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Matrices A such that AT'!R = RA* with
RF=1

Minerva Catral* Leila Lebtahif Jeffrey Stuart! Néstor Thome®

January 30, 2017

Abstract

We study matrices A € C"*" such that A*TIR = RA* where R* = I,
and s,k are nonnegative integers with k > 2; such matrices are called
{R, s + 1, k, x}-potent matrices. The s = 0 case corresponds to matrices
such that A = RA*R™! with R* = I,,, and is studied using spectral
properties of the matrix R. For s > 1, various characterizations of the
class of {R,s + 1,k,*}-potent matrices and relationships between these
matrices and other classes of matrices are presented.

Keywords: {R, s+ 1, k, x}-potent matrix; k-involutory.
AMS subject classification: Primary: 15A21; Secondary: 15A09.

1 Introduction

The set of n x n complex matrices is denoted by C**™. The symbols A* and Af
denote the conjugate transpose and the Moore-Penrose inverse, respectively, of
A € C™*™. The set of distinct eigenvalues of A (the spectrum of A) is denoted
by o(A). The symbol I,, denotes the identity matrix of C™**".

Throughout this paper we will use matrices R € C"*" such that R* = I,
where k € {2,3,4,...}. These matrices R are called k-involutory [27, 28, 30],
and are a generalization of the well-studied involutory matrices (the k = 2 case).
Note that the definition given in [27, 28] differs from that in [30]; in this paper
we adopt the definition given in [30], namely that R is k-involutory does not
require that & be minimal with respect to R* = I,,.
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For a k-involutory matrix R €C"*™ and s € {0,1,2,3,... }, amatrix A eC™*"
is called {R,s + 1,k}-potent if A satisfies A**'R = RA [16, 8]. These ma-
trices generalize the centrosymmetric matrices (matrices A € C"*™ such that
A = JAJ where J is the n x n antidiagonal matrix [29]), the matrices A € C™**™
such that AP = PA where P is an nxXn permutation matrix [24], and {K, s+1}-
potent matrices (matrices A € C"*" for which KAK = A**! where K2 = I,
17, 18, 19]).

In this paper we introduce and study a further class of matrices related to
the {R,s + 1, k}-potent matrices.

Definition 1. Let A € C"*", R € C"*" be k-involutory (that is, R¥ = I,, for
some integer k > 2), and s € {0,1,2,3,...}. The matriz A is called {R,s +
1, k, *}-potent if it satisfies

ASTIR = RA*. (1)

The set of all {R, s+ 1, k, *}-potent matrices will be denoted by Pr s k. «-

If A€ Prsi-and A= A* then Aisan {R,s+1, k}-potent matrix. Hence,
we are interested in non-Hermitian {R, s+ 1, k, *}-potent matrices. In this case,
ATl and A have the same spectrum up to conjugation.

The s = 0 case corresponds to matrices such that A = RA*R~!. This class
has been investigated when R is either a permutation matrix or an involution,
and will be further addressed in Section 2. Matrices in Pg s i« generalize the
perhermitian matrices (matrices A € C"*™ such that A = JA*J where J is
the n x n antidiagonal matrix [23]) and the k-Hermitian matrices (matrices
A € C™*" such that A = KA*K where K is any n X n involutory permutation
matrix [13]).

A Toeplitz matrix T' = [t;;] € C**™ satisfies t;; = t;_; for some given se-
quence t_,...,t,, while a Hankel matrix H = [h;;] € C"*" satisfies h;; =
hiyj—o2 for some given sequence hg, ..., ha,; note that if J is the n x n antidi-
agonal matrix, then JT is Hankel and HJ is Toeplitz [14]. Every real Toeplitz
matrix 7" can be written as T = J~1TJ, similarly H* = J~'H.J for any Hankel
matrix H with real entries (here B! denotes the transpose of B); these matrices
provide interesting examples of {R, s + 1, k, *}-potent matrices (R = .J, s = 0,
and k = 2). It is known that any n x n matrix over any field is congruent to
its transpose by an involutory congruence, i.e, for any n X n matrix A, there is
an X with X2 = I, such that XAX® = A’ [10]. In [9], it was shown that any
projector is unitarily similar to its conjugate transpose.

The concepts of generalized and hypergeneralized projectors were introduced
by Gro and Trenkler [12], in particular, given A € C"*", A is called a generalized
projector if A = A*; Ais called a hypergeneralized projector if A2 = Af. Benitez
and Thome [6] have extended these definitions to k-generalized projectors and k-
hypergeneralized projectors for any integer k greater than or equal to 2. Results
concerning generalized and hypergeneralized projectors and their extensions can
be found in [2, 3, 4, 6, 12, 25, 26]. Matrices A € C"*" satisfying (4 — pI,)(A —
qI,,) = O for some p, q € C are called quadratic matrices [1]; such matrices were



generalized and studied in [11]. We extend the definition in [1] to what we will
call {ag, ag, ..., as}-potent matrices.

Except in Section 2, we will assume s € N. The s = 0 case is discussed in
Section 2. In Section 3, we derive properties of {R, s + 1, k, *}-potent matrices
and give various characterizations. In [8] it was proved that an {R,s + 1,k}-
potent matrix is always diagonalizable but this is not always true for matrices
in Pr, sk« We impose conditions on R or on the matrix A to recover some of
the properties obtained for the former class of matrices. In Section 4, we study
the relationship between { R, s+1, k, * }-potent matrices and other classes of ma-
trices such as the {s + 1}-generalized projectors, the {s + 1}-hypergeneralized
projectors, and the {a1, s, ..., as}-potent matrices. We summarize these rela-
tionships in a diagram provided in Figure 1.

2 AR = RA* when R =1,

In this section, we analyze the case s = 0. The techniques used for this case
are different from those for the case s > 1, which will be discussed separately
in the next section. We begin with the following lemma regarding k-involutory
matrices.

Lemma 2. Let R € C"*™ with R* = I,, for some positive integer k > 2. Then

o(R) C {w,w? w?, ...,w* =1} where w = exp (2). Further, there exists an

invertible S € C™ ™ such that R = SDS~1 with
D= wallnl S woz21n2 D---D waplnp

where p is the number of distinct eigenvalues in o(R), where the o are positive

integers with 1 < a1 < ag < -+ < oy, < k, and where the dimension of the
eigenspace of R for w®i is n; for each j. The minimality of k for R* = I,, is
equivalent to ged (a1, ava, ..., ap, k) = 1.

Proof. Since RF — I, = O, the minimum polynomial of R must divide z* — 1,
which has no repeated roots, and hence, all eigenvalues of R are k' roots of
unity, and all Jordan blocks for R are 1 x 1. Let g = ged (a1, @z, ..., ap, k).
Then there are positive integers 31, 82, ..., Bp so that a; = gB3; for each j, and
a positive integer h so that k = gh. Then, for each j,

o 2mi 2mi 2mi
wrEep () Sew | et ) = e 5

so that w® is actually an h'* root of unity where h = k/g. Then

P
D" =@ (w)" Iy, = I,
j=1
Since R" = I, if and only if D" = I,,, the minimality of k is equivalent to
g = 1. D



One would hope that AR = RA* would imply that D = S™'RS and B =
S—1AS would satisfy BD = DB*, however, this requires that

BD = (S7'AS) (S™'RS) = S"' (AR) S = S~' (RA") S

and

DB* = (S7'RS) (S7'AS)" = ST'R(SS*) A*(S7Y)"

are the same, which need not be true. What is needed is that S~! = S*, which
is to say, what is needed is that R is unitarily diagonalizable. While requiring
that R = R* suffices, so does the weaker condition, RR* = R*R. (The matrix
R is called a normal matrix when the weaker condition holds, and this condition
is equivalent to unitary diagonalizability.)

Consequently, we assume that R is a normal matrix. We examine what
the condition BD = DB* implies about the matrix B. Begin by imposing the
block partitioning of D on B. Observe that under Hermitian transpose, the
block (B*),; is the block (Bj;)" for 1 <i,5 < p. Then BD = DB* is equivalent
to the conditions

Bijwi I, = w Iy, (B*)ij for 1<14,j<p.

Equivalently,
B = w*i™% (B*)ij for 1<14,5<p. (2)

Observe that when i = j, it follows that By = (B*); = (By;)*. Hence, each
diagonal block of B must be Hermitian.
Now suppose that ¢ # j. Note that (2) gives
Bij = WY (B*)ij =whTY (Bj')* ;
and it also gives Bj; = w® =% (B;;)". The latter implies (Bj;)" = w® % B;.
Combining these results, we see that when i # j,

s % o s o
Bij:wa" o (Bj) — T a]Bij:w2(al aJ)Bij~

When 2(a; — ;) # 0 modk, B;j = 0y, xn,;. Note that 2(a; —a;) # 0 mod k can
be restated as 2oy # 2a; mod k. Also, when 2c; = 2¢; mod k, no restrictions
are imposed on B;;.

When is 20;; = 2a; mod k, and how does this depend on k7

When k is odd, 2 is invertible mod k, and consequently, 2c;; = 2o; mod k if
and only if a; = a;; mod k. Since o; and «; are distinct integers in {1,2,...,k},
2(a;—a;) # 0 mod k. Thus, when k is odd, B must be a direct sum of Hermitian
matrices.

What about when k£ = 2m for some positive integer m? Note that w™ =

exp (%m) = exp(mi) = —1. Since ; and o are distinct integersin {1,2, ..., k},
0 < |a; —a;| < k, and consequently, 2(c;; — ;) = 0 modk if and only if
2|a; — a;| = k, or equivalently, if and only if |a; — ;| = m. That is, when

o; < aj, this means a; = o; + m, and when o; > «a;, this means o; = a; +m.



Thus, if & = 2m, and if whenever w® is in o(R), w* ™™ = —w* ¢ o(R), then
B must be a direct sum of Hermitian matrices.

The interesting case is when k = 2m and for at least one 4, {w®, —w®i}
o(R). In this case, the diagonal blocks of B are all Hermitian, and for B;;
where oj = a; +m modk, Bj; = w* ™% (By;)" = w™(By;)" = —(Bij)".
Apparently, in this case, there will be some nontrivial off-diagonal blocks, which
are connected by a skew-Hermitian relationship to other off-diagonal blocks.

The preceding arguments lead to the main result of this section.

Theorem 3. Suppose n,k are positive integers, and A, R € C"*" where R is
normal and R* = I, with k minimal. Let S,D € C™ " be the unitary and
diagonal matrices, respectively, given in Lemma 2 such that R = SDS*. Then,
AR = RA* holds if and only if BD = DB* where B = S*AS. Further,

P
1. When k is odd, BD = DB* if and only if B = @Bjj where each Bj; is
j=1
an arbitrary n; x n; Hermitian matriz.

2. When k = 2m for some positive integer m, partition B into blocks using
the natural partition of D. The following are equivalent:

(a) BD = DB*

(b) For1<j<p, Bjj is an arbitrary n; x n; Hermitian matriz. B;; =
On;xn; whenever |a; — aj| #m. If aj = oy £m (equivalently, w®i =
—w® ) for some a; with 1 < a; < m and some oy, then Byj is an
arbitrary n; x nj complex matriz such that Bj; = —(B;j)*.

Corollary 4. Suppose A, R € C"*", R = R*, and R* = I,, for some minimal
positive integer k. Then k € {1,2}. If R = +1I,, then AR = RA* if and only if
A= A*. If R # £I,, then o(R) = {—1,1}, k = 2, and there exists a unitary
S € C" ™ such that R = S (I,, ® (—1)I,,,) S* where ny > 0 is the multiplicity
of 1 in o(R) and ny > 0 is the multiplicity of —1 in o(R). Let B = S*AS.
Then AR = RA* if and only if

B Bia
B = *
{— (Bi2) B22}

where B11 € C™*™ and Boy € C™2X"2 gre Hermitian, and By, € C"t*™2 g
arbitrary.

Proof. If R = R*, then o(R) must be real, so o(R) C {—1,1}, and hence,
k € {1,2} by the minimality condition. If o(R) = {1}, then k =1 and R = I,,.
If o(R) = {—1}, then k = 2 and R = —I,. If o(R) = {—1,1}, then use the
preceding theorem with k£ = 2 and p = 2. O

The next corollary follows by using a similar argument.



Corollary 5. Suppose A, R € C"*", R* = —R, and R* = I,, for some minimal
positive integer k. Then k = 4. If R = +il,,, then AR = RA* if and only if
A= A*. If R # +il,,, then o(R) = {—i,i} and there exists a unitary S € C**™
such that R = S (il,, @ (—i)I,,) S™ where ny > 0 is the multiplicity of i in o(R)
and ny > 0 is the multiplicity of —i in o(R). Let B = S*AS. Then AR = RA*

if and only if
. B11 0]
B= { 0 Bzz]

where By1 € C"tX™ gnd Boy € C"2X"2 qre Hermitian.
The following example illustrates the second case in Theorem 3.

Example 6. Suppose that k =4 and o(R) = {i,—1,—i}. Herew =1, aq = 1,
as =2, a3 =3,n =4 and ng =nz = 1. Then k = 2m where m = 2; w™*
and w* = —w are in o(R); and w*? is in o(R) but wW*T™ = —w* s not.
Suppose that S = Is so R = D. If A € C%*%% satisfies AR = RA*, then A1, Ao
and Asz must be arbitrary Hermitian matrices; Ao, Aoy, Aoz and Ass must be
zero matrices; A1z must be arbitrary, and Azy = — (Ay3)". That is, AR = RA*
holds if and only if A satisfies

a11 @12 a13 ai4 aie
*
Q19 a22 a23 a4 a26
* *
A= a3 Qo3 ass3 a34 a36

0 0 0 0

0
0
0
ai4 a5y asy Aqq 0  aue
ass
* * * *
—ajs —azs —azg —azs O

ae6

where each diagonal entry of A is real.

3 Characterizations of {R, s+ 1, k, x}-potent ma-
trices

For a matrix A € C"*™, the group inverse, if it exists, is the unique matrix A%
satisfying the matrix equations AA#* A = A, A#AA# = A# and AA# = A# A;
it is well known that A% exists if and only if rank A2 = rank A [5].

Throughout this section, we assume that s is an integer > 1. First, we list
some properties of {R, s + 1, k, *}-potent matrices.

Lemma 7. Suppose that A € Pr s i.«. Then the following statements hold.
a. A% exists.
b, A% € PR,s,k,*-

C. AA#EPRS]C*.

395y



d. o(A) C {0}u{exp(§;§g ) te {0,1,...,s+1}},

Proof. (a) Since s > 1, rank(A) = rank(A*) = rank(R™! AT R) = rank(A45*?!) <
rank(A2) < rank(A). Thus, rank(A2) = rank(A). (b) Using the relation (4*)# =
(A#)*, we obtain (A*)# = (R7IAHIR)# = R (At)# R = R™1(A#)*t'R =

(A#)*. (c) Since A, A# € Pr s, (AAF )51 = AsHL(A#)5+] = RA*R-R(A#)* R~

RA*(A#)*R™! = R(A#¥A)*R™! = R(AA#)*R™'. (d) From RA*R™! = Ast1,
we have [o0(A)]*T1 = o(A°T!) = o(RA*R™Y) = 0(A4*) = o(A), where o(A)
means the set of the conjugate of the eigenvalues of A. Thus, A € o(A) if and
only if A**! = )\, which becomes 7**!exp ((s + 1)0i) = re~® where we assume
that A = re?. Now, taking modulus the two possibilities are » = 0 which implies

/\:Oor/\:exp(fig) te{0,1,...,s+1}. O

Some results related to Lemma 7 were given in [15].
The next result presents a characterization of matrices in Pr s  «.

Theorem 8. Let A, R € C"*" such that R* = I,, and r = rank(A). Then A is
an {R,s + 1, k, x}-potent matriz if and only if there exist nonsingular matrices
P eC"™™ and C € C™™" such that

c 0], X O]
A:P[ ]Pl and R:P[O T]P, (3)

for X € C™*" satisfying XC* = C**1X with X nonsingular and for any non-
singular T € Cn—r)x(n=r)

Proof. By Lemma 7, A has index at most 1. So, the core-nilpotent representa-

tion gives
_L[C 0],
aer[ 9T

for some nonsingular matrices P € C"*" and C' € C"*". Substituting in A5+! =
RA*R™! we get

o1 [CF O] e, [C O
PR(P){OOPRP— o ol
Denoting Z = P'R(P~!)* and partitioning Z as
XY
Z:[V T}

of adequate sizes, we arrive at
XY cr ol _[ocstt O XY
vV T O O | O O v T |’
from where we obtain XC* = C*T1X,Y = O, and V = O. Since R is nonsingu-

lar, X and T are nonsingular as well. Substituting in the expression R = PZ P*,
we get the representation (3). O



From Theorem 8, it follows that if A is an {R, s+ 1, k, *}-potent matrix with

A as in (3) then
ct O _
# 1
A —P[ 0 O}P .

Observe that in Theorem 8 we obtain the condition XC* = C**'X but, in
general, we cannot conclude that C is an {X, s + 1, k, x}-potent matrix. More-
over, while A is similar to a block diagonal matrix via the matrix P, the corre-
sponding relation for R using the same P is a congruence to a block diagonal
matrix. The concept of EP matrices allows us to improve the form in (3) by
giving (unitary) similarity in R as well.

Recall that a matrix A € C"*" is called EP if AAT = ATA [7], or equiv-
alently, if there exists a unitary matrix U € C™*™ and a nonsingular matrix
C € C™*" such that

Theorem 9. Let A, R € C"*" such that R* = I,, and r = rank(A). Consider
the following three conditions:

a. A is an EP matrix.
b. Ais an {R, s+ 1, k,x}-potent matriz.

c. There exist a unitary matric U € C™*™ and a nonsingular matriz C €
C™" such that

c O N _ X O .
A—U[OO}U and R—U{OT}U,

where C' is a {X,s + 1, k, x}-potent matriz for X € C™*" and any T €
Cn=r)x(n=7) satisfying TF = I,,_,.

Then any two of these conditions (a)-(c) imply the third one.
Proof. (a) + (b) = (c): Assume that

c O ¥
a=0[ 2]

for some unitary matrix U € C"*™ and a nonsingular matrix C' € C"™*". Now,
a similar proof as that of Theorem 8 gives (c¢). (a) + (¢) = (b): This can be
directly derived from Theorem 8. (b) + (¢) = (a): This direction is trivial. [

The findings in the next result relate to some facts about the diagonalization
of a matrix in Pr sk, «-

Theorem 10. Let A, R € C"*" such that R¥ = I,, and A is an {R,s+1,k, *}-
potent matriz. Then



a. AT = (R(R-Y)*VAR*R™Y), j=1,... k.

b. If R is normal, then ACHV™" = A. In this case, A# = Als+D)*" =2,
c. If R is Hermitian, then AGHD® = A In this case, A# = Al+D)?=2,
d. If R is normal, then A is diagonalizable.

Proof. (a) The definition A**! = RA*R~! implies AGHD® = (A=)t =
R(A*TY)*R™! = R(R"Y)*AR*R~". Similarly,

A(s+1)3 — (A(s+1)2)s+1 — R(R—l)*RA*R—lR*R—l

and AGTD" = (R(R™1)*)24*(R~'R*)2. The result follows by induction. (b) If
R is normal, then RR* = R*R. So, (R*) 'R = R(R*)~! and then

(R(R™))E = RE(RY)): = RERY) = 1,
and

(R*Rfl)k _ (R*)k(Rfl)k _ (Rk)*(Rk)71 =1,
since R¥ = I,,. Now, the result follows from (a). (c) If R* = R and R* = I,
then R? = I,, because R is (unitarily) diagonalizable and

o(R) ng{eXp <27]Zqz> ,q € {0,1,...,q—1}} C{-1,1}.

Hence, R~! = R = R*. Now, again the result follows from (a). (d) This
follows from (b) and by taking into account that all the roots of the polynomial
p(z) = 26D o are simple. In order to compute the group inverses of A
in parts (b) and (c) the following general fact is used: A% = A’ if and only if
A2 = A for some given integer £ > 1. O

While in [8] it was proved that an {R,s + 1,k}-potent matrix is always
diagonalizable, this property is not always true for matrices in Pr s 5 «. The
next example illustrates this fact.

Example 11. Let w be a primitive root of unity of order 2m,

110 0 Vvs+1 0

1
A=10 1 0 [, and R.=| 7 0 0
0 0O 0 0 w

Then R%2™ = I3 and the matriz

0 vs+1

_ _1
X=\| 7a 0
satisfies XC* = C*T'X and X% = I, where C = (1) 1 Hence, A is a

{Ru, s + 1,2m, x}-potent matriz. It is clear that A is not diagonalizable.



Recall that for a pair of matrices A, B € C"*™, the commutator [A, B] is
defined as [A, B] = AB — BA.

Lemma 12. Let R € C"*" such that R* = I,,. The set
G = {A € PR,s,kc,» [A,B] =0,VB € PR,s,k,*}
s a semigroup under matriz multiplication.

Proof. Let A;, A € G. Then, A1, Ay € Pr sk, and for i = 1,2 we have A;B =
BA; for all B € Pg s« In particular, A;A; = A3A;. Since RA;‘R_1 = Af“
for i = 1,2, we get

(A1 Ap)" ™ = ASTIAST = RAJASR™ = R(A9A)* R = R(A1 42)*R7Y,

that is A1As € Prs g« Moreover, (A1A2)B = A1BA; = B(A1A) for all
B e PR,s,k,*- Hence, A1 A5 € G. O

Remark 13. If A, B € Pr sk« satisfy AB = BA, then AB € Pr g«

4 Relationship between P ;. . and other classes
of matrices

First, we present a general result whose proof will be useful in this section.

Lemma 14. Let A € C"*™ be a matriz of index 1 and rank(A) =r > 0. Then
A is a normal matriz if and only if there exist nonsingular matrices P € C™"*™
and C € C"™" such that

B cC O 1 vn | M O
A_P[OO}P and PP_{O N]’

where M € C™*" and N € C"=")*(=") qre both positive definite matrices and
C* commutes with MCM~*.

Proof. 1t is well known that any matrix of index 1 has the form

_o[C 07,
a-r[S 0]

for some nonsingular matrices P € C"*™ and C' € C"*". Substituting in AA* =
A* A and reordering factors yield

P*P[g 8}(13*13)1[00* 8_P*P:{CO* 8]P*P[g 8].(4)

Partitioning P* P with adequate sizes to the partition considered for A we obtain

p_ | M Q
PP—_Q* N:|7

10



with M and N Hermitian. Since P is nonsingular, by using the positive definite-
ness of P*P it is easy to see that M and N are positive definite. The inversion
formula of Banachiewicz-Schur ensures the nonsingularity of the Schur comple-
ment W = (P*P)/M = N — Q*M~'Q and gives
. 4 M—l + M—le—lQ*M—l _M—le—l
(PrP)” = _w-1lo*ps—1 -1 :
W=—Q*M W

Substituting in (4) and making the block products we get

MLM MLQ
QLM Q*LQ

where L = C(M~' + M~1QW~tQ*M~1)C*. Thus, MLM = C*MC, MLQ =
O, Q*LM = O, and Q*LQ = O. By the nonsingularity of M and N we get
LQ =0 and Q*L = O, that is

c*MC O
0 o |’

O=C(M*'+M QW 'Q*MHC*Q=CM (I, + QW 'Q*M~1)C*Q.

This last expression gives (I, + QW 1Q*M~1)C*Q = O. Similarly, from O =
Q'L = Q*C(I, + M 'QW1Q*)M~*C* we get Q*(I, + M~ 1QW~1Q*) =
O. Now, substituting the expression of L in MLM = C*MC we arrive at
MCM~Y(I, + QW=tQ*M~1)C*M = C*MC which implies

O=MCM NI, + QW 'Q*M1)C*Q = C*MCM1Q,

from where @Q = O due to the nonsingularity of C' and M. Hence,
ip_ | M O
PP = [ o } ,

with MCM~1C* = C*MCM ™" since L = CM~'C*. The converse is evident.
O

In Lemma 7 we proved that the projector AA# € Pg k.. provided that
A € Pr.s i« The next result characterizes all projectors that belong to Pr sk «.

Theorem 15. Let A € C™ ™ be a projector, i.c., A> = A. Then the following
conditions are equivalent:

a. Ais {R,s+1,k,*}-potent.
b. AR= RA*.

c. There exists a nonsingular matric P € C"*™ such that

N I Aol [ x 0],
AP[OO]P and RP{OT}P,

where X € C™*" and T € C»=")*(=") qre nonsingular matrices.

11



Proof. Since A2 = A, we get Ast! = A for all s and

A:P[g g}P*. (5)

(a) <= (b) This follows directly from the definitions. (b) <= (¢) The form of
R can be found by substituting (5) into AR = RA* and partitioning

-1 1| XY

P 'R(P )_[Z T]

O

Remark 16. Note that in the above theorem the value used for s was not
relevant.

In Theorem 9 we have characterized all {R, s + 1, k, * }-potent matrices that
are EP. Next, we characterize {R, s + 1, k, *}-potent matrices that are normal.

Theorem 17. Let A € C"*™ be a nonzero {R, s+ 1, k, x}-potent matriz. Then
A is normal if and only if there exist monsingular matrices P € C™*™ and
C € C™" such that

_ c O 1 _ XM O 1
A_P[O O}P and R—P[ o TN]P ,

where M € C™" and N € C»=")*("=7) qre both positive definite matrices and
X € C*" and T € C=")x(=") gre nonsingular matrices such that XC* =
Cs+1X,

Proof. By Theorem 8 there exist nonsingular matrices P € C"*™ and C € C"™*"
such that

o [c o], U [x 0],
A_P[O O}P and R—P[O T}P,

for X € C™*" satisfying XC* = C**1X with X nonsingular and for any non-
singular 7' € C"=")*("=7) " Assume that A is normal. Then, a similar proof to
that of Lemma 14 yields

L [M 0T,
P[o N}P

where M € C™*" and N € C»=")*(=7) are both positive definite matrices.
Thus, we can deduce that

R:P[
The converse is evident. O
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In [6], the class of {s + 1}-GP matrices (for s € N) was introduced; these
extend the concept of generalized projectors (matrices A that satisfy A% = A*)
that were introduced in [12]. A matrix A € C"*" is called an {s+1}-GP matrix
if A* = A*L; the set of all n.x n {s+ 1}-GP matrices will be denoted by G P 1.
The matrices in GPs4; are characterized as follows [6]:

A € GP,yy <= Ais normal and o(A) C {0}NQ, 19 <= A is normal and A*"3 = A,

where Q549 denotes the roots of unity of order s + 2. We next give another
characterization.

Lemma 18. Let A € C"*™. Then A is a {s+ 1}-GP matriz if and only if there
ezist a unitary matric U € C"*" and a diagonal matriz D = [d;;] € C™*" such

that o
D *
A=U [ o 0O ] U-,
with djj € Qs+2.
Proof. This is a straightforward extension of [6, Corollary 2.2]. O

Now, we characterize {R, s + 1, k, *}-potent matrices that are in GPs1.

Theorem 19. Let A € C"*™ be an {R,s + 1,k, x}-potent matriz. Then, the
following statements are equivalent:

a. Aisa{s+1}-GP.
b. A*R = RA*.

c. There exists a unitary matriz U € C"*™ and a diagonal matriz D = [d;;] €
C™*" such that

A_U[O O}U, R—U[O RQ]U,

where d;j; € Qepo with Ry € C™" satisfying RiD = DRy and Ry €
(C(nfr)x(nfr)'

Proof. From the definition A5t! = RA*R™!, it is easy to see that Ast! = A*
and A*R = RA* are equivalent; thus (a) <= (b). Now, suppose that A is a
{s + 1}-GP matrix. By Lemma 18

D O X
A_U[O O]U’

under the conditions indicated there. Consider the partition

Ry R3:|

U]%U:[R4 Ry

according to the sizes of the partition of U*AU. Equating blocks, we obtain

that the expression A*R = RA* is equivalent to D*R; = R1D*, R3 = O, and
R4 = O, since D is nonsingular; thus (a) <= (c¢). O

13



Now, we relate the class of {R,s + 1, k, *}-potent matrices to the class of
{s + 1}-HGP matrices. Recall that a matrix A € C"*" is called {s + 1}-HGP
(i.e., hypergeneralized potent matriz) if At = AT [12]. The set of all n x n
{s+1}-HGP matrices will be denoted by HG Psy1, and the matrices in HGP;11
are characterized as follows:

A€ HGP,,, <= Ais EP and A*™ = A

Theorem 20. Let A € C" " an {R,s + 1,k,*}-potent matriz. Then, the
following statements are equivalent:

a. Aisa{s+1}-HGP.
b. ATR = RA*.

c. There exist a unitary matric U € C**" and a nonsingular matriz C €
C™ " such that

¢ O

A:U{O 0

]W, R:U{& O}U*

O Ry

where C~ Ry = R1C* with Ry € C™" and Ry € C=7)%X("=7) gre matri-
ces such that RY = I, and R = 1I,,_,.

Proof. The equivalence (a) <= (b) follows directly from the definitions. Sup-
pose that A is a {s + 1}-HGP. Then A is EP, so there exists a unitary matrix
U € C"*" and a nonsingular matrix C' € C"*" such that

¢ O «
AU[O O}U'

It is clear that

ct o
T *
AT =U [ o 0O } U*.
Now we consider the partition
" | R Rs
U*RU = { Ry Ry } ,

according to the sizes of the partition of U*AU. Substituting in RA* = A'R
and equating blocks we obtain R1C* = C~'R;, R3 = O, and Ry = O. Thus,
the conditions on R have been obtained. Observe that R* = I,, implies R’f =1
and RS = I,,_,. Hence (a) = (c). Finally, (c) = (b) is straightforward. [

We summarize all the information studied in this section in Figure 1.

A matrix A € C™ " is a partial isometry if AY = A*, or equivalently,
AA*A = A [21]. The relation between Pg s« and partial isometries is pre-
sented in the next result.
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{R,s + 1, k, *}-potent matrices

EP

GPsq1

HGPSJrl

Figure 1: Relation between {R, s + 1,k + x}-potent matrices and other classes

Theorem 21. Let A € C*"*" a matriz in Pr s k. As in Theorem 8, let

_ c O 1 _ X O "
A—P{O O]P and R—P{O T]P’
and partition P*P as
s | M L
PP[L* N}

Then A is a partial isometry if and only if I, + L(N — L*M L)~ 'L*M~1 =
MC=1M=Y(C1Y~,

Proof. The result is obtained by substituting in AA*A = A the expression of
A given in the statement and by using the Banachiewicz-Schur formula for the
inverse of P*P. O

Finally, we present the relationship between Pr sk and {oq,a9,...,a0}-
potent matrices. The latter is an extension of the {aq, as}-quadratic matrices
[22].

Definition 22. A matrix A € C"*™ is called an {a1, aa, ..., a}-potent matric

if
(A— a1 L) (A—asl,)...(A—aul,) =0,

where ay, as, ...,ap € C are pairwise distinct.
The set of all {a, g, . . ., g }-potent matrices will be denoted by N{aq, az, ..., cau}.

If ¢ = 2, matrices in N'{aq, as} are called {1, s }-quadratic [1, 11]. Allow-
ing equalities between o, o, ..., ay, the choice a3 = as = --- = ay = 0 leads
to nilpotent matrices. The set of all n x n nilpotent matrices will be denoted
by Nil.

Lemma 23. {R,s+ 1, k,*}-potent matrices are not nilpotent.
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Proof. Suppose that A is an {R, s + 1, k, *}-potent matrix. By Theorem 8,

[0 0,0
a=r[C Qe

for some nonsingular matrices P € C"*" and C € C™*". If we assume that
A™ = O for some positive integer m then C™ = O, which is impossible. O

Theorem 24. Let A € Prs i «, and let a1, ao,...,ap € C be pairwise distinct.
Then A € N{ay, s, ..., a0} if and only if oy =0,

_ D O 1 _ Y O «
A_L[O O}L , and R—L{O T]L’

for some nonsingular matric L € C"*" and a diagonal matriz D = [d;;] € C"™*"

where dj; € {ag,...,ag}ﬁ{exp <§:;i),t€ {0,1,...,s+1}}forj: 1,2,...,r

and some nonsingular matrices Y € C™", T € C="X(=7) sych that Y D* =
Dstly,

Proof. Since A € P g k., by Theorem 8 we have

o [c 07, [ x 07,.
AP{O O]P, RP[O T]P,

for some nonsingular matrices P € C"*", X € C"™" and T € C»~")*("=7) guch
that XC* = C*T1X. Suppose that (A — ai1,)(A — azl,) ... (A — aul,) = 0,
where a1, s, ...,ap € C are pairwise distinct. Then

mé_, (C — a;l,) @)
7j=1 Jer
p[ ’

-1
(=) I 0 Ly } o
So, I5_,(C — a;jl,) = O and TI{_ja; = 0. It is clear that there is at least
one j € {1,2,...,¢} such that a; = 0 (since a; # g if ¢ # ¢). Without
loss of generality, we can assume that oy = 0 (consequently, a; # 0 for all
Jj € {2,...,0}). Now, H§:2(C — «jl;) = O because C is nonsingular, and
p(z) = (x — az)(x — a3)...(z — ay) is a (monic) annihilator polinomial of C
with all its factors linear. Since all a; € C and C is algebraically closed, C' must
be diagonalizable. Let C = QDQ~! with D diagonal. Then

_ QD™ 01,1 ,[D O],_
A_P{ o O}Pl_L[O O]L&

where L = P{ 8 IO ] Hence, A is diagonalizable. Substituting now,

C = QDQ ! in H§:2(C’ —ajl,) = O we get H§:2(D —a;l,) = O, that is
for every ¢ = 1,2,...,4, H§:2(djj — ;) = 0, thus, dj; € {a,...,a} for all

j=1,2,...,r. From Lemma 7, d;; € {exp(fgi) ,t€e {0,1,...,s+1}} for
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all j € {1,2,...,7r}. By using XC* = C**1 X and C = QDQ~ !, we can denote
Y = Q7 1X(Q*)! to arrive at

X 0], .[Y o7,.
ner[ X 9]pon]? 00,

with Y D* = D**'Y and Y nonsingular. U

Remark 25. Notice that, if either aj # 0 for all j € {1,2,...,0} orif o; ¢
{exp(%tz) Jte {O,l,...,s+1}}f0rsomej €{2,...,0} then N{a1,aq,...,ap}N

s+2
PR,SJC,* = @
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