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Abstract

New challenges in engineering design lead to multiobjective (multicriteria) prob-

lems. In this context, the Pareto front supplies a set of solutions where the designer

(decision-maker) has to look for the best choice according to his preferences. Visu-

alization techniques often play a key role in helping decision-makers, but they have

important restrictions for more than two-dimensional Pareto fronts. In this work,

a new graphical representation, called Level Diagrams, for n-dimensional Pareto

front analysis is proposed. Level Diagrams consists of representing each objective

and design parameter on separate diagrams. This new technique is based on two

key points: classification of Pareto front points according to their proximity to ideal

points measured with a specific norm of normalized objectives (several norms can be

used); and synchronization of objective and parameter diagrams. Some of the new

possibilities for analyzing Pareto fronts are shown. Additionally, in order to intro-

duce designer preferences, Level Diagrams can be coloured, so establishing a visual

representation of preferences that can help the decision-maker. Finally, an example

of a robust control design is presented - a benchmark proposed at the American

Control Conference. This design is set as a six-dimensional multiobjective problem.

Key words: multiobjective optimization, multidimensional visualization, decision

making tools, high dimensional Pareto front
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1 Motivation1

In numerous engineering areas, the task of obtaining suitable designs becomes2

a multiobjective (or multicriteria) problem. This means it is necessary to look3

for a solution in the design space that satisfies several specifications (objec-4

tives) in the performance space. Generally, these specifications are conflicting,5

that is, there is no simultaneous optimal solution for all of them. In this con-6

text, the solution is not unique, instead there is a set of possible solutions7

where none is best for all objectives. This set of optimal solutions in the de-8

sign space is called the Pareto set. The region defined by the performances9

(the value of all objectives) for all Pareto set points is called the Pareto front.10

The exact determination of the Pareto front is unrealistic for real-world prob-11

lems, as it is usually an infinite set. Therefore, it is usual to focus on obtaining a12

discrete approximation. A common step for solving a multiobjective optimiza-13

tion problem is to obtain the discrete approximation of the Pareto front. This14

is an open research field where numerous techniques have already been devel-15

oped [19] and where new techniques are being constantly developed [17,14].16

An alternative, and very active research line, is Multiobjective Evolutionary17

Algorithms [5,9]. In general, these algorithms supply reasonable solutions for18

Pareto front approximations. Once obtained, the next step for the designer19

is to select one, or more, solutions inside the Pareto front approximation.20

The final solution is often selected using methodologies that normally include21

designer preferences. Different approaches to introducing preferences can be22

found in the literature [19,4,25]. The usual classification is based on when the23

Decision Maker (DM) is consulted: a priori, a posteriori, and progressive (or24

interactive) decision; and the DM has to introduce preferences before, after,25
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or during the optimization process respectively.26

Decision-making techniques (decision support systems), or simply tools for27

helping decision-makers, is a field in constant development with interesting28

and successful solutions in:29

• A priori methodology [16].30

• Progressive methodology [22].31

• A posteriori methodologies [7,23,6,21,26,13,12].32

It is widely accepted that visualization tools are valuable and provide decision-33

makers with a meaningful method to analyze the Pareto set and select good so-34

lutions. For two-dimensional problems (and sometimes for three-dimensional)35

it is usually straightforward to make an accurate graphical analysis of the36

Pareto set point possibilities, but this becomes more difficult for higher di-37

mensions. Several of the techniques proposed for multidimensional visualiza-38

tion can be consulted at [2]. The most common are:39

• Scatter diagrams: The visualization consists of an array of scatter diagrams40

arranged in the form of an n x n matrix. Each dimension of the original41

data defines one row and column of the matrix. The complexity of the42

representation increases notably with the dimension.43

• Parallel coordinates: A multidimensional point is plotted in a two-dimensional44

graph. Each dimension of original data is translated to an x coordinate in45

the two-dimensional plot. This is a very compact way of presenting multi-46

dimensional information, but with large sets of data it loses clarity and the47

analysis becomes difficult to perform.48

Other more complex, but interesting, alternatives offering graphical represen-49
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tation can be consulted at [1,24,11,27].50

This work contributes a new alternative, called Level Diagrams. It enables51

easier analysis of the Pareto set (and Pareto set approximations supplied by52

multiobjective optimization techniques) and so may become a useful tool for53

decision-makers. Level diagrams can be used in an a priori and progressive54

methodology to help the DM. Level Diagrams tries to be a geometrical visu-55

alization of the Pareto front and set, which when combined with a colouring56

methodology of the points based on preferences, can be a powerful tool to help57

DM’s make decisions.58

The following sections describe the proposed graphical representation and59

show simple examples. Subsequently, this representation is used in a more60

complex problem that involves choosing an adequate solution to a multiobjec-61

tive problem with six dimensions in performance space and six dimensions in62

parameter space. Additionally, a method to show designer preferences in the63

Level Diagrams is enabled by colouring the points.64

2 Level Diagrams for Pareto front65

Multiobjective problems can be formalized as follows:66

θ = [θ1, . . . , θl] ∈ D
J(θ) = [J1(θ), . . . , Js(θ)]

min
θ∈D

J(θ) (1)

where θ is the decision vector, D is the decision space, and J(θ) is the objective67

vector.68
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Without loss of generality, a multiobjective minimization problem is consid-69

ered 1 . This involves the simultaneous minimization of all objectives Ji(θ). In70

general, there is no single solution: in fact, there is a set of solutions where71

none is better than others. Using a definition of dominance, the Pareto set72

Θp is the set of every non-dominated solution. Pareto dominance is defined as73

follows.74

A solution θ1 dominates another solution θ2, denoted by θ1 ≺ θ2, if75

∀i ∈ {1, . . . , s}, Ji(θ
1) ≤ Ji(θ

2) ∧ ∃k ∈ {1, . . . , s} : Jk(θ
1) < Jk(θ

2) (2)76

Therefore, the Pareto optimal set ΘP , given by77

ΘP = {θ ∈ D | � θ̃ ∈ D : θ̃ ≺ θ} . (3)78

ΘP is unique, and normally includes infinite solutions. Hence, a set Θ∗
P , with79

a finite number of elements from ΘP , should be obtainable 2 , and this should80

be the goal of multiobjective algorithms. In fact, the realistic goal of a multi-81

objective algorithms is to obtain a discrete approximation of the Pareto front.82

In the following, this discrete approximation is referenced as Θ∗
P .83

At this point, the decision-maker has a set Θ∗
p ⊂ Rl, that constitutes the84

Pareto set discrete approximation and an associated set of objective values for85

every point that constitutes an approximation to the Pareto front J(Θ∗
p) ⊂ Rs.86

The Level Diagrams tool is based on the classification of the Pareto front87

1 A maximization problem can be easily converted to a minimization problem, for

instance for each one of the objectives that have to be maximized, the following

transformation could be applied: max Ji(θ) = −min(−Ji(θ))
2 Notice that Θ∗

P is not unique.
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approximation (J(Θ∗
p)) according to the proximity to the ideal point 3 .88

For this classification, every objective (Ji(θ), i = 1 . . . s) is normalized with re-89

spect to its minimum and maximum values on the Pareto front approximation,90

J̄i(θ), i = 1 . . . s:91

JM
i = max

θ∈Θ∗
p

Ji(θ); Jm
i = min

θ∈Θ∗
p

Ji(θ); i = 1 . . . s (4)92

J̄i(θ) =
Ji(θ) − Jm

i

JM
i − Jm

i

→ 0 ≤ J̄i(θ) ≤ 1 (5)93

A norm is applied to evaluate the distance to the ideal point. Different norms94

could be used to obtain different characteristics of the diagrams, the most95

common being:96

• 1-norm: ||J̄(θ)||1 =
∑s

i=1 |J̄i(θ)|97

• Euclidean norm (2-norm): ||J̄(θ)||2 =
√∑s

i=1 J̄i(θ)298

• Infinite norm (∞-norm): ||J̄(θ)||∞ = max{J̄i(θ)}99

Depending on the selected norm and the dimension of the objective vector,100

the value for each is:101

0 ≤ ||J̄(θ)||1 ≤ s (6)
0 ≤ ||J̄(θ)||2 ≤

√
s (7)

0 ≤ ||J̄(θ)||∞ ≤ 1 (8)

Each norm gives a different point of view of the Pareto front shape, for in-102

stance:103

• Euclidean norms supply an accurate evaluation of the conventional geomet-104

3 The ideal point [19] is a point with the minimum value of the Pareto front at each

objective.
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rical distance to the ideal point, and then offer a better view of the ‘real’105

shape.106

• ∞-norm can supply information about the worst objective for a specific107

point, and is useful for trade-off analysis between different objectives. An108

increment in this norm directly reveals a worsening of at least one of the109

objectives. The use of ∞-norm is the generalization of the representation110

by layers described at [3].111

To plot Level Diagrams, the points of the Pareto front are sorted in ascending112

order of the value of the ||J̄(θ)||x. Once every point is classified, the graphical113

representation of the Pareto front, and the Pareto set, is performed with the114

following methodology. Each objective (Ji) and decision variable (θj) has its115

own graphical representation. Axis Y on all the graphs corresponds to the value116

of ||J̄(θ)||x, and this means that all graphs are synchronized with respect to117

this axis. Axis X corresponds to values of the objective, or decision variables,118

in physical units.119

It is important to remark that for an adequate interpretation of Level Dia-120

grams, each objective and component of a point is represented at the same121

Y position (level) for all graphs, and this means all information for a single122

point is drawn at the same position on the Y axis for all graphs Ji and θj .123

The following simple example of Level Diagrams is shown to clarify this new124

alternative. A classical 2D problem is selected, although Level Diagrams is not125

necessary for a 2D problem (classical representation is sufficient).126

Characteristics of the multiobjective problem 1 (MOP1) are:127

−105 ≤ θ ≤ 105,

8



J1(θ)= θ2, (9)
J2(θ)= (θ − 2)2, (10)
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Figures 1 and 2 show a 2D classical representation and Level Diagrams re-128

spectively 4 for a discrete set of Pareto points of the MOP1 problem. Figure 1129

4 Objective and parameter axes with a physical meaning are marked with Ji (Ji

Units) and θ (θ Units) respectively. For a real problem, these ‘Units’ have a spe-

cific meaning and offer a real meaningfulness that gives valuable information to the

designer.
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shows the most common type of representation of a 2D Pareto front 5 . Isolines130

of 1-norm on the the same figure are shown.131

Each point of the Pareto front J(Θ∗
p) corresponds to a point on each graph132

(J1 and J2) on Level Diagrams (see figure 2). For instance, point A at figure133

1 corresponds to points A on all graphs (J1, J2) of figure 2, point B of figure134

1 corresponds to points B in figure 2, etc.135

The Pareto set Θ∗
p is drawn in a similar way. The classification of the Pareto136

front points is maintained, and then for each component of a Pareto set there137

is an associated graph. A point is drawn at the same level (Y coordinate) on138

each graph and this level is the same for the associated Pareto front point (see139

graph θ at figure 2).140

In the Level Diagram representation, point A of the Pareto front of figure 1 is141

represented with three points in figure 2. One point is shown in the J1 graph,142

one point in the J2 graph, and another in the θ graph. All these points are at143

the same position on the Y axis, and this position shows the distance to the144

ideal point with a particular norm, (in the example, 1-norm).145

3 Pareto front graphical analysis146

The proposed graphical representation enables a new analysis of large sets of147

Pareto points (or Pareto point approximation obtained from a multiobjective148

optimization algorithm). Pareto fronts and sets can also be analyzed simul-149

taneously. This new alternative gives the DM valuable information about the150

5 Each objective on one axis. This type of representation is only possible for 2D and

3D cases.
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characteristics of the different zones of the Pareto front. Remember, that all151

points of the Pareto front are optimum in some sense, and could be useful152

for different design alternatives depending on DM preferences. Some of the153

characteristics that can be analyzed are:154

• The points situated at the lower levels corresponding to the zones of the155

Pareto front nearer to the ideal point.156

• Qualitative analysis of Pareto front or set discontinuities: these are visible157

when a vertical band at Level Diagrams is empty, or when there are discon-158

tinuities in the norm axes. These empty bands give an unreachable range159

of values for the objective function and parameter design. Remember, that160

X axes are represented in physical units, so the DM can quickly obtain an161

unreachable range in physical units.162

• Analysis of trade-off between several objectives.163

Two simple examples are presented to show the use of this visualization. Both164

examples correspond to typical test functions in multiobjective literature.165

3.1 Test problem MOP2166

This test problem has the following characteristics: both Pareto front and167

set are bi-dimensional and discontinuous. Functions to optimize are J(θ) =168

[J1(θ), J2(θ)], θ = [θ1, θ2] where:169

J1(θ) =
(
1 + (A1 − B1)

2 + (A2 − B2)
2
)
, (11)

J2(θ) = (θ1 + 3)3 + (θ2 + 1)2, (12)

A1 = 0.5 sin(θ1) − 2 cos(θ1) + sin(θ2) − 1.5 cos(θ2),

A2 = 1.5 sin(θ1) − cos(θ1) + 2 sin(θ2) − 0.5 cos(θ2),
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B1 = 0.5 sin(θ1) − 2 cos(θ1) + sin(θ2) − 1.5 cos(θ2),

B2 = 1.5 sin(θ1) − cos(θ1) + 2 sin(θ2) − 0.5 cos(θ2),

−π ≤ θ1 ≤ π; −π ≤ θ2 ≤ π.

For the MOP2 problem, the multiobjective evolutive algorithm ε↗-MOGA 6
170

gives 868 points as the Pareto front approximation. The graphics in figure 3171

are obtained with the classical representation.172
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Fig. 3. Classical representation of Pareto front and set for the MOP3 problem.

The graph shown in figure 4 is obtained with the new representation.173

For this problem, the principal characteristics of the Pareto front and set can174

be observed with both visual representations - classical and Level Diagrams.175

Let’s analyze the Pareto front first:176

6 The ε-MOGA variable (ε↗-MOGA) [8,10] is an elitist multiobjective evolutionary

algorithm based on the concept of ε-dominance [20]. ε↗-MOGA obtains an ε-Pareto

set, Θ∗
P , that converges towards the Pareto optimal set ΘP in a distributed manner

around Pareto front J(ΘP ), with limited memory resources. It also dynamically

adjusts the limits of the Pareto front J(Θ∗
P ) and avoids losing the Pareto front

extremities.
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Fig. 4. 1-norm Level Diagrams representation of Pareto front and set approximation

for the MOP3 problem.

• The whole range of J1 between the maximum and minimum can be reached177

by points of the Pareto front. This does not happen for J2 where there are178

unreachable values of the Pareto front (approximately between 4 and 21).179

This means there are discontinuities along the front (or at least along its180

discrete approximation).181

• There are points near the ideal point and so it is relatively simple for the182

designer (or DM) to choose a unique solution.183

• It is quite simple to maintain a low value of J2, but if a value of J1 < 2 is184

required then J2 has to be greatly increased.185

In a similar way, the Pareto set can be analyzed:186

• Values of the Pareto set are localized at two particular zones: θ1 ≈ −3.1,187

θ2 ∈ [−1, 0.75] and θ1 ∈ [0.8, 1], θ2 ∈ [1.55, 2]. Notice that there are discon-188

tinuities in the Pareto set.189

With the new visual representation, it is possible to view the same character-190

istics, and the precision of the range of values is probably improved because191

the Pareto front and set are better related to the physical unit range. For192
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instance, it is easier to see the range value of the nearest point to the ideal193

point: θ1 ≈ −3.1, θ2 ≈ 0.5. In the classical representation, the Pareto set and194

Pareto front are unsynchronized.195

3.2 Test problem MOP3196

Although the new visual representation could seem less intuitive than the197

classical view for bi-dimensional problems, it offers huge possibilities as the198

dimension of the optimization problem grows because it enables a graphical199

analysis that is very difficult to achieve with other methods.200

The MOP3 test problem is not yet a very high dimensional problem, but201

presents some characteristics that complicate analysis in the classical way. The202

MOP3 problem has the following characteristics: the Pareto front is a line in203

the three-dimensional objective space, and the Pareto set is bi-dimensional204

and discontinuous.205

Functions to minimize are J(θ) = [J1(θ), J2(θ), J3(θ)], θ = [θ1, θ2] where:206

J1(θ) = 0.5(θ2
1 + θ2

2) + sin(θ2
1 + θ2

2), (13)

J2(θ) =
(3θ1 − 2θ2 + 4)2

8
+

(θ1 − θ2 + 1)2

27
, (14)

J3(θ) =
1

(θ2
1 + θ2

2 + 1)
− 1.1e(−θ2

1−θ2
2) + 0.2, (15)

−3 ≤ θ1 ≤ 3; −3 ≤ θ2 ≤ 3.

The approximation to the Pareto front is obtained with ε↗-MOGA and has 775207

points. The 3D visual representation is shown in figure 5. As can be seen, it is208

very difficult to obtain useful conclusions about the principal characteristics209

of the Pareto front; and it is difficult to obtain range values for each objective.210
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It is also very difficult to see the nearest zone to the ideal point, and it is not211

clear if there are discontinuities, etc.212

Other common alternatives for graphical representation are:213

• Parallel coordinates. Each objective is represented in a vertical axis as214

shown in figure 6. However, when the Pareto front is described with a large215

number of points, then interpretation with this visual technique becomes216

very complicated.217

• Scatter plot. Consists in the projection of all the pairs of objectives as218

shown in figure 7. In this case, analysis is difficult.219

In both cases, the Pareto front and Pareto set could be synchronized by draw-220

ing each point with different colours, but this method is less direct than the221

synchronization performed in Level Diagrams.222
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Figure 8 shows the Level Diagrams representation for the MPO3 Pareto solu-223

tion. Some interesting conclusions, that may help the DM, can be made:224

• It is a Pareto front with numerous points at the lower levels, and that means225

there are numerous points relatively close to the ideal point. Therefore, it226

is a front where a reasonable compromise between objectives can be found.227
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• The nearest points to the ideal are at: J1 ∈ [0.4, 0.6], J2 ∈ [0.35, 0.55] and228

J3 ∈ [0.15, 0.18]. These values mark the order of magnitude for an adequate229

compromise between all objectives.230

• A similar analysis could be made with the Pareto set. The values of the front231

nearest to the ideal point, have the following range of values: θ1 ≈ −0.5,232
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Fig. 8. 1-norm Level Diagrams representation of the Pareto set and front for the

MPO3 problem.

θ2 ≈ 0.3.233

• If the Pareto front has no discontinuities at any of the objectives, then all234

values inside the range of the Pareto front can be achieved for each objective235

separately. If required by the DM, a specific value of one objective function236

can always be obtained and it is optimum in the Pareto sense. For instance, if237

the designer thinks that J1(θ) has to be in the range [2, 4], after seeing Level238

Diagrams, then it is necessary to choose a point of 1-norm in range [1.2, 1.35].239

At this level, the other objectives and design parameters are situated at the240

ranges: J2(θ) ≈ 0, 0.3 ≤ J3(θ) ≤ 0.35, −2.5 ≤ θ1 ≤ −2 and −1.7 ≤ θ2 ≤ −1.241

Qualitatively, J2 is improved and J3 is worsened - compared with the zone242

nearest to the ideal point. The design parameters are in a zone clearly243

different from the one nearest to the ideal point. Therefore, the designer244

can have an idea of the value for each objective and design parameter.245

• A discontinuity can be observed in the design parameters. There is a a gap246

in the ranges: −2 ≤ θ1 ≤ −1.5 and −1 ≤ θ2 ≤ −0.2.247
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4 Application example for a six-dimensional problem248

To illustrate the Level Diagrams utility, a multiobjective design of a controller249

is described. The problem is based on a robust control benchmark proposed250

at the American Control Conference (ACC). Wie and Bernstein [28] proposed251

a series of problems for robust control - in which the controller designer must252

achieve a trade-off between maximizing stability and robust system perfor-253

mance, and minimizing control effort.254

Fig. 9. A two mass and spring system with uncertainties in the parameters.

Figure 9 shows the process described in the benchmark. It is a flexible structure255

of two masses connected by a spring. x1 and x2 indicate mass 1 and mass256

2 positions. The nominal values for the two masses and for the spring are257

m1 = m2 = k = 1. Control action u is the strength applied to mass 1, and258

controlled variable y is the mass 2 position x2 affected by noise measurements259

v. Moreover, there is a disturbance w on mass 2.260

4.1 Design objectives261

The specific problem is to obtain a coefficient of the controller transfer function262

with six degrees of freedom. The numerator and denominator coefficients give263

the parameter vector to be obtained by optimization θ = (θ1, θ2, θ3, θ4, θ5, θ6):264

Gcontroller(s) =
θ1s

2 + θ2s + θ3

s3 + θ4s2 + θ5s + θ6
(16)265
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Design objectives (Ji(θ)) have to be quantities that the designer wishes to266

minimize. For the robust control benchmark, six functions that supply speci-267

fication values for controller design will be used (also used in [15] and [18]):268

• J1(θ): Robust stability and robust performances (Re(λ)max).269

• J2(θ): Maximum control effort (umax).270

• J3(θ): Worst case settling time (tmax
est )271

• J4(θ): Noise sensitivity (noisemax).272

• J5(θ): Nominal control effort (unom).273

• J6(θ): Nominal settling time (tnom
est )274

To prevent instability problems when nominal or worst case poles are unstable:275

• Nominal control effort and settling time (J5(θ) and J6(θ)) are coerced to276

∞.277

• Maximum control effort (J2(θ)), the worst case settling time (J3(θ)) and278

noise sensitivity (J4(θ)) are coerced to ∞.279

4.2 Graphical analysis of Pareto front280

With the multiobjective evolutionary algorithm ε↗-MOGA [10] a Pareto front281

approximation of 2328 points is obtained 7 . Visual representation of the ap-282

proximations of the Pareto front and the Pareto set is shown in figures 10, 11283

and 12. These figures show the Level Diagrams method with Euclidean norm,284

1-norm and ∞-norm respectively.285

7 An imposed designer constraint is that the search range for each parameter is

limited to θi ∈ [−10, 25]. To obtain this solution, the algorithm has made 52100

evaluations of objective vectors.
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As can be seen, the volume of data hinders graphical analysis. Parallel coordi-286

nates, or scattered plots, are inadequate for this case. However, with the new287

representation method some valuable information can be interpreted.288

Using Level Diagrams 8 the nearest zone to the ideal point of the Pareto front289

can be approximately established (table 1). It is worth remarking that the290

values differ depending on the norm used. For a geometrical interpretation,291

the Euclidean norm gives a better representation. The other norms give useful292

information for the decision-maker and depend on the preferences. It is recom-293

mendable to represent the same Pareto front with different norms to see the294

differences. Usually for DM purposes, it is sufficient to plot with the ∞-norm295

- as can be seen in the following analysis.296

Using the Euclidean norm (figure 10), the lowest value is always over 0.9, and297

that means the Pareto front is relatively far from the ideal point. A sign of298

probable nonconvexity is that all Pareto points are above the hyperspheres of299

the 0.9 radius and below 1.75. Remember, that all objectives are normalized300

and the best value for a single objective is 0 and the worst is 1, meaning all301

points with a euclidean norm of 1 are on the hypersphere surface of radius302

1. This hypersphere is nonconvex, and so it is certain that points above this303

hypersphere correspond to points of nonconvex zones of the Pareto front.304

Another sign of possible nonconvexity can be seen at J4, where the nearest305

zone is horizontal and this means all these points have the same Euclidean306

distance (they are part of a hypersphere) so producing a nonconvex zone.307

8 A more accurate, even an exact, position of the nearest zone to the ideal point

can be achieved by increasing the zoom ratio in the Level Diagrams, but this paper

only intends showing how a DM could use the method in an easy and intuitive way.
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Table 1

Values of objectives and parameter for the nearest points to the ideal.

i 1 2 3 4 5 6

Values with Euclidean norm

Ji [−0.03,−0.01] [0.15, 0.22] ≈ 80 [0.5, 4] [0.12, 0.2] ≈ 80

θi [−5,−0.5] [3, 5] ≈ 0.15 [16, 24] [12, 25] [14, 21]

Values with 1-norm

Ji ≈ −0.015 ≈ 0.17 ≈ 90 ≈ 0.1 ≈ 0.12 ≈ 70

θi ≈ −0.2 [3, 4] ≈ 0.15 [22, 24] [12, 18] [15, 18]

Values with ∞-norm

Ji ≈ −0.45 ≈ 0.3 ≈ 60 ≈ 5 ≈ 0.25 ≈ 50

θi ≈ −5 ≈ 6 ≈ 0.4 ≈ 17.5 ≈ 20.5 ≈ 19

A quick analysis of design parameters shows that parameter θ5 easily reaches308

its highest limit of 25. Therefore, good solutions can probably be found by309

increasing this range. For the other parameters, it is possible to better adjust310

the range of values for a new Pareto front search. For instance, all of the311

parameters (except θ1) are positive.312

With 1-norm Level Diagrams (figure 11) it is possible to see indices of noncon-313

vexity of the Pareto front. In the example, it is easy to see that lower values314

of 1-norm are near the extremes of the Pareto front: the lower 1-norm value315

of J1 is near its worst value, and for J2, J3, J4, J5 and J6 the lower 1-norm316

values are near the low Ji (i = 2, . . . , 6) value.317
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∞-norm Level Diagrams (figure 12) better show the worst objective - and give318

a quick view of the weakness of each solution. It is usual to see V layouts319

in several of the objectives, when an objective increases then others must320

decrease. For this problem, the vertices of the V (the nearest point to ideal)321

at objective J1, J2, J4 and J5 are around 50% of the scale of each function.322

For J3 and J6 the points are mostly concentrated under values of 150 units.323

That means these values are easily attainable - independently of the values of324

the other objectives.325

It can also be seen with all the norms that there are no important discontinu-326

ities in any of the objectives. Reachable ranges for all objectives include the327

complete range of the Pareto front (see axes X). This tells the designer (DM)328

the order of magnitude that the objectives can achieve.329

An interesting remark can be made for table 1: the nearest values with each330

norm are quite different, this is due to the nonconvexity (with a convex Pareto,331

the results are more similar). For instance, by comparing the Euclidean norm332

and ∞-norm it is clear that the geometrical proximity to the ideal point (mea-333

sured with the Euclidean norm) is not the best choice from the trade-off point334

of view (measured with ∞-norm).335

Generally, a nonconvex Pareto front and, in particular, a Pareto front, which336

is far from the ideal point, represents a challenging problem for the DM.337

It is difficult to select a single solution because there is not a clear trade-338

off solution - and so the DM has to select according to his preferences and339

experience. Therefore, ∞-norm Level diagrams offer better alternatives for340

these problems.341

In summary, a quick intuitive and quantitative approach to the performance342
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attainable with the solution of the Pareto front can be made with this graphical343

representation. To extract more quantitative information, these diagrams can344

be zoomed and coloured according to designer preferences - as shown in the345

following sections.346

4.3 Including design preferences347

To conclude with a specific solution, the designer or decision-maker (DM) has348

to establish a set of preferences. As a default, it is possible to select points349

nearest the ideal, but it may be that this is not the preferred solution.350

As mentioned in the motivation section, different approaches to introducing351

preferences can be found in the literature. The Level Diagrams can be used352

in a posteriori and progressive methodology. This graphical representation,353

combined with a colouring methodology of the points based on preference,354

can be a powerful tool to help the DM make a decision.355

The benchmark problem [28] established a specific requirement:356

• The maximum settling time for the nominal system (m1 = m2 = k = 1)357

must be 15 seconds for unit impulse in perturbation w at time t = 0.358

This constraint is translated to the objectives as J6(θ) < 15 sec. The points359

that satisfy the constraints are coloured in dark red (figure 13, J6 diagram360

has been zoomed between 11 and 40 to highlight zones of interest). It is now361

easier for the DM to choose an adequate solution. Among these points, a good362

choice is the point associated with the lowest norm, that is, the nearest one to363

the ideal point, for instance, if ∞-norm is preferred (see worst performance)364
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the solution is (see squared point at figure 13):365

J1 = −0.04855; J2 = 0.449; J3 = 21.9;

J4 = 4.57; J5 = 0.348; J6 = 14.9; (17)
θ1 = −4.643; θ2 = 9.57347; θ3 = 1.49719;

θ4 = 18.7568; θ5 = 22.7352; θ6 = 17.7596

Table 2

Preferences for the controller design.

JHD
i JD

i JT
i JU

i JHU
i

J1 -0.01 -0.005 -0.001 -0.0005 -0.0001 Re(λ)max

J2 0.85 0.90 1 1.5 2 umax

J3 14 16 18 21 25 tmax
est

J4 0.5 0.9 1.2 1.4 1.5 noisemax

J5 0.5 0.7 1 1.5 2 unom

J6 10 11 12 14 15 tnom
est

More sophisticated preferences can be considered, a good and intuitive way366

to set preferences is the idea proposed by Messac [16] with the range of pref-367

erences and the type of optimization to perform (see original source for more368

information).369

In this problem, all objectives have to be minimized and the ranges of prefer-370

ences can be established as shown in table 2. The designer has to choose the371

values Jx
i to define the ranges for each objective according to the following372

classification:373

• Highly desirable (HD): Ji ≤ JHD
i374
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• Desirable (D): JHD
i < Ji ≤ JD

i375

• Tolerable (T): JD
i < Ji ≤ JT

i376

• Undesirable (U): JT
i < Ji ≤ JU

i377

• Highly undesirable (HU): JU
i < Ji ≤ JHU

i378

• Unacceptable (UNA): Ji > JHU
i379

With the table of preferences, it is possible to classify each point of the Pareto380

set according to designer preferences. For example, with table 2, a point is381

classified as follows:382

J(θ) = (−0.0032, 0.95, 22, 0.4, 2.1, 14.5)

↓ (18)
(D, T, HU, HD, UNA, HU)

A scoring system has to be established to colour Level diagrams according to383

this classification. The proposed system follows the ‘ones vs others’ criteria 9
384

rule (OVO rule) established by Messac [16]:385

Full reduction for one criterion across a given region is preferred over full386

reduction for all the other criteria across the next best region.387

In other words: (U, U, U, U, U, U) is preferred over (T, T, T, T, T, HU). A pos-388

sible scoring system follows below:389

• A vector of scores is generated (score), and each position of the vector

corresponds to the score for each range of preferences. For the example of

the six ranges (HD, D, T , U , HU and UNA):

score = (scoreHD, scoreD, scoreT , scoreU , scoreHU , scoreUNA)

9 criterion is equivalent to objective
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• An initial value is assigned for the two first preference ranges:390

· score(0) = scoreHD = 0391

· score(1) = scoreD = 1392

• The following ranges are scored as follows, for i = 2 . . .Nobj − 1 (Nobj is

the number of objectives):

score(i) = Nobj ∗ score(i − 1) + 1

Then, for the example with six ranges of preferences, the score vector is:

score = (0, 1, 7, 43, 259, 1555)

A point A with (U, U, U, U, U, U) has a total score of 6 ∗ scoreU = 258 and a393

point B with (T, T, T, T, T, HU) has a total score of 5∗scoreT +scoreHU = 294.394

As lower scores are better, so point A has a better score than point B satisfying395

the OVO rule.396

Once the score system is established, the colour for the Level diagrams is397

assigned according to the score of each point. Then for the six-dimensional398

problem, if the preferences are those defined in table 2, the resulting coloured399

Level Diagrams are shown in figure 14. A darker colour means a lower score400

and so a better point. The DM can now choose one of the darker points, for401

instance, the point with the lowest norm (squared point at figure 14).402

5 Conclusions403

A new alternative visualization methodology for Pareto front representation404

is presented and called Level Diagrams. It enables analysis of large sets of a405
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high dimensional Pareto fronts and sets. The fundamental idea is classification406

by layers, and synchronous representation of all objectives and parameters. It407

is shown that this Level Diagrams representation enables a good analysis of408

the Pareto front, and so provides an excellent tool to help decision-making. In409

this article, only some of the Pareto front characteristics have been evaluated410

(discontinuities, closeness to ideal point, ranges of attainable values), but it411

already offers valuable information and seems to be open to other characteris-412

tic evaluations. New possibilities for incorporating designer preferences in this413

representation have been developed (based on scoring and colouring points of414

Level Diagrams) and will contribute to improving decision-making tools for415

multiobjective problems.416

Acknowledgments417

Partially supported by MEC (Spanish Government) and FEDER funds: projects418

DPI2005-07835, DPI2004-8383-C03-02 and GVA-026.419

References420

[1] G. Agrawal, C.L. Bloebaum, and K. Lewis. Intuitive design selection using421

visualized n-dimensional pareto frontier. In 46th AIAA /ASME /ASCE /AHS422

/ASC Structures, Structural Dynamics and MaterialsConference, Austin, Texas,423

2005.424

[2] ATKOSoft. Survey of visualization methods and software tools, 1997.425

[3] X. Blasco, J.M. Herrero, J. Sanchis, and M. Martínez. Decision making graphical426

tool for multiobjective optimization problems. Lecture Notes in Computer427

27



Science, 4527:568–577, 2007.428

[4] C.A. Coello Coello. Handling preferences in evolutionary multiobjective429

optimization: A survey. In IEEE Congress on Evolutionary Computation, 2000.430

[5] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley,431

NY, 2001.432

[6] Christian Fonteix, Silvère Massebeuf, Fernand Pla, and Laszlo Nandor Kiss.433

Multicriteria optimization of an emulsion polymerization process. European434

Journal of Operational Research, 153:350–359, 2004.435

[7] Haley Halsall-Whitney and Jules Thibault. Multi-objective optimization for436

chemical processes and controller design: Approximating and classifiying the437

pareto domain. Computers and Chemical Engineering, 30:1155–1168, 2006.438

[8] J.M. Herrero, M. Martínez, J. Sanchis, and X. Blasco. Well-distributed pareto439

front by using the ε↗-MOGA evolutionary algorithm. Lecture Notes in Computer440

Science, 4507:292–299, 2007.441

[9] Juan Manuel Herrero. Non-linear robust identification using evolutionary442

algorithms. PhD thesis, Universidad Politécnica de Valencia, Valencia, Spain,443

2006.444

[10] Juan Manuel Herrero, Xavier Blasco, Miguel A. Martínez, and Javier Sanchis.445

Identificación robusta de un proceso biomédico mediante algoritmos evolutivos.446

Revista Iberoamericana de Automática e Informática Industrial, 3:75–86, 2006.447

[11] Chen-Hung Huang and C.L. Bloebaum. Visualization as a solution aid448

for multi-objective concurrent subspaceoptimization in a multidisciplinary449

design environment. In 10th AIAA/ISSMO Multidisciplinary Analysis and450

Optimization Conference, Albany, New York, 2004.451

[12] Cengiz Kahraman, Da Ruan, and Ibrahim Dogan. Fuzzy group decision-making452

for facility location selection. Information Sciences, 157:135–153, 2003.453

28



[13] Paul J. Lewi, Jul Van Hoof, and Peter Boey. Multicriteria decision making454

using pareto optimality and PROMETHEE preference ranking. Chemometrics455

and Intelligent Laboratory Systems, 16(2):139–144, 1992.456

[14] M. Martínez, J. Sanchis, and X. Blasco. Global and well-distributed pareto457

frontier by modified normalized normalconstraint methods for bicriterion458

problems. Structural and Multidisciplinary Optimization, 34:197 – 207, 2006.459

[15] Miguel Martínez, Javier Sanchis, and Xavier Blasco. Multiobjective controller460

design handling human preferences. Engineering Applications of Artificial461

Intelligence, 19(8):927–938, December 2006.462

[16] A. Messac. Physical programming: effective optimitation for computational463

design. AIAA Journal, 34(1):149–158, January 1996.464

[17] A. Messac and C. A. Mattson. Generating well-distributed sets of pareto465

points for engineering designusing physical programming. Optimization and466

Engineering, 3:431–450, December 2002.467

[18] A. Messac and B. H. Wilson. Physical programming for computational control.468

AIAA Journal, 36(1):219–226, February 1999.469

[19] Kaisa M. Miettinen. Nonlinear multiobjective optimization. International series470

in operation research and management science. Kluwer Academic Publisher,471

1998.472

[20] M.Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence473

and diversity in evolutionary multi-objective optimization. Evolutionary474

Computation, 10(3):263–282, 2002.475

[21] Lionel Muniglia, Laszlo Nandor Kiss, Christian Fonteix, and Ivan Marc.476

Multicriteria optimization of a single-cell oil production. European Journal of477

Operational Research, 153:360–369, 2004.478

29



[22] I.S.J. Packham, M.Y. Rafiq, M.F. Borthwick, and S.L. Denham. Interactive479

visualisation for decision support and evaluation of robustnes - in theory and in480

practice. Advanced Engineering Informatics, 19:263–280, 2005.481

[23] Roberta O. Parreiras, João H. R. D. Maciel, and João A. Vasconcelos. The482

a posteriori decision in multiobjective optimization problems with Smarts,483

Promethee II, and a fuzzy algorithm. IEEE Transactions on Magnetics, 42:1139–484

1142, 2006.485

[24] Andy Pryke, Sanaz Mostaghim, and Alireza Nazemi. Heatmap visualization486

of population based multi objective algorithms. Lecture Notes in Computer487

Science, 4403:361–375, 2007.488

[25] L. Rachmawati and D. Srinivasan. Preference incorporation in multiobjective489

evolutionary algorithms: a survey. In IEEE Congress on Evolutionary490

Computation, 2006.491

[26] J. Renaud, J. Thibault, R. Lanouette, L.N. Kiss, K. Zaras, and C. Fonteix.492

Comparison of two multicriteria decision aid methods: Net flow and rough set493

methods in a high yield pulping process. European Journal of Operational494

Research, 177:1418–1432, 2007.495

[27] Yee Swian Tan and Niall M. Fraser. The modified star graph and the petal496

diagram: Two new visual aids for discretealternative multicriteria decision497

making. Journal of Multi-Criteria Decision Analysis, 7:20–33, 1998.498

[28] B. Wie and D. Bernstein. Benchmark problems for robust control design.499

Journal of Guidance, Control and Dynamics, 15(5):1057–1059, September 1992.500

30



−0.08−0.06−0.04−0.02

1

1.2

1.4

1.6

 J1 (J1 units) 
0.1 0.2 0.3 0.4 0.5

1

1.2

1.4

1.6

 J2 (J2 units) 
200 400 600

1

1.2

1.4

1.6

 J3 (J3 units) 

2 4 6 8

1

1.2

1.4

1.6

 J4 (J4 units) 
0.1 0.2 0.3 0.4

1

1.2

1.4

1.6

 J5 (J5 units) 
200 400 600

1

1.2

1.4

1.6

 J6 (J6 units) 

−10 −5 0

1

1.2

1.4

1.6

 θ1 (θ1 units) 
2 4 6 8 10

1

1.2

1.4

1.6

 θ2 (θ2 units) 
2 4 6

1

1.2

1.4

1.6

 θ3 (θ3 units) 

10 15 20 25

1

1.2

1.4

1.6

 θ4 (θ4 units) 
10 15 20 25

1

1.2

1.4

1.6

 θ5 (θ5 units) 
15 20 25

1

1.2

1.4

1.6

 θ6 (θ6 units) 

Fig. 10. Euclidean norm Level Diagrams representation of the approximation of the

Pareto front and set for the benchmark problem.
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Fig. 11. 1-norm Level Diagrams representation of the approximation of the Pareto

front and set for the benchmark problem.
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Fig. 12. ∞-norm Level Diagrams representation of the approximation of the Pareto

front and set for the benchmark problem.
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Fig. 13. ∞-norm Level Diagrams representation of the Pareto front and set for the

benchmark problem. Points that satisfy J6 < 15 sec are coloured in red (dark colour).

The selected point is squared. J6 diagram has been zoomed between 11 and 40.
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Fig. 14. Coloured ∞-norm Level Diagrams representation of the Pareto front and

set for the benchmark problem. Better points in darker colour. The selected point

(darker with lower norm) is marked with a square.
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