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Abstract

This paper presents a new family of methods for evaluating matrix polynomi-
als more efficiently than the state-of-the-art Paterson–Stockmeyer method.
Examples of the application of the methods to the Taylor polynomial approx-
imation of matrix functions like the matrix exponential and matrix cosine are
given. Their efficiency is compared with that of the best existing evaluation
schemes for general polynomial and rational approximations, and also with
a recent method based on mixed rational and polynomial approximants. For
many years, the Paterson–Stockmeyer method has been considered the most
efficient general method for the evaluation of matrix polynomials. In this pa-
per we show that this statement is no longer true. Moreover, for many years
rational approximations have been considered more efficient than polynomial
approximations, although recently it has been shown that often this is not
the case in the computation of the matrix exponential and matrix cosine. In
this paper we show that in fact polynomial approximations provide a higher
order of approximation than the state-of-the-art computational methods for
rational approximations for the same cost in terms of matrix products.

Keywords: matrix, polynomial, rational, mixed rational and polynomial,
approximation, computation, matrix function.
PACS: 87.64.Aa

1. Introduction

In this paper we propose a new family of methods for evaluating matrix
polynomials more efficiently than the state-of-the-art Paterson–Stockmeyer
method combined with Horner’s method [1], [2, Sec. 4.2]. The proposed
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methods are applied to compute efficiently Taylor polynomial approxima-
tions of matrix functions. The computation of matrix functions is a research
field with applications in many areas of science and many algorithms for
their computation have been proposed [2, 3]. Among all matrix functions,
the matrix exponential has attracted special attention, see [4, 5, 6] and the
references therein, and lately the matrix cosine, see [7, 8] and the references
therein. The main methods for computing matrix functions are those based
on rational approximations, like Padé or Chebyshev approximations, polyno-
mial approximations, like Taylor approximation, similarity transformations
and matrix iterations [2]. Moreover, a new kind of approximations based on
mixed rational and polynomial approximants has been proposed in [9].

Recently, it has been shown that using the combination of Horner and
Paterson–Stockmeyer methods [1], [2, Sec. 4.2], polynomial approximations
may be more efficient than rational Padé approximations for both the matrix
exponential and cosine [6, 8]. In this paper we show that using the proposed
matrix polynomial evaluation methods, polynomial approximations are more
accurate than existing state-of-the-art methods for evaluating both polyno-
mial and rational approximants for the same computing cost. Moreover, we
show that the new methods are more efficient than the recent mixed ratio-
nal and polynomial approximation [9] in some cases, and examples for the
computation of the matrix exponential and the matrix cosine are given.

Throughout this paper dxe denotes the lowest integer not less than x,
bxc denotes the highest integer not exceeding x, N denotes the set of positive
integer numbers, Cn×n and Rn×n denote the sets of complex and real matrices
of size n × n, respectively, I denotes the identity matrix for both sets, and
Rk,m denotes the space of rational functions with numerator and denominator
of degrees at most k and m, respectively.

Note that the multiplication by the matrix inverse in matrix rational
approximations is calculated as the solution of a multiple right-hand side
linear system. Therefore, the cost of evaluating polynomial and rational
approximations will be given in terms of the number of matrix products,
denoted by M , and the cost of the solution of multiple right-hand side linear
systems AX = B, where matrices A and B are n× n, denoted by D. From
[10, App. C] it follows that, see [9, p. 11940]:

D ≈ 4/3M. (1)

This paper is organized as follows. Section 2 recalls some results for
efficient Taylor, Padé, and mixed rational and polynomial approximation
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of general matrix functions. Section 3 deals with the new matrix polyno-
mial evaluation methods giving examples for the computation of the matrix
exponential and the matrix cosine. Section 4 compares the new techniques
with efficient state-of-the-art evaluation schemes for polynomial, rational and
mixed rational and polynomial approximants. Section 5 gives examples for
the matrix exponential computation even more efficient than the ones given
in Section 3, suggesting more general formulas for evaluating matrix polyno-
mials. Finally, conclusions are given in Section 6.

2. Polynomial, rational, and mixed rational and polynomial ap-
proximants

This section summarizes some results of the computational costs of Tay-
lor, Padé, and the mixed rational and polynomial approximants given in
[9].

2.1. Taylor approximation of matrix functions

If f(A) is a matrix function defined by a Taylor series according to Theo-
rem 4.7 of [2, p. 76] where A is a complex square matrix, then we will denote
by Tm(A) the matrix polynomial defined by the truncated Taylor series of
degree m of f(A). For scalar x ∈ C it follows that

f(x)− Tm(x) = O(xm+1), (2)

about the origin, and, from now on, we will refer to m as the order of the
Taylor approximation. The most efficient method in the literature to evaluate
a matrix polynomial

Pm(A) =
m∑
i=0

biA
i , (3)

is the combination of Horner and Paterson–Stockmeyer methods [1] given by

PSm(A) =
((
· · ·
(
bmA

s + bm−1A
s−1 + . . .+ bm−s+1A+ bm−sI

)
× As + bm−s−1A

s−1 + bm−s−2A
s−2 + . . .+ bm−2s+1A+ bm−2sI

)
× As + bm−2s−1A

s−1 + bm−2s−2A
s−2 + . . .+ bm−3s+1A+ bm−3sI

)
...

× As + bs−1A
s−1 + bs−2A

s−2 + · · ·+ b1A+ b0I, (4)
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m∗ 1 2 4 6 9 12 16 20 25 30 36
CPS 0 1 2 3 4 5 6 7 8 9 10

Table 1: Cost CPS in terms of matrix products for the evaluation of polynomial Pm(A)
with Horner and Paterson–Stockmeyer methods for the first eleven values m∗ that maxi-
mize the polynomial degree obtained for a given cost.

where the integer s > 0 divides m and the matrix powers A2, A3, . . . , As, are
computed and stored previously.

Table 1 shows the maximum values of m that can be obtained for a given
number of matrix products in Tm(A) using Paterson–Stockmeyer method,
corresponding to m = s2 and m = s(s+ 1), for s ∈ N. The cost of evaluating
(4), denoted by CPS, for the values in m∗ is given by [9, Eq. (6)]

CPS = (r + s− 2)M, with r = m/s, m ∈ m∗. (5)

Table 1 presents the cost CPS of evaluating (4) in terms of matrix products
for the first eleven values of m∗. For orders m /∈ m∗ we evaluate Pm(A) =
PSm0(A) using (4) taking m0 = min{m1 ∈ m∗,m1 > m} and setting the
coefficients bi = 0 in (4) for i = m0,m0 − 1, . . . ,m + 1, at the same cost
as evaluating PSm0(A). Note that because of the way the polynomial is
evaluated, the cost of using (4) is lower than that of Paterson–Stockmeyer
as implemented in [2, Sec. 4.2] (compare (5) and [2, Eq. (4.3)]).

The matrix exponential is the most studied matrix function [4], [2, Chap.
10]. For A ∈ Cn×n the matrix exponential of A can be defined by the Taylor
series

exp(A) =
∑
i≥0

Ai

i!
. (6)

Another matrix function that has received attention recently is the matrix
cosine, which can be defined analogously by means of its Taylor series

cos(A) =
∑
i≥0

(−1)i
A2i

(2i)!
. (7)

Several efficient algorithms based on Taylor approximations have been pro-
posed recently for the computation of the matrix exponential and cosine
[6, 8].
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m+ 1 2 3 4 6 8 10 12 15 18 21
CR 1.33 2.33 3.33 4.33 5.33 6.33 7.33 8.33 9.33 10.33 11.33
dR 2 4 6 8 12 16 20 24 30 36 42

Table 2: Cost CR in terms of matrix products for diagonal rational approximation rmm(A)
taking D = 4/3M . Approximation order dR if rmm is a Padé approximant of a given
function f .

2.2. Padé approximations of matrix functions

The rational scalar function rkm(x) = pkm(x)/qkm(x) is a [k/m] Padé
approximant of the scalar function f(x) if rk,m ∈ Rk,m, qkm(0) = 1, and

f(x)− rkm(x) = O(xk+m+1). (8)

From now on, dR will denote the degree of the last term of the Taylor series
of f about the origin that rkm(x) agrees with, i.e. dR = k + m, and we will
refer to dR as the order of the Padé approximation. Table 2 (see [9, Table 2])
shows the maximum values of m that can be obtained for a given number of
matrix products in rmm(A), denoted by the set m+, and the corresponding
computing cost, denoted by CR given by

CR = (2r + s− 3)M +D ≈ (2r + s− 1− 2/3)M, r = m/s, (9)

where s takes whichever value s = d
√

2me or s = b
√

2mc that divides m and
gives the smaller CR. Table 2 also gives the corresponding order dR of the
approximation rmm(x) if it is a Padé approximant of a given function f(x),
i.e. dR = 2m.

Finally, it is important to note that for a given f, k and m, a [k/m] Padé
approximant might not exist. Moreover, when computing rational approxi-
mations rkm of a function f for a given square matrix A, we must verify that
the matrix qkm(A) is nonsingular, and, for an accurate computation, that it
is well conditioned. This is not the case for polynomial approximations, since
they do not require matrix inversions.

2.3. Mixed rational and polynomial approximants.

For a square matrix A the method proposed in [9] is based on using
aggregations of mixed rational and polynomial approximants of the type

tijs(A) =
((
· · ·
(
u(i)s (A)(v(i)s (A))−1 + u(i−1)s (A)

)
(v(i−1)s (A))−1 + u(i−2)s (A)

)
(v(i−2)s (A))−1 + · · ·+ u(1)s (A)

)
(v(1)s (A))−1 + wjs(A). (10)
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where v
(k)
s (A), u

(k)
s (A), k = 1, 2, . . . , i, are polynomials of A of degrees at

most s, wjs(A) is a polynomial of A with degree at most js, and i ≥ 0, s ≥ 0
and j ≥ 0. Note that if i = 0 we consider that tijs(A) = wjs(A), having no
rational part. In [9, Sec. 4] a method to obtain tijs from rational approxi-
mations is given. Similarly to rational approximations, each multiplication
by a matrix inverse is calculated as the solution of a multiple right-hand side
linear system. Therefore, when computing tijs(A) it is important to verify

that the matrices v
(1)
s (A), v

(2)
s (A), . . . , v

(i)
s (A) are nonsingular and well con-

ditioned. The total cost for computing (10), denoted by CRP , is given by,
see [9, Sec. 5]

CRP = (s+ j− 2)M + iD ≈ (s+ j− 2 + 4i/3)M, j > 0, s > 0, i ≥ 0. (11)

Note that for the case where approximation (10) is intended to reproduce
the first terms of the Taylor series of a given function f , it is equivalent to a
[(i+ j)s/is] Padé approximant, and then, whenever it exists, tijs for scalar
x ∈ C satisfies

f(x)− tijs(x) = O(x(2i+j)s+1). (12)

In that case we denote by dRP the order of the mixed rational and polynomial
approximation

dRP = (2i+ j)s. (13)

Table 3 (see [9, Table 3]) shows for tijs(A) the approximation order dRP

if tijs reproduces the first terms of the Taylor series of a given function f ,
and the cost CRP in terms of matrix products for the values of i, j, s that
maximize dRP for a given cost. See [9] for a complete description.

3. On the evaluation of matrix polynomials. Application to the
approximation of matrix functions

This section gives new general methods for evaluating matrix polynomi-
als in a more efficient way than the combination of Horner and Paterson–
Stockmeyer methods. Examples for computing the Taylor matrix polynomial
approximation of degree m of the matrix exponential and the matrix cosine
are given. These examples allow us to compute both approximations at a
lower cost than Horner and Paterson–Stockmeyer methods. Note that in this
section we used MATLAB R2017a for all the computations.
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dRP 1 2 3 4 6 9 10 12 15 16 20 21
i 0 0 1 0 1 1 2 1 2 1 2 3
j 1 1 1 2 1 1 1 1 1 2 1 1
s 1 2 1 2 2 3 2 4 3 4 4 3
CRP 0 1 1.33 2 2.33 3.33 3.67 4.33 4.67 5.33 5.67 6
dRP 25 28 30 35 36 42 45 49 54 55 56 63
i 2 3 2 3 4 3 4 3 4 5 3 4
j 1 1 1 1 1 1 1 1 1 1 1 1
s 5 4 6 5 4 6 5 7 6 5 8 7
CRP 6.67 7 7.67 8 8.33 9 9.33 10 10.33 10.67 11 11.33

Table 3: Approximation order dRP if the mixed rational and polynomial approximation
tijs(A) from Section 2.3 reproduces the dRP first terms of the Taylor series of a given
function f , cost in terms of matrix products CRP for the mixed rational and polynomial
approximation tijs(A), taking D = 4/3M , and values of i, j and s, that maximize dRP for
a given cost.

Example 3.1. Let

y02(A) = A2(c4A
2 + c3A), (14)

y12(A) = (y02(A) + d2A
2 + d1A)(y02(A) + e2A

2) (15)

+e0y02(A) + f2A
2 + f1A+ f0I,

where c4, c3, d2, d1, e2, e0, f2, f1 and f0 are scalar coefficients. In order to
evaluate a matrix polynomial (3) of degree m = 8, taking y12(A) = Pm(A)
and equating the coefficients of the matrix powers Ai, i = 8, 7, . . . , 0, the
following system of equations arises

c4c4A
8 = b8A

8, (16)

2c3c4A
7 = b7A

7, (17)

(c4(d2 + e2) + c3c3)A
6 = b6A

6, (18)

(c4d1 + c3(d2 + e2))A
5 = b5A

5, (19)

(d2e2 + c3d1 + c4e0)A
4 = b4A

4, (20)

(d1e2 + c3e0)A
3 = b3A

3, (21)

f2A
2 = b2A

2, (22)

f1A = b1A, (23)

f0I = b0I. (24)

Note that for clarity the coefficient indices were chosen so that the sum
of the indices is equal to the exponent of the power of A that coefficient is
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multiplying. For instance, for (16) one gets 4 + 4 = 8, for (17) one gets
3 + 4 = 7, for (18) one gets 4 + 2 = 6 and 3 + 3 = 6, and so on.

We can solve the previous system using the equations (16)-(24) from top
to bottom. Using (16)-(19), one gets

c4 = ±
√
b8, (25)

c3 = b7/(2c4), (26)

d2 + e2 = (b6 − c23)/c4, (27)

d1 = (b5 − c3(d2 + e2))/c4. (28)

If b8 6= 0 then c4 6= 0 and therefore c4, c3, the sum d2 + e2 and d1 can be
obtained explicitly. From now on we will denote de2 = d2 + e2 to simplify the
notation and to remark that this quantity can be computed explicitly. Using
(20) it follows that

e0 = (b4 − c3d1 − de2e2 + e22)/c4, (29)

where using (25)-(28) e0 is a polynomial of second order in the variable e2.
Hence, using (21) and (29) one gets

d1e2 + c3e0 = b3 ⇒ −b3 + d1e2 + c3(b4 − c3d1 − de2e2 + e22)/c4 = 0 (30)

which is an equation of second order in the variable e2, and therefore, using
(25)-(28), the equation on the right-hand side of (30) has the solutions

e2 =

c3
c4
de2 − d1 ±

√(
d1 − c3

c4
de2

)2
+ 4 c3

c4

(
b3 +

c23
c4
d1 − c3

c4
b4

)
2c3/c4

, (31)

i.e., two solutions if we take c4 =
√
b8 from (25), and other two solutions if

we take c4 = −
√
b8. Substituting the four solutions of e2 in (27) and (29),

four solutions are obtained for d2 = de2 − e2 and e0, respectively, and from
(22)-(24) it follows that

f2 = b2, f1 = b1, f0 = b0. (32)

The cost of evaluating (15) is 3M , i.e. one matrix product to compute
and store A2, and then two matrix products to compute (14) and (15), being
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exp cos
c4 4.980119205559973×10−3 2.186201576339059×10−7

c3 1.992047682223989×10−2 -2.623441891606870×10−5

d2 7.665265321119147×10−2 6.257028774393310×10−3

d1 8.765009801785554×10−1 -4.923675742167775×10−1

e2 1.225521150112075×10−1 1.441694411274536×10−4

e0 2.974307204847627×100 5.023570505224926×101

Table 4: One possible choice for the coefficients in (14) and (15) for Taylor approximation
of exponential and cosine of order m = 8.

y12(A) a polynomial of degree 8. From Table 1, the polynomial of maximum
degree that can be computed with Horner and Paterson–Stockmeyer methods
and cost 3M is the lower value dPS = 6.

Table 4 shows one of the four solutions in IEEE double precision arith-
metic for the coefficients of the Taylor approximation of the exponential
and cosine, where bi = 1/i!, and bi = (−1)i/(2i)!, respectively, for i =
0, 1, . . . , 8. Note that all the four solutions are real, avoiding complex arith-
metic if A ∈ Rn×n. In order to check the stability of the double precision
arithmetic solutions ci, di and ei from Table 4, they were substituted in
equations (16)-(21) to compute the relative error for each coefficient bi, for
i = 3, 4, . . . , 8. For instance, from (21) it follows that the relative error for
b3 is |b3 − (d1e2 + c3e0)|/|b3|.We checked that all the relative errors for all
bi, for i = 3, 4, . . . , 8, were below the unit roundoff in IEEE double precision
arithmetic, i.e. u = 2−53 ≈ 1.11× 10−16.

Note that if we take

y12(A) = (y02(A)+d2A
2+d1A)(y02(A)+e2A

2+e1A)+f2A
2+f1A+f0I, (33)

instead of (15), the four solutions for the corresponding coefficients for the
exponential and cosine Taylor approximations of order m = 8 are complex.
Therefore, if A is real, using (33) instead of (15) is not efficient for the
computation of either matrix function since it is necessary to use complex
arithmetic for evaluating (33).
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Following Example 3.1 we can take in general

y0s(A) = As

s∑
i=1

cs+iA
i, (34)

y1s(A) =

(
y0s(A) +

s∑
i=1

diA
i

)(
y0s(A) +

s∑
i=2

eiA
i

)

+e0y0s(A) +
s∑

i=0

fiA
i, (35)

where Ai, i = 2, 3, . . . , s, can be computed once and stored to be reused in
all the computations, and, then, y1s(A) is a matrix polynomial of degree,
denoted by dy1s , and computing cost, denoted by Cy1s

dy1s = 4s, Cy1s = s+ 1, s = 2, 3, . . . . (36)

Note that (14) and (15) are a particular case of (34) and (35) where s = 2.
Again, in order to evaluate a matrix polynomial Pm(A) of degree m = 4s, we
take y1s(A) = Pm(A), and equate the coefficients of the matrix powers Ai,
i = m,m−1, . . . , 0, from y1s(A) and Pm(A). The solution for the coefficients
taking s = 2 is given in Example 3.1, where the substitution of variables gives
a polynomial equation in es = e2 of degree 2 with the exact solution given by
(31). In the following a general solution is given for s > 2. The s equations
corresponding to the coefficients of the powers A4s−k, for k = 0, 1, . . . , s− 1
are, respectively

k∑
i=0

c2s−ic2s+i−k = b4s−k, k = 0, 1, . . . , s− 1. (37)

Since (37), is a triangular system, if b4s 6= 0 then c2s 6= 0 and it follows that:

c2s = ±
√
b4s

c2s−1 = b4s−1/(2c2s), (38)

c2s−k = (b4s−k −
k−1∑
i=1

c2s−ic2s+i−k)/(2c2s), k = 2, 3, . . . , s− 1.

Note that if b4s < 0, to prevent c2s from being complex we can compute
y1s(A) = −Pm(A) using (35), where c2s = −b4s > 0 which gives Pm(A) =
−y1s(A).
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Taking again dei = di + ei for abbreviation, and de1 = d1, since there is
no coefficient e1 in (35), the equations corresponding to the coefficients of
powers A3s−k, for k = 0, 1, . . . , s− 1, are, respectively

s∑
j=s−k

c3s−k−jdej +
s−k−1∑
i=1

c2s−k−ics+i = b3s−k, k = 0, 1, . . . , s− 2, (39)

s∑
j=s−k

c3s−k−jdej = b3s−k, k = s− 1,

and using (38) it follows that

des = (b3s −
s−1∑
i=1

c2s−ics+i)/c2s,

des−k = (b3s−k −
s∑

j=s+1−k

c3s−k−jdej −
s−1−k∑
i=1

c2s−k−ics+i)/c2s, (40)

k = 1, 2, . . . , s− 2,

d1 = (b2s+1 −
s∑

j=2

c2s+1−jdej)/c2s,

where, if c2s 6= 0, each sum dei = di+ei, i = s, s−1, . . . , 2, and the coefficient
d1 can be obtained explicitly using the coefficients ci, i = s+ 1, s+ 2, . . . , 2s
obtained from (38).

The equations corresponding to the coefficients of powers A2s−k, for k =
0, 1, . . . , s− 1, are

k∑
i=0

ds−ies−k+i + gk + e0c2s−k = b2s−k, k = 0, 1 . . . , s− 1, (41)

where

gk =
s−1−k∑
i=1

cs+ides−i−k, k = 0, 1, . . . , s− 2, gs−1 = 0, (42)

and the coefficients gk can be computed explicitly using (38) and (40).
Using (41) with k = 0 it follows that

esdes − e2s + g0 + e0c2s = b2s ⇔ e0 = (b2s − g0 − esdes + e2s)/c2s, (43)
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provided that c2s 6= 0. Hence, since des, g0 and c2s can be computed using
(38) and (40), the coefficient e0 is a polynomial of second order in the variable
es. Using now (41) with k = 1 one gets

es−1(des − 2es) + esdes−1 + g1 + e0c2s−1 = b2s−1, (44)

and then if ds 6= es it follows that des − 2es = ds − es 6= 0 and

es−1 = (b2s−1 − g1 − e0c2s−1 − esdes−1)/(des − 2es), (45)

where es−1 is a rational function of es, since by (43) e0 is a polynomial of
es of second order, and all the remaining quantities can be computed using
(38), (40) and (42). Note that analogously, using (41) with k = 2 it follows
that

es−2(des − 2es) + esdes−2 + es−1des−1 − e2s−1 + g2 + e0c2s−2 = b2s−2, (46)

and then, again if ds 6= es it follows that

es−2 = (b2s−2 − g2 − e0c2s−2 − esdes−2 − es−1des−1 + e2s−1)/(des − 2es), (47)

where similarly es−2 is also a rational function of es since by (43) and (45)
one gets that e0 is a polynomial of es, and es−1 is a rational function of es,
and all the remaining quantities can be computed using (38), (40) and (42).
Note that from (45) and (47) it follows that the rational function es−2 has
denominator (des − 2es)

3.
Analogously, it is easy to show that

es−k =
(
b2s−k − gk − e0c2s−k − esdes−k

−
dk/2e−1∑

i=1

(
es−ides−k+i − es−k+i(des−i − 2es−i)

)
(48)

+

 0
)
/(des − 2es), odd k, 2 < k ≤ s− 2,

−es−k/2des−k/2 − e2s−k/2
)
/(des − 2es), even k, 2 < k ≤ s− 2,

(49)

where es−k is also a rational function of es with denominator (des − 2es)
ik,s

where ik,s > 0 is an integer number depending on k and s.
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The last equation of this group is

0 = −bs+1 + e0cs+1 + esd1 +

ds/2e−1∑
i=1

(es−ide1+i − e1+i(des−i − 2es−i))

+

{
0, even s > 2,
−e s+1

2
de s+1

2
− e2s+1

2

, odd s > 2, (50)

Using the expressions (45), (47) and (48) obtained for es−k, for k =
1, 2, . . ., s−2, as rational functions of es and e0 in (43) as a polynomial of es,
it follows that expression (50) is a rational function of es, and multiplying it
by (des − 2es)

is , where is is an integer number depending on s, expression
(50) can be written as a polynomial of es, provided that des − 2es = ds −
es 6= 0. Hence, it has as many solutions as the resulting polynomial degree.
Substituting these solutions in the expressions (45), (47) and (48) obtained
for es−k, k = 1, 2, . . . , s − 2, and e0 from (43) the coefficients e0 and es−k,
k = 1, 2, . . . , s − 2, can be obtained. The coefficients di, for i = 1, 2, . . . , s,
can be obtained using the coefficients ei, for i = 0, 2, 3, . . . , s, and (40). The
solution for the coefficients with s = 3 and s = 4 gives polynomial equations
in the variable es of degrees 4 and 6, respectively, and for s ≥ 5 larger degree
polynomials are obtained, and then, there are even more solutions for es.

Finally, from the equations involving Ai, for i = s, s− 1, . . . , 0, it is easy
to show that

fs−k = bs−k −
s−k−2∑
i=1

dies−k−i (51)

fi = bi, i = 2, 1, 0.

Using (36) and Table 1, Table 5 shows the maximum orders that can be
achieved for a given cost C(M) in terms of matrix products with Horner
and Paterson–Stockmeyer methods and the method given by y1s(A) using
(34) and (35). Note that y1s(A) allows to evaluate a polynomial of degree
greater than Horner and Paterson–Stockmeyer methods for a cost from 3M
to 9M , i.e. polynomial degrees from dy1s = 8 to 32 corresponding to s =
2, 3, . . . , 8, in y1s(A). We checked that there were at least 4 real solutions for
all the coefficients in (34) and (35) when y1s(A) was equal to the exponential
and cosine Taylor approximations of the corresponding degrees dy1s , avoiding
complex arithmetic if A is a real square matrix.
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C(M) 3 4 5 6 7 8 9 10 11 12
dPS 6 9 12 16 20 25 30 36 42 49
dy1s 8 12 16 20 24 28 32 36 40 44

Table 5: Order of the approximation dPS that can be achieved using Horner and Paterson–
Stockmeyer methods and order dy1s

using method given by (34) and (35) for a given cost
C in terms of matrix products.

3.1. Combination of y1s(A) with Horner and Paterson–Stockmeyer methods

The following proposition combines Horner and Paterson–Stockmeyer
evaluation formula (4) with (35) to increase the degree of the resulting poly-
nomial to be evaluated:

Proposition 1. Let z1ps(x) be

z1ps(x) =
((
· · ·
(
y1s(x)xs + ap−1x

s−1 + ap−2x
s−2 + . . .+ ap−s+1x+ ap−s

)
× xs + ap−s−1x

s−1 + ap−s−2x
s−2 + . . .+ ap−2s+1x+ ap−2s

)
× xs + ap−2s−1x

s−1 + ap−2s−2x
s−2 + . . .+ ap−3s+1x+ ap−3s

)
...

×xs + as−1x
s−1 + as−2x

s−2 + · · ·+ a1x+ a0, (52)

where p is a multiple of s and y1s(x) is computed with (34) and (35). Then
the degree of z1ps(x) and its computational cost for x = A ∈ Cn×n are

dz1ps = 4s+ p, Cz1ps = (1 + s+ p/s)M. (53)

Proof. The value of dz1ps follows from (36) and (52). For the value of Cz1ps

note that the matrix powers Ai, i = 2, 3, . . . , s, to be evaluated for Horner and
Paterson–Stockmeyer evaluation formulas can be reused to compute y1s(A),
and note also that one matrix product is needed to compute y1s(A)As in
(52). Then, if p is a multiple of s, using (36) and (52) it follows the value of
Cz1ps in (53). �

If we apply the evaluation formula (52) to evaluate a polynomial of degree
m+ p, i.e. Pm+p(A), it follows that

z1ps(A) = y1s(A)Ap +

p−1∑
i=0

aiA
i = Pm+p(A) =

m+p∑
i=0

biA
i. (54)
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m 8 12 16 20 20 25 30 30 36 42 42 49 56 56 · · ·
s 2 3 4 4 5 5 5 6 6 6 7 7 7 8 · · ·
p 0 0 0 4 0 5 10 6 12 18 14 21 28 24 · · ·
CPS(M) 4 5 6 7 7 8 9 9 10 11 11 12 13 13 · · ·
Cz1ps(M) 3 4 5 6 6 7 8 8 9 10 10 11 12 12 · · ·

Table 6: Parameters s and p for z1ps(x) from (52) to obtain the same approximation order
m as Horner and Paterson–Stockmeyer methods with a saving of 1 matrix product, where
CPS is the cost for evaluating (4) and Cz1ps is the cost for computing z1ps(x), both costs
in terms of matrix products. The first row shows the maximum values of m obtained in
z1ps(x) for a given number of matrix products.

Therefore, the coefficients ai, i = 0, 1, . . . , p−1, are directly the corresponding
coefficients bi, i = 0, 1, . . . , p− 1, from (54), and the coefficients from y1s(A)
can be obtained changing bi to bi+p in (38), (40), (43), (45), (47), (48), (50),
(51).

Using (53) Table 6 shows the parameters s and p to evaluate a polynomial
of maximum degree m for a given cost using z1ps(A) from (52), and it is
compared to the cost of Paterson–Stockmeyer method for the same values
of m. Except for m = 8, all the values are in the set m∗ from Table 1,
and for all of them one matrix product is saved with respect to using only
the Paterson–Stockmeyer method. The evaluation scheme z1ps(A) allows to
evaluate polynomials of higher degree than that of the Paterson–Stockmeyer
method for a cost greater than or equal to 3M . Note that for a cost lower
than or equal to 5M the maximum degree is obtained using

z1,p=0, s(A) = y1s(A), (55)

from (35). Therefore, z1ps(A) can be considered as a generalization of y1s(A).
In order to evaluate polynomials of degrees different from those given in

Table 6 other combinations z1ps(A) of the new method with the Paterson–
Stockmeyer method can be used, where p is not a multiple of s. For instance,
a polynomial of degree m = 23 can be written as

P23(x) = z1,7,4(A) = (y1,4(x)x3 + a6x
2 + a5x+ a4)x

4 + a3x
3 + a2x

2 + a1x+ a0,
(56)

where the coefficients of y1,4(x) can be obtained similarly to those of y1s(x)
in (54).
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c10 -6.140022498994532×10−17 e4 -2.785084196756015×10−9

c9 -9.210033748491798×10−16 e3 -4.032817333361947×10−8

c8 -1.980157255925737×10−14 e2 -5.100472475630675×10−7

c7 -4.508311519886735×10−13 e0 -1.023463999572971×10−3

c6 -1.023660713518307×10−11 f5 4.024189993755686×10−13

d5 -1.227011356117036×10−10 f4 7.556768134694921×10−12

d4 -6.770221628797445×10−9 f3 1.305311326377090×10−10

d3 -1.502070379373464×10−7 f2 2.087675698786810×10−9

d2 -3.013961104055248×10−6 f1 2.505210838544172×10−8

d1 -5.893435534477677×10−5 f0 2.755731922398589×10−7

e5 -3.294026127901678×10−10

Table 7: One real solution for coefficients from (34) and (35) for computing Taylor ap-
proximation of the exponential of order m = 30 with (52) taking s = 5 and p = 10. Note
that in this case coefficients in (54) are bi = 1/i!, i = 0, 1, . . . , 30.

Example 3.2. Table 7 presents one solution for the coefficients for an exam-
ple of z1ps(x) from (52) combining (34) and (35) with Horner and Paterson–
Stockmeyer methods with p = 10 and s = 5 to compute Taylor approximation
of the matrix exponential of order m = 30.

From (53) the cost of computing z1,10,5(A) is Cz1,10,5 = 8M , 1 matrix
product less than using Horner and Paterson–Stockmeyer methods, see Table
6.

Analogously, using z1ps(x) from (52) with (34) and (35), we computed the
coefficients from (34) and (35) for computing Taylor exponential and cosine
approximation polynomials for all the approximation orders m in Table 6
up to approximation order m = 81. This process gave always several real
solutions for all the coefficients involved. The maximum degree used in the
Taylor approximation of the matrix exponential in double precision arithmetic
from [6] is m = 30, and in the matrix cosine in [8] is m = 16. Note that
the values from Table 7 can be directly used to evaluate Taylor approximation
of order m = 30 in the algorithm from [6]. We also checked that using
z1,p=0, s(A) = y1s(A) from (35) gave also real coefficients for computing Taylor
exponential and cosine approximation polynomials with s = 2, 3, 4. Hence,
if A is a real square matrix, using z1ps(A) we can compute the exponential
and cosine approximations using real arithmetic saving 1M with respect to
the algorithms in [6, 8] for Taylor polynomial degrees m ∈ m∗ from Table 1,
m ≥ 12.

Finally, similarly to Example 3.1 we checked the stability of the solutions
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of the coefficients in IEEE double precision arithmetic from Table 7, substi-
tuting them in the system of equations (37), (39) taking dei = di+ei where di
and ei are the values from Table 7, (41) and (51). Analogously, in all cases
the relative error |bi−1/i!|i!, i = p, p+1, . . . ,m+p, see (54), was lower than
the unit roundoff u.

In a similar way we also checked the stability for the computation of the
exponential Taylor polynomial approximation for all the degrees m from Table
6 up to m = 81 obtaining the following results:

• There were 4 real solutions for all orders except for m = 25, with 12
real solutions, m = 49, 64, and 56 (with parameters s = 8, p = 24)
with 8 real solutions, and m = 42 (with p = 14, s = 7) with 20 real
solutions.

• The solutions for es were in decreasing module from m = 12 with |es|
of order 10−2 to m = 81 with |es| of order 10−44.

• In the case m = 42 (with p = 14, s = 7) the 20 solutions had all
positive values es ∈ [2.23× 10−16, 8.07× 10−16]. Taking the solutions
es in double precision arithmetic, from the 20 solutions there were 12
solutions that gave a maximum relative error for all coefficients bi less
than 3u, being stable. However, 8 solutions showed certain signs of
instability, giving a maximum relative error for coefficients bi between
5.04×10−12 and 2.99×10−10 > u. Therefore, it is important to select a
solution for es in double precision arithmetic that gives relative errors
for all coefficients bi of order u.

We checked also the stability for the Taylor approximation of the matrix
exponential in all the cases from Table 5 and found that the worst case
was m = 28 with s = 7. This is not a case of practical use since, from
Table 5 it has a cost 8M , and from Table 6, using z1ps(A) with p = 10
and s = 5 gives the greater order m = 30 for the same cost, and that
option was checked above to be stable. However, we checked its stability
as a worst case study. This case gave 3 real solutions, where one of
them had multiplicity 10. For the coefficients using the two solutions
es with multiplicity 1 the maximum relative errors for all coefficients
bi where of order 10−15 > u. We also checked the scalar case A = 1,
giving relative errors | exp(1) − y1,s=7(1)|/ exp(1) = 4.36 × 10−16 and
3.70×10−15, respectively. However, using the solution with multiplicity
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10 gave a maximum relative error 10.75 ≫ u for coefficient b8. For
the rest of coefficients the maximum relative error was 1.49 × 10−14,
and for | exp(1)− y1,s=7(1)|/ exp(1) = 9.81× 10−5, so the accuracy was
much lower when using the solution of es with multiplicity 10.

Therefore, it is necessary to check the stability of the solutions for es
before using the method to evaluate a given polynomial. In general, we
propose to select the solution for es in double precision arithmetic that
gives the lowest maximum relative error for all coefficients bi. If there is
no solution giving relative errors of order u for a given polynomial with
degree m, a different parameter selection from Tables 6 and 5 should be
tested, since in Table 5 for m > 16 there are two possibilities for p and
s that gives each value of m.

4. Comparison with existing methods

Using (36), (53) and Tables 1, 2 and 3, 5 and Table 6, it follows Table 8
that shows the approximation orders that can be obtained with Taylor poly-
nomial approximations evaluated using Horner and Paterson–Stockmeyer
methods PSm(A), y1s(x) from (35), z1ps(A) from (52), Padé rational ap-
proximation from Section 2.2, and the mixed rational and polynomial ap-
proximation from Section 2.3, for a given cost in terms of matrix products, if
each approximation reproduces the first terms of the Taylor series of a given
function f , whenever all the approximations exist. Note that the cost of
solving the multiple right-hand side linear system in rational approximations
was taken as 4/3M .

Table 8 shows that the polynomial approximation that allows for the
highest approximation order is y1s(A) for a cost C ≤ 6M and z1ps(A) for C ≥
3M . Note that in Section 3.1 for C ≤ 5M we took z1ps(A) = z1,p=0,s(A) =
y1s(A), see (55). Hence, the approximation orders allowed by z1ps(A) for C ≥
3M are higher than the approximation orders available with both Paterson–
Stockmeyer and rational Padé method. The highest order for C ≥ 6M is
given by the mixed rational and polynomial approximation tijs(A) (10). In
the following section particular examples are given in order to increase the
efficiency of polynomial approximations even more.
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C(M) PSm(A) y1s(A) z1ps(A) CR(M) rmm(A) CRP (M) tijs(A)
3 6 8 8 3.33 6 3.33 9
4 9 12 12 4.33 8 4.33 12
5 12 16 16 5.33 12 5.33 16
6 16 20 20 6.33 16 6 21
7 20 24 25 7.33 20 7 28
8 25 28 30 8.33 24 8 35
9 30 32 36 9.33 30 9 42
10 36 36 42 10.33 36 10 49
11 42 40 49 11.33 42 11 56

Table 8: Maximum approximation orders if any of the approximations reproduce the first
terms of the Taylor series of a given function f for a given cost C for polynomial ap-
proximations, CR for rational approximations and CRP for mixed rational and polynomial
approximants, where rational approximations are computed as in Section 2.2 and mixed
rational and polynomial approximants are evaluated as in Section 2.3. The polynomial
approximations considered are Horner and Paterson–Stockmeyer PSm(A) from Section
2.1, and y1s(A) and z1ps(A) from Section 3. Bold style is applied to the maximum degrees
over all polynomial approximations, and to tijs(A) when it provides the maximum degree
over all approximations with an integer cost.

5. General expressions

This section gives examples that suggest new general expressions for eval-
uating matrix polynomials more efficiently than the evaluation schemes given
in Section 3.

Example 5.1. Consider

y02(A) = A2(c16A
2 + c15A), (57)

y12(A) = (y02(A) + c14A
2 + c13A)(y02(A) + c12A

2 + c11I) + c10y02(A),(58)

y22(A) = (y12(A) + c9A
2 + c8A)(y12(A) + c7y02(A) + c6A)

+c5y12(A) + c4y02(A) + c3A
2 + c2A+ c1I, (59)

where the coefficients are numbered correlatively and A2 is computed once
and stored to be reused in all the computations. It is easy to show that the
degree of polynomial y22(A) is m = 16 and it can be evaluated with a cost
Cy22 = 4M .

Using function solve from MATLAB Symbolic Math Toolbox, Table 9
gives one solution for the coefficients to compute the exponential Taylor ap-
proximation Pm(A) of order m = 15, i.e. bi = 1/i!, i = 0, 1, . . . , 15. For the
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c16 4.018761610201036×10−4 c8 2.116367017255747×100

c15 2.945531440279683×10−3 c7 -5.792361707073261×100

c14 8.712167566050691×10−2 c6 -1.491449188999246×10−1

c13 4.017568440673568×10−1 c5 1.040801735231354×101

c12 -6.352311335612147×10−2 c4 -6.331712455883370×101

c11 2.684264296504340×10−1 c3 3.484665863364574×10−1

c10 1.857143141426026×101 c2 -1.224230230553340×10−1

c9 2.381070373870987×10−1 c1 1

Table 9: Coefficients of y02, y12, y22 from (57)-(59) for computing the matrix exponential
Taylor approximation of order m = 15.

solution given in Table 9 if we write y22(A) as a polynomial Pm(A) of degree
m = 16 the relative error for b16 with respect to the corresponding Taylor
polynomial coefficient is

(b16 − 1/16!)16! = −0.454, (60)

showing three significant digits.
We selected different possibilities for a new coefficient c0 added in (57)-

(59), trying compute the matrix exponential and the matrix cosine Taylor
approximations of order 16, for instance changing (58) for

y12(A) = (y02(A)+c14A
2+c13A+c0I)(y02(A)+c12A

2+c11I)+c10y02(A), (61)

and other options. However, sometimes MATLAB could not find an explicit
solution for the coefficients, and the other times MATLAB gave solutions
with numeric instability.

Note that in Example 5.1 the degree of yk,2(A), k = 1, 2, is twice the de-
gree of the polynomial yk−1,2(A), increasing the cost by just 1M when com-
puting yk,2(A) using yk−1,2(A). Therefore, the polynomial degree increases
exponentially while the cost increases linearly. Following this idea Proposi-
tion 2 gives expressions yks(A), k ≥ 1 more general than (34) and (35) where
the degree of the polynomial yks(A) is twice the degree of the polynomial
yk−1,s(A), k ≥ 1, while the cost increases by 1M when computing yks(A)
using yk−1,s(A):
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Proposition 2. Let

y0s(x) = xs
s∑

i=1

c
(0,1)
i xi +

s∑
i=0

c
(0,2)
i xi, (62)

y1s(x) =

(
0∑

i=0

c
(1,1)
i yis(x) +

s∑
i=0

c
(1,2)
i xi

)(
0∑

i=0

c
(1,3)
i yis(x) +

s∑
i=0

c
(1,4)
i xi

)

+
0∑

i=0

c
(1,5)
i yis(x) +

s∑
i=0

c
(1,6)
i xi, (63)

y2s(x) =

(
1∑

i=0

c
(2,1)
i yis(x) +

s∑
i=0

c
(2,2)
i xi

)(
1∑

i=0

c
(2,3)
i yis(x) +

s∑
i=0

c
(2,4)
i xi

)

+
1∑

i=0

c
(2,5)
i yis(x) +

s∑
i=0

c
(2,6)
i xi, (64)

...

yks(x) =

(
k−1∑
i=0

c
(k,1)
i yis(x) +

s∑
i=0

c
(k,2)
i xi

)(
k−1∑
i=0

c
(k,3)
i yis(x) +

s∑
i=0

c
(k,4)
i xi

)

+
k−1∑
i=0

c
(k,5)
i yis(x) +

s∑
i=0

c
(k,6)
i xi, (65)

where yks(x) is a polynomial of x. Then, the maximum polynomial degree,
denoted by dyks, and the computing cost if x = A, A ∈ Cn×n in terms of
matrix products, denoted by Cyks are given by

dyks = 2k+1s, Cyks = (s+ k)M, (66)

Proof. From (62), the maximum degree of the polynomial y0s(x) is 2s.
Then using (62)-(65) the maximum degree of yis(x), i ≤ k is 2(i+1)s.

If x = A, A ∈ Cn×n, then the cost of computing yks(A) is s − 1 matrix
products for computing Ai, for i = 2, 3, . . . , s, and one matrix product in
each iteration from (62)-(65), i.e. k + 1. Therefore, Cyks = (s+ k)M . �

Note that (34) and (35) are particular cases of Proposition 2 where k = 1

and some coefficients c
(l,j)
i , l = 0, 1, in (62) and (63) are zero. Similarly,

(57)-(59) are particular cases of (62)-(64) where k = 2, s = 2 and some

coefficients c
(l,j)
i , l = 0, 1, 2, are also zero.
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If we write (65) in powers of x as

yks(x) =
m∑
i=0

aix
i, (67)

then ai, i = 0, 1, . . . ,m, are functions of the coefficients c
(l,j)
i , for all i, j, l in

(62)-(65). Hence, it is possible to evaluate matrix polynomial Pm(A) using
(62)-(65) if the system of equations

am(c
(l,j)
i ) = bm,

am−1(c
(l,j)
i ) = bm−1, (68)

...

a0(c
(l,j)
i ) = b0,

for all coefficients c
(l,j)
i from (62)-(65) involved in each coefficient ai, i =

0, 1, . . . ,m, has at least one solution, where bi are the polynomial coefficients
of Pm(A). We have obtained a general solution for evaluating polynomials
using (34) and (35) corresponding to particular cases of (62) and (63). And
we obtained one solution for computing the exponential Taylor approxima-
tion of order 15 with (57)-(59). Future work is addressed to obtain general
solutions for evaluating matrix polynomials of different degrees using (62)-
(65), and to study if at least there are particular solutions for evaluating
polynomials such that the Taylor polynomial approximation of certain de-
grees for different matrix functions. That is the case of Example 5.1 which
provides formulas for computing the exponential Taylor approximation poly-
nomial of order m = 15 with a cost C = 4M . From Table 8 it follows that
with a cost of 4M Paterson–Stockmeyer method allows to compute the ma-
trix exponential Taylor approximation polynomial of order only m = 9, Padé
rational method rmm(A) allows an order less than 8, the mixed rational and
polynomial approximation tijs(A) allows an order less than 12, and the new
method based on (34) and (35) allows an order m = 12.

In the following example we consider the computation of the Taylor ex-
ponential approximation of order 16 by using the product of two polynomials
of degree 8, both evaluated using (14) and (15).

Example 5.2. Let

h2m1(A) = Pm1(A)P ′m1
(A) + β0 =

m1∑
i=0

biA
i

m1∑
i=0

b′iA
i + β0, (69)
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b8 2.186201576339059×10−7 b′8 2.186201576339059×10−7

b7 9.839057366529322×10−7 b′7 2.514016785489562×10−6

b6 1.058964584814256×10−5 b′6 3.056479369585950×10−5

b5 1.554700173279057×10−4 b′5 3.197607034851565×10−4

b4 2.256892506343887×10−3 b′4 2.585006547542889×10−3

b3 2.358987357109499×10−2 b′3 1.619043970183846×10−2

b2 1.673139636901279×10−1 b′2 8.092036376147299×10−2

b1 7.723603212944010×10−1 b′1 3.229486011362677×10−1

b0 3.096467971936040×100 β0 1

Table 10: Coefficients from (69) for computing the matrix exponential Taylor approxima-
tion of order m = 16 where coefficient b′8 = b8 and b′0 = 0.

c4 4.675683454147702×10−4 c′4 4.675683454147702×10−4

c3 1.052151783051235×10−3 c′3 2.688394980266927×10−3

d2 -3.289442879547955×10−2 d′2 2.219811707032801×10−2

d1 2.868706220817633×10−1 d′1 3.968985915411500×10−1

e2 5.317514832355802×10−2 e′2 2.771400028062960×10−2

e0 7.922322450524197×100 e′0 1.930814505527068×100

f2 1.673139636901279×10−1 f ′2 8.092036376147299×10−2

f1 7.723603212944010×10−1 f ′1 1.614743005681339×10−1

f0 3.096467971936040×100 f ′0 0

Table 11: Coefficients from system (16)-(24) for evaluating polynomials y1(A) = Pm1(A)
and y′1(x) = P ′m1

(A) from (69) with coefficients given by Table 10. Note that f ′0 = 0 since
y′1(0) = b′0 = 0.

where we took m1 = 8, b′8 = b8, b
′
0 = 0 and h2m1(0) = β0, and, therefore,

Pm1(A) and P ′m1
(A) are both polynomials as (3) of degree 8, and h2m1(A)

can be written as a polynomial of degree 16 with 17 coefficients, i.e. bi,
i = 0, 1, . . . , 8, b′i, i = 1, . . . , 7 and β0. Using the MATLAB Symbolic Math
Toolbox solve function, Table 10 presents one solution for the coefficients of
an example where h2m1(A) =

∑16
i=0A

i/i!, i.e. the exponential Taylor polyno-
mial approximation of degree m = 16.

Note that one can evaluate both polynomials Pm1(A) and P ′m1
(A) using

an evaluation scheme (14) and (15), see Example 3.1. Finally, from (69) it
follows that β0 = 1 so that h2m1(0) = exp(0) = 1. Table 11 shows one solution
for the coefficients from (16)-(24) using (25)-(32) taking y1s(A) = Pm1(A),
and the coefficients taking y′1s(A) = P ′m1

(A), corresponding to c′4, c
′
3, d

′
2, d

′
1,

e′2, e
′
0, f ′2, f

′
1 and f ′0.
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C(M) 6 7 8 9 10 11 12
dPS 16 20 25 30 36 42 49
dz1ps 20 25 30 36 42 49 56
dhm1

16 24 32 40 48 56 64

Table 12: Order of the approximation dPS that can be obtained using Horner and
Paterson–Stockmeyer methods, order dz1ps that can be obtained using z1ps(A) from (52),
and order dhm1

that can be obtained using method given by hm1
(A) from (69), using (34)

and (35) for evaluating the polynomials therein, for a given cost C in terms of matrix
products, whenever the solutions for the coefficients from (69), (34) and (35) exist.

In general, if we evaluate both polynomials Pm1(A) and P ′m1
(A) by using

(34) and (35) with m1 = 4s, if there exists a solution for the coefficients bi
and b′i for Pm1(A) and P ′m1

(A), using (36) the degree of the matrix polynomial
h2m1(A) and its computing cost are

dh2m1
= 8s, Ch2m1

= (s+ 4)M. (70)

Table 12 shows the comparison of the polynomial degrees that can be
obtained by Horner and Paterson–Stockmeyer methods, z1ps(A) from (52)
and h2m1(A) given by (69) varying m1, for a given cost, whenever a solution
for all the coefficients involved in h2m1(A) exists. Since for C > 6M they
would be more efficient than Paterson–Stockmeyer method and for C > 7M
they would be more efficient than the method given by (52), it is worth
studying if there exist evaluation schemes like (69) in general, or if at least
they exist for the polynomial approximation of specific matrix functions or
for the evaluation of matrix polynomials in the applications. Moreover, in
order to obtain a polynomial degree equal to 2m1, note that one can think
of other possibilities to have 2m1 + 1 coefficients in h2m1(A) different from
selecting bm1 = b′m1

and b′0 as in Example 5.2.
Note that similarly to Section 3.1 Paterson–Stockmeyer method can be

combined with any other method proposed above. And analogously to Ex-
ample 5.2, we can also obtain new methods for evaluating matrix polynomi-
als and matrix polynomial approximations using products of the evaluation
schemes proposed above whenever a solution for the all the coefficients in-
volved exists. The same powers Ai, i = 1, 2, . . . , s, should be used in each
evaluation scheme involved, so that they can be reused in all the computa-
tions. It is important to note that even in the case of the well known Padé
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approximations, for a given function f, k and m, a [k/m] Padé approximant
rk,m might not exist, see Section 2.2. Therefore, the existence of particular
cases of the methods proposed in this section for computing matrix functions
arising often in the applications is useful if they are more efficient than the
existing methods in those concrete cases. That is the case of Example 5.1
with the matrix exponential Taylor approximation of order 15 which can be
computed with just 4M .

6. Conclusions

This paper proposes the new general evaluation schemes for matrix poly-
nomials given by y0s(A) (34), y1s(A) (35) and z1ps(A) (52), and a method to
check their stability was given. It was shown that these evaluation schemes
allow to evaluate polynomials of degree higher than that of the Paterson–
Stockmeyer method for the same cost. It was also shown that they provide
a greater Taylor approximation order than diagonal Padé approximation for
the same cost. Moreover, the new evaluation schemes are more efficient than
the recent mixed rational and polynomial approximation from [9] for several
orders of approximation.

Through Examples 5.1 and 5.2, we suggest the study of more general poly-
nomial evaluation schemes that can be even more efficient, and applications
to the Taylor approximation of matrix functions were given.

With the proposed methods we can state that the combination of Horner
and Paterson–Stockmeyer methods is no longer the most efficient general
method for evaluating matrix polynomials, and that Padé approximations
are no longer more accurate than polynomial approximations for the same
cost either.

Future work is:

• To determine if it is possible to find general solutions for evaluating
matrix polynomials using (62)-(65) with s ≥ 2 and k ≥ 2, or at least
particular solutions for cases of interest as in Example 5.1.

• To study if there are general solutions, or at least particular solutions
for the matrix polynomial evaluation using products of the new pro-
posed matrix polynomial evaluation schemes, similarly to Example 5.2.
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