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Sanzhang Xu and Jianlong Chen ∗

School of Mathematics, Southeast University, Nanjing 210096, China

Julio Beńıtez †
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Abstract: Let R be a unital ring with involution. In Section 2, for given two core
invertible elements a, b ∈ R, we investigate mainly the absorption law for the core inverse
in virtue of the equality of the projections aa#© and bb#©. In Section 3, we study several
relations concerning the projections a′a and bb′, where a′ ∈ a{1, 2, 4} and b′ ∈ b{1, 2, 3}.
Some well-known results are extended to the ∗-reducing ring case. As an application, EP
elements in a ∗-reducing ring are considered.
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1 Introduction

Throughout this paper, R will denote a unital ring with involution, i.e., a ring with unity
1, and a mapping a 7→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗, for all
a, b ∈ R. Let a, x ∈ R. If

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa, (1.1)

then x is called a Moore-Penrose inverse of a. If such an element x exists, then it is unique
and denoted by a†. The set of all Moore-Penrose invertible elements will be denoted by
R†. Let I ⊂ {1, 2, 3, 4}. An element b ∈ R is called an I inverse of a ∈ R if equalities
i ∈ I of (1.1) hold. The set of all I inverses of a will be denoted by aI , the element a is
I invertible when aI 6= ∅ and the set of all I invertible elements will be denoted by RI .
Let a ∈ R. It can be easily proved that the set of elements x ∈ R such that

axa = a, xax = x and ax = xa

is empty or a singleton. If this set is a singleton, its unique element is called the group
inverse of a and denoted by a#. The set of all group invertible elements will be denoted
by R#. The subset of R of all invertible elements will be denoted by R−1. We will also use
the following notations: aR = {ax : x ∈ R}, Ra = {xa : x ∈ R}, ◦a = {x ∈ R : xa = 0}
and a◦ = {x ∈ R : ax = 0}.

∗E-mail: xusanzhang5222@126.com. Corresponding author, E-mail: jlchen@seu.edu.cn
†E-mail: jbenitez@mat.upv.es
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The notion of the core inverse for a complex matrix was introduced by Baksalary and
Trenkler [1]. In [12], Rakić et al. generalized the core inverse of a complex matrix to the
case of an element in R. More precisely, let a, x ∈ R, if

axa = a, xR = aR and Rx = Ra∗, (1.2)

then x is called a core inverse of a. If such an element x exists, then it is unique and
denoted by a#©. The set of all core invertible elements in R will be denoted by R#©. Also,
in [12] the authors defined a related inner inverse in a ring with an involution. If a ∈ R,
then x ∈ R is called a dual core inverse of a if

axa = a, xR = a∗R and Rx = Ra.

If such an element x exists, then it is unique and denoted by a#©. The set of all dual core
invertible elements in R will be denoted by R#©. It is evident that a ∈ R#© if and only if
a∗ ∈ R#©, and in this case, one has (a#©)∗ = (a∗)#©. More characterizations of elements to
be core invertible by equations can be found in [12, 15].

An element a ∈ R is said to be an EP element if a ∈ R† ∩R# and a† = a# [2, 5]. The
set of all EP elements will be denoted by REP. An element p ∈ R is said to be a projection
if p2 = p = p∗. We will use the notation [a, b] = ab− ba.

In [7, Proposition 6], for two complex matrices A and B, Hartwig and Spindelböck
explored equivalent conditions such that A†A = BB†. In [11, Theorem 2.3], for a, b ∈ R†,
Patŕıcio and Mendes investigated necessary and sufficient conditions such that aa† = bb†.
If we take c = b† in aa† = bb†, then by (b†)† = b, we have aa† = c†c, and therefore, this
form is the same as A†A = BB†. In [7, 11], authors investigated the equality aa† = bb†

under the hypothesis a, b ∈ R†. Motivated by [7, 11], in Section 2, we discuss when the
projections aa#© and bb#© are equal, which is under the hypothesis a, b ∈ R#©. We will
extend [7, Proposition 6] of complex matrices to the case of ∗-reducing rings in Section 3.
In Theorem 3.6, when a(1,2,4) ∈ a{1,2,4} and b(1,2,3) ∈ b{1,2,3}, we give some relationships
between the projections a(1,2,4)a and bb(1,2,3). Theorem 3.6 will be useful in the sequel. In
Theorem 3.9, we can see that the proof becomes simple with the aid of Theorem 3.6. Note
that Theorem 3.9 is a generalization of known equivalent conditions for an EP element in
a ∗-reducing ring.

2 Core invertibility: the case aa#© = bb#©

Before we investigate necessary and sufficient conditions such that two core invertible
elements satisfy aa#© = bb#©, some auxiliary work should be done.

Proposition 2.1. Let a, b ∈ R. We have:

(1) If a, b ∈ R{1,3}, then the following statements are equivalent:

(i) aR = bR;

(ii) aa(1,3) = bb(1,3) for all a(1,3) ∈ a{1, 3} and b(1,3) ∈ b{1, 3};

(iii) aa(1,3) = bb(1,3) for some a(1,3) ∈ a{1, 3} and b(1,3) ∈ b{1, 3}.
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(2) If a, b ∈ R{1,4}, then the following statements are equivalent:

(i) Ra = Rb;

(ii) a(1,4)a = b(1,4)b for all a(1,4) ∈ a{1, 4} and b(1,4) ∈ b{1, 4};

(iii) a(1,4)a = b(1,4)b for some a(1,4) ∈ a{1, 4} and b(1,4) ∈ b{1, 4}.

Proof. Let us prove (1). (i) ⇒ (ii). Suppose aR = bR, then a = bx and b = ay for some
x, y ∈ R. Thus

a = bx = bb(1,3)bx = bb(1,3)a; (2.1)

b = ay = aa(1,3)ay = aa(1,3)b. (2.2)

Then we have

bb(1,3)
(2.2)
= aa(1,3)bb(1,3) = (aa(1,3)bb(1,3))∗ = bb(1,3)aa(1,3); (2.3)

aa(1,3)
(2.1)
= bb(1,3)aa(1,3). (2.4)

A combination of (2.3) and (2.4) implies aa(1,3) = bb(1,3).
(ii) ⇒ (iii) is obvious.
(iii)⇒ (i). Suppose exists a(1,3) ∈ a{1, 3} and b(1,3) ∈ b{1, 3} such that aa(1,3) = bb(1,3).

Then we have a = aa(1,3)a = bb(1,3)a and b = bb(1,3)b = aa(1,3)b, thus aR = bR.
The proof of (2) is similar to the proof of (1).

In [12, Theorem 2.14], Rakić et al. proved that an element a ∈ R#© satisfies

aa#©a = a, a#©aa#© = a#©, (aa#©)∗ = aa#©, a(a#©)2 = a#©, a#©a2 = a. (2.5)

Also, in [12, Theorem 2.15], they proved that an element a ∈ R#© satisfies

aa#©a = a, a#©aa#© = a#©, (a#©a)∗ = a#©a, (a#©)2a = a#©, a2a#© = a.

Thus a core invertible element is {1, 2, 3}-invertible and a dual core invertible element is
{1, 2, 4}-invertible.

Two proofs of the next corollary can be found in [3, Proposition 1, Chapter 1] and in
[12, Lemma 2.10]. We present another proof based on Proposition 2.1.

Corollary 2.2. Let p, q ∈ R be two projections. Then pR = qR if and only if p = q.

Proof. Since p, q ∈ R are projections, then p2 = p = p† and q2 = q = q†. By Proposi-
tion 2.1, pR = qR implies pp† = qq†, that is p = q. The converse is clear.

In [11, Theorem 2.3], for a, b ∈ R†, the authors investigated equivalent conditions such
that aa† = bb†. It is evident that the equality xx†R = xR holds when x ∈ R†, thus the first
item of next Corollary 2.3 follows from this observation and previous Corollary 2.2. The
second item of next Corollary 2.3 follows from x∗R = x†xR, (Rx)∗ = x∗R, and previous
Corollary 2.2. If x ∈ R# ∩R† = R#© ∩R#©, by [12, Theorems 2.11 and 2.12] it follows that
xx† = xx#© and x†x = x#©x. The proof of next Corollary 2.3 only uses Proposition 2.1.
Also, it is noteworthy that the characterization of aa#© = bb#© (a#©a = b#©b) is generalized
because only a, b ∈ R#© (a, b ∈ R#©, resp.) is used.
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Corollary 2.3. Let a, b ∈ R. Then we have:

(1) If a, b ∈ R†, then aR = bR is equivalent to aa† = bb†;

(2) If a, b ∈ R†, then Ra = Rb is equivalent to a†a = b†b;

(3) If a, b ∈ R#©, then aR = bR is equivalent to aa#© = bb#©;

(4) If a, b ∈ R#©, then Ra = Rb is equivalent to a#©a = b#©b.

For an idempotent p in a ring R, every a ∈ R can be written as

a = pap + pa(1− p) + (1− p)ap + (1− p)a(1− p) (2.6)

or in matrix form [
pap pa(1− p)

(1− p)ap (1− p)a(1− p)

]
.

The decomposition (2.6) is known as the Pierce decomposition. Notice that if the idem-
potent p is a projection, then the above matrix representation preserves the involution.

Lemma 2.4. Let a, p, q ∈ R. Then the following are equivalent:

(1) a ∈ R#©;

(2) [9, Theorem 3.5] there exists a projection p such that pa = 0 and a + p ∈ R−1;

(3) [14, Theorem 3.3] there exists a projection q such that qa = 0 and a(1−q)+q ∈ R−1.

Under these equivalence, one has that these projections p and q are unique and p = q =
1− aa#©.

We give a sketch of the proof of this lemma for the sake of completeness.
If a ∈ R#©, define the projection p = 1 − aa#©. From (2.5), it is evident that pa = 0,

and thus, the Pierce decomposition of a with respect to p is

a =

[
0 0
ap a(1− p)

]
, (2.7)

hence

a + p =

[
p 0
ap a(1− p)

]
and a(1− p) + p =

[
p 0
0 a(1− p)

]
. (2.8)

Observe that a#© ∈ aa#©Raa#© = (1 − p)R(1 − p) and a(1 − p)a#© = 1 − p = a#©a(1 − p).
Hence a#© is the inverse of a(1− p) in the ring (1− p)R(1− p), and thus, by (2.8), a + p
and a(1− p) + p are invertible in R because p is a unit in the ring pRp.

If exists a projection p such that pa = 0, then the Pierce decomposition of a, a + p,
and a(1− p) + p with respect to p are written in (2.7) and (2.8). Since p is a unit in the
ring pRp, the above decompositions prove that a + p ∈ R−1 ⇔ a(1 − p) + p ∈ R−1 ⇔
a(1 − p) ∈ [(1 − p)R(1 − p)]−1. Now, it is not difficult to prove that if a + p ∈ R−1 or
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a(1− p) + p ∈ R−1, then a is core invertible and the inverse of a(1− p) in (1− p)R(1− p)
is the core inverse of a.

Assume that p1 and p2 are two projections such that pia = 0 and a + pi ∈ R−1 for
i = 1, 2. By the proof of the previous paragraph, the inverse of a(1−pi) in (1−pi)R(1−pi)
is a#© for i = 1, 2. Therefore, (1− pi)a

#© = a#© and a(1− pi)a
#© = 1− pi for i = 1, 2. It is

deduced that aa#© = 1− pi for i = 1, 2.

From the sketch of the proof of Lemma 2.4, if a ∈ R#©, then the matrix representations
of a, a + p, and a(1− p) + p with respect to p = 1− aa#© are written in (2.7) and (2.8).

Lemma 2.5. [6, Lemma 2] Let R be any unitary ring and e2 = e ∈ R. Then exe+1−e is
invertible in R if and only if exe is invertible in eRe with unit e, for all x ∈ R. If (exe)−e

denotes the inverse of exe in eRe, then we have

(exe)−e = e(exe + 1− e)−1e

and

(exe + 1− e)−1 = (exe)−e + 1− e.

Observe that if we represent the element exe + 1 − e of the above lemma respect the

idempotent e, we have exe+1−e =

[
exe 0
0 1− e

]
, which makes this lemma clear. Recall

that the unity of the corner ring (1− e)R(1− e) is 1− e.

The absorption law in a ring R means that for two invertible elements a, b ∈ R, we
have a−1(a + b)b−1 = a−1 + b−1. In [8], Jin and Beńıtez investigated the absorption law
for the core inverse.

Lemma 2.6. [8, Theorem 3.5] Let a, b ∈ R#©. Then the following are equivalent:

(1) a#©(a + b)b#© = a#© + b#©;

(2) aR = bR;

(3) ◦a = ◦b.

In the following theorem, we will give more necessary and sufficient conditions such
that the absorption law for the core inverse is valid. Let aπ = 1− aa#©.

Theorem 2.7. Let a, b ∈ R#©. Then the following are equivalent:

(1) aa#© = bb#©;

(2) aπ = bπ;

(3) a#©(a + b)b#© = a#© + b#©;

(4) aπb = 0 and aπ + b ∈ R−1;

(5) aπb = 0 and aπ + b(1− aπ) ∈ R−1;

(6) aπb = 0 and b(1− aπ) is invertible in (1− aπ)R(1− aπ).
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In this case, the expression of the subset of elements b such that aπ = bπ is

{b ∈ R : aπ = bπ} = {z + t : z ∈ (1− aπ)Raπ, t ∈ [(1− aπ)R(1− aπ)]−1}.

Moreover, the relationship of aπ + b and aπ + b(1− aπ) is

(aπ + b)−1 = (b2 + aπ)−1[aπ + b(1− aπ)].

Proof. (1) ⇔ (2) is trivial.
(1) ⇔ (3) follows from Corollary 2.3 and Lemma 2.6.
(1)⇒ (4). Suppose aa#© = bb#©, or equivalently aπ = bπ since (1) and (2) are equivalent.

Taking into account the equality given in (2), we have aπb = (1− aa#©)b = (1− bb#©)b = 0.
Since

(aπ + b)(b#© + 1− b#©b) = (1− aa#© + b)(b#© + 1− b#©b) = (1− bb#© + b)(b#© + 1− b#©b) = 1

and
(b#© + 1− b#©b)(aπ + b) = (b#© + 1− b#©b)(1− bb#© + b) = 1,

we have that aπ + b is invertible.
(4) ⇒ (2) (or (6) ⇒ (2)). It is easy to check that aπ is a projection. By Lemma 2.4,

we have aπ = 1− bb#© = bπ.
(1) ⇒ (5). Suppose aa#© = bb#©. Then

aπb = (1− aa#©)b = (1− bb#©)b = 0;

[aπ + b(1− aπ)](b#© + 1− bb#©) = (1− bb#© + b2b#©)(b#© + 1− bb#©) = 1;

(b#© + 1− bb#©)[aπ + b(1− aπ)] = (b#© + 1− bb#©)(1− bb#© + b2b#©) = 1.

Thus aπ + b(1− aπ) is invertible.
(5) ⇔ (6) By aπb = 0, we have aπ + b(1 − aπ) = aπ + (1 − aπ)b(1 − aπ). Thus by

Lemma 2.5, we get the equivalence between (5) and (6).
Now, we will find the general expression of the elements b ∈ R#© such that aa#© = bb#©.

We use the matrix representations of aπ and b with respect to the projection aπ. Then

aπ =

[
aπ 0
0 0

]
. Let

b =

[
x y
z t

]
satisfy aa#© = bb#© (and therefore, also (2), (3) and (4) hold). Then aπb = 0 gives

0 = aπb =

[
aπ 0
0 0

] [
x y
z t

]
⇒ x = y = 0.

Thus

aπ + b =

[
aπ 0
z t

]
⇒ t ∈ [(1− aπ)R(1− aπ)]−1,

because aπ, the (1,1) entry of the last representation, is a unit in the corner ring aπRaπ.
Also, it is simple to see that

c =

[
0 0
z t

]
, t ∈ [(1− aπ)R(1− aπ)]−1 ⇒ aπc = 0 and aπ + c ∈ R−1.
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Hence we have proved the characterisation of the elements b such that aπ = bπ stated in
the theorem.

Last, we give the relationship of aπ + b and aπ + b(1 − aπ). Since aπ = bπ, we have
aπ + b = bπ + b and aπ + b(1− aπ) = bπ + b(1− bπ). Thus

[aπ + b(1− aπ)](aπ + b) = [bπ + b(1− bπ)](bπ + b) = b2 + bπ = b2 + aπ,

which is invertible because aπ + b and aπ + b(1− aπ) are both invertible. Thus

(aπ + b)−1 = (b2 + aπ)−1[aπ + b(1− aπ)].

Observe that the condition (1) of Theorem 2.7 is symmetric in a and in b. Hence we
can get duplicate results.

Theorem 2.8. Let a, b ∈ R#©. Then the following are equivalent:

(1) aa#© = bb#©;

(2) bπ = aπbπ and bπ + 1− aπ is left invertible;

(3) 1− aπ = (1− aπ)(1− bπ) and bπ + 1− aπ is left invertible;

(4) [aπ, bπ] = 0, bπ + 1− aπ is right invertible and aπ + 1− bπ is left invertible;

(5) aπbπ is Hermitian, bπ + 1− aπ is right invertible and aπ + 1− bπ is left invertible.

Proof. The implications (1)⇒ (2) and (1)⇒ (4) are trivial.
(2) ⇒ (1). Suppose that bπ = aπbπ and u = bπ + 1 − aπ is left invertible. Then we

have

ru = 1 for some r ∈ R. (2.9)

Since aπ and bπ are Hermitian, then aπbπ = bπ implies bπaπ = bπ. Thus

u(1− aπ) = (bπ + 1− aπ)(1− aπ) = bπ(1− aπ) + (1− aπ)2 = 1− aπ (2.10)

u(1− bπ) = (bπ + 1− aπ)(1− bπ) = bπ(1− bπ) + (1− aπ)(1− bπ) = 1− aπ. (2.11)

By equations (2.9), (2.10) and (2.11), we have

1− aπ = ru(1− aπ) = r(1− aπ) = ru(1− bπ) = 1− bπ.

That is aa#© = bb#©.
(2)⇔ (3). Since (1−aπ)(1−bπ) = 1−aπ−bπ+aπbπ, then it is obvious that aπbπ = bπ

if and only if (1− aπ)(1− bπ) = 1− aπ.
(4) ⇔ (5). If [aπ, bπ] = 0, then (aπbπ)∗ = (bπaπ)∗ = aπbπ and reciprocally.
(4)⇒ (1). Assume [aπ, bπ] = 0 and u = bπ+1−aπ is right invertible and v = aπ+1−bπ

is left invertible. We have

us = 1 and tv = 1 for some s, t ∈ R. (2.12)
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From aπbπ = bπaπ, we get

(1− bπ)u = (1− bπ)(bπ + 1−aπ) = (1− bπ)bπ + (1− bπ)(1−aπ) = (1− bπ)(1−aπ). (2.13)

As aπ and bπ commute, so does 1− aπ and 1− bπ. Thus from (2.13) we get

(1− bπ)(1− aπ)u = (1− bπ)(1− aπ). (2.14)

From equations (2.12), (2.13) and (2.14), we have

1− bπ = (1− bπ)us = (1− bπ)(1− aπ)s = (1− bπ)(1− aπ)us = (1− bπ)(1− aπ). (2.15)

Similarly,

v(1−aπ) = (aπ+1−bπ)(1−aπ) = aπ(1−aπ)+(1−bπ)(1−aπ) = (1−bπ)(1−aπ), (2.16)

and

v(1− bπ)(1− aπ) = (1− bπ)(1− aπ). (2.17)

From equations (2.12), (2.16) and (2.17), we have

1− aπ = t(1− bπ)(1− aπ) = (1− bπ)(1− aπ). (2.18)

By (2.15) and (2.18), we have aa#© = bb#©.

Let a ∈ R#©. If aa∗+ 1− aa#© ∈ R−1, then a = (aa∗+ 1− aa#©)−1aa∗a ∈ Raa∗a, which
implies that a is Moore-Penrose invertible in view of [16, Theorem 2.16]. Therefore, if
a /∈ R†, then aa∗ + 1− aa#© is not invertible.

Lemma 2.9. Let a ∈ R#©. If aaπa∗ = 0, then aa∗ + aπ ∈ R−1.

Proof. We use the matrix representation of a with respect to the projection aπ.

a =

[
0 0

aaπ a(1− aπ)

]
, aπ =

[
aπ 0
0 0

]
, a∗ =

[
0 aπa∗

0 (1− aπ)a∗

]
, aa∗ =

[
0 0
0 aa∗

]
.

It is easy to check that a(1−aπ) is invertible in (1−aπ)R(1−aπ) with the inverse a#© and

aaπa∗ = 0⇔ a(1−aπ)a∗ = aa∗ ⇔ a(1−aπ)(1−aπ)a∗ = aa∗ ⇔ a(1−aπ)(a(1−aπ))∗ = aa∗.

Thus aa∗ is invertible in (1 − aπ)R(1 − aπ) because aa∗ is the product of two invertible
elements in (1− aπ)R(1− aπ). Since aa∗ is invertible in (1− aπ)R(1− aπ) if and only if
aa∗ + aπ ∈ R−1, we finish the proof.

Let a ∈ R#©. If aaπ = 0, then a = a2a#©, and therefore, a#©a = a#©(a2a#©) = (a#©a2)a#© =
aa#©, thus a is Moore-Penrose invertible, a† = a#©, and a is EP by [12, Theorem 3.1].
Reciprocally, it is evident that if a is EP, then a#© = a† and aa#© = a#©a, which implies
aaπ = 0. Notice that the condition aaπa∗ = 0 is weaker than aaπ = 0. But, it is strictly
weaker, as the following example shows.
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Example 2.10. Let R be the ring of 2×2 matrices whose entries are in Z4. In R we take

the matrix transposition as the involution. Consider a =

[
1 2
0 0

]
. By checking the (1.1)

and (1.2), it is simple to prove

a† =

[
1 0
2 0

]
, a#© =

[
1 0
0 0

]
.

Now, it is simple to compute

aa† =

[
1 0
0 0

]
, a†a =

[
1 2
2 0

]
,

which, by the definition of EP element, shows that a is not EP. In addition,

aπ = 1− aa#© =

[
0 0
0 1

]
, aaπa∗ =

[
1 2
0 0

] [
0 0
0 1

] [
1 0
2 0

]
= 0.

But if the ring R is ∗-reducing, then aaπa∗ = 0 implies that aaπ = 0 (recall that a ring
R is ∗-reducing if x∗x = 0 implies x = 0 for any x ∈ R). In fact: 0 = aaπa∗ = aaπ(aaπ)∗

implies aaπ = 0. Of course, the ring considered in the above example is not reducing: it

is enough to take x =

[
2 2
2 2

]
to see that xx∗ = 0 and x 6= 0.

Theorem 2.11. Let a, b ∈ R#© with aaπa∗ = 0. Then aa#© = bb#© if and only if bπ = aπbπ

and u = aa∗ + bπ is invertible.

Proof. We will prove the necessity and the sufficiency simultaneously. Since aaπa∗ = 0,
by Lemma 2.9, we have that aa∗ + aπ is invertible. Notice that aa#© = bb#©, i.e., aπ = bπ,
implies aπbπ = bπ. Furthermore, we can use aπbπ = bπ to prove both the necessity and
the sufficiency. Taking involution in aπbπ = bπ we get bπaπ = bπ. Observe that

(bπ + 1− aπ)(aa∗ + aπ) = bπaa∗ + bπaπ + (1− aπ)aa∗ + (1− aπ)aπ

= bπaa#©aa∗ + bπ + aa∗

= bπ(1− aπ)aa∗ + bπ + aa∗

= bπ + aa∗.

And, therefore, bπ +1−aπ = (bπ +aa∗)(aa∗+aπ)−1. Now, by Theorem 2.8 and using that
a Hermitian element is left invertible if and only if such element is invertible, we have:

aa#© = bb#© ⇔ bπ = aπbπ and bπ + 1− aπ ∈ R−1 ⇔ bπ = aπbπ and bπ + aa∗ ∈ R−1.

The proof is finished.

3 Projections a(1,2,4)a and bb(1,2,3)

In this section, we will investigate projections a(1,2,4)a and bb(1,2,3). If we replace a(1,2,4)

and b(1,2,3) by a† and b†, respectively, then we can get some special corollaries, which will
be useful when we discuss the projection equation a†a = bb†.
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Lemma 3.1. Let a ∈ R. Then we have the following results:

(1) If a ∈ R{1,2,3} and a(1,2,3) ∈ a{1, 2, 3}, then a(1,2,3)b = a(1,2,3)c if and only if a∗b = a∗c
for all b, c ∈ R;

(2) If a ∈ R{1,2,4} and a(1,2,4) ∈ a{1, 2, 4}, then ba(1,2,4) = ca(1,2,4) if and only if ba∗ = ca∗

for all b, c ∈ R.

Proof. Since the proof of (2) is similar to the proof of (1), we only prove (1). Since
a ∈ R{1,2,3}, then

a(1,2,3)b =a(1,2,3)aa(1,2,3)b = a(1,2,3)(a(1,2,3))∗a∗b = a(1,2,3)(a(1,2,3))∗a∗c = a(1,2,3)c;

a∗b =(aa(1,2,3)a)∗b = a∗aa(1,2,3)b = a∗aa(1,2,3)c = a∗c.

Proposition 3.2. Let a ∈ R{1,2,4}, b ∈ R{1,2,3} and a(1,2,4) ∈ a{1, 2, 4}, b(1,2,3) ∈ b{1, 2, 3}.
Then abb(1,2,3)a(1,2,4)ab = ab if and only if b(1,2,3)a(1,2,4)abb(1,2,3)a(1,2,4) = b(1,2,3)a(1,2,4).

Proof. By Lemma 3.1, we have

abb(1,2,3)a(1,2,4)ab = ab⇔ b∗(a(1,2,4)a)∗(bb(1,2,3))∗a∗ = b∗a∗

⇔ b∗a(1,2,4)abb(1,2,3)a∗ = b∗a∗

⇔ b(1,2,3)a(1,2,4)abb(1,2,3)a(1,2,4) = b(1,2,3)a(1,2,4).

Corollary 3.3. Let a, b ∈ R†. Then abb†a†ab = ab if and only if b†a†abb†a† = b†a†.

Lemma 3.4. Let R be a ∗-reducing ring with p∗ = p = p2 ∈ R and q∗ = q = q2 ∈ R.
Then the following are equivalent:

(1) (pq)2 = pq;

(2) (qp)2 = qp;

(3) pq = qp.

Proof. (1) ⇒ (3) We use the matrix representations of p and q with respect to the

projection p. Then p =

[
p 0
0 0

]
and q =

[
q1 q2
q∗2 q3

]
by q∗ = q. Then pq =

[
q1 q2
0 0

]
and qp =

[
q1 0
q∗2 0

]
. Now (pq)2 = (pq) and q2 = q implies, respectively, q21 = q1 and

q21 + q2q
∗
2 = q1. Hence, we have q2q

∗
2 = 0, which implies q2 = 0 because R is a ∗-reducing

ring. Thus pq =

[
q1 0
0 0

]
and qp =

[
q1 0
0 0

]
. That is pq = qp.

(3) ⇒ (1) and (3) ⇒ (2) are trivial. By the symmetry of p and q, we have (2) ⇒ (3)
with the help of (1)⇒ (3).
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Example 3.5. In a general ring R, the implication of (pq)2 = pq ⇒ pq = qp may not
hold, where p∗ = p = p2 ∈ R and q∗ = q = q2 ∈ R. Let us consider the following coun-
terexample. Let R be the ring of 2× 2 matrices over Z4 with the conjugate transposition

as involution. Considering the matrices p =

[
1 0
0 0

]
and q =

[
1 2
2 0

]
, it is easy to check

that p∗ = p = p2 and q∗ = q = q2 and (pq)2 = pq, and yet pq =

[
1 2
0 0

]
and qp =

[
1 0
2 0

]
.

Theorem 3.6. Let R be a ∗-reducing ring. If a ∈ R{1,2,4}, b ∈ R{1,2,3} and a(1,2,4) ∈
a{1, 2, 4}, b(1,2,3) ∈ b{1, 2, 3}. Then the following are equivalent:

(1) abb(1,2,3)a(1,2,4)ab = ab;

(2) [a(1,2,4)a, bb(1,2,3)] = 0;

(3) b(1,2,3)a(1,2,4)abb(1,2,3)a(1,2,4) = b(1,2,3)a(1,2,4).

Proof. (3) ⇒ (2). By Proposition 3.2, we have abb(1,2,3)a(1,2,4)ab = ab if and only if
b(1,2,3)a(1,2,4)abb(1,2,3)a(1,2,4) = b(1,2,3)a(1,2,4). Define the projections e = a(1,2,4)a and f =
bb(1,2,3). Multiplying by a(1,2,4) on the left side of abb(1,2,3)a(1,2,4)ab = ab and multiplying
by b(1,2,3) on the right side of abb(1,2,3)a(1,2,4)ab = ab , then we have (ef)2 = ef , thus
[a(1,2,4)a, bb(1,2,3)] = 0 by Lemma 3.4.

(2) ⇒ (1) is trivial.
(1) ⇒ (3). It is obvious by Proposition 3.2.

Corollary 3.7. [10, Theorem 2.1] Let R be a ∗-reducing ring with a, b ∈ R†. Then the
following are equivalent:

(1) abb†a†ab = ab;

(2) [a†a, bb†] = 0;

(3) b†a†abb†a† = b†a†.

Lemma 3.8. [13, Lemma 8] Let a, b ∈ R. Then:

(1) aR ⊆ bR implies ◦b ⊆ ◦a and the converse is valid whenever b is regular;

(2) Ra ⊆ Rb implies b◦ ⊆ a◦ and the converse is valid whenever b is regular.

Theorem 3.9. Let R be a ∗-reducing ring with a, b ∈ R†. Then the following are equiva-
lent:

(1) a†a = bb†;

(2) [a†a, bb†] = 0, aR ⊆ abR and Rb ⊆ Rab;

(3) (ab)† = b†a†, aR ⊆ abR and Rb ⊆ Rab;

(4) abb†a†ab = ab, aR ⊆ abR and Rb ⊆ Rab;

(5) b†a†abb†a† = b†a†, aR ⊆ abR and Rb ⊆ Rab;
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(6) [a†a, bb†] = 0, ◦(ab) ⊆ ◦a and (ab)◦ ⊆ b◦;

(7) (ab)† = b†a†, ◦(ab) ⊆ ◦a and (ab)◦ ⊆ b◦;

(8) abb†a†ab = ab, ◦(ab) ⊆ ◦a and (ab)◦ ⊆ b◦;

(9) b†a†abb†a† = b†a†, ◦(ab) ⊆ ◦a and (ab)◦ ⊆ b◦.

Proof. The equivalence between (2), (4) and (5) can be obtained by Corollary 3.3 and
Corollary 3.7.

(1) ⇒ (2). Suppose a†a = bb†. Then

[a†a, bb†] = [a†a, a†a] = 0;

a = aa†a = abb†;

b = bb†b = a†ab,

that is [a†a, bb†] = 0, aR ⊆ abR and Rb ⊆ Rab.
(2) ⇒ (3). By Corollary 3.7, we have [a†a, bb†] = 0 ⇔ abb†a†ab = ab and b†a†abb†a† =

b†a†. Since aR ⊆ abR and Rb ⊆ Rab, then

a = abx for some x ∈ R; (3.1)

b = yab for some y ∈ R. (3.2)

Thus by equations (3.1) and (3.2), we have

a = abb†a†abx = abb†a†a = aa†abb† = abb†; (3.3)

b = yabb†a†ab = bb†a†ab = a†ab. (3.4)

The equations (3.3) and (3.4) give that

abb†a† = aa† is Hermitian;

b†a†ab = b†b is Hermitian.

(3) ⇒ (1). Suppose (ab)† = b†a†, aR ⊆ abR, and Rb ⊂ Rab. There exist x, y ∈ R
such that a = abx and b = yab. Now, abb†a†a = abb†a†abx = ab(ab)†abx = abx = a, and
similarly, bb†a†ab = yab(ab)†ab = yab = b. Thus

bb†R = bb†a†aR and a†aR = a†abb†R. (3.5)

The condition (ab)† = b†a† gives (a†abb†)2 = a†abb†. By Lemma 3.4 we get a†abb† = bb†a†a.
Therefore we have a†a = bb† by equation (3.5) and Corollary 2.2.

(2) ⇔ (6). It is easy to see that by Lemma 3.8. The proofs of (3) ⇔ (7), (4) ⇔ (8)
and (5) ⇔ (9) are similar to the proof of (2) ⇔ (6).

The element a ∈ R† is said to be bi-EP when [a†a, aa†] = 0. Let a be an element of an
associative ring R with 1. In [4, Proposition 8.22], we have a has a group inverse if and
only if a2x = a and ya2 = a both have solutions. Thus, taking a = b in Theorem 3.9, we
get the following corollary.
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Corollary 3.10. Let R be a ∗-reducing ring with a ∈ R†. Then the following are equiva-
lent:

(1) a ∈ REP;

(2) a ∈ R# and a is bi-EP;

(3) a ∈ R# and (a†)2 = (a2)†;

(4) a ∈ R# and (a†)2 ∈ a2{1};

(5) a ∈ R# and a2 ∈ (a†)2{1}.
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[8] Jin HW, Beńıtez J. The absorption laws for the generalized inverses in rings. Electron.
J. Linear Algebra. 2015;30:827-842.

[9] Li TT, Chen JL. Characterizations of core and dual core inverse in rings with involu-
tion. Linear Multilinear Algebra. doi.org/10.1080/03081087.2017.1320963.
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