, by applying generalized linear models (GLM).

To use MORE’s GetGLM function (the one that constructs the regression models), an
association list was made, which related each peak of the enzymes’ ChIP-Seq data to a gene from
the histone acetylations’ ChIP-Seq data. The peak-to-gene correspondence was previously
obtained with RGmatch (Furi¢ Tari, Conesa, & Tarazona, 2016) and the genomic region (saf)
files of each enzyme, using the same parameters as described above (see Analysis of RGmatch
results with R). This relationship postulates the potential regulators for which the GLM should
be tested, hence these potential regulators will be the explanatory variables in the regression
model.

In the GetGLM function, several input data sets had to be given: the values for the response
variables for the models (GeneExpression), which in this case was the read count matrix of
one acetylation ChIP-Seq; the list of peak-to-gene associations (associations) so that the
potential regulators (explanatory variables) are identified for each possible response variable
(gene); and the read count matrixes of both chromatin modifying enzymes’ ChIP-Seq, which are
the values of the potential regulators (data.omics). The count matrixes were previously
filtered, and contained only the genes that were common between each histone acetylation and
enzyme. Since the histone acetylation data had been log-transformed, a normal distribution for
these data was assumed, so a particular case of GLM was applied: the linear regression model.
Other important input parameters were related to the variable selection procedures implemented
in MORE: ElasticNet and stepwise regression, which are applied in order to identify the most
relevant regulators.

The MORE method was applied twice, for H3K9 and HK18 data separately. Lists with all the
genes and regulators with a significant effect on them were obtained, for each histone acetylation
and chromatin modifying enzyme separately. The genes were also divided depending on the sign
of the correlation with the acetylation values.

The obtained gene sets were intersected with RNA-Seq data, in order to separate them according
to their YMC phase. Then, they were enriched in their GO terms, against the yeast DEGs of each
phase of the YMC.



Results and discussion

Chromatin modifying enzymes’ ChIP-Seq data
preprocessing

Quality check and trimming of ChIP-Seq reads

At the beginning of the study, the raw data files were analysed for their quality with FastQC
(Andrews, 2010). Most of the fastq files of each enzyme’s ChIP-Seq did not show a satisfactory
quality, especially because many adapter sequences were found among the reads (Figure 5), and
because of an important bias in the per base sequence content. In order to solve this problem, the
reads were trimmed with Trimmomatic (Bolger, Lohse, & Usadel, 2014). Indeed, after the
trimming, the quality (that was analysed once again) of the reads improved considerably (Figure
6), making it possible to proceed to the next step of the study: sequence alignment.

@0verrepresented sequences

GATCCGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGE 1584848 24.864351868148845 Truseq Adapter, Index 18 (188% over 5abp)
AATGATACGGCCACCACCCAGATCTACACTCTTTCCCTACACGACGCTCT 281334 3.858617243221784 Illumina Single End PCR Primer 1 (188% cver Sebp)
AAGCAGAAGACCOCATACCAGATAAGCTAGTGACTGEAGTTCAGACETET 141336 2.147142194999269 Truseq Adapter, Index 18 (188% over 5abp)
AGATCGGAAGAGCACACGTCTCGAACTCCAGTCACTAGCTTATCTCGTATE 138488 1.9811266723656811 Truseq Adapter, Index 18 (188% over 49bp)
Figure 5. Example of some overrepresented adapter sequences, present in the fastq file of Gens ChlP-
Seq at time 14.
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Figure 6. Comparison of the quallty of the fastq file of Genb ChiP- Seq at time 14 before (left) and after
(right) the trimming. Charts correspond to: a and b, per base quality content (quality score vs. position in
the reads, in bp); ¢ and d, per base sequence content (sequence content vs. position in the reads, in bp);
and e and f, adapter content (% of adapter sequences score vs. position in the reads, in bp).



Peak calling
Sequence alignment and quality check

For the sequence alignment, the trimmed reads for each enzyme were mapped onto the reference
genome of S. cerevisiae (release 91) with Bowtie 2 software (Langmead & Salzberg, 2012). As a
result, 42 sam files were obtained. Additionally, 16 sam files for the H3 histone were obtained, to
be further used as the control sample in the peak calling, as the original study (Kuang et al., 2014)
did not provide a control sample with the same time scale (14 time points).

The quality of the mapping was checked with Qualimap 2 (Okonechnikov, Conesa, & Garcia-
Alcalde, 2016). As its Multi-sample BAM QC analysis was used, all 14 samples of each enzyme
were processed together.

A visual representation of the quality of the mapping is shown in Figure 7. It can be seen that,
in the alignment of Set reads, one sample’s behaviour (corresponding to the 1% time point) differs
from the rest of the samples: it presents a higher coverage, and a different GC content distribution.
This is due to the fact that the quantity of available reads in this concrete sample was also much
higher; this can be explained with a possible experimental error when the library was prepared
for the sequencing.
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Figure 7. Coverage across the reference genome (coverage, in X fold, vs. the relative position in the
reference genome, in 0 to 1 range), mapping quality histograms (number of genomic locations vs.
mapping quality, in Phred value) and GC content distribution (fraction of reads vs. GC content, in %) of
mapped reads (from left to right) of the sequence alignments, obtained with Qualimap 2. Each group of
three charts corresponds, from top to bottom, to Esal (al, a2 and a3), Gen5(bl, b2 and b3) and Setl (c1,
c2 and ¢3) ChIP-Seq reads’ alignments.
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Table 2 shows summary statistics of the alignment. It can be observed that, in general, a high
percentage of the reads was mapped (around 82%). The GC content of the reads corresponds to



an expected value as for the studied organism, which is be comprised between 39-42% (Bradnam,
Seoighe, Sharp, & Wolfe, 1999). The values of coverage are proper as for a ChlP-Seq experiment
(genohub.com, n.d.).

Table 2. Summary statistics of the alignment quality of Esal, Genb and Setl ChiP-Seq reads, with the
sum of the reads from the 14 samples of each enzyme, and the mean coverage, GC content and quality of
their mapping.

Esal Genb Setl
Total number of reads 107,221,823 102,538,663 147,325,458
Total number of mapped reads 88,825,853 84,041,836 121,546,944
% of mapped reads 82.84 81.96 82.50
Mean samples coverage (X) 28.53 24.33 35.17
Mean samples GC-content (%) 41.75 40.51 40.15
Mean samples mapping quality (Phred) 37.14 37.81 37.74

Peak calling

Next, the peak calling was performed. MACS?2 tool (Zhang, et al., 2008) allowed to execute
this task, detecting peaks of reads in each sample compared to the normal H3 histone (previously
fusing the 16 sam files into one with SAMtools (Li, et al., 2009)).

The analysis gave an average quantity of ~2352 detected peaks, for each time point, for Esal;
~1971 for Genb5; and ~1764 for Setl. However, time 1 sample of Setl dataset presented much
more peaks than the rest (3755, in contrast to the 1192-1986 range of the remaining samples); this
is explained by the fact that this sample had much more reads, as mentioned in the alignment
analysis, were it showed a higher coverage across the reference genome,.

Peak-to-gene association
Statistical summary

The obtained peaks were associated to the different yeast genes by proximity, by using the
RGmatch tool (Furi6é Tari, Conesa, & Tarazona, 2016), in order to further analyse the genes
potentially affected by the histone modifiers. This supposed the generation of 14 txt files per each
enzyme, which indicated in detail the relation of each peak with a gene for each time point, to
which genetic feature it is associated, its distance to the TSS, etc. .

The obtained data were processed in R Studio (RStudio Team, 2016), in order to statistically
analyse the associations. The summary statistics of the peak-gene associations corresponding to
each enzyme’s ChIP-Seq can be seen in Table 3.

Table 3. Statistical summary of the peak-to-gene association for each chromatin modifying enzyme.
The shown values are an average among the 14 time points.

Esal Gcenb Setl
Detected peaks 2352.429 1971.000 | 1764.000
Associated peaks 2349.714 1968.929 1760.857
Number of associations 3782.143 2976.429 3114.214
% of peaks with an association to a gene 99.882 99.892 99.819
% of peaks with more than one association 55.092 46.111 70.710




% of associated peaks with association to the TSS, 85.357 81.435 88.805
promoter, first exon or gene body

It was observed that most of the peaks were associated with one of these elements: the TSS, the
promoter, the first exon or the gene body. The first exon and the promoter comprise an especially
significant number of peaks (Figure 8). The high association to a regulatory element such as a
promoter suggests an important role of these enzymes in the regulation of the correspondent
genes. The association to the TSS, another cis-regulatory element, is much lower, probably
because these sequences are shorter, which would difficult the direct association to them.
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Figure 8. Total associated peaks to Esal, Gen5 and Setl, and the peaks associated to different genomic
features (TSS, promoter, first exon and gene body).

An example of a more general view of the distribution of the peaks is shown in Figure 9. All
samples, for all the enzymes, featured a similar distribution. As expected, features like promoter
or first exon are more frequent around the TSS, while gene body or upstream elements are more
frequent further.
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Figure 9. Density plot of Esal’s ChIP-Seq at time 1, showing the distribution of the detected peaks over
the distance to the TSS, classified by the different genetic features that they are associated to.
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Due to the interest of this study in the significance of the chromatin modifying enzymes in the
regulation of gene expression during the YMC, only the genes with an association to their
regulatory elements (TSS or promoter) were considered in the further steps of the analysis, except
the ones resulting from the usage of a read count matrix.

Assignation of time points to each YMC phase

After the statistical analysis, the different samples were enriched in their GO terms (The Gene
Ontology Consortium, 2019), by applying the Fisher’s Exact Test to each set of genes. The test
was performed for each time point separately. The obtained, enriched GO terms in each sample
were then functionally compared.

The similarities between the individual significative GO terms of each time point in each
enzyme allowed to assign the previously mentioned conflictive samples to a proper YMC phase;
the assignment, however, differs from the one established in Kuang et al. (2014) study. This way,
the three phases of the cycle were further considered as follows:

-OX phase: samples 3, 4 and 5.
-RB phase: samples 6, 7 and 8.
-RC phase: samples 1, 2, 9, 10, 11, 12, 13 and 14.

As the representative GO terms in the samples of the same phase are very similar, the
description of the functional enrichment will be performed directly per each phase and enzyme
jointly in the next section.

Functional enrichment of the YMC phases

To perform a functional enrichment on the sets of genes of the different phases, only the genes
that appeared in more than a half of the corresponding samples (at least in 2 samples in the case
of OX and RB phases, and at least in 5 samples in case of RC phase) were selected as
representative. For this purpose, a time matrix with all the detected genes (filtered by TSS or
promoter association) and their presence or absence at a certain timepoint was constructed for
each enzyme. This way, not all the initially detected genes were considered for the enrichment
(Table 4).

Table 4. Genes associated to peaks with RGmatch by their promoter or TSS, and genes considered
representative for each enzyme and phase of the YMC. Note that some genes were considered as
representative in more than one phase.

Esal Genb Setl
Associated genes 2411 2287 2171
Representative genes in OX phase 904 921 574
Representative genes in RB phase 955 811 455
Representative genes in RC phase 959 721 419

As the Table 4 reflects, less than 40% of the total associated genes were considered in each
phase, in the case of Esal, and 31-40% in case of Gcnb; in comparison, Setl values are lower:
only ~19-26% of the genes were assigned to each phase.

Apparently, the Setl methyltransferase seems to be involved in the regulation of much less
genes than the other two enzymes. It cannot be determined, however, whether this is due to a
particularity of the Setl enzyme or, by contrary, histone methylation is not as much involved in
the regulation of the YMC as the acetylation, which has been already observed in other studies
(Sanchez Gaya, et al., 2018).



Regarding the acetyltransferases, Esal is associated to a similar amount of genes in each phase,
but displays less genes for the OX phase, in contrast to the other two enzymes. On the other hand,
Gcenb presents noticeably lesser quantities of associated genes for the RB and RC phases. This
can be explained by the “preference” the GcenS acetyltransferase may have for the genes
corresponding the OX phase, implying its importance in the regulation of the oxidative phase, as
has been already noticed in other studies (Cai, Sutter, Li, & Tu, 2011).

As for the functional enrichment, the acetyltransferases Esal and Genb displayed very similar
results, while the methyltransferase Set1’s genes seemed to be enriched in other functionalities.

Curiously, the most significative GO terms for the two acetyltransferases (Esal and Gcn5) were
very similar among both them and the cycle’s phases: Cytoplasmic translation, Structural
constituent of ribosome, rRNA export from nucleus, Fructose transmembrane transporter activity,
Mannose transmembrane transporter activity, L-phenylalanine transmembrane transporter
activity, Glucose transmembrane transporter activity or Gluconeogenesis are some examples.

Many of these GO terms seem related to the OX phase of the YMC (the ones related to
translation, sugar transport or ribosomes), but are not usually representative of the RB and RC
phases. A possible explanation to this observation is that Esal and Gen5 have a similar, preferent
attachment to regulation sites of typical OX phase genes, just as described for the latter enzyme
(Cai, Sutter, Li, & Tu, 2011). In addition, the genes related to ribosomal RNA (rDNA) are found
in large clusters in yeast (Saka, Takahashi, Sasaki, & Kobayashi, 2016), which increases the
probability of association of a peak to one of them. However, this does not exclude their
interaction with other genomic regions that are relevant for the other two phases.

On the other hand, Setl displayed different GO terms for its associated genes than the
acetyltransferases. Still, some terms appeared in all phases, like the Nuclear nucleosome,
Glutaminase activity, IMP cyclohydrolase activity, Pyridoxine metabolic process or Negative
regulation of transcription, DNA-templated, and several were shared by two phases.

In the Ox phase, the most significant GO terms that appeared are L-iditol 2-dehydrogenase
activity, Methylated histone binding, Asparagine-tRNA ligase activity, Biotin biosynthetic process
and Methylated histone binding, among others. In the RB phase, the obtained GO terms were
related to histone modifications (Histone methylation, Histone deacetylation), thiamine
(Thiamine biosynthetic process), Asi complex or TFs (Transcription factor catabolic process).
The RC phase featured several GO terms related to response to stress (Positive regulation of
transcription from RNA polymerase Il promoter in response to freezing, /...J to cold, /...] to
nitrosative stress, /...J to hydrogen peroxide, Response to starvation...), epigenetic modification
(Methylation, Histone acetylation), transport of different substances (Sorbitol transport, Mannitol
transport, Spermidine transport, Oligopeptide transport...) or thiamine (Thiamine biosynthetic
process) can be found.

Set1’s functional enrichment yields terms that are, just as in the case of acetyltransferases, not
so representative of the YMC. The GO terms, however, seem related to its own function,
methylation, in all three cycle phases, and to the regulation of transcription (especially in stress
conditions, typical of the RC phase).

Nevertheless, the results of this enrichment must be considered carefully. The genes were
associated to each chromatin modifying enzyme by the proximity of the gene TSS or promoter to
the peak, but this is no guarantee that the attachment is actually affecting all the genes, as the
detected interaction may not necessarily imply a chromatin modification, and therefore, no
regulation would be occurring at these sites. Furthermore, the associated genes may even not be
expressed. Because of this, these results must be contrasted with other data, and considered, as
for now, as genes that are potentially regulated by Esal, Gen5 or Setl.



Intersection with acetylation and gene expression data

After the functional enrichment, the set associated and filtered genes form each enzyme’s ChIP-
Seq were combined with the data of the other three omics experiments: RNA-Seq, H3K9 ChlP-
Seq and H3K18 ChIP-Seq. Note that the genes considered this time were taken all together,
without considering their representation in a YMC phase.

First, the associated genes from the enzymes’ experiments (see Table 4) were intersected with
the sets of differentially expressed genes (DEGS) that were obtained by the RNA-Seq experiment
(Table 5). The intersection was made for each subset of DEGs separately, corresponding to each
cycle phase Table 6 shows the results of these intersection, as well as the total numbers of DEGs
during the YMC.

Table 5. Differentially expressed genes (DEGs) during the YMC, in each phase, obtained from the

RNA-Seq experiment.
Total RB phase
- 2552 | 1428 426 698

Table 6. Genes resulting from the intersection of the RNA-Seq data (differentially expressed genes) and
the three enzymes’ ChIP-Seq data (genes associated to an enzyme by the promotor or the TSS).

Associated genes 2411 2287 2171
DEGs in OX 447 452 406
DEGs in RB 135 121 133
DEGs in RC 328 346 284

When the enzymes’ associated DEGs were intersected among themselves, it was seen that most
of the genes were common among the three chromatin modifiers (Figure 10).
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Figure 10. Intersection of the differentially expressed genes associated to each chromatin modifying
enzyme in the OX (a), RB (b) and RC (c) phases of the cycle.

The functional enrichment of the common DEGs of the three enzymes resulted in expected GO
terms for each YMC phase. The common OX phase genes were enriched in GO terms related to
the ribosomes and their assembly (Ribosome, Cytosolic large ribosomal subunit, Cytosolic small
ribosomal subunit, Ribosomal large subunit assembly, Ribosome biogenesis...), translation
(Cytoplasmic translation, Translation, Maintenance of translational fidelity...), RNA (RNA
binding, mRNA binding, pre-mRNA 5'-splice site binding...) and biosynthesis of lysine (Lysine
biosynthetic process via aminoadipic acid), among the most significant. RB phase genes featured
as the most significant the terms related to the mitochondria (Mitochondrial large ribosomal
subunit, Mitochondrial translation, Mitochondrial electron transport, ubiquinol to cytochrome
c...), respiration (Aerobic respiration) and sporulation (Sexual sporulation resulting in formation
of a cellular spore). In the RC phase, the common genes were enriched in GO terms regarding
different metabolic processes (Fatty acid metabolic process, Carbohydrate metabolic process,
Fatty acid beta-oxidation, Carnitine metabolic process...), glutathione (Glutathione metabolic
process, Glutathione transferase activity...), peroxisomes (Peroxisome), stress responses
(Cellular response to oxidative stress, Cellular response to desiccation...).

The facts that most of the associated DEGs of these subsets are common for the three enzymes,
and that the enriched GO terms are representative of each phase (ribosomes and translation related
terms in OX phase, mitochondria terms in RB phase, and fatty acid and carbohydrate metabolism
and stress responses in RC phase) according to bibliography (Kuang, et al., 2014; Rao &
Pellegrini, 2011; Tu, et al., 2007), suggest that all three enzymes could regulate very similar
subsets of genes, probably the characteristic ones of each cycle’s phase.

This might seem contrary to the functional enrichment analysis results that were discussed in
the previous section. However, as was already stressed, the genes considered previously were
taken into account only because of proximal association to a gene TSS or promoter. Now, these
genes have been filtered by their expression: only those that are differentially expressed, and
contribute to the metabolism of the cell during the YMC, are considered.



The subsets of genes coming from the two acetylation ChIP-Seq experiments were also
intersected with the DEGs of each YMC phase coming from the RNA-Seq (Table 7). As the
former genes had either a positive or a negative correlation with the corresponding acetylation,
only those with a positive correlation coefficient were considered.

Table 7. Differentially expressed genes (DEGS) of each one of the analysed histone acetylations (H3K9
and H3K18) with a positive correlation, divided according the three YMC phases.

H3K9 H3K18
Genes with positive correlation 780 815
DEGs in OX 531 452
DEGs in RB 124 103
DEGsin RC 125 260

Next, the DEGs from the enzymes’ ChlIP-Seq were intersected with the DEGs from the
acetylations’ ChlP-Seq, differentiating the YMC phases. The intersections were made for each
enzyme and both acetylations individually (Table 8) and together (

Table 9).

Table 8. Common genes from intersection of three experiments (RNA-Seq, a histone acetylation ChIP-
Seq and a chromatin modifying enzyme ChlP-Seq), por each enzyme, histone acetylation and YMC phase.

H3K9 H3K18
Esal | Gen5 | Setl | Esal | Genb | Setl
Common genes in OX phase | 156 | 167 | 122 | 154 | 159 | 115
Common genes in RB phase | 38 32 32 36 35 44
Common genes in RC phase | 71 71 52 | 123 | 135 | 106

Table 9. Common genes resulting from the intersection of four experiments (RNA-Seq, 2 acetylation
ChIP-Seq and a chromatin modifying enzyme ChlIP-Seq), por each enzyme and YMC phase.

Esal | Gen5 | Setl
Common genes in OX phase | 67 72 46

Common genes in RB phase 7 5 6

Common genes in RC phase | 25 25 20

As expected, OX phase featured the largest number of common genes, as the initial gene set
sizes were also larger (see Figure 11). Nevertheless, despite having associated a similar number
of DEGs in OX phase in comparison to other enzymes, Setl showed noticeably less genes in
common with H3K9 and H3K18, probably because it is most likely for a histone acetylation to
have commonly regulated genes with an acetyltransferase (like Esal and Gcnb) than with a
methyltransferase (like Setl).
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Figure 11. Intersections of DEGs of the enzymes’ and of acetylations’ ChIP-Seq experiments, in OX
phase.

Interestingly, in the OX phase, the DEGs related to the three chromatin modifying enzymes
display more common genes with H3K9 histone acetylation, while in the RB and RC phases, it
was observed that there are usually more common genes with H3K18 acetylation. This could
suggest a slight predisposition to certain acetylation sites of the histone modifiers depending on
the YMC phase.

Finally, the common genes of each phase resulting from the intersection of four experiments
(RNA-Seq, H3K9 ChiIP-Seq, H3K18 ChIP-Seq and one of the enzymes’ ChIP-seq) were
intersected among the three chromatin modifying enzymes (Figure 12).

Role of chromatin modifying enzymes and histone acetylation in the regulation of the yeast
metabolic cycle
27



Esal

Figure 12. Intersections of the common genes of the four gene expression experiments (RNA-Seq, H3K9
ChIP-Seq, H3K18 ChIP-Seq and one of the enzymes’ ChlP-seq) among the different chromatin modifying
enzymes, in OX phase (a), RB phase (b) and RC phase (c).

As Figure 12 reflects, many of the common genes for all four gene expression experiments are
shared by all three chromatin modifying enzymes, although Esal and Gcn5 have more elements
in common that with Set1, probably because of the similar functions that they perform in the cell.
As previously, OX phase features the largest number of common genes, while RB phase shows
very few of them.

Enrichment with transcription factors

The common associated differentially expressed genes among each enzyme and the two histone
acetylations of each YMC phase were selected to perform a transcriptional factor (TF)
enrichment. The TF enrichment was performed against the set of DEGs of the corresponding
phases of the cycle. This way, the transcription factors that appeared as related to the genes in
significative quantities were obtained for each enzyme-acetylations DEGs set and for each YMC
phase. The numerical results of the enrichments can be seen in Table 10.

Table 10. Significantly enriched TFs that associate to the common DEGs of the enzyme-acetylations
intersections, according to the associated chromatin modifying enzyme and phase.

TFs in OX 88 82 74
TFsin RB 9 7 8
TFsin RC 30 42 4
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As it was expected, much more TFs are associated to the OX phase, as this phase has more
genes associated to it. However, it stands out that the TFs associated to Setl gene subset in the
RC phase are very few in comparison to Esal and Genb.

It has also been observed that, in each phase, Esal and Gcnb share many associated TFs (as
they initially shared many associated genes), while Setl contains different ones (Figure 13). The
Setl associated TFs in RC phase do not coincide with any TF of the acetyltransferases in the same
phase.
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Figure 13. Common enriched transcription factors among all the DEG-enzyme-2 acetylations gene
subsets, in the OX phase (a), RB phase (b) and RC phase (c) of the YMC.

Some noticeable transcription factors that were found among the common ones, in OX phase,
include IFH1, FHL1 and SFP1, all three involved in the transcription of ribosomal protein genes
(and the last one, also with mitotic cell cycle); HFI1 and SPT20, related to the SAGA complex;
factors related to SWI/SNF chromatin remodelling complexes, like TAF14 (also involved in
involved in RNA polymerase Il transcription initiation) and SWI5 (also related to genes expressed
at the M/G1 phase boundary of the cell cycle); GCN4 and AROB80, related to amino acid
biosynthetic genes and aromatic amino acid catabolic genes, respectively; and PIP2 (binds
promoters of genes involved in beta-oxidation of fatty acids, peroxisome organization and
biogenesis, activating transcription in the presence of oleate), in OX phase, and OPI1 (involved
in telomere maintenance and mitochondrial metabolism) in RB phase (Cherry, et al., 2012).

Common TFs between Esal and Gen5 in RC phase include GCN4, HSF1 and SWI5, which
already appeared in OX phase. In case of Setl, the TFs that draw attention in the RC phase are
NNF2 (interacts with a subunit of RNA polymerases I, Il, and I1l) and TAF14 (Cherry, et al.,
2012).

The fact that these transcription factors are involved in several processes that are characteristic
of YMC, especially those of the OX, suggests that they may have an important role in the
regulation of the cycle. This is supported by other studies, were many of these TFs (SFP1, HFI1,
PIP2, GCN4, ARO80) were also identified as significant during the YMC (Rao & Pellegrini,
2011; Sanchez Gaya, et al., 2018).

However, the limitations of this analysis must not be forgotten: this enrichment is based on an
association of transcription factors to certain genes according the bibliography, but it is not a proof



of their regulation of the YMC. Instead, these TFs are potential targets of being regulators of the
cycle, and should be considered in further, more specific studies of their involvement in the cycle.

Statistical integration of enzymes’ and acetylations’
ChlP-Seq data

Read count matrixes construction and normalization

To study the interaction of the chromatin modifying enzymes in a more quantitative manner,
read count matrixes were constructed from the aligned reads data, considering a consensus set of
peaks for the 14 samples of each enzyme. This way, the matrixes related the quantity of reads at
each consensus region with the time point of the YMC at which the interaction occurred.

The count matrixes, as well as the integration by linear regression (see Statistical integration
of enzymes’ and acetylations’ ChIP-Seq data), were performed for Esal and Gcn5 enzymes,
but not for Setl. The reason behind this decision is the function: while Gen5 and Esal are
acetyltransferases, Setl is a methyltransferase, and the posterior multi-omics integration will be
performed with histone acetylation data. Additionally, it has been seen in other studies (Sanchez
Gaya, et al., 2018) that the impact of methylation it not as strong as the impact of acetylation. Due
to these reasons, the decision of analysing only the enzymes related to the acetylation was made.

Once the read count matrixes were constructed, the data they contained were made comparable
with the values from histone acetylation ChIP-Seq read counts. With this aim, the processing
described in Sanchez Gaya et al. (2018) was performed: first, the read count values were
normalized to RPKM; then, a logarithmic transformation was applied; and finally, the data were
centred.

To confirm that the applied correction was done properly, PCA were performed as an
exploratory analysis, as shown in Figure 14. It can be seen that PC1 and PC2 cluster the reads
properly, according to their phases, before and after the correction.
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Figure 14. Principal component analysis (PCA) of the read counts of Esal (a and b) and Gen5 (c and
d) samples, before (left) and after (right) the data correction. PC1 and PC2 are considered. The samples



are identified according to their phase: green circles for OX phase, blue squares for RB phase, and red
triangles for RC phase.

The belonging of each time point to a certain phase was established following the previously
made enrichment analysis (see Assignation of time points to each YMC phase). It can be
considered that the assignment of the samples was accurate, as the ones whose phase was
uncertain cluster as predicted.

Linear regression models

The data of ChIP-Seq of Esal, Gen5, H3K9 and H3K18 were integrated by means of linear
regression models, using MORE software (Tarazona, Tomas Riguelme, Martinez Mira, Clemente
Ciscar, & Conesa, 2018).

With MORE, acetylation CHIP-Seq data were related to the data of chromatin modifying
enzyme ChlIP-Seq. By constructing a linear regression model for each gene that is potentially
regulated by both elements (one enzyme and one acetylation), only those genes with a
significative correlation, whether it is positive or negative, are returned as a result.

By integrating the read count matrixes of the two acetyltransferases with the count matrixes of
each of the histone acetylations, several subsets of genes, with a significant correlation between
the acetylation and the enzyme, were obtained. The results of this integration can be seen in Table
11.

Table 11. Genes associated to the histone acetylations H3K9 and H3K18 that were identified as
potentially regulated by Esal or Gen5 by MORE software. Genes with a positive and a negative
correlation to the regulators were both included. Note that, for some genes, both positive and negative
correlation was found for the same regulator.

H3K9 H3K18
Total Positive Negative Total Positive Negative
correlation | correlation correlation | correlation
Regulated 224 166 70 266 192 92
by Esal
Regulated 281 247 42 330 289 51
by Genb

Overall, Gen5 was considered a potential regulator of more genes than Esal, for both histone
acetylations. This coincides with the fact that Genb5 is related to the acetylation of H3 histone,
while Esal has been associated with H4 histone (Rando & Winston, 2012), so it is natural to see
more genes related to Gen5 if two acetylations of H3 histone are evaluated.

Also, both Esal and Genb potentially regulate more genes associated to the H3K18. This is due
to the quantity of genes originally associated to H3K18, which was superior to the quantity
associated to H3K9 (see Table 5).

When the results from Table 11 are compared to the ones shown in Table 8, is can be seen that
the quantity of genes that could be potentially regulated by the two acetyltransferases is lower
according the results of MORE. As the software uses read counts data, and therefore considers
the temporal oscillation of each variable, many genes are filtered out when the linear regression
models are constructed because of not presenting a real variation with time.



Regarding the correlation of the regulators with the histone acetylations, most of the genes
regulated by each enzyme have a positive correlation. The genes featuring a negative correlation
are superior for the Esal acetyltransferase, both in quantity and in proportion to the genes with a
positive correlation. An example can be seen in Figure 15.
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Figure 15. Example of a negative (left) and a positive (right) correlation of Esal acetyltransferase and
H3K18 enzyme, regarding the gene YIL123W.

By intersecting them with RNA-Seq data, each subset of genes regulated by any acetylation-
enzyme combination was divided according to the YMC phase in which the genes expressed in a
differential manner (Table 12).

Table 12. Genes associated to the histone acetylations H3K9 and H3K18 that were identified as
potentially regulated by Esal or Gen5 by MORE software, divided by their YMC phase.

H3K9 H3K18
OX phase RB phase RC phase OX phase RB phase RC phase
Regulated 122 23 79 150 23 93
by Esal
Regulated 192 19 70 194 21 115
by Genb

The functional enrichment analysis of these genes showed similar results for all OX phase gene
subsets. The featured terms were typical for the phase, related to growth genes, translation,
ribosomes or RNA binding (Structural constituent of ribosome, Cytoplasmic translation, RNA
binding, rRNA export from nucleus...).

In the RB phase, however, the enriched GO terms were different for the analysed subsets,
probably because the samples on which the enrichment was performed were small, in comparison
to those of OX or RC phases. Moreover, most of the enriched GO terms displayed a low
significance. Esal subsets were enriched in terms that are related to the cell cycle, like Chromatin
assembly or disassembly, Replication fork protection or Nucleosome; additionally, Esal-H3K18
genes were also enriched in Filamentous growth and Chromatin silencing. Gen5-H3K9 genes
were functionally enriched in Cell wall organization and Mitochondrial small ribosomal subunit,
and Gen5-H3K18 genes had no significatively enriched GO terms.

The GO terms enriched in the RC phase were related to the characteristic functionalities of the
phase, yet were not as defined as in the OX phase enrichment. Three of the enriched gene subsets
(Esal-H3K9, Esal-H3K18 and Gcn5-H3K18) displayed GO terms related to fatty acids, which
seem related to their metabolism (Fatty acid beta-oxidation, Fatty-acyl-CoA transport, Fatty acid
metabolic process...); other three subsets (Esal-H3K18, Gen5-H3K9 and Gen5-H3K18) were
enriched in terms related to stress conditions (Trehalose metabolism in response to stress,
Cellular response to heat, Cellular response to desiccation). Gen5-H3K18 also featured terms
related to malate (Malate metabolic process, Malate dehydrogenase activity) and carbohydrate
metabolism (Carbohydrate metabolic process).



Conclusion

The exact mechanism of regulation of the different cellular processes that comprise the yeast
metabolic cycle still remains a mystery. However, even the smallest insights into the elements
that are related to this phenomenon take us closer to the answer.

The development of this genome-wide study allowed a general view of the role of three yeast
chromatin modifying enzymes -Esal, Gen5 and Setl- in the YMC, and outlined their possible
relations and interactions with differentially expressed genes, histone acetylation sites and
transcription factor.

The observed results suggest that the two acetyltransferases, Esal, and Gcnb, have a bigger
impact on the YMC than the Setl methyltransferase; and, as it is logical, they seem much more
related to histone acetylations. The different putatively regulated genes that are shared by several
elements, whether they are enzymes or acetylations, display the functionalities that are
characteristic of the three phases of the YMC, enforcing the idea that the cycle is controlled by
different regulatory mechanisms in a coordinated manner.

The performed study, however, had several limitations. Some of them were related to the raw
data that were analysed: their quality was not ideal, and the uneven sampling might have caused
an underrepresentation of some genes. The a priori knowledge of the bioinformatic strategies and
specialized software that had to be applied in order to process these data was not always sufficient,
so had to be improved alongside the analysis execution. Additionally, a new programming
language, R, had to be learnt to efficiently work with the obtained results of ChIP-Seq data.

But one of the most important challenges is the studied matter itself. The YMC is a complex
phenomenon that is characterized by many different processes at many different biological levels.
This complicates its study and data analysis, even with a multi-omics approach, because of all the
information that has to be computationally integrated and then understood at the level of a
biological system.

This way, more research is required to fully understand how the YMC actually works in a yeast
cell. New studies could focus on the genes potentially regulated by acetyltransferases and histone
acetylations together, in search of patterns or conditions that cause the transcription of very
concrete genes in each YMC phase. The individual contribution of the transcription factors to the
cycle could also be assessed, both to prove their significance as potential regulators and to
discover how exactly they come to regulate specific genes. And of course, multi-omics studies
that integrate new trans-regulatory elements would help to better visualize the functioning of the
cycle and to construct a regulatory network among all the elements implied in the YMC.

On a more personal level, the performance of this Bachelor’s thesis was a great chance to
participate in a real research process, and not only to widen my knowledge of the yeast metabolic
cycle and its genetic and metabolic basis, but also to learn much more about bioinformatics and
its application in biotechnology. This, of course, demanded considerable effort, as many of the
used strategies in this study, as well as the R language management, required more practice and
a deeper understanding that the one I initially had, despite having been explained or mentioned in
class. However, | am satisfied with all | learnt while performing this study.

The bioinformatics basis | obtained thanks to the work in the Genomics of Gene Expression
group will surely be useful to study and understand different biological issues in the future,
as | intend to keep working in this field and continue to study the many questions that still
remain unresolved in biology.
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Annexes

Scripts

Analysis of RGmatch results and functional enrichment, in
Esal

#i#### Generar bucle total para todos los archivos, con un report final #####
##t# Crear bucle ###

## 0. Elegir el directorio de trabajo (donde esten todos los archivos del analisis de RGmatch
de la proteina)

## e indicar donde estan los archivos bed

setwd("'/home/biouser/Desktop/FilteredGenes/Reports/Esal/") # DirecciA3n en la que guardar
report de este analisis

rutargmatch <- "/home/biouser/Desktop/Cluster/Y MC/denovo/RGmatch/Esal" # Indicar ruta
de reports del RGmatch para la proteina

rutabeds <- "/home/biouser/Desktop/Cluster/Y MC/denovo/RGmatch/beds/Esal" #Indicar ruta
de los archivos bed

modificador <- "Esal" # Modificador analizado

'%ni%' <- Negate('%in%") # Funcion para el "not in"

## 0.1 Obtener la lista de archivos .txt del RGmatch para el modificador de histona deseado
archivos <- list.files(rutargmatch)

## 0.2 Hacer bucle para procesar cada archivo de RGmatch

library(rlist) # Paquete para trabajar con listas

i <- 1 # Establecer contador a 1, para que empiece por el archivo 1

totalGOlist <- list() # Lista con totos los GO enriquecidos para cada tiempo

totalGenelist <- list() # Lista con todos los genes asociados para cada tiempo
totalFiltGenelist <- list()



for (archivo in archivos)

{

nombre <- archivo
carpeta <- rutargmatch

ruta <- paste(carpeta,"/",nombre, sep ="")

##t# Sacar estadisticas del RGmatch ##

## 1. Cargar los datos del .txt de RGmatch a R

rgmatch_genes = read.table(ruta, header=T, as.is=T)

## 2. Determinar el porcentaje de picos con al menos 1 gen asociado

# Cantidad de picos (name es la columna de picos), sin repetir (porgue unigue) que se asocian
aun gen

length(unique(rgmatch_genes$name)) #picos con 1 gen asociado

picasos <- length(unique(rgmatch_genes$name))
# Cantidad de asociaciones de picos con genes totales
length(rgmatch_genes$name) # total de asociaciones

asotot <- as.character(length(rgmatch_genes$name))

# Lista de genes asociados a picos, sin repetir genes

genes <- unique(rgmatch_genes$Gene)

totalGenelist <- list.append(totalGenelist, genes) # AAzadir el conjunto de genes de este
tiempo a lista externa

#Cargar los datos de los picos

beds <- list.files(rutabeds) # Obtener nombres de archivos bed



picos <- paste(rutabeds,"/",beds][i], sep = ") # Crear nombre de ruta completo
peaks = read.table(picos, header=F)
nrow(peaks)

macpic <- nrow(peaks)

#Determinar el porcentaje de picos, sin repetir, que tengan un gen asociado (al menos 1)
associatedPeaks_perc = length(unique(rgmatch_genes$name))/nrow(peaks)*100

## 4. Hay picos con mas de una asociacion? Cuantos hay? La asociaciA3n es en el mismo
gen?

# Hacer conjunto de picos con +1 asociacion (duplicated),
# usando solo el nombre del pico (indicando columna "name"), sin repetir los picos (unique)

multAssocRegions = unique(rgmatch_genes[duplicated(rgmatch_genes$name),"name"] )

#Cantidad de picos con +1 asociaciAn

length(multAssocRegions)

#Porcentaje de picos con +1 asociacion frente a todos los picos con asociacion

percMultiAssocRegions = length(multAssocRegions)/picasos*100

# Porcentaje de picos A°nicos asociados a TSS, Promotor, 1r Exon o Cuerpo del Gen

intpeaks <- unique(rgmatch_genes[rgmatch_genes$Area%in%c('TSS', 'PROMOTER,
'GENE_BODY?, '1st_ EXON'),]$name)

length(intpeaks)
portotal <- length(intpeaks)/picasos*100

HHHHHH
#HHH# GENES A COGER PARA EL ENRICHMENT ANALY SIS ##Ht#H##
HHHHH

filtergenes <- unique(rgmatch_genes[rgmatch_genes$Area%in%c('TSS',
'PROMOTER),]$Gene)

totalFiltGenelist <- list.append(totalFiltGenelist, filtergenes)
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# Porcentaje de picos A°nicos asociados a TSS,

tsspeaks <- unique(rgmatch_genes[rgmatch_genes$Area%in%c('TSS"),]$name)
length(tsspeaks)

portss <- length(tsspeaks)/picasos*100

# Porcentaje de picos A°nicos asociados a PROMOTOR

prompeaks <- unique(rgmatch_genes[rgmatch_genes$Area%in%c('PROMOTER'),]$name)
length(prompeaks)

porprom <- length(prompeaks)/picasos*100

# Porcentaje de picos A°nicos asociados a 1st Exon
expeaks <- unique(rgmatch_genes[rgmatch_genes$Area%in%c(‘1st_ EXON"),]$name)
length(expeaks)

porex <- length(expeaks)/picasos*100

# Porcentaje de picos A°nicos asociados a GENE_BODY

bodpeaks <- unique(rgmatch_genes[rgmatch_genes$Area%in%c('GENE_BODY"),]$name)
length(bodpeaks)

porbod <- length(bodpeaks)/picasos*100

# Crear conjunto de picos, filtrando por el nombre del pico (elegir columna "name),
# siempre que se encuentre entre los multiasociados (lista de multiasociados)
# Se obtiene lista de multiasociados con todas las asociaciones

multAssoc = rgmatch_genes[rgmatch_genes$name%in%multAssocRegions,]

## 5. Graficar la distribucion de los eventos a traves de las regiones ("TSS","PROMOTER",
"1st EXON",...)

# en un pie chart

# Cargar paquete para hacer grAificas
library(ggplot2)



# Hacer un barplot (grA;fico de barras), dividiendo en tipos de region (Area)
ggplot(rgmatch_genes, aes(x=Area, fill=Area), color="black") +
geom_bar()

# Hacer un piechart (grA;fico circular o grAjfico tarta)
df = as.data.frame(table(rgmatch_genes$Area))

slices <- df$Freq

Ibls <-df$Varl

pct <- round(slices/sum(slices)*100)

Ibls <- paste(lbls, pct) # add percents to labels

Ibls <- paste(lbls,"%",sep="") # ad % to labels
pie(slices,labels = Ibls, pch=10)

## 6. Graficar la distribucion de las distancias de los picos al TSS. Donde estan enriquecidos
los binding sites?

ggplot(rgmatch_genes, aes(x=TSSDistance, fill=Area)) +
geom_density()

ggplot(rgmatch_genes[which(rgmatch_genes$TSSDistance<10000),], aes(x=TSSDistance,
fill=Area)) +

geom_density()

ggplot(rgmatch_genes[which(rgmatch_genes$TSSDistance<10000),], aes(x=TSSDistance,
fill=Area))+

geom_histogram(bins=200)

ggplot(rgmatch_genes[which(rgmatch_genes$Area%in%c("PROMOTER",
"TSS","UPSTREAM")),], aes(x=TSSDistance, fill=Area)) +

geom_density()

ggplot(rgmatch_genes[which(rgmatch_genes$Area%in%c("TTS",
"INTRON","DOWNSTREAM", "GENE_BODY") & rgmatch_genes$TSSDistance<500000),],
aes(x=TSSDistance, fill=Area)) +

geom_density()
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### Enriquecimiento ###

## 1. Cargar el paquete biomaRt, con la info de Ensembl

library(biomaRt)

## 2. Cargar los datos de la levadura desde Ensembl

biomartYeast = useMart(biomart = "ensembl", dataset="scerevisiae_gene_ensembl")

# Ver los atributos que hay

atributos = listAttributes(biomartYeast)

atributos[grep("GQO", atributos$description, ignore.case = TRUE),]

## 3. Enrichment functions ORA (Over Representation Analysis) > Funciones para hacer
enriquecimiento

EnrichALLterms = function (test, notTest, annotation,
p.adjust.method = "fdr") {

annot2test = unique(annotation[,2])

resultat = t(sapply(annot2test, Enrichlterm, test = test, notTest = notTest, annotation =
annotation))

return (data.frame(resultat[,-6],
"pval” = as.numeric(resultat[,"pval™]),
"adjPval" = p.adjust(as.numeric(resultat[,"pval"]), method = p.adjust.method),
stringsAsFactors = F))

Enrichlterm = function (term, test, notTest, annotation) {



annotTest = length(intersect(test, annotation[annotation[,2] == term,1]))

if ((annotTest) > 0) {
annotNOTtest = length(intersect(notTest, annotation[annotation[,2] == term,1]))

mytest = matrix(c(annotTest, length(test)-annotTest, annotNOTtest, length(notTest)-
annotNOTtest), ncol = 2)

resultat = c(term, annotTest, length(test), annotNOTtest, length(notTest),
#TEST DE FISHER
fisher.test(mytest, alternative = "greater")$p.value)
names(resultat) = c("term", "annotTest", "test", "annotNotTest", "notTest", "pval")

}else {
resultat = c(term, 0, 0, 0, 0, 100)
names(resultat) = c("term", "annotTest", "test", "annotNotTest", "notTest", "pval™)

}

return(resultat)

## 4. Over Representation Analysis (ORA)

#Obtener nombres de los genes asociados en la muestra

test <- filtergenes

length(test) # 2466 genes asociados

#Obtener nombres de todos los genes de la levadura

notTest <- getBM(attributes = c("ensembl_gene_id"),
mart=biomartY east)

notTest <- as.vector(t(notTest))

length(notTest) # 7036 genes totales en la levadura



#Resta entre los genes totales en la levadura y los genes de la muestra
notTest <- setdiff(notTest, test)
length(notTest) # 4662 genes

#Crear anotacion de los genes que hay en el organismo (gen asociado y descripciA3n del GO
term (name_1006) asociado)

annotation = getBM(attributes = c("ensembl_gene_id","name_1006"),
mart=biomartYeast)

#Hacer analisis de enriguecimiento

myEnrichResults = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciAn de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,

p.adjust.method = "fdr")

## 5. Seleccionar GO terms enriquecidos en la muestra

GOenriq <- myEnrichResults|myEnrichResults$pval<0.05, c(‘term','pval’)] # Todos lo GO
enriquecidos

GOenrigSel <- GOenrig[order(GOenrig$pval),] # Ordenados de menor a mayor p value
GOenrig25 <- GOenrigSel[2:26,]

GOenrigAdd <- GOenriql[,'term’]

total GOlist <-list.append(total GOlist, GOenrigAdd) #L.ista con conjutnos de GO enriquecidos
en cada tiempo

### Crear un archivo Report ###

## 1. Crear datos con las variables con texto



archi_nombre <- substr(archivo, 1, 10)
tiempo <- as.character(i)

# Nombre del archivo de informe

report_name <- paste("Enrich_rep-",archi_nombre,”-Time_" tiempo,"-",modificador,".txt")

# Datos generales del analisis

titulo <- "### Informe del analisis de enriquecimiento ###"
archivo_analizado <- paste("Archivo analizado: ",
archivo,
sep = ")
bed_analizado <- paste("Archivo .bed analizado: ",
beds[i],
sep=")
info_archivo <- paste(archi_nombre,
" muestra de ",
modificador,
"en el tiempo ",
tiempo,

sep="")

# Datos estadisticos generales

introl <- "# Datos estadisticos generales”

estl <- paste("Para el modificador de histonas ",
modificador,
", atiempo ",
tiempo,
" se han detectado ",
as.character(macpic),
" picos con MACS2.",
sep = ")

est2 <- paste("A su vez, RGmatch ha detectado asociaciones con genes para ",
as.character(picasos),

" picos, con un total de ",



asotot,
" asociaciones.",
sep ="")

est3 <- paste("El ",
as.character(round(associatedPeaks_perc,3)),
"% de picos tiene, por lo tanto, asociacion a, al menos, un gen.",
sep ="")

est4 <- paste("El ",
as.character(round(percMultiAssocRegions,3)),
"% de picos (",
as.character(length(multAssocRegions)),

" picos) tiene mAjs de una asociacion con respecto a la totalidad de picos
asociados.",

sep="")

# Datos estadisticos sobre regiones especificas

intro2 <- "# Asociaciones a regiones especificas"
asol <- paste("'De todos los picos asociados (",
as.character(picasos),
"), el
as.character(round(portotal,3)),
"% ("
as.character(length(intpeaks)),

") de picos estAj asociado al TSS, promotor, primer exon o cuerpo de un gen (al
menos a uno de estos).",

sep =)
aso2 <- paste("El ",
as.character(round(portss, 3)),
"% (",
as.character(length(tsspeaks)),
") de picos esta asociado al TSS.",
sep ="")
aso3 <- paste("El ",
as.character(round(porprom, 3)),
"% ("

as.character(length(prompeaks)),



") de picos esta asociado al promotor.”,
sep ="")
aso4 <- paste("El ",
as.character(round(porex, 3)),
"% ("
as.character(length(expeaks)),
") de picos esta asociado al primer exon.",
sep = ")
asob <- paste("El ",
as.character(round(porbod, 3)),
"% (",
as.character(length(bodpeaks)),
") de picos esta asociado al cuerpo de un gen.",
sep = ")

# Datos del enriquecimiento

intro3 <- "# Enriquecimiento”

listaGO <- "

for (elemento in GOenrig25%term)

{
listaGO <- paste(listaGO,elemento,\n")

}

enrigl <- paste("Entre los diferentes tA©rminos GO enriquecidos en esta muestra, se pueden
encontrar:",

"\n",
"\n",
listaGO,

sep="")

## 2. Montar todo en un archivo de texto

report <- file(report_name)

writeLines(c(titulo,



archivo_analizado,
bed_analizado,
info_archivo,

introl,

estl,
est2,

est3,
est4,

intro2,

asol,

asoz2,
aso3,
aso4,

asob,

intro3,

enrigl),
report)
close(report)

i<-i+1

### Analisis global del enriquecimiento por cada tiempo y fase ###



## 1. Sacar una tabla con genes por cada tiempo

todosGenesFilt <- ¢()

for (tiemp in totalFiltGenelist)
{

todosGenesFilt <- c(todosGenesFilt, tiemp) # Hacer listado con todos los genes asociados en
todas las muestras

¥

todosGenesFilt <- unique(todosGenesFilt) # Coger los genes sin repetir
todosGenesFilt <- sort(todosGenesFilt) # Ordenar los genes

tiemposMuestra <- ¢(1:14)
names(totalGenelist) <- tiemposMuestra
names(totalFiltGenelist) <- tiemposMuestra

for (tiem in tiemposMuestra)
{
if (tiem == 1){
geneMatrix <- matrix(todosGenesFilt%in%totalFiltGenelist[[tiem]])
Yelse if (tiem < tail(tiemposMuestra, n = 1)){
geneMatrix <- chind(geneMatrix, todosGenesFilt%in%totalFiltGenelist[[tiem]])
Jelse if (tiem == tail(tiemposMuestra, n = 1)){
geneMatrix <- cbind(geneMatrix, todosGenesFilt%in%totalFiltGenelist[[tiem]])
rownames(geneMatrix) <- todosGenesFilt

colnames(geneMatrix) <- tiemposMuestra

¥
¥

## 2. Enriquecimiento por cada tiempo

todosEnriq <- ¢()



for (tiemp in total GOlist)
{

todosEnriqg <- c(todosEnriqg, tiemp)

}

todosEnriq <- unique(todosEnriq)

todosEnriq <- sort(todosEnriq)

tiemposMuestra <- c(1:14)
names(totalGOlist) <- tiemposMuestra

for (tiem in tiemposMuestra)
{
if (tiem == 1){
goMatrix <- matrix(todosEnrig%in%total GOlist[[tiem]])
Yelse if (tiem < tail(tiemposMuestra, n = 1)){
goMatrix <- chind(goMatrix, todosEnrig%in%total GOlist[[tiem]])
Yelse if (tiem == tail(tiemposMuestra, n = 1)){
goMatrix <- chind(goMatrix, todosEnrig%in%total GOlist[[tiem]])
rownames(goMatrix) <- todosEnriq
colnames(goMatrix) <- tiemposMuestra
}
}

## 3. Enriquecimiento diferencial

j<-1

fl<-1
f2<-1
f3<-1

for (func in todosEnrig){
# goEqMatrix <- Matriz donde todos los GO son verdaderos o falsos

# goDifMatrix <- Matriz donde los GO no aparecen en otods los tiempos



# golDifMatrix <- Matriz con todos los GO que aparecen en todos los tiempos menos 1, o
en un unico tiempo

go0 <- goMatrix[j,(1:length(goMatrix[1,]))]
gol <- sum(goMatrix]j,])
if (gol == length(goMatrix[1,]) | gol == 0){
if (f1==1){
goEgMatrix <- matrix(goMatrix[j,(1:length(goMatrix[1,]))], ncol = length(go0))
gggl <- c(rownames(goMatrix)[j])
fl<-fl+1
Yelse{
goEgMatrix <- rbind(goEqMatrix, goMatrix[j,(1:length(goMatrix[1,]))])
0991 <- c(gggl, rownames(goMatrix)[j])

}
Yelse{
if (f2==1){
goDifMatrix <- matrix(goMatrix[j,(1:length(goMatrix[1,]))], ncol = length(go0))
ggg2 <- c(rownames(goMatrix)[j])
f2<-f2+1
if ((gol ==1|gol == (length(go0) -1)) & f3 == 1){
golDifMatrix <- matrix(goMatrix[j,(1:length(goMatrix[1,]))], ncol = length(go0))
9993 <- c(rownames(goMatrix)[j])
f3<-f3+1
}

Jelse{
goDifMatrix <- rbind(goDifMatrix, goMatrix[j,(1:length(goMatrix[1,]))])

0992 <- ¢(ggg2, rownames(goMatrix)[j])
if ((gol ==1|gol == (length(go0) -1)) & f3 == 1){
golDifMatrix <- matrix(goMatrix[j,(1:length(goMatrix[1,]))], ncol = length(go0))
ggg3 <- c(rownames(goMatrix)[j])
f3<-f3+1
}else if ((gol == 1| gol == (length(go0) -1)) & f3 1= 1){
golDifMatrix <- rbind(go1DifMatrix, goMatrix[j,(1:length(goMatrix[1,]))])
0993 <- ¢(ggg3, rownames(goMatrix)[j])

¥
¥

}
j<-j+1



rownames(goEqMatrix) <- gggl
rownames(goDifMatrix) <- ggg2
rownames(golDifMatrix) <- ggg3

## 4. Enriguecimiento diferencial por fases

total GOPhaseL.ist <- list()

# 4.1 Fase RC (Reductive/Charging)

# Puntos seguros: 1, 10-14.
# Puntos en duda: 2y 9

# Genes representativos en puntos seguros

tablaRC <- geneMatrix[, c('1','2','9','10','11','"12",'"13",'14")]
kl<-1
repreRC <- ¢()

for (gene in todosGenesFilt){
valtrue <- sum(tablaRC[k1,])
if (valtrue >=5){
repreRC <- c(repreRC, rownames(tablaRC)[k1])
}
kl<-k1+1
}

# ORA en puntos seguros

#Obtener nombres de los genes asociados en la fase RC

testRC <- repreRC
length(repreRC)



#Obtener nombres de todos los genes de la levadura

notTestRC <- getBM(attributes = ¢(""ensembl_gene_id"),
mart=biomartY east)

notTestRC <- as.vector(t(notTestRC))

length(notTestRC) # 7036 genes totales en la levadura

#Resta entre los genes totales en la levadura y los genes de la fase RC
notTestRC <- setdiff(notTestRC, testRC)
length(notTestRC)

#Crear anotacion de los genes que hay en el organismo (gen asociado y descripciA3n del GO
term (name_1006) asociado)

annotation = getBM(attributes = c("ensembl_gene_id","name_1006"),

mart=biomartYeast)

#Hacer analisis de enriquecimiento de la fase RC con puntos seguros

enriquecimientoRC = EnrichALLterms(test = testRC,
notTest = notTestRC,
annotation = annotation,
p.adjust.method = "fdr")

#Seleccionar GO terms enriquecidos en la muestra

GOenrigRC <- enriquecimientoRCl[enriquecimientoRC$pval<0.05, c(‘term’,'pval’)] # Todos lo
GO enriquecidos

GOenrigRC <- GOenriqRC[order(GOenrigRC$pval),] # Ordenados de menor a mayor p value

GoenrigRCadd <- GOenrigRC[,'term’]
total GOPhaseL.ist <-list.append(total GOPhaseL.ist, 'RC' = GoenrigRCadd)



# 4.2 Fase OX (Oxidative)

# Puntos seguros: 3, 4
# Puntos en duda: 2, 5, 6

# Genes representativos en puntos seguros

tablaOX <- geneMatrix[, ¢('3','4",'59]
k2<-1
repreOX <- ¢()

for (gene in todosGenesFilt){
valtrue <- sum(tablaOX[k2,])
if (valtrue >= 2){
repreOX <- c(repreOX, rownames(tablaOX)[k2])
}
k2 <-k2 +1

}

# ORA en puntos seguros

#Obtener nombres de los genes asociados en la fase OX

testOX <- repreOX

length(repreOX)

#Obtener nombres de todos los genes de la levadura

notTestOX <- getBM(attributes = c(""ensembl_gene_id"),
mart=biomartYeast)

notTestOX <- as.vector(t(notTestOX))
length(notTestOX) # 7036 genes totales en la levadura

#Resta entre los genes totales en la levadura y los genes de la fase RC



notTestOX <- setdiff(notTestOX, testOX)
length(notTestOX)

#Crear anotacion de los genes que hay en el organismo (gen asociado y descripciA3n del GO
term (name_1006) asociado)

#annotation = getBM (attributes = c("ensembl_gene_id","name_1006"),

# mart=biomartYeast)

#Hacer analisis de enriguecimiento de la fase RC con puntos seguros

enriquecimientoOX = EnrichALLterms(test = testOX,
notTest = notTestOX,
annotation = annotation,
p.adjust.method = "fdr")

#Seleccionar GO terms enriquecidos en la muestra

GOenriqOX <- enriquecimientoOX[enriquecimientoOX$pval<0.05, c('term’,'pval’)] # Todos
lo GO enriquecidos

GOenrigOX <- GOenrigOX[order(GOenrigOX$pval),] # Ordenados de menor a mayor p
value

GoenrigOXadd <- GOenriqOX[,'term’]

total GOPhaseL.ist <-list.append(total GOPhaseL.ist, 'OX' = GoenrigOXadd)

# 4.3 Fase RB (Reductive/Building)

# Puntos seguros: 7, 8

# Puntos en duda: 6, 9

# 9 como punto definitivo (4 coincidencias con GO unicos de RC, 3 con OX, y 12 con RB)

# Genes representativos en puntos seguros

tablaRB <- geneMatrix[, c('6','7','8")]



k3<-1
repreRB <- ¢()

for (gene in todosGenesFilt){
valtrue <- sum(tablaRB[k3,])
if (valtrue >= 2){
repreRB <- c(repreRB, rownames(tablaRB)[k3])

}
k3<-k3+1

# ORA en puntos seguros

#Obtener nombres de los genes asociados en la fase OX

testRB <- repreRB

length(repreRB)

#Obtener nombres de todos los genes de la levadura

notTestRB <- getBM(attributes = ¢("ensembl_gene_id"),
mart=biomartYeast)

notTestRB <- as.vector(t(notTestRB))
length(notTestRB) # 7036 genes totales en la levadura

#Resta entre los genes totales en la levadura y los genes de la fase RC
notTestRB <- setdiff(notTestRB, testRB)
length(notTestRB)

#Crear anotacion de los genes que hay en el organismo (gen asociado y descripciA3n del GO
term (name_1006) asociado)

#annotation = getBM (attributes = c("ensembl_gene_id","name_1006"),

# mart=biomartY east)



#Hacer analisis de enriquecimiento de la fase RC con puntos seguros
enriquecimientoRB = EnrichALLterms(test = testRB,

notTest = notTestRB,

annotation = annotation,

p.adjust.method = "fdr")

#Seleccionar GO terms enriquecidos en la muestra

GOenrigRB <- enriquecimientoRB[enriquecimientoRB$pval<0.05, c(‘term’,'pval’)] # Todos lo
GO enriquecidos

GOenrigRB <- GOenrigRB[order(GOenrigRB$pval),] # Ordenados de menor a mayor p value

GoenrigRBadd <- GOenrigRB[,'term’]

total GOPhaseL.ist <-list.append(total GOPhaseL.ist, 'RB' = GoenrigRBadd)

# 4.4 Puntos en duda

# Punto 2

GOenrigP2 <- totalGOlist[[2]]

# Punto 5

GOenrigP5 <- totalGOlist[[5]]

# Punto 6

GOenrigP6 <- totalGOlist[[6]]

# Punto 9

GOenrigP9 <- totalGOlist[[9]]



## 5. Ver funciones A°nicas en cada fase

# Funciones A°nicas en RC

unicoRC <-¢()

for (element in total GOPhaseList[[[RCT]){
if (element%in%total GOPhaseList[['RB']]){
next
Yelse if (element%in%total GOPhaseList[['OX']){
next
Yelse{

unicoRC <- c(unicoRC, element)

by
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# Funciones A°nicas en OX

unicoOX <- ¢()

for (element in total GOPhaseList[[ OX]){
if (element%in%total GOPhaseList[['RB']]){
next
}else if (element%in%total GOPhaseList[['/RC']){
next
Yelse{

unicoOX <- ¢c(unicoOX, element)

¥
¥

# Funciones A°nicas en RB

unicoRB <- ¢()

for (element in totalGOPhaseL.ist[['[RB]){
if (element%in%total GOPhaseList[['OX]){



next
Jelse if (element%in%total GOPhaseList[['/RC]]){
next
Yelse{
unicoRB <- c(unicoRB, element)
}
}

# Funciones coincidentes con las Anicas de cada fase, para el punto 2

p2enRC <- ¢()
p2enRB <- ¢()
p2enOX <-¢()

for (element in GOenrigP2){
if (element%in%unicoRB){
p2enRB <- c(p2enRB, element)
}
if (element%in%unicoRC){
p2enRC <- c(p2enRC, element)
}
if (element%in%unicoOX){
p2enOX <- ¢(p2en0OX, element)
}
}

# Funciones coincidentes con las A°nicas de cada fase, para el punto 5
p5enRC <- ¢()

p5enRB <- ¢()
p5enOX <- ¢()

for (element in GOenrigP5){



if (element%in%unicoRB){
p5enRB <- ¢(p5enRB, element)

}

if (element%in%unicoRC){
p5enRC <- c(p5enRC, element)

}

if (element%in%unicoOX){

p5enOX <- ¢(p5enOX, element)

¥
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# Funciones coincidentes con las Anicas de cada fase, para el punto 6

p6enRC <- ¢()
p6enRB <- ¢()
p6enOX <- ¢()

for (element in GOenrigP6){
if (element%in%unicoRB){
p6enRB <- c(p6enRB, element)
}
if (element%in%unicoRC){
p6enRC <- c(p6enRC, element)
}
if (element%in%unicoOX){

p6enOX <- ¢(p6enOX, element)

¥
¥

# Funciones coincidentes con las Anicas de cada fase, para el punto 9

p9enRC <- ¢()
p9enRB <- ¢()
p9enOX <- ¢()



for (element in GOenrigP9){
if (element%in%unicoRB){
p9enRB <- ¢(p9enRB, element)
}
if (element%in%unicoRC){
p9enRC <- c(p9enRC, element)
}
if (element%in%unicoOX){
p9enOX <- ¢(p9enOX, element)
}
}

# Funciones coincidentes con todas de cada fase, para el punto 9

# Hecho sin considerar 9 como parte de RB... Coincide, teniendo el punto 126 GO
enriquecidos,

# con 62 de RC, 54 de OX,y 70 de RB
# Siendo de estos Anicos de la fase: 4 de RC, 3 de OX, y 12 de RB)

p9entodoRC <- ¢()
p9entodoRB <- ¢()
p9entodoOX <- ¢()
unicoP9 <- ¢()

length(GOenrigP9)

for (element in GOenrigP9){

if (element%in%total GOPhaseList[['RB]]){
p9entodoRB <- c(p9entodoRB, element)

}

if (element%in%total GOPhaseList[['RC']]){
p9entodoRC <- ¢(p9entodoRC, element)

}

if (element%in%total GOPhaseList[['OX]){
p9entodoOX <- c(p9entodoOX, element)

Yelse{



unicoP9 <- c(unicoP9, element)

¥
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# Funciones coincidentes con todas de cada fase, para el punto 2

p2entodoRC <- ¢()
p2entodoRB <- ¢()
p2entodoOX <- ¢()
unicoP2 <- ¢()

for (element in GOenrigP2){
if (element%in%total GOPhaseList[['RB']]){
p2entodoRB <- ¢(p2entodoRB, element)
}
if (element%in%total GOPhaseList[['RC']]){
p2entodoRC <- c(p2entodoRC, element)
}
if (element%in%total GOPhaseList[['OX]){
p2entodoOX <- c(p2entodoOX, element)
Yelse{
unicoP2 <- c(unicoP2, element)
}
}

# GO enriquecidos unicas del punto 2, respecto a todos los otros puntos

zzunicoP2 <- ¢()
zzzP2 <-¢()

for (element in GOenrigP2){
z<-0
for (elementl in total GOlist){

z<-z+1



if (z==2){
next
}
for (element2 in element1){
if (element == element2){
7z7P2 <- c(zzzP2, element)
Yelse{
next
}
}
}

if (element%ni%zzzP2){
zzunicoP2 <- c¢(zzunicoP2, element)
}
}

# Funciones coincidentes con todas de cada fase, para el punto 5

p5entodoRC <- ¢()
p5entodoRB <- ¢()
p5entodoOX <- ¢()
unicoP5 <- ¢()

for (element in GOenrigP5){
if (element%in%total GOPhaseList[[[RBT]){
p5entodoRB <- ¢(p5entodoRB, element)
}
if (element%in%total GOPhaseList[['RC']){
p5entodoRC <- c(p5entodoRC, element)
}
if (element%in%total GOPhaseList[['OX]]){
p5entodoOX <- c(p5entodoOX, element)
Jelse{
unicoP5 <- c(unicoP5, element)
}
}



# GO enriquecidos unicas del punto 5, respecto a todos los otros puntos

zzunicoP5 <- ¢()
2zzP5 <-¢()

for (element in GOenrigP5){
z2<-0
for (elementl in total GOlist){
z<-z+1
if z==5){
next
}
for (element2 in element1){
if (element == element2){
2z7P5 <- ¢(zzzP5, element)
Jelse{
next
}
}

}
if (element%ni%zzzP5){

zzunicoP5 <- ¢(zzunicoP5, element)
}
}

# Funciones coincidentes con todas de cada fase, para el punto 6

p6entodoRC <- ¢()
p6entodoRB <- ¢()
p6entodoOX <- ¢()
unicoP6 <- c()

for (element in GOenrigP6){
if (element%in%total GOPhaseList[['RB]]){
p6entodoRB <- ¢(p6entodoRB, element)

¥



if (element%in%total GOPhaseList[[[RCT]{
p6entodoRC <- ¢(p6entodoRC, element)

}

if (element%in%total GOPhaseList[['OX]){
p6entodoOX <- c(p6entodoOX, element)

Jelse{
unicoP6 <- c(unicoP6, element)

}

}

# GO enriquecidos unicas del punto 6, respecto a todos los otros puntos

zzunicoP6 <- ¢()
2z2zP6 <-¢()

for (element in GOenrigP6){
z<-0
for (elementl in total GOlist){
z2<-z+1
if z==6){
next
}
for (element2 in element1){
if (element == element2){
2z7P6 <- c(zzzP6, element)
Yelse{
next
}
}
}

if (element%ni%zzzP6){

zzunicoP6 <- c¢(zzunicoP6, element)
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# GO enriquecidos unicas del punto 9, respecto a todos los otros puntos



zzunicoP9 <- ¢()
2zzP9 <-¢()

for (element in GOenrigP9){
z<-0
for (elementl in total GOlist){
z<-z+1
if (z==9){
next
}
for (element2 in element1){
if (element == element2){
2z2zP9 <- ¢(zzzP9, element)
Yelse{
next
}
}
}

if (element%ni%zzzP9){

zzunicoP9 <- ¢(zzunicoP9, element)

¥
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# Guardar el workspace

save.image(file = "workspace-esalenrichFilt.RData")

Enrichment in transcription factors

#### Definir directorio de trabajo donde estA®© la lista Yeastract

setwd("/home/biouser/Desktop/FilteredGenes/*)

### Cargar lista de genes de levadura con BiomaRt



library(biomaRt)

ensembl = useMart(host = "jul2018.archive.ensembl.org", biomart =
"ENSEMBL_MART_ENSEMBL", dataset = "scerevisiae_gene_ensembl")

#ensembl = useDataset("scerevisiae_gene_ensembl™, mart = ensembl)

gene.to.ensembl <- getBM(attributes = c("external_gene_name", "ensembl_gene_id",
"description™), mart = ensembl)

gene.to.ensembl <- gene.to.ensembl[!gene.to.ensembl$external_gene_name==",

rownames(gene.to.ensembl) <- gene.to.ensembl$external_gene_name

save(gene.to.ensembl, file = "gene.to.ensembl.RData")

### RelaciAsn TF con gen (con IDs de gen)

TF2gene <- read.table("Yeastract_TF_Gene.tsv')[[1]]

TF2gene.matrix <- matrix(nrow = length(TF2gene), ncol = 2) # Matriz con ID de TF en
columna 1, e ID del gen en columna 2

colnames(TF2gene.matrix) <- c('TF', 'gene")
for (n in 1:length(TF2gene)){

TF2gene.matrix[n, 1] <- gene.to.ensembl[strsplit(as.character(TF2gene[n]), ;)[[1]1[1],2]
TF2gene.matrix[n, 2] <- gene.to.ensembl[strsplit(as.character(TF2gene[n]), ";)[[1]11[2].2]

}

rownames(TF2gene.matrix) <- TF2gene.matrix[, TF']

### Cargar paquetes para trabajar

library(rlist) # Paquete para trabajar con listas

library(data.table) # Para tablas

library(prob) # Para comprobaciones

### Crear lista de TF para cada genes de cada modificador con modificaciones y fase



## Genb en OX

TF.porgen.Gen5.0X <- list()
gene.names <- ¢()

for (gen in overlaps.mods.YMC.filt[["'Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Gcn5.fases ]][["overlap.mods.Gen5.0X"D{

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){
TF.de.gen <-¢()
objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]
for (elemento in objeto){
prob2 <- is.na(elemento)
if (prob2 == FALSE){
TF.de.gen <- c(TF.de.gen, elemento)
}

}
TF.porgen.Gcen5.0X <- list.append(TF.porgen.Gen5.0X, TF.de.gen)

gene.names <- c(gene.names, gen)
}
}

names(TF.porgen.Gen5.0X) <- gene.names

## Genb en RB

TF.porgen.Gen5.RB <- list()

gene.names <- ¢()

for (gen in overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Gcn5.fases " ][["overlap.mods.Gen5.RB]){

probl <- isTRUE(length(TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){

TF.de.gen <-¢()

objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]



for (elemento in objeto){
prob2 <- is.na(elemento)
if (prob2 == FALSE){
TF.de.gen <- ¢c(TF.de.gen, elemento)
}

}
TF.porgen.Gen5.RB <- list.append(TF.porgen.Gen5.RB, TF.de.gen)

gene.names <- ¢c(gene.names, gen)
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names(TF.porgen.Gcn5.RB) <- gene.names

## Genb en RC

TF.porgen.Gcen5.RC <- list()

gene.names <- ¢()

for (gen in overlaps.mods.YMC filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Gcn5.fases " ][["overlap.mods.Gen5.RC){

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){
TF.de.gen <-¢()
objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]
for (elemento in objeto){
prob2 <- is.na(elemento)
if (prob2 == FALSE){
TF.de.gen <- ¢c(TF.de.gen, elemento)
}

}
TF.porgen.Gen5.RC <- list.append(TF.porgen.Gen5.RC, TF.de.gen)

gene.names <- ¢c(gene.names, gen)
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names(TF.porgen.Gcn5.RC) <- gene.names



## Esal en OX

TF.porgen.Esal.OX <- list()

gene.names <- ¢()

for (gen in overlaps.mods.YMC filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Esal.fases"]][["'overlap.mods.Esal.OX"]){

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){
TF.de.gen <-¢()
objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]
for (elemento in objeto){
prob2 <- is.na(elemento)
if (prob2 == FALSE){
TF.de.gen <- ¢c(TF.de.gen, elemento)
}

}
TF.porgen.Esal.OX <- list.append(TF.porgen.Esal.OX, TF.de.gen)

gene.names <- c(gene.names, gen)
}
}

names(TF.porgen.Esal.OX) <- gene.names

## Esal en RB

TF.porgen.Esal.RB <- list()
gene.names <- ¢()

for (gen in overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Esal.fases"]][["overlap.mods.Esal.RB"]]){

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){

TF.de.gen <-¢()

objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]

for (elemento in objeto){



prob2 <- is.na(elemento)
if (prob2 == FALSE){

TF.de.gen <- ¢c(TF.de.gen, elemento)
}

}
TF.porgen.Esal.RB <- list.append(TF.porgen.Esal.RB, TF.de.gen)

gene.names <- ¢c(gene.names, gen)
}
}

names(TF.porgen.Esal.RB) <- gene.names

## Esal en RC

TF.porgen.Esal.RC <- list()
gene.names <- ¢()

for (gen in overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Esal.fases"]][["overlap.mods.Esal.RC"]]{

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){
TF.de.gen <-¢()
objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]
for (elemento in objeto){
prob2 <- is.na(elemento)
if (prob2 == FALSE){
TF.de.gen <- ¢c(TF.de.gen, elemento)
}

}
TF.porgen.Esal.RC <- list.append(TF.porgen.Esal.RC, TF.de.gen)

gene.names <- c(gene.names, gen)
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names(TF.porgen.Esal.RC) <- gene.names

## Setl en OX



TF.porgen.Set1.0X <- list()

gene.names <- ¢()

for (gen in overlaps.mods.YMC. filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Setl.fases"]][["overlap.mods.Set1.OX"]]){

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){
TF.de.gen <-¢()
objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]
for (elemento in objeto){
prob2 <- is.na(elemento)
if (prob2 == FALSE){
TF.de.gen <- ¢c(TF.de.gen, elemento)
}

}
TF.porgen.Set1.0X <- list.append(TF.porgen.Setl.0X, TF.de.gen)

gene.names <- ¢c(gene.names, gen)
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names(TF.porgen.Set1.0X) <- gene.names

## Setl en RB

TF.porgen.Setl.RB <- list()

gene.names <- ¢()

for (gen in overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Set1.fases"]][["overlap.mods.Setl.RB"]]){

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){

TF.de.gen <-¢()

objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]

for (elemento in objeto){

prob2 <- is.na(elemento)



if (prob2 == FALSE){
TF.de.gen <- c(TF.de.gen, elemento)
}

}
TF.porgen.Set1.RB <- list.append(TF.porgen.Set1.RB, TF.de.gen)

gene.names <- c(gene.names, gen)
}
}

names(TF.porgen.Setl.RB) <- gene.names

## Setl en RC

TF.porgen.Setl.RC <- list()

gene.names <- ¢()

for (gen in overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Setl.fases"]][["overlap.mods.Setl.RC"]]){

probl <- isTRUE(length(TF2gene.matrix[ TF2gene.matrix[,2]%in%c(gen), 2]) >= 1)
if (probl == TRUE){
TF.de.gen <-¢()
objeto <- TF2gene.matrix[TF2gene.matrix[,2]%in%c(gen), 1]
for (elemento in objeto){
prob2 <- is.na(elemento)
if (prob2 == FALSE){
TF.de.gen <- c(TF.de.gen, elemento)
}

}
TF.porgen.Setl.RC <- list.append(TF.porgen.Setl.RC, TF.de.gen)

gene.names <- c(gene.names, gen)
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names(TF.porgen.Set1.RC) <- gene.names

#### Hacer lista con todos los TF de la muestra



TodosTFMuestra <- ¢()
TF.Esal.OX <-¢()
TF.Esal.RB <-¢()
TF.Esal.RC <-¢()
TF.Genb.0X <- ¢()
TF.Gcen5.RB <-¢()
TF.Gen5.RC <-¢()
TF.Setl.0X <-¢()
TF.Setl.RB <-¢()
TF.Setl.RC <-¢()

TF.muestra.Mod.Fase.porgen <- list("TF.porgen.Esal.0X" = TF.porgen.Esal.0X,
"TF.porgen.Esal.RB" = TF.porgen.Esal.RB,
"TF.porgen.Esal.RC" = TF.porgen.Esal.RC,
"TF.porgen.Gcen5.0X" = TF.porgen.Gen5.0X,
"TF.porgen.Gen5.RB" = TF.porgen.Gen5.RB,
"TF.porgen.Gen5.RC" = TF.porgen.Gen5.RC,
"TF.porgen.Setl.OX" = TF.porgen.Set1.0X,
"TF.porgen.Setl.RB" = TF.porgen.Setl.RB,
"TF.porgen.Setl.RC" = TF.porgen.Set1.RC)

for (list in TF.muestra.Mod.Fase.porgen){
for (element in list){
for (elem in element){
TodosTFMuestra <- ¢(TodosTFMuestra, elem)
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TodosTFMuestra <- sort(TodosTFMuestra)
TodosTFMuestra <- unique(TodosTFMuestra)

##Y listas de TF para cada fase & enzima



# Esal

for (list in TF.porgen.Esal.OX){
for (element in list){
TF.Esal.OX <- ¢(TF.Esal.OX, element)
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TF.Esal.OX <- sort(TF.Esal.0X)
TF.Esal.OX <- unique(TF.Esal.0X)

for (list in TF.porgen.Esal.RB){
for (element in list){
TF.Esal.RB <- ¢(TF.Esal.RB, element)
}
}

TF.Esal.RB <- sort(TF.Esal.RB)
TF.Esal.RB <- unique(TF.Esal.RB)

for (list in TF.porgen.Esal.RC){
for (element in list){
TF.Esal.RC <- ¢(TF.Esal.RC, element)
}
}

TF.Esal.RC <- sort(TF.Esal.RC)
TF.Esal.RC <- unique(TF.Esal.RC)

# Gcenb

for (list in TF.porgen.Gen5.0X){
for (element in list){
TF.Gcn5.0X <- ¢(TF.Gen5.0X, element)
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TF.Gcn5.0X <- sort(TF.Gen5.0X)
TF.Gcen5.0X <- unique(TF.Gen5.0X)

for (list in TF.porgen.Gen5.RB){
for (element in list){
TF.Gcn5.RB <- ¢(TF.Gen5.RB, element)
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TF.Gcn5.RB <- sort(TF.Gen5.RB)
TF.Gcenb.RB <- unique(TF.Gen5.RB)

for (list in TF.porgen.Gen5.RC){
for (element in list){
TF.Gcn5.RC <- ¢(TF.Gen5.RC, element)
}
}

TF.Genb5.RC <- sort(TF.Gen5.RC)
TF.Gcen5.RC <- unique(TF.Gen5.RC)

# Setl

for (list in TF.porgen.Set1.0X){
for (element in list){
TF.Setl.0X <- ¢(TF.Set1.0X, element)
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TF.Setl.0X <- sort(TF.Set1.0X)
TF.Setl.0X <- unique(TF.Set1.0X)



for (list in TF.porgen.Set1.RB){
for (element in list){
TF.Setl.RB <- ¢(TF.Set1.RB, element)
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TF.Setl.RB <- sort(TF.Set1.RB)
TF.Setl.RB <- unique(TF.Set1.RB)

for (list in TF.porgen.Set1.RC){
for (element in list){
TF.Setl.RC <- ¢(TF.Setl.RC, element)
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TF.Setl.RC <- sort(TF.Setl.RC)
TF.Setl.RC <- unique(TF.Set1l.RC)

TF.muestra.Mod.Fase <- list("TF.Esal.OX" = TF.Esal.0OX,

# Guardar

save(TF.muestra.Mod.Fase.porgen, file = "TF.muestra.Mod.Fase.porgen.filt. RData™)
save(TF.muestra.Mod.Fase, file = "TF.muestra.Mod.Fase.filt. RData")

"TF.Esal.RB" = TF.Esal.RB,
"TF.Esal.RC" = TF.Esal.RC,
"TF.Gen5.0X" = TF.Gen5.0X,
"TF.Gen5.RB" = TF.Gen5.RB,
"TF.Gen5.RC" = TF.Gen5.RC,
"TF.Setl.OX" = TF.Set1.0X,
"TF.Setl.RB" = TF.Setl.RB,
"TF.Setl.RC" = TF.Set1.RC)



#### Funciones para hacer el test de Fisher

# Para enriguecimiento

EnrichALLterms = function (test, notTest, annotation, extGenName, sample, phase,
p.adjust.method = "fdr") {

cuasiannot2test = unique(annotation[,1])
annot2test = ¢()
for (element in cuasiannot2test){

gues <- is.na(element)

if (ques == F){

annot2test = c(annot2test, element)

}

}

resultat = t(sapply(annot2test, Enrichlterm, test = test, notTest = notTest, annotation =
annotation, extGenName = extGenName, sample = sample, phase = phase))

return (data.frame(resultat[,1:7],
"pval” = as.numeric(resultat[,"pval™]),
"adjPval" = p.adjust(as.numeric(resultat[,"pval"]), method = p.adjust.method),
"Sample" = resultat[,"Sample"],
"Phase" = resultat[,"Phase"],

stringsAsFactors = F))

Enrichlterm = function (term, test, notTest, annotation, extGenName, sample, phase) {

annotTest = length(intersect(test, annotation[annotation[,1] == term,2]))

if ((annotTest) > 0) {
annotNOTtest = length(intersect(notTest, annotation[annotation[,1] == term,2]))

extName = extGenName[extGenName[,2] == term, 1]



descrip = extGenName[extGenName[,2] == term, 3]

mytest = matrix(c(annotTest, length(test)-annotTest, annotNOTtest, length(notTest)-
annotNOTtest), ncol = 2)

resultat = c(term, extName, descrip, annotTest, length(test), annotNOTtest, length(notTest),
fisher.test(mytest, alternative = "greater")$p.value, sample, phase)

names(resultat) = c("Gene", "extName", "Description

"notTest",

}else {

extName = extGenName[extGenName[,2] == term, 1]

, "annotTest", "test", "annotNotTest",

pval", "Sample", "Phase™)

descrip = extGenName[extGenName[,2] == term, 3]

resultat = c(term, extName, descrip, 0, 0, 0, 0, 100, sample, phase)

names(resultat) = c("Gene", "extName", "Description
"notTest", "pval™, "Sample"”, "Phase™)

}

, "annotTest", "test", "annotNotTest",

return(resultat)

####+# Hacer test de Fisher para todos los TFs relevantes

### Anotacion (lista de todos los genes (IDs de Ensembl) con sus TFs relacionados)

annotation <- as.data.frame(TF2gene.matrix)

### External Gene Names

extGenName <- gene.to.ensembl

### Esal

## OX



test <- overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Esal.fases"]][["overlap.mods.Esal.OX"]]

cuasiNotTest <- genes.YMC.Cluster[["Fase OX"]]
cuasi <- intersect(test, cuasiNotTest)
notTest <- setdiff(cuasiNotTest, cuasi)
TF.enrigq.Esal.OX <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,
sample = "Esal",
phase = "OX")

## RB

test <- overlaps.mods.YMC. filt[["Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Esal.fases"]][[‘overlap.mods.Esal.RB"]]

cuasiNotTest <- genes.YMC.Cluster[["Fase RB"]]
cuasi <- intersect(test, cuasiNotTest)
notTest <- setdiff(cuasiNotTest, cuasi)
TF.enrig.Esal.RB <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,
sample = "Esal",
phase = "RB")

## RC

test <- overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Esal.fases"]][["overlap.mods.Esal.RC"]]



cuasiNotTest <- genes.YMC.Cluster[["Fase RC"]]

cuasi <- intersect(test, cuasiNotTest)

notTest <- setdiff(cuasiNotTest, cuasi)

TF.enrig.Esal.RC <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,
sample = "Esal",
phase = "RC")

### Genb

## OX

test <- overlaps.mods.YMC. filt[["Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Genb.fases"T][["overlap.mods.Gen5.0X"]

cuasiNotTest <- genes.YMC.Cluster[["Fase OX"]]

cuasi <- intersect(test, cuasiNotTest)

notTest <- setdiff(cuasiNotTest, cuasi)

TF.enrig.Gen5.0X <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,
sample = "Gcn5",

phase = "OX")

## RB



test <- overlaps.mods.YMC.filt[["Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Gcnb.fases"]][["overlap.mods.Gen5.RB™]

cuasiNotTest <- genes.YMC.Cluster[["Fase RB"]]
cuasi <- intersect(test, cuasiNotTest)
notTest <- setdiff(cuasiNotTest, cuasi)
TF.enriq.Gen5.RB <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,

sample = "Gcnb",
phase = "RB")

## RC

test <- overlaps.mods.YMC. filt[["'Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Genb.fases"]][["overlap.mods.Gen5.RC™]

cuasiNotTest <- genes.YMC.Cluster[["Fase RC"]]
cuasi <- intersect(test, cuasiNotTest)
notTest <- setdiff(cuasiNotTest, cuasi)
TF.enrig.Gen5.RC <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,

sample = "Gcn5",
phase = "RC")

### Setl

## OX



test <- overlaps.mods.YMC. filt[["Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Set1.fases"]][["overlap.mods.Set1.0X"]]

cuasiNotTest <- genes.YMC.Cluster[["Fase OX"]]

cuasi <- intersect(test, cuasiNotTest)

notTest <- setdiff(cuasiNotTest, cuasi)

TF.enrig.Setl.0X <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,
sample = "Set1",

phase = "OX")

## RB

test <- overlaps.mods.YMC. filt[["Genes coincidentes entre ambas histonas y un modificador
por fases"]][["overlap.ambos.mods.Setl.fases"]][["overlap.mods.Set1.RB"]]

cuasiNotTest <- genes.YMC.Cluster[["Fase RB"]]

cuasi <- intersect(test, cuasiNotTest)

notTest <- setdiff(cuasiNotTest, cuasi)

TF.enriq.Setl.RB <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,
sample = "Set1",

phase = "RB")

## RC



test <- overlaps.mods.YMC.filt.filt[["Genes coincidentes entre ambas histonas y un
modificador por fases"]][["overlap.ambos.mods.Setl.fases"]][["overlap.mods.Setl.RC"]]

cuasiNotTest <- genes.YMC.Cluster[["Fase RC"]]

cuasi <- intersect(test, cuasiNotTest)

notTest <- setdiff(cuasiNotTest, cuasi)

TF.enriq.Setl.RC <- EnrichALLterms(test = test,
notTest = notTest,
annotation = annotation,
extGenName = extGenName,
sample = "Set1",
phase = "RC")

##H### Guardar los resultados de enriquecimiento de TFs

Tf.enriquecidos.Mod.Fase.clu <- list("TF.enriq.Esal.0X" = TF.enrig.Esal.0OX,
"TF.enrig.Esal.RB" = TF.enrig.Esal.RB,
"TF.enriq.Esal.RC" = TF.enriq.Esal.RC,
"TF.enrig.Gen5.0X" = TF.enrig.Gen5.0X,
"TF.enrig.Gen5.RB" = TF.enriq.Gen5.RB,
"TF.enrig.Gen5.RC" = TF.enriq.Gen5.RC,
"TF.enrig.Setl.0X" = TF.enriq.Set1.0X,
"TF.enrig.Setl.RB" = TF.enriq.Setl.RB,
"TF.enrig.Setl.RC" = TF.enriq.Setl.RC)

save(Tf.enriquecidos.Mod.Fase.clu, file = "TF.enriquecidos.Mod.Fase.clu.filt. RData")

#t## Pasar los datos a Excel

### Montar data frame

### Debe contener los 10 TF mas significativos de cada conjunto



Top.TFs <- data.frame()

for (conjunto in Tf.enriquecidos.Mod.Fase.clu){

al <- conjunto[order(conjunto$pval),]

a2 <- al[al$pval<0.05,]

Topl0.TFs <- rbind(Topl0.TFs, a2)
}

### Guardar Data Frame como excel

library("xIsx™)

write.xIsx(Top.TFs, file = "TopTfsFiltVsCluster.xIsx", sheetName = "Top90TF",
col.names = TRUE, row.names = TRUE, append = FALSE)

##### Hacer Venn Diagram con TF en los tres conjuntos por fase

library(VennDiagram)

VennDiag3Df = function(dfl, #data frame 1
nam1, # nombre de conjunto 1
df2, # data frame 2
nam2, # nombre de conjunto 2
df3, #data frame 3
nam3, # nombre de conjunto 3

colnum) # numero de columna del data frame para extraer e interseccionar
datos

setl =c()
set2 = ¢()
set3 =¢()

intersect12 = c()

intersect23 = ¢()



intersect13 = ¢()

intersect123 = ¢()

for (gene in df1[, colnum]){
setl <- c(setl, gene)

}

for (gene in df2[, colnum]){
set2 <- c(set2, gene)

}

for (gene in df3[, colnum]){
set3 <- c(set3, gene)

}

intersect23 <- intersect(set2, set3)

intersect13 <- intersect(setl, set3)

intersect12 <- intersect(setl, set2)

intersect123 <- intersect(setl, intersect(set2, set3))

diag = draw.triple.venn(areal = length(setl),
area2 = length(set2),
area3 = length(set3),
n12 = length(intersect12),
n23 = length(intersect23),
n13 = length(intersect13),
n123 = length(intersect123),
category = ¢(naml, nam2, nam3),
fill = c("darkorange”, "bluel”, “chartreuse3"))

return(diag)



Intersect3Df = function(dfl, #data frame 1
nam1, # nombre de conjunto 1
df2, # data frame 2
namz2, # nombre de conjunto 2
df3, #data frame 3
nam3, # nombre de conjunto 3

colnum) # numero de columna del data frame para extraer e interseccionar
datos

setl =c()
set2 = ¢()
set3 =¢()

intersect12 = c()
intersect23 = ¢()
intersect13 = ¢()

intersect123 = ¢()

for (gene in df1[, colnum]){
setl <- c(setl, gene)

¥

for (gene in df2[, colnum]){
set2 <- c(set2, gene)

¥

for (gene in df3[, colnum]){
set3 <- c(set3, gene)

¥

intersect23 <- intersect(set2, set3)



intersect13 <- intersect(setl, set3)

intersect12 <- intersect(setl, set2)

intersect123 <- intersect(setl, intersect(set2, set3))

return(intersect123)

##H OX

TF.enrigq.Esal.OX.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Esal.0OX"]]
TF.enriq.Esal.OX.signif <- TF.enrig.Esal.OX.signif[order(TF.enriq.Esal.OX.signif$pval),]
TF.enriq.Esal.OX.signif <- TF.enrig.Esal.OX.signif[TF.enrig.Esal.OX.signif$pval<0.05,]

TF.enrig.Gen5.0X.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Gen5.0X"]]
TF.enriq.Gen5.0X.signif <- TF.enrig.Gen5.0X.signif[order(TF.enriq.Gen5.0X .signif$pval),]
TF.enriq.Gen5.0X.signif <- TF.enrig.Gen5.0X.signif[ TF.enrig.Gen5.0X .signif$pval<0.05,]

TF.enrig.Setl.0X.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Set1.0X"]]
TF.enrig.Set1.0OX.signif <- TF.enrig.Set1.0X.signif[order(TF.enrig.Set1.0X.signif$pval),]
TF.enriq.Set1.0X.signif <- TF.enrig.Set1.0X.signif[ TF.enrig.Set1.0X.signif$pval<0.05,]

VennDiag3Df(df3 = TF.enrig.Esal.OX.signif,
nam3 = "Esal",
dfl = TF.enriq.Gcn5.0X signif,
naml = "Gcn5",
df2 = TF.enrig.Set1.0X.signif,
nam2 = "Set1",

colnum = 1)

TF.enrig.OX.comunes <- Intersect3Df(df3 = TF.enrig.Esal.OX.signif,
nam3 = "Esal-H3k18-H3k9",
dfl = TF.enriq.Gen5.0X signif,
naml = "Gen5-H3k18-H3k9",
df2 = TF.enrig.Set1.0X.signif,



nam?2 = "Set1-H3k18-H3k9",

colnum = 1)

aaal <- Tf.enriquecidos.Mod.Fase.clu[["TF.enriq.Esal.0OX"]]

TF.enrig.OX.comunes.df <- aaal[aaal$Gene%in%TF.enrig.OX.comunes, 1:3]

write.xIsx(TF.enrig.0OX.comunes.df, file = "TF.enrig.OX.comunes.df.FILT.xlsx", sheetName
= "TF.enrig.OX.comunes.df",

col.names = TRUE, row.names = FALSE, append = FALSE)

### RB

TF.enrig.Esal.RB.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Esal.RB"]]
TF.enriq.Esal.RB.signif <- TF.enriq.Esal.RB.signif[order(TF.enrig.Esal.RB.signif$pval),]
TF.enriq.Esal.RB.signif <- TF.enriq.Esal.RB.signif[TF.enriq.Esal.RB.signif$pval<0.05,]

TF.enriq.Gen5.RB.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enriq.Gcn5.RB"]]
TF.enriq.Gen5.RB.signif <- TF.enrig.Gen5.RB.signif[order(TF.enrig.Gen5.RB.signif$pval),]
TF.enriq.Gen5.RB.signif <- TF.enrig.Gen5.RB.signif[ TF.enrig.Gen5.RB.signif$pval<0.05,]

TF.enrig.Setl.RB.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Set1.RB"]]
TF.enriq.Set1.RB.signif <- TF.enrig.Set1.RB.signif[order(TF.enrig.Set1.RB.signif$pval),]
TF.enriq.Set1.RB.signif <- TF.enrig.Set1.RB.signif[TF.enrig.Set1.RB.signif$pval<0.05,]

VennDiag3Df(df3 = TF.enrig.Esal.RB.signif,
nam3 = "Esal",
dfl = TF.enriq.Gen5.RB.signif,
naml = "Gen5",
df2 = TF.enrig.Set1.RB.signif,
nam2 = "Setl1",

colnum = 1)

TF.enrig.RB.comunes <- Intersect3Df(df3 = TF.enrig.Esal.RB.signif,
nam3 = "Esal-H3k18-H3k9",



dfl = TF.enrig.Gen5.RB.signif,
naml = "Gcn5-H3k18-H3k9",
df2 = TF.enriq.Set1.RB.signif,
nam?2 = "Set1-H3k18-H3k9",

colnum = 1)

aaa2 <- Tf.enriquecidos.Mod.Fase.clu[["TF.enriq.Esal.RB"]]

TF.enrig.RB.comunes.df <- aaa2[aaa2$Gene%in%TF.enriq.RB.comunes, 1:3]

write.xIsx(TF.enrig.RB.comunes.df, file = "TF.enriq.RB.comunes.df.FILT.xlIsx", sheetName
= "TF.enrig.RB.comunes.df",

col.names = TRUE, row.names = FALSE, append = FALSE)

### RC

TF.enrig.Esal.RC.sign
TF.enrig.Esal.RC.sign
TF.enrig.Esal.RC.sign

if <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Esal.RC"]]
if <- TF.enrig.Esal.RC.signif[order(TF.enriq.Esal.RC.signif$pval),]
if <- TF.enrig.Esal.RC.signif[TF.enrig.Esal.RC.signif$pval<0.05,]

TF.enriq.Gen5.RC.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Gen5.RC"]]
TF.enriq.Gen5.RC.signif <- TF.enrig.Gen5.RC.signif[order(TF.enrig.Gen5.RC.signif$pval),]
TF.enriq.Gen5.RC.signif <- TF.enrig.Gen5.RC.signif[ TF.enrig.Gen5.RC.signif$pval<0.05,]

TF.enrig.Setl.RC.signif <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Set1.RC"]]
TF.enriq.Set1.RC.signif <- TF.enriq.Set1.RC.signif[order(TF.enrig.Set1.RC.signif$pval),]
TF.enriq.Setl.RC.signif <- TF.enrig.Set1.RC.signif[TF.enrig.Set1.RC.signif$pval<0.05,]

VennDiag3Df(df3 = TF.enrig.Esal.RC.signif,

nam3 = "Esal"
dfl = TF.enriq.

Gcenb.RC.signif,

naml = "Gen5",
df2 = TF.enriq.Set1.RC.signif,

namz2 = "Setl",

colnum = 1)



TF.enriq.RC.comunes <- Intersect3Df(df3 = TF.enrig.Esal.RC.signif,
nam3 = "Esal-H3k18-H3k9",
dfl = TF.enrig.Gen5.RC.signif,
naml = "Gcn5-H3k18-H3k9",
df2 = TF.enriq.Set1.RC.signif,
nam?2 = "Set1-H3k18-H3k9",

colnum=1)

aaa3 <- Tf.enriquecidos.Mod.Fase.clu[["TF.enriq.Esal.RC"]]

TF.enrig.RC.comunes.df <- aaa3[aaa3$Gene%in%TF.enriq.RC.comunes, 1:3]

write.xIsx(TF.enrig.RC.comunes.df, file = "TF.enriq.RC.comunes.df.FILT.xlIsx", sheetName
= "TF.enrig.RC.comunes.df",

col.names = TRUE, row.names = FALSE, append = FALSE)

### Guardar datos

TF.enrig.comunes.fases.clu <- list("TF.enrig.OX.comunes" = TF.enriq.OX.comunes,
"TF.enriq.RB.comunes” = TF.enrig.RB.comunes,

"TF.enrig.RC.comunes” = TF.enriq.RB.comunes)

save(TF.enrig.comunes.fases.clu, file = "TF.enrig.comunes.fases.clu.filt. RData")

##### Hacer Venn diagram entre los genes coincidentes de las tres fases

VennDiag3Df(df1 = TF.enrig.OX.comunes.df,
naml = "OX",
df2 = TF.enrig.RB.comunes.df,
nam2 = "RB",
df3 = TF.enrig.RC.comunes.df,
nam3 ="RC",

colnum = 1)



TF.enrig.comunes.todasFases <- Intersect3Df(df1 = TF.enrig.OX.comunes.df,
naml ="0OX",
df2 = TF.enriq.RB.comunes.df,
nam2 = "RB",
df3 = TF.enriq.RC.comunes.df,
nam3 ="RC",

colnum=1)

HH T

## Sacar TFs coincidentes entre
## Esal y Gen5 solo

HH R

### Funciones para Pairwise Venn desde data frame

VennDiag2Df = function(df1, #data frame 1
nam1, # nombre de conjunto 1
df2, # data frame 2
nam2, # nombre de conjunto 2

colnum) # numero de columna del data frame para extraer e interseccionar
datos

setl =c()
set2 = ¢()

intersect12 = c()

for (gene in df1[, colnum]){

setl <- c(setl, gene)

¥

for (gene in df2[, colnum]){

set2 <- c(set2, gene)



intersect12 <- intersect(setl, set2)

diag = draw.pairwise.venn(areal = length(setl),
area2 = length(set2),
cross.area = length(intersect12),
category = c(naml, nam2),
fill = c("red", "green"))

return(diag)

Intersect2Df = function(dfl, #data frame 1
df2, # data frame 2

colnum) # numero de columna del data frame para extraer e interseccionar

datos
{
setl =¢()
set2 = ¢()

intersect12 = c()

for (gene in df1[, colnum]){
setl <- c(setl, gene)

¥

for (gene in df2[, colnum]){
set2 <- c(set2, gene)

¥

intersect12 <- intersect(setl, set2)

return(intersect12)



# Fase OX

areal <- TF.enriq.Gens.0X.signif
area2 <- TF.enrigq.Esal.OX.signif

VennDiag2Df(df1 = areal,
naml = "Gcn5",
df2 = area2,
nam2 = "Esal",

colnum=1)

com.tf.ox.gcn5.esal.acet <- Intersect2Df(df1 = areal,
df2 = area2,

colnum=1)

# Fase RB

areal <- TF.enrig.Gcn5.RB.signif
area2 <- TF.enrigq.Esal.RB.signif

VennDiag2Df(df1 = areal,
naml = "GcnS",
df2 = area?,
nam2 = "Esal",

colnum = 1)
com.tf.rb.gcn5.esal.acet <- Intersect2Df(df1 = areal,
df2 = area?2,

colnum = 1)

# Fase RC



areal <- TF.enrig.Gen5.RC.signif
area2 <- TF.enrig.Esal.RC.signif

VennDiag2Df(df1 = areal,
naml = "Gcn5",
df2 = area2,
nam2 = "Esal",

colnum=1)

com.tf.rc.gcn5.esal.acet <- Intersect2Df(df1 = areal,
df2 = area2,

colnum = 1)

### Coincidencia entre fases

com.tf.todasfases.gcnb.esal.acet <- intersect(com.tf.ox.gcn5.esal.acet,
intersect(com.tf.rb.gcn5.esal.acet, com.tf.rc.gcn5.esal.acet))

draw.triple.venn(areal = length(com.tf.ox.gcn5.esal.acet),
area2 = length(com.tf.rb.gcn5.esal.acet),
area3 = length(com.tf.rc.gcn5.esal.acet),
n12 = length(intersect(com.tf.ox.gcn5.esal.acet, com.tf.rb.gcn5.esal.acet)),
n23 = length(intersect(com.tf.rb.gcn5.esal.acet, com.tf.rc.gcn5.esal.acet)),
n13 = length(intersect(com.tf.ox.gcn5.esal.acet, com.tf.rc.gcn5.esal.acet)),

n123 = length(intersect(com.tf.ox.gcn5.esal.acet,
intersect(com.tf.rb.gcn5.esal.acet, com.tf.rc.gcn5.esal.acet))),

category = ¢("OX", "RB", "RC"),
fill = c¢("red", "green”, "blue™))

com.tf.oxrc.gcn5.esal.acet <- intersect(com.tf.ox.gcnb5.esal.acet, com.tf.rc.gcn5.esal.acet)

Tf.com.oxrc.Genb5.Esal.2Acet.df <- Tf.enriquecidos.Mod.Fase.clu[["TF.enrig.Esal.RC"]]

Tf.com.oxrc.Genb.Esal.2Acet.df <-
Tf.com.oxrc.Genb.Esal.2Acet.df[ Tf.com.oxrc.Gen5.Esal.2Acet.df$Gene%in%c(com.tf.oxrc.gc
n5.esal.acet),]

write.xIsx(Tf.com.oxrc.Genb.Esal.2Acet.df, file = "Tf.com.oxrc.Gen5s.Esal.2Acet. xlsx",
sheetName = "Tf.com.oxrc.Genb5.Esal.2Acet"”,



col.names = TRUE, row.names = FALSE, append = FALSE)

Read count matrixes construction

### Colapsar todos los picos cercanos de una regiAn

## Cargar paquete de colapso

library(GenomicRanges)

## Esal

# Indicar carpeta con los narrowPeak files (resultado del peak calling)
setwd("/home/biouser/Desktop/Cluster/Y MC/denovo/PeakCall/Esal/™)
# Hacer data frame con los archivos de los pcios

peak.files <- list.files(pattern = "narrowPeak")
my_df <- data.frame()

for (file in peak.files){
print(file)
a <- read.table(file)

colnames(a) <- c("chr", "start", "end", "peak", "score", "strand", "signalValue", "pValue",
"gValue™)

my_df <- rbind.data.frame(my_df, a)
}

# "Fusionar" regiones con picos en posiciones unicas

my_gr <- makeGRangesFromDataFrame(my_df, keep.extra.columns = T)
reduced.gr <- reduce(my_gr)

reduced.gr <- data.frame(reduced.gr)
myPeak <- paste(*"Peak", rownames(reduced.gr), sep ="_")
saf <- chind(myPeak, reduced.gr[,1:3], reduced.gr[,5])



colnames(saf) <- c("peaklID", "chr", "start", "end", "strand")
esalsaf <- saf
# Guardar archivo .saf con los picos fusionados

setwd("/home/biouser/Desktop/™)

write.table(saf, file="Esal_PicosFus_YMC.saf", quote = F, sep = "\t', row.names = F,
col.names = F)

## Gend

# Indicar carpeta con los narrowPeak files (resultado del peak calling)
setwd("/home/biouser/Desktop/Cluster/Y MC/denovo/PeakCall/Gnc5/™)
# Hacer data frame con los archivos de los pcios

peak.files <- list.files(pattern = "narrowPeak™)
my_df <- data.frame()

for (file in peak.files){
print(file)
a <- read.table(file)

colnames(a) <- c("chr", "start", "end", "peak", "score", "strand", "signalValue", "pValue",
"gValue™)

my_df <- rbind.data.frame(my_df, a)
}

# "Fusionar" regiones con picos en posiciones unicas

my_gr <- makeGRangesFromDataFrame(my_df, keep.extra.columns = T)
reduced.gr <- reduce(my_gr)

reduced.gr <- data.frame(reduced.gr)

myPeak <- paste("Peak", rownames(reduced.gr), sep ="_")



saf <- chind(myPeak, reduced.gr[,1:3], reduced.gr[,5])
colnames(saf) <- c("peaklID", "chr", "start", "end", "strand")

genbsaf <- saf

# Guardar archivo .saf con los picos fusionados

setwd("/home/biouser/Desktop/")

write.table(saf, file="Gcn5_PicosFus_YMC.saf", quote = F, sep = \t', row.names = F,
col.names = F)

## Setl

# Indicar carpeta con los narrowPeak files (resultado del peak calling)

setwd("/home/biouser/Desktop/Cluster/Y MC/denovo/PeakCall/Setl/")

# Hacer data frame con los archivos de los pcios

peak.files <- list.files(pattern = "narrowPeak")
my_df <- data.frame()

for (file in peak.files){
print(file)
a <- read.table(file)

colnames(a) <- c("chr", "start”, "end", "peak", "score", "strand", "signalValue", "pValue",
"gValue™)

my_df <- rbind.data.frame(my_df, a)
}

# "Fusionar" regiones con picos en posiciones unicas

my_gr <- makeGRangesFromDataFrame(my_df, keep.extra.columns =T)

reduced.gr <- reduce(my_gr)

reduced.gr <- data.frame(reduced.gr)



myPeak <- paste("Peak", rownames(reduced.gr), sep ="_")
saf <- chind(myPeak, reduced.gr[,1:3], reduced.gr[,5])
colnames(saf) <- c("peaklID", "chr", "start", "end", "strand")
setlsaf <- saf

# Guardar archivo .saf con los picos fusionados (SAF: Simplified Annotation Format)

setwd("/home/biouser/Desktop/™)

write.table(saf, file="Setl PicosFus_YMC.saf", quote = F, sep = \t', row.names = F,
col.names = F)

saf.data <-list("esalsaf" = esalsaf,
"gcnbsaf” = genbsaf,
"setlsaf" = setlsaf)

save(saf.data, file = "/home/biouser/Desktop/MatrizConteo/saf.data.RData")

### Generar matriz de conteos

# Cargar pagquete

library(Rsubread)

## Esal

# Definir working directory donde esten los archivos

setwd("/home/biouser/Desktop/Cluster/Y MC/denovo/Alineados/Esal/™)

# Crear variable con todos los nombres de archivos BAM o0 SAM

sam.files <- list.files(pattern = "sam")



# Usar la funcion featureCounts

Esalcounts <-featureCounts(files = sam.files, annot.ext =
"/home/biouser/Desktop/15.05/Esal PicosFus_YMC.saf")

# Guardar la matriz de conteos

save(Esalcounts, file = "/home/biouser/Desktop/Esalcounts.RData")

## Genb

# Definir working directory donde esten los archivos

setwd("/home/biouser/Desktop/CLUSTER/YMC/denovo/Alineados/Gnc5/")

# Crear variable con todos los nombres de archivos BAM o SAM

sam.files <- list.files(pattern = "sam")

# Usar la funcion featureCounts

Gcen5counts <- featureCounts(files = sam.files, annot.ext =
"/home/biouser/Desktop/15.05/Gen5_PicosFus_YMC.saf")

# Guardar la matriz de conteos

save(Genbcounts, file = "/home/biouser/Desktop/Gen5counts.RData™)

## Setl

# Definir working directory donde esten los archivos

setwd("/home/biouser/Desktop/CLUSTER/YMC/denovo/Alineados/Set1/™)

# Crear variable con todos los nombres de archivos BAM o SAM



sam.files <- list.files(pattern = "sam")

# Usar la funcion featureCounts

Setlcounts <- featureCounts(files = sam.files, annot.ext =
"/home/biouser/Desktop/15.05/Setl PicosFus_YMC.saf")

# Guardar la matriz de conteos

save(Setlcounts, file = "/home/biouser/Desktop/Setlcounts.RData")

### Guardar matrices de conteos en formato matriz

# Esal

EsalCountMatrix <- as.matrix(Esalcounts[["counts"]])

colnam <- c(1:14)

colnames(EsalCountMatrix) <- colnam

# Gcenb

Gen5CountMatrix <- as.matrix(Gen5counts|[["counts™]])

colnam <- c(1:14)

colnames(Gen5CountMatrix) <- colnam

# Setl

Set1CountMatrix <- as.matrix(Setlcounts[["counts"]])

colnam <- c(1:14)



colnames(Set1CountMatrix) <- colnam

# Guardar
count.matrix.mods <- list("EsalCountMatrix" = EsalCountMatrix,
"Gcn5CountMatrix" = Gen5CountMatrix,

"Set1CountMatrix" = SetlCountMatrix)

save(count.matrix.mods, file = "/home/biouser/Desktop/count.matrix.mods.RData")

#####H Hacer PCA con los conteos y picos

# Usar NoiSeq (paquete de R, bioconductor)

library(NOISeq)

# Esal

# Obtener los datos

my.data.1 <- count.matrix.mods[["EsalCountMatrix"]]

my.data.1 <- rpkm(my.data.1)

my.factors.1 <- data.frame(TimePoint = ¢("'1", 2", "3", 4", "5", "6", "7", "8", "9", "10", "11",
12", "13", "14"),

Phase = c(rep("RC",2), rep("0X",3), rep("RB",3), rep("RC",6)))

my.extra.info.1 <- saf.data[["esalsaf"]]
my.extra.info.1 <- my.extra.info.1[, c(2,3,4)]

rownames(my.extra.info.1) <- saf.data[["esalsaf"]][, 1]

data.noiseq.esal <- readData(data = my.data.1, chromosome = my.extra.info.1, factors =
my.factors.1)



myPCA = dat(data.noiseq.esal, type = "PCA", norm = T, logtransf = F)
explo.plot(myPCA, samples = c(1,2), plottype = "loadings", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(1,3), plottype = "loadings", factor = "TimePoint™)
# PC1 separa RC de OX, y PC3 separa OX y RB

explo.plot(myPCA, samples = ¢(1,2), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(1,3), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(1,2), plottype = "scores", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(1,3), plottype = "scores", factor = "TimePoint")

# Genb

my.data.2 <- count.matrix.mods[["Gcn5CountMatrix"]]
my.data.2 <- rpkm(my.data.2)

myfaCtOI'SZ <- dataframe(TlmEPOInt o C(”l”, ||2||, ||3||, ||4||, ||5||, "6", ||7||, "8", ||9||, "10", Illlll,
ll12ll, Il13ll, II14II),
Phase = c(rep("RC",2), rep("0X",3), rep("RB",3), rep("RC",6)))

my.extra.info.2 <- saf.data[["gcn5saf]]
my.extra.info.2 <- my.extra.info.2[, c(2,3,4)]

rownames(my.extra.info.2) <- saf.data[["gcn5saf"]][, 1]

data.noiseq.gcn5 <- readData(data = my.data.2, chromosome = my.extra.info.2, factors =
my.factors.2)

myPCA = dat(data.noiseq.gcn5, type = "PCA", norm =T, logtransf = F)

explo.plot(myPCA, samples = ¢(1,2), plottype = "loadings", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(1,5), plottype = "loadings", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(2,5), plottype = "loadings", factor = "TimePoint")

explo.plot(myPCA, samples = ¢(1,2), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(1,5), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(2,5), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(1,2), plottype = "scores", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(1,5), plottype = "scores", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(2,5), plottype = "scores", factor = "TimePoint")



#PC2y PC5 separan OX 'y RB
# PC1 separa RC de OX y RB. PC2 separa OX y RB

# Setl

my.data.3 <- count.matrix.mods[["Set1CountMatrix"]]
my.data.3 <- rpkm(my.data.3)

my.factors.3 <- data.frame(TimePoint = ¢("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11",
"12", "13", "14"),
Phase = c(rep("RC",2), rep("0X",3), rep("RB",3), rep("RC",6)))

my.extra.info.3 <- saf.data[["set1lsaf"]]
my.extra.info.3 <- my.extra.info.3[, ¢(2,3,4)]
rownames(my.extra.info.3) <- saf.data[["setlsaf"]][, 1]

data.noiseq.setl <- readData(data = my.data.3, chromosome = my.extra.info.3, factors =
my.factors.3)

myPCA = dat(data.noiseq.setl, type = "PCA", norm = T, logtransf = F)
# pca.setl.scores.pcl.pc2

explo.plot(myPCA, samples = ¢(1,2), plottype = "loadings", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(1,5), plottype = "loadings", factor = "TimePoint")
explo.plot(myPCA, samples = ¢(2,5), plottype = "loadings", factor = "TimePoint™)

explo.plot(myPCA, samples = ¢(1,2), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(1,2), plottype = "scores", factor = "TimePoint")
# RC no se explica por ningA°n PC

explo.plot(myPCA, samples = ¢(2,5), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(2,5), plottype = "scores", factor = "TimePoint")
# PC5 separa OX (mezcla con RC) y RB. 2 separa RC-RB de OX
explo.plot(myPCA, samples = ¢(1,5), plottype = "scores", factor = "Phase")
explo.plot(myPCA, samples = ¢(1,5), plottype = "scores", factor = "TimePoint")

# Guardar datos noiseq



ymc.enzymes.noiseq.data <- list("'data.noiseq.esal" = data.noiseq.esal,
"data.noiseq.gcn5" = data.noiseq.gcnb,

"data.noiseq.setl" = data.noiseq.setl)

save(ymc.enzymes.noiseq.data, file =
"/home/biouser/Desktop/MatrizConteo/ymc.enzymes.noiseg.data.RData")

Read count matrixes normalization

# Cargar paquete para normalizar

library(Rsubread)

# Cargar matriz de conteos

load("/home/biouser/Desktop/Y MC-TFG/9.MatrizConteo/count.matrix.mods.RData")

# Obtener datos de conteos

conteosEsa = count.matrix.mods[["EsalCountMatrix"]]
conteosGen = count.matrix.mods[[*Gcn5CountMatrix™]]

conteosSet = count.matrix.mods[["Set1CountMatrix"]]

# Normalizar datos
conteosEsa = rpkm(conteosEsa+1)
conteosGen = rpkm(conteosGen+1)

conteosSet = rpkm(conteosSet+1)



# Transformacion logaritmica
conteosEsa = log(conteosEsa)
conteosGcen = log(conteosGcen)

conteosSet = log(conteosSet)

# CENTRAR y NO escalar
conteosEsa = scale(conteosEsa, center = TRUE, scale = FALSE)
conteosGcen = scale(conteosGen, center = TRUE, scale = FALSE)

conteosSet = scale(conteosSet, center = TRUE, scale = FALSE)

count.matrix.mods.cent<- list("EsalCountMatrix" = conteosEsa,
"Gen5CountMatrix™ = conteosGen,
"Set1CountMatrix" = conteosSet)

save(count.matrix.mods.cent, file = "/home/biouser/Desktop/MORE-
Analysis/count.matrix.mods.cent.RData")

MORE analysis of H3K9
HHH R R
## MORE matrices
## pre-processing
HH T

### Cargar datos

load("*/home/biouser/Desktop/MORE-Analysis/count.matrix.mods.cent.RData") # datos de
conteos de enzimas, previamente normalizados, log transformados y centrados



load("/home/biouser/Desktop/MORE-
Analysis/Matrixes_ForlIntegration_POST_BatchCorrection_withK18ac.RData") # Datos de
acetilaciones, con las mismas caracteristicas

# Quitra datos innecesarios

rm(H3k14ac, H3k14ac_TSSplus, H3k4me3, H3k4me3_TSSplus, H3k56ac,
H3k56ac_TSSplus, H4k5ac,H4kbac_TSSplus, H3k9ac2, H3k9ac2_TSSplus)

## Definir condiciones y opciones para MORE

options(stringsAsFactors = FALSE)

setwd("/home/biouser/Desktop/MORE-Analysis/*)

# Cargar funciones necesarias para el MORE

source("auxFunctions.R")

source("ComputeGLM_function.R")

source("MORE_GLM.R")

### Trasponer las matrices de acetilaciones para que los puntos temporales sean las columnas
H3k18ac_TSSplus<-as.data.frame(t(H3k18ac_TSSplus))

genesH3k18ac_TSSplus <- unique(rownames(H3k18ac_TSSplus))

H3k9ac_TSSplus<-as.data.frame(t(H3k9ac_TSSplus))
genesH3k9ac_TSSplus <- unique(rownames(H3k9ac_TSSplus))

H3k18ac<-as.data.frame(t(H3k18ac))

genesH3k18ac <- unique(rownames(H3k18ac))



H3k9ac<-as.data.frame(t(H3k9ac))
genesH3k9ac <- unique(rownames(H3k9ac))

### Hacer media de los puntos 11 y 12 de los modificadores de histonas

## renombrar columnas

# Esal

EsalCounts <- count.matrix.mods.cent[["EsalCountMatrix"]]

EsalCountsA <- EsalCounts[, c(11, 12)]
EsalCountsA <- rowMeans(EsalCountsA, na.rm = FALSE, dims = 1)

EsalCounts <- cbind(EsalCounts[, c¢(1:10)], EsalCountsA, EsalCounts[, c(13:14)])

C0|namES(Esa].COUﬂtS) <- C(”tl“, "t2", "t3", "t4", "t5”, ”t6", "t7", “t8", "t9”, Iltloll, "tlln, "t12",
"t13")

# Gcenb

Gcen5Counts <- count.matrix.mods.cent[["Gen5CountMatrix™]]

Gen5CountsA <- GensCounts|, ¢(11, 12)]
Gen5CountsA <- rowMeans(Gen5CountsA, na.rm = FALSE, dims = 1)

Gen5Counts <- chind(Gen5Counts[, ¢(1:10)], Gen5CountsA, Gen5Counts|, ¢(13:14)])

colnames(Gen5Counts) <- ¢("t1", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10", "t11",
"t12", "t13")

### Eliminar puntos 7 y 9 de acetilaciones y renombrar matrices



H3k9ac <- chind(H3k9%ac[, c(1:6)], H3k9ac[, 8], H3k%ac[, ¢(10:15)])

colnames(H3k9ac) <- c("t1", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10", "t11", "t12",
"t13")

H3k9ac_TSSplus <- chind(H3k9ac_TSSplus[, ¢(1:6)], H3k9ac_TSSplus[, 8],
H3k9ac_TSSplus[, ¢(10:15)])

colnames(H3k9ac_TSSplus) <- c("t1", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10", "t11",
"t12", "t13")

H3k18ac <- chind(H3k18acl[, c(1:6)], H3k18acl[, 8], H3k18ac[, c(10:15)])

colnames(H3k18ac) <- c("t1", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10", "t11", "t12",
llt13ll)

H3k18ac_TSSplus <- chind(H3k18ac_TSSplus], c(1:6)], H3k18ac_TSSplus|, 8],
H3k18ac_TSSplus[, c(10:15)])

colnames(H3k18ac_TSSplus) <- c("t1", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10",
"t11", "t12", "t13")

### Guardar los datos procesados que se van a usar para el MORE
# Se cogeran solo los conteos PLUS (tras el TSS), pues los datos del otro son muy similares
data.for. MORE.acetilation.enzymes <- list("EsalCounts" = EsalCounts,

"Gen5Counts” = Gen5Counts,

"H3k9ac_TSSplus" = H3k9ac_TSSplus,

"H3k18ac_ TSSplus" = H3k18ac_TSSplus)

save(data.for. MORE.acetilation.enzymes, file = "data.for MORE.acetilation.enzymes.RData")

### A partir de datos de RGmatch, crear asociacion Gen - pico de enzima

library(rlist)

# Esal

rgmatch.Esal = read.table("/home/biouser/Desktop/MORE-
Analysis/RGMatch/EsalSafGeneAso.txt", header=T, as.is=T)



Esalgenelist <- unique(rgmatch.Esal$Gene)

listRGesal <- list()
gennamesesal <- ¢()

for (gene in Esalgenelist){
aaal <- rgmatch.Esal[rgmatch.Esal$Gene%in%gene, "name"]
listRGesal <- list.append(listRGesal, aaal)

gennamesesal <- c(gennamesesal, gene)

}

names(listRGesal) <- gennamesesal

# Gcenb

rgmatch.Gen5 = read.table(*'/home/biouser/Desktop/ MORE-
Analysiss/RGMatch/Gen5SafGeneAso.txt", header=T, as.is=T)

Gcenbgenelist <- unique(rgmatch.Gen53Gene)

listRGgen5 <- list()

gennamesgcnb <- ¢()
for (gene in Genbgenelist){
aaal <- rgmatch.Gcn5[rgmatch.Gen5$Gene%in%gene, "name”]

listRGgcen5 <- list.append(listRGgenb, aaal)

gennamesgcn5 <- c(gennamesgens, gene)

¥

names(listRGgcn5) <- gennamesgen5

### Crear lista de genes comun entre las acetilaciones, Genb y Esal

# Genes totales de Esal y Genb



#genesEsaGcen <- unique(c(gennamesgcen5, gennamesesal))

# Genes comunes de enzimas con H3k9

genes.comunes.H3k9.Esal <- intersect(gennamesesal, genesH3k9ac_TSSplus)

genes.comunes.H3k9.Gen5 <- intersect(gennamesgen5, genesH3k9ac_TSSplus)

genes.comunes.H3k9 <- unique(c(genes.comunes.H3k9.Esal, genes.comunes.H3k9.Gcn5))

# Genes comunes de enzimas con H3k18

genes.comunes.H3k18.Esal <- intersect(gennamesesal, genesH3k18ac_TSSplus)

genes.comunes.H3k18.Gcenb5 <- intersect(gennamesgenb, genesH3k18ac_TSSplus)

genes.comunes.H3k18 <- unique(c(genes.comunes.H3k18.Esal,
genes.comunes.H3k18.Gcnb))

Hi#HH##H Preparar listas de asociaciones

### Reducir la lista de conteo a solo los genes comunes

## Acetilaciones

H3kofilt <- H3k9ac_TSSplus[genes.comunes.H3k9,]

H3k18filt <- H3k18ac_TSSplus[genes.comunes.H3Kk18,]

# Poner etiqueta a cada fila de la matriz de acetilaciones
rownames(H3k18filt)<-paste0("H3k18ac_",rownames(H3k18filt))
rownames(H3k9filt)<-paste0("H3k9ac_",rownames(H3k9filt))

#rownames(H3k18ac)<-paste0("H3k18ac_","min300ToTSS ", rownames(H3k18ac))
#rownames(H3k9ac)<-paste0("H3k9%ac_","min300ToTSS_",rownames(H3k9ac))



## Enzimas

# Genb

peak.int.gcn5.k9.n <- ¢()

for (gene in genes.comunes.H3k9.Gcn5){
peak.int.gcn5.k9.n <- ¢(peak.int.gcn5.k9.n, listRGgen5[[gene]])

¥

peak.int.gcn5.k9 <- unique(peak.int.gcn5.k9.n)

Gen5Countsfiltk9 <- Gen5Counts[peak.int.gcn5.k9,]

listRGgcn5filtk9 <- list()

genenames2 <- ¢()

for (gene in genes.comunes.H3k9.Gcn5){
listRGgcen5filtk9 <- list.append(listRGgen5filtk9, listRGgen5[[gene]])
genenames2 <- c(genenames2, gene)

¥

names(listRGgen5filtk9) <- genenames2

peak.int.gcn5.k18.n <- ¢()

for (gene in genes.comunes.H3k18.Gcn5){
peak.int.gcn5.k18.n <- c(peak.int.gcn5.k18.n, listRGgen5[[gene]])
}

peak.int.gcn5.k18 <- unique(peak.int.gcn5.k18.n)



Gen5Countsfiltk18 <- Gen5Counts[peak.int.gen5.k18,]

listRGgen5filtk18 <- list()
genenames2 <- ¢()

for (gene in genes.comunes.H3k18.Gcn5){
listRGgen5filtk18 <- list.append(listRGgen5filtk18, listRGgen5[[gene]])
genenames2 <- c(genenames2, gene)

¥

names(listRGgcn5filtk18) <- genenames2

peak.int.esal.k9.n <- c()

for (gene in genes.comunes.H3k9.Esal){
peak.int.esal.k9.n <- c(peak.int.esal.k9.n, listRGesal[[gene]])

¥

peak.int.esal.k9 <- unique(peak.int.esal.k9.n)

EsalCountsfiltk9 <- EsalCounts[peak.int.esal.k9,]

listRGesalfiltk9 <- list()
genenames2 <- ¢()

for (gene in genes.comunes.H3k9.Esal){
listRGesalfiltk9 <- list.append(listRGesalfiltk9, listRGesal[[gene]])

genenames2 <- c(genenames2, gene)

¥

names(listRGesalfiltk9) <- genenames?2



peak.int.esal.k18.n <- ¢()

for (gene in genes.comunes.H3k18.Esal){
peak.int.esal.k18.n <- c(peak.int.esal.k18.n, listRGesal[[gene]])

}

peak.int.esal.k18 <- unique(peak.int.esal.k18.n)

EsalCountsfiltk18 <- EsalCounts[peak.int.esal.k18,]

listRGesalfiltk18 <- list()

genenames2 <- ¢()
for (gene in genes.comunes.H3k18.Esal){

listRGesalfiltk18 <- list.append(listRGesalfiltk18, listRGesal[[gene]])
genenames2 <- c(genenames2, gene)

¥

names(listRGesalfiltk18) <- genenames2

# Poner etiqueta a cada fila de la matriz de enzimas

rownames(Gcn5Countsfiltk18)<-paste0("Gen5_",rownames(Gen5Countsfiltk18))

rownames(EsalCountsfiltk18)<-pasteO("Esal_",rownames(EsalCountsfiltk18))

rownames(Gcn5Countsfiltk9)<-paste0("Gen5_ ", rownames(Gen5Countsfiltk9))

rownames(EsalCountsfiltk9)<-paste0("Esal_",rownames(EsalCountsfiltk9))



HH B
# MORE para H3k9
HHHHHHH A

### Crear tabla de asociacion Gen de acetilacion - Pico de enzima

PeaksNGenes <- list("Esal" = listRGesalfiltk9,
"Gen5" = listRGgen5filtk9)

lengl <- length(peak.int.esal.k9.n)

leng2 <- length(peak.int.gcn5.k9.n)

leng3 <- lengl + leng2

asociacion<-as.data.frame(matrix(data=NA, nrow = leng3, ncol = 2))

colnames(asociacion)<-c("identificador_gen","chip_regulator™)
#names(ConsideredChipMatrixes)

contador <- 1

contadorlista <- 0

for (list in PeaksNGenes){
contadorlista <- contadorlista + 1
if (contadorlista == 1){
contA<-1
for (gene in list){
for (peak in gene){
genel <- names(list[contA])
chipname <- paste("Esal_", peak, sep ="")
asociacion[contador,"identificador_gen"] <- paste("H3k9ac_", genel, sep ="")
asociacion[contador,"chip_regulator'"] <- chipname
contador <- contador + 1

¥

CONtA <-contA +1

¥



}

else if (contadorlista == 2){
contA <-1
for (gene in list){
for (peak in gene){

genel <- names(list[contA])
chipname <- paste("Gcn5_", peak, sep ="")
asociacion[contador,"identificador_gen"] <- paste("H3k9ac_", genel, sep = ")
asociacion[contador,"chip_regulator"] <- chipname
contador <- contador + 1

}

contA <-contA +1

¥

#### Ordenar e identificar cada fila
asociacion<-asociacion[order(asociacion$identificador_gen),]

rownames(asociacion)<-pasteO(asociacion$identificador_gen," ",asociacion$chip_regulator)

## Comprobar que la cantidad total de asociaciones estAj bien
# 4787 associations in total, as leng3, OK

sum(asociacion$chip_regulator %in% rownames(EsalCountsfiltk9)) # 2755

sum(asociacion$chip_regulator %in% rownames(Gcn5Countsfiltk9)) # 2032

# Lista de asociacion definitiva para el MORE

Asociaciones <- list("CHIP"=asociacion) #Chip is the omic we want to associate with the
RNA-Seq data

head(Asociaciones$CHIP)



### Aplicacion directa del MORE

# Guardar todas las matrices de enzimas juntas y hacer tabla conjunta

ConsideredChipMatrixesk9 <- list("EsalCounts" = EsalCountsfiltk9,
"Gen5Counts™ = Gen5Countsfiltk9)

CHIP <- do.call(rbind, ConsideredChipMatrixesk9)

NOMBRESFILAS<-unlist(lapply(ConsideredChipMatrixesk9,rownames),use.names =
FALSE)

rownames(CHIP)<-NOMBRESFILAS

data.omics<-list()
data.omics$"CHIP"<-CHIP
head(data.omics$CHIP)

# Computing GLMSs --------
##H## Design=NULL

min.var = ¢(0) #one val fo each descriptive omic, minimum variance required, if less,
removed, we have already filtered per RNA-Seq

names(min.var)<-names("CHIP")

##H# MORE ###

library(MORE)

# Dado que hay genes conflictivos (falta de variabilidad), los quitamos de las matrices:

# H3k9%ac_YNL333W, H3k%c_YHRO053C, H3k9%ac_YCR104W, H3k9%c_YOR388C,
H3k9ac_YOR390W, H3k%ac_YPL276W

H3KkOfilt <- H3kOfilt[-which(rownames(H3k9filt)=="H3k%c_YNL333W"),]
H3Kkofilt <- H3kOfilt[-which(rownames(H3k9filt)=="H3k9%c_YHR053C"),]
H3kofilt <- H3Kk9filt[-which(rownames(H3k9filt)=="H3k9%ac_YCR104W"),]



H3kofilt <- H3K9filt[-which(rownames(H3k9filt)=="H3k9%ac_YOR388C"),]
H3KkOfilt <- H3k9filt[-which(rownames(H3k9filt)=="H3k9ac_YOR390W"),]
H3Kkofilt <- H3kOfilt[-which(rownames(H3k9filt)=="H3k9%ac_YPL276W"),]

GLMresults = GetGLM(GeneExpression = H3k9filt, #gene expression,our response variable

associations = Asociaciones,

data.omics = data.omics,

edesign=NULL, #the experimental covariates that we want to include

# degree = 1, no hacer caso, es de una previous versions

Res.df = 8, epsilon = 0.00001, # we have 15 time points, so 14 degrees of

freedom, if we leave 10 then just 4 chip variables can be significantly associated, by reducing it
to 8 (despite we lose statistical power) 2 variables more can enter to be putatively significant

associated

variables

alfa=0.05, MT .adjust = "fdr",

family = gaussian(), #datos log transf...

elasticnet = 2, center = TRUE, scale = FALSE,

stepwise="two.ways.backward",

interactions.exp = TRUE, interactions.reg = 1,

min.variation=min.var,

correlation = 0.95, action = "mean”, #to average the values of the higly correlated

cont.var = NULL, min.obs = 10)

GLMresults.elasticnet2.H3k9.vs.Esal.Gen5 <- GLMresults

save(GLMresults.elasticnet2.H3k9.vs.Esal.Genb, file =
"GLMresults.elasticnet2.H3k9.vs.Esal.Gecnb.RData™)

## Mirar los resultados

head(GLMresults$GlobalSummary$GoodnessOfFit)
head(GLMresults$GlobalSummary$ReguPerGene, 20)

GLMresults$ResultsPerGene$H3k9ac_YIL165C$significantRegulators
GLMresults$ResultsPerGene$H3k9ac_YIL165C$allRegulators



GLMresults$ResultsPerGene$H3k9ac_YIL165C$coefficients

GLMresults$ResultsPerGene[[3]]$coefficients

# Plotting significant regulations

mygene = "H3k9ac_YDR382W"

plotGLM(GLMresults, gene = mygene, regulator = NULL,
xlab = "Time points", reguValues = NULL, plotPerOmic = FALSE,
gene.col = 1, regu.col = "green4", replicates = FALSE,
cont.var = ¢(1:13), cond2plot = NULL)

plotGLM(GLMresults, gene = mygene, regulator = "Gcn5_Peak_1457",
xlab = "Time points", reguValues = NULL, plotPerOmic = FALSE,
gene.col = 1, regu.col = "green4", replicates = TRUE,
cont.var = ¢(1:13), cond2plot = NULL)

plot(x=1:13,y = H3KOfilt["H3k9ac_YKROB7W" ],type = "I",col="blue")
lines(x=1:13,y = CHIP["Gcn5_Peak_1885",],col="red")

##H# Obtener todos los reguladores significativos

library(rlist)

H3k9ResultsPerGene <- GLMresults.elasticnet2.H3k9.vs.Esal.Gen5[["ResultsPerGene™]]

H3k9SignRegs <- list()
genes.regs.nam <- ¢()
abbb <-0

for (gene in H3k9ResultsPerGene){
abbb <- abbb +1
abbb2 <- names(H3k9ResultsPerGene[abbb])
if (length(gene) == 5){
if (Iength(gene[[5]])>0){



abbbl <- gene[["significantRegulators"]]
H3k9SignRegs <- list.append(H3k9SignRegs, abbb1)
genes.regs.nam <- c(genes.regs.nam, abbb2)
}
}
}

names(H3k9SignRegs) <- genes.regs.nam

# Obtener todos los genes regulados por enzima

H3k9EsalReg <- ¢()
H3k9Gcn5Reg <- ¢()

contD <-0

for (gene in H3k9SignRegs){
grepgen <- grep("Gen5_", gene)
grepesa <- grep("Esal ", gene)
contD <-contD + 1
if (isEmpty(grepgcn) == FALSE){
H3k9Gcn5Reg <- ¢(H3k9Gcen5Reg, names(H3k9SignRegs[contD]))
}
if (iIsEmpty(grepesa) == FALSE){
H3k9EsalReg <- c(H3k9EsalReg, names(H3k9SignRegs[contD]))
}
}

H3k9EsalReg <- unique(H3k9EsalReg)
H3k9Gcn5Reg <- unique(H3k9Gcen5ReQ)

HHEEE
## Venn diagrams
i



# Hacer Venn Diagram de genes regulados

library(VennDiagram)

diag.H3k9.regs <- draw.pairwise.venn(areal = length(H3k9EsalReg),
area2 = length(H3k9Gcn5Reg),
cross.area = length(intersect(H3k9EsalReg, H3k9Gcn5Req)),
category = c¢("Esal", "Gcn5"),
fill = c("blue”, "green"),
scaled = TRUE)

grid.newpage()

### Sacar nombres de solo genes

# Comunes

intersect.H3k9.Esal.Gen5 <- intersect(H3k9EsalReg, H3k9Gcen5Req)

Genes.H3k9.Esal.Gcnb <- ¢()

for (element in intersect.H3k9.Esal.Gcen5){
char <- as.character(element)
Genes.H3k9.Esal.Genb <- ¢(Genes.H3k9.Esal.Genb, substr(char, 8, nchar(char)))

}

# Gen5-H3k9
Genes.H3k9.Gcenb <- ¢()

for (element in H3k9Gcn5Reg){

char <- as.character(element)
Genes.H3k9.Genb <- ¢(Genes.H3k9.Genb, substr(char, 8, nchar(char)))

¥



# Esal-H3k9

Genes.H3k9.Esal <- ¢()

for (element in H3k9EsalReg){
char <- as.character(element)
Genes.H3k9.Esal <- c(Genes.H3k9.Esal, substr(char, 8, nchar(char)))

¥

### Ver a quA®© fase del cluster de DEGs del YMC pertenecen los genes

load("/home/biouser/Desktop/Y MC-TFG/6.YMC-R-Objects/GenesY MCCluster.RData™)

### Los comunes
# Genes.H3k9.Esal.Genb.vs.OX

grid.newpage()
draw.pairwise.venn(areal = length(Genes.H3k9.Esal.Gcnb),
area2 = length(genes.YMC.Cluster[["Fase OX"]]),

cross.area = length(intersect(Genes.H3k9.Esal.Gen5, genes.YMC.Cluster[["Fase
oxX"10).

category = ¢("H3k9.Esal.Gens", "Fase OX"),
fill = c("yellow", "red™))

grid.newpage()

draw.pairwise.venn(areal = length(Genes.H3k9.Esal.Gcnb),
area2 = length(genes.YMC.Cluster[["Fase RB"]]),

cross.area = length(intersect(Genes.H3k9.Esal.Gcn5, genes.Y MC.Cluster[["Fase
RB"T)).

category = ¢("H3k9.Esal.Gens", "Fase RB"),

fill = c("yellow", "green™))

grid.newpage()



draw.pairwise.venn(areal = length(Genes.H3k9.Esal.Gcnb),
area2 = length(genes.YMC.Cluster[["Fase RC"]]),

cross.area = length(intersect(Genes.H3k9.Esal.Genb5, genes.YMC.Cluster[["Fase
RC"1D).

category = ¢("H3k9.Esal.Genbs", "Fase RC"),
fill = c("yellow", "blue™))

### Los Genb-H3k9
# Genes.H3k9.Gcn5.vs.0X

grid.newpage()
draw.pairwise.venn(areal = length(Genes.H3k9.Gcnb5),
area2 = length(genes.YMC.Cluster[["Fase OX"]]),

cross.area = length(intersect(Genes.H3k9.Gcnb, genes.YMC.Cluster[["Fase
oX"1).

category = ¢("H3k9.Gcn5", "Fase OX™),
fill = c("yellow", "red"))

grid.newpage()
draw.pairwise.venn(areal = length(Genes.H3k9.Gcn5),
area2 = length(genes.YMC.Cluster[["Fase RB"]]),

cross.area = length(intersect(Genes.H3k9.Gcn5, genes.YMC.Cluster[["Fase
RB"1D)),

category = ¢("H3k9.Gcn5", "Fase RB"),

fill = c("yellow", "green™))

grid.newpage()
draw.pairwise.venn(areal = length(Genes.H3k9.Gcnb),
area2 = length(genes.YMC.Cluster[["Fase RC"]),

cross.area = length(intersect(Genes.H3k9.Gcn5, genes.YMC.Cluster[["Fase
RCTD).

category = ¢(""H3k9.Gcn5", "Fase RC"),
fill = c("yellow", "blue™))



### Los Esal-H3k9
# Genes.H3k9.Esal.vs.OX

grid.newpage()
draw.pairwise.venn(areal = length(Genes.H3k9.Esal),
area2 = length(genes.YMC.Cluster[["Fase OX"]]),
cross.area = length(intersect(Genes.H3k9.Esal, genes.YMC.Cluster[["Fase

oX"1).
category = ¢("H3k9.Esal", "Fase OX"),
fill = c("yellow", "red"))
grid.newpage()

draw.pairwise.venn(areal = length(Genes.H3k9.Esal),
area2 = length(genes.YMC.Cluster[["Fase RB"]]),
cross.area = length(intersect(Genes.H3k9.Esal, genes.YMC.Cluster[["Fase

RB"1D)),
category = ¢("H3k9.Esal", "Fase RB"),
fill = c("yellow", "green™))
grid.newpage()

draw.pairwise.venn(areal = length(Genes.H3k9.Esal),
area2 = length(genes.YMC.Cluster[["Fase RC"]]),

cross.area = length(intersect(Genes.H3k9.Esal, genes.YMC.Cluster[["Fase
RC"D).

category = ¢("H3k9.Esal", "Fase RC"),
fill = c("yellow", "blue™))

R R R
### Hacer enriquecimiento de los genes
HH B

### Funciones de enriquecimiento

EnrichALLterms = function (test, notTest, annotation,



p.adjust.method = "fdr") {

annot2test = unique(annotation[,2])

resultat = t(sapply(annot2test, Enrichlterm, test = test, notTest = notTest, annotation =
annotation))

return (data.frame(resultat[,-6],
"pval" = as.numeric(resultat[,"pval"]),
"adjPval" = p.adjust(as.numeric(resultat[,"pval']), method = p.adjust.method),
stringsAsFactors = F))

Enrichlterm = function (term, test, notTest, annotation) {

annotTest = length(intersect(test, annotation[annotation[,2] == term,1]))

if ((annotTest) > 0) {
annotNOTtest = length(intersect(notTest, annotation[annotation[,2] == term,1]))

mytest = matrix(c(annotTest, length(test)-annotTest, annotNOTtest, length(notTest)-
annotNOTtest), ncol = 2)

resultat = c(term, annotTest, length(test), annotNOTtest, length(notTest),
#TEST DE FISHER
fisher.test(mytest, alternative = "greater")$p.value)
names(resultat) = c(""term"”, "annotTest", "test", "annotNotTest", "notTest", "pval")
}else {
resultat = c(term, 0, 0, 0, 0, 100)
names(resultat) = c(""term"”, "annotTest", "test", "annotNotTest", "notTest", "pval")

¥

return(resultat)

##t## Crear anotacion de los genes que hay en el organismo (gen asociado y descripciAsn del
GO term (name_1006) asociado)



library(biomaRt)

biomartYeast = useMart(biomart = "ensembl", dataset="scerevisiae_gene_ensembl")

annotation = getBM(attributes = c("ensembl_gene_id","name_1006"),

mart=biomartYeast)

#iHH#HHEHE Enriquecimiento contra organismo de todos los genes

#Obtener nombres de todos los genes de la levadura

notTest0 <- getBM(attributes = ¢(""ensembl_gene_id"),

mart=biomartYeast)

notTest0 <- as.vector(t(notTest0))

### Enriquecimiento en genes de Gen5 y Esal comunes

#Obtener nombres de los genes asociados en la muestra

testl <- intersect(H3k9EsalReg, H3k9Gcn5Req)

test <- ¢()

for (element in test1){

char <- as.character(element)
test <- c(test, substr(char, 8, nchar(char)))

¥

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)



#Hacer analisis de enriquecimiento

GOEnNrichMORE.H3Kk9.Esal.Genb = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciAn de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xlIsx")

write.xIsx(GOEnrichMORE.H3k9.Esal.Gcenb, file =
"GOEnrichMORE.H3k9.Esal.Gcn5.xIsx", sheetName = "GOEnrichMORE.H3k9.Esal.Gcnb",

col.names = TRUE, row.names = TRUE, append = FALSE)
### Enriquecimiento en genes de Gen5 y H3k9, no compartidos con Esal
#Obtener nombres de los genes asociados en la muestra
testl <- setdiff(H3k9Gcn5Reg, intersect(H3k9EsalReg, H3k9Gcn5Req))
test <- ¢()
for (element in test1){

char <- as.character(element)

test <- c(test, substr(char, 8, nchar(char)))

¥

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento



GOEnNrichMORE.H3k9.Gcn5 = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciAn de genes de la muestra, coger solo la columna
1 (nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xIsx")

write.xIsx(GOEnrichMORE.H3k9.Gcnb, file = "GOENnrichMORE.H3k9.Gcnb.xIsx",
sheetName = "GOEnrichMORE.H3k9.Gen5",

col.names = TRUE, row.names = TRUE, append = FALSE)
### Enriquecimiento en genes de Esal y H3k9, no compartidos con Gens
#Obtener nombres de los genes asociados en la muestra
testl <- setdiff(H3k9EsalReg, intersect(H3k9EsalReg, H3k9Gcn5Reg))
test <- ¢()
for (element in test1){

char <- as.character(element)
test <- c(test, substr(char, 8, nchar(char)))

}

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento

GOEnNrichMORE.H3Kk9.Esal = EnrichALLterms(test = test,

notTest = notTest,



# De la anotaciA®n de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xlIsx")

write.xIsx(GOEnrichMORE.H3Kk9.Esal, file = "GOEnrichMORE.H3k9.Esal.xlsx",
sheetName = "GOEnrichMORE.H3k9.Esal",

col.names = TRUE, row.names = TRUE, append = FALSE)

#iHHHHEH Enriguecimiento contra fase del cluster de genes de cada enzima comunes al cluster

### Enriquecimiento en genes de Gen5

## OX

#Obtener nombres de todos los genes de la fase del cluster

notTest0 <- genes.YMC.Cluster[["Fase OX"]]

#Obtener nombres de los genes asociados en la muestra

test <- intersect(Genes.H3k9.Gcn5, genes.YMC.Cluster[["Fase OX"]])

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento

GOENrichMORE.H3k9.Gcn5.0X = EnrichALLterms(test = test,



notTest = notTest,

# De la anotaciAn de genes de la muestra, coger solo la columna
1 (nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,

p.adjust.method = "fdr")

library("xlIsx")

write.xIsx(GOEnrichMORE.H3k9.Gcn5.0X, file = "GOENrichMORE.H3k9.Gcn5.0X . xIsx",
sheetName = "GOEnrichMORE.H3k9.Gcn5.0X",

col.names = TRUE, row.names = TRUE, append = FALSE)

## RB

#Obtener nombres de todos los genes de la fase del cluster

notTestO <- genes.YMC.Cluster[["Fase RB"]]

#Obtener nombres de los genes asociados en la muestra

test <- intersect(Genes.H3k9.Gcn5, genes.Y MC.Cluster[["Fase RB"]])

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento

GOENrichMORE.H3k9.Gcn5.RB = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciAn de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,

p.adjust.method = "fdr")



library("xIsx")

write.xIsx(GOEnrich MORE.H3k9.Gcn5.RB, file = "GOEnrichMORE.H3k9.Gcn5.RB.xIsx",
sheetName = "GOEnrichMORE.H3k9.Gcn5.RB",

col.names = TRUE, row.names = TRUE, append = FALSE)

## RC

#Obtener nombres de todos los genes de la fase del cluster

notTest0 <- genes.YMC.Cluster[["Fase RC"]]

#Obtener nombres de los genes asociados en la muestra

test <- intersect(Genes.H3k9.Gcnb, genes.YMC.Cluster[["Fase RC"]])

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento

GOEnNrichMORE.H3k9.Gcn5.RC = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciA®n de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,

p.adjust.method = "fdr")

library("xIsx"™)

write.xIsx(GOEnrichMORE.H3k9.Gcn5.RC, file = "GOENrichMORE.H3k9.Gcn5.RC.xlsx",
sheetName = "GOEnrichMORE.H3k9.Gcn5.RC",

col.names = TRUE, row.names = TRUE, append = FALSE)



### Enriquecimiento en genes de Esal

## OX

#Obtener nombres de todos los genes de la fase del cluster

notTest0 <- genes.YMC.Cluster[["Fase OX"]]

#Obtener nombres de los genes asociados en la muestra

test <- intersect(Genes.H3k9.Esal, genes.YMC.Cluster[["Fase OX"]])

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento

GOEnNrichMORE.H3k9.Esal.0OX = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciAn de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xIsx™)

write.xIsx(GOEnrichMORE.H3k9.Esal.0X, file = "GOEnrichMORE.H3k9.Esal.OX .xlIsx",
sheetName = "GOEnrichMORE.H3k9.Esal.OX",

col.names = TRUE, row.names = TRUE, append = FALSE)

## RB



#Obtener nombres de todos los genes de la fase del cluster

notTestO <- genes.YMC.Cluster[["Fase RB"]]

#Obtener nombres de los genes asociados en la muestra

test <- intersect(Genes.H3k9.Esal, genes.YMC.Cluster[["Fase RB"]])

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento

GOEnNrichMORE.H3Kk9.Esal.RB = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciA®n de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xlIsx")

write.xIsx(GOEnrichMORE.H3k9.Esal.RB, file = "GOEnrichMORE.H3k9.Esal.RB.xlsx",
sheetName = "GOEnrichMORE.H3k9.Esal.RB",

col.names = TRUE, row.names = TRUE, append = FALSE)

## RC

#Obtener nombres de todos los genes de la fase del cluster

notTest0 <- genes.YMC.Cluster[["Fase RC"]]

#Obtener nombres de los genes asociados en la muestra



test <- intersect(Genes.H3k9.Esal, genes.YMC.Cluster[["Fase RC"]])

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriquecimiento

GOEnNrichMORE.H3Kk9.Esal.RC = EnrichALLterms(test = test,
notTest = notTest,

# De la anotaciA®n de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xlIsx")

write.xIsx(GOEnrichMORE.H3k9.Esal.RC, file = "GOEnrichMORE.H3k9.Esal.RC.xlsx",
sheetName = "GOEnrichMORE.H3k9.Esal.RC",

col.names = TRUE, row.names = TRUE, append = FALSE)

HHHHHHHHEHH

## Dividir los genes en correlacion positiva y negativa

Genes.H3k9.CorrPos <- ¢()
Genes.H3k9.CorrPos.Esal <- ¢()
Genes.H3k9.CorrPos.Genb <- ¢()
Genes.H3k9.CorrNeg <- ¢()
Genes.H3k9.CorrNeg.Esal <- ¢()
Genes.H3k9.CorrNeg.Genb <- ¢()

cont2<-0



for (gene in GLMresults[["'ResultsPerGene"]]){
cont2 <-cont2 + 1

if (Iength(gene) == 5){

if (length(gene[["significantRegulators']])>0){

for (signifreg in gene[["significantRegulators"]]){

if (GLMresults[["'ResultsPerGene"]][[cont2]][["allRegulators"]][signifreg, 5] ==
"Model"){

corr <- GLMresults[["ResultsPerGene"]][[cont2]][["coefficients"]][signifreg,1]
}
else{
chi.nam <- GLMresults[["ResultsPerGene"]][[cont2]][["allRegulators"]][signifreg, 5]
corr <- GLMresults[["ResultsPerGene"]][[cont2]][["coefficients"]][chi.nam,1]
}
nombre.gen <- names(GLMresults[['ResultsPerGene"]][cont2])
if (corr <0){
Genes.H3k9.CorrNeg <- c(Genes.H3k9.CorrNeg, nombre.gen)
modif <- substr(signifreg, 1, 4)
if (modif == "Esal"){
Genes.H3k9.CorrNeg.Esal <- c(Genes.H3k9.CorrNeg.Esal, nombre.gen)
Yelse if (modif == "Gcen5"){
Genes.H3k9.CorrNeg.Genb <- ¢(Genes.H3k9.CorrNeg.Gen5, nombre.gen)}
Yelse if (corr > 0){
Genes.H3k9.CorrPos <- ¢(Genes.H3k9.CorrPos, nombre.gen)
modif <- substr(signifreg, 1, 4)
if (modif == "Esal"){
Genes.H3k9.CorrPos.Esal <- c(Genes.H3k9.CorrPos.Esal, nombre.gen)
}else if (modif =="Gcn5"){
Genes.H3k9.CorrPos.Gcenb <- ¢(Genes.H3k9.CorrPos.Gen5, nombre.gen)}



Genes.H3k9.CorrPos <- unique(Genes.H3k9.CorrPos)
Genes.H3k9.CorrPos.Esal <- unique(Genes.H3k9.CorrPos.Esal)
Genes.H3k9.CorrPos.Genb <- unique(Genes.H3k9.CorrPos.Gcenb)
Genes.H3k9.CorrNeg <- unique(Genes.H3k9.CorrNeg)
Genes.H3k9.CorrNeg.Esal <- unique(Genes.H3k9.CorrNeg.Esal)
Genes.H3k9.CorrNeg.Gen5 <- unique(Genes.H3k9.CorrNeg.Genb)

length(intersect(Genes.H3k9.CorrPos, Genes.H3k9.CorrNeq)) # 44

length(intersect(Genes.H3k9.CorrPos.Esal, Genes.H3k9.CorrPos.Genb)) # 26
length(intersect(Genes.H3k9.CorrNeg.Esal, Genes.H3k9.CorrNeg.Genb)) # 4

length(intersect(Genes.H3k9.CorrPos.Esal, Genes.H3k9.CorrNeg.Esal)) # 12
length(intersect(Genes.H3k9.CorrPos.Genb, Genes.H3k9.CorrNeg.Genb)) # 8

### Enriquecer genes

## Correlacion negativa

#Obtener nombres de todos los genes de la fase del cluster

notTest0 <- getBM(attributes = ¢(""ensembl_gene_id"),

mart=biomartYeast)

notTest0 <- as.vector(t(notTest0))

#Obtener nombres de los genes asociados en la muestra

testl <- Genes.H3k9.CorrNeg

test <- ¢()

for (element in test1){



char <- as.character(element)
test <- c(test, substr(char, 8, nchar(char)))

¥

#Resta entre los genes totales en la levadura y los genes de la muestra
notTest <- setdiff(notTestO, test)

#Hacer analisis de enriguecimiento

GOEnrichMORE.H3k9.CorrNeg = EnrichALLterms(test = test,

notTest = notTest,

# De la anotaciAn de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xlIsx")

write.xIsx(GOEnrichMORE.H3k9.CorrNeg, file = "GOEnrichMORE.H3k9.CorrNeg.xIsx",
sheetName = "GOEnrichMORE.H3k9.CorrNeg",

col.names = TRUE, row.names = TRUE, append = FALSE)

## Correlacion positiva

#Obtener nombres de los genes asociados en la muestra

testl <- Genes.H3k9.CorrPos

test <- ¢()

for (element in test1){



char <- as.character(element)
test <- c(test, substr(char, 8, nchar(char)))

¥

#Resta entre los genes totales en la levadura y los genes de la muestra

notTest <- setdiff(notTestO, test)

#Hacer analisis de enriguecimiento

GOENrichMORE.H3Kk9.CorrPos = EnrichAL Lterms(test = test,
notTest = notTest,

# De la anotaciA®n de genes de la muestra, coger solo la columna 1
(nombre del gen)

#y 3 (nombre del termino GO)
annotation = annotation,
p.adjust.method = "fdr")

library("xlIsx")

write.xIsx(GOEnrichMORE.H3k9.CorrPos, file = "GOEnrichMORE.H3k9.CorrPos.xIsx",
sheetName = "GOEnrichMORE.H3k9.CorrPos",

col.names = TRUE, row.names = TRUE, append = FALSE)

HH B

## Hacer Venn Diagrams segA°n la correlacion
## contra las fases del cluster

HH T

## Preparar nombres de genes

# Positivo Esal
GenNames.H3k9.CorrPos.Esal <- ¢()

for (element in Genes.H3k9.CorrPos.Esal){



char <- as.character(element)

GenNames.H3k9.CorrPos.Esal <- ¢(GenNames.H3k9.CorrPos.Esal, substr(char, 8,
nchar(char)))

}

# Negativo Esal
GenNames.H3k9.CorrNeg.Esal <- ¢()

for (element in Genes.H3k9.CorrNeg.Esal){
char <- as.character(element)

GenNames.H3k9.CorrNeg.Esal <- c(GenNames.H3k9.CorrNeg.Esal, substr(char, 8,
nchar(char)))

¥

# Positivo Genb
GenNames.H3k9.CorrPos.Gen5 <- ¢()

for (element in Genes.H3k9.CorrPos.Gen5){
char <- as.character(element)

GenNames.H3k9.CorrPos.Gen5 <- ¢(GenNames.H3k9.CorrPos.Gcenb, substr(char, 8,
nchar(char)))

}
# Negativo Gens
GenNames.H3k9.CorrNeg.Genb <- ¢()

for (element in Genes.H3k9.CorrNeg.Gcn5){
char <- as.character(element)

GenNames.H3k9.CorrNeg.Genb <- ¢(GenNames.H3k9.CorrNeg.Gen5, substr(char, 8,
nchar(char)))

¥



