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Abstract

The problem of controlling a liquid—gas separation process is approached by using LPV control techniques. An LPV model is derived
from a nonlinear model of the process using differential inclusion techniques. Once an LPV model is available, an LPV controller can be
synthesized. The authors present a predictive LPV controller based on the GPC controller [Clarke D, Mohtadi C, Tuffs P. Generalized
predictive control — Part I. Automatica 1987;23(2):137-48; Clarke D, Mohtadi C, Tuffs P. Generalized predictive control — Part II. Exten-
sions and interpretations. Automatica 1987;23(2):149-60]. The resulting controller is denoted as GPC-LPV. This one shows the same
structure as a general LPV controller [El Gahoui L, Scorletti G. Control of rational systems using linear-fractional representations
and linear matrix inequalities. Automatica 1996;32(9):1273-84; Scorletti G, El Ghaoui L. Improved LMI conditions for gain scheduling
and related control problems. International Journal of Robust Nonlinear Control 1998;8:845-77; Apkarian P, Tuan HD. Parametrized
LMIs in control theory. In: Proceedings of the 37th IEEE conference on decision and control; 1998. p. 152-7; Scherer CW. LPV control
and full block multipliers. Automatica 2001;37:361-75], which presents a linear fractional dependence on the process signal measure-
ments. Therefore, this controller has the ability of modifying its dynamics depending on measurements leading to a possibly nonlinear
controller. That controller is designed in two steps. First, for a given steady state point is obtained a linear GPC using a linear local
model of the nonlinear system around that operating point. And second, using bilinear and linear matrix inequalities (BMIs/LMIs)
the remaining matrices of GPC-LPV are selected in order to achieve some closed loop properties: stability in some operation zone, norm
bounding of some input/output channels, maximum settling time, maximum overshoot, etc., given some LPV model for the nonlinear
system. As an application, a GPC-LPV is designed for the derived LPV model of the liquid-gas separation process. This methodology
can be applied to any nonlinear system which can be embedded in an LPV system using differential inclusion techniques.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction (CARIMA) model for the process. GPC has some interest-
ing properties [7]:

The generalized predictive controller (GPC) originally

was developed by Clarke [1,2]. This linear controller is a
particular case of model based predictive controllers, which
uses a controlled autoregressive integral moving average
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e It can be applied to unstable and nonmininum-phase
processes.

e It can be used as an adaptive controller.

e It has a more complex noise model than dynamic matrix
control (DMC) [8] and identification command control-
ler IDCOM) [9].

Moreover, it has been validated in a wide spectrum of
real-life applications [10].

Starting from this point, the authors have developed a
reformulation of this controller in state-space [11], since
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the GPC of Clarke was designed using transfer functions.
The result is a GPC composed by a full rank observer
and a state feedback controller, which gives an output feed-
back GPC controller [12]:

X (k+ 1) = A°x°(k) + Bor(k) + Biy(k),

u(k) = C°x°(k) + Djr(k) + Dy (k), ()

being y the output vector of size n, r the reference vector, u
the control action vector of size m, and x° the controller
state vector of size ne.

1.1. Matrix inequalities

A linear matrix inequality (LMI) is an expression of the
form [13,14]:

F(x)2Fy+ ) xFi>0, (2)
=1

where x € R™ is the unknowns vector and the symmetric
matrices F;, = F,T e R, i=0,...,m are given. The
inequality symbol > means that F(x) is a positive definite
matrix. By definition, the previous LMI is strict, although
it is possible to consider nonstrict LMIs using > instead
of >. A bilinear matrix inequality is a generalization of
an LMI incorporating products between unknowns:

F(x)éFOJFXm:XiFHer:Zm:xiiji‘j>0. (3)
i=1 =1 j=1

Following these lines, a nonlinear matrix inequality (NMI)
is a matrix inequality where the dependence with respect to
unknowns is a general nonlinear function. A special case
that frequently occurs in practice consists of a polynomial
dependence, which gives polynomial matrix inequalities
(PMI).

1.2. LPV controllers

For last years many authors [3-6,15-20] have developed
linear parameter varying (LPV) controllers for nonlinear
systems. The key idea consists in modifying the controller
matrices to adapt the controller to the nonlinear system
depending on signal measurements. The most general
dependence of controller matrices with respect to measure-
ments is linear fractional (LF) [3], and in particular for dis-
crete-time systems the controller structure is [21]:

C C C C ¢ k
x(k+1) A| B, B B g ((k))
C C C C u
Ya(k) =| Cy| Dy Dy, DA.y K(z) rA(k) )
u(k) C'| D,y D; D
y(k)
K(z)
uy (k) = A, (k)yy (k), 4)

A’ (k) is a matrix which affinely depends on signal measure-
ments. In Fig. 1 this structure is represented, which is

u Y
) K(z) j '
yAc L uAC

£,

Fig. 1. Structure of a general LPV controller.

essentially composed of an upper linear fractional transfor-
mation between a linear time invariant controller and the
time varying matrix A; .

The synthesis of such controllers is based on solving a
feasibility problem with LMIs and/or BMIs [13], or based
on solving a linear optimization subject to LMIs and/or
BMIs. The problems with LMIs are always convex and
can be efficiently solved in polynomial time using, for
example, interior points algorithms [13]. As opposite, the
problems with BMIs are nonconvex, and there do not exist
algorithms to solve them in polynomial time.

1.3. LPV models for nonlinear systems

All the references presented in the previous section
require an LPV model for the nonlinear system in order
to design the LPV controller. Usually the available infor-
mation about a certain nonlinear system is a nonlinear
model. Therefore, the first step for these methods is to
obtain an LPV model whose dynamical trajectories contain
the nonlinear model ones, using techniques of linear differ-
ential inclusion [13]. The key idea used in differential inclu-
sion consists in replacing the nonlinear part of the system
model by an expression which has a linear fractional
(LF) dependence with respect to the signals present in this
nonlinear part [3,13]. Other references obtain a identified
LPV model [19,20,22-27] using an experimental data or a
given nonlinear model for the nonlinear system.

The result of this operation is a linear time varying
model which depends LF on that signals, as Fig. 2 shows.
In particular, its mathematical representation is:

x(k+1) A | B,y B B, x(k)
yalk) | Ca| Ds Dy, Dy, uy (k)
ek) || €| Da D D, || ph) |
y(k) C,| Dya Dy, Dy, u(k)

M(z)
us(k) = A(k)y,(k), (5)
u, L A J Ya
P — M(Z) F—» €
u —» Yy

Fig. 2. Structure of the linear time varying model.
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Fig. 3. Structure of GPC-LPV.

where A depends affinely on some system signals, p is a vec-
tor containing any input signal different from control ac-
tions, and e is a vector containing all the output signals
which can give a system performance measure.

This linear time varying system can be viewed as a linear
parameter varying one since the signals present in A can be
interpreted as parameters that are time varying. Therefore,
this is an LPV model for the nonlinear system.

In general, not all the signals present in A will be mea-
surable, and so the LPV controllers designed for this
LPV model only will can use measured ones A,,;:

Av 0
A= 6
(v ) ©

and so, A;, only will depend on A,,.

In these cases the designed LPV controllers are called
robust, since, at least, they must stabilize the LPV model
with time varying parameters that cannot be measured
on line.

2. GPC-LPV

The GPC-LPV controller is an LPV controller based on
the linear state-space GPC (1) presented in Section 1. The
key idea consists in adding to a designed GPC a linear frac-
tional dependence with respect the signals present in the
matrix A,, and therefore, this gives the LPV controller!
(4) (Fig. 3), but in this particular case the matrices A°,
B, B;, C°, D and D; are known since the linear GPC is
designed in a first step. The remaining matrices must be
designed in a second step: By, Cy, Dy, Dj,, D}, and
D; ,, which can be referred as delta matrices.

The initial linear GPC is designed by using a linear local
model of the LPV model around an operating point, which
belongs to the nonlinear system operation zone. This local
model is obtained from LPV model assuming the signals of
matrix A a constant and equal to the signal values at that
operating point. The LTI GPC has a number of integrators
equal to the number of output controlled signals.

! This controller is LPV since its state-space matrices depends LF on
measurable time-varying parameters A,,,.

The second step of the design consists in obtaining the
delta matrices. However, there is a initial problem which
must be solved: the resulting GPC-LPV may not have, in
general, the integral behaviour of LTI GPC. The state
matrix of GPC-LPV (4) is:

A° 4+ BSAS (I — DSAS) ' C5. (7)

It must be assured that this matrix has exactly a number of
eigenvalues at one equal to the number of controlled out-
puts. By design, A satisfies this condition, and so there ex-
ists a linear state transformation T such that:

T*]ACT: (A Z>7 (8)
0 I,

using this transformation in (7) the number of integrators
will be exactly n if:

AC/ VA BC/
(s ,)+<0 A pay) e, o)
n nxne

where ny¢ is the size of A}, and some of the delta matrices
have changed to new values as a result of this linear trans-
formation: By and Cy. Besides, some matrices of LTI GPC
have also changed by this transformation: BY, B;’ and C°.

The design of delta matrices is done by solving feasibil-
ity problems with LMIs and/or BMIs, or optimizing linear
functions subject to LMIs and/or BMIs. These matrix
inequalities were obtained starting from previous results
found in the literature, usually for continuous-time sys-
tems, and adapting them to the particular case of GPC-
LPV. The resulting controller at off-nominal points verifies
all the specifications demanded:? stability, norm bounding,
etc.; since delta matrices are obtained satisfying the corre-
sponding matrix inequalities for all the possible values of
A matrix.

2.1. Matrix inequalities conditions for closed loop stability

The main result which enables the most part of matrix
inequalities obtained in the last years is the Lyapunov con-
dition of stability. If it exists a positive definite matrix Q
such that:

ATQ04 -0 <0, (10)

then the linear autonomous system x(k + 1) = Ax(k) is
asymptotically stable. This condition is used in [6,13,28-
31]. The main difference between these results consists of
the dependence with respect to matrix A: affine, quadratic
or LF. In this work the authors have used the most general
dependence, that is to say, LF.

Following, mainly, the ideas of [6,31] it is possible to
obtain a set of LMIs and a PMI which provides a sufficient
condition for the stability of the closed loop formed by
GPC-LPV and the LPV model (5):

2 Below presented.
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*\T 0 o 1 0
* B 0 A B
* 0 0 CL CL.A <0, (11)
* 0 0 1
* Coa Dera
A+ B),D;CL, B,CY
Ao = , AY Z )
B; ¢ 0 1,
Bp + BHD;D},,A Bqu,_’A
BCL,A = c/ BC/
B Dy <0A
c Cy+ DAuD;Cy D, ,C*
CLA = C C )
DA,yCJ’ CA/ (12)
D (DA + DauDiDy s DauD o )
CLA = c c
L, DA,y D, D}

B

1 Var Vo 1 ,
Vie Vi

V= | 4 0

(V21 V22>’ n <y,

VA, A =diag(A,AS).

Eq. (11) is a PMI since there are products of three vari-
ables. This condition is sufficient due to the characteristic
complexity of LF dependence [31], and by the use of a con-
stant Lyapunov matrix @, which does not depend on ma-
trix A. It is possible to override the second limitation by
using a parameter dependent Lyapunov matrix, although
this extreme provides a PMI much more complex, and so
with more computational complexity.

The selection of matrix A; in terms of A,, can be made
arbitrarily complex by taking an LF dependence:

AS = A, + ASA, (T — ASA,)AS, (13)

where Aj,, Aj, A}, and Ay are unknown matrices. As a par-
ticular case, it is possible to take A, = A,, providing a sim-
pler and more conservative condition.

PMI (11) can be recast as a BMI by using Schur comple-
ment lemma [13] and adding the condition V5, > 0:

_Q 0 0
M'[ 0o o M— 0 0
0 7 M,T( o )
0 0 2 <0,
—MT M /
1(0 Vy ) o
o 0 o 0
M _
(0 Vn )l 0 Vy
1 0
Ac  Bera ( 0 BCLA)
M: —_— B M = ’ .
0 1 : Ccra Dcra
Ccra Dcra

2.2. Matrix inequalities conditions for norm bounding

In the literature there are also conditions to ensure
bounds for different norms: oo, 2 and 1. For co-norm it
is applied, for example, the bounded real lemma [32], for
2-norm the grammians can be used [33], and for 1-norm
the star norm (*-norm) which is an upper bound [34,35]
can be recast as matrix inequalities.

Following the same lines as previous subsection the
authors have developed BMIs for these three norms by
using LF dependence. For example, a sufficient condition
that ensures that oo-norm of channel p/e is bounded by
y >0 is:

—0 0
0 0
0 0 ol0]o 0|00
LT —I, 0 L'—cTfol|r|o |L LT|o[L]0
0 0
0 I 0101V 010 (Vy
<0,
0 0 vV
(0] 0 olo|o
0(7,]0 |L, -1 0(]0
010 1Vy 010 |Vy
1 0 0
Ac.  Ber, Beia
- 0 0 B
L 0 d 0 L 0 0 D(LA
= , L= CLer | s
C(‘L,(' DC],.[)U D('l,,(‘/\ : C . D D
o o 1 cLa Derap Dera
Ccera Dersy Dera
BB ¢ C+D,,DC, D,,C*
Ber, = ; , Co,=(C+D.,D;C, D,,C"),
Ly BD,, » Cere=( ,C, )
D¢y pe=D+D,,D;D,,,
D -D D. D'D D _ Dy, + Dy, DD,
cLea =Dea+Dey DDy A, Depay = DZ.,“ D, .
(15)

2.3. Matrix inequalities conditions for closed loop
specifications

Specifications such as settling time, overshoot, etc., can
be guaranteed by using sufficient conditions based on BMIs
and LMIs [32,36]. Basically, the procedure is the same as
in previous sections, although in this case the matrix
inequalities are developed by employing closed loop pole
clustering techniques. For example, Lyapunov stability
condition for discrete-time systems imposes pole clustering
on the open unit disk. Pole clustering in other complex
plane subsets guarantees other specifications, for example:

e Maximum settling time: disk centered at origin with
radius smaller than one.

e Maximum transient oscillation frequency wy,: sector with
vertex at the origin and angle wy, - T, being T the sam-
pling period.

For these and other more complex subsets BMIs and/or
LMIs sufficient conditions for pole clustering of closed
loop poles are developed. They are omitted due to limited
space.
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2.4. Other matrix inequalities conditions

It is possible to obtain sufficient conditions in order to
guarantee other properties:

e Time domain constraint satisfaction: saturation of actu-
ators, safety limits in some signals, etc.

¢ Generalized 2-norm [33].

e ctc.

2.5. Analysis of matrix inequalities conditions

In all the matrix inequalities obtained previously for the
GPC-LPV (14) and (15), there is at least one BMI,* being
the remaining ones LMIs. These BMIs can not be recast as
LMIs, and so the design of GPC-LPV controller presented
here requires an algorithm capable of deal with kind of
matrix inequalities.

2.6. Numerical resolution of problems with BMIs

As previously stated, for problems with LMIs there are
efficient algorithms that obtain the solution in polynomial
time. However, the problems with BMIs [37]:

o In the actual literature of robust control based on matrix
inequalities they have a great importance [38,39].

e They can be NP-hard problems [40].

e They are nonconvex and so may be exist local solutions
that can be considered as suboptimal one.

e There do not exist, in general, algorithms which can
obtain in polynomial time their global solution.

e There exist algorithms based on branch and bound tech-
niques which can solve problems of small size (low num-
ber of variables and small BMIs) in exponential time
[38,39,41,42].

e By other side, there exist algorithms that obtain only
local solutions but they can solve problems of medium
and large size [43-45].

The algorithm proposed in [45] has been implemented in
the commercial software PENBMI from PENOPT.* PEN-
BMT has been used in this work to obtain local solutions to
the problems with BMIs. The main reason to use this soft-
ware is that the BMI problems presented in this work have
large size. In particular this software can be used in Matlab
through the free toolbox YALMIP.’

3. Application: liquid—gas separation process

In this section the previous design methodology of
GPC-LPV controller will be applied to a liquid—gas sepa-

3 Also true for many other conditions.
4 www.penopt.com.
> http://control.ee.ethz.ch/joloef/yalmip.php.

[ ] [ ] [ ] gas
on . ° . =
e |V.P.p, °
| — |
—  liquid
OO =
—_V,T,Pp —_
M,C _
— %
F.T,.p, - —
— R .

Fig. 4. Liquid—gas separation process.

ration process (Fig. 4), extensively used in petrol engineer-
ing to vaporize liquable gases, which in this example
consists of liquid propane. The system nonlinear model
has been taken from [46,47]:

. K Ay /T+A4> RT
VL—F‘O__<e 'T_—'pv>7
14

T M
. 1 K A1 /T+A; RT
T'=— F0<T0_T)+ Q - v (€ T__pv )
Vi pC,  pCp T M
1
)y = ——— Fo—F,
b=y | Fa = )

Ay /T+A4, RT
+K 1P (¢ T——p, )1,
o T M

In this state-space model the state variables are: 7 (°C) gas
temperature equal to liquid temperature, ¥y (m’) liquid
volume and p, (kg/m?) gas density. Input signals: F, (m?/
s) liquid propane flow, Q (kcal/s) heat power that provides
the intercooler and F, (m’/s) the upper extraction flow,
which is constant and equal to 0.105 m?/s. This model sup-
poses that liquid density is constant and equal to
p =500 kg/m>. The remaining signals are considered to
be constant and their values and the model constant values
are shown in Table 1.

(16)

Table 1

Liquid-gas separator physics parameters

Name Description Value

14 Separator volume 3.14m?

T, Input flow temperature 323K

Ay Vaporization heat 75 keal/kg

G Liquid heat capacity 0.6 kcal/(kg K)
at constant pressure

A —2359

Ay 10.165

R Perfect gases constant 2 keal/(K kmol)

M Propane molecular mass 44 kg/kmol

K Vaporization constant 2.7554 % 107 kg/(s Pa)
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Next step is to sample this nonlinear model (16) by using
a zero order hold (ZOH) with sampling period T taking a
first order approximation of matrix exponential [48]:

Aj=e"T ~ I+ AT, (17)

since with 75, = 0.5 s the approximate discrete matrix is a
good estimate of exact one. With such approximation the
discrete-time model is:

Vilk+1 Vi(k
L(k+1) L(k) Fo )
py(k+1) py (k)
1 K M/ KRT
Ts P T oM
Dy A1 /T+4 Dy
A;=T,| 0 T%_,[)(TP—MT ZVLL —I;CPIX,ITVLL )
Ay /T+4
0 l//—esz TLS_V—IVLFV_w%
1
lp: K 1_& )
V-7 p
Ts 0
Bi= |7 (To=T)Ts g Ts
7o T 0

(18)

As it can be seen, A, and B, matrices depend nonlinearly on
state variables, so all of them must be included in time vary-
ing parameters such that an LPV model can be obtained:

51 = I/VL, (32 =T7-— T07 53 = Py (19)

This selection of time varying parameters is justified by the
form how the LPV model is obtained [3,49]. The obtaining
of this LPV model is omitted due to its large extension.
By other side, as it is present an exponential dependence
with respect temperature in A, it is necessary to use a Tay-
lor series of degree 2 in order to obtain an LF dependence:

eV gyt ay - (T—To) +ar - (T =T, (20)

with this series a good adjust is obtained along the temper-
ature operation range. Finally, taking V' and T as mea-
sured output signals the resulting LPV model is:

x(k+1) A | By B, x(k)
Ya = | Ca| Ds Da, uy  fup
y C,| Dys D, u(k)
= A(k)ya, A(K)
= Diag(01(k)l2, 01(k), 0s(k), 62(k)14)
(21)
|t s
A=10 1 0 )
0 0 1
0 0 00 o en s
By=1]1 0 0 0 O 0 0 0 ,
(0 -1 0 0 O 0 0 0

0 — Khals KAWRTTo
pCpTo pCpM
0 feb —FT1, -85
. 0 0 0 0
s 0 —Kals KRTT,
BM: 0 O y CA: pTo pM s
0 0 0 0 1
0 a()/TO 0
0 0 0
0 1 0
IwRTs sy vapTs Jvar Ts
0010 Iiz/éj'f]l]/; /IfTTocp _Iiycprz _IZCP;{
0V 01 ML L e i
0 0 00 0 0 0 0
po_ |0 000 s |
0 0 00 0 0 0 0
0000 0 —1/Ty a/To /T,
0 000 0 0 0 1
00 00 0 0 0 0
Ts
0%
0 0
-7y 0
100
Dy, = L 0 ) Cy: )
’ 0 0 010
0 0
0 0
0 0
D,A=053, D,,=0,. (22)

The operating point for the liquid—gas separator is Teq =
T,=323K and Vi q=1.57 m>. Following this specifica-
tion a GPC-LPV will be designed to ensure robust stability
around this operating point under the condition that tem-
perature, liquid volume and gas density lie in the ranges:
300K < T<350K, 0.3V< V<07V and 20 kg/m® <
py < 30 kg/m>. The real system only has sensors to measure
temperature and liquid volume, and so the GPC-LPV only
will beadle to use both measures in A’ :

A, (k) = f(01(k), 62(k)). (23)
In particular, the easiest dependence was used:

Anlk) = (élék) i) )

As it is known, in a first step an LTI GPC is designed by
using the linear local model corresponding to the operating
point of liquid—gas separator. In this design the selected
parameters were:

(24)

.N1:1,N2:120Nu:1

1o 1500\,
'Qf:<0 2)’R1‘:<0 0.01>V"

e Observer poles. For first output: 0.4, 0.5, 0.7 and 0.8.
For second output: 0.2, 0.4 and 0.7.
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These parameters were adjusted manually after different
experiments over the separator, which guarantee closed
loop stability inside the operating ranges, by using LMIs
conditions.

In Figs. 5-8 temperature, liquid volume, F, flow and
heat power are represented when the LTI GPC controls
the separator, under the assumption that this one starts
from the equilibrium point given by 7 =340 K and
Vi=19m’

In a second step, the delta matrices of GPC-LPV are
designed under the condition that co-norm of channel r/u
is smaller than LTI GPC one. This design is based on the
BMI (15). The optimization with PENBMI took around
30m in a PENTIUM IV at 2.8 GHz with 512 MB of
RAM under Windows XP. After the calculation, the LTI
GPC provides an oo-norm of 514.5597 whereas the
GPC-LPV 392.8146. Delta matrices corresponding to
GPC-LPYV designed are:

—1.7537 x 107> 3.0914 x 10~*
1.6954 x 107 —6.6281 x 107°
—1.8793 x 107> 3.9026 x 10°°
B =| —5.1626 x 107> 4.7361 x 10°° |,
—1.2388 x 10> —7.6908 x 10°®
41258 x 1077 —1.9465 x 1077
~5.2850 x 1077 6.9737 x 1078
2.5626 —0.5310
20.1832  —21.4447
—72.2428  —181.1467
118.1280  353.9015
“ = | —54.0962 3659777 |,
—111.2757 —68.8352
—14.0149  —57.4931
—11.8806  —42.3621
211.3161  36.0944

04583 0.0298
D5 =

)

0.0573  0.0185
) 125.5063  —26.0878
D, = :
300.6801 —3.8997
—55.2494 —11.6330
D5, = . D, =0,
’ ~3.1525  0.8039 ’
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Fig. 5. Liquid volume. Continuous line: LTI GPC. Dashed line: GPC—
LPV.

i i i i i i i
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Samples

Fig. 6. Temperature. Continuous line: LTI GPC. Dashed line: GPC-LPV.

0.035

In the aforementioned figures the results obtained with
GPC-LPV are also represented. Basically, the GPC-LPV
provides a faster closed loop response and a bigger under-
shoot in temperature.
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Fig. 7. Liquid propane flow. Continuous line: LTI GPC. Dashed line:
GPC-LPV.
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Fig. 8. Heat power. Continuous line: LTI GPC. Dashed line: GPC-LPV.

4. Conclusions

e The GPC-LPV controller is presented as an LPV con-
troller designed in two steps.

o In first step an LTI GPC is designed by using a local
model of the nonlinear system.

e In a second step delta matrices are selected in order to
satisfy a set of LMIs and or BMIs, which guarantees:
closed loop stability, norm bounding, closed loop spec-
ifications, etc.

e The set of LMIs and or BMIs is obtained starting from
the results of analyzed literature, and working with the
matrix inequalities in this particular case.

e Along this work the dependence with respect to A
matrix is always LF.

e In most cases BMIs are obtained from PMIs by apply-
ing the Schur lemma.

e For the numerical computation of solutions, the com-
mercial software PENBMI is used to obtain local
solutions.

e The design methodology of GPC-LPV is applied to a
highly nonlinear model of a liquid-gas separator
process.
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