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Abstract

This paper presents the non-linear modelling, based on first principle equations, for

a climatic (temperature & humidity) model of a greenhouse where roses are to be

grown using hydroponic methods, and the fitting of its parameters (15 in all) based

on real data collected for the summer period. To do so, a procedure for estimating a

set of non-linear models ΘP (Pareto optimal) when several optimisation criteria are

considered simultaneously within a multiobjective optimisation context is presented.

A new multiobjective evolutionary algorithm, ε↗−MOGA, has been designed to

converge towards Θ̂∗
P , which is a reduced but well distributed representation of ΘP

since good convergence and distribution of the Pareto front J(ΘP) is achieved by the

algorithm. A posteriori, Θ̂∗
P can be used as the basis to choose an optimal model

that offers a good relationship among the different optimality criteria that have

been established, as has been shown by the results obtained in the identification

and validation of the greenhouse model presented in this paper.
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1 Introduction

Greenhouses were originally controlled without using mathematical models,

which obviously led to anything but optimal performance. In recent years, the

use of modelling and identification techniques has made it possible to begin

working on the development and application of systems with more sophisti-

cated control strategies (Young et al., 1993; Nielsen & Madsen, 1996). The

problems involved in controlling greenhouses are strongly dependent on the

geographical area; solutions that are valid in some regions must be adapted or

changed in order to fit others. More particularly, in Mediterranean countries

the high levels of radiation and the high temperatures and humidity during

the summer period are factors that differentiate these regions from others in

Northern Europe. Until now, many of the controllers designed for greenhouses

have been associated to a single control variable, i.e. temperature, and this

has given rise to monovariable controllers. Under the abovementioned sum-

mertime conditions in the Mediterranean regions, this control is altogether

insufficient and must be complemented with humidity control (Baille et al.,

1994), which then creates a need for multivariable controllers.

The multivariable process thus defined is also of a non-linear nature and it is

influenced by biological processes that make it very complicated to develop a

suitable mathematical model which would permit gaining access to very sig-

nificant information, not only as far as control of the greenhouse is concerned

but also regarding the design of the greenhouse itself. Several alternatives arise

when faced with a problem of this magnitude. One of them is to deal with

the process as if it were a black box without using information a priori and

fit a neuronal network-type model (Seginer et al., 1994; Linker et al., 1998) or
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a fuzzy set (Ehrlich et al., 1996). One important drawback of using this type

of techniques is the lack of a physical relation among the model parameters

and the fundamental magnitudes of the crop, which turns them into barely

comprehensible models. Another alternative consists in modelling the well-

known physical and physiological phenomena that occur within a greenhouse

by formulating first principle equations based on mass and energy balances

(Boulard & Baille, 1993; Boulard et al., 1996). In this case the model parame-

ters do have a physical meaning, but problems arise when attempts are made

to adjust these parameters.

Thus, on the one hand, obtaining reliable models implies having access to

equations based on first principles that are sufficiently representative of the

processes that take place inside greenhouses. On the other hand, it also means

that a technique to adjust the parameters is needed in order to achieve a maxi-

mum reduction of the identification error (IE), that is to say, the discrepancies

between the real outputs from the processes that occur inside the greenhouse

and those that would be obtained from simulations with the proposed models.

The IE can be produced by systematic (bias) and/or random (variance) errors.

The former are produced mainly by the non-modelled dynamics, that is to

say, they are related to the structure of the selected model, while the latter

are produced by the presence of measurement noise in the data from the

experiment.

One function that is commonly used to minimise the IE is the 2-norm, which

facilitates optimisation when the models are linear because the parameters

are obtained directly and no numerical optimisation methods are required

(L. Pronzalo, 1997).
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The main advantage of using the 2-norm as a function can be lost when the

model is not linear, since there is no longer any guarantee that the optimal pa-

rameters will be obtained explicitly. Furthermore, parameters estimation can

turn out to be inadequate when the data include outliers, since the estimations

could be heavily distorted by the effect of such atypical values (Zhang, 1996).

Another equally important problem stems from the fact that the quadratic

functions distort the influence of the errors because errors below unity are

underestimated, whereas those above unity are overestimated.

This and other reasons related to the desired performance have led to the

appearance of other optimality criteria in the literature (Zhang, 1996), for

example, the minimisation of the 1-norm function, the ∞-norm, Fair, Turkey,

the median, and so forth. In any case, either because the model is not linear

or because the type of function used is not 2-norm, the traditional optimisers

may be unsuitable. For instance the SQP (Sequential Quadratic Programming)

which is a variant of the Gauss-Newton optimisation method. This would be

due to the fact that the function to be optimised is perhaps not convex and/or

it may have local minima.

Furthermore, it is possible to consider the possibility of establishing several

optimality criteria at the same time, which would be able to increase the

quality of the estimated model. Thus, processes identification is stated as a

multiobjective optimisation problem (MOP).

The criteria to be optimised will usually be in conflict, as there is no single

solution that optimises all of them. Hence, there will be a set of solutions (in

principle all equally valid) known as a Pareto optimal set. An intermediate

solution will have to be selected a posteriori from this set so that it offers a
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good compromising relation among the previously specified criteria. Obtaining

the Pareto optimal set avoids having to repeat the optimisation process if there

are any changes made to the preferences regarding the optimisation criteria,

since only the solution selection would have to be repeated.

One very interesting alternative in resolving MOPs is based on the use of

Evolutionary Algorithms (EAs), which allow several elements of the Pareto

optimal set to be generated at the same time, in parallel and in a single run.

This is made possible thanks to the populational nature of EAs. A number

of authors have developed different operators or strategies for converting the

original EAs into MOEAs that converge towards the Pareto optimal set and

are diverse enough to be able to characterise it. The good results obtained with

MOEAs together with their capacity to handle a wide variety of problems with

different degrees of complexity explain why they are being used increasingly

more frequently; indeed they are currently one of the branches where most

progress is being made within the EAs field (Fonseca, 1995; Zitzler, 1999;

Coello et al., 2002; Alander, 2002; Coello et al., 2005).

The rest of the paper is organised as follows: in section two we present the

proposed multiobjective identification procedure is presented, as well as an

alternative method for selecting an optimal compromise model based on the

Pareto optimal solutions, the ε↗-MOGA evolutionary algorithm developed for

solving multiobjective optimisations and the non-linear climatic model of the

greenhouse in state space obtained from the first principles. In section three the

experimental details and materials are presented, while in section four results

of parameters identification of climate model by means of the multiobjective

robust identification approach presented in this study is shown. The paper

finishes, in section five, with a discussion of the most important conclusions

5



and contributions of the work.

2 Theoretical considerations

2.1 Multiobjective robust identification approach

The technique is based on the acceptance of an initial model structure that

is obtained from the a priori knowledge we have about it. Some or all of

its parameters are unknown at this point, since the objective is to determine

them. It is common practice to represent the (linear or non-linear) process

model by means of a series of first-order differential equations that can be

obtained from physical principles.

ẋ(t) = f(x(t),u(t), θ) (1)

ŷ(t, θ) = g(x(t),u(t), θ) (2)

where f(.), g(.) are the non-linear functions of the model; θ ∈ D ⊂ RL is

the column vector of unknown model parameters; x(t) ∈ Rn is the column

vector of model states; u(t) ∈ Rm is the column vector of model inputs; and

ŷ(t, θ) ∈ Rl is the column vector of model outputs.

The aim is for the model behaviour to match that of the real process as well

as possible.

The process behaviour can be characterised by means of experiments, while

the model one can be obtained from simulating it by applying the same input
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signals as those used in the experiment on the process.

Typically this objective is achieved by minimising a function where, through-

out the experiment, differences between the process outputs and the model

are penalised (see Fig. 1).

[Fig. 1 about here.]

Thus, the identification error matrix E(θ) with dimensions (l ×N) is defined

as

E(θ) = Y − Ŷ(θ) (3)

where Y = [y(t1) . . .y(tN)] are the process output measurements (y(t) ∈ Rl is

the column vector of the process outputs) when the inputs U = [u(t1) . . .u(tN)]

are applied to the process. ; and Ŷ(θ) = [ŷ(t1, θ) . . . ŷ(tN , θ)] are the simu-

lated outputs (the outputs of the model are calculated by integrating Eqn

(1)) when the same inputs U are applied to the model. ti, i ∈ [1 . . . N ] are the

different points in time in which the process outputs are sampled and those

of the model are calculated. N is the number of samples of each output and

input from the experiment. It is assumed that the interval between samples is

constant ti = i ·Ts, Ts being the sampling period or interval between samples.

The identification error vector ej(θ) for output j ∈ [1 . . . l] is defined as row j

of the identification error matrix E(θ) and the identification error ej(ti, θ) for

output j ∈ [1 . . . l] and sample i ∈ [1 . . . N ] are defined as element ji of the

identification error matrix E(θ).

Therefore, the optimality criteria Ji(θ) will be established as identification

error functions for a particular output j

Ji(θ) = f(ej(θ)), i ∈ A := [1, 2, . . . , s], (4)
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When several identification error functions are considered simultaneously, model

identification can be seen as a multiobjective optimisation problem

min
θ∈D

J(θ),J(θ) = {J1(θ), J2(θ), . . . , Js(θ)} (5)

Consequently, there is no single optimal model and a Pareto optimal set ΘP

(solutions where none dominate the others) must be found (see Fig. 2). Pareto

dominance is defined as follows.

[Fig. 2 about here.]

A model θ1, with function value J(θ1) dominates another model θ2 with func-

tion value J(θ2), denoted by J(θ1) ≺ J(θ2), if and only if

∀i ∈ A, Ji(θ
1) ≤ Ji(θ

2) ∧ ∃k ∈ A : Jk(θ
1) < Jk(θ

2) .

Therefore the Pareto optimal set ΘP , is given by

ΘP = {θ ∈ D | ¬∃ θ̃ ∈ D : J(θ̃) ≺ J(θ)} . (6)

It is not easy to find a mathematical expression for the line or hypersurface

formed by the Pareto front; in fact in most real cases it is impossible.

Since determining J(ΘP ) is computationally unworkable because, in most

cases, it is a set of infinite points, it is sometimes enough to determine a

set of points Θ̂∗
P ⊂ ΘP , so that J(Θ̂∗

P ) characterises J(ΘP ) in a suitable

manner (see Fig. 2).

Although ΘP is a unique set, Θ̂∗
P will not be because for that to be the case
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we should have that Θ̂∗
P = ΘP .

The Θ̂P algorithm will be used to characterise ε↗-MOGA and the solution thus

obtained will be a finite set of optimal models spread along the Pareto front,

Θ̂∗
P . ε↗-MOGA is characterised, among other things, by its capacity to capture

the ends of the Pareto front, and thus Θ̂∗
P will contain the optimal models θ̂Ji

of each Ji considered on an individual basis.

θ̂Ji = arg min
θ∈D

Ji. (7)

From the information generated by these optimal models it is possible to

determine the ideal point

Jideal = {J1(θ̂
J1), . . . , Js(θ̂

Js)} (8)

and from there an optimal compromise model θ̂ideal can be chosen from the Ji

functions that have been proposed, such as minimising a norm:

θ̂ideal = arg min
θ∈Θ̂∗

P

||J(θ)− Jideal|| (9)

The optimal model θ̂ideal will depend on Θ̂∗
P and this set, in turn, will de-

pend on the optimality criteria that are chosen. An optimality criterion will

be considered to be robust, when faced with the existence of incorrect mea-

surements due to the sensors failings, if it filters out inappropriate information

and generates a satisfactory model (L. Pronzalo, 1997). An example would be

the estimator that minimises the median of the identification error module.
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θ̂med = arg min
θ∈D

med
i
|e(ti, θ)|. (10)

This estimator implicitly eliminates 50 % of data, which makes it very robust

to incorrect measurements but perhaps a little too conservative. Its main draw-

back is that it could reject data that cover an important part of the response,

with the subsequent loss of identifiability. It is for this reason that another,

less conservative, possibility is to minimise the third quartile

θ̂Q3 = arg min
θ∈D

Q3
i
|e(ti, θ)| (11)

which would mean that only 25 % of data is removed. An extreme case would

be that of the estimator that minimised the ∞-norm where no data would be

removed; this is why this estimator is not considered to be robust to wrong

measures.

Both the median function and the one using the third quartile make optimi-

sation difficult because it is not possible to find a direct expression of them.

They are therefore going to need powerful optimisers.

2.2 ε↗-MOGA algorithm

The ε-MOGA variable (ε↗-MOGA) is an elitist multiobjective evolutionary

algorithm based on the concept of ε-dominance (Laumanns et al., 2002). ε↗-
MOGAmakes it possible to obtain an ε-Pareto set, Θ̂∗

P , that converges towards

the Pareto optimal set ΘP in a distributed manner and utilises limited mem-

ory resources. It also adjusts the limits of the Pareto front dynamically and
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prevents the solutions belonging to the ends of the front from being lost.

For this reason, the objective function space is split up into a fixed number of

boxes. For each dimension, n_boxi cells εi width,

εi = (Jmax
i − Jmin

i )/n_boxi.

This grid preserves the diversity of J(Θ̂∗
P ) since one box can be occupied by

only one solution. This fact prevents the algorithm from converging towards

just one point or area inside the function space (Fig. 3).

[Fig. 3 about here.]

The concept of ε-dominance is defined as follows. For a model θ, boxi(θ) is

defined by

boxi(θ) =

⌈
Ji(θ)− Jmin

i

Jmax
i − Jmin

i

· n_boxi

⌉
∀i ∈ [1 . . . s] (12)

Let box(θ) = {box1(θ), . . . , boxs(θ)}. A model θ1 with function value J(θ1) ε-

dominates the model θ2 with function value J(θ2), denoted by J(θ1) ≺ε J(θ2),

if and only if

box(θ1) ≺ box(θ2) ∨
(
box(θ1) = box(θ2) ∧ J(θ1) ≺ J(θ2)

)
.

Hence, a set Θ̂∗
P is ε-Pareto if and only if ∀θ1, θ2 ∈ Θ̂∗

P , θ1 6= θ2

Θ̂∗
P ⊆ ΘP ∧ (box(θ1) 6= box(θ2) (13)

Now the ε↗−MOGA algorithm to obtain an ε-Pareto front J(Θ̂∗
P ), which

is a well-distributed sample of the Pareto front J(ΘP ), will be described.

The algorithm, which adjusts the width εi dynamically, is composed of three
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populations (see Fig. 4).

[Fig. 4 about here.]

(1) Main population P (t) explores the searching space D during the algo-

rithm iterations (t). Population size is NindP .

(2) Archive A(t) stores the solution Θ̂∗
P . Its size NindA can be variable and

will never be higher than

Nind_max_A =

∏s
i=1 n_boxi + 1

n_boxmax + 1
(14)

donde n_boxmax = maxi n_boxi.

(3) Auxiliary population G(t). Its size is NindG, which must be an even

number.

The pseudocode of the ε↗−MOEA algorithm is given by

1. t:=0

2. A(t):=∅
3. P(t):=ini_random(D)

4. eval(P(t))

5. A(t):=storeini(P(t),A(t))

6. while t<t_max do

7. G(t):=create(P(t),A(t))

8. eval(G(t))

9. A(t+1):=store(G(t),A(t))

10. P(t+1):=update(G(t),P(t))

11. t:=t+1

12. end while
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The main steps of the algorithm are detailed as follows:

Step three. P (0) is initialised with NindP individuals (models) that have

been randomly selected from the searching space D.

Step four and eight. Function eval calculates function value (Eqn (8)) for

each individual in P (t) (step four) and G(t) (step eight).

Step five. Function storeini checks individuals of P (t) that might be in-

cluded in the archive A(t) as follows:

(1) Non-dominated P (t) individuals are detected, ΘND.

(2) Function space limits are calculated from J(ΘND).

(3) Individuals in ΘND are analyzed, one by one, and those that are not

ε-dominated by individuals in A(t), will be included in A(t).

Step seven. With each iteration, the function create creates G(t) as follows:

(1) Two individuals are selected randomly, θp1 from P (t), and θp2 from A(t).

(2) A random number u ∈ [0 . . . 1] is produced.

(3) If u > Pc/m (probability of crossing/mutation), θp1 and θp2 are crossed

over by means of the extended linear recombination technique.

(4) If u ≤ Pc/m, θp1 and θp2 are mutated using random mutation with

Gaussian distribution and then included in G(t).

This procedure is repeated NindG/2 times until G(t) is filled up.

Step nine. Function store checks, one by one, which individuals in G(t)

must be included in A(t) on the basis of their location in the function space

(see Fig. 5). Thus ∀ θG ∈ G(t)

(1) If θG lies in the area Z1 and is not ε-dominated by any individual

from A(t), it will be included in A(t) (if its box is occupied by an

individual not ε-dominated too, then the individual lying farthest away

from the box(θG) will be eliminated). Individuals from A(t) which are
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ε-dominated by θG will be eliminated.

(2) If θG lies in the area Z2 then it is not included in the archive, since it

is dominated by all individuals in A(t).

(3) If θG lies in the area Z3, the same procedure is applied as was used

with the function storeini but now applied over a population P ′(t) =

A(t)
⋃

θG, that is, storeini(P
′(t), A(t) = ∅). In this procedure new func-

tion limits and εi widths could be recalculated.

(4) If θG lies in the area Z4, all individuals from A(t) are deleted since all

of them are ε-dominated by θG. θG is included and function space limits

are J(θG).

[Fig. 5 about here.]

Step 10. Function update updates P (t) with individuals from G(t). Every

individual θG from G(t) is compared with an individual θP that is randomly

selected from among the individuals in P (t) that are dominated by θG. If

J(θG) ≺ J(θP ) then θG replaces θP . θP will not be included in P (t) if there

is no individual in P (t) dominated by θG.

Finally, individuals from A(t) compound the solution Θ̂∗
P with the multiob-

jective minimization problem.

2.3 Greenhouse model

For some time now, agricultural engineers have been working to perfect mod-

els of the physical and physiological processes that take place inside green-

houses based on mass and energy balances, including the biological behaviour

of plants. In (Stanghellini & de Jong, 1995) there is a groundbreaking study

on the description of a model of the humidity in a greenhouse that is based
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on obtaining a first principles non-linear model of the humidity by defining

the balance of condensation, ventilation and transpiration flows. In this last

case, the Penman-Monteith equation (Monteith, 1973) is used to incorporate

the saturation and radiation deficit measurements so that they can be eval-

uated. This model is still utilised today to design the ventilation systems in

greenhouses (Seginer, 2002). The humidity model is complemented by ener-

getic balance models at different levels. Again, a first principles equation is

constructed to include the balance of thermal flows associated with the ven-

tilation, convection, conduction and latent heat due to transpiration by the

plants (Baille et al., 1994; Jolliet & Bailey, 1992) that define the temperature

evolution. Equations can be defined for the evolution of the temperature in

each greenhouse, depending on their different volumes and floor areas, and the

interactions among them. The model can vary in its complexity depending on

the number of volumes selected, which gives rise to a higher or lower number

of differential equations (Blasco, 1999; Rodríguez, 2002).

In this study, the greenhouse is considered to be a volume of air that is de-

limited by the walls, the roof and the floor thus establishing two subsystems,

namely, the volume of air and the floor, this latter acting as a thermal mass

(Albright et al., 1985). The state variables that describe the climatic behaviour

are temperature T̂i (̂. is used for the output variables of the model) and hu-

midity ĤRi (or absolute humidity Hi) in the air and the floor temperature

Tm (called the thermal mass temperature).

The water mass balance and air energy balance establish the first two equa-

tions of state and the third is set by the energy balance over the thermal

mass.
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ρvi
dHi

dt
= Fv + Csat(E + fog), (15)

viρcp
dT̂i

dt
= Qs −Qcc + Qm −Qv − Csat(Qe + Qn). (16)

AiCm
dTm

dt
= Qsm −Qm −Qf . (17)

where: the inside temperature T̂i and the temperature of the thermal mass Tm

are in oC; the absolute inside humidity Hi is in KgH2O/Kgair; the volume of

the greenhouse vi is given in m3 and the area Ai in m2; the density of the air ρ

is in Kgair/m
3; specific heat of the air cp is in JKg−1 oC−1; the air saturation

coefficient Csat is dimensionless and the heat capacity of the thermal mass Cm

is given in Jm−2 oC−1.

The flows in the mass balance are as follows (all given in KgH2O/s): Fv, reno-

vation flow due to the opening of a window; E, crop evapotranspiration, which

is estimated from the Penman-Monteith equation (Monteith, 1973) and has

important non linearities, and fog, which is the water that comes from the fog

system.

The energy balance terms are (all in W ): Qs, solar energy supplied to the

air; Qcc, energy exchanges due to conduction and convection; Qm, energy

exchanges with the thermal mass; Qe, energy losses due to crop evapotran-

spiration; Qn, energy losses due to fogging and Qv, energy exchange due to

ventilation.

The energy balance terms are (all in W ): Qm, energy exchanges between the

thermal mass and the inside air; Qsm, energy stored by the thermal mass

during the day and Qf , losses into the ground.
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Figure 6 shows a model diagram, from an I/O point of view.

[Fig. 6 about here.]

The output variables are: inside humidity ĤRi in % and inside temperature

T̂i in oC. The input variables that can be fitted are: window opening control

MVα ∈ [0, 100]%; heating control MVw ∈ [0, 100]% and fog control MVfog ∈
[0, 100]%.

Measurable disturbances are: solar radiation So in W ·m−2; outside tempera-

ture To in oC; outside humidity HRo in % and wind speed V in m/s.

As can be seen in Appendix A, the model has a large number of parameters.

Some of them are easy to determine, for example, the volume and the area of

the greenhouse, but others, such as the maximum stomatal conductance are

not such simple matters. The complexity of the model and the large number

of unknown parameters, together with the fact that some of them vary over

time, make them difficult to fit.

3 Materials and experimental details

3.1 Planning the experiments

The operating conditions of a greenhouse are potentially imposed by the effects

of disturbances, mainly due to solar radiation and the outside temperature.

These disturbances follow a typical behaviour that is repeated daily and which

depends largely on the time of year. Thus, it is impossible to give a single set of

parameters θ̂ that permits reproducing the greenhouse behaviour throughout
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a whole year. The model will therefore be adjusted to cover the dynamics to be

found in the summer period (without distinguishing between day and night-

time) because this is the time of year when it is most interesting to control

the climate inside the greenhouse. At this time of year the heating is not used,

and so this actuator is not taken into account.

Hence, the trials will last for a multiple 24-hour period. The more days are

used, the better the model will represent the period in question. A large num-

ber of days, however, makes the simulations costly to perform and the time

required to fit the model increases considerably. This is why, in this case and as

a compromise, two (non-consecutive) days were chosen, and the input signals

used were those that are normally utilised in the day-to-day operation of the

greenhouse. The sampling period was 15 seconds, which is more than enough

to capture the dynamics of the processes taking place inside the greenhouse.

For the identification task, data from the 11th and 15th June 2002 were used,

and data collected on 20th June, 28th July, 22nd August and 8th September

2002 were used for validation.

Moreover, the data provided by the solar radiation and wind speed sensors

have to be processed because, due to the physical nature of the devices and

also the magnitudes they are measuring, they introduce noise that has to be

eliminated in order to be able to make proper use of the information in the

identification task. In this case, a first-order low-pass digital filter was used to

filter both solar radiation and wind speed.
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3.2 Multiobjetive identification details

Before moving on to the multiobjective identification that will be obtained

by the Pareto front, the following aspects need to be dealt with: the model

adaptation; selection of the parameters to be identified; the procedure for

establishing the initial conditions and the optimality criteria to be applied.

With regard to the model adaptation, in the particular case of the greenhouse

climatic model (Fig. 6), the state Eqn (15), (16) & (17) are adapted directly

to the generic equation (1).

In relation to the parameters selection, for the case of hydroponic cultivation

of roses in a greenhouse, the candidate set of parameters to be estimated (θ)

is associated, on the one hand, with the specific growing of rosebushes and,

on the other, with parameters that are associated with different heat transfer

constants and reference temperatures inside the greenhouse. The meaning of

each parameter to be identified, together with its adjustment range, can be

consulted in Notation section. These approximate ranges have been estimated

from previous analytical studies, and as a result the searching area is dras-

tically reduced. Thus, adapting the generic problem in state variables to the

greenhouse model results in:
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θ = [gwsmax gwsmin k L gwb τ a Go Ac . . .

. . .Cm hm Tref αm ka fogmax]
T , (18)

u(t) = [MVα MVfog So To HRo V ]T , (19)

ŷ(t) =
[
T̂i ĤRi

]T
, (20)

x(t) =
[
Hi T̂i Tm

]T
. (21)

The states will be initialised using the real variables measurements. The first

state variable Hi can therefore be initialised directly from the value of the

outputs Ti(0) and HRi(0) in the initial moment, as indicated in Appendix A

(Eqn (A.7) & (A.8)). The second state variable T̂i is at the same time an output

variable, and it can therefore be initialised with the value this output has in

the initial moment Ti(0). Initialisation of the third state variable Tm is not so

straightforward because there is no sensor to measure it. The initial value of

Tm(0) will be estimated using information about the inputs and outputs in

the initial moment and the Eqn (16) for the energy balance in the air that

was evaluated in that moment. Since the simulations are started at night (and

hence So = 0) and without activating the fogging system (which is logical),

the equation would result as follows:

viρcp
dTi(0)

dt
= −Qcc(0) + Qm(0)−Qe(0)−Qv(0).
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which, on expansion, would give:

viρcp
dTi(0)

dt
= −AiAc(Ti(0)− To(0))

+ Aihm(Tm(0)− Ti(0))− λE(0)

− ρcpAV (0)(aα + Go)(Ti(0)− To(0)).

It can be assumed that dT̂i(0)
dt

= 0 since it varies very little at night (for

the summer days that are going to be used in the identification dTi(0)/dt ≈
0.1 · 10−3 Cs−1), so that Tm(0) would be obtained in the following way:

Tm(0) =
1

Aihm

(
AiAc(Ti(0)− To(0)) + λE(0)

+ρcpAV (0)(aα + Go)(Ti(0)− To(0))
)

+ Ti(0),

where:

E(0) =
Ai2Lρ cp Di(0) gwb(

∆ + γ
(
1 + gwb

gwsmin

))
λ

.

To determine Θ̂∗
P the minimisation of the third quartile of the identification

error of the two greenhouse outputs are going to be considered independently.

By so doing, it will become quite clear just how powerful EAs are when it

comes to optimising complex functions.

J1(θ) = Q3
i
|e1(ti, θ)| (22)

J2(θ) = Q3
i
|e2(ti, θ)|W (23)
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where

e1(tj, θ) = Ti(tj)− T̂i(tj, θ)

e2(tj, θ) = HRi(tj)− ĤRi(tj, θ)

and W is a diagonal weighting matrix with:

Wjj =





−0.02 ∗ ĤRi(tj) + 2.2 if ĤRi(tj) ∈ [60 . . . 100] %

1 if ĤRi(tj) ∈ [0 . . . 60[ %

. (24)

The purpose behind using parameter W is to weight any errors that are pro-

duced for higher levels of humidity, thus giving them a lower relative impor-

tance. The reason for this is related with the commercial humidity sensor that

is used, since its accuracy drops notably for these values (due to the condensa-

tion that is usually produced on the sensor because of the lack of ventilation).

Fig. 7 shows the relationship between Wjj and ĤRi(tj). It can be observed

that the errors produced for relative humidity values of around 100 % are

weighted by 0.2; that is to say, they have a lower relative importance than

those that occur for humidity values of 60 %.

[Fig. 7 about here.]

Next, the following multiobjective optimisation problem is posed

min
θ∈D

J(θ) = {J1, J2}. (25)

The parameters of the ε↗-MOGA algorithm that were chosen are as follows:
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the searching space D is determined by the ranges that were established for

each of the 15 parameters of the vector θ, which can be consulted in Notation

section; tmax = 60000; n_box1 = n_box2 = 70; NindP = 100; NindG = 4 and

Pc/m = 0.1.

4 Results and discussion

Figure 8 shows the Pareto front J(Θ̂∗
P ) that is obtained as a solution to the

proposed multiobjective optimisation problem.

[Fig. 8 about here.]

The ideal point Jideal can be obtained by analysing the Pareto front using the

following minimum levels:

Jmin
1 = min J1(θ) = 0.618 oC

Jmin
2 = min J2(θ) = 2.355 %

by which

Jideal = {Jmin
1 , Jmin

2 } = {0.618, 2.355},

and one possible ideal model could be obtained as:

θ̂ideal = arg min
θ∈Θ̂∗

P

||J(θ)− Jideal||2 =

=[0.010013, 0.0036737, 0.65611, 0.6123, 0.041075,

0.30059, 0.0011483, 0.0019854, 18.883, 1.4658e5,

2.5027, 17.339, 0.11426, 1.9999, 0.0047946], (26)
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J(θ̂ideal) = {0.845, 2.564}. (27)

Figure 9 shows the response of the θ̂ideal model with the data utilised in the

identification process, while Fig. 10 shows the response for the days chosen

for model validation.

[Fig. 9 about here.]

[Fig. 10 about here.]

As can be seen, the model successfully reproduces the greenhouse behaviour

in an appropriate manner, both for the days used in the identification and

those utilised in the validation (see Table 1).

[Table 1 about here.]

5 Conclusions

A multiobjective evolutionary algorithm, ε↗-MOGA, based on the concept of

ε-dominance was developed for robust identification of non-linear processes.

Identification is set out as a multiobjective optimisation problem and ε↗-MOGA

estimates the non-linear model set Θ̂∗
P by assuming the simultaneous existence

of several optimality criteria. J(Θ̂∗
P ) results in a well-distributed sample of

the optimal Pareto front J(ΘP ). With this procedure all kinds of optimality

criteria can be used and all sorts of processes can be identified provided that

their outputs can be calculated by model simulation (differentiability with

respect to the unknown parameters is not necessary).
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In this paper a non-linear model of a greenhouse used for roses hydroponic

cultivation using first principles has been presented, and the ε↗-MOGA has

been used to adjust the 15 unknown parameters of the greenhouse model

with data from the summer period in the Mediterranean area. The optimality

criteria that were selected for use were the minimisation of the third quartile

of the identification error of the two outputs in the model. Being able to

establish independent optimality criteria for each output is another advantage

of the multiobjective approach because it avoids having to make a decision,

a priori, about the relative importance of the fit of the inside humidity and

temperature.

It has been shown that the θ̂ideal model, determined a posteriori when the

Pareto optimal set is available, is a good solution that offers a compromise

among the different optimality criteria that have been established.
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Notation

Range of possible value are indicated for identifiable parameters. Exact value

are indicated for constant or know parameters.

A Windows area, 130 m2

Ac Loss coefficient of conduction and convection, [2, 20]

Ai Greenhouse surface area, 240 m2

a Constant for renewal volumetric flow, [0.0005, 0.01]

Cm Thermal mass heat capacity, [100000, 300000] J oC−1 m−2

cp Air heat capacity, 1003 J Kg−1 oC−1

Csat Air saturation coefficient, dimensionless

Di Air water vapor deficit, KPa

E Crop evapotranspiration, KgH2O/s

Fv Water rate in the air renewal flow, KgH2O/s

fog Water rate of fog system, KgH2O/s

fogmax Maximum water rate of fog system, [0.001, 0.005] KgH2O/s

Fv Water rate in the air renewal flow, KgH2O/s

G Renewal air flow, m3/s

Go Losses of renewal air flow, [0.0005, 0.01]

gwb Boundary-layer conductance, [0.001, 0.05] m/s

gws Stomatal conductance, m/s

gwsmax Maximum stomatal conductance, [0.01, 0.03] m/s

gwsmin Minimum stomatal conductance, [0.0001, 0.005] m/s

hm Conductivity coefficient between air and thermal mass, [1,20] W m−1 o K−1

Hi Inside absolute humidity, KgH2O/Kgair

Ho Outside absolute humidity, KgH2O/Kgair
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Hsat Absolute saturation humidity, KgH2O/Kgair

ĤRi Inside relative humidity, %

HRo Outside relative humidity, %

k Extinguishing coefficient of radiation, [0.1, 0.7]

ka Conductivity coefficient between thermal mass and ground, [0.5, 10] W m−1 o K−1

L Leaves area index, [0.5, 2] m2
leaves/m

2
ground

MVα Windows opening manipulated variable, %

MVfog Fog system manipulated variable, %

MVW Heating system manipulated variable, %

P Atmospheric pressure, 98.1 KPa

psat Saturation pressure, KPa

Qcc Energy exchange by conduction and convection phenomena, W

Qe Energy loss due to crop evapotranspiration, W

Qf Energy loss through ground, W

Qm Energy exchange with thermal mass, W

Qn Energy loss by nebulization, W

Qs Solar energy supplied to air volume, W

Qsm Energy stored by the thermal mass during the day, W

Qv Energy exchange due to window ventilation, W

Rn Solar radiation absorbed by the crop, W/m2

So Solar radiation, W/m2

T̂i Inside temperature, oC

Tm Thermal mass temperature, oC

To Outside temperature, oC

Tref Ground temperature at reference depth, [10, 20] oC

V Wind speed, m/s

vi Greenhouse volume, 850 m3
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W Energy from heating system, W

Wmax Maximum power of heating system, 5000 W

zref Reference depth, 6 m

α Opening window angle, o

αm Rate of absorbed heat by thermal mass, [0.01, 0.3]

αmax Maximum window angle, 12o

∆ Slope of water vapour saturation, KPa/oC

γ Psycrometric constant, 0.066 KPa/oC

λ Latent heat of vaporization, J/Kg

ρ Air density, 1.25 Kgair/m
3

τ Transmission coefficient of the greenhouse, [0.3, 0.9]

A Appendix

Complementary equations of Greenhouse model.

Opening window angle:

α =
MVα

100
αmax (A.1)

Water rate of fog system:

fog =
MVfog

100
fogmax (A.2)

Energy from heating system:

W =
MVW

100
Wmax (A.3)

Water rate in the air renewal flow:

Fv = ρG(Ho −Hi) (A.4)
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Renewal air flow (Boulard & Draoui, 1995):

G = AV (aα + Go) (A.5)

Air saturation coefficient:

Csat =





1 Hi < Hsat

0 Hi = Hsat

. (A.6)

Absolute to relative humidity conversion:

HR =





100 HR > 100

HR HR ≤ 100

,

HR =
100H · P

0.611psat(T )
, (A.7)

psat(T ) = 0.61
[
1 + 1.414 sin(5.82e−3T )

]8.827
. (A.8)

Depending on different cases, (T ,HR,H) corresponds to the inside (T̂i, ĤRi, Hi)

or the outside (To, HRo, Ho) of the greenhouse. It also makes it possible to cal-

culate the saturation absolute humidity Hsat corresponding to HR = 100%.

Crop evapotranspiration (Monteith, 1973):

E =
Ai(∆Rn + 2Lρ cp Di gwb)[

∆ + γ
(
1 + gwb

gws

)]
λ

, (A.9)

∆ = psat(T̂i + 0.5)− psat(T̂i − 0.5), (A.10)
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Rn = (1− ekL)τSo, (A.11)

Di = psat(T̂i)

[
1− ĤRi

100

]
, (A.12)

λ = (3.1468− 0.002365(T̂i + 273)106, (A.13)

gws = gwsmin + (gwsmax − gwsmin)·

·
[
1− exp

(
−τSo

160

)]
gD, (A.14)

gD =





0.39
0.029+Di

Di ≥ 0.361

1 Di < 0.361

.

Solar energy supplied to air volume:

Qs = AiτSo (A.15)

Energy exchange by conduction and convection phenomena:

Qcc = AiAc(T̂i − To) (A.16)

Energy loss due to crop evapotranspiration:

Qe = λE (A.17)

Energy exchange due to window ventilation:

Qv = ρcpG(T̂i − To) (A.18)

33



Energy loss by nebulization:

Qn = λfog (A.19)

Energy exchange between thermal mass and inside air:

Qm = Aihm(Tm − T̂i) (A.20)

Energy stored by the thermal mass during the day:

Qsm = αmQs (A.21)

Energy loss through ground:

Qf = Aika

(
Tm − Tref

zref

)
(A.22)
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Figure captions

Fig. 1. The parameter identification problem by optimising the optimality

criteria J(θ). θ̂, optimal parameters; u(t), model/process inputs; y(t),

process outputs; ŷ(t), outputs model and e(t), identification error

Fig. 2. A solid line represents the Pareto optimal set ΘP and the Pareto front

these optimals produce J(ΘP ) for an MOP with two dimensions. Squares are

used to represent a possible sample from the Pareto optimal set Θ̂∗
P and the

distributed sample from the Pareto front produced by these optimals J(Θ̂∗
P )

Fig. 3. The concept of ε-dominance. ε-Pareto Front J(Θ̂∗
P ) in a

two-dimensional problem. Jmin
1 , Jmin

2 , Jmax
1 , Jmax

2 , limits space; ε1, ε2 box

widths; and n_box1, n_box2, number of boxes for each dimension

Fig. 4. ε↗−MOEA algorithm structure. P (t), the main population; A(t), the

archive; G(t) the auxiliary population

Fig. 5. Function space areas (Z) and limits (J). (a) two-dimensional case (b)

three-dimensional case

Fig. 6. Greenhouse climatic model

Fig. 7. Wjj = f(ĤRi(tj)). ĤRi(tj) inside relative humidity at sample tj;

Wjj, element jj of diagonal weighting matrix W

Fig. 8. Pareto front J(Θ̂∗
P ). J(θ̂ideal) is highlighted by (*)

Fig. 9. Real (solid line) and simulated (dotted line) inside humidity and

inside temperature (top and bottom, respectively) with θ̂ideal for the 11th and

15th June 2002
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Fig. 10. Real (solid line) and simulated (dotted line) inside humidity and

inside temperature (top and bottom, respectively) with θ̂ideal for 20th June,

28th July, 22nd August and 8th September 2002
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Table 1
Optimality criteria J(θ̂ideal) obtained with θ̂ideal for the validation data

Date J(θ̂ideal)

20-6-02 {0.75, 3.64}
28-7-02 {1.43, 3.06}
22-8-02 {0.99, 3.95}
8-9-02 {1.06, 2.40}
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Fig. 1. The parameter identification problem by optimising the optimality cri-
teria J(θ). θ̂, optimal parameters; u(t), model/process inputs; y(t), process

outputs; ŷ(t), outputs model and e(t), identification error
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Fig. 2. A solid line represents the Pareto optimal set ΘP and the Pareto front
these optimals produce J(ΘP ) for an MOP with two dimensions. Squares are
used to represent a possible sample from the Pareto optimal set Θ̂∗

P and the
distributed sample from the Pareto front produced by these optimals J(Θ̂∗

P )
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Fig. 7. Wjj = f(ĤRi(tj)). ĤRi(tj) inside relative humidity at sample tj; Wjj,
element jj of diagonal weighting matrix W
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Fig. 9. Real (solid line) and simulated (dotted line) inside humidity and inside
temperature (top and bottom, respectively) with θ̂ideal for the 11th and 15th

June 2002
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Fig. 10. Real (solid line) and simulated (dotted line) inside humidity and inside
temperature (top and bottom, respectively) with θ̂ideal for 20th June, 28th July,

22nd August and 8th September 2002
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