IMEF POLITECNICA
! I CENTRALE DE LILLE P

52 UNIVERSITAT]
centralelille
DE VALENCIA

TRABAJO DE FIN DE MASTER

STUDY AND IMPLEMENTATION OF A REAL-TIME
ARTISTIC STYLE TRANSFER SYSTEM FOR AN
IMMERSIVE ART EXPERIENCE

AUTHOR: Tanguy Jeanneau MIARFID DSI/C

Mast I I I en cia Artificial, DEPARTAMENTO DE SISTEMAS
F" (ormas INFORMATICOS Y COMPUTACION

TUTORS: Raul Esteve Bosch econocimiento de

Roberto Palacio Paredes

ACADEMIC YEAR: 2018-19

% ESCUELA TECNICA
J SUPERIOR INGENIEROS
“ INDUSTRIALES VALENCIA

DISCLAIMER

This work has been conducted during my Erasmus semester at the Universitat Politécnica de
Valencia (UPV)

For administrative reasons, it was attached to the Escuela Técnica Superior de Ingenieros Industrials
(ETSII) from the UPV, even if its content is linked to Departamento de Sistemas Informdticos y
Computacién (DSIIC) and to the classes | followed in the Mdster en Inteligencia Artificial,
Reconocitiento de Formas e Imagen Digital (MIARFID)

Finally, this work is not equivalent to a full Master Thesis at my home university the Ecole Centrale de
Lille (ECL), it is therefore the first part of a longer work and will be carried at the ECL next year,
following its requirements

ABSTRACT

Convolutional Neural Networks have been proven to be extremely powerful tool to solve
image recognition tasks, outperforming previous models by far. Using the internal image
representation of some models, it is possible to automatically perform style transfer, i.e
extract the style of a target image and apply it to a content image.

The goal of this work is the creation of a screen-camera system that allows the user to see in
real time the artistic style of a work of art. This system could be displayed in a museum
allowing the visitors to immerse themselves in their favorite pieces of art.

This Real-time Video Style Transfer task will be solved by implementing the Network-
optimization-based technique proposed by H. Huang et al [0], where a feed-forward
transformation network is optimized to minimize a hybrid loss of content, style and
temporal coherence.

This project is divided into 3 parts:

1) Study of the state of the art of style transfer applied to images and videos;

2) Description of the most relevant model: a feed-forward Image Transformation Network
that can be optimized to perform style transfer for a given style, a module that calculates the
temporal loss using dense optical flow, and a pre-trained fixed Loss Network that computes
content and style losses;

3) Model implementation and prototype creation.

RESUMEN

En el dltimo decenio, las Redes Neuronales a Convolucion han mostrado sobresaliente
capacidades de reconocimiento de patrones en imagenes. Esta capacidad se puede utilizar
para realizar transferencias de estilo, i.e extraer el estilo de una imagen objetivo y aplicarlo
a una imagen de contenido.

La meta de este trabajo es la creacidon de un sistema pantalla-cAmara que le permite al
usuario verse en tiempo real con el estilo artistico de una obra de arte. Este sistema podria
estar en un museo y le permitir al visitante del museo sumergirse en sus obras de arte
favoritas.

Para resolver esta tarea de Transferencia de Estilo para video en tiempo real, implementé un
modelo propuesto por H. Huang et al [0] que consiste en una red convolucional residual
feed-forward que se optimiza para minimizar una funcién perdida hibrida de contenido,
estilo y coherencia temporal.

Este proyecto se divide en 3 partes:
1) Estudio del estado del arte de la transferencia de estilo aplicada a imagenes y videos.

2) Implementacion del modelo mas relevante: una red convolucional residual feed-forward
que desempeia la transferencia de un estilo elegido, un médulo que computa la de
coherencia temporal usando el flujo 6ptico denso y una red de perdida fijada) que calcula
las pérdidas de estilo y de contenido

3) Implementacién del modelo y creacion de un prototipo pantalla-camara.

INDEX

0. INTFOAUCTION ..vie ettt b et she et s bt e st e bt e at et e s bt et e s beeaeebesaeentesbeeaeas 10
(0 IR 0T (< PRSP RRPP USSP 10
L0 =Y T T o o T3 TSRS 11

L0 I [0 (= | T =T o T SRS 11
0.2.2 Artificial INtEIIGENCE ..eoveeceeeceee et e e st enbe e e beeees 11
0.2.3 MAChing LEAINING ..c.eeueeiiiiieeritetee sttt sttt ettt sbe ettt e b e enes 13
0.2.4 COMPUEET VISION ettt ettt ettt e s bt e e st e e st esbteesabeesbeeesaseesabaeasaseens 14

I. Computer vision and Maching Learning........ccceeereereririeninieiesie ettt st 14

1.1 A brief history of Computer Vision and Convolutional Neural Networks...........ccccccvevcveveennens 14
T1 T From TO57 10 1989 ...ttt s s sree e sanee s 14
T.1.2 From 1989 £0 tOA@Y.....eiitiriieieriieesesieee sttt sttt st s 15

1.2 (Regular) Neural NETWOIKS......cc.cooiiiiieee ettt sttt e 16

1.3 Convolutional Neural NETWOIKScoiiiierireee et sttt 19
IS I @] 0\ V701 W d ToT g o] o 1T = 1 o TR 19
1.3.2 CONVOIUTION LAYET ...ttt ettt sttt sae e e s be et e be e nes 20
1.3.3 ACtIVAtiON fUNCHIONS ..ottt 22
1.3.4 POOIING JQYEIS ..ttt sttt sttt et et st et e et e e beesbeesatesnteeteesraesaeenns 22
1.3.5 FUlly CONNECEEA JQYET ...ttt st st e 23
1.3.6 Feature extraCtion CapaCiti@s........ueiivuiiiiiiiiiieicee e e e e 23
1.3.7 FAMOUS @rChit@CIUIES. ...c..euieiiieeieieee ettt sttt st st s 24

II. State of the art in Style TranSfer......c.ooi e 26

2.7 IMAGE STYIE TrANSTEN ..ttt st reenaenreenes 26
2.1.7T Pre-neural Style Transferot et 26
2.1.2 Image-optimization-based Neural Style Transfercccocereiieiinenieeeeeeeee 27
2.1.3 Network-optimization-based Neural Style transfer...........cccocvvvieeeverceecieseeere e, 33
2.1.4Instance NOIMAliIZatioNcoouiiiriiieee ettt st s 38
2.1.5 Network-optimization-based Multi-style Neural Style transfer.........c.ccccvvvveevevieceevenenen. 39
2.1.6 Network-optimization-based Arbitrary Neural Style transferccocceevevveevenencennneenen. 41

2.2 VIidEO StYIE TIANSTEI ...ttt ettt et re et e s teese e b e ereenaesreeanas 43

2.2.1 Video-optimization-based video style transfer..........ccoevereirininineneeeeeeeeen 43
2.2.2 Network-optimization-based video style transfer...........ccccceveirinineninenceeceen 47

Ill. Chosen model: Real Time Style Transfer for Videos, Huang et al, 2017........cccccoevvvvvveenceeneencnennen, 52
AV 10T o] F=T 0 a1 o 7= [TP 54
g I VT TRV S 54
4.1.1 Language and [IDrari@scoooevireieiieieee ettt 54
4.T.2TraiNiNg At ..eeeeieiceecieer ettt ettt sr e ne e 54
o B A W T oL¥- T g o [T Te] =)T PRSP 54

I @ o T | o[1 PRSP 54

4.2 HArAWAIE-WISEouveeeeieieeeiete sttt sttt ettt et e st et et e e st e eess e enaesteeseensesseensesseansensesneensessesneensesseanes 55
4.2 RESUILS ettt ettt st st e e et e bt e s h e e s at e sa b e et e et e e b e e naeesaeeeaeeete e teenbeeshaesarenas 55
LV @(e T Tl (U1 (o] o OO OO R U RUSRRTRR 57
5.1 Conclusion of this Project’'s OalS........cueeeiieiieiiice e 57
5.2 Possible path for further improvement ... 57

THESIS

0. Introduction

0.1. Context
In the past few years, Artificial Intelligence (A.l) has been gaining a lot of momentum,
proving itself capable of solving numerous problems that were previously considered
impossible and is now achieving state of the art results in a variety of tasks.

A.l can be used to optimize, predict, detect, generate based on data, and its adaptability
make it usable in many situations. A.l is affecting almost every domain: Finance with

algorithms of prediction on stocks, Insurance with risk assessment, Transportation with the

rise of self-driving vehicles, industry with the optimization of processes and [smart
maintenance], design with computer-generated design, computer vision, etc. But we
haven't seen it all yet, and many more applications are yet to come.

One of the most fascinating aspects of A.l is the capacity of these algorithms to grasp
complex patterns and, for some of them, to generate content following these patterns.

Art, as a domain, is especially being challenged by the new possibilities given by these
algorithms. New York’s Christies saw in October 2018 the first auction of an Al-generated
piece of art, that was sold for more than 400,000€ - 10 times more than its predicted sale
value! Art and creativity used to be the privilege of humans, but this is redefining the
boundaries between human and machine.

What is the value of an art piece without author? Can this be considered as a form of
creativity and art? Where is the value of an art piece that was automatically generated?
These questions and many more remain open.

Fig. 1: “Edmond de Bellamy”,
by Obvious. First ever Al-
generated piece of art to be
sold at auction.

10

0.2 Definitions
Before entering further in the subject, it is necessary to define the terms we will be using.

First, let's address the elephant in the room: What is Artificial Intelligence?

In March 2019, a study from London venture capital firm MMC found out that on the 2,830
European Al startups studied, a whopping 40% of them did not actually used Artificial
Intelligence [1]. This in one of the many signals that shows the blurriness of the definition of
A.l. Especially since it became trendy, anything more or less related to computer science can
end up being called A.l. It became a buzzword often misused in the media, or by the
companies themselves to make a product look more appealing or raise more funds.

Moreover, there is a deeper reason for the inconsistency of the definition of Artificial
Intelligence, which is the range of definitions of Intelligence. How can we define Artificial
Intelligence if there isn’'t one universal definition for Intelligence?

0.2.1 Intelligence
Some definitions of human intelligence revolve around its capacity of rational reasoning, as
in the Cambridge Dictionary: “Intelligence: the ability to learn, understand, and make
judgments or have opinion that are based on reason” [3]

Other argues that there is no such thing as one human intelligence, but several intelligences.
This theory was built by Howard Gardner in the 80s, mainly developed in his book “Frames
of Mind: The Theory of Multiple Intelligences” [2]. Among the 7 intelligences he defines in
this book we can name Logical-Mathematic intelligence, Verbal-Linguistic intelligence,
Intrapersonal intelligence, or Interpersonal intelligence. While the first two can be included
in Cambridge Dictionary’s definition, the two last describe emotional processes and implies
a capacity of self-consciousness. Like Daniel Goleman'’s controversial Emotional Intelligence
[4], these intelligences go beyond rational reasoning and revolve around emotions and
feelings.

The link between computers and emotions is quite a controversial subject, and we will here
stick to Cambridge Dictionary’s definition and focus on the rational definition of intelligence.

0.2.2 Artificial Intelligence
Artificial Intelligence is the kind of phrase that spark curiosity and fear, amp up fantasies and
almost have a mythological aspect. Let’s adopt here a more rational and pragmatical
viewpoint.

The history of A.l is tightly linked to the history of computer, the latter being the support of
the former.

11

Ada Lovelace (1815-1852) is considered by the historians as the first programmer [7] with
her work on Baggage’s Machine, but the first modern computer (ENIAC) only appears in
1946. Alan Turing (1912-1954) is considered to be the father of computer science and
developed in 1937 the concept of Turing Machine and in 1950 the Turing Test, among other
major contributions.

Fig 2. Left: Photography of Alan Turing. Right: Painting of Ada Lovelace.

The development of computer science allowed the creation of more and more complex
algorithms. During the 70s and the 80s, the focus was on expert systems: systems where
human knowledge were embedded as rules to allow human-like decision-making. One of
the most important expert system in MYCIN, developed at Stanford University in the 70s,
that was able to achieve expert level of blood infection identification [8]

An “Al Winter”, i.e a period of drastic loss of interest on the fied of Al, followed from the late
80s to the early 90s

Then, one of the major milestones in the history of A.l is the victory of IBM's computer
Deep Blue against Garry Kasparov, n.1 rated world chess champion at the time, in 1997.

From the late 90s to now, A.l gained back momentum and is now more popular than ever.
We are now in an Al era dominated by Machine Learning, the field of study of algorithms

12

that can learn patterns from data. This “revolution” is powered by the ever-growing
guantities of data and processing power.

We'll chose here the definition of A.l of Cambridge Dictionary [6]: “the use of computer
programs that have some of the qualities of the human mind, such as the ability to
understand language, recognize pictures, and learn from experience.”

This definition rules out the notions of feelings and consciousness often linked to the
notion of intelligence to focus on the imitation of human-like rational reasoning.

Another point to demystify is the dissociation between weak Al and strong Al. The former
describes an algorithm that can reach super-human level at one predefined task (say,
translate sentences between languages). The latter, also called Artificial General
Intelligence, is the theoretical concept of an A.l that could do everything that a human
does including its capacity of self-consciousness for instance. While strong Al only exists in
science-fiction, all A.l are actually weak ones. The term A.l will only refer to weak A.l here.

To sum it up in Britannica's terms [5],

“Psychologists generally do not characterize human intelligence by just one trait but by
the combination of many diverse abilities. Research in Al has focused chiefly on the
following components of intelligence: learning, reasoning, problem solving,
perception, and using language”

0.2.3 Machine Learning
Nowadays, the main category of A.l is Machine Learning: “a type of artificial intelligence in
which computers use huge amounts of data to learn how to do tasks rather than being
programmed to do them » (Oxford Dictionary [9])

The knowledge doesn’t need to be encoded by human experts, but the algorithm will
explore possibilities and find out which set of parameters gives the best output.

One sub-category of Machine Learning is Deep Learning: Machine Learning using deep
neural networks. Deep learning algorithms are capable of learning more complex patterns,
generally producing better results, but with the cost of a worse interpretability. This is why
it is often pictured as an advanced black box.

13

ARTIFICIAL
INTELLIGENCE

Fig 3. Venn Diagram showing the semantic inclusion of the phrases Artificial Intelligence, Machine
Learning and Deep Learning.

0.2.4 Computer Vision
Computer Vision is a branch of computer science whose goal is to enable computers to
process visual data (i.e images, video) to perform some of the tasks that the human visual
system does and outperform it. These tasks include pattern recognition, object detection,
trajectory and velocity estimation, image understanding, building a 3D representation from
2D images, etc.

|. Computer vision and Machine Learning

1.1 A brief history of Computer Vision and Convolutional Neural Networks
To understand why Machine Learning is so widely used in image processing, let’s go back a
few years in the past to understand how it changed the computer vision landscape.

1.1.1 From 1957 to 1989
In 1957, Russel Kirsch and his team were wondering “what would happen if computers could
see the world the way we see it?”. This question led them to create the first ever digital
image, a 176x176 pixel scan of Kirsch’s baby’s picture. This is often considered to be the
beginning of Computer Vision as a science field. However, it wasn’t until 1975 that the first
digital camera was created by Steven Sasson, a Kodak engineer.

14

Fig 4. Left: First ever digitized image, R. Kirsch, 1957. Right: First ever digital photo displayed on
a monitor, next to the analogous image that served as model.

In 1960, Larry Roberts started studying the extraction of 3D information from 2D views at
the MIT

In 1979, K. Fukushima proposed the Neocognitron, an early version of CNN. This was inspired
by Nobel prizes D. Hubel & T. Wiesel’'s work on the visual system, as they discovered two
types of cells in the visual primary cortex (namely simple cell and complex cell) responding
to different kind of stimuli. The Neocognitron has been used for pattern recognition and
Optical Character Recognition (OCR)

In 1982, David Marr published another influential paper, “Vision: A computational
investigation into the human representation and processing of visual information”. [17]

1.1.2 From 1989 to today
In 1989, Yann LeCun published “Backpropagation applied to handwritten zip code
recognition” [20] where he used back-propagation to find the optimal parameters of a
neural network to perform OCR on digits for ZIP code recognition.

Later on 1998, Yann LeCun proposed LeNet5, a novel 7-level Convolutional Neural Network
in “Gradient-based learning applied to document recognition”. [19]

CNN started gaining more momentum after AlexNet[14], a CNN proposed by Alex
Krizhevsky in 2012, vastly outperformed its concurrence during the ImageNet Large Scale
Visual Recognition Competition (ILSVRC). During this international competition, the
participants must create object recognition software that are trained and evaluated on
ImageNet, a large database of more than 14,000,000 images spread across more than 20,000
categories. AlexNet scored a top-5 error of 15.3% at ILSVRC 2012, which was more than 10
points lower than the second best of this year. This enormous increase of performances
contributed to attract public attention on Al and computer vision.

15

Classification Results (CLS)

0.3
0.25
o2
(W]
[
S 0.15
)
S
b= 0.1
a 16.7% \ 23.3% |
S 005 e T]
0.036 0.03 0.023
. E B =

2010 2011 2012 2013 2014 2015 2016 2017

Fig 5. Best (lower) Classification Error at the ILSRVC competition, by year.

Since then many architectures have been proposed, some of them using specific layers or
techniques. We can name for instance VGG that was runner-up for ILSRVC 14, often used for
its simplicity and its performance but quite heavy (138 million parameters). GoogLeNet (a.k.a
Inception V1) won ILSRCV 14 and introduced the inception module, that reduced the total
number of parameter to about 4 millions. ResNet won ILSRCV 15 and introduced the notion
of skip connection that allowed a better propagation of the gradients and networks to go
deeper and improve performances. A visual comparison of these architectures is included
after the introduction of the building blocks of CNNs

Through time, CNN are getting more and more complex and deeper, which is made possible
by the improvements in processing power and GPU-based computing.

Let’s get more into the details and see how Neural Networks works.

1.2 (Regular) Neural Networks
Nature is a great source of inspiration in science, especially living beings since the millions
of years of evolution life has been through allowed the design of performant solutions. Many
great discoveries were made trying to replicate natural phenomenon, and biomimetics is for
instance at the origin of Leonardo Da Vinci's flying machine (the first flying device designed),
hydrophobic surfaces, Velcro Tape (inspired by bur fruit), etc.

The human brain being considered as the most advanced processing unit in nature, its inner
working inspired researchers when trying to artificially replicate intelligence. In 1943,
Warren McCulloch and Walter Pitts tried to modelize a brain neuron, and their model got
refined during the next decades to produce today the artificial neural network model.

16

Dendrites

Axon terminals
J

Fig. 6: Simplified representation of a biological neuron

Neurons works as following: Dendrites that convey information from other neurons as an
electrical signal. They converge into a cell body (soma) that gather the electrical information
and, if the combination of the inputs signals is strong enough, release an output signal to
the axon that will convey the information to other neurons.

The model of an artificial neuron is the following:

Bias

(x,
X
2
mputs ¢ ole) ——)
Output
k X, Sum Activation

Function

Weights

Fig 7. Representation of an artificial neuron

The electrical signal is represented as a real number in [0, 1], allowing to represent not only
on and off signal but also in between states. The cell processes step is represented by a
weighted sum, whose result is passed through an activation function to bring back the
signal in [0, 1].

17

The output of a neuroniis:

N
0= (p(Z(Wi * X;) +b> = (WX + b)
i=1

With N the number of inputs, X=(x1-xN) the input vector, W=(w1-wN) the weights vector
for this neuron, b the bias of the neuron, and o the activation function.

The sigmoid function is often used as the activation function, which is defined as following:

1
14+e*

p(x) =

Then we build a layer of neurons in which every of them takes the same inputs and have
they own weights. A layer has as many output dimensions as it has neurons.

0 = @(ATX + B)

With A = (w;;) the matrices of every weight of every neuron of the layer, B the matrix of
biases, X=(x1-xN), and by extending ¢ to matrices

Finally, a Network can be built by having multiple layers and plugging the outputs of one
to the inputs of the next one. The result is a Neural Network with one input layer X = (x1 -
xN), one output layer and one or several hidden layers (the layers that are not input nor
output)

1/ 46)

2
Layer 4,
/ b® output
i, f +1) @ hypothesis
Y 4 b (1) T
Layer 2, Layer 3,
hidden hidden
Layer 1,
input data

Fig. 8: An Artificial Neural Network with two hidden layers

18

The efficiency of neural networks has been theorized and proved under certain
circumstances. For instance, in 1989 G. Cybenko proved that a neural network with a single
hidden layer containing a finite number of neurons and using sigmoid as activation function
can approximate continuous functions on compact subsets of R".

However, this theorical result does not provide the actual number of neurons nor the
coefficients of the network to reach the needed precision.

In order to obtain the most optimized parameters (weights and biases), we need a cost
function that would evaluate how well is the network performing, and an optimization
algorithm that would iteratively modify the weights to minimize the cost function. Ideally
the cost function should be convex, so that the optimization algorithm can converge to only
one minimum.

One common algorithm for optimizing the network’s parameters is the Gradient Descent.
Aninput (or a batch of inputs) is passed through the network, the loss function is calculated,
then the gradients of the loss function with respect to each parameter is computed. The
error is then backpropagated to modify each parameter.

However, Regular Neural Networks are not well suited for image processing since they are
shift-dependent, could only take a fixed-size input and are computationally expensive.

1.3 Convolutional Neural Networks

1.3.1 Convolution operation
In image processing, convolutions are one of the most important operations. A convolution
is defined by a kernel (or filter), a matrix of smaller dimension than the input image. To obtain
the output matrix, sub-matrices of the size of the kernel are extracted from the input image,
and the element-wise product of these two matrices is summed. The kernel is shifted
throughout the input image and this operation is repeated to obtain a complete matrix.

—T3]
il
Source pixel <l 0
" B
— 1
5l 4 }f b o (1x3)+(0x0) +(1x1) +
{ 6 /7 2 (-2x2)+(0x6)+(2x2) +
<></ 3 /7 (1x2)+(0x4)+(1x1) =-3
piab o
3 % 1 .
afl o Tk
—Tolot 13 } | // L1
2 4 | A 1 // ~~ // L
/{}/ -~ // |1
Convolution filter =il //// |
==
(Sobel Gx) | // //
Destination pixel = L L
L] L L
L // |~
L] |
[// =
/'/ //
//
=

Fig. 9: A Convolution with Sobel filter along x axis

19

Convolution filter can be used for variety of tasks depending on the kernel’s values: Edge
detection (Sobel filters), box blur (normalized Ones matrix), gaussian blur, sharpen
(Laplacian filter), etc.

Laplacian

Fig. 10: Image before and after being
processed by various convolution
filters, whose kernels are detailed
below.

0 -1 0
Laplacian filter:|—-1 4 -1
0 -1 0

-1 0 1
Sobelx:|—2 0 2
-1 0

1 2 1
Sobely:[0 0 O]

-1 -2 -1

1.3.2 Convolution Layer
The main element of Convolutional Neural Networks is the convolution layer. A
convolutional layer is a group of N convolutions whose kernel’s weights are the parameters.
It is also important to note that since the input objects are 3-dimensional (images have a
given height, width and a depth of three for colored images), the kernels have 3 dimensions.

Fig 11. A Convolutional layer and its parameters

20

With M the input depth, N the number of kernels of the layer and therefore the output depth,
I and |, the height and width of the input, O, and O,, those of the output and K, and K,, those
of the kernels.

Also, during the training phase not only one input is given but a batch of inputs, which adds
one dimension to the inputs and outputs of the layer.

Several important factor can have an impact on the output size Oy (resp. Ow):

e Theinputsize i (resp. lw)

e The kernel size K, (resp. Kw)

e The stride (distance between two consecutive frames of the kernel) along h s, (resp.
swalong w)

e The zero padding (number of zeros added at the beginning and at the end of the
input) along h pn (resp. pw along w)

Stride and padding modify the way the convolution kernel is applied to the input.
By adding stride, the kernel won't slide across all the input element by element, but the
kernel will be applied every s, (resp. s») element. This will reduce the output size.
By adding padding, pn (resp. pw) zeros are concatenated along the respective axis and
included in the input. This will augment the output size.

The general formula relationship between the output size and the given parameters is:

[+k—-2
o (A7

Fig 12: Convolution of a 3x3 kernel (gray) over a 5x5 input (blue) with a 1x1 zero padding, a 2x2
strides to produce a 3x3 output (green). More visualizations of this kind are available in [22]

21

1.3.3 Activation functions
Like in regular Neural Networks, the output of a convolutional layer is passed through an
activation function. In the case of CNN, sigmoid function | rarely used, the Rectified Linear
Unit (or ReLU) is more frequent, along with the hyperbolical tangent function. This function
is defined as following:

xifx=0

ReLU(x) = {0 if x <0

Relu tanh sigmoid

Actwvation Functions

— i sgmad

1 2 3 a4 5 6 7 8 9 10 1 “

Fig. 13: Activation functions. Left: ReLU. Right: Tanh and Sigmoid.

1.3.4 Pooling layers
The goal of a pooling layer is to reduce the size of the input to reduce the computational
cost. Pooling layers operate by segmenting the input in squares of a pre-defined size and
returning one value per segment.

The two common pooling layers are max pooling and average pooling. As their names
suggests, the first returns the maximum value of each segmented region, and the second
returns its average.

Max Pooling Average Pooling
29 | 15 | 28 | 184 31 15 | 28 | 184
0 100 | 70 | 38 0 100 | 70 | 38
12 | 12 7 2 12 | 12 7 2
12 | 12 | 45 6 12 | 12 | 45 6
2x2 2x2
pool size pool size
Y v
100 | 184 36 | 80
12 | 45 12 | 15

Fig. 14: Max pooling and Average pooling layers. [23]

22

1.3.5 Fully connected layer
This layer is just a regular neural network layer. If the input is a volume, then it is flattened
and this vector is passed through the neural network layer. It is often found at the end of the
networks to bridge the gap between the features extracted by the convolution and pooling
layers and the targets (categories to recognize for instance)

1.3.6 Feature extraction capacities
Convolutional Neural Networks are very performant tools when it comes to object detection
and patter recognition and state-of-the-art performance on these problems are mainly
achieved by CNNs. They build over the training iterations feature identification capabilities,
each layer building on the previous one to grasp more complex patterns.

As a picture is worth a thousand words, here is the beautiful feature visualization made by
the Google Brain Team [12]. The interactive version available at
https://distill.pub/2017/feature-visualization/ is worth giving a look. They wanted to see
which kind of pattern the different layers of GoogLeNet were the most sensitive to. To do so,
they optimized the input image to maximize the activation of various layers using gradient
descent on the pixels space. As we can see here, the deeper the layer, the more complex
were the patterns identified.

Feature Visualization

How neural networks build up their understanding of images

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixeddd & mixed4de)

Feature visualization allows us to see how GoogLeNet(1], trained on the ImageNet(2] dataset, builds up its understanding

of images over many layers. Visualizations of all channels are available in the appendix

Fig. 15: Visualization of the feature representation in GooglLeNet

23

https://distill.pub/2017/feature-visualization/

1.3.7 Famous architectures
As explained in 1.1 A brief history of computer science and convolutional neural networks,
one of the breakthroughs that allowed CNN to surpass previous models were the
skyrocketing performances of AlexNet in the ILSRVC 12 competition. After this model was
created, numerous novel architectures were proposed the following years and we will
review here some of the most performant.

Among other, the Residual block was introduced by Kaiming He et al in 2015[47] in ResNet,
the winner of ILSRVC 15.

Counter intuitively, a deeper network won't necessarily give better results than a shallower
one. This in partially due to the fact that when overpassing a certain depth, the gradients
will tend to vanish, and the network won’t be able to properly learn. The proposed
architecture with skip connections aims at fixing this issue.

The ResNet that won ILSRVC 15 had 152 hidden layers, compared to 22 for GoogLeNet who
won the previous year’s competition.

X

weight layer
F(x) l relu .
weight layer identity

Fig. 16: A Residual block. The first weight layer block is often Convolution — Batch Normalization
— Rel U, while the second is Convolution — Batch Normalization.

At ILSRVC 14, two models were especially remembered: The runner-up VGG for its simplicity and its
feature representation that makes him the default choice for feature extraction nowadays; and the
winner GooglLeNet for its performances and the Inception block it introduced.

At this point, it seems important to notice that, even though the first neural networks were
biomimetics, they got further away from the initial intuitions while improving and are more
to be considered as mathematical and informatics models than attempts to recreate or
simulate the human brain. For instance, back-propagation is a key process in neural
network’s training, but there is no such mechanism in nature.

24

SoftmaxOutput

0

-

Activation

ETlTS

[50x8x8

Activation

[50x8x8

n24x24
ion

£
2

:

Fig. 17: Comparison of several famous CNN architectures. From left to right: LeNet5, LeCun
et al, 1998. AlexNet, Krizhevsky et al, 2012. VGG, Simonyan et al, 2014. GoogLeNet, Szegedy et al, 2014.
ResNet, K. He et al, 2015. Source: [21]

Note: Each colored block can represent several occurrences of the same layer. For instance, the VGG
model includes 2 to 3 layers of convolution in a row for each convolution block in the schema. Also
ResNet wasn’t included in the comparison because if it were at the same scale as LeNet5, it would
have been 13 pages long, and a reduced-size image wouldn’t have been readable.

25

|l. State of the art in Style Transfer

2.1 Image style transfer

2.1.1 Pre-neural style transfer

Before the use of neural networks, it was common to try to mimic the painting process of
the artist. For instance, Litwinowicz et al [10] would repaint images by generating brush
strokes to copy the style of the painter. The style obtained would depend on predefined
parameters like the thickness or the quantity of strokes.

This method was particularly great at reproducing impressionist and pointillist painting styles, it
was however limited to paintings as not every style can be recreated by brush strokes.

A _ ot S s I
L N PELUASIRSIR R, e

Color Plate 1. An original image. Plates 1-8 are 640x480 pixels.

ALY, ; > . 4 .
Sy % Beginy &
! ; 57, » 4 P, g

;» : ’,,. 4 ‘ . ". - p ? o (.
ool Lt 1WA "4 2
Color Plate 3. Technique of Color Plate 2 is modified so that
brush strokes are cliped to edges detected in the original image.

~ o '/ j,‘/l‘.:# "' ,‘ ‘”"}'
Color Plate 2. Processed image using no brush stroke clipping anc
a constant base stroke orientation of 45°.

s B 02 g itipnt
. . o .. * < by

, N S

RV A k. e, Besd .
Color Plate 4. Technique of Color Plate 3 is modified to onent
strokes using a gradient-based technique.

Fig. 18: lllustration of the brush stroke technique developed by Litwinowicz et al to recreate an

impressionist style

26

2.1.2 Image-optimization-based Neural Style Transfer
One of the most important paper on neural style transfer is probably A Neural Algorithm of
Artistic Style, Gatys et al. 2015[11], the first paper published on this subject. It showed
incredible results and opened the way to many more developments and variations of the
idea of Neural Style Transfer.

The idea is to use a CNN pre-trained on an object detection task to extract the style of the
target style image, the content of the target content image, and to optimize a new image to
minimize the difference between its style (resp. content) and the one of the target style
image (resp. target content image)

Some examples of this method are exposed in Fig. 19

2.1.2.1 content and style features extraction
One may ask how it is possible to quantify and extract the artistic style of an image.

As explained previously, CNN’s convolution layers can extract features from the input image
and the deeper the layer the more complex are the grasped patterns. To extract the style of
an image, Gatys et al. used a CNN pretrained on object detection task (VGG19 trained on the
ImageNet dataset), passed the image through the network and extracted the outputs of
various layers across the network. Altogether, these tensors represent the artistic style, the
shallower layers capture more of the texture and colors while the deeper layers capture
higher-level information.

The authors have chosen the layers {'conv1_1’,’conv2_1’,’conv3_1’,‘conv4_1’,’conv5_1"} (e)
as the feature space for style representation.

In order to capture the content of the image, the authors used the deeper layers since they
carry information about the content of the image and the disposition of the object but not
about the exact pixel values. In their paper, they used the layer ‘conv4_2’ to capture the
content of the images.

2.1.2.2 Image Optimization
Once the content and the style features are extracted from the target content image and
the target style image, the output image is initialized with white noise. It is then fed into
the VGG19 network to extract content features and style features in order to compute the
content loss and the style loss. Finally, the derivative of the losses with respect to the
activation layers are calculated, from which the gradients with respect to the input image
are computed using standard error backpropagation. The input image can be modified
and by iterating the process, until the desired result is obtained.

27

Fig. 19: Images that combine the content of a photograph with the style of several well-known
artworks. The images were created by finding an image that simultaneously matches the content
representation of the photograph and the style representation of the artwork (see Methods). The
original photograph depicting the Neckarfront in Tiibingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image
is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent vah Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913.

28

Conv1 1

Conv2 1

Conv3 1

Conv4 1

Conv5 1

Fig. 20: Detailed results for the style of the painting Composition VII by Wassily Kandinsky.
The rows show the result of matching the style representation of increasing subsets of the CNN
layers (see Methods). We find that the local image structures captured by the style represen-
tation increase in size and complexity when including style features from higher layers of the
network. This can be explained by the increasing receptive field sizes and feature complex-
ity along the network’s processing hierarchy. The columns show different relative weightings
between the content and style reconstruction. The number above each column indicates the
ratio o/ 3 between the emphasis on matching the content of the photograph and the style of the
artwork (see Methods).

29

Style Reconstructions

o Style
Representations

Input image L>

Content
Representations

Content Reconstructions

Nt Nl ol e
Fig. 21: Style reconstruction: a, b, ¢, d and e are the reconstruction of the style of the input
image based on the layers {"conv1_1%}, {"conv1_1’, ‘conv’2_1%}, {"conv1_1’, ‘conv2_1’, ‘conv3_1"},
etc.

Content reconstruction: a, b, ¢, d and e are the reconstruction of the content of the input image
based on the layers {"convi_17}, {'conv’2_17}, {'conv3_1"}, etc.

Content Loss

Let L be a layer with N filters of size H. x W.. The output will be a map of shape N.x H.x W,
which can be reshaped as a N. x M. matrix with M, = H. x Wy. Let ¢and X be the content
image and the input image, and Ct and F! the activation of their respective feature
representation in L. The content loss is defined as

> o 1
Lcontent(cﬂx) = EZ(FLLJ' - CLi»J')z
ij

The derivative of the content loss with respect to F* ijis

OLcontent _ (FL - CL)i,j if FL(X)i,j >
dFL; 0 if FL(X)y; <

Style Loss

On top of the extracted features, the authors compute the correlation between the different
filter's responses of a same layer. To do so, they compute the Gram matrix of the feature
matrix, defined as following:

30

Gly = (FHE) =)RR
k

Keeping the same notations as for the content loss, let § be the styleimage and S* the Gram
matrix of the activation of its feature representation in the layer L. Let U be the ensemble of
the layers selected to extract the style features from.

The style loss is then defined as

Liye G 3) =) wiBy ()

LeU

Where w;, are the weights of each layer in the total loss and E; (X) is the contribution of the
layer L in the total style loss of X,

1
2\ — L L N\2
ELG) = ANZM? Z L(G=Si))
L]

The derivative of E; (¥) with respect to F%; ; is

0E. (%) >

Lj 0 if FLE(X); < vy

((FOT(G =88 if FF(X);5 >

Total Loss

Finally, the total loss is defined as

> o5 o

Ltotal(ct S, x) = aLcontent(a 55)) + ﬁLstyle(g' 55))

With a and the weights for content and style reconstruction. These parameters control the
tradeoff between the content similarity and the style similarity of the result to the targets.
The impact of the ratio a /3 is demonstrated in Fig. 20

After Gatys et al's first publication on neural style transfer for images, many variations of this
idea were proposed, and some are worth mentioning.

Chuan Li and Michael Wand combined CNN with Markov Random Fields (MRF) [25]. This
combination allowed a better consistency and achieve both photorealistic and abstract style
transfer.

g
-_\"‘ R b

Input A Input B Content A + Style B Content B + Style A

Fig. 22: Example of style transfer performed by Li and Wand [25]

31

Also, Funjun et al [24] proposed to add a photorealism regularization term to the total loss
to allow Photo style transfer and remove the distortion and artifacts produced by Gatys et
al's method. This method makes it possible to switch a photo from daytime to nighttime

Input NS Ours

(a) Reference style image (b) Input image (c) Neural Style (distortions) (d) Our result (e) Insets

Fig 23: Example of style transfer performed by Funjun et al [24]

Champanard et al [26] proposed a semantic-map-based style transfer method that allowed
to create visually appealing images from sketches, or to perform style transfer between two
semantically close pictures. This technique allows a greater degree of control on the
semantic maps and on the end results

Fig. 24: Example of semantic style transfer performed by Champanard et al [26]

32

2.1.3 Network-optimization-based Neural Style transfer
The main limitation of the technique we reviewed is their speed. For Gatys et al's method,
producing one image of 512x512 pixels by 100 iterations (a reasonable number of iterations)
could take more than 10 seconds on a high-quality GPU [27]. This could reach more than 2
minutes on the same hardware for a 1024x1024 image and 300 iterations.

Such low speed would make this mode unusable for real-time processing. The next model
we will explore achieved a speed up of 3 orders of magnitude, taking only 0.05s to process
a 512x512 image instead of 54,85s for Gatys et al's model with 500 iterations. This
breakthrough happened without perceptible loss of quality and this method can be used to
perform state-of-the-art image super-resolution.

In “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, Johnson et al
proposed a novel method where a feed-forward CNN is trained to translate input images
into a pre-defined style, and an auxiliary loss network (a fixed VGG 16) is used to compute
style and content losses. The computational burden is therefore transferred on the training
phase and the style transfer only takes one pass forward through the network. However, one
network can only be trained on one style, which means that performing style transfer with
a new style requires the training of a new CNN which takes a few hours.

Here is an overview of the model:

Style Target gqb,relul_Z Eqb,reluQ_Q €¢,relu3_3 Eq‘),relu4_3

y style style style style

L | s hH A A A
- Jw | it il o it Attt
1 1 1 1
: I A : |
X : I y ! |
1 |
Input | ! A S | S | | 1 1 - l
Image ,1nj§g_e_'l'_r§n_s_fo_rr_n_r\l_e_t ' y ! Loss Network (VGG-16) gb :
c e 1

fqb,r:erluS_En
Content Target feat

Fig. 25: Overview of Johnson et al’s system for fast style transfer

The input image x is fed into an Image Transform Net, a deep residual convolutional neural
network, that transforms it into the output image y. Once the network is trained, nothing
more needs to be done and the output image y will be the stylized version of x with the
style of the style of the target. During the training process, the Loss network is used to
compute the style and content losses in the same manner as in Gatys et al's method [11],
with slightly different loss functions. The style target y,, the content target y. and the
output image are fed into the network, the activations of the content layer are extracted to
compute the content loss, the activations of the style layers are extracted to compute the
style loss, and the total loss is backpropagated through the Image Transform Net to adjust
its weights. Here the Image Transform Net is optimized, not the input image nor the Loss
Network.

33

Image Transform Net

This feed-forward network consists of two 2-strided convolutional layers for
downsampling, each followed by a batch normalization and ReLU activation, residual
blocks as the core of the network, and two fractionally-strided convolutional layer of stride
a.

This downsampling — upsampling architecture reduces the computational cost of the
residual layers, which allow the use of a bigger network for the same cost. A convolutional
layer with 3x3 kernels with C filters and an input of size C * H = W requires 3*HWC?
multiplications, which is the same amount as a convolutional layer of size 3x3 kernels with

DC filters and the same input downsampled by a factor D, DC * % * %.

This also increase the Effective Receptive Field (ERF) of the convolutional layers of the
residual blocks, i.e the size of the input region that affect a layer’s activations.

Contentloss

Named Feature Reconstruction Loss by the authors, this content loss is the normalized
squared Euclidian distance between the feature representation of the target and output
image, extracted from the content layer of the Loss Network.

Taking the same notation as in 2.1.2.2 - Content Loss, let y. and § be the content target
and the output of the Image Transform Net, and C% and F* the activation of their
respective feature representation in the layer L of the Loss Network. The content loss is
defined as

1 1
Leontent (9, Yc) = —”FL - CL”% = Z(FLi.j - CLi.j)z
N W, N W, £

Which is the content loss used by Gatys et al [11], normalized.
Style Loss

Named Style Reconstruction Loss by the authors, it is quite similar to the Style Loss
introduced by Gatys et al.

Taking the same notations as in 2.1.2.2 - Style loss, the normalized Gram matrix is defined
as

1 1
GL. = —— (FLIF\= —— E FL FL
L] NLHLWL< l|]> NLHLWL g |4],k

Then, let y, be the style image and S’ the Gram matrix of the activation of its feature
representation in the layer L of the Loss Network. The style reconstruction loss associated
with the layer L of the Loss Network is defined as the squared Frobenius Norm if the
differences between the Gram matrices of the style image and the output from the Image
transform Network. The total style loss is the sum of the style reconstruction losses
associated with the layer Lforeach L € U

34

Lotyie s 9) =)16+ = S*I3
LEU

Total Variation Regularization

To encourage the smoothness of the output image, another loss is added whose goal is to
minimize the Euclidian distance between two adjacent pixels. We define the Total Variation
Regularization of an image y as

1
Lryr(y) = Z((xi,j - xi,j+1)2 + (xi.j - xi+1.j)2)7
i,j

The Image Transform Network is then trained using Stochastic Gradient Descent to
minimize a linear combination of the loss functions with respect to the input image x and
the fixed content and style target images y. and y;

W* = arg mmi/n Eyyeys [AcLcontent (§, <) +)\SLstyle (§,ys) + ArvLryr(§)]

This model performs orders of magnitude faster than Gatys et al's model, as showed in the
benchmark below ran on a GTX Titan X GPU.

Gatys et al Speedup
Image Size || 100 300 500 Ours 100 300 500
256 x 256 || 3.17 9.52s 15.86s |0.015s |[212x 636x 1060x
012 x 512 (|10.97 32.91s 54.85s | 0.05s |[205x 615x 1026x

1024 x 1024(|42.89 128.66s 214.44s| 0.21s [|208x 625x 1042x

Fig. 26: Benchmark conducted by Johnson et al

Style Style
Composition VII, The Great Wave off
Wassily Kanagawa, Hokusai,

Kandinsky, 1913 @&

1829-1832

Content Gatys etal[11] Johnson et al [2-7] Content Gatys et al Johnson et al

Fig. 27: Qualitative comparison of Johnson et al’'s model and Gatys et al’'s model

35

Fig. 28: Detail of the previous figure. Left, Gatys et al. Right, Johnson et al.

While the authors stated that the quality of the results of their method is qualitatively similar
to those of Gatys et al's image-optimization-based method, the following papers tended to
notice a lower quality [31]. This is noticeable in the comparison given by the authors on
Composition VII by Wassily Kandinsky. This loss of quality for the benefit of speed has been
the subject of several follow-up papers [30, 31] whose goal was to modify the proposed
method to get a higher quality output for the same computational cost, among others.

Another approach was developed by, Ulyanov et al [30] for texture transfer and texture
synthesis based on their proposed Texture Network architecture. As suggested by the name,
this model performs well for texture transfer and texture synthesis but lack higher-level
consistency when it comes to style transfer.

Their method consists on a feed-forward generator network g that can be trained to
produce a texture sample g(z) from a noise sample z that resembles to the texture of a
given texture target image y,. This texture generation method can then be extended to
perform texture transfer by taking as input a noise sample z and a content image y,. See Fig.
29 below for a graphical overview.

The performances of the generator network are evaluated by a descriptor network (namely
VGG19) as in Johnson et al's method, uses the same content loss and style loss (named
texture loss by the author) and the same training method (SGD).

Generator network

3xB4x64

conv
§ Zk-2 block

; \L| | loss loss loss J
; _‘_J

: i A A

| [axaaxs2 5 i i

3 ZK_1‘ = | blosk

ZK-1 Zk-2 3 FA Lo

| 3x16x16 ¥ Z& : 27

5 conv ’ conv) ! P 1.) - T
| ZK\J |:{> block — Join _'block — Join > +-+ —-» Join —> block || | LlayeHHlayeer Lrelu1_1J |relu2_1j {reluSJJ

Fig. 29: Qverview of the proposed architecture (texture networks). We train a generator network (left) using a powerful loss based on
the correlation statistics inside a fixed pre-trained descriptor network (right). Of the two networks, only the generator is updated and
later used for texture or image synthesis. The conv block contains multiple convolutional layers and non-linear activations and the
join block upsampling and channel-wise concatenation. Different branches of the generator network operate at different resolutions
and are excited by noise tensors z; of different sizes.

36

As we can see in Fig 30, and Fig 31, this method is able to grasp and reproduce textures at
state-of-the-art level but gives poorer results for style transfer, as the produced image is
quite repetitive and lacks semantic understanding.

Input Gatys et al. Texture nets (ours) DCGAN

Fig. 30: Model comparison for texture generation.

Content Texture nets (ours) Gatys et al. Style

Fig. 31: Model comparison for style transfer

37

2.1.4 Instance Normalization
A notable incremental improvement from the previous method is the replacement of Batch
Normalization (BN) modules by Instance Normalization (IN) module.

Ulyanov et al published an improved version [31] of their texture network released one year

earlier [30] that we described earlier, building on the residual Image Transform Net proposed

by Johnson et al [27]. One of the main contributions of this paper was the introduction of

Instance Normalization, although quite similar to the layer normalization introduced by J. L.

Ba et al [34]. Given an input tensor X = (x,;) of shape N = C « H x W, the Instance

Normalization output Y = (yy; j x) is defined as

Xn,ijk — Hni

Ynijk = —mm——
o2 +¢

n,

With

1
Uni = WE Xn,i,jk
Jk

Instance Normalization differs from the Batch Normalization because the former performs

the normalization to each channel of each element of the batch, while the latter performs

the normalization to each channel for the entire batch:

Xnijk — Hi

Ynijk = —
o +e

With

1
Ui = HW Z Xn,i,jk

n,jk

2 1 2
o =W Z (Xnije = Hi)
n,jk
This minor difference has great consequences on the output quality (see fig.32) without
impacting negatively the computational cost of the model and reduces the convergence
time. The reason for this evolution is, according to the authors, that the result of a style
transfer should not depend on the contrast of the image but on the content, and that
applying normalization to each channel of the batch individually instead of at the batch level
would discard the unnecessary contrast information.

This paper also proposes new methods for texture synthesis, but this is separated from the
contributions on style transfer.

38

; z JF ‘ PR A i Y /
Content StyleNet IN (ours) StyleNet BN Gatys et al. Style
Fig 32. Comparison of network-optimization-based style transfer with Batch Normalization,

Instance Normalization, and image-optimization-based style transfer. StyleNet refers to the
Image Transform Net introduced by Johnson et al [27]

2.1.5 Network-optimization-based Multi-style Neural Style transfer
Even though the network-optimization-based approaches proposed by Johnson et al[27]
and improved Ulyanov et al[30, 31] allows a near-real-time processing speed once the
network is trained on a style, one network can only learn one style. This has been the subject
of further research by various universities, and several improvements have been proposed
to enable network-optimization-based arbitrary style transfer, i.e models able to perform
style transfer on with any given style image (and content image) in real-time or almost.

To my knowledge, the first paper published on multi-style network-optimization-based was
“A Learned Representation for Artistic Style” by Dumoulin et al., 2017 [29]. They introduced
a Conditional Instance Normalization module (CIN) inspired by Ulyanov et al's Instance
Normalization [31] that allowed a single network to learn multiple pre-defined styles at once.
Although this model didn’t permit to perform arbitrary style transfer, it was a step in the right
direction.

The losses and the learning process are identical to the ones proposed by Johnson et al [27],
and the feed-forward transformation network is almost identical as Ulyanov et al's StyleNet,
the only difference being the normalization modules.

Taking the same notations as in 2.1.4, the authors added two parameters 8 and y, matrices
of shape N; * C with Ng the number of styles to be learnt.

39

x — pu(x)
a(x)
With u and ¢ x’s mean and standard deviation across H and W the spatial dimensions, and

¥s and Bs are the rows of y and S corresponding to the style s. The CIN module is
summarized in fig 33 below.

CIN(x,s) =y5(>+,85

Fig. 33: Schematic representation of the Conditional Instance Normalization.

The intuition behind this modification is that between two different trained single-style
feed-forward model, many of the weight will be similar, therefore it should be possible to
combine the layers of one network to make it recreate the style that the second learnt.

This method requires the parameters y,; and S, to be trained for each specific style, which
means that it can only transfer styles that has been trained on and cannot perform style
transfer for a previously unseen style. However, it is possible to quickly fine-tune an existing
model and learn new y, and [, for a new style. As we can see in fig 34, a new style can be
learned in 5000 steps instead of 40000 when training a new single-style model.

— From scratch
5,000 steps 40,000 steps

10°

Total content loss
fine-tuned

10°

10°

from scratch

Total style loss

15000 20000 25000 30000 35000 40000
Parameter updates

0 5000 10000

Fig. 34: The trained network is efficient at learning new styles. (Left column) Learning and
S from a trained style transfer network converges much faster than training a model from scratch.
(Right) Learning « and /3 for 5,000 steps from a trained style transfer network produces pastiches
comparable to that of a single network trained from scratch for 40,000 steps. Conversely, 5,000 step
of training from scratch produces leads to a poor pastiche.

40

2.1.6 Network-optimization-based Arbitrary Neural Style transfer

Finally, X. Huang and S. Belongie proposed in 2017 a method [33] to perform real-time
arbitrary style transfer, i.e a model that could learn to transfer the style of any target image
to any content image. To do so, they introduced a new type of normalization module called
Adaptative Instance Normalization (AdalN), inspired from Ulyanov et al's IN and Dumoulin
etal's CIN.

The idea, simple but smart, of the authors, was to align the channel-wise mean and variance
of the input image x to those of the style target y,

Taking the same notations as in 2.1.5, the Adaptative Instance Normalization of

x — pu(x)

7 (%)) + 1(s)

AdalN(x,ys) = a(ys) (

Feed-forward network architecture

Unlike in the previous paper studied, this method uses a simpler encoder-decoder structure.
The encoder f is a fixed pre-trained VGG19 network truncated at the layer relu4_1, with
reflection padding to avoid border artifacts. Then, after encoding both content and style
images through f, both are fed into the AdalN module to align the mean and variance of
the content image to those of style image, producing the target features

t = AdaIN(f (yc), f (¥s))

Then the decoder is built to mirror the encoder, with some variations: all pooling layers are
replaced by upsampling (‘'nearest’ mode) to avoid checkerboard effects, reflection padding
is used to avoid border artifacts and no normalization is used (not BN nor IN) as it would
decrease performances.

I
1 \
| m
—b g < >
1|l o @® AdalN
o o >
0]
| m)
= =
Style Transfer Network] 8 L.
_________________ g
'
L

Fig 35. Architecture summary
Losses

The content loss is defined as the Euclidian distance between the target features and the
output image features. The authors used t as the target features.

41

Leontent = ”f(g(t)) - t”z

For the style loss, the authors used the style loss defined by Li et al [35]:
Lyie =) 1 (F*(9®)) =P 0| + > o (FH(9®)) - oFras)|
LeEU LEU

This system is then trained with an Adam optimizer on the MS-COCO dataset for the content
images and on a dataset made of images collected from WikiArt. It is important to note that
only the decoder’s weights are being modified

Performances

The authors conducted a benchmark of their method compared to other popular methods.
Not only can it perform arbitrary style transfer, but this can be done in real-time.

Method Time (256px) | Time (512px) | # Styles
Gatys ef al. 14.17 (14.19) | 46.75 (46.79) | oo
Chen and Schmidt | 0.171 (0.407) | 3.214 (4.144) | oo
Ulyanov et al. 0.011 (N/A) |0.038 (N/A) 1
Dumoulin et al. 0.011 (N/A) [0.038 (N/A) 32
Ours 0.018 (0.027) | 0.065 (0.098) 0

Fig 36. Benchmark conducted by the authors on a Pascal Titan X GPU

"‘l! =7
i

5 F
P

7

/i

Style Content Ours Chen and Schmidt ~ Ulyanov et al. Gatys et al.

Fig 37. Comparison of the Style Transfer results with other popular methods. It is important to note that
the style images were not present in the training set and are therefore previously unseen by the network.

42

2.2 Video Style Transfer
Although the previous method is able to run in real-time and produce quality images, it
could not guarantee a quality result for style transfer in videos. The reason is that by
processing a video frame by frame with image style transfer methods, two adjacent frames
are likely to have significantly different aspect since a slight change in the image noise can
have a great impact on the style transfer result. A flickering effect would appear, which is
not desirable.

To add this desired temporal coherency, the main idea exploited in different ways is to add
a temporal loss that would ensure that the learning process takes into account the previous
frames to produce a smoother output.

2.2.1 Video-optimization-based video style transfer

The first paper going in this direction has been published by Ruder et al in 2016[41], which
propose an adaptation of Gatys et al's image-optimization-based method adding a temporal
constraint to enforce smooth transition between frames. This temporal constraint uses the
optical flow between frames to penalize deviations between frames along the point
trajectories.

Optical Flow

Optical flow is the pattern of motion of objects and shapes between two consecutive frames,
i.e the distribution of apparent velocities of movement of brightness pattern. While the term
has been introduced by the psychologist James J. Gibson, it is widely used in computer
vision and robotics to understand motions in real-life environments for instance.

Optical flow can be sparse or dense. The former refers to a method where optical flow is
computed at some locations only, on a given grid or at points of interest for instance. The
latter refers to a method where optical flow is computed for each pixel of the image, which
is more precise but computationally more expensive.

Several methods for optical flow computation have been proposed by Fleet and Weiss [36],
but the authors used deep learning-based techniques for optical flow estimation as
DeepFlow [37] or EpicFlow [9]

Losses

We are working with a video input, i.e a tensor of size L * C * H x W with L the length of the
video, C the number of channels (C=3 for RGB encoding), and H and W the frames height
and width. We will note x® the i-th frame of the video that will serve as content image, and
y® the corresponding stylized output

The content and style losses are similar to the previous ones. The content loss is the mean
square error between the content feature representations of the output y® and the
content image x®., Taking the same notation as in 2.1.3, we have:

. , 1
Lcontent(x(l)’y(l)) = WZ(FLL,] - CLi,j)z

43

The style loss is the mean squared error (not Frobenius norm as previously) between the
Gram matrices of the feature representations of the output y¥ and the style image s,
summed across the layers L € U

Original frames o Style image

Independent per-frame processing

Fig. 38: Scene from Ice Age (2002) processed in the style of The Starry Night. Comparing
independent per-frame processing to our time consistent approach, the latter is clearly
preferable. Best observed in the supplemental video, see section 8.1.

) 1
Lstyle(s; y(l)) = Z N 2H ZW. ZZ(GLLJ' - SLiJ)Z
rev \''L L L TS

The temporal loss is slightly more complex. Its goal is to penalize deviation between the
outputimageiand the previous output warped with forward optical flow, where this optical
flow is estimated with high confidence. The confidence of the optical flow is defined pixel-
wise as 0 in disoccluded regions (regions occluded in frame x~Dbut visible in frame x®)
and motion boundaries, and 1 elsewhere.

Let x and y be the first and second frame, w(y¢=Y,y®) = (u, v) be the optical flow in the
forward direction, w(y =1, y®) = (i,) the optical flow in the backward direction, and
the forward optical flow warped to the second image:

W(y(i_l),y(i)) = W((y(i—l)’y(i)) + W(y(i‘l),y(i)))

Occlusions can be detected by comparing the forward and the backward optical flow, as
detailed by Sundaram et al [39]. For non-occluded regions, the forward optical flow of a
given pixel should be the opposite of its backward optical flow. If this is not the case, the
point is either being occluded at the frame t+1 or the optical flow was not correctly
computed, which are two valid reasons not to include this point in the temporal loss
computing. Therefore, an area is flagged as disoccluded if:

W+ w|? > 0.01(|w|? + |Ww|?) + 0.5

44

Also, the exact location of the motion boundariy is subject to fluctuation, which can lower
the quality of the optical flow estimation in these areas. Motion boundaries are detected
using the following inequality:

|Vii|* + |VD|? > 0.01|w|% + 0.002
Using the previous two inequalities, a confidence mask between the frames i-1 and | is

defined such as ¢=9 € {0, 1}¢*H*" s 0 in disocclued regions and motion boundaries, and
1 elsewhere.

The temporal loss is defined as:

1
Ltemporal(y» w,c) = CH—WZ Cn,i,j (yn,i,j - Wn,i,j)2

ni,j
Finally, the total loss is:
Ltot(x(i): s, y(i—l), y(i))
= tLeontent(*®, ¥ P) + BLstyie(5,y®)
+ VLtemporai (y(i)» Wii—1 (y(i_l))' C(i_l’i))

With w'_; (x=D) the frame x ¢~ warped with the optical flow between frames i-1 and i.

Also, the authors extended the temporal loss to give greater long-term coherency by
summing the temporal losses associated with several frames gap. E.g. instead of comparing
the input and output frames at step i and i-1, it is possible to compare the input and output
frames at steps i and i-j for any given j. The total loss is modified as following:

Ltot(x(i)l S, y(i_j)' ey y(i)) = aLcontent(x(i): y(i)) + ,BLstyle (s, y(i)) +
|4 z Ltemporal(y(i)' Wii—j (y(i_j))' Cf;;é'l))
jeji-jz1
The definition of the confidence mask is also updated and defined as:
cl(ér_lf]’i) =max | ct7D — Z c=kd o
kej:k<j

The effect of long-term temporal loss is visible in fig 39, as well as in the supplementary
material released by the authors along with more demonstrations, available here:
https://www.youtube.com/watch?v=vQk SfI7kSc

45

https://www.youtube.com/watch?v=vQk_Sfl7kSc

Frame #1 Frame #ZQ Frame #30

Fig. 39: Scene from Miss Marple, combined with The Starry Night painting. a) Short-
term consistency only. b) Long-term consistency with J = {1, 10, 20, 40}. Correspond-
ing video is linked in section 8.1.

Training process

The authors found out that with a regular training process such as proposed by Gatys et al
[11] the output image tends to have less contrast than expected, and that combined with
the temporal coherence this led to lower the quality of the output through time. In order to
solve this, they proposed a multi-pass algorithm that processes the entire video sequence
both forward and backward. Every pass contains less iterations and does not goes until full
convergence so that the intermediate result obtained can propagate forward and backward
through the video and avoid artifacts caused by the one-way information flow. See fig 40
below for a demonstration of the contribution of the multi-pass algorithm.

e 0riginal frames #1 and #28 Y .

e =

Frame #28

Fig. 40: 'The multi-pass algorithm applied to a scene from Miss Marple. With the default
method, the image becomes notably brighter and loses contrast, while the multi-pass
algorithm yields a more consistent image quality over time. Corresponding video is
linked in section 8.1.

46

Performances

This method allowed high quality results with both short-term and long-term temporal
coherence (see fig 38.), but it is not applicable for our use case. Not only is it way too slow
since it is based on the initial image-optimization process proposed by Gatys et al [11], but
it also requires a multi-pass process to produce better results. This is not desirable, since we
require to process a video in real-time and therefore without having access to the next
frames.

2.2.2 Network-optimization-based video style transfer

Two years after publishing their Artistic style transfer for videos, Ruder et al proposed a novel
and much faster version of their previous algorithm [40], built upon Johnson et al's Image
Transform Network [27] and their previous temporal loss.

The content, style and temporal losses (either short-term or long-term) are the same here as
previously [41]. We keep here the same notations. The authors extended Johnson et al’s
Image Transform Network to take as input not only the content image, but also the stylized
previous frame as prior knowledge and the per-pixel confidence mask defined previously.
They also changed the upsampling layers from fractionally-strided convolutional layers to a
combination of nearest-neighbor upsampling and regular convolutional layer, to reduce the
checkerboard artifacts visible in fig 28. This follows the recommendations given by Odena
et al [42] who investigated the reasons and the solutions to the checkerboard artifacts that
were visible in CNN using deconvolution (or fractionally-strided convolution) layers.

backpropagate
E /’_/’ Perceptual
loss
frame #2
img 7 ,v‘“’f vid y m compare (mse) +
d ! d \ > O ->Con|5|stency
y - 0SS

frame #1 occlusion mask

| v L
warp and mask

Fig 41. Mixed training

The authors propose two training methods. Thefirst consist in mixing training examples that
have a prior knowledge image, and some that don't. This aims at forcing the network to keep
on refining the learning at every step instead of just lazily extract information from the prior
knowledge image. The objective function is in this case:

W* = arg minE, o) @ [Leot (@, 5,5,y)] + Ep [Lor (D, 5, 54 (x D, 0, 0), 0)]
With
y(z) = (I)a}d (x(z)’ W12 (y(l)), C(l,Z))

47

And 0 a tensor filled with zeros of the shape of the input used for the initialization when no
optical flow nor confidence mask can be computed.

The other method proposed, called multi-frame training, pass recursively the input frames
f® to fN-D 5o that the training is performed on the potentially degenerated stylized
image y("~Das prior knowledge image. The network has to generate a non-degenerated
stylized image y™), which trains the network to correct degeneration. The objective
function in this case is:

W* = arg min E @ y@+1) [Leor (x(EFD, 5,y (04D, (0)]
With
t+1) — id t+1 t+1 t tt+1
YD = opid (x D), w1 (y®), e+
backpropagate
/’" .
~ Perceptual
frame #2 frame #3 § I L]; loss
img w vid S vid y W Compare (mse) +

) S) , ————> [—> Consistency

E mask
frame #1 occlusion masl occlusion mas|
> 4 1)
> L
h 4 y
warp and mas warp and mask ~ §i

o loss
L

Fig. 42: Training procedure for our multi-frame approach, here shown with three frames.

When it comes to runtime, this method is computationally more expensive than Johnson et
al's network-optimization-based technique. The following benchmark has been conducted
on a Nvidia Titan X GPU for a resolution of 1024x436 pixels. Although faster than image-
optimization-based techniques, this model is too slow to produce real-time style transfer.
Lowering the image quality would fasten the process, but if we suppose that this model is
twice as slow as Johnson et al's model, their benchmark in Fig. 26 suggests that a 512x512
pixel image would take 0.1 s to be computed, and 10 FPS is slightly too low for our use case.

Type Method | alley_2 ambush.5 ambush 6 bandage 2 market_ 6 | Runtime
Optimization Random init 0.019 0.027 0.037 0.0180 0.023 540 s
Optimization Prev frame init | 0.010 0.018 0.028 0.0041 0.014 260 s
Optimization Ours 0.00061 0.0062 0.012 0.00084 0.0035 180 s
Network Per-frame 0.0062 0.011 0.016 0.0043 0.0089 0.2s
Network Ours 0.0016 0.0042 0.0079 0.0015 0.0039 04s

Fig.-43: Short-term temporal consistency of video style transfer. We report average mean squared error over the test set
(lower is better). Pixel values were between 0 and 1. Run time is reported in seconds per frame. We show the results of our
optimization-based and network-based approaches, as well as three baselines: optimization-based stylization initialized with
random noise or the previous frame, respectively, and independent per-frame network-based processing.

Here are qualitative results of this model. We can see that the temporal coherence is better
in this model than in independent frame-per-frame models. Also, the authors compared the
different training process and their combinations

48

Original frames and style image

Fig- 44: Comparison of temporal consistency: Our method
(multi-frame mixed) has less flickering than independent
per-frame processing [12]. Rectangles indicate relevant dif-
ferences. The corresponding video is available at https://
|youtu.be/SKql5wkWz8E#t=0m42s|

Original frame #50

Fig. 45: Comparison of quality: Our advanced approaches
retain visual quality and produce a result similar to [12]
applied per-frame. The straightforward two-frame training,
though, suffers from degeneration of quality. Rectangles indi-
cate relevant differences. The corresponding video is available
at https://youtu.be/SKql5wkWz8E#t=2m47s

49

Another architecture worth mentioning in real-time video style transfer is ReCoNet: Real-time
Coherent Video Style Transfer Network proposed by Gao et al[43]. The main contributions of
this paper are:

e the proposition of a luminance warping constraint to the temporal loss to reduce
the negative impact of luminance variation from the input and stabilize output
luminance;

e the proposition of a feature-map-level temporal loss;

e the creation of a feed-forward network that can achieve real-time and temporally
coherent style transfer

The feed-forward network adopts a similar structure from Ruder et al's feed forward network
[40], inspired itsef by Johnson et al's Image Transform Net [27], as described in the table
below. However, it is explicitly separated in an encoder and a decoder. This allows the
authors to extract feature before decoding and to apply a temporal loss at feature-map level.

' ious ' al loss

: Ft N prfivmuc; i temporal loss

: ame !

temporal loss [t

T | content loss
I F, o, —>
4|—’ style loss
Style

Encoder Decoder

Fig. 46: The pipeline of ReCoNet. I}, F}, O; denote the input image, encoded feature
maps, and stylized output image at time frame t. M; and W, denote the occlusion mask
and the optical flow between time frames ¢t — 1 and t. Style denotes the artistic style
image. The dashed box represents the prediction results of the previous frame, which
will only be used in the training process. Red arrows and texts denote loss functions

Layer Layer Size | Stride | Qutput Size
Encoder
Input 3 x 640 x 360
Conv + InsNorm + ReLU 48 x9x%x9 1 48 x 640 x 360
Conv + InsNorm + ReLU 96 x 3 x 3 2 96 x 320 x 180
Conv + InsNorm + ReLU 192 x 3 x 3 2 192 x 160 x 90
(Res + InsNorm + ReLU) x4 | 192 x 3 x 3 1 192 x 160 x 90
Decoder
Up-sample 1/2 | 192 x 320 x 180
Conv + InsNorm + ReLU 96 x 3 x 3 1 96 x 320 x 180
Up-sample 1/2 | 96 x 640 x 360
Conv + InsNorm + ReLU 48 x 3 x 3 1 48 x 640 x 360
Conv + Tanh 3x9x9 1 3 x 640 x 360

Fig. 47: Detailed architecture of ReCoNet

50

This model gives great results, both qualitatively and quantitatively. The output video seems
temporally coherent and the output style matches the target style while the content is still
perceivable, as visible in the comparison below (fig 48). Additional video material is available
on YouTube here: https://www.youtube.com/watch?v=vhBRanZmdHO0

Video Frames

Fig. 48: Examples of coherent style transfer executed by ReCoNet for qualitative evaluation

Furthermore, this model is suitable for real-time. As exposed in the author’s benchmark (fig
49), this model is capable to reach more than 200FPS on a modern GTX 1080 Ti GPU.

Model Alley-2 | Ambush-5 | Bandage-2 | Market-6 | Temple-2 || FPS
Chen et al 4] 0.0934 0.1352 0.0715 0.1030 0.1094 22.5
ReCoNet 0.0846 0.0819 0.0662 0.0862 0.0831 235.3
Huang et al [17] || 0.0439 0.0675 0.0304 0.0553 0.0513 216.8
Ruder et al [27] || 0.0252 0.0512 0.0195 0.0407 0.0361 0.8

Fig. 49: Temporal error and average FPS at inference stage with the same style on different
models. Five unseen scenes from MPI Sintel Dataset are selected for validation.

51

https://www.youtube.com/watch?v=vhBRanZmdH0

lll. Chosen model: Real Time Style Transfer for Videos, Huang et al,
2017

The ReCoNet architecture matches our criteria of style transfer quality, inference speed and
temporal coherency and it could have been the chosen model for our use case.

However, as mentioned by the authorsin fig 49, it is outperformed in terms of temporal error
by another model proposed by H. Huang et al [0], with a temporal error on average 61%
lower on this benchmark. It is also shown that both models reach a similar inference speed
of more than 200FPS.

Although qualitatively different, the result of both models seems of good quality to me. On
the example given by the authors of ReCoNet (which might be biased in favor of their
model), Huang et al's model seems smoother but ReCoNet’'s model seems to give more
diverse an colorful results.

Composition Content Image Huang et al ReCoNet

Fig. 50: Qualitative comparison of ReCoNet and Huang et al’s model conducted by ReCoNet's
authors on two given styles.

These two models are different, but both are based on the same papers. They both combine
the works of Johnson et al [27] for the use and global design of the Image Transform Network
(Downsampling — Residual blocks — Upsampling), Ruder et al [40] for the temporal loss,
Ulyanov et al [31] for the use of Instance Normalization.

The majority of this model’s characteristics have therefore already been described. It consists
of a Stylizing network based on Johnson et al's Image Transform Net, and a Loss Network
(VGG19 pretrained on ImageNet classification task).

The Stylizing network is significantly smaller than the one used in ReCoNet (48 channels in
the Residual blocks vs. 192 channels for ReCoNet). According to the authors, this allows a
faster inference speed and a faster and better convergence, without impacting the quality
of the output style. When comparing two models using 48 or 128 channels in the Residual
Blocks (resp. 353-Res48 and 353-Res128), they found out that the temporal losses were quite
similar, while 353-Res48 was more than twice as fast as 353-Res128 during inference time
(seefig.51)

52

Model Alley_2 | Ambush_5 | Bandage 2 | Market 6 | Temple_2
353-Res128 | 0.0243 0.0408 0.0193 0.0330 0.0296
353-Res48 | 0.0244 0.0425 0.0195 0.0334 0.0302

Fig. 51: Temporal error with the same style on 353-Res48 and 353-Res128. Five unseen scenes
from MPI Sintel Dataset are selected for validation.

The authors also show that the temporal coherency is learnt and encoded in the network

directly, without the need for a long-term coherency loss as introduced by Ruder et al [40]

Another interesting factor is that compared to the method introduced by Ruder et al, this
architecture does not require to compute optical flow during inference time which

contributes to the increase in inference speed.

input

xt style

D
output I
| |
:?t
T ¥
Loss Network
} 1
fﬁ*l
L 1

style

Fig 52. Overview of Hang et al’s model.

Spatial Loss

Layer | Size | Stride | Channel | Activation
Conv 3 1 16 RelLU
Conv 3 2 32 RelLU
Conv 3 2 48 RelLU
Stylizing Network | Res x 5
Deconv 3 0.5 32 RelLU
Deconv 3 0.5 16 RelLU
Conv 3 1 3 Tanh
Res Conv 3 1 48 RelLU
Conv 3 1 48

Fig 53. Detailed architecture of the Stylizing Network

53

IV. Implementation

4.1 Software-wise
My goal was to implement Huang et al's model to reproduce their results. On top of this, |
have made some modifications to get a better result.

4.1.1 Language and libraries
This project was done in Python, as it is one of the most commonly adopted language for
machine learning and data science.

The main libraries | used were:

e PyTorch as my machine learning framework;

e Numpy, the traditional mathematic library;

e OpenCV 2, a computer vision library, for image manipulation and optical flow
estimation;

e BeautifulSoup 4 to automatically scrap videos from videvo.net and easily get a large
video dataset.

4.1.2 Training data
In order to get enough training data, | created a small web-scrapping tool that would
automatically download free and royalty-free videos from the stock video website
videvo.net. | gathered 500 video clips of 15s each, so approximately 180 000 frames in total.
The videos were then converted to 640x360 pixels format to get uniform training data and
reduce the dataset’s weight.

See 5.2 for discussions on the training data quality

4.1.3 Upsampling layer
In their paper, Huang et al used Deconvolutional layers, also called Fractionally-strided
Convolutional layer or Transposed Convolution. The first term is misleading, since there
exists a different operation called Deconvolution, and that this is not the opposite of a
regular convolution.

These layers have been widely used in CNNs when it was necessary to perform upsampling,
as in Image Super-resolution tasks [27] or in Deep Convolutional Generative Adversarial
Networks (DGAN) [44] to map latent space to higher-resolution images. However, it has
been noticed that these layers were prone to generate checkerboard artifacts. As advised by
Odena et al [42], I've replaced the Deconvolution layer (stride 2, kernel size 3, padding 1) by
a ‘nearest’ Upsampling layer (upscaling factor 2) followed by a Convolutional layer (stride 1,
kernel size 3, padding 1). This effectively led to an increase in the output’s quality.

4.1.4 Optical Flow
In their paper, Huang et al used DeepFlow [46] to compute the optical flow, | used the
Farneback [45] method. This choice was motivated by simplicity since there is an
implementation of this method in OpenCV, that was therefore easily accessible to me. The
result optical flow seems coherent and valid.

54

4.2 Hardware-wise
The training of the model was conducted on a Nvidia RTX 2080 GPU, thanks to the PRHLT
Research Center from the UPV. The model was the evaluated either on this GPU (about 150
FPS) or on my personal computer’s GPU, a Nvidia GeForce 940M (about 20 FPS)

The chosen webcam has a maximum frame rate of 30FPS, which does not limit the model’s
speed when the software is running on my PC's GPU, and a maximum definition of 1280x720
pixels, which is of a satisfying quality.

4.2 Results
This implementation is giving satisfactory results in terms of quality and diversity of the style (see
fig.54). The parameters have been chosen to accentuate on the style more than on the content,
because for this use case the fidelity of the style is more important than the accuracy of the
content. However, the implementation of the temporal loss is not giving the expected result and
the network is not yet capable of learning temporal coherency with the degree of precision
expected (see fig. 55). This should be coming from the implementation more than the model, since
Huang et al have demonstrated the capabilities of this architecture in terms of temporal coherency.
Possible solutions for future improvement are exposed in 5.2.

Fig. 54: Style transfer performed by my
implementation on Van Gogh'’s Starry Night.

55

Fig. 55: The network didn’t learn to enforce
temporal coherence as well as desired, some
flickering effect remains.

Top row: frame 10. Middle row: frame 11.
Left column: input frame. Right column: stylized
frame

Bottom image: style target

56

V. Conclusion

5.1 Conclusion of this project’s goals
The final model is able to perform real-time video style transfer on the selected hardware. This
proves the feasibility of such device.

However, the result lacks temporal coherence. This will be investigated in the next part of this
work. As explained page 2, this is a first part of a work that started during my Erasmus Semester at
the UPV as a Trabajo de Fin de Master, and that will be carried on during the next year at the Ecole
Centrale de Lille.

5.2 Possible path for further improvement
To my knowledge, there is no architecture that allow arbitrary real-time coherent video style
transfer. An interesting investigation direction would be to combine the proprieties of existing
feed-forward networks that are capable of real-time arbitrary style transfer (Dumoulin et al [29], X.
Huang et al [33]) with feed-forward networks that uses temporal losses to learn temporal
coherence (Ruder et al [40], Gao et al [43], Huang et al [0])

On a more practical point of view, the temporal loss needs to be improved. There are several
hypotheses that can explain the difference between my implementation and Huang et al’s
implementation. The first is that for simplicity reasons, | didn’t used the same method to compute
optical flows. Therefore, there might be a difference in the method that explain the gap in the
temporal loss’ behavior and the learning process. This might get into a cascade effect for the
confidence mask computing, as a difference in the optical flow will trigger a difference in the
computing of the disocclusion and motions boundary areas. Another hypothesis is that the
network may need to get the exact same optical flow for a given pair of frames throughout the
epochs. While Huang et al did computed all the optical flows once for all before the training
process, I've chosen to compute the optical flows on the fly. These two differences between the
author’s implementation and mine might explain the difference in output quality.

Finally, the data quality could be improved. Although this made the data acquisition convenient
and very time efficient, the quality of the data wasn’t controlled. Some videos were very slow,
comported very few movements, were too contrasted, blurred for esthetic reasons, or synthetic.
This might have had a negative impact on the learning process if the content of the images was
too far away from real life footage. It would be interesting to manually control every video of the
input data to make sure that it corresponds to real-life footage with enough diversity, movements
and colors.

57

VI. Bibliography

[0]: Huang, H., et al, Real-time neural style transfer for videos,
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Real-
Time_Neural_Style_CVPR_2017_paper.pdf.

[1]: The state of Al 2019, MMC Ventures, https://www.mmcventures.com/wp-
content/uploads/2019/02/The-State-of-Al-2019-Divergence.pdf, visited on May
28,2019.

[2]: Gardner, H., Frames of mind: the theory of multiple intelligences, 2011,
http://www.pz.harvard.edu/resources/frames-of-mind-the-theory-of-multiple-
intelligences, visited on May 28, 2019.

[3]: intelligence in Cambridge Dictionary Online
https://dictionary.cambridge.org/dictionary/english/intelligence, visited on May
28,2019.

[4]: Goleman, G., Emotional Intelligence: why it can matter more than IQ, Bantam
Books, 2005,
https://openlibrary.org/books/OL7826621M/Emotional_Intelligence, visited on
May 28, 2019.

[5]: Copeland, B. J., Artificial intelligence in Encyclopaedia Britannica,
Encyclopaedia Britannica inc., May 9, 2019, visited on July 9, 2019.
https://www.britannica.com/technology/artificial-intelligence

[6]: artificial intelligence in Cambridge Dictionary Online
https://dictionary.cambridge.org/dictionary/english/artificial-intelligence, visited
on May 28, 2019.

[7]: Mijwel, M. M., History of Artificial Intelligence, 2015,
https://www.researchgate.net/publication/322234922_History_of_Artificial_Inte
lligence, visited on May 29, 2019.

[8]: Buchanan, B., Shortliffe, E., Rule-based expert systems: the mycin
experiments of the Stanford heuristic programming project, Addison-Wesley
Publishing Company, n.d.,
http://www.aaai.org/Papers/Buchanan/Buchanan45.pdf.

[9]: machine-learning in Oxford Learner’s Dictionaries Online,
https://www.oxfordlearnersdictionaries.com/definition/english/machine-
learning, visited on May 29, 2019.

58

[10]: Litwinowicz, P., Processing images and video for an impressionist effect in
SIGGRAPHH ‘97 proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pp. 407-414, ACM Press/Addison-Wesley
Publishing Company, New-York, 1997,
https://dl.acm.org/citation.cfm?doid=258734.258893, visited on May 29, 2019.

[11]: Gatys, L., Ecker, A., Bethge, M., A neural algorithm of artistic style, 2015,
https://arxiv.org/pdf/1508.06576.pdf.

[12]: Olah, C., Mordvinstev, A., Schubert, L., Feature visualization: how neural
networks build up their understanding of images, Google inc., 2017,
https://distill.pub/2017/feature-visualization/, visited on May 30, 2019. [13]: Park,
E., et al, Large scale visual recognition challenge (ILSVRC) 2017,
http://www.image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf.

[14]: Krizhevsky, A ., Sutskerver, I., Hinton, G., ImageNet classification with deep
convolutional neural networks, n.d., https://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.

[15]: Huang, T. S., Computer vision: evolution and promise, n.d.,
https://cds.cern.ch/record/400313/files/p21.pdf, visited on May 30, 2019.

[16]: Hubel, D. H., Wiesel, T.N., Receptive fields of single neurones in the cat’s
striate cortex in The journal of Physiology, October 1959, pp. 574-591,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/, visited on May 30,
2019.

[17]: Marr, D., Vision: a computational investigation into the human
representation and processing of visual information, MIT Press, 2010,
https://direct.mit.edu/books/book/3299/visiona-computational-investigation-
into-the-human, visited on May 30, 2019.

[18]: Fukushima, K., Neocognitron: a self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position, K. Biol.
Cybernetics, Springer-Verlag, 1980,
https://link.springer.com/article/10.1007%2FBF00344251, visited on May 30,
2019.

[19]: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied
to document recognition, proc. of the IEEE, November 1998,
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf visited on May 30, 2019.

[20]: LeCun, Y., et al, Backpropagation applied to handwritten zip code
recognition in Neural Computation 1, pp. 541-551, MIT, 1989

59

https://www.ics.uci.edu/~welling/teaching/273ASpring09/lecun-89e.pdf visited
on May 31, 2019.

[21]: Cohen, J. P., Visualizing CNN architectures side by side with mxnet, 2016,
https://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-
mxnet/ visited on May 31, 2019.

[22]: Dumoulin, V., Visin, F., A guide to convolution arithmetic for deep learning,
2018, https://arxiv.org/pdf/1603.07285.pdf.

[23]: Deshpande, M., Introduction to convolutional neural networks for vision
tasks, n.d., https://pythonmachinelearning.pro/introduction-to-convolutional-
neural-networks-for-vision-tasks visited on May 31, 2019. [24]: Luan, F., et al,
Deep photo style transfer, 2017 https://arxiv.org/pdf/1703.07511.pdf.

[25]: Li, C., Wand, M., Combining Markov random fields and convolutional neural
networks for image synthesis, 2016, https://arxiv.org/pdf/1601.04589.pdf.

[26]: Champandard, A., Semantic style transfer and turning two-bit doodles into
fine artwork, nucl.ai Conference 2016 Artificial intelligence in creative industries,
July 18-20, Vienna/Austria, 2016 https://arxiv.org/pdf/1603.01768.pdf.

[27]: Johnson, J., Alahi, A., Fei-Fei, L., Perceptual losses for real-time style transfer
and super-resolution, Stanford University, 2016
https://arxiv.org/pdf/1603.08155.pdf.

[28]: Radford, A., Metz, L., Chintala, S., Unsupervised representation learning with
deep convolutional generative adversarial networks, 2017
https://arxiv.org/pdf/1511.06434.pdf.

[29]: Dumoulin, V., Shlens, J., Kudlur, M., A learned representation for artistic
style, Google inc., 2017 https://arxiv.org/pdf/1610.07629.pdf.

[30]: Ulyanov, D., et al, Texture networks: feed-forward synthesis of textures and
stylized images, 2016, https://arxiv.org/pdf/1603.03417.pdf.

[31]: Ulyanov, D., Vedaldi, A., Lempitsky, V., Improved texture networks:
maximizing quality and diversity in feed-forward stylization and texture
synthesis, 2017, https://arxiv.org/pdf/1701.02096.pdf.

[32]: Ulyanov, D., Vedaldi, A., Lempitsky, V., Instance normalization: the missing
ingredient for fast stylization, 2017, https://arxiv.org/pdf/1607.08022.pdf.

60

[33]: Huang, X., Belongie, S., Arbitrary style transfer in real-time with adaptive
instance normalization, Cornell University, 2017
https://arxiv.org/pdf/1703.06868.pdf.

[34]:Ba, J. L., Kiros, J.R., Hinton, G. E., Layer normalization, 2016
https://arxiv.org/pdf/1607.06450.pdf.

[35]:Li, Y., et al, Demystifying neural style transfer, 2017
https://arxiv.org/pdf/1701.01036.pdf.

[36]: Fleet, D., Weiss, Y., Optical flow estimation, n.d.,
http://www.cs.toronto.edu/~fleet/research/Papers/flowChapter05.pdf visited on
June 1, 2019.

[37]: Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C., DeepFlow: Large
displacement optical flow with deep matching in ICCV 2013 - IEEE International
Conference on Computer Vision. pp. 1385-1392. IEEE, Sydney, Australia (Dec
2013), https://hal.inria.fr/hal-00873592, visited on June 3, 2019.

[38] : Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C., EpicFlow: Edge-
Preserving Interpolation of Correspondences for Optical Flow in CVPR 2015 - IEEE
Conference on Computer Vision & Pattern Recognition, Boston, United States
(Jun2015), https://hal.inria.fr/hal-01142656, visited on June 3, 2019

[39]: Sundaram, N., Brox, T., Keutzer, K., Dense point trajectories by GPU-
accelerated large displacement optical flow, Berkeley University, 2010
https://www?2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-104.pdf
visited on June 3, 2019.

[40]: Ruder, M., Dosovitskiy, A., Brow, T., Artistic style transfer for videos and
spherical images, 2018 https://arxiv.org/pdf/1708.04538.pdf.

[41]: Ruder, M., Dosovitskiy, A., Brow, T., Artistic style transfer for videos,
University of Freiburg, 2016 https://arxiv.org/pdf/1604.08610.pdf.

[42]: Odena, A., et al., Deconvolution and Checkerboard Artifacts, Distill, 2016
http://doi.org/10.23915/distill.00003, visited on June 3, 2019.

[43]: Gao, C,, et al, ReCoNet: real-time coherent video style transfer network,
University of Hong-Kong, 2018 https://arxiv.org/pdf/1807.01197.pdf.

[44]: Radford, A., Metz, L., Chintala, S., unsupervised representation learning with

deep convolutional generative adversarial networks, 2016
https://arxiv.org/pdf/1511.06434.pdf.

61

[45]: Farneback, G., Two-frame motion estimation based on polynomial
expansion, Springer, Berlin, 2003
https://link.springer.com/chapter/10.1007%2F3-540-45103-X_50 visited on June
4,2019.

[46]: Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C., DeepFlow: large
displacement ptical flow with deep matching, ICCV-IEEE International
conference on computer vision, Dec 2013, Sydney, Australia, pp. 1385-1392
https://hal.inria.fr/hal-00873592/document/ visited on June 4, 2019.

[47]: He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image
recognition, Microsoft Research, 2015 https://arxiv.org/pdf/1512.03385.pdf.

62

