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Computational uncertainty quantification for
random time-discrete epidemiological models
using adaptive gPC

J. Calatayuda, J.-C. Cortésa,∗, M. Jorneta, R.-J. Villanuevaa

Population dynamics models consisting of non-linear difference equations allow us to get a better understanding of

the processes involved in epidemiology. Usually, these mathematical models are studied under a deterministic approach.

However, in order to take into account the uncertainties associated with the measurements of the model input parameters,

a more realistic approach would be to consider these inputs as random variables. In this paper, we study the random

time-discrete epidemiological models SIS, SIR, SIRS and SEIR using a powerful unified approach based upon the so-called

adaptive generalized Polynomial Chaos (gPC) technique. The solution to these random difference equations is a stochastic

process in discrete time, which represents the number of susceptible, infected, recovered, etc. individuals at each time step.

We show, via numerical experiments, how adaptive gPC permits quantifying the uncertainty for the solution stochastic

process of the aforementioned random time-discrete epidemiological model and obtaining accurate results at a cheap

computational expense. We also highlight how adaptive gPC can be applied in practice, by means of an example using real

data. Copyright c© 2018 John Wiley & Sons, Ltd.

Keywords: Stochastic difference equations; Computational methods for stochastic equations; Random time-

discrete epidemiological model; Random non-linear difference equations model; Random population
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1. Introduction

Discrete models, usually expressed via finite difference equations, and continuous models, often expressed by means of ordinary

and partial differential equations, allow us to get a better understanding of the processes involved in epidemiology [1, 2, 3, 4, 5].

These models for population dynamics have been usually studied in a deterministic sense, treating the involved input parameters

(initial conditions, forcing term and/or coefficients) as constants. Recent examples in this regard, dealing with important

epidemiological models by applying new deterministic approaches, like nonstandard finite difference schemes, modal infinite

series expansions, analysis of bifurcations, for example, include [6, 7, 8]. However, due to the inherent uncertainty associated

with epidemiological phenomena, it would be better to treat the input parameters in a random sense. For instance, the coefficient

that describes the proportion of individuals that recover from a disease and become susceptible again should take into account

the uncertainties involved in the measurements, due to errors in the collection of data, missed individuals, lack of information,

etc.

The most well-known method to deal computationally with stochastic systems is Monte Carlo simulation [9]. Although it

is an effective and easy to implement approach to quantify the uncertainty, the slowness to get accurately the digits in the

computations makes this technique computationally expensive.

Only recently, some random continuous-time epidemic models have been studied using generalized Polynomial Chaos (gPC)

[10, 11, 12]. In [12], the authors quantified the effect of randomizing the coefficients in a SIR and SIRS model (without vital

dynamics, i.e., they do not include birth and death rates in their formulation) using gPC. Since gPC approach uses orthogonal
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polynomials from the Askey-Wiener scheme, the applications were limited to parameters following only some standard probability

distributions.

Recently, in [13, 14, 15], the authors modified gPC to an adaptive gPC computational approach. In the adaptive gPC approach,

the orthogonal polynomials do not belong to the Askey-Wiener scheme. Instead of this, these polynomials are constructed directly

from the random parameter inputs, by a Gram-Schmidt orthonormalization procedure (if the random inputs are independent) or

by using polynomial canonical bases (if the random inputs are not independent). The numerical experiments from [13, 14, 15]

showed that adaptive gPC provides reliable results for small basis orders of the solution process. This allows us to obtain the

main statistical moments associated with the solution process: expectation, variance, etc. It must be pointed out that different

versions of adaptive gPC have been successfully proposed [16, 17] and applied to deal with complex problems [18, 19] and other

important problems arising in areas like Fluid Mechanics, Reliability, Wave Propagation, etc., [20, 21, 22].

In this paper, we study relevant non-linear time-discrete epidemiological models, in which the parameters are assumed to be

random variables. To the best of our knowledge, although particular random differential equation models for population dynamics

have been extensively analyzed via gPC [12, 23, 24], random difference equations modeling epidemiological processes have not

been studied using a polynomial chaos approach. Moreover, the novel variation of gPC that we deal with, adaptive gPC, permits

covering a wide range of epidemiological models in which random input parameters may take any probability distributions with

no independence assumptions. Our study will comprehend the time-discrete SIS, SIR (without and with vital dynamics), SIRS

and SEIR models, although other epidemiological systems, like SEIQV or SEIVR models, could be considered (see [25, 26]). As

it shall be seen later, when applying the adaptive gPC approach to these models, a deterministic system of non-linear recursive

equations is obtained for the coefficients of the expansions. After iterating the deterministic difference system, approximations

for the expectation and variance of the solution process will be obtained. This approach will allow us to quantify the uncertainties

in the number of susceptible, infected, recovered, etc., individuals. More specifically, for a real epidemic with available measured

data, the coefficients in the time-discrete epidemic model may be estimated in a deterministic manner, using a minimization

procedure. This key issue will be illustrated via an appropriate example later. To analyze uncertainty associated with the modeling,

one could set a non-informative distribution to each one of the parameters, with mean value being the deterministic estimate

obtained, and with small variance to avoid instability problems [12]. The meaning of instability, in the setting of epidemiological

models, refers to the case where the model outputs may take values that do not make sense from an epidemiological standpoint.

For example, in the SIR model this situation arises when the number of individuals (susceptible, infected, recovered, etc.) becomes

negative or larger than the total population size. This might occur if one of the model coefficients has large variability. This

sense of instability has been used by other authors in the context of different mathematical models (see for example [27, Sec. 4]

and [12, Sec. 4]).

The structure of the paper is the following. In Section 2, we will explain the time-discrete epidemiological models that we are

going to deal with: SIS, SIR, SIRS and SEIR. In Section 3, the parameters in these epidemiological models will be considered

as random variables, so that the solution of the non-linear system of difference equations will become a stochastic process. The

solution process will be expanded by using adaptive gPC and we will develop the necessary computations until we obtain the

deterministic non-linear system of recursive equations satisfied by the coefficients of the polynomial expansion. In Section 4,

numerical experiments will be performed to show the wide range of applications of our theoretical findings. We will also show

how adaptive gPC can be used in the context of an application with real data. Finally, in Section 5 conclusions will be drawn.

2. Time-discrete epidemic models

In the time-discrete epidemiological models SIS, SIR, SIRS and SEIR, the population is divided into compartments according to

the disease stage of the individual: S(m) denotes the number of susceptible individuals, E(m) the number of exposed individuals,

I(m) the number of infected individuals and R(m) the number of recovered individuals, at time step m. These compartmental

models assume homogeneous mixing, i.e., all individuals are equally likely to contact any other individual [4]. The total population

is assumed to be a constant, say N, either by assuming no birth or death (model without vital dynamics) or assuming that the

birth rate equals the death rate (model with vital dynamics, but no demographic effects).

The SIS model corresponds to diseases that do not confer immunity just after infection. The SIR model refers to epidemics

where there is lasting immunity after infection. If we assume vital dynamics, we add a birth rate equal to the death rate. In

the SIRS model, after infection, the individuals become recovered and immune, but over time some individuals may become

susceptible again. Finally, the SEIR model assumes an exposition (incubation) period before infection and lasting immunity after

infection.

The mathematical formulation for these models is the following:

SIS model

S(m + 1) = S(m)− bS(m)I(m) + aI(m),

I(m + 1) = I(m) + bS(m)I(m)− aI(m),

SIR model

S(m + 1) = S(m)− bS(m)I(m),

I(m + 1) = I(m) + bS(m)I(m)− aI(m),

R(m + 1) = R(m) + aI(m),

SIR model (with vital dynamics)

S(m + 1) = S(m) + µN − µS(m)− bS(m)I(m),

I(m + 1) = I(m) + bS(m)I(m)− aI(m)− µI(m),

R(m + 1) = R(m) + aI(m)− µR(m),

2 Copyright c© 2018 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 00 1–9
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SIRS model

S(m + 1) = S(m) + µN − µS(m)− bS(m)I(m) + cR(m),

I(m + 1) = I(m) + bS(m)I(m)− aI(m)− µI(m),

R(m + 1) = R(m) + aI(m)− µR(m)− cR(m),

SEIR model

S(m + 1) = S(m) + µN − µS(m)− bS(m)I(m),

E(m + 1) = E(m) + bS(m)I(m)− µE(m)− cE(m),

I(m + 1) = I(m) + cE(m)− aI(m)− µI(m),

R(m + 1) = R(m) + aI(m)− µR(m),

where a is the proportion of infective that leave this compartment, b is the proportion of contacts between susceptible and

infective that give rise to a new infected or exposed individual, µ is the birth rate (equal to the death rate), and c is the

proportion of recovered individuals that lose immunity (SIRS model) or the proportion of exposed individuals that become

infective (SEIR model).

Since the population is assumed to be constant, the following relationship S(m) + E(m) + I(m) + R(m) = N fulfills, so we

may remove the last equation of each one of the previous non-linear systems of difference equations.

In what follows, we will consider the input parameters a, b, c and µ as random variables, due to possible errors in their

measurements and the inherent complexity and uncertainty often involved in the biological factors that determine these model

parameters. Although in reality these parameters are independent [12], we think that from a mathematical standpoint it is

interesting to study the population dynamics under a dependence assumption, since it will provide more generality to our

subsequent analysis. On the other hand, the initial conditions S0, E0, I0 and R0 will be considered as constants.

3. Randomization and adaptive gPC

We proceed to analyze the previous randomized epidemiological models. Since the SEIR model is the most complex, our

theoretical development will focus on it. For the other four epidemic models, the final results are analogous. In any case,

the numerical experiments carried out to show the capability of adaptive gPC to quantify uncertainty propagation in discrete

epidemiological models will be tested in all the aforementioned models.

Using the fact that the population is constant, S(m) + E(m) + I(m) + R(m) = N, we delete the equation for R(m) and work

with the first three equations of the SEIR system.

We assume that the input parameters a, b, c and µ are random variables defined in a common complete probability space

(Ω,F ,P), whose measurements depend on the outcome ω ∈ Ω of an experiment: a = a(ω), b = b(ω), c = c(ω) and µ = µ(ω).

Thus, S, E, I and R become time discrete stochastic processes: S(m) = S(m,ω), E(m) = E(m,ω), I(m) = I(m,ω) and

R(m) = R(m,ω). We will assume the proportions a, b, c and µ to follow a pre-established absolutely continuous probability

distribution with finite moments (not necessarily the same distributions, and with no independence assumption) and support in

[0, 1]. In practice, in order to avoid instability problems, the variances of a, b, c and µ must be chosen small enough. As it has

been pointed out at the end of Section 1, in the context of random discrete epidemiological modeling, instability applies to the

physical model itself: it refers to discrete dynamical systems in which one of the variables evolves without bounds. Specifically,

in epidemic models, instability arises when the number of susceptible, infected, recovered, etc., individuals becomes a negative

number or is larger than the total population size. This situation might occur if one of the model coefficients has large variability.

It must be remarked that, although the theoretical support of the model coefficients is contained in [0, 1], a distribution that

may leave [0, 1] but with a negligible probability (for instance, a normal or gamma distributions with mean in [0, 1] and a very

small variance) could be possible in practice. The goal is to quantify the uncertainty for S(m), E(m), I(m) and R(m) using

adaptive gPC [13, 14, 15].

We will work in the Hilbert space of random variables whose variance exists, (L2(Ω), 〈, 〉), where the inner product 〈, 〉 is defined

as 〈X, Y 〉 = E[XY ], being E[·] the expectation operator. Denote ζ1 = a, ζ2 = b, ζ3 = c and ζ4 = µ, and ζ = (ζ1, ζ2, ζ3, ζ4)> (>
is the transpose operator), so that the notation matches with [13, 14, 15]. Let Cpi = {1, ζi , ζ2

i , . . . , ζ
p
i } be the canonical basis of

the polynomials in ζi up to degree p, 1 ≤ i ≤ 4. We distinguish two cases depending on whether ζ1, . . . , ζ4 are independent or

not:

(i) Independent: Consider the inner product with respect to the density of ζi , fζi : 〈g(ζi), h(ζi)〉 = E[g(ζi)h(ζi)] =∫
R g(ζi)h(ζi)fζi (ζi) dζi . Using a Gram-Schmidt procedure, we orthonormalize Cpi : Ξp

i = {φi0(ζi), . . . , φ
i
p(ζi)}. By applying

a simple tensor product [13], we obtain an orthonormal basis Ξ = {φ1(ζ), . . . , φP (ζ)} with respect to the inner product

〈g(ζ), h(ζ)〉 = E[g(ζ)h(ζ)] =
∫
R4 g(ζ)h(ζ)fζ(ζ) dζ, where φ1 = 1 and P = (p + 4)!/(p!4!).

(ii) Dependent: Using a simple tensor product directly on the canonical bases Cpi [15], we obtain the (non-orthonormal) basis

Ξ = {φ1(ζ), . . . , φP (ζ)}, where φ1 = 1 and P = (p + 4)!/(p!4!).

Consider the basis Ξ = {φ1(ζ), . . . , φP (ζ)} constructed in any of the two previous cases (i) and (ii). We want to find

deterministic coefficients Ŝi(m), Êi(m) and Îi(m), 1 ≤ i ≤ P , so that

S(m) ≈
P∑
i=1

Ŝi(m)φi(ζ), E(m) ≈
P∑
i=1

Êi(m)φi(ζ), I(m) ≈
P∑
i=1

Îi(m)φi(ζ).

Math. Meth. Appl. Sci. 2018, 00 1–9 Copyright c© 2018 John Wiley & Sons, Ltd. 3
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We impose these approximations to be a solution of the SEIR model:

P∑
i=1

Ŝi(m + 1)φi(ζ) =

P∑
i=1

Ŝi(m)φi(ζ) + µN − µ
P∑
i=1

Ŝi(m)φi(ζ)− b
P∑
i=1

P∑
j=1

Ŝi(m)Îj(m)φi(ζ)φj(ζ),

P∑
i=1

Êi(m + 1)φi(ζ) =

P∑
i=1

Êi(m)φi(ζ) + b

P∑
i=1

P∑
j=1

Ŝi(m)Îj(m)φi(ζ)φj(ζ)− µ
P∑
i=1

Êi(m)φi(ζ)− c
P∑
i=1

Êi(m)φi(ζ),

P∑
i=1

Îi(m + 1)φi(ζ) =

P∑
i=1

Îi(m)φi(ζ) + c

P∑
i=1

Êi(m)φi(ζ)− a
P∑
i=1

Îi(m)φi(ζ)− µ
P∑
i=1

Îi(m)φi(ζ).

The initial conditions become

P∑
i=1

Ŝi(0)φi(ζ) = S0,

P∑
i=1

Êi(0)φi(ζ) = E0,

P∑
i=1

Îi(0)φi(ζ) = I0.

Notice that, although the initial conditions are assumed to be deterministic, for the sake of generality a polynomial chaos

expansion is used for each one of them. Clearly, in this case, as φ1(ζ) = 1, then Ŝ1(0) = S0, Ê1(0) = E0 and Î1(0) = I0. We

then multiply by φk(ζ) and apply the expectation operator, k = 1, . . . , P, which yields:

P∑
i=1

Ŝi(m + 1)E[φi(ζ)φk(ζ)] =

P∑
i=1

Ŝi(m)E[φi(ζ)φk(ζ)] + NE[µφk(ζ)]−
P∑
i=1

Ŝi(m)E[µφi(ζ)φk(ζ)]

−
P∑
i=1

P∑
j=1

Ŝi(m)Îj(m)E[bφi(ζ)φj(ζ)φk(ζ)],

P∑
i=1

Êi(m + 1)E[φi(ζ)φk(ζ)] =

P∑
i=1

Êi(m)E[φi(ζ)φk(ζ)] +

P∑
i=1

P∑
j=1

Ŝi(m)Îj(m)E[bφi(ζ)φj(ζ)φk(ζ)]−
P∑
i=1

Êi(m)E[µφi(ζ)φk(ζ)]

−
P∑
i=1

Êi(m)E[cφi(ζ)φk(ζ)],

P∑
i=1

Îi(m + 1)E[φi(ζ)φk(ζ)] =

P∑
i=1

Îi(m)E[φi(ζ)φk(ζ)] +

P∑
i=1

Êi(m)E[cφi(ζ)φk(ζ)]−
P∑
i=1

Îi(m)E[aφi(ζ)φk(ζ)]

−
P∑
i=1

Îi(m)E[µφi(ζ)φk(ζ)].

P∑
i=1

Ŝi(0)E[φi(ζ)φk(ζ)] = S0E[φk(ζ)],

P∑
i=1

Êi(0)E[φi(ζ)φk(ζ)] = E0E[φk(ζ)],

P∑
i=1

Îi(0)E[φi(ζ)φk(ζ)] = I0E[φk(ζ)].

To rewrite these expressions in matrix form, consider the vectors h, g and t whose components, respectively, are

hk = NE[µφk(ζ)], gk(m) =

P∑
i=1

P∑
j=1

Ŝi(m)Îj(m)E[bφi(ζ)φj(ζ)φk(ζ)], tk = E[φk(ζ)], k = 1, . . . , P,

and the matrices T , V , W and U whose entries, respectively, are

Tik = E[φi(ζ)φk(ζ)], Vik = E[µφi(ζ)φk(ζ)], Wik = E[cφi(ζ)φk(ζ)], Uik = E[aφi(ζ)φk(ζ)], i , k = 1, . . . , P.

In this way, we obtain a deterministic system of non-linear difference equations:

T Ŝ(m + 1) = (T − V )Ŝ(m) + h − g(m),

T Ê(m + 1) = (T − V −W )Ê(m) + g(m),

T Î(m + 1) = (T − U − V )Î(m) +WÊ(m),

T Ŝ(0) = S0t, T Ê(0) = E0t, T Î(0) = I0t,

where Ŝ(m) = (Ŝ1(m), . . . , ŜP (m))>, Ê(m) = (Ê1(m), . . . , ÊP (m))> and Î(m) = (Î1(m), . . . , ÎP (m))>. By iteration, we can

obtain Ŝ(m), Ê(m) and Î(m) for time steps m as large as we desire. Numerically, we have observed that, for large order of

canonical bases p, the matrix T is ill-conditioned, so the computations in the recursion may become inaccurate.

4 Copyright c© 2018 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 00 1–9
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The expectation and variance of S(m), E(m) and I(m) are estimated as follows:

E[S(m)] ≈
P∑
i=1

Ŝi(m)E[φi(ζ)], V[S(m)] ≈
P∑

i ,j=1

Ŝi(m)Ŝj(m)Cov[φi(ζ), φj(ζ)],

E[E(m)] ≈
P∑
i=1

Êi(m)E[φi(ζ)], V[E(m)] ≈
P∑

i ,j=1

Êi(m)Êj(m)Cov[φi(ζ), φj(ζ)],

E[I(m)] ≈
P∑
i=1

Îi(m)E[φi(ζ)], V[I(m)] ≈
P∑

i ,j=1

Îi(m)Îj(m)Cov[φi(ζ), φj(ζ)].

From the relation R(m) = N − S(m)− E(m)− I(m), we can approximate the expectation of R(m),

E[R(m)] = N − E[S(m)]− E[E(m)]− E[I(m)],

and the variance of R(m),

V[R(m)] = V[S(m)] + V[E(m)] + V[I(m)] + 2Cov[S(m), E(m)] + 2Cov[S(m), I(m)] + 2Cov[E(m), I(m)],

where

Cov[S(m), E(m)] ≈
P∑

i ,j=1

Ŝi(m)Êj(m)Cov[φi(ζ), φj(ζ)],

Cov[S(m), I(m)] ≈
P∑

i ,j=1

Ŝi(m)Îj(m)Cov[φi(ζ), φj(ζ)],

Cov[E(m), I(m)] ≈
P∑

i ,j=1

Êi(m)Îj(m)Cov[φi(ζ), φj(ζ)].

When the random inputs ζ1, . . . , ζ4 are independent (case (i)), the previous formulas may be simplified. Indeed, notice that,

by orthonormality of Ξ, it is derived that T = IdP and t = e1, where IdP is the P × P identity matrix and e1 = (1, 0, . . . , 0)>.

Thus, in this case no problem of ill-conditioning of T appears. Moreover, the approximations for the expectation and variance

of S(m), E(m) and I(m) can be simplified in the following form:

E[S(m)] ≈ Ŝ1(m), V[S(m)] ≈
P∑
i=2

Ŝi(m)2,

E[E(m)] ≈ Ê1(m), V[E(m)] ≈
P∑
i=2

Êi(m)2,

E[I(m)] ≈ Î1(m), V[I(m)] ≈
P∑
i=2

Îi(m)2.

Naturally, E[R(m)] ≈ N − Ŝ1(m)− Ê1(m)− Î1(m), while for computing the approximation of V[R(m)], the necessary

covariances can be estimated via Cov[S(m), E(m)] ≈
∑P

i,j=2 Ŝi(m)Êj(m), Cov[S(m), I(m)] ≈
∑P

i,j=2 Ŝi(m)Îj(m) and

Cov[E(m), I(m)] ≈
∑P

i,j=2 Êi(m)Îj(m).

4. Numerical experiments

In the following numerical examples, we will specify probability distributions for the random input parameters in each one of

the five epidemiological models previously considered. For a real epidemic with available measured data, the coefficients in the

time-discrete epidemiological model may be estimated in a deterministic manner, using a minimization procedure. To analyze

uncertainty associated with the modeling, one could set a non-informative distribution to each one of the parameters, with mean

value being the deterministic estimate obtained. In this article we do not deal with inverse parameter estimation, see for example

references [28, 29] related with Bayesian inference and gPC.

As we have previously indicated, the distributions of the random input parameters must be absolutely continuous with finite

moments. In order to avoid instability problems (i.e., large variability of a coefficient that makes the size of a compartment of the

epidemiological model leave the interval [0, N]), the density functions have to be concentrated around the mean value. As we are

working with proportions, the support of the random inputs must be bounded. However, distributions with an unbounded support

Math. Meth. Appl. Sci. 2018, 00 1–9 Copyright c© 2018 John Wiley & Sons, Ltd. 5
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Year 1995 1997 2001 2003 2006 2011 2014

j 0 2 6 8 11 16 19

Sj 0.5298 0.5514 0.5783 0.6244 0.6467 0.6863 0.6957

Table 1. Percentage of non-smokers Spanish men aged over 16 years old during the period 1995–2014. Source [30]. Case 1.

but with small variance are also possible in practice. On the other hand, as we have worked out in the theoretical development,

the independence assumption is not required.

In the following numerical simulations, the order p of the canonical bases Cpi , 1 ≤ i ≤ 4, will be p = 2 and p = 3. We will

observe in the plots that very similar results are obtained for both orders, then showing convergence. However, if more accuracy

is desired, a larger p has to be used, but this will increase the computational expense and the ill-conditioning of the matrix T .

In the following we present several examples corresponding to the five epidemiological models previously stated, in order to

illustrate the capability of adaptive gPC to quantify the propagation of uncertainties associated with the model outputs when

the model parameters are random variables. The numerical results are shown by means of appropriate graphical representations,

where approximations of the mean value of S(m), E(m), I(m) and R(m), together with a confidence interval with the rule

[mean± standard deviation], are plotted. It is important to point out that univariate distributions (Triangular, Uniform, Gamma,

Normal, etc.) and multivariate distributions (Dirichlet, bivariate Normal, etc.) have been chosen for the random model parameters.

In this manner, both independent and dependent random variables are treated in the examples via a wide variety of probabilistic

distributions. Although the examples are presented via numerical experiments involving simulations, we will comment their

epidemiological meaning. In this regard, the first example has been devised so that it illustrates how to choose, in practice, the

parameters of the probability distributions for the involved random input parameters in a SIS model using real data. In the rest

of examples (Cases 2–5), the parameters can be chosen following an analogous strategy.

• Case 1. SIS model with dependent random inputs a and b. We consider a SIS model to treat the social habit of smoking.

The population is divided into two groups: non-smokers (susceptible) and smokers (infective). Table 1 presents real data,

denoted by Sj , j ∈ {0, 2, 6, 8, 11, 16, 19}, on the percentage of non-smokers Spanish men during the period 1995-2014,

[30]. Then the total population is considered as N = 1. Using a least-squares fitting procedure, we have obtained the

deterministic estimates â = 0.0378749 (people giving up tobacco) and b̂ = 0.0225118 (persons who start smoking).

To assess uncertainty associated with the data measurements, we specify probability distributions for the random input

parameters: we suppose that (a, b) follows a bivariate normal distribution with mean vector and covariance matrix given

by (
0.0378749

0.0225118

)
,

(
0.000025 −0.00001

−0.00001 0.00001

)
,

respectively. It is clear that the covariances are negative because of the opposite behavior of the random variables a and

b. In Figure 1, the results of the adaptive gPC expansions are shown. We have plotted model outputs for p = 2 and p = 3

in black and blue colors, respectively. In this plot we can see that they completely match, then showing rapid convergence

of adaptive gPC. We can observe that the confidence intervals capture the uncertainty associated with the outputs.

• Case 2. SIR model with independent random inputs a and b. Assume an epidemic in a population of size N = 65, where

the recovery and infection parameters have been estimated via a least-squares fitting: â = 0.2 and b̂ = 0.01. To study the

time evolution of the epidemic, we set test probability distributions to a and b, being the mean values â and b̂, respectively:

a ∼ Gamma(4, 0.05) (shape-scale notation) and b ∼ Triangular(0.008, 0.012). Let us assume that the initial conditions

are S0 = 5, I0 = 60 and R0 = 0. The estimates computed via adaptive gPC are presented in Figure 2. Both plots are nearly

identical, then showing convergence. Epidemiologically, we start in a scenario where most of the population is infected

and a few individuals are susceptible. As the time goes on, the infected individuals become recovered and finally, the whole

population is recovered. As a consequence, the number of susceptible decreases very slowly. Note that the uncertainty in

the evolution of the infected and recovered subpopulations may lead to a delay of more that 15 days in the disappearance

of the infective, because the higher percentile of recovered is reached between days 10–15, meanwhile the same level is

reached by the infective at the lower percentile between the days 25–30.

• Case 3. SIR model with vital dynamics, being the random inputs a, b and µ non-independent. We suppose an epidemic

in a population of size N = 65. Let us assume that the recovery, infection and birth parameters have been estimated via

a deterministic procedure, obtaining â = 0.2, b̂ = 0.01 and µ̂ = 0.1, respectively. For uncertainty quantification, we set

the following test distributions: (a, b) ∼ Dirichlet(80, 4, 316) and µ ∼ Uniform(0.04, 0.16), whose respective expectations

match the numerical values â = 0.2, b̂ = 0.01 and µ̂ = 0.1. The random vector (a, b) and the random variable µ are

assumed to be independent. We take S0 = 5, I0 = 60 and R0 = 0 as the initial conditions. The numerical results are

shown in Figure 3. Both plots are nearly identical, then showing convergence. Starting in the same scenario as Figure 2,

now we observe that an endemic situation is reached. This difference happens because the inclusion of the vital dynamics

makes that old recovered people leave the system and new susceptible people enter into the system.

• Case 4. SIRS model with independent random inputs a, b, c and µ. In a population of size N = 65, we suppose the

following deterministic estimates for the recovery, infection, decline and birth parameters: â = 0.2, b̂ = 0.01, ĉ = 0.1 and
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Figure 1. Mean value estimates (solid line) and confidence intervals (in dashed lines) for Case 1. Real data from Table 1 is denoted with black circles.
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Figure 2. Mean value estimates and confidence intervals (in dashed lines) for Case 2. Left: p = 2. Right: p = 3. S is denoted by © in black color, I is denoted

by � in blue color, and R is denoted by 3 in red color.

µ̂ = 0.1. The test probability distributions given to the random inputs are: a ∼ Gamma(4, 0.05) (shape-scale notation),

b ∼ Triangular(0.008, 0.012), c ∼ Normal(0.1, 0.01) (mean-deviation notation) and µ ∼ Uniform(0.04, 0.16). As in the

previous examples, the values of the parameters of each one of these probability density functions have been chosen so

that the theoretical expectation of a, b, c and µ coincides with the numerical values â = 0.2, b̂ = 0.01, ĉ = 0.1 and

µ̂ = 0.1, respectively. The initial iterates are assumed to be S0 = 5, I0 = 60 and R0 = 0. The computational results are

presented in Figure 4. Both plots are nearly identical, then showing convergence. Analogously to Figure 3, we start with

a scenario where most of the people is infected and, after a while, the subpopulations stabilize in an endemic situation

with some variations due to the uncertainty (confidence intervals). In this case, apart from the vital dynamics, recovered

people may become susceptible before leaving the system.

• Case 5. We consider a SEIR model with independent inputs, having as distributions a ∼ Gamma(4, 0.05) (shape-scale

notation), b ∼ Triangular(0.008, 0.012), c ∼ Normal(0.1, 0.01) (mean-deviation notation) and µ ∼ Uniform(0.04, 0.16).

The population has size N = 65 and the initial conditions are S0 = 5, E0 = 0, I0 = 60 and R0 = 0. The numerical results

are shown in Figure 5. Both plots are nearly identical, then showing convergence. We have plotted the subpopulations

and their confidence intervals, included the exposed. Here, the level of susceptibles is higher than in the previous cases,

because during the exposed time, the individuals are not infective, reducing the number of people capable to infect.

5. Conclusions

Epidemic models consisting of non-linear difference equations allow us to get a better understanding of the spread diseases.

The time-discrete models SIS, SIR, SIRS and SEIR have been commonly utilized to describe epidemics successfully. We have

analyzed the effect of randomness in the input parameters, by using absolutely continuous distributions with no independence

assumption. The solution of the random system of non-linear difference equations becomes a stochastic process in discrete

time. Adaptive gPC allows us to approximate the solution in terms of multivariate polynomials, with coefficients that satisfy a

deterministic system of non-linear recursive equations which is numerically solvable. Numerical experiments permit quantifying

the uncertainty for the number of susceptible, exposed, infected and recovered individuals at each time-discrete step. The

convergence is achieved quickly with a cheap computational expense. The analysis performed in this paper can be extended to

other epidemiological models, like SEIQV or SEIVR models, where quantifying uncertainty can be a major goal.

Math. Meth. Appl. Sci. 2018, 00 1–9 Copyright c© 2018 John Wiley & Sons, Ltd. 7
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences J. Calatayud, J.-C. Cortés, M. Jornet, R.-J. Villanueva

○
○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○

□

□

□

□
□
□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

◇

◇

◇
◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

5 10 15 20 25 30
time

10

20

30

40

50

60

individuals

○
○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○

□

□

□

□
□
□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

◇

◇

◇
◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

5 10 15 20 25 30
time

10

20

30

40

50

60

individuals

Figure 3. Mean value estimates and confidence intervals (in dashed lines) for Case 3. Left: p = 2. Right: p = 3. S is denoted by © in black color, I is denoted

by � in blue color, and R is denoted by 3 in red color.
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Figure 4. Mean value estimates and confidence intervals (in dashed lines) for Case 4. Left: p = 2. Right: p = 3. S is denoted by © in black color, I is denoted

by � in blue color, and R is denoted by 3 in red color.
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Figure 5. Mean value estimates and confidence intervals (in dashed lines) for Case 5. Left: p = 2. Right: p = 3. S is denoted by © in black color, E is denoted

by × in green color, I is denoted by � in blue color, and R is denoted by 3 in red color.
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