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Abstract1

This work focuses on development of control algorithms by incorporating energy2

and water consumption to maintain climatic conditions in greenhouse.3

Advanced control algorithms can supply solutions to modern exploitations. The4

new developments usually require accurate models (probably multivariable and non-5

linear ones) and control methodologies capable of using these models. As an addi-6

tional requirement it is important for the final application to be easy to use, so7

advanced control will not mean an increase in complexity of the manipulation of8

the installation.9

This article shows an alternative to classical climate control. It is based on two10

fundamental elements: an accurate non-linear model and a model based predictive11

control (MBPC) that incorporate energy and water consumption. Genetic Algo-12

rithms (GAs) play a key role in these two elements because functions to solve are13

non-convex and with local minima. First of all GAs supply a way to adjust the14

non-linear model parameters obtained from first principles, and finally GAs open15

the possibility of using non-linear model in the MBPC and of establishing a flexi-16

ble cost index to minimize energy and water consumption. The results on a plastic17

greenhouse with arch-shaped roofs and for Mediterranean area are presented, im-18

portant reduction in energy and water used in the cooling system (nebulization) is19

obtained.20

Key words: Greenhouse Control, Non-linear Predictive Control, Genetic21

Algorithms, Non-linear Identification, Optimization22
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1 Introduction and motivation1

Nowadays agricultural exploitations have to adapt to a more competitive en-2

vironment and therefore to incorporate new technologies. One way of getting3

profitable crops consists of using greenhouse and hydroponic crop (Boodley,4

1996; Nelson, 2002). Improvements in these new crops need, among other ad-5

vances, improvements in all greenhouse control systems and in particular in6

climate control. There exist diverse worthwhile variables to be controlled in7

this kind of installations, and in particular, this work tries to control the inside8

air temperature and humidity.9

An important determining factor in the profitability of the hydroponic crop10

inside greenhouse installations is the exploitation cost. A consumption of wa-11

ter 1 and energy for keeping the climatic variables under control around the12

setpoints is required in this kind of installations. In particular, the water costs13

are more and more noteworthy in the Mediterranean region, since the droughts14

are more frequent and intense. So it seems to be important to take into account15

both water and energy costs.16

This work focuses on the implementation of a controller whose aim consists17

? Partially supported by MEC (Spanish government) and FEDER funds: projects

DPI2004-8383-C03-02 and DPI2005-07835.
∗ Corresponding author. DISA-Universidad Politécnica de Valencia.

Camino de Vera S/N, 46022-Valencia, Spain.
Email address: xblasco@isa.upv.es (X. Blasco).
URL: ctl-predictivo.upv.es (X. Blasco).

1 Consumption of water is involved in climatic control when nebulization system is

used as cooling system in summer time. Irrigation costs are not in the scope of this

work.
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of the costs minimization maintaining performance in an acceptable range.1

This is an innovative approach, since traditional controllers seldom take into2

account the costs in an explicit manner, and provide the control actions by3

focusing almost always on the performance. So the costs for keeping that4

performance might be unacceptable.5

A model based predictive control (MBPC) is used in this new approach, since6

this kind of controllers offers a wide flexibility in selecting the control objec-7

tives. So it is possible to select the exploitation cost of the installation as the8

main objective.9

A good dynamic model of the process is essential in order to achieve a good10

performance of the controller. In the case of the greenhouse some important11

non-linearities arise (mainly due to biological phenomena related to the plants12

life) which can be reasonably modelled by first principles equations 2 . Never-13

theless it is a hard task to adjust the parameters of this kind of models. In14

this work, the adjustment is stated as a minimization problem which is solved15

by Genetic Algorithm (GA) (Holland, 1975; Goldberg, 1989). The optimiza-16

tion problem can be composed of non-convex functions and search spaces,17

so if classical optimization methods are used, local minima can be obtained.18

In this way, the complexity of the optimization problem justifies selecting a19

global optimization technique as GAs.20

The controller implementation is also stated as a very complex optimization21

problem which must be solved at each sample time. In this case, the problem22

is also solved by using GAs with the same justification. The drawback of this23

technique consists of the large computational burden, although in this type24

2 Equations obtained from physical and biological phenomena.
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of applications it is not a problem, since the sample time is big enough (21

minutes) in order to make the required calculations.2

All the experimental data used in this work have been collected from a rose3

hydroponic crop inside greenhouse located in the IVIA (Valencian Institute4

for Agricultural Research) in Moncada (Valencia-Spain) with Mediterranean5

climate. It is a plastic greenhouse of 240 m2 with arch-shaped roofs. Roof6

windows, heating system and nebulization are used to maintain inside climate7

conditions.8

The structure of the article is the following, first of all the obtaining of the9

non-linear model used by the controller is shown (section 2). Later (section10

3), the methodology used for the non-linear model parameters identification11

is described, together with the obtained model and the validation. After that12

(section 4) the fundamentals of the selected control strategy are briefly shown13

(model based predictive control - MBPC). Besides (section 5), the special14

features of the implemented controller based on costs optimization criteria15

are described in depth. The results (section 6) from the proposed control for16

several summer days are shown. And finally (section 7) conclusions and future17

work are presented.18

2 Greenhouse climate model19

The first step for an advanced control design is the development of a dynamic20

model. Model quality is a fundamental aspect to achieve adequate control21

performances. It is possible to divide models into two groups (Johansson,22

1993; Pronzalo and Walter, 1997):23
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(1) First principles models. Those that provide physical phenomena by means1

of differential equations (usually by state space models). In this type of2

models, parameters have a physical interpretation.3

(2) Black box models. Those that try to approximate the behaviour without4

a priori information, for instance, polynomial fitting, Neural Networks,5

Fuzzy Sets, etc.6

It is difficult to select a priori the most useful type of model. Both can have a7

very good quality. First ones are more understandable but their development8

is difficult and very expensive. The second group has no physical meaning but9

is easier to obtain.10

Biologists and agronomist engineers have invested a lot of time to improve11

physical and physiological models for all process inside greenhouses and, al-12

though some black box models have been tested, they usually prefer first13

principles models. Usually because this type of models offers a closer inter-14

pretation of phenomena (Baille et al., 1994, 1996). This work exploits this15

alternative and in this section shows how a non-linear state space model is16

obtained from first principles, other alternative approaches can be found at17

(Coelho et al., 2005; Piñón et al., 2005).18

For climate modelling purpose, the greenhouse is considered as an air volume19

delimited by the walls, the canopy and the ground. Process model in state20

space form can be obtained from mass and energy balance, including plants21

biological behaviour, this approach is similar to recent ones (Ghoumari et al.,22

2005). Two subsystems can be established, air volume and ground, this last23

one acts as a thermal mass (Albright et al., 1985; Boulard et al., 1996). The24

relevant state variables to describe climatic behaviour are inside temperature25
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Ti and relative humidity Hi (or absolute humidity xi) in the air volume and1

ground temperature Tm (called thermal mass temperature). From water mass2

and energy balance, the state space equations are defined by 3 :3

ρvi
dxi

dt
= Fv + Csat(E + fog) (1)

viρcp
dTi

dt
= Qs −Qcc + Qm − Csat(Qe + Qn)−Qv + W (2)

AiCm
dTm

dt
= Qsm −Qm −Qf (3)

An input-output diagram model is shown in figure B.1, where variables to4

be controlled are Ti, Hi, manipulated variables are window (MVα), heating5

(MVW ) and fog system (MVfog) and measurable disturbances are solar radi-6

ation (So), wind speed (V ), outside temperature and humidity (To and xo).7

3 Model parameters identification with GAs8

First principles models supply models with approached physical sense but,9

as it can be seen at appendix A, there are lots of parameters most of them10

difficult to adjust. There exists a well known set of techniques for linear model11

identification (Johansson, 1993; Pronzalo and Walter, 1997) but the climate12

greenhouse model is clearly non-linear.13

Accepted alternatives for parameter identification in non-linear models are14

based on minimization of a norm of errors vector. The errors vector is usu-15

ally composed of differences between experimental process outputs and model16

outputs in a specific time horizon. The complexity of the function to minimize17

3 Appendix A shows more details about notation and important model non-

linearities.
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(due to model non-linearities, saturations, etc.) can avoid the use of classical1

numeric optimization (Gauss-Newton based methods) because of non-convex2

problems and local minima problems. Therefore global optimization is re-3

quired, for this purpose GAs can offer good solutions (Holland, 1975; Gold-4

berg, 1989). A recent application of GAs to greenhouse model parameters5

identification as already been performed by (Hasni et al., 2006). The disad-6

vantage of GAs is the high computational cost, although for some types of7

applications it is acceptable (Haupt and Haupt, 1998; Chambers, 2000).8

A generic process model can be represented by a set of differential equations9

building a state space model:10

ż(t) = f(z(t),u(t), ζ) (4)

ŷ(t) = g(z(t),u(t), ζ) (5)

where:11

• f(.) and g(.): functions that establish model structures. They can be linear12

or not.13

• ζ: model parameters to identify.14

• u(t): model input vector (m inputs).15

• ŷ(t) model output vector (l outputs).16

• z(t): state variables vector (n state variables).17

Identification of parameters ζ is obtained by the minimization of a function18

of model output error (difference between experimental outputs and model19

outputs for the same inputs, e = y − ŷ). Then, in general, a proposed cost20

function to minimize is:21

J(ζ) = f (‖y − ŷ‖qK) = f (‖e‖qK) (6)22
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Where ‖.‖q represents a norm of a vector and K represents a weighting coef-1

ficient of each vector element 4 (K is usually a diagonal matrix or a vector).2

The cost function selected plays an important role in parameter identification,3

there is no ideal cost function, all of them have their advantages and disad-4

vantages, then it is the user who has to decide according to the requirements.5

In classical identification methods 2-norm is used just to avoid problems with6

the numerical optimization. But 2-norm introduces distortion in model error7

evaluations (Aström and Wittenmark, 1995), for instance, there is an overre-8

duction for low errors. A fair way to treat model errors is to use 1-norm that9

introduces no distortion. Therefore the proposed cost function is based on10

1-norm and can be detailed as follows:11

J(ζ) = ‖y − ŷ‖1K
=

te∑

j=1

l∑

i=1

kij|yi(j)− ŷi(j)| (7)12

where:13

• te: experimental samples.14

• kij: weighting coefficient of output i for sample j.15

• yi(j): sample j of process output i.16

• ŷi(j): sample j of model output i.17

• l: number of outputs.18

In this problem weighting factors kij are used to normalize outputs of the19

multivariable process (Herrero et al., 2002), each output represents a different20

magnitude and it is necessary a normalization to enable comparison in the21

4 Definition of q-norm of a vector (x = [x1, . . . , xn]) is ‖x‖q = (|x1|q + . . . +

|xn|q)(1/q). The most common q-norms are 1 and 2. If a weighting coefficient is

present, the definition is ‖x‖qK = (k1|x1|q + . . . + kn|xn|q)(1/q).
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cost function. Once the cost index is selected, it is necessary to consider two1

additional aspects:2

• Model adaptation and selection of the parameters to identify.3

• Experimental planning.4

For climatic greenhouse model (figure B.1) state equations (1), (2) and (3) are5

adapted directly to equations (4) and (5).6

For the parameters selection, the following aspects have been considered: se-7

lected parameters represent those physical magnitudes with higher uncer-8

tainty. Fifteen parameters have been selected, some of them are related to9

the rose crop and the others with heat transmission coefficient and reference10

temperature of the greenhouse 5 .11

ζ = [gwsmax gwsmin L k gwb τ a Go Ac Cm hm Tref αm ka

fogmax]
T (8)

This set of parameters is proposed to tune the model for summer 6 period and,12

it has to adjust dynamic behaviour for day and night. Model inputs, outputs13

and state variable are:14

u(t) = [MVα MVfog MVW So To Ho V ]T (9)

ŷ(t) = [Ti Hi]
T (10)

z(t) = [xi Ti Tm]T (11)

5 Appendix A shows a description of every parameter and intervals of possible

values obtained from preliminary analysis.
6 For summer time, the heating system is considered to be disconnected (MVW is

not considered).
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Experimental planning has to define:1

(1) Input signals selection (shape and sample time). Experiment length.2

(2) Process operation conditions.3

Operating conditions of the greenhouse are highly conditioned by disturbances4

as solar radiation, outside temperature, etc. They have a degree of periodicity5

(period of one day) but there exists a random component from one day to6

another. Then, minimum length considered for identification is 24 hours. To7

include most of the conditions, collected data comes from daily operations8

with the current control system and experiment length is set to multiple of 249

hours. Sample time is set to 15 seconds, enough to show significant dynamic10

behaviour of all variables involved in greenhouse climate.11

3.1 Results and validation12

With previous considerations, parameters ζ are identified taking experimental13

data from two non consecutive days of June (the June 11 and 15, 2004).14

For this application a specific GA is adjusted with 10.000 individuals and 5015

iterations (general description of GAs is showed at appendix B). Results of16

identification process are in range of agronomist forecast:17

ζ∗ = [0.011 0.00435 0.796 0.52 0.0368 0.418 0.0017 0.0005 17.907

126594 8.4 18.8329 0.04629 7.8685 0.00435]T (12)

Figure B.2 shows a comparison between experimental data and model output18

for optimal parameter set ζ∗. Temperature and relative humidity are com-19

pared. Statistics (Table B.1) for this comparison show an adequate model20

11



adjustment:1

For validation purpose, additional data is collected corresponding to several2

days of June, July and August. Validation is done by simulating with the3

same parameters for all data set collected. Figure B.3 shows comparison for4

the day where model presents the best results (June 20, 2004) and the worst5

results (July 28, 2004). Statistical validation results are presented in Table6

B.2. Results are good enough for controller design purpose.7

4 Model based predictive control by using genetic algorithms8

Model Based Predictive Control (MBPC) is one of the most intuitive and9

powerful control techniques. This methodology can be summarized in a few10

words:11

With a process model and its past behaviour it is possible to produce pre-12

dictions of the process dynamic evolution for different control laws. If we13

could set a cost for each one of these predictions it is possible to select the14

best control law to achieve a fixed objective.15

This easy and intuitive way to describe how MBPC works has been the basis of16

its success in industry. Several research work and industrial applications have17

shown its control capabilities (Qin and Badgwell, 2003). In particular, for18

greenhouse control MBPC has already been applied in different ways (Blasco19

et al., 2001; Coelho et al., 2005; Lecomte et al., 2005; Piñón et al., 2005).20

Described in more detail, all of the controllers with this methodology have21

three fundamental elements (fig. B.4):22
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(1) A Predictor that supplies controlled variables predictions for different1

manipulated variables combination (control law). These predictions are2

based on process information (model and measures of variables).3

(2) A Cost function that assigns a cost to each prediction depending on4

previous fixed objectives.5

(3) An Optimization technique to look for the best control law.6

Finally Receding horizon is applied, that is, at each sample time, optimiza-7

tion is recomputed with all new available measures.8

Usually the bottleneck of this methodology is the Optimization Technique. Ac-9

curate models commonly have to include non-linearities, or even if linear mod-10

els are accurate enough, realistic cost function could introduce non-linearities.11

All this aspects generally produce quite difficult optimization problems. A12

Genetic Algorithm (GA) is a competitive way to solve difficult optimization13

problems when computing time is enough.14

Then combining MBPC with GA results in a promising alternative to solve15

complex control problems. This alternative was already proposed and analyzed16

for SISO (single-input single-output) transfer function model with additional17

non-linearities as saturation, dead-zone and backlash (Mart́ınez et al., 1998).18

This work extends MBPC with GA to MIMO (multi-input multi-output) pro-19

cesses by using a state space representation that is a general way to model20

non-linear processes.21

MBPC control structure is similar in SISO (see (Mart́ınez et al., 1998)) and22

MIMO models (fig. B.5).23
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5 Greenhouse climate control application1

To describe MBPC application to a greenhouse climate control all MBPC2

elements are detailed: predictor, cost function and optimization technique for3

the greenhouse climate control.4

5.1 Predictor5

The predictor is based on the state space model developed in previous section.6

To improve robustness and performances, predictions are obtained from model7

outputs corrected by a disturbance model (see figure B.6):8

y(t) = yu(t) + n(t) (13)9

• yu(t) = [yu1(t), yu2(t)]
T = [Tiu(t), Hiu(t)]

T , array of model controlled vari-10

ables.11

• n(t) = [n1(t), n2(t)]
T , array of correction variables based on non-measured12

disturbance model.13

• y(t) = [y1(t), y2(t)]
T = [Ti(t), Hi(t)]

T , array of corrected controlled vari-14

ables.15

• u(t) = [u1(t), u2(t), u3(t)]
T = [MVα(t),MVfog(t),MVW (t)]T array of manip-16

ulated variables.17

• d(t) = [So(t), To(t), Ho(t), V (t)]T , array of measured disturbances.18

Non-measured disturbance model is usually adjusted to reduce effects of non-19

modelled dynamics and noises. A good adjustment when models are linear is20

ARIMA model (Clarke et al., 1987a,b). When process model is non-linear a21

minimal structure for disturbance model in order to avoid steady state errors22
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is:1

ni(t) =
1

∆
ξi(t) (14)2

where ∆ = (1− z−1) and ξi(t) is a zero mean white noise.3

With this structure, predictions for time ’t+j’ with information collected until4

time ’t’ are:5

y(t + j|t) = yu(t + j|t) + n(t + j|t) (15)6

where yui(t+ j|t) are obtained from state space model and ni(t+ j|t) from the7

following development, at time ’t+1’:8

ni(t + 1)∆ = ξi(t + 1) → ni(t + 1) = ni(t) + ξi(t + 1) (16)9

The best prediction of ni(t+1) with information available until time ’t’ (ni(t+10

1|t)) is 7 :11

ni(t + 1|t) = ni(t) (17)12

Past data of ni(t) needed in the calculus is obtained from difference between13

measured controlled variables and controlled variables from model:14

ni(t) = yi(t)− yui(t) (18)15

Then:16

ni(t + 1|t) = yi(t)− yui(t) (19)17

7 ξi is a white noise with zero mean and then its best estimation is zero.
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Repeating this for t + 2, . . . , t + j the best estimation for correcting variables1

results in:2

n(t + j|t) = y(t)− yu(t) (20)3

5.2 Cost function4

The cost function is the MBPC component in charge of setting performances5

that designer has established. Its function is to assign a value to each proposed6

control law during prediction horizon. This component has also to include all7

constraints involved in control. Finally predictions with behaviour near to8

control objective (set by designer) must have a lower value of cost function (a9

minimization problem is established).10

At this point, a new approach for greenhouse climate control is proposed.11

Usually controllers are designed to follow a setpoint, for instance, it is normal12

to adjust at least a temperature setpoint and the controller has to propose a13

control action to achieve and maintain it despite disturbances. Different and14

successful implementation can be found in nowadays installations (Mart́ınez15

et al., 2005). But this type of control can suffer from a lack of efficiency:16

consumption of energy and water are not directly taken into account in the17

controller design.18

With the cost function, MBPC supplies a flexible mechanism to include most19

of designer objective. In particular, for this application it is very important to20

maintain climate condition under the minimum cost in energy and water. It is21

not really necessary to maintain a specific setpoint, it is enough to maintain22

climatic variables into a range of values.23

16



The proposed cost function is then:1

J(ū) = J1(ū1) + J2(ū2) + J3(ū3) (21)2

where3

• ū = [ūT
1 , ūT

2 , ūT
3 ]T4

• ū1 = [∆MVα(t), ∆MVα(t + 1), . . . , ∆MVα(t + nα
u)]T5

• ū2 = [MVfog(t),MVfog(t + 1), . . . ,MVfog(t + nfog
u )]T6

• ū3 = [MVW (t),MVW (t + 1), . . . , MVW (t + nW
u )]T7

As in all predictive controller, a control horizon is established for each manip-8

ulated variable: nα
u , nfog

u and nW
u . These parameters set the degree of freedom9

for the controller, low value means conservative control law and high values10

aggressive control law.11

Terms in (21) are detailed as follows:12

J1(ū1) =
K1

100 · nα
u

j=nα
u∑

j=1

|∆MVα(t + j)| (22)

J2(ū2) =
K2

100 · nfog
u

j=nfog
u∑

j=1

MVfog(t + j) (23)

J3(ū3) =
K3

100 · nW
u

j=nW
u∑

j=1

MVW (t + j) (24)

Notice that objectives to minimize are directly related to energy and water13

consumption:14

• J1(ū1) evaluates spent energy to open windows. Only variations of MVα15

produce energy consumption.16

• J2(ū2) evaluates the water used by fog system.17
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• J3(ū3) evaluates consumed heating system energy.1

For terms J2 and J3 absolute value is not necessary because only positive val-2

ues of MVfog and MVW are possible for this type of actuators. Every term are3

normalized dividing by the maximum value of manipulated variable (100%)4

and the number of allowed movement for each manipulated variable (nα
u , nfog

u5

and nW
u respectively), then, maximum possible value of Jk is always one. Rel-6

ative importance of economic aspects for each term could be adjusted by7

weighting factors K1, K2 and K3. In the zone of interest for this greenhouse8

(Spanish Mediterranean area) costs in water are very important then K2 has9

to be greater than K1 in summer time and heating system is disconnected10

K3 = 0. And for winter time, fog system is disconnected K2 = 0 and heating11

system consumption is much more expensive than windows movement, then12

K3 ≥ K1.13

For inputs variable, it is important to include process physical limits in the14

optimization problem, then the following constraints have to be included:15

ūmin ≤ ū ≤ ūmax (25)16

where ūmin and ūmax are vectors with the actuator physical limits.17

To adjust performances, in this case climate conditions, a set of constraints18

is added to output variables. The objective is to maintain climate conditions19

into a range of value ([Hmin, Hmax] and [Tmin, Tmax]) for all prediction horizon20

N :21

ȳmin ≤ ȳ ≤ ȳmax (26)22
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where:1

• ȳ = [yT (t + 1|t), . . . , yT (t + N |t)]T2

• y(t + j|t) = [Ti(t + j|t), Hi(t + j|t)]T3

• ȳmin = [yT
min(t + 1), . . . ,yT

min(t + N)]T4

• ymin(t + i) = [Tmin, Hmin]T , i = 1 . . . N5

• ȳmax = [yT
max, . . . ,y

T
max]

T
6

• ymax(t + i) = [Tmax, Hmax]
T , i = 1 . . . N7

Prediction y(t + j|t) is obtained with the non-linear model corrected by non-8

measured disturbance model, see (15).9

The optimization problem to solve at each sample time is then:10

min
û

J (27)

s.t. : ūmin ≤ û ≤ ūmax

ȳmin ≤ ȳ ≤ ȳmax

Remark that this formulation focuses on minimizing costs to maintain a range11

of climate condition and not on performance specifications.12

5.3 Optimization technique13

Optimization problem (27) is a difficult constrained non-linear problem, and14

a GA is a reasonable alternative if derived computational cost is allowed.15

However, (27) cannot be solved directly because of constraints. It is neces-16

sary a reformulation to adapt it for a GA. There are several ways to consider17

constraints (Coello, 2002) and most of them are based on Penalty functions.18

By addition of the penalty function term, the constrained problem is trans-19
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formed into an unconstrained one. Only constraints on GA search space are1

maintained (usually the physical limit of actuators). Penalty function has to2

be designed to consider the degree of violation of each constraint.3

It is convenient for the penalty function to take as low as possible values but4

always above the values of cost index for the solution that does not violate5

constraints. The objective is to establish a clear difference between feasible6

and unfeasible solutions.7

The proposed solution reformulates cost function as follows:8

Jp(ū) = J(ū) + offset +
k=4∑

k=1

φk(ū) (28)9

Penalty function φk is associated with performance constraints:10

• Violations of Ti(t + j|t) ≤ Tmax for some j are penalized with φ1(ū).11

• Violations of Hi(t + j|t) ≤ Hmax for some j are penalized with φ2(ū).12

• Violations of Ti(t + j|t) ≥ Tmin for some j are penalized with φ3(ū).13

• Violations of Hi(t + j|t) ≥ Hmin for some j are penalized with φ4(ū).14

where:15

φ1(ū) =
1

15

N2∑

j=1

max{0, (Ti(t + j|t)− Tmax)} (29)

φ2(ū) =
1

20

N2∑

j=1

max{0, (Hi(t + j|t)−Hmax)} (30)

φ3(ū) =
1

15

N2∑

j=1

max{0, (Tmin − Ti(t + j|t))} (31)

φ4(ū) =
1

20

N2∑

j=1

max{0, (Hmin −Hi(t + j|t))} (32)

Remark that every penalty function has a weighting factor to adjust relative16
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importance of different types of violation: 1/15 for constraints on temperature1

and 1/20 for constraints on humidity.2

As maximum value of every Jk (see eq. (22), (23) and (24)) is one, it is easy3

to adjust a maximum value of cost function (21). If weighting constants are4

adjusted in such a way that: K1, K2, K3 ∈ [0, 1] then maximum value of J(u)5

is never greater than 3. Then offset parameter (minimum penalization value)6

can be adjusted to ensure solutions with any type of constraints violation have7

always a higher value of Jp than those solutions with no violation:8

offset =





3, ∃ k : φk(ū) 6= 0

0, otherwise

(33)9

If all individuals of the GA violate any of the constraints, functions φk(ū)10

penalize depending on the degree of violation. Then GA tends to generate11

solutions with lower degree of violation at each iteration.12

With this formulation, the optimization problem to solve at every sample time13

is:14

min
ū

Jp , s.t. ūmin ≤ ū ≤ ūmax (34)15

6 Results for summer time16

The evaluation of the proposed algorithm is done with summer time data,17

when the heating system is disconnected. It is possible to do the same evalu-18

ation for winter time, by tuning the model, disconnecting the fog system and19

connecting the heating one.20
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Experimental data have been collected from four different days. The data are1

composed of information about disturbances (solar radiation, outside temper-2

ature, outside relative humidity and wind speed) and information about the3

control system which is just now working at the greenhouse (controlled vari-4

ables such as the inside relative temperature and humidity and manipulated5

variables such as the opening window angle and the fog system both in per-6

centage). There are only three possible values for the fog system 0, 50 and7

100%. The setpoints that are just now present in the system are:8

• To keep a relative humidity of 60% ±1%.9

• To keep an inside temperature in [18oC, 25oC].10

The control system is based on independent closed-loops, and besides it con-11

tains some heuristic rules to prevent the system from incoherences.12

In order to make possible the comparison between the current controller and13

the proposed MBPCGA controller, both of them will aim at the same objec-14

tives, although the last one will take into account the minimization of water15

and energy consumption. So, those objectives are stated as the following con-16

straints:17

• To keep a relative humidity in [50%, 70%].18

• To keep an inside temperature in [18oC, 25oC].19

The controller considers the model from section 3 whose parameters (8) are20

set as (12).21

The values of the controller parameters are:22

• Control horizons nα
u = 1 and nfog

u = 2. Low values have been chosen to get23
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a conservative control, since too abrupt changes in the actuators are not1

good for the installation maintenance. Besides, in the greenhouse case, as2

the actuators saturate very often, they limit a lot the operation range, and3

so it would not be possible to apply a more aggressive control.4

• Prediction horizon N = 5. A low value has been selected to avoid predictions5

from big errors due to bad predictions of the disturbances. In a standard6

MBPC control, the prediction horizon is expected to be large enough to7

involve the controlled variables transient. But in the greenhouse case, the8

impossibility of predicting accurately the future disturbances, discourages9

the designer from choosing too large horizons in order to avoid prediction10

errors and so a noticeable reduction of the controller performance.11

• Controller sample time Ts = 120 seconds. The controlled variables dynamics12

is slow enough to allow this sample time.13

• All the measures used by the controller are filtered. So, the measures are14

collected every 15 seconds, and a mean value of the measures taken at a15

period of 120 seconds is calculated.16

• The disturbances prediction during the prediction horizon is assumed to be17

constant and equal to the last measured value.18

The main genetic algorithm parameters are:19

• Population individuals number NIND = 200.20

• Generations number MAXGEN = 35.21

• Crossover and mutation probabilities Pc = 0.8 and Pm = 0.01.22

These parameters have been selected to satisfy the sample time and to get23

a good enough solution. So, under a Matlab R© version 7.1 application in a24

Pentium R©4, 3.4GHz with Windows R© XP Professional, the computational25
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cost for each iteration is about 84 seconds, which clearly satisfies the sample1

time. Besides, if the application is transferred to a programming language and2

operative system more efficient for real time, the computational cost can be3

even smaller. Anyway, the controller implementation in Matlab R© is a valid4

solution.5

The control for four different days with different features has been analysed:6

(1) June 11, 2004 (Fig. B.7 and Fig. B.8). At night, a high humidity, little7

wind and low temperature are present. During the day, the humidity is8

low, the wind speed is normal and the temperature is mild.9

(2) June 15, 2004 (Fig. B.9 and Fig. B.10). At night, there are a mild humid-10

ity, almost no wind and low temperature. During the day, the humidity11

is low, the wind speed is normal and the temperature is mild.12

(3) June 20, 2004 (Fig. B.11 and Fig. B.12). At night, a low humidity, no13

wind and a mild temperature are present. During the day, there are a low14

humidity, a normal wind and a high temperature. It is noticeable that15

some clouds at midday cause a worthwhile decrease in solar radiation.16

(4) July 28, 2004 (Fig. B.13 and Fig. B.14). High humidity and temperature17

are present during all the day, and the wind is not present at night and18

normal during the day.19

Two different types of figures for each selected day are shown to evaluate the20

results:21

• The first one shows the process variables for both the current controller and22

the MBPCGA. Besides, the constraints and the disturbances (outside tem-23

perature and humidity, wind speed and solar radiation) are shown, so as the24
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manipulated variables (opening window angle and fog system percentages).1

• The second one shows performances and costs. Performances are represented2

as the absolute value of constraints violations at each sample time for both3

controlled variables (relative humidity and temperature) and average (dis-4

continuous plot). Costs are represented as the accumulated cost for each ac-5

tuator (opening window and fog system) which is normalized with respect to6

the maximum possible value. For the opening window the maximum value7

means totally opening and closing the window all the day at each sample8

time, and for the fog system it means totally connecting the fog system all9

the day.10

Table B.3 sums up information about performances and costs. It shows the11

average and standard deviation of the constraints violations (in oC for temper-12

ature and in % for relative humidity). The table also shows the accumulated13

cost during all the simulated day (in % with respect to the maximum cost).14

Best values for each day are marked in bold type.15

By analysing Table B.3, it can be said that:16

• None of both controllers keep temperature and humidity in the specified17

range, because when constraints are violated, the actuators saturate and do18

not present more degrees of freedom (they are working on the limits).19

• In all the cases, both controllers behave in a similar way with respect to20

temperature.21

• The MBPCGA is better than the current controller, with respect to humid-22

ity.23

• It is noticeable the lesser energy and water consumption with the MBPCGA24

controller, in all the cases. Only in the case (4), this improvement is not so25
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noticeable because both controllers provide an almost null cost (in this case1

the actuators saturation and the lack of degrees of freedom are an evidence2

all the day).3

7 Conclusion4

This work offers an alternative to greenhouse climatic control via model based5

predictive control. As the proposed prediction model is non-linear and not6

easy to adjust, the adjustment is stated as an optimization problem which is7

solved by GAs. Besides, as the model is non-linear, it is not viable to get an8

analytical solution to the optimization problem in which the control problem9

is stated. So again, a GA is used, which is running at each sample time while10

time constraints are satisfied.11

The main advantage of using predictive control with GAs results in a more12

flexible way of stating the cost function. The proposed controller tries to min-13

imize energy and water costs to achieve temperature and relative humidity14

performances inside an objectives range which takes part of the problem as15

constraints. It is possible to decrease costs, keeping or even improving in-16

stallation performances, as it is shown in the obtained results. An important17

reduction in energy and water used in nebulization system is observed.18

Despite the control structure is advanced, it is easy to use. Farmers only have19

to select the desired temperature and humidity ranges for the installation20

operation. Even these ranges can be set by default as the values shown in the21

experiments of the article. The proposed controller acts on the window and fog22

system by minimizing costs, but trying to keep the humidity and temperature23
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inside the specified range as well.1

Once the viability of the solution has been proved, future work focuses on ex-2

ploring new ways of improving performances, while trying to minimize costs,3

because this is a key factor for the exploitation profitability. These ways can4

be for instance, better predictions by statistical estimations of disturbances,5

dynamic humidity and temperature ranges during the day, analysis of differ-6

ent objectives ranges (for instance, the controller can work in two ways, the7

economic one and the high performance one).8
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A Detailed greenhouse climatic model4

A.1 Extended notation5

Range of possible values is indicated for identifiable parameters. Exact value6

is indicated for constant or known parameters.7

• A: Windows area, 130 m2.8

• Ac: Loss coefficient of conduction and convection, [2, 20].9

• Ai: Greenhouse surface area, 240 m2.10

• a: Constant for renewal volumetric flow, [0.0005, 0.1].11

• α: Opening window angle, o.12

• αm: Rate of absorbed heat by thermal mass, [0.01, 0.3].13

• αmax: Maximum window angle, 12o.14

• Cm: Thermal mass heat capacity, [100000, 500000] J oC−1 m−2.15

• cp: Air heat capacity, 1003 J Kg−1 oC−1.16

• Csat: Air saturation coefficient, dimensionless.17

• Di: Air water vapour deficit, KPa.18

• ∆: Slope of water vapour saturation, KPaoC−1.19

• E: Crop evapotranspiration, KgH2O s−1.20

• Fv: Water rate in the air renewal flow, KgH2O s−1.21

• fog: Water rate of fog system, KgH2O s−1.22
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• fogmax: Maximum water rate of fog system, [0.001, 0.005] KgH2O s−1.1

• Fv: Water rate in the air renewal flow, KgH2O s−1.2

• G: Renewal air flow, m3 s−1.3

• Go: Losses of renewal air flow, [0.0005, 0.01].4

• γ: Psycrometric constant, 0.066 KPaoC−1.5

• gwb: Boundary-layer conductance, [0.001, 0.05] m s−1.6

• gws: Stomatal conductance, m s−1.7

• gwsmax: Maximum stomatal conductance, [0.01, 0.03] m s−1.8

• gwsmin: Minimum stomatal conductance, [0.0001, 0.005] ms−1.9

• hm: Conductivity coefficient between air and thermal mass, [1,20] W m−1 o K−1.10

• Hi: Inside relative humidity, %.11

• Ho: Outside relative humidity, %.12

• k: Extinguishing coefficient of radiation, [0.1, 0.7].13

• ka: Conductivity coefficient between thermal mass and ground, [0.5, 10]14

W m−1 o K−1.15

• L: Leaves area index, [0.5 2] m2
leaves m−2

ground.16

• λ: Latent heat of vaporization, J Kg−1.17

• MVα: Windows opening manipulated variable, %.18

• MVfog: Fog system manipulated variable, discrete [0, 50%, 100%].19

• MVW : Heating system manipulated variable, %.20

• P : Atmospheric pressure, 98.1 KPa.21

• psat: Saturation pressure, KPa.22

• Qcc: Energy exchange by conduction and convection phenomena, W .23

• Qe: Energy loss due to crop evapotranspiration, W .24

• Qf : Energy loss through ground, W .25

• Qm: Energy exchange with thermal mass, W .26
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• Qn: Energy loss by nebulization, W .1

• Qs: Solar energy supplied to air volume, W .2

• Qsm: Energy stored by the thermal mass during the day, W3

• Qv: Energy exchange due to window ventilation, W .4

• ρ: Air density, 1.25 Kgair m−3.5

• Rn: Solar radiation absorbed by the crop, W m−2:6

• So: Solar radiation, W m−2.7

• Ti: Inside temperature, oC.8

• Tm: Thermal mass temperature, oC.9

• To: Outside temperature, oC.10

• Tref : Ground temperature at reference depth, [10, 20] oC.11

• τ : Transmission coefficient of the greenhouse, [0.4,0.9].12

• V : Wind speed, m s−1.13

• vi: Greenhouse volume, 850 m3.14

• W : Energy from heating system, W .15

• Wmax: Maximum power of heating system, 5000 W .16

• xi: Inside absolute humidity, KgH2O Kg−1
air.17

• xo: Outside absolute humidity, KgH2O Kg−1
air.18

• xsat: Absolute saturation humidity, KgH2O Kg−1
air.19

• zref : Reference depth, 6 m.20

A.2 Complementary climatic model equations21

Opening window angle:22

α =
MVα

100
αmax (A.1)23
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Water rate of fog system:1

fog =
MVfog

100
fogmax (A.2)2

Energy from heating system:3

W =
MVW

100
Wmax (A.3)4

Water rate in the air renewal flow:5

Fv = ρG(xo − xi) (A.4)6

Renewal air flow (Boulard and Draoui, 1995):7

G = AV (aα + Go) (A.5)8

Air saturation coefficient:9

Csat =





1 xi < xsat

0 xi = xsat

(A.6)10

Absolute to relative humidity conversion:11

Hi(t) =





100 Hi > 100

Hi Hi ≤ 100

(A.7)

Hi =
100xiP

0.611psat(Ti)

psat(T ) = 0.61
(
1 + 1.414 sin(5.82e−3T )

)8.827
(A.8)12
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Crop evapotranspiration (Monteith, 1973):1

E =
Ai(∆Rn + 2LρCp Di gwb)(

∆ + γ
(
1 + gwb

gws

))
λ

(A.9)2

∆ = psat(Ti + 0.5)− psat(Ti − 0.5) (A.10)3

Rn = (1− ekL)τSo (A.11)4

Di = psat(Ti)(1−Hi/100) (A.12)5

λ = (3.1468− 0.002365(Ti + 273)106 (A.13)6

gws = gwsmin + (gwsmax − gwsmin) ·
·
[
1− exp

(
− Ss

160

)]
gD (A.14)

gD =





0.39
0.029+Di

Di ≥ 0.361

1 Di < 0.361

Solar energy supplied to air volume:7

Qs = AiτSo (A.15)8

Energy exchange by conduction and convection phenomena:9

Qcc = AiAc(Ti − To) (A.16)10

Energy loss due to crop evapotranspiration:11

Qe = λE (A.17)12

Energy exchange due to window ventilation:13

Qv = ρcpG(Ti − To) (A.18)14
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Energy loss by nebulization:1

Qn = λfog (A.19)2

Energy exchange between thermal mass and inside air:3

Qm = Aihm(Tm − Ti) (A.20)4

Energy stored by the thermal mass during the day:5

Qsm = αmQs (A.21)6

Energy loss through ground:7

Qf = Aika

(
Tm − Tref

zref

)
(A.22)8

B Genetic algorithms9

Optimization technique choice depends on the type of problem to solve. If it10

is possible the analytical solution is the best one: it is the most exact one11

and the least computer time consuming. But for complex models and indexes,12

optimization problem is so difficult that an analytical solution is impossible13

and even classical numerical solutions are not always available because most14

of the complex problems are non-convex and/or multimodal. For these opti-15

mization problems GAs are a good alternative, they have demonstrated very16

good performances.17

GAs are optimization techniques based on simulated species evolution. Prob-18

lem solution is obtained from evolution through several generation of a popu-19
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lation formed from a set of possible solutions. Evolution is performed following1

rules represented by genetic operator: selection, crossover and mutation.2

Principal differences between GA implementations come from:3

• Chromosome codification.4

• Genetic operators.5

For this work both GA implementations (for identification and for control)6

have the same characteristics and only vary in some parameters to fulfill com-7

putational cost requirement and solution quality: search space, number of in-8

dividuals and generations are different for each case. Principal characteristics9

are:10

• Real value codification.11

• Linear ranking.12

• Selection operator: Stochastic Universal Sampling.13

• Crossover operator: Linear combination with a crossover probability of Pc =14

0.8.15

• Mutation operator: Oriented mutation with a mutation probability of Pm =16

0.01.17

For more information see (Holland, 1975; Goldberg, 1989; Michalewicz, 1996).18

36



Table B.1

Statistics for predicted identification errors.

Error mean max standard dev.

Ti(oC) 0.67 2.71 0.56

Hi(%) 2.69 15.70 2.82
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Table B.2

Statistics for predicted identification errors.

Error mean max standard dev.

June 20, 2004

Ti(oC) 0.62 1.81 0.46

Hi(%) 3.67 23.65 4.14

July 28, 2004

Ti(oC) 0.92 3.48 0.64

Hi(%) 6.61 20.89 6.22
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Table B.3

Results comparison for several summer days.

Performances Cost (% acc)

T (oC) H (%) Windows Neb

mean std mean std acc acc

Jun 11, 2004 MBPCGA 1.6 1.7 9.5 9.6 0.12 5.64

(1) Current 1.6 1.8 15.0 14.2 3.17 10.30

Jun 15, 2004 MBPCGA 2.3 2.1 9.4 9.5 0.17 3.00

(2) Current 2.4 2.3 14.8 14.3 1.84 11.63

Jun 20, 2004 MBPCGA 2.1 2.4 7.2 8.3 0.20 4.95

(3) Current 2.1 2.6 13.9 14.3 2.61 12.40

Jul 28, 2004 MBPCGA 2.3 2.6 13.5 12.2 0 0

(4) Current 3.1 3.2 19.6 12.1 1.26 0.48
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Fig. B.1. Greenhouse climatic model.
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Fig. B.2. Experimental (continuous plot) and model (discontinuous plot) Ti and Hi,

for June 11 (left) and June 15 (right), 2004.
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Fig. B.3. Experimental (continuous plot) and model (discontinuous plot) Ti and Hi,

for June 20 (left) and July 28 (right), 2004.

43



Fig. B.4. Model Based Predictive Control basic elements.
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Fig. B.5. MIMO Control structure for Model Based Predictive Control with GA.
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Fig. B.6. Climatic greenhouse model used for prediction.
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Fig. B.7. Control results: June 11, 2004.
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Fig. B.8. Results analysis: June 11, 2004.
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Fig. B.9. Control results: June 15, 2004.
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Fig. B.10. Results analysis: June 15, 2004.
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Fig. B.11. Control results: June 20, 2004.
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Fig. B.12. Results analysis: June 20, 2004.
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Fig. B.13. Control results: July 28, 2004.
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Fig. B.14. Results analysis: July 28, 2004.
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