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Abstract: The development of electrocatalysts based on the doping of copper over cobalt spinel
supported on a microporous activated carbon has been studied. Both copper–cobalt and cobalt spinel
nanoparticles were synthesized using a silica-template method. Hybrid materials consisting of an
activated carbon (AC), cobalt oxide (Co3O4), and copper-doped cobalt oxide (CuCo2O4) nanoparticles,
were obtained by dry mixing technique and evaluated as electrocatalysts in alkaline media for
hydrogen evolution reaction. Physical mixtures containing 5, 10, and 20 wt.% of Co3O4 or CuCo2O4

with a highly microporous activated carbon were prepared and characterized by XRD, TEM, XPS,
physical adsorption of gases, and electrochemical techniques. The electrochemical tests revealed
that the electrodes containing copper as the dopant cation result in a lower overpotential and higher
current density for the hydrogen evolution reaction.

Keywords: cobalt spinel; hydrogen evolution reaction; electrocatalysts; copper–cobalt oxide;
microporous activated carbon

1. Introduction

The depletion of fossil fuels and the environmental problems caused by the emissions of
greenhouse and other toxic gases during combustion have greatly encouraged researchers to develop
technologies to extract energy from sustainable energy sources. Hydrogen is considered an ideal
energy carrier to substitute current fuels due to its high specific energy, unlimited availability, the
possibility of on-site production, and the evidence that hydrogen is the cleanest, non-polluting
fuel [1]. Water splitting is suggested as the most appropriate way to produce hydrogen on a large
scale, through the hydrogen evolution reaction (HER). Noble metal-based electrocatalysts, especially
platinum-based materials, exhibit excellent activity toward the hydrogen evolution reaction (HER)
but their commercial use is limited due to their low abundance and high-cost [2–4]. Therefore, the
development of alternative non-noble metal electrocatalysts based on abundant and low-cost materials
has attracted considerable attention to efficiently scale up the production of hydrogen. In order to
obtain an efficient electrocatalyst towards HER, several specific properties are desirable, such as low
hydrogen overpotential, no potential drift with time, good chemical and electrochemical stability, high
adhesion to the support, high tolerance to poisoning by impurities, no environmental problems in the
manufacturing process, and straightforward preparation at a low cost/lifetime ratio [5].
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A wide variety of transition metal-based materials have been investigated towards HER and
some of them exhibited promising results, such as dichalcogenides, metal-oxides, metal phosphides,
carbides, borides, nitrides, metal alloys, and carbon-based compounds, among others [6–9]. In
particular, cobalt-based compounds have emerged as interesting non-noble metal electrocatalysts
because they show excellent performance for hydrogen adsorption [10]. It was shown that cobalt spinel
catalysts (and those doped with another transition metal such as Ni, Fe, or Cu) exhibit good activity
towards HER [11–13]. Specifically, the presence of Cu in the spinel structure significantly enhances the
electrochemical and physicochemical properties towards HER due to the presence of Cu2O, which
decreases the energy barrier for hydrogen adsorption [13–15]. Cobalt spinel materials were synthesized
at a nano-size level and used for HER without any additional supporting material [15,16]. However,
metal oxide nanoparticles can agglomerate, undergo deactivation of active sites, and the electrocatalyst
activity can be lost. The role played by the support is, in consequence, essential for a good performance
of electrocatalysts and carbon materials present several properties—such as high surface area, high
conductivity or low-price—that make them ideal candidates to support these nanoparticles [2,9,17,18].

In the present study, we propose the development of electrocatalysts based on the doping of copper
over cobalt spinel supported by activated carbon. Both copper–cobalt and cobalt spinel nanoparticles
were synthesized using a silica-template method. The nanoparticles were supported by activated
carbon, with a high porosity development, through physical mixture by varying the concentration
of the spinel nanoparticles. The structural, morphological, and electrochemical properties were
investigated with transmission electron microscopy (TEM), X-ray photoelectronic spectroscopy (XPS),
X-ray diffraction (XRD), N2-adsorption isotherms, cyclic voltammetry (CV), and their catalytic activity
towards the hydrogen evolution reaction was also analysed by cyclic voltammetry.

2. Experimental

2.1. Materials and Reagents

Cobalt (II) nitrate hexahydrate (Co(NO3)�6H2O) (Sigma-Aldrich, ACS reagent, St. Louis, MO,
USA), copper (II) nitrate trihydrate (Cu(NO3)�3H2O) (Sigma-Aldrich, 99%, St. Louis, MO, USA),
potassium hydroxide (KOH) (VWR Chemicals, 85 wt.%, Prague, Czech Republic), hydrochloric
acid (HCl) (VWR Chemicals, 37% vol, Fontenay-sous-Bois, France), poly(tetrafluoroethylene) (PTFE)
(Sigma-Aldrich, 60 wt.%, St. Louis, MO, USA), ethanol (VWR Chemicals, 96% vol, Fontenay-sous-Bois,
France), and silica xerogel (Sigma-Aldrich, TLC high-purity grade, St. Louis, MO, USA). All the
reagents were used without any further purification process.

2.2. Synthesis Procedure

The activated carbon (AC) was prepared from a Spanish anthracite via chemical activation with
KOH, following the procedure described elsewhere [19]. Briefly, the AC was synthesized by a chemical
activation with KOH using an activating agent:anthracite ratio of 3:1 and by heating in a N2 atmosphere
(400 mL/min) from room temperature to 750 ◦C at a heating rate of 5 ◦C·min−1. The maximum
temperature was kept for 2 h. After that, the AC was washed several times with a 5 M HCl solution
and with distilled water until free of chloride ions, and then dried at 110 ◦C for 12 h.

Co3O4 nanoparticles were prepared by a nanocasting method with a commercial silica xerogel
template [20]. First, a 1.6 M ethanolic solution of Co(NO3)2·6H2O was used to fill the pores of the silica
sacrificial template via the incipient wetness impregnation method. The solvent was evaporated to
dryness at 80 ◦C. The impregnation–drying cycle was repeated three times to obtain a high loading of
the cobalt salt, and then the material was heat-treated in the air up to 400 ◦C for 4 h. After that, the
cobaltite nanoparticles were obtained after dissolution of the silica template with 2 M NaOH.

CuCo2O4 were synthesized with the same procedure as described above by using Cu(NO3)2·3H2O
as the copper salt precursor and a Cu2+/Co2+ molar ratio of 0.5.
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AC-Co3O4 and AC-CuCo2O4 materials were obtained by dry mixing the AC and the metal oxide
powders in an agate mortar for 15 min. Physical mixtures containing 5, 10, and 20 wt.% of either Co3O4

or CuCo2O4 were prepared. The electrocatalysts were named considering the weight percentage of
each component of the mixture as follows: AC-Co5, AC-Co10, AC-Co20, AC-CuCo5, AC-CuCo10,
and AC-CuCo20.

2.3. Characterization Techniques

The as-synthesized oxides were characterized by X-ray diffraction (XRD) using a Cu Kα

(λ = 0.1541 nm) radiation source at a step of 0.05◦ s−1 in the 2θ range from 30◦ to 80◦ on a Bruker D8
(Billerica, USA) Advance diffractometer. Cell parameters were calculated by a computer program
using the peak position obtained after fitting the experimental range with a pseudo-Voigt function per
peak plus a background line. The line-broadening analysis was performed to determine the average
crystallite size [21].

The X-ray photoelectron spectroscopy (XPS, Sussex, UK) analysis was done with VG-Microtech
Multilab 3000 equipment by employing MgKα (1253.6 eV) irradiation as the photo source. The analysis
chamber pressure during scans was approximately 5 × 10−7 Pa and the photoelectrons were collected
into a hemispherical analyzer working in the constant energy mode at a pass energy of 50 eV. The C1s
binding energy from adventitious hydrocarbon was taken as a charge reference and fixed at 284.6 eV.
Peak energies were determined with an accuracy of ±0.2 eV. Signal deconvolution of all XPS curves was
done with mixed Gaussian–Lorentzian line shape functions after a nonlinear Shirley type background
subtraction. The atomic ratio estimations were done, relating the peak areas after the background
subtraction and were corrected relative to the corresponding atomic sensitivity factors. The metal
oxides were characterized by transmission electron microscopy (TEM, JEOL-2010, 200 kV accelerating
voltage, Akishima, Japan). The samples for TEM analysis were prepared by putting the Co3O4 and
CuCo2O4 powders on a standard copper grid. The bulk composition of perovskites was analysed
by energy-dispersive X-ray spectroscopy (EDX) with Bruker XFlash 3001 equipment (Billerica, USA)
attached to the scanning electron microscope (SEM, Hitachi, S3000N, Chiyoda, Japan).

Surface area and porosity of chemically activated carbon and the as-prepared composites were
determined by physical adsorption of N2 (−196 ◦C) and CO2 (0 ◦C), using an automatic adsorption
system (Autosorb-6, Quantrachrome, Boynton Beach, FL, USA). The samples were outgassed at 250 ◦C
under vacuum for 4 h. Nitrogen adsorption results were employed to calculate Brunauer–Emmett–Teller
(BET) surface area values and Dubinin–Radushkevich (DR) micropore volumes (VDR N2) [22,23].
The CO2 adsorption data at these conditions is used to determine the narrow micropore volume (i.e.,
pores below 1 nm) [24]. The pore size distribution of the silica xerogel was determined from the N2

adsorption–desorption isotherm, applying the Barrett–Joyner–Halenda (BJH) method to the desorption
branch [25].

2.4. Electrochemical Measurements

The electrochemical performance of the different electrodes was assessed by cyclic voltammetry
(CV) at 2 mV s−1 in a standard three-electrode cell (Figure S1) in a 0.1 M KOH solution. The working
electrodes were prepared by mixing in an agate mortar 90 wt.% as-prepared materials, 5 wt.% acetylene
black, and 5 wt.% PTFE. The resulting homogenous paste-like material was cold rolled to obtain
electrodes of 1 cm2 and around 7 mg. After that, the paste film was placed on a stainless-steel mesh,
which was used as a current collector, by pressing the electrode onto the mesh under 2 ton for 5 min.
A platinum wire was used as a counter electrode and a Ag/AgCl electrode as a reference electrode.
However, all potentials were referred to as a reversible hydrogen electrode (RHE). The electrochemical
experiments were performed with a VMP3-BioLogic potentiostat, controlled by EC-Lab software.
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To calculate the gravimetric capacitance the following equation was employed:

C =

∫ E2

E1
i(E)dE

(E2− E1)mv
,

where E1 and E2 are the upper (E2) and lower (E1) potential limits in which the charge is calculated
from the voltammogram, m is the mass of the working electrode, and v is the scan rate.

3. Results and Discussion

3.1. Structural and Morphological Characterization

The crystal structure of the nanoparticles synthesized by the silica template method was analyzed
by X-ray diffraction. Figure 1 shows the X-ray powder diffraction patterns of cobaltite and copper
cobaltite nanoparticles. The diffractograms of the as-prepared Co3O4 and CuCo2O4 powders exhibit
reflection peaks at Bragg angles of ca. 31.25◦, 36.70◦, 44.45◦, 55.27◦, 59.21◦, and 65.35◦. These diffraction
peaks match well with the (220), (311), (400), (442), (511), and (440) crystal planes of a cubic spinel
cobaltite and a cubic spinel copper cobaltite (Fd3m [227] space group).
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Figure 1. X-ray diffraction patterns of CuCo2O4 and Co3O4 nanoparticles.

Both the position and the intensities of the diffraction peaks agree with the data given in the
International Centre for Diffraction Data (ICDD) cards for pure Co3O4 (JCPDS-ICDD 9-418 file) and
pure CuCo2O4 (JCPDS-ICDD 1-1155 file). Moreover, the diffraction peaks for CuCo2O4 are slightly
shifted to higher 2θ values with respect to the corresponding peaks in Co3O4. The incorporation
of Cu ions, small atoms with respect to the Co, into the octahedral sites of the cubic spinel Co3O4

structure contracts the lattice parameter. The lattice parameter (a) and the unit cell volume (V) of
the as-synthesized cobalt oxides were calculated by Bragg equation for face-centered cubic crystals
using the (220), (311), (400), (511), and (440) facets of the spinels. In addition, the coherence length of
crystalline domains (i.e., crystallite size) was estimated by the Debye–Scherrer equation [20]. The unit
cell parameters and the crystallite size of the oxides are summarized in Table 1.
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Table 1. Cell parameters and crystallite size of the as-prepared oxide nanoparticles calculated from
diffraction patterns.

Sample a (Å)
ICDD Cards a (Å) V (Å3) dc (nm)

Co3O4 8.09 8.10 532.72 13

CuCo2O4 8.06 8.07 526.47 14

As can be noted, the crystallite size (dc) is very similar for both materials. Furthermore, the lattice
parameter and the cell volume decrease when Cu ions incorporate into the cubic spinel structure of
cobalt oxide, indicating that a single phase is formed. The lattice parameter of CuCo2O4 powder is
very similar to that reported in the literature by Marsan et al. [26] and Gautier et. al [27]. However,
this value is smaller than those reported by other authors (values ranging from 8.11 to 8.13 were
reported) [28–31]. The difference could be ascribed to the preparation method used to synthesize the
spinel CuCo2O4.

Since XRD does not detect crystal structures different from those attributed to the CuCo2O4 spinel,
the SEM-EDS technique was employed to obtain a mapping of copper and cobalt elements. Figure S2
in the supporting information shows an SEM-EDX image of CuCo2O4 that confirms the lack of phase
segregation. Therefore, it was concluded that pure CuCo2O4 was synthesized with this method.

The morphology of the as-prepared Co3O4 and CuCo2O4 nanoparticles was evaluated by TEM
(Figure 2). The micrographs show that both samples are composed of irregular nanoparticles of about
12 nm in size, in close agreement with the crystallite size determined by the Debye–Scherrer equation.
The silica template exhibits mesoporosity in the 3–13 nm range (Figure S3), according to the pore-size
distribution obtained by the BJH method from the nitrogen isotherm, being the maximum of the
distribution at around 9 nm (Figure S3). Hence, as it was pointed out in previous works [20,32], the
formation of nanoparticles takes place within the confined space provided by the mesoporous channels
of the silica template.
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Figure 2. Transmission electron microscopy (TEM) images of (a) Co3O4 and (b) CuCo2O4 nanoparticles.

3.2. Surface Analysis

The surface chemical composition and the oxidation state of cobalt and copper ions in the cubic
spinel powders were investigated by XPS analysis. In Figure 3, Co 2p and Cu 2p spectra recorded from
Co3O4 and CuCo2O4 samples are displayed, whereas the binding energy of the photoemission lines is
reported in Table 2.
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Figure 3. X-ray photoelectron spectra of Co 2p for (a) Co3O4 and (b) CuCo2O4, and (c) Cu 2p for
CuCo2O4.

Table 2. Binding energies of Co 2p and Cu 2p and surface composition obtained from X-ray
photoelectronic spectroscopy (XPS) spectra of Co3O4 and CuCo2O4 nanoparticles.

Sample
Co 2p (eV) Cu 2p (eV) Surface Atomic

Composition (at.%)

2p3/2 2p1/2 Sat. 1 Sat. 2 2p3/2 2p1/2 Sat. Isat/Imain Co Cu Cu/Co

Co3O4 780.2 795.2 789.4 785 – – – – 5.1 – –
CuCo2O4 779.9 794.9 789.4 785.6 934.9 954.9 942.4 0.50 3.9 1.7 0.44

The Co 2p core-level spectrum of Co3O4 spinel (Figure 3a) shows two asymmetric main peaks
separated by a spin-orbit splitting energy of 15 eV, characteristic of a mixture of Co2+ and Co3+

ions [30,33]. The Co 2p3/2 peak is centered at 780.2 eV and can be deconvoluted into two peaks at
779.9 and 781.3 eV. The first peak is associated with the Co3+ that it is contained in octahedral oxygen
coordination and shows a satellite peak at 9.5 eV above the main 2p3/2 line. The second peak is related
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to Co2+ with tetrahedral coordination and shows a satellite peak above 3.6–6.5 eV above the main 2p3/2

line [34,35].
The Co 2p spectra of CuCo2O4 is shown in Figure 3b and reveals that the Co 2p3/2 and Co

2p1/2 peaks appear at slightly lower binding energies than those of Co3O4. The Co 2p3/2 signal can
again be deconvoluted into two peaks centered at 779.8 and 781.3 eV that correspond to Co3+ and
Co2+, respectively. According to Fierro et al. [36], the binding energy (BE) shifts to lower values in
copper–cobalt oxides because of a change in the cation distribution at the spinel surface when Co2+ is
replaced by Cu2+ ions into the spinel lattice.

The Cu 2p core-level spectrum of the CuCo2O4 is characterized by two main peaks ascribed to Cu
2p3/2 Cu 2p1/2 photoemission lines and a strong satellite signal between them (Figure 3c). The Cu-2p3/2

is characterized by an asymmetric peak centered at 934.9 eV with an intense satellite peak at 942.4 eV,
and the Cu 2p1/2 component is characterized by a peak at ca. 954.9 eV. The peak at 934.9 eV is assigned
to octahedral Cu2+, whereas the peak located at a BE of 932.7 eV can be attributed to tetrahedral
Cu+, which comes from the recognized X-ray induced reduction of Cu2+ to Cu+ in the presence of
adventitious carbon [26,28,30,31,36]. Therefore, the separation of approximately 20.0 eV between the
main Cu 2p peaks is indicative of the existence of an open 3d9 shell of Cu2+ [37]. In addition, the
Isat/Imain ratio is similar to the values reported in the literature for CuO [38] and indicates that Cu2+

ions on the surface of the inverse spinel adopt mainly octahedral geometry as that of CuO. The Co3O4

adopt a normal spinel crystal structure, which can be considered as a face-centred cubic (fcc) packing
of oxygen anions, with Co(III) filling half the octahedral interstitial sites and Co(II) filling one-eighth of
the tetrahedral sites. The substitution of Co ions by foreign divalent transition metals is known to
promote an inhomogeneous distribution of cations and produce a partially inverted spinel structure,
with foreign and cobalt ions occupying both octahedral and tetrahedral sites. In the CuCo2O3, the
copper cation is preferentially positioned in an octahedral position, with the ratio Cu(II) tetrahedral to
Cu(II) octahedral at around 0.4 [31].

Table 2 includes also the surface composition of the as-synthesized oxide materials and, as can
be noted, the surface of the copper–cobalt oxide exhibits a concentration of both cations close to the
expected Co:Cu ratio (2:1).

3.3. Textural Characterization of As-prepared Materials

As is shown in Figure S4, the activated carbon derived from the Spanish anthracite and the hybrid
materials both exhibit a type I isotherm for N2 adsorption, which is characteristic of microporous
solids. The BET surface area and the micropore volumes calculated from N2 adsorption data at −196 ◦C
[VDR(N2)] and CO2 adsorption data at 0 ◦C [VDR(CO2)] are collected in Table 3.

The BET surface area and the micropore volumes of the cobalt oxide-activated carbon and
copper–cobalt oxide-activated carbon hybrid materials (AC-Cox and AC-CuCox) were measured in
order to evaluate the influence of the oxide content on the porosity of the activated carbon. It can be
observed that the electrocatalysts present lower BET surface area and micropore volume compared to
AC, due to the partial blockage of pores producing values of surface area lower than the corresponding
amount of AC. This means that these physical mixtures do not follow the dependence predicted by the
rule of mixtures [39].
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Table 3. Textural parameters obtained by N2 and CO2 isotherms for pristine AC-Cox and
AC-CuCox hybrid materials. The last column shows the gravimetric capacitance derived from
cyclic voltammetry experiments.

Sample SBET
(m2 g−1)

VDR N2
(cm3 g−1)

VDR CO2
(cm3 g−1)

C
(F g−1)

AC 3310 1.30 0.76 262
Co3O4 112 [32] – – 1

CuCo2O4 42 [40] – – 2
AC-Co5 2810 1.21 0.52 261
AC-Co10 2780 1.16 0.43 247
AC-Co20 2460 1.03 0.37 154

AC-CuCo5 2910 1.20 0.51 188
AC-CuCo10 2780 1.15 0.51 178
AC-CuCo20 2220 0.92 0.40 174

3.4. Electrochemical Characterization and Catalytic Activity Towards HER

The electrochemical behavior of the electrocatalysts was studied by cyclic voltammetry in a
three-electrode cell configuration. First, we will address the response of electrocatalysts in the potential
region preceding the hydrogen evolution reaction. In this way, Figure S5 displays cyclic voltammograms
recorded between 0.00 and 0.80 V for each sample, where pseudo-capacitive responses associated
mainly with the formation of the electrochemical double-layer can be observed in all cases. Figure
S5a reveals that an increase in the cobalt content results in a progressive loss of voltammetric charge,
and therefore of specific capacitance (see Table 3 for numerical values). These values agree with the
decrease in the surface area obtained. Interestingly, Figure S5b shows that when copper is present the
decrease in voltammetric charge is less significant compared to the Co-containing samples.

The electrocatalytic activity towards the hydrogen evolution reaction of all materials was studied
in the same 0.1 M KOH solution. The results are displayed in Figure 4, where cyclic voltammograms
recorded between −0.40 V and 0.80 V have been depicted together. The activated carbon and the two
pristine spinels (copper doped and non-doped) were included in the study for comparison purposes.
It can be clearly observed that hybrid electrocatalysts obtained after mixing spinels and activated carbon
improve the electrochemical performance compared to the un-supported spinels. In fact, the influence
of carbon support in the catalytic activity of cobalt spinels towards the oxygen reduction reaction (ORR)
was already carefully studied in chemical mixtures [41], although this has not been reported for HER.
The favorable effect reported was attributed to better control over particle agglomeration induced
by the supporting materials. Furthermore, Vulcan XC-72R has been used as an electric conductor to
improve the catalytic properties of metal oxides [30]. According to previous studies [42], weak physical
interactions exist between activated carbon and spinel nanoparticles that facilitate electron transfer
between them, thus improving the overall electrical conductivity and enhancing the catalytic activity
of these materials [30].
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Figure 4 shows the electrocatalytic activities of all samples, as examined by cyclic voltammetry.
Moreover, Table 4 shows additional data on HER electrocatalysis. Again, the control over nanoparticle
sizes and the enhancement in electrical conductivity explain the higher catalytic activity towards
HER shown by both doped and undoped spinels supported on activated carbon. Moreover, the
substitution in the octahedral position by Cu cations could also contribute to the increase in the
electrocatalytic activity.

Table 4. Electrochemical parameters of the different materials tested in the hydrogen evolution reaction.

Sample Tafel Slope
(mV/dec)

Current (A·g−1) at
−0.4 V vs. RHE

Current (A·cm−2) at
−0.4 vs. RHE

AC 416 −1.65 −9.5
Co3O4 132 −0.75 −5.2

CuCo2O4 124 −0.15 −1.0
AC-Co5 574 −1.60 −11.4

AC-Co10 457 −2.10 −12.8
AC-Co20 438 −1.45 −9.3

AC-CuCo5 454 −1.30 −8.1
AC-CuCo10 347 −2.15 −13.8
AC-CuCo20 300 −2.85 −14.6

It is known that porous carbon materials can be used to store hydrogen by the electro-reduction
of water in alkaline and neutral media [43,44]. The storage occurs through reversible C–H bonds in
which weakly bonded hydrogen is dominant in KOH [44]. The presence of the activated carbon can be
beneficial to increase the concentration of adsorbed and dissociated hydrogen species, thus acting as a
hydrogen reservoir. A tentative mechanism is presented, showing the hydrogen evolution reaction
can occur in the presence of both materials. According to previous studies, HER can proceed through
either Volmer–Tafel or Volmer–Heyrovsky pathways in basic mediums [45,46]:

H2O + e−→ Hads + OH− (Volmer)

Hads + Hads→ H2 (Tafel)

H2O + e−→ Hads + OH− (Volmer)
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Hads + H2O + e−→ H2 + OH− (Heyrovsky)

Both mechanisms involve the adsorption of H2O molecules and their subsequent splitting into
adsorbed H atoms and OH− ions. In all the materials, the high values of the Tafel slope indicate that
the rate determining step is the Volmer reaction. However, this Tafel slope decreases in the AC-copper
oxide electrocatalysts in comparison with the AC, indicating the electrocatalytic effect of copper in the
material. In addition, the microporous activated carbon might act as a hydrogen reservoir, providing
Hads species to the oxide nanoparticles, where recombination into molecular hydrogen eventually
occurs. This hypothesis needs further research to determine the role of the AC.

In summary, it seems that there is a relevant synergy between both the spinel nanoparticles and
the carbon surface that results in an increase in the HER rate.

Besides the beneficial effect of the carbon support, Figure 4b shows that the addition of copper as
a dopant leads to a noticeable increase in the catalytic activity. Obviously, the hydrogen evolution
reaction takes place also on the undoped cobalt spinel, but increasing the relative amount of this active
material reveals an inconsistent effect on the current at −0.4 V for hydrogen evolution (Figure 4a). On
the contrary, the presence of copper improves the overall voltammetric response and increases the
cathodic current at −0.4 V for this electrochemical reaction (Table 4). Such effects seem to be related to a
change in the charge density at the spinel surface, which can chemisorb reactive water molecules more
easily in the presence of copper ions due to the increase in oxygen vacancies and Co3+, thus facilitating
the HER. A similar result was reported after doping with iron a cobalt spinel, for which the adsorption
of water molecules was favored in Fe3+ in relation to Co2+ [12].

4. Conclusions

Hybrid materials, consisting of nanostructured cobalt or copper-doped cobalt spinels dispersed in
a highly microporous activated carbon, were prepared by a dry physical mixing, characterized
physicochemically, and tested as electrocatalysts for a hydrogen evolution reaction in an
alkaline medium.

The use of a high surface area activated carbon as physical support improves the overall
performance of cobalt-based spinel electrocatalysts. Activated carbon prevents the agglomeration of
metal oxide particles and, in addition, also seems to play an active role in the HER. This is due to
its well-known capacity to store hydrogen in alkaline conditions and also by an enhancement in the
electrical conductivity of the oxide nanoparticles. As a consequence, a higher catalytic activity towards
HER for the supported spinels compared to the un-supported materials is obtained.

It was demonstrated that the surface of copper–cobalt oxide particles shows a higher number
of oxygen vacancies and Co3+. This surface composition results in active sites with a higher activity
for hydrogen evolution than the undoped cobalt spinel, which eventually favors the formation of
molecular hydrogen. Accordingly, the incorporation of copper as the dopant cation results in lower
overpotential and higher current density for the target reaction.

From the point of view of a practical application, cobalt spinel doped with copper constitutes
a promising alternative catalyst for HER, since the cost of this material is significantly lower than
commercial platinum-based materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/8/1302/s1,
Figure S1: Configuration of a three-electrode cell, Figure S2: SEM-EDS elemental mapping of Co, Cu, and
overlapped Co-Cu, Figure S3: BJH pore-size distribution of the silica template, Figure S4: Nitrogen adsorption
isotherms at -196 ◦C for all the hybrid materials: (a) AC-Cox and (b) AC-CuCox (0 ≤ x ≤ 20 wt.%), Figure S5:
Cyclic voltammograms recorded in 0.1 M KOH for all the hybrid materials within the pseudocapacitive potential
region: (a) undoped AC-Cox samples and (b) copper-doped AC-CuCox samples. Scan rate: 2 mV s−1.
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