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Abstract: Let R be a unital ring with involution. In Section 2, for given two core
invertible elements a,b € R, we investigate mainly the absorption law for the core inverse
in virtue of the equality of the projections aa® and bb®. In Section 3, we study several
relations concerning the projections a’a and b, where o’ € a{1,2,4} and ¥’ € b{1,2,3}.
Some well-known results are extended to the x-reducing ring case. As an application, EP
elements in a *-reducing ring are considered.
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1 Introduction

Throughout this paper, R will denote a unital ring with involution, i.e., a ring with unity
1, and a mapping a — a* satisfying (a*)* = a, (ab)* = b*a* and (a + b)* = a* + b*, for all
a,b€ R. Let a,z € R. If

(1) aza = a, (2) zazr =z, (3) (az)* = ax, (4) (za)* = za, (1.1)

then z is called a Moore-Penrose inverse of a. If such an element x exists, then it is unique
and denoted by af. The set of all Moore-Penrose invertible elements will be denoted by
RY. Let I C {1,2,3,4}. An element b € R is called an I inverse of a € R if equalities
i € I of (1.1) hold. The set of all I inverses of a will be denoted by a!, the element a is
I invertible when a! # @ and the set of all I invertible elements will be denoted by R’.
Let a € R. It can be easily proved that the set of elements x € R such that

ara = a, rzar =z and ax = za

is empty or a singleton. If this set is a singleton, its unique element is called the group
inverse of a and denoted by a#. The set of all group invertible elements will be denoted
by R#. The subset of R of all invertible elements will be denoted by R~!. We will also use
the following notations: aR = {az : € R}, Ra = {za:x € R}, °a={z € R: xa = 0}
and a® = {z € R : az = 0}.
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The notion of the core inverse for a complex matrix was introduced by Baksalary and
Trenkler [1]. In [12], Rakié¢ et al. generalized the core inverse of a complex matrix to the
case of an element in R. More precisely, let a,z € R, if

arxa=a, tR=aR and Rz = Ra", (1.2)

then x is called a core inverse of a. If such an element x exists, then it is unique and
denoted by a®. The set of all core invertible elements in R will be denoted by R®. Also,
in [12] the authors defined a related inner inverse in a ring with an involution. If @ € R,
then x € R is called a dual core inverse of a if

ara =a, rR=a"R and Rz = Ra.

If such an element z exists, then it is unique and denoted by ag. The set of all dual core
invertible elements in R will be denoted by Rg. It is evident that a € R® if and only if
a* € Rg, and in this case, one has (a®)* = (a*)g. More characterizations of elements to
be core invertible by equations can be found in [12, 15].

An element a € R is said to be an EP element if a € RT N R# and a' = a™ [2, 5]. The
set of all EP elements will be denoted by RFF. An element p € R is said to be a projection
if p? = p = p*. We will use the notation [a, b] = ab — ba.

In [7, Proposition 6], for two complex matrices A and B, Hartwig and Spindelbock
explored equivalent conditions such that ATA = BBT. In [11, Theorem 2.3], for a,b € RY,
Patricio and Mendes investigated necessary and sufficient conditions such that aa’ = bbT.
If we take ¢ = b in aa’ = bbf, then by (b")' = b, we have aa’ = cfe, and therefore, this
form is the same as ATA = BBT. In [7, 11], authors investigated the equality aa’ = bbf
under the hypothesis a,b € Rf. Motivated by [7, 11], in Section 2, we discuss when the
projections aa® and bb® are equal, which is under the hypothesis a,b € R®. We will
extend [7, Proposition 6] of complex matrices to the case of #-reducing rings in Section 3.
In Theorem 3.6, when a(124) e o124} and p(1:23) ¢ p{1:23} we give some relationships
between the projections a*%a and bb(1:23), Theorem 3.6 will be useful in the sequel. In
Theorem 3.9, we can see that the proof becomes simple with the aid of Theorem 3.6. Note
that Theorem 3.9 is a generalization of known equivalent conditions for an EP element in
a *-reducing ring.

2 Core invertibility: the case aa® = bb®

Before we investigate necessary and sufficient conditions such that two core invertible
elements satisfy aa® = bb®, some auxiliary work should be done.

Proposition 2.1. Let a,b € R. We have:
(1) Ifa,be RU3Y then the following statements are equivalent:
(i

) aR = bR;
(i) aa®® = b3 for all o) € a{1,3} and b3 € b{1,3};
)

(iii) aa?) = bb(13) for some a1 € a{1,3} and b3 € b{1,3}.



(2) Ifa,b e RUAY then the following statements are equivalent:

)
(i) Ra = Rb;
(i) aMa = b0Db for all VY € a{1,4} and bY € b{1,4};
) a

(iii) a¥a = bIDb for some aY € a{l,4} and bY € b{1,4}.

Proof. Let us prove (1). (i) = (ii). Suppose aR = bR, then a = bz and b = ay for some
z,y € R. Thus

a = bz = bbb bx = b1 g; (2.1)
b=ay= aa(l’g)ay = aa™p.
Then we have
pp(13) (2.2 ) (13 pp(13) — (aa(l 3)pp(L: 3)) bb(l,?))aa(lﬁ); (2.3)
aa3) A 1p(13) 4 (13) (2.4)

A combination of (2.3) and (2.4) implies aa"?) = bb(1:3),

(ii) = (iii) is obvious.

(iit) = (i). Suppose exists a3 € a{1,3} and b3 € b{1,3} such that aa(l?) = pp(1:3),
Then we have a = aa’3a = bb(13)q and b = bbb = aaV3b, thus aR = bR.

The proof of (2) is similar to the proof of (1). O

In [12, Theorem 2.14], Raki¢ et al. proved that an element a € R® satisfies

@ @ @

aa®a = a, a®aa® = a?, (aa®)* = aa®, a(a®)? = a®, a®a® = a. (2.5)

Also, in [12, Theorem 2.15], they proved that an element a € Rg satisfies

aaga = a, (g00g = Qg, (aga)* = a®a, (a®)?a = ag, a’ag = a.

Thus a core invertible element is {1, 2, 3}-invertible and a dual core invertible element is
{1,2,4}-invertible.

Two proofs of the next corollary can be found in [3, Proposition 1, Chapter 1] and in
[12, Lemma 2.10]. We present another proof based on Proposition 2.1.

Corollary 2.2. Let p,q € R be two projections. Then pR = qR if and only if p = q.

Proof. Since p,q € R are projections, then p?> = p = pf and ¢* = ¢ = ¢'. By Proposi-
tion 2.1, pR = ¢R implies pp' = qq', that is p = ¢. The converse is clear. O

In [11, Theorem 2.3], for a,b € R, the authors investigated equivalent conditions such
that aa’ = bbt. It is evident that the equality zz' R = =R holds when z € R, thus the first
item of next Corollary 2.3 follows from this observation and previous Corollary 2.2. The
second item of next Corollary 2.3 follows from z*R = z'zR, (Rz)* = *R, and previous
Corollary 2.2. If z € R* N RT = R® N Rg, by [12, Theorems 2.11 and 2.12] it follows that
zz’ = z2® and iz = zgx. The proof of next Corollary 2.3 only uses Proposition 2.1.
Also, it is noteworthy that the characterization of aa® = bb® (aga = bgb) is generalized
because only a,b € R® (a,b € Rg), resp.) is used.



Corollary 2.3. Let a,b € R. Then we have:

1) Ifa,b € RY, then aR = bR is equivalent to aal = bb;

3

(1)

(2) Ifa,b € R, then Ra = Rb is equivalent to a'a = blb;
(3) If a,b € R®, then aR = bR is equivalent to aa® = bb®;
(4)

4) If a,b € Rg, then Ra = Rb is equivalent to aga = bgb.

For an idempotent p in a ring R, every a € R can be written as

a = pap + pa(l —p) + (1 = p)ap + (1 — p)a(l — p) (2.6)

or in matrix form
pap pa(l —p)
(L=plap (1—pla(l—p)
The decomposition (2.6) is known as the Pierce decomposition. Notice that if the idem-
potent p is a projection, then the above matrix representation preserves the involution.

Lemma 2.4. Let a,p,q € R. Then the following are equivalent:
(1) a € R®;
(2) [9, Theorem 3.5] there exists a projection p such that pa =0 and a +p € R™!;
(3) [14, Theorem 3.3] there exists a projection q such that qa = 0 and a(1—q)+q € R

Under these equivalence, one has that these projections p and q are unique and p = q =
1—aa®.

We give a sketch of the proof of this lemma for the sake of completeness.
If a € R®, define the projection p = 1 — aa®. From (2.5), it is evident that pa = 0,
and thus, the Pierce decomposition of a with respect to p is

a:[o 0 ] (2.7)

ap a(l—p)

hence

a—i—p:[ap;) a(lo—p)] and a(l—p)+p:[g a(lo—p)]' (2.8)
Observe that a® € aa®Raa® = (1 — p)R(1 — p) and a(l — p)a® =1 —p = a®a(l — p).
Hence a® is the inverse of a(1 — p) in the ring (1 — p)R(1 — p), and thus, by (2.8), a +p
and a(1 — p) + p are invertible in R because p is a unit in the ring pRp.

If exists a projection p such that pa = 0, then the Pierce decomposition of a, a + p,
and a(1 — p) + p with respect to p are written in (2.7) and (2.8). Since p is a unit in the
ring pRp, the above decompositions prove that a +p € R < a(l—p)+p € B! &
a(l —p) € [(1 = p)R(1 — p)]~'. Now, it is not difficult to prove that if a +p € R~! or



a(l —p)+p € R™L, then a is core invertible and the inverse of a(1 — p) in (1 — p)R(1 — p)
is the core inverse of a.

Assume that p; and py are two projections such that p;a = 0 and a + p; € R~ for
i = 1,2. By the proof of the previous paragraph, the inverse of a(1—p;) in (1—p;)R(1—p;)
is a® for i = 1,2. Therefore, (1 — p;)a® = a® and a(l — p;)a® =1 —p; for i = 1,2. Tt is
deduced that aa® =1 —p; for i = 1,2.

From the sketch of the proof of Lemma 2.4, if a € R®, then the matrix representations
of a, a+ p, and a(1 — p) + p with respect to p = 1 — aa® are written in (2.7) and (2.8).

Lemma 2.5. [6, Lemma 2] Let R be any unitary ring and > = e € R. Then exe+1—e is
invertible in R if and only if exe is invertible in eRe with unit e, for all x € R. If (exe)™¢
denotes the inverse of exe in eRe, then we have

(exe)™ =e(exe+ 1 —e) te

and
(exe4+1—¢€)"! = (exe) ¢+ 1—e.
Observe that if we represent the element exe + 1 — e of the above lemma respect the
idempotent e, we have exe+1—e = ege 1 2 e |’ which makes this lemma clear. Recall

that the unity of the corner ring (1 —e)R(1 —e) is 1 —e.

The absorption law in a ring R means that for two invertible elements a,b € R, we
have a=t(a + b)b~! = a=1 +b~L. In [8], Jin and Benitez investigated the absorption law
for the core inverse.

Lemma 2.6. [8, Theorem 3.5] Let a,b € R®. Then the following are equivalent:
(1) a®(a+ b)b® = a® + b®;
(2) aR =bR;
(3) °a ="°b.

In the following theorem, we will give more necessary and sufficient conditions such
that the absorption law for the core inverse is valid. Let a™ = 1 — aa®.

Theorem 2.7. Let a,b € R®. Then the following are equivalent:

a®(a+ b)b® = a® + b®;

(1)

(2)

(3)

(4) a™b =0 and a™ +b e R™;

(5) a™b =0 and a™ 4+ b(1 —a™) € R™;
(6)

a™b =0 and b(1 — a™) is invertible in (1 —a™)R(1 —a™).



In this case, the expression of the subset of elements b such that a™ = b™ is

(beR:a"=b"}={z+t:2€(1—-d")Ra",t € [(1—a™R(1—a"™)]"'}.
Moreover, the relationship of a™ +b and a™ + b(1 — a™) is
(™ + b))~ = (b + a™) " Ha™ + b(1 — a™)).

Proof. (1) < (2) is trivial.

(1) & (3) follows from Corollary 2.3 and Lemma 2.6.

(1) = (4). Suppose aa® = bb®?, or equivalently a™ = b™ since (1) and (2) are equivalent.
Taking into account the equality given in (2), we have a™b = (1 —aa®)b = (1 —bb®)b = 0.
Since

(@™ +b)(b® + 1 — bBb) = (1 — aa® + b)(b® + 1 — b®b) = (1 — bb® + b)(b® + 1 — b®b) = 1

and
(b% +1—b%b)(a"™ +b) = (b& +1 —b®0)(1 — bb® +b) = 1,

we have that a” + b is invertible.
(4) = (2) (or (6) = (2)). It is easy to check that a™ is a projection. By Lemma 2.4,
we have a™ =1 — bb® = b".
(1) = (5). Suppose aa® = bb®. Then
a"b=(1—aa®)b=(1-0b%)b=0;
[@™ +b(1 — a™)](b® +1 — bb®) = (1 — bb® + b%®) (b + 1 — bb®) = 1;
(b2 + 1 —bb®)[a™ 4 b(1 — a™)] = (b® +1 — bb®)(1 — bb® + b*b®) = 1.
Thus a™ 4+ b(1 — a™) is invertible.
(5) & (6) By a™b = 0, we have a™ +b(1 —a™) = a" + (1 —a™)b(1 — a™). Thus by
Lemma 2.5, we get the equivalence between (5) and (6).

Now, we will find the general expression of the elements b € R® such that aa® = bb®.
We use the matrix representations of ¢™ and b with respect to the projection a™. Then

~ _la™ 0
a" = [O 0]. Let
_ Ty
=[]
satisfy aa® = bb® (and therefore, also (2), (3) and (4) hold). Then a™b = 0 gives

@™ O |z oy o
O—ab—[o 0} L J = z=y=0.

Thus
a™ 0

aw+b:[z t] = te[(l-a"R1—-a")]},

because a™, the (1,1) entry of the last representation, is a unit in the corner ring a™ Ra™.

Also, it is simple to see that

‘- [2 (t)] ,te[1—a™)R1—-a™)]t = a"c=0anda™+cec R
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Hence we have proved the characterisation of the elements b such that a™ = b™ stated in
the theorem.

Last, we give the relationship of a™ + b and a™ + b(1 — a™). Since a™ = b™, we have
a"+b=0b"+band a" +b(1 —a™) =b" +b(1 —b"). Thus

[a™ + b(1 — a™)](a™ 4 b) = [b™ + b(1 — b™)](b" + b) = b* + b" = b* + a”,
which is invertible because a™ + b and a™ + b(1 — a™) are both invertible. Thus
(a™ + b))~ = (b + a™) " Ha™ + b(1 — a™)).
O

Observe that the condition (1) of Theorem 2.7 is symmetric in a and in b. Hence we
can get duplicate results.

Theorem 2.8. Let a,b € R®. Then the following are equivalent:
b" = a™b™ and O™ + 1 — a™ is left invertible;

(1)

(2)

B)l—a"=(1—-a™)(1—=0b") and b™ + 1 — a™ is left invertible;

(4) [@™, "] =0, b + 1 — a™ is right invertible and a™ + 1 — b™ is left invertible;
(5)

a™b™ is Hermitian, b™ + 1 — a™ 1is right invertible and a™ + 1 — b™ 1is left invertible.

Proof. The implications (1) = (2) and (1) = (4) are trivial.
(2) = (1). Suppose that b™ = a™b™ and u = b™ + 1 — @™ is left invertible. Then we
have

ru=1 for some r € R. (2.9)
Since a™ and b™ are Hermitian, then a™b™ = b™ implies b"a™ = b™. Thus
u(l—a™)=0b"4+1-a"(1-a")=b"1-a")+(1—-a")? =1-d" (2.10)
u(l=0")=0B"+1-a")(1-0")=b"(1-b0")+(1—a™)(1-0")=1—a". (2.11)
By equations (2.9), (2.10) and (2.11), we have
l—a"=ru(l—a™)=r(1—a")=ru(l1-0")=1-10".

That is aa® = bb®.

(2) < (3). Since (1—a™)(1—=b") =1—a™ —b" 4+a™b", then it is obvious that a™b™ = b7
if and only if (1 —a™)(1 =0")=1—a".

(4) & (5). If [a™,b™] = 0, then (a™b™)* = (b™a™)* = a™b™ and reciprocally.

(4) = (1). Assume [a",b"] = 0 and u = b"+1—a" is right invertible and v = a™+1—b"
is left invertible. We have

us=1and tv =1 for some s,t € R. (2.12)



From a™b™ = b"a™, we get
(1=0")u=>10=-b")0"+1-a")=(1=0")b"+(1-b")(1—-a")=(1-b")(1—a"). (2.13)
As a™ and b™ commute, so does 1 — a™ and 1 — b™. Thus from (2.13) we get
1-")(1—-a")u=(1-0")(1—a"). (2.14)
From equations (2.12), (2.13) and (2.14), we have
1-b0"=1-0"us=(1-b")(1—a")s=(1-0b")(1—a")us=(1—-0")(1 —a").(2.15)
Similarly,
v(l—a")=(a"+1-0")(1-a")=a"(1-a")+(1-0")(1-a") = (1-b")(1-a"), (2.16)

and
v(l=0")(1—=a")=(1-=0b")(1—a"). (2.17)

From equations (2.12), (2.16) and (2.17), we have
1—ad"=t(1-0")(1—-a")=(1=0")(1—a"). (2.18)
By (2.15) and (2.18), we have aa® = bb®. O

Let a € R®. If aa* 4+ 1 —aa® € R7!, then a = (aa* + 1 — aa®) 'aa*a € Raa*a, which
implies that a is Moore-Penrose invertible in view of [16, Theorem 2.16]. Therefore, if
a ¢ R, then aa* + 1 — aa® is not invertible.

Lemma 2.9. Let a € R®. If aa™a* =0, then aa* +a™ € R™1.

Proof. We use the matrix representation of a with respect to the projection a”.

o 0 0 o = a™ 0 o — 0 a"a* aa” — 0 0
S |lad™ a(l=a™) |’ | 0O 0] |0 (1-a")a* |’ |0 aa* |’

It is easy to check that a(1—a™) is invertible in (1 —a™)R(1 —a™) with the inverse a® and
aa"a* =0<a(l-ad")a* =ad* & a(l—a™)(1—a")a" = aa* < a(l—a™)(a(1—a™))* = aa™.

Thus aa* is invertible in (1 — a™)R(1 — a™) because aa* is the product of two invertible
elements in (1 —a™)R(1 — a™). Since aa* is invertible in (1 — a™)R(1 — a™) if and only if
aa* + a™ € R, we finish the proof. O

Leta € R®. If aa™ = 0, then a = a?a®, and therefore, a®a = a®(a?a®) = (a®a?)a® =
aa®, thus a is Moore-Penrose invertible, ' = a®, and a is EP by [12, Theorem 3.1].
Reciprocally, it is evident that if a is EP, then a® = af and aa® = a®a, which implies
aa™ = 0. Notice that the condition aa™a* = 0 is weaker than aa™ = 0. But, it is strictly
weaker, as the following example shows.



Example 2.10. Let R be the ring of 2 x 2 matrices whose entries are in Z4. In R we take

2 ] By checking the (1.1)

the matrix transposition as the involution. Consider a = [ 00

and (1.2), it is simple to prove

10 10
T @ _
=[o) e-[o]
Now, it is simple to compute
aat — 10 atg — 1 2
10 0|’ 12 01

which, by the definition of EP element, shows that a is not EP. In addition,

0 0 1 2 0 0 1 0
T __ 1 _ @ _ Tk —
a" =1-—aa [01], aa”a [00][01][20] 0.

But if the ring R is x-reducing, then aa™a* = 0 implies that aa™ = 0 (recall that a ring
R is s-reducing if z*z = 0 implies = 0 for any x € R). In fact: 0 = aa™a* = aa”(aa™)*
implies aa™ = 0. Of course, the ring considered in the above example is not reducing: it

is enough to take x = [ ; ; ] to see that xz* = 0 and x # 0.

Theorem 2.11. Let a,b € R® with aa™a* = 0. Then aa® = bb® if and only if b™ = a™b™
and u = aa™ + b™ is invertible.

Proof. We will prove the necessity and the sufficiency simultaneously. Since aa™a* = 0,
by Lemma 2.9, we have that aa* + a™ is invertible. Notice that aa® = bb®, i.e., a™ = b",
implies a™b™ = b™. Furthermore, we can use a”b™ = b" to prove both the necessity and
the sufficiency. Taking involution in a™b™ = ™ we get b"a™ = b™. Observe that

O"+1—a")(aa" +a™) =b"aa" +b"a™ + (1 —a™)aa™ + (1 —a™)a”
=b"aa®aa* + b™ + aa*
=b"(1—-a")aa” +b" + aa”
=b" + aa”.
And, therefore, b™ +1—a™ = (b™ +aa*)(aa* +a™)~ . Now, by Theorem 2.8 and using that
a Hermitian element is left invertible if and only if such element is invertible, we have:
aa® =bb® & " =a"b" and b"+1—a" € R & b =a"b" and b" +aa* € R

The proof is finished. O

3  Projections a»*%a and bb(1>3)

In this section, we will investigate projections aX2%q and bb(1:23) . If we replace a2

and b(123) by af and bf, respectively, then we can get some special corollaries, which will
be useful when we discuss the projection equation ata = bbf.



Lemma 3.1. Let a € R. Then we have the following results:

(1) Ifa € R1W23Y and o123 € af1,2,3}, then a23b = o123 ¢ if and only if a*b = a*c
for all b, c € R;

(2) Ifa € R34 and a(M24) € a{1,2,4}, then bah>? = ca(L24) if and only if ba* = ca*
for allb,c € R.

Proof. Since the proof of (2) is similar to the proof of (1), we only prove (1). Since
a € R1H23} then

all23p =123 123 = o123 (o128))*g*b = a(1:23) (123)) g ¢ = o123y
a*b :(aa(17273)a)*b — ¢t aa V23 = a*aa123 e = a*c.
O

Proposition 3.2. Leta € R1V24 b e RU23} and o024 € a{1,2,4}, 6023 € b{1,2,3}.
Then abb®23) (124 ab = ab if and only if b(1:23)q(1:24) gpp(1:2:3) ¢ (1’2’4) = p(1:2:3)¢(1,2:4)

Proof. By Lemma 3.1, we have
abb(l,Q,S)a(l,QA)ab —abe b*(a(1’2’4)a)*(bb(1’2’3))*a* _ b*a*

PN b*a(1’2’4)abb(1’2’3)a* — b*a*
o p(123)5(12:4) ,pp(123) ,(1,24) _ 5(1,23) ,(1,24)

Corollary 3.3. Let a,b € RT. Then abbfa’ab = ab if and only if biatabbla’ = bial.

Lemma 3.4. Let R be a *-reducing ring with p* = p = p> € R and ¢* = q = ¢*> € R.
Then the following are equivalent:

(1) (pq)?* = pg;
(2) (ap)* = qp;
(3) pq = qp.

Proof. (1) = (3) We use the matrix representations of p and ¢ with respect to the

projection p. Then p = {p O] and q = [qi q2] by ¢* = ¢. Then pq = [ql qﬂ
ds g3 0 O

and gp = [Zg 8} Now (pg)? = (pq) and ¢®> = ¢ implies, respectively, ¢ = ¢ and
@} + q2¢5 = q1. Hence, we have goq5 = 0, which implies go = 0 because R is a *reducing

ring. Thus pg = [(h 0] and gp = [Q1 0] . That is pg = gp.

0 0 0 0
(3) = (1) and (3) = (2) are trivial. By the symmetry of p and ¢, we have (2) = (3)
with the help of (1) = (3). O
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Example 3.5. In a general ring R, the implication of (pg)? = pq = pg = ¢p may not
hold, where p* = p = p?> € R and ¢* = ¢ = ¢> € R. Let us consider the following coun-
terexample. Let R be the ring of 2 x 2 matrices over Z4 with the conjugate transposition

as involution. Considering the matrices p = [(1) 8} and g = E (2)] , it is easy to check

that p* = p = p? and ¢* = ¢ = ¢ and (pq)? = pq, and yet pq = [(1) a and gp = B 8} )
Theorem 3.6. Let R be a x-reducing ring. If a € R1W24 b e RIL23} gpd o124 ¢
a{1,2,4}, b1:23) € b{1,2,3}. Then the following are equivalent:

(1) abb1:23)q(1:28aph = ab;

(2) (a2 D, ph1:29) = 0;

(3) b(1:23)q(124) gpp(1,2.3) g (1:2.4) — p(12.3)(1.24)

Proof. (3) = (2). By Proposition 3.2, we have abb(2%)a(12%ab = ab if and only if
b(1:23) (124 pp(1.2:3) (1.24) — p(1.23) (129 Define the projections e = a2 g and f =
bb(1:2:3) . Multiplying by a(X:24) on the left side of abb(1:23)q(1:24gh = @b and multiplying
by b1:23) on the right side of abb®23a(124agb = ab | then we have (ef)? = ef, thus
[a12%q, bb(123)] = 0 by Lemma 3.4.

(2) = (1) is trivial.

(1) = (3). It is obvious by Proposition 3.2. O

Corollary 3.7. [10, Theorem 2.1] Let R be a *-reducing ring with a,b € Rt. Then the
following are equivalent:

(1) abbfatab = ab;
(2) [afa,bbl] =0;
(3) blatabblal = bial.
Lemma 3.8. [13, Lemma 8] Let a,b € R. Then:
(1) aR C bR implies °b C °a and the converse is valid whenever b is reqular;
(2) Ra C Rb implies b° C a° and the converse is valid whenever b is regular.

Theorem 3.9. Let R be a *-reducing ring with a,b € RY. Then the following are equiva-
lent:

1) ata = bb;

2) [afa,bb’] =0, aR C abR and Rb C Rab;

(1)

(2)

(3) (ab)t =blal, aR C abR and Rb C Rab;
(4) abbfatab = ab, aR C abR and Rb C Rab;
(5)

5) bfatabblal = bfal, aR C abR and Rb C Rab;
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6) [a'a,bb’] =0, °(ab) C °a and (ab)° C b°;

(6)

(7) (ab)t = blal, °(ab) C °a and (ab)° C b°;
(8) abbla’ab = ab, °(ab) C °a and (ab)® C b°;
(9)

9) blafabbial = bial, °(ab) C °a and (ab)° C b°.

Proof. The equivalence between (2), (4) and (5) can be obtained by Corollary 3.3 and
Corollary 3.7.
(1) = (2). Suppose afa = bbl. Then

[aTa,bb'] = [a'a,a’a) = 0;
a=aa'a = abb;
=bb'b = alab,
that is [a'a, bb'] = 0, aR C abR and Rb C Rab.

(2) = (3). By Corollary 3.7, we have [afa, bb'] = 0 < abblatab = ab and blatabbial =
btat. Since aR C abR and Rb C Rab, then

a = abx for some x € R; (3.1)

b = yab for some y € R. (3.2)
Thus by equations (3.1) and (3.2), we have

a = abb'a'abz = abbla’a = aalabb’ = abb'; (3.3)
b= yabb'a’ab = bb'a'ab = a'ab. (3.4)

The equations (3.3) and (3.4) give that

abbla’ = aal is Hermitian;

btatab = b'h is Hermitian.

(3) = (1). Suppose (ab)’ = bfal, aR C abR, and Rb C Rab. There exist 2,y € R
such that a = abxr and b = yab. Now, abblala = abblatabr = ab(ab)fabr = abx = a, and
similarly, bbfalab = yab(ab)Tab = yab = b. Thus

bb'R = bbla'aR and a’aR = afabb'R. (3.5)

The condition (ab)" = bfal gives (aTabb")? = alabbl. By Lemma 3.4 we get aabb’ = bblala.
Therefore we have a'a = bb" by equation (3.5) and Corollary 2.2.

(2) < (6). It is easy to see that by Lemma 3.8. The proofs of (3) < (7), (4) < (8)
and (5) < (9) are similar to the proof of (2) < (6). O

The element a € R is said to be bi-EP when [aTa,aal] = 0. Let a be an element of an
associative ring R with 1. In [4, Proposition 8.22], we have a has a group inverse if and
only if a?z = a and ya®? = a both have solutions. Thus, taking a = b in Theorem 3.9, we
get the following corollary.
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Corollary 3.10. Let R be a *-reducing ring with a € RT. Then the following are equiva-

lent:

1
2

(
(
(3
(
(

a € R* and a is bi- EP;

a € R* and (a")? = (a®)T;

4) a € R" and (a")? € a®{1};

5) a € R* and a® € (a")?{1}.
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