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Abstract

We study matrices A ∈ Cn×n such that As+1R = RA∗ where Rk = In,
and s, k are nonnegative integers with k ≥ 2; such matrices are called
{R, s + 1, k, ∗}-potent matrices. The s = 0 case corresponds to matrices
such that A = RA∗R−1 with Rk = In, and is studied using spectral
properties of the matrix R. For s ≥ 1, various characterizations of the
class of {R, s + 1, k, ∗}-potent matrices and relationships between these
matrices and other classes of matrices are presented.

Keywords: {R, s+ 1, k, ∗}-potent matrix; k-involutory.
AMS subject classification: Primary: 15A21; Secondary: 15A09.

1 Introduction

The set of n×n complex matrices is denoted by Cn×n. The symbols A∗ and A†
denote the conjugate transpose and the Moore-Penrose inverse, respectively, of
A ∈ Cn×n. The set of distinct eigenvalues of A (the spectrum of A) is denoted
by σ(A). The symbol In denotes the identity matrix of Cn×n.
Throughout this paper we will use matrices R ∈ Cn×n such that Rk = In

where k ∈ {2, 3, 4, . . .}. These matrices R are called k-involutory [27, 28, 30],
and are a generalization of the well-studied involutory matrices (the k = 2 case).
Note that the definition given in [27, 28] differs from that in [30]; in this paper
we adopt the definition given in [30], namely that R is k-involutory does not
require that k be minimal with respect to Rk = In.
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For a k-involutory matrixR ∈Cn×n and s ∈ {0, 1, 2, 3, . . . }, a matrixA ∈Cn×n
is called {R, s + 1, k}-potent if A satisfies As+1R = RA [16, 8]. These ma-
trices generalize the centrosymmetric matrices (matrices A ∈ Cn×n such that
A = JAJ where J is the n×n antidiagonal matrix [29]), the matrices A ∈ Cn×n
such that AP = PA where P is an n×n permutation matrix [24], and {K, s+1}-
potent matrices (matrices A ∈ Cn×n for which KAK = As+1 where K2 = In
[17, 18, 19]).
In this paper we introduce and study a further class of matrices related to

the {R, s+ 1, k}-potent matrices.

Definition 1. Let A ∈ Cn×n, R ∈ Cn×n be k-involutory (that is, Rk = In for
some integer k ≥ 2), and s ∈ {0, 1, 2, 3, . . . }. The matrix A is called {R, s +
1, k, ∗}-potent if it satisfies

As+1R = RA∗. (1)

The set of all {R, s+ 1, k, ∗}-potent matrices will be denoted by PR,s,k,∗.

If A ∈ PR,s,k,∗ and A = A∗, then A is an {R, s+1, k}-potent matrix. Hence,
we are interested in non-Hermitian {R, s+1, k, ∗}-potent matrices. In this case,
As+1 and A have the same spectrum up to conjugation.
The s = 0 case corresponds to matrices such that A = RA∗R−1. This class

has been investigated when R is either a permutation matrix or an involution,
and will be further addressed in Section 2. Matrices in PR,s,k,∗ generalize the
perhermitian matrices (matrices A ∈ Cn×n such that A = JA∗J where J is
the n × n antidiagonal matrix [23]) and the κ-Hermitian matrices (matrices
A ∈ Cn×n such that A = KA∗K where K is any n× n involutory permutation
matrix [13]).
A Toeplitz matrix T = [tij ] ∈ Cn×n satisfies tij = tj−i for some given se-

quence t−n, . . . , tn, while a Hankel matrix H = [hij ] ∈ Cn×n satisfies hij =
hi+j−2 for some given sequence h0, . . . , h2n; note that if J is the n × n antidi-
agonal matrix, then JT is Hankel and HJ is Toeplitz [14]. Every real Toeplitz
matrix T can be written as T t = J−1TJ , similarly Ht = J−1HJ for any Hankel
matrix H with real entries (here Bt denotes the transpose of B); these matrices
provide interesting examples of {R, s + 1, k, ∗}-potent matrices (R = J , s = 0,
and k = 2). It is known that any n × n matrix over any field is congruent to
its transpose by an involutory congruence, i.e, for any n× n matrix A, there is
an X with X2 = In such that XAXt = At [10]. In [9], it was shown that any
projector is unitarily similar to its conjugate transpose.
The concepts of generalized and hypergeneralized projectors were introduced

by Gro and Trenkler [12], in particular, given A ∈ Cn×n, A is called a generalized
projector if A2 = A∗; A is called a hypergeneralized projector if A2 = A†. Benítez
and Thome [6] have extended these definitions to k-generalized projectors and k-
hypergeneralized projectors for any integer k greater than or equal to 2. Results
concerning generalized and hypergeneralized projectors and their extensions can
be found in [2, 3, 4, 6, 12, 25, 26]. Matrices A ∈ Cn×n satisfying (A− pIn)(A−
qIn) = O for some p, q ∈ C are called quadratic matrices [1]; such matrices were
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generalized and studied in [11]. We extend the definition in [1] to what we will
call {α1, α2, . . . , α`}-potent matrices.
Except in Section 2, we will assume s ∈ N. The s = 0 case is discussed in

Section 2. In Section 3, we derive properties of {R, s+ 1, k, ∗}-potent matrices
and give various characterizations. In [8] it was proved that an {R, s + 1, k}-
potent matrix is always diagonalizable but this is not always true for matrices
in PR,s,k,∗. We impose conditions on R or on the matrix A to recover some of
the properties obtained for the former class of matrices. In Section 4, we study
the relationship between {R, s+1, k, ∗}-potent matrices and other classes of ma-
trices such as the {s + 1}-generalized projectors, the {s + 1}-hypergeneralized
projectors, and the {α1, α2, . . . , α`}-potent matrices. We summarize these rela-
tionships in a diagram provided in Figure 1.

2 AR = RA∗ when Rk = In

In this section, we analyze the case s = 0. The techniques used for this case
are different from those for the case s ≥ 1, which will be discussed separately
in the next section. We begin with the following lemma regarding k-involutory
matrices.

Lemma 2. Let R ∈ Cn×n with Rk = In for some positive integer k ≥ 2. Then
σ(R) ⊆ {ω, ω2, ω3, . . . , ωk = 1} where ω = exp

(
2πi
k

)
. Further, there exists an

invertible S ∈ Cn×n such that R = SDS−1 with

D = ωα1In1 ⊕ ωα2In2 ⊕ · · · ⊕ ωαpInp

where p is the number of distinct eigenvalues in σ(R), where the αj are positive
integers with 1 ≤ α1 < α2 < · · · < αp ≤ k, and where the dimension of the
eigenspace of R for ωαj is nj for each j. The minimality of k for Rk = In is
equivalent to gcd (α1, α2, . . . , αp, k) = 1.

Proof. Since Rk − In = O, the minimum polynomial of R must divide xk − 1,
which has no repeated roots, and hence, all eigenvalues of R are kth roots of
unity, and all Jordan blocks for R are 1 × 1. Let g = gcd (α1, α2, . . . , αp, k).
Then there are positive integers β1, β2, . . . , βp so that αj = gβj for each j, and
a positive integer h so that k = gh. Then, for each j,

ωαj = exp

(
2πi

k
αj

)
= exp

(
2πi

k
gβj

)
= exp

(
2πi

h
βj

)
so that ωαj is actually an hth root of unity where h = k/g. Then

Dh =

p⊕
j=1

(ωαj )
h
Inj = In.

Since Rh = In if and only if Dh = In, the minimality of k is equivalent to
g = 1.
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One would hope that AR = RA∗ would imply that D = S−1RS and B =
S−1AS would satisfy BD = DB∗, however, this requires that

BD =
(
S−1AS

) (
S−1RS

)
= S−1 (AR)S = S−1 (RA∗)S

and
DB∗ =

(
S−1RS

) (
S−1AS

)∗
= S−1R (SS∗)A∗(S−1)

∗

are the same, which need not be true. What is needed is that S−1 = S∗, which
is to say, what is needed is that R is unitarily diagonalizable. While requiring
that R = R∗ suffi ces, so does the weaker condition, RR∗ = R∗R. (The matrix
R is called a normal matrix when the weaker condition holds, and this condition
is equivalent to unitary diagonalizability.)
Consequently, we assume that R is a normal matrix. We examine what

the condition BD = DB∗ implies about the matrix B. Begin by imposing the
block partitioning of D on B. Observe that under Hermitian transpose, the
block (B∗)ij is the block (Bji)

∗ for 1 ≤ i, j ≤ p. Then BD = DB∗ is equivalent
to the conditions

Bijω
αjInj = ωαiIni (B∗)ij for 1 ≤ i, j ≤ p.

Equivalently,
Bij = ωαi−αj (B∗)ij for 1 ≤ i, j ≤ p. (2)

Observe that when i = j, it follows that Bii = (B∗)ii = (Bii)
∗. Hence, each

diagonal block of B must be Hermitian.
Now suppose that i 6= j. Note that (2) gives

Bij = ωαi−αj (B∗)ij = ωαi−αj (Bji)
∗

;

and it also gives Bji = ωαj−αi (Bij)
∗. The latter implies (Bji)

∗
= ωαi−αjBij .

Combining these results, we see that when i 6= j,

Bij = ωαi−αj (Bji)
∗

= ωαi−αjωαi−αjBij = ω2(αi−αj)Bij .

When 2(αi−αj) 6≡ 0 mod k, Bij = 0ni×nj . Note that 2(αi−αj) 6≡ 0 mod k can
be restated as 2αi 6≡ 2αj mod k. Also, when 2αi ≡ 2αj mod k, no restrictions
are imposed on Bij .

When is 2αi ≡ 2αj mod k, and how does this depend on k?
When k is odd, 2 is invertible mod k, and consequently, 2αi ≡ 2αj mod k if

and only if αi ≡ αj mod k. Since αi and αj are distinct integers in {1, 2, . . . , k},
2(αi−αj) 6≡ 0 mod k. Thus, when k is odd, B must be a direct sum of Hermitian
matrices.
What about when k = 2m for some positive integer m? Note that ωm =

exp
(
2πi
k m

)
= exp(πi) = −1. Since αi and αj are distinct integers in {1, 2, . . . , k},

0 < |αi − αj | < k, and consequently, 2(αi − αj) ≡ 0 mod k if and only if
2 |αi − αj | = k, or equivalently, if and only if |αi − αj | = m. That is, when
αi < αj , this means αj = αi +m, and when αi > αj , this means αi = αj +m.
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Thus, if k = 2m, and if whenever ωαi is in σ(R), ωαi+m = −ωαi /∈ σ(R), then
B must be a direct sum of Hermitian matrices.
The interesting case is when k = 2m and for at least one i, {ωαi ,−ωαi} ⊆

σ(R). In this case, the diagonal blocks of B are all Hermitian, and for Bij
where αj ≡ αi + m mod k, Bji = ωαj−αi (Bij)

∗
= ωm (Bij)

∗
= − (Bij)

∗.
Apparently, in this case, there will be some nontrivial off-diagonal blocks, which
are connected by a skew-Hermitian relationship to other off-diagonal blocks.
The preceding arguments lead to the main result of this section.

Theorem 3. Suppose n, k are positive integers, and A,R ∈ Cn×n where R is
normal and Rk = In with k minimal. Let S,D ∈ Cn×n be the unitary and
diagonal matrices, respectively, given in Lemma 2 such that R = SDS∗. Then,
AR = RA∗ holds if and only if BD = DB∗ where B = S∗AS. Further,

1. When k is odd, BD = DB∗ if and only if B =

p⊕
j=1

Bjj where each Bjj is

an arbitrary nj × nj Hermitian matrix.

2. When k = 2m for some positive integer m, partition B into blocks using
the natural partition of D. The following are equivalent:

(a) BD = DB∗

(b) For 1 ≤ j ≤ p, Bjj is an arbitrary nj × nj Hermitian matrix. Bij =
0ni×nj whenever |αi − αj | 6= m. If αj = αi±m (equivalently, ωαj =
−ωαi) for some αi with 1 ≤ αi ≤ m and some αj, then Bij is an
arbitrary ni × nj complex matrix such that Bji = −(Bij)

∗.

Corollary 4. Suppose A,R ∈ Cn×n, R = R∗, and Rk = In for some minimal
positive integer k. Then k ∈ {1, 2}. If R = ±In, then AR = RA∗ if and only if
A = A∗. If R 6= ±In, then σ(R) = {−1, 1}, k = 2, and there exists a unitary
S ∈ Cn×n such that R = S (In1 ⊕ (−1)In2)S

∗ where n1 > 0 is the multiplicity
of 1 in σ(R) and n2 > 0 is the multiplicity of −1 in σ(R). Let B = S∗AS.
Then AR = RA∗ if and only if

B =

[
B11 B12

− (B12)
∗

B22

]
where B11 ∈ Cn1×n1 and B22 ∈ Cn2×n2 are Hermitian, and B12 ∈ Cn1×n2 is
arbitrary.

Proof. If R = R∗, then σ(R) must be real, so σ(R) ⊆ {−1, 1}, and hence,
k ∈ {1, 2} by the minimality condition. If σ(R) = {1}, then k = 1 and R = In.
If σ(R) = {−1}, then k = 2 and R = −In. If σ(R) = {−1, 1}, then use the
preceding theorem with k = 2 and p = 2.

The next corollary follows by using a similar argument.
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Corollary 5. Suppose A,R ∈ Cn×n, R∗ = −R, and Rk = In for some minimal
positive integer k. Then k = 4. If R = ±iIn, then AR = RA∗ if and only if
A = A∗. If R 6= ±iIn, then σ(R) = {−i, i} and there exists a unitary S ∈ Cn×n
such that R = S (iIn1 ⊕ (−i)In2)S∗ where n1 > 0 is the multiplicity of i in σ(R)
and n2 > 0 is the multiplicity of −i in σ(R). Let B = S∗AS. Then AR = RA∗

if and only if

B =

[
B11 O
O B22

]
where B11 ∈ Cn1×n1 and B22 ∈ Cn2×n2 are Hermitian.

The following example illustrates the second case in Theorem 3.

Example 6. Suppose that k = 4 and σ(R) = {i,−1,−i}. Here ω = i, α1 = 1,
α2 = 2, α3 = 3, n1 = 4 and n2 = n3 = 1. Then k = 2m where m = 2; ωα1

and ωα3 = −ωα1 are in σ(R); and ωα2 is in σ(R) but ωα2+m = −ωα2 is not.
Suppose that S = I6 so R = D. If A ∈ C6×6 satisfies AR = RA∗, then A11, A22
and A33 must be arbitrary Hermitian matrices; A12, A21, A23 and A32 must be
zero matrices; A13 must be arbitrary, and A31 = − (A13)

∗. That is, AR = RA∗

holds if and only if A satisfies

A =


a11 a12 a13 a14 0 a16
a∗12 a22 a23 a24 0 a26
a∗13 a∗23 a33 a34 0 a36
a∗14 a∗24 a∗34 a44 0 a46
0 0 0 0 a55 0
−a∗16 −a∗26 −a∗36 −a∗46 0 a66


where each diagonal entry of A is real.

3 Characterizations of {R, s+ 1, k, ∗}-potent ma-
trices

For a matrix A ∈ Cn×n, the group inverse, if it exists, is the unique matrix A#
satisfying the matrix equations AA#A = A, A#AA# = A#, and AA# = A#A;
it is well known that A# exists if and only if rankA2 = rankA [5].
Throughout this section, we assume that s is an integer ≥ 1. First, we list

some properties of {R, s+ 1, k, ∗}-potent matrices.

Lemma 7. Suppose that A ∈ PR,s,k,∗. Then the following statements hold.

a. A# exists.

b. A# ∈ PR,s,k,∗.

c. AA# ∈ PR,s,k,∗.
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d. σ(A) ⊆ {0} ∪
{

exp
(
2πt
s+2 i

)
, t ∈ {0, 1, . . . , s+ 1}

}
.

Proof. (a) Since s ≥ 1, rank(A) = rank(A∗) = rank(R−1As+1R) = rank(As+1) ≤
rank(A2) ≤ rank(A). Thus, rank(A2) = rank(A). (b) Using the relation (A∗)# =
(A#)∗, we obtain (A∗)# = (R−1As+1R)# = R−1(As+1)#R = R−1(A#)s+1R =
(A#)∗. (c) SinceA,A# ∈ PR,s,k,∗, (AA#)s+1 = As+1(A#)s+1 = RA∗R−1R(A#)∗R−1 =
RA∗(A#)∗R−1 = R(A#A)∗R−1 = R(AA#)∗R−1. (d) From RA∗R−1 = As+1,
we have [σ(A)]s+1 = σ(As+1) = σ(RA∗R−1) = σ(A∗) = σ(A), where σ(A)
means the set of the conjugate of the eigenvalues of A. Thus, λ ∈ σ(A) if and
only if λs+1 = λ, which becomes rs+1 exp ((s+ 1)θi) = re−iθ where we assume
that λ = reiθ. Now, taking modulus the two possibilities are r = 0 which implies

λ = 0 or λ = exp
(
2πt
s+2 i

)
, t ∈ {0, 1, . . . , s+ 1}.

Some results related to Lemma 7 were given in [15].
The next result presents a characterization of matrices in PR,s,k,∗.

Theorem 8. Let A,R ∈ Cn×n such that Rk = In and r = rank(A). Then A is
an {R, s+ 1, k, ∗}-potent matrix if and only if there exist nonsingular matrices
P ∈ Cn×n and C ∈ Cr×r such that

A = P

[
C O
O O

]
P−1 and R = P

[
X O
O T

]
P ∗, (3)

for X ∈ Cr×r satisfying XC∗ = Cs+1X with X nonsingular and for any non-
singular T ∈ C(n−r)×(n−r).

Proof. By Lemma 7, A has index at most 1. So, the core-nilpotent representa-
tion gives

A = P

[
C O
O O

]
P−1

for some nonsingular matrices P ∈ Cn×n and C ∈ Cr×r. Substituting in As+1 =
RA∗R−1 we get

P−1R(P−1)∗
[
C∗ O
O O

]
P ∗R−1P =

[
Cs+1 O
O O

]
.

Denoting Z = P−1R(P−1)∗ and partitioning Z as

Z =

[
X Y
V T

]
of adequate sizes, we arrive at[

X Y
V T

] [
C∗ O
O O

]
=

[
Cs+1 O
O O

] [
X Y
V T

]
,

from where we obtain XC∗ = Cs+1X, Y = O, and V = O. Since R is nonsingu-
lar, X and T are nonsingular as well. Substituting in the expression R = PZP ∗,
we get the representation (3).
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From Theorem 8, it follows that if A is an {R, s+1, k, ∗}-potent matrix with
A as in (3) then

A# = P

[
C−1 O
O O

]
P−1.

Observe that in Theorem 8 we obtain the condition XC∗ = Cs+1X but, in
general, we cannot conclude that C is an {X, s+ 1, k, ∗}-potent matrix. More-
over, while A is similar to a block diagonal matrix via the matrix P , the corre-
sponding relation for R using the same P is a congruence to a block diagonal
matrix. The concept of EP matrices allows us to improve the form in (3) by
giving (unitary) similarity in R as well.
Recall that a matrix A ∈ Cn×n is called EP if AA† = A†A [7], or equiv-

alently, if there exists a unitary matrix U ∈ Cn×n and a nonsingular matrix
C ∈ Cr×r such that

A = U

[
C O
O O

]
U∗.

Theorem 9. Let A,R ∈ Cn×n such that Rk = In and r = rank(A). Consider
the following three conditions:

a. A is an EP matrix.

b. A is an {R, s+ 1, k, ∗}-potent matrix.

c. There exist a unitary matrix U ∈ Cn×n and a nonsingular matrix C ∈
Cr×r such that

A = U

[
C O
O O

]
U∗ and R = U

[
X O
O T

]
U∗,

where C is a {X, s + 1, k, ∗}-potent matrix for X ∈ Cr×r and any T ∈
C(n−r)×(n−r) satisfying T k = In−r.

Then any two of these conditions (a)-(c) imply the third one.

Proof. (a) + (b) =⇒ (c): Assume that

A = U

[
C O
O O

]
U∗

for some unitary matrix U ∈ Cn×n and a nonsingular matrix C ∈ Cr×r. Now,
a similar proof as that of Theorem 8 gives (c). (a) + (c) =⇒ (b): This can be
directly derived from Theorem 8. (b) + (c) =⇒ (a): This direction is trivial.

The findings in the next result relate to some facts about the diagonalization
of a matrix in PR,s,k,∗.

Theorem 10. Let A,R ∈ Cn×n such that Rk = In and A is an {R, s+ 1, k, ∗}-
potent matrix. Then
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a. A(s+1)
2j

= (R(R−1)∗)jA(R∗R−1)j, j = 1, . . . , k.

b. If R is normal, then A(s+1)
2k

= A. In this case, A# = A(s+1)
2k−2.

c. If R is Hermitian, then A(s+1)
2

= A. In this case, A# = A(s+1)
2−2.

d. If R is normal, then A is diagonalizable.

Proof. (a) The definition As+1 = RA∗R−1 implies A(s+1)
2

= (As+1)s+1 =
R(As+1)∗R−1 = R(R−1)∗AR∗R−1. Similarly,

A(s+1)
3

= (A(s+1)
2

)s+1 = R(R−1)∗RA∗R−1R∗R−1

and A(s+1)
4

= (R(R−1)∗)2A∗(R−1R∗)2. The result follows by induction. (b) If
R is normal, then RR∗ = R∗R. So, (R∗)−1R = R(R∗)−1 and then

(R(R−1)∗)k = Rk((R−1)∗)k = Rk(Rk)∗)−1 = In

and
(R∗R−1)k = (R∗)k(R−1)k = (Rk)∗(Rk)−1 = In

since Rk = In. Now, the result follows from (a). (c) If R∗ = R and Rk = In,
then R2 = In because R is (unitarily) diagonalizable and

σ(R) ⊆ R ∩
{

exp

(
2πq

k
i

)
, q ∈ {0, 1, . . . , q − 1}

}
⊆ {−1, 1}.

Hence, R−1 = R = R∗. Now, again the result follows from (a). (d) This
follows from (b) and by taking into account that all the roots of the polynomial
p(z) = z(s+1)

2k − z are simple. In order to compute the group inverses of A
in parts (b) and (c) the following general fact is used: A# = A` if and only if
A`+2 = A for some given integer ` ≥ 1.

While in [8] it was proved that an {R, s + 1, k}-potent matrix is always
diagonalizable, this property is not always true for matrices in PR,s,k,∗. The
next example illustrates this fact.

Example 11. Let ω be a primitive root of unity of order 2m,

A =

 1 1 0
0 1 0
0 0 0

 , and Rω =

 0
√
s+ 1 0

1√
s+1

0 0

0 0 ω

 .
Then R2mω = I3 and the matrix

X =

 0
√
s+ 1

1√
s+1

0


satisfies XC∗ = Cs+1X and X2 = I2 where C =

[
1 1
0 1

]
. Hence, A is a

{Rω, s+ 1, 2m, ∗}-potent matrix. It is clear that A is not diagonalizable.
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Recall that for a pair of matrices A,B ∈ Cn×n, the commutator [A,B] is
defined as [A,B] = AB −BA.

Lemma 12. Let R ∈ Cn×n such that Rk = In. The set

G = {A ∈ PR,s,k,∗ : [A,B] = O,∀B ∈ PR,s,k,∗}

is a semigroup under matrix multiplication.

Proof. Let A1, A2 ∈ G. Then, A1, A2 ∈ PR,s,k,∗, and for i = 1, 2 we have AiB =
BAi for all B ∈ PR,s,k,∗. In particular, A1A2 = A2A1. Since RA∗iR

−1 = As+1i

for i = 1, 2, we get

(A1A2)
s+1 = As+11 As+12 = RA∗1A

∗
2R
−1 = R(A2A1)

∗R−1 = R(A1A2)
∗R−1,

that is A1A2 ∈ PR,s,k,∗. Moreover, (A1A2)B = A1BA2 = B(A1A2) for all
B ∈ PR,s,k,∗. Hence, A1A2 ∈ G.

Remark 13. If A,B ∈ PR,s,k,∗ satisfy AB = BA, then AB ∈ PR,s,k,∗.

4 Relationship between PR,s,k,∗ and other classes
of matrices

First, we present a general result whose proof will be useful in this section.

Lemma 14. Let A ∈ Cn×n be a matrix of index 1 and rank(A) = r > 0. Then
A is a normal matrix if and only if there exist nonsingular matrices P ∈ Cn×n
and C ∈ Cr×r such that

A = P

[
C O
O O

]
P−1 and P ∗P =

[
M O
O N

]
,

where M ∈ Cr×r and N ∈ C(n−r)×(n−r) are both positive definite matrices and
C∗ commutes with MCM−1.

Proof. It is well known that any matrix of index 1 has the form

A = P

[
C O
O O

]
P−1

for some nonsingular matrices P ∈ Cn×n and C ∈ Cr×r. Substituting in AA∗ =
A∗A and reordering factors yield

P ∗P

[
C O
O O

]
(P ∗P )−1

[
C∗ O
O O

]
P ∗P =

[
C∗ O
O O

]
P ∗P

[
C O
O O

]
. (4)

Partitioning P ∗P with adequate sizes to the partition considered for A we obtain

P ∗P =

[
M Q
Q∗ N

]
,
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withM and N Hermitian. Since P is nonsingular, by using the positive definite-
ness of P ∗P it is easy to see that M and N are positive definite. The inversion
formula of Banachiewicz-Schur ensures the nonsingularity of the Schur comple-
ment W = (P ∗P )/M = N −Q∗M−1Q and gives

(P ∗P )−1 =

[
M−1 +M−1QW−1Q∗M−1 −M−1QW−1

−W−1Q∗M−1 W−1

]
.

Substituting in (4) and making the block products we get[
MLM MLQ
Q∗LM Q∗LQ

]
=

[
C∗MC O
O O

]
,

where L = C(M−1 +M−1QW−1Q∗M−1)C∗. Thus, MLM = C∗MC, MLQ =
O, Q∗LM = O, and Q∗LQ = O. By the nonsingularity of M and N we get
LQ = O and Q∗L = O, that is

O = C(M−1 +M−1QW−1Q∗M−1)C∗Q = CM−1(Ir +QW−1Q∗M−1)C∗Q.

This last expression gives (Ir + QW−1Q∗M−1)C∗Q = O. Similarly, from O =
Q∗L = Q∗C(Ir + M−1QW−1Q∗)M−1C∗ we get Q∗(Ir + M−1QW−1Q∗) =
O. Now, substituting the expression of L in MLM = C∗MC we arrive at
MCM−1(Ir +QW−1Q∗M−1)C∗M = C∗MC which implies

O = MCM−1(Ir +QW−1Q∗M−1)C∗Q = C∗MCM−1Q,

from where Q = O due to the nonsingularity of C and M . Hence,

P ∗P =

[
M O
O N

]
,

with MCM−1C∗ = C∗MCM−1 since L = CM−1C∗. The converse is evident.

In Lemma 7 we proved that the projector AA# ∈ PR,s,k,∗ provided that
A ∈ PR,s,k,∗. The next result characterizes all projectors that belong to PR,s,k,∗.

Theorem 15. Let A ∈ Cn×n be a projector, i.e., A2 = A. Then the following
conditions are equivalent:

a. A is {R, s+ 1, k, ∗}-potent.

b. AR = RA∗.

c. There exists a nonsingular matrix P ∈ Cn×n such that

A = P

[
Ir O
O O

]
P−1 and R = P

[
X O
O T

]
P ∗,

where X ∈ Cr×r and T ∈ C(n−r)×(n−r) are nonsingular matrices.
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Proof. Since A2 = A, we get As+1 = A for all s and

A = P

[
Ir O
O O

]
P−1. (5)

(a) ⇐⇒ (b) This follows directly from the definitions. (b) ⇐⇒ (c) The form of
R can be found by substituting (5) into AR = RA∗ and partitioning

P−1R(P−1)∗ =

[
X Y
Z T

]
.

Remark 16. Note that in the above theorem the value used for s was not
relevant.

In Theorem 9 we have characterized all {R, s+ 1, k, ∗}-potent matrices that
are EP . Next, we characterize {R, s+ 1, k, ∗}-potent matrices that are normal.

Theorem 17. Let A ∈ Cn×n be a nonzero {R, s+ 1, k, ∗}-potent matrix. Then
A is normal if and only if there exist nonsingular matrices P ∈ Cn×n and
C ∈ Cr×r such that

A = P

[
C O
O O

]
P−1 and R = P

[
XM O
O TN

]
P−1,

where M ∈ Cr×r and N ∈ C(n−r)×(n−r) are both positive definite matrices and
X ∈ Cr×r and T ∈ C(n−r)×(n−r) are nonsingular matrices such that XC∗ =
Cs+1X.

Proof. By Theorem 8 there exist nonsingular matrices P ∈ Cn×n and C ∈ Cr×r
such that

A = P

[
C O
O O

]
P−1 and R = P

[
X O
O T

]
P ∗,

for X ∈ Cr×r satisfying XC∗ = Cs+1X with X nonsingular and for any non-
singular T ∈ C(n−r)×(n−r). Assume that A is normal. Then, a similar proof to
that of Lemma 14 yields

P ∗ =

[
M O
O N

]
P−1

where M ∈ Cr×r and N ∈ C(n−r)×(n−r) are both positive definite matrices.
Thus, we can deduce that

R = P

[
XM O
O TN

]
P−1.

The converse is evident.
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In [6], the class of {s + 1}-GP matrices (for s ∈ N) was introduced; these
extend the concept of generalized projectors (matrices A that satisfy A2 = A∗)
that were introduced in [12]. A matrix A ∈ Cn×n is called an {s+1}-GP matrix
if A∗ = As+1; the set of all n×n {s+1}-GP matrices will be denoted by GPs+1.
The matrices in GPs+1 are characterized as follows [6]:

A ∈ GPs+1 ⇐⇒ A is normal and σ(A) ⊆ {0}∩Ωs+2 ⇐⇒ A is normal and As+3 = A,

where Ωs+2 denotes the roots of unity of order s + 2. We next give another
characterization.

Lemma 18. Let A ∈ Cn×n. Then A is a {s+1}-GP matrix if and only if there
exist a unitary matrix U ∈ Cn×n and a diagonal matrix D = [dij ] ∈ Cr×r such
that

A = U

[
D O
O O

]
U∗,

with djj ∈ Ωs+2.

Proof. This is a straightforward extension of [6, Corollary 2.2].

Now, we characterize {R, s+ 1, k, ∗}-potent matrices that are in GPs+1.

Theorem 19. Let A ∈ Cn×n be an {R, s + 1, k, ∗}-potent matrix. Then, the
following statements are equivalent:

a. A is a {s+ 1}-GP.

b. A∗R = RA∗.

c. There exists a unitary matrix U ∈ Cn×n and a diagonal matrix D = [dij ] ∈
Cr×r such that

A = U

[
D O
O O

]
U∗, R = U

[
R1 O
O R2

]
U∗,

where djj ∈ Ωs+2 with R1 ∈ Cr×r satisfying R∗1D = DR1 and R2 ∈
C(n−r)×(n−r).

Proof. From the definition As+1 = RA∗R−1, it is easy to see that As+1 = A∗

and A∗R = RA∗ are equivalent; thus (a) ⇐⇒ (b). Now, suppose that A is a
{s+ 1}-GP matrix. By Lemma 18

A = U

[
D O
O O

]
U∗,

under the conditions indicated there. Consider the partition

U∗RU =

[
R1 R3
R4 R2

]
,

according to the sizes of the partition of U∗AU . Equating blocks, we obtain
that the expression A∗R = RA∗ is equivalent to D∗R1 = R1D

∗, R3 = O, and
R4 = O, since D is nonsingular; thus (a)⇐⇒ (c).

13



Now, we relate the class of {R, s + 1, k, ∗}-potent matrices to the class of
{s + 1}-HGP matrices. Recall that a matrix A ∈ Cn×n is called {s + 1}-HGP
(i.e., hypergeneralized potent matrix ) if As+1 = A† [12]. The set of all n × n
{s+1}-HGP matrices will be denoted by HGPs+1, and the matrices in HGPs+1
are characterized as follows:

A ∈ HGPs+1 ⇐⇒ A is EP and As+3 = A.

Theorem 20. Let A ∈ Cn×n an {R, s + 1, k, ∗}-potent matrix. Then, the
following statements are equivalent:

a. A is a {s+ 1}-HGP.

b. A†R = RA∗.

c. There exist a unitary matrix U ∈ Cn×n and a nonsingular matrix C ∈
Cr×r such that

A = U

[
C O
O O

]
U∗, R = U

[
R1 O
O R2

]
U∗

where C−1R1 = R1C
∗ with R1 ∈ Cr×r and R2 ∈ C(n−r)×(n−r) are matri-

ces such that Rk1 = Ir and Rk2 = In−r.

Proof. The equivalence (a) ⇐⇒ (b) follows directly from the definitions. Sup-
pose that A is a {s+ 1}-HGP. Then A is EP , so there exists a unitary matrix
U ∈ Cn×n and a nonsingular matrix C ∈ Cr×r such that

A = U

[
C O
O O

]
U∗.

It is clear that

A† = U

[
C−1 O
O O

]
U∗.

Now we consider the partition

U∗RU =

[
R1 R3
R4 R2

]
,

according to the sizes of the partition of U∗AU . Substituting in RA∗ = A†R
and equating blocks we obtain R1C∗ = C−1R1, R3 = O, and R4 = O. Thus,
the conditions on R have been obtained. Observe that Rk = In implies Rk1 = Ir
and Rk2 = In−r. Hence (a) =⇒ (c). Finally, (c) =⇒ (b) is straightforward.

We summarize all the information studied in this section in Figure 1.
A matrix A ∈ Cm×n is a partial isometry if A† = A∗, or equivalently,

AA∗A = A [21]. The relation between PR,s,k,∗ and partial isometries is pre-
sented in the next result.
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{R, s+ 1, k, ∗}-potent matrices

EP

N

GPs+1

HGPs+1

Nα1,...,α`
Nil

Figure 1: Relation between {R, s+ 1, k + ∗}-potent matrices and other classes

Theorem 21. Let A ∈ Cn×n a matrix in PR,s,k,∗. As in Theorem 8, let

A = P

[
C O
O O

]
P−1 and R = P

[
X O
O T

]
P ∗,

and partition P ∗P as

P ∗P =

[
M L
L∗ N

]
.

Then A is a partial isometry if and only if Ir + L(N − L∗M−1L)−1L∗M−1 =
MC−1M−1(C−1)∗.

Proof. The result is obtained by substituting in AA∗A = A the expression of
A given in the statement and by using the Banachiewicz-Schur formula for the
inverse of P ∗P .

Finally, we present the relationship between PR,s,k,∗ and {α1, α2, . . . , α`}-
potent matrices. The latter is an extension of the {α1, α2}-quadratic matrices
[22].

Definition 22. A matrix A ∈ Cn×n is called an {α1, α2, . . . , α`}-potent matrix
if

(A− α1In)(A− α2In) . . . (A− α`In) = 0,

where α1, α2, . . . , α` ∈ C are pairwise distinct.
The set of all {α1, α2, . . . , α`}-potent matrices will be denoted by N{α1, α2, . . . , α`}.

If ` = 2, matrices in N{α1, α2} are called {α1, α2}-quadratic [1, 11]. Allow-
ing equalities between α1, α2, . . . , α`, the choice α1 = α2 = · · · = α` = 0 leads
to nilpotent matrices. The set of all n × n nilpotent matrices will be denoted
by Nil.

Lemma 23. {R, s+ 1, k, ∗}-potent matrices are not nilpotent.
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Proof. Suppose that A is an {R, s+ 1, k, ∗}-potent matrix. By Theorem 8,

A = P

[
C O
O O

]
P−1,

for some nonsingular matrices P ∈ Cn×n and C ∈ Cr×r. If we assume that
Am = O for some positive integer m then Cm = O, which is impossible.

Theorem 24. Let A ∈ PR,s,k,∗, and let α1, α2, . . . , α` ∈ C be pairwise distinct.
Then A ∈ N{α1, α2, . . . , α`} if and only if α1 = 0,

A = L

[
D O
O O

]
L−1, and R = L

[
Y O
O T

]
L∗,

for some nonsingular matrix L ∈ Cn×n and a diagonal matrix D = [dij ] ∈ Cr×r

where djj ∈ {α2, . . . , α`}∩
{

exp
(
2πt
s+2 i

)
, t ∈ {0, 1, . . . , s+ 1}

}
for j = 1, 2, . . . , r

and some nonsingular matrices Y ∈ Cr×r, T ∈ C(n−r)×(n−r) such that Y D∗ =
Ds+1Y .

Proof. Since A ∈ PR,s,k,∗, by Theorem 8 we have

A = P

[
C O
O O

]
P−1, R = P

[
X O
O T

]
P ∗,

for some nonsingular matrices P ∈ Cn×n, X ∈ Cr×r, and T ∈ C(n−r)×(n−r) such
that XC∗ = Cs+1X. Suppose that (A − α1In)(A − α2In) . . . (A − α`In) = 0,
where α1, α2, . . . , α` ∈ C are pairwise distinct. Then

P

[
Π`
j=1(C − αjIr) O

O (−1)`Π`
j=1αjIn−r

]
P−1 = O.

So, Π`
j=1(C − αjIr) = O and Π`

j=1αj = 0. It is clear that there is at least
one j ∈ {1, 2, . . . , `} such that αj = 0 (since αi 6= αq if i 6= q). Without
loss of generality, we can assume that α1 = 0 (consequently, αj 6= 0 for all
j ∈ {2, . . . , `}). Now, Π`

j=2(C − αjIr) = O because C is nonsingular, and
p(x) = (x − α2)(x − α3) . . . (x − α`) is a (monic) annihilator polinomial of C
with all its factors linear. Since all αj ∈ C and C is algebraically closed, C must
be diagonalizable. Let C = QDQ−1 with D diagonal. Then

A = P

[
QDQ−1 O

O O

]
P−1 = L

[
D O
O O

]
L−1,

where L = P

[
Q O
O In−r

]
. Hence, A is diagonalizable. Substituting now,

C = QDQ−1 in Π`
j=2(C − αjIr) = O we get Π`

j=2(D − αjIr) = O, that is
for every i = 1, 2, . . . , `, Π`

j=2(djj − αj) = 0, thus, djj ∈ {α2, . . . , α`} for all
j = 1, 2, . . . , r. From Lemma 7, djj ∈

{
exp

(
2πt
s+2 i

)
, t ∈ {0, 1, . . . , s+ 1}

}
for
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all j ∈ {1, 2, . . . , r}. By using XC∗ = Cs+1X and C = QDQ−1, we can denote
Y = Q−1X(Q∗)−1 to arrive at

R = P

[
X O
O T

]
P ∗ = L

[
Y O
O T

]
L∗,

with Y D∗ = Ds+1Y and Y nonsingular.

Remark 25. Notice that, if either αj 6= 0 for all j ∈ {1, 2, . . . , `} or if αj /∈{
exp

(
2πt
s+2 i

)
, t ∈ {0, 1, . . . , s+ 1}

}
for some j ∈ {2, . . . , `} then N{α1, α2, . . . , α`}∩

PR,s,k,∗ = ∅.
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