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2Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan

Correspondence should be addressed to Juan R. Torregrosa; jrtorre@mat.upv.es

Received 12 December 2017; Accepted 8 March 2018; Published 10 April 2018

Academic Editor: Hang Xu

Copyright © 2018 Alicia Cordero et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear
function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-
memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156
and a very high efficiency index 15.51561/4 ≈ 1.9847. Some particular schemes of the with-memory family are also described.
Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.

1. Introduction

In this manuscript, the problem of finding numerical solu-
tions of nonlinear equations 𝑓(𝑥) = 0 is addressed. Iterative
procedures are widely used to solve this problem, (see, e.g.,
[1–3]). Traub [3] classified the iterative methods as one-
step and multistep schemes. One-step Steffensen’s iterative
method is a known improvement of Newton’s method as it
avoids using the derivative unlike in the case of Newton’s
method. The concept of optimal iterative method was given
by Kung and Traub [4]; that is, a multistep iterative scheme,
without memory, based on 𝜂+1 functional evaluations could
attain an optimal order of convergence 2𝜂.

According to Ostrowski [2], if 𝑂 is the convergence
order of an iterative method and 𝜂 is the total number of
functional evaluations per iteration, then the index 𝐸 =
𝑂1/𝜂 is known as efficiency index of an iterative method.
Sincemultistep iterativemethods overcome theoretical limits
of one-step methods concerning the order of convergence
and the efficiency index, therefore several multistep iterative
schemes have been developed for solving nonlinear equations
(see, e.g., [5–7] and the overview [8]). Some optimal eighth-
order methods without memory can be found in [9–14];
these methods, among others, have been designed by using

different techniques as composition of known schemes and
elimination of functional evaluations using interpolation,
rational approximations, and so on or by freezing the deriva-
tives and using weight function procedure.

Multistep iterative methods with memory, which use
information from the current and previous iterations, can
increase the convergence order and the efficiency index
of the multistep iterative methods without memory with
no additional functional evaluations. The increasing in the
order of convergence is based on one or more accelerator
parameters which appear in the error equations of methods
without memory. For this reason, several multistep memory
iterative methods have been developed in recent years. For a
background study regarding the acceleration of convergence
order with memorization, one should see, for example,
[8, 15].

Traub [3] developed the first method with memory by a
slight change in Steffensen’s scheme:

𝑤𝑛 = 𝑥𝑛 + 𝑝𝑛𝑓 (𝑥𝑛) , 𝑝𝑛 ̸= 0,
𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] , 𝑛 ≥ 0,

(1)
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where 𝑥0, 𝑝0 are given and 𝑝𝑛 is a self-accelerating parameter
given by

𝑝𝑛+1 = −1
𝑁󸀠1 (𝑥𝑛) ,𝑁1 = 𝑓 (𝑥𝑛) + (𝑥 − 𝑥𝑛) 𝑓 [𝑥𝑛, 𝑤𝑛] ,𝑛 ≥ 0,

(2)

𝑁1 being the first-degree Newton’s interpolating polynomial.
The convergence order of method (1) is 2.41.

More recently, several researchers have constructed iter-
ative schemes with memory from optimal procedures of
different orders, mainly four (see, e.g., [16, 17]), eight ([18–
20], among others), sixteen (as [5]), or even general 𝑛-point
schemes [21, 22].

Motivated by these ideas, here we present an efficient
family of iterative methods with memory based on a family
of optimal derivative-free iterative schemes without memory.
In other words, we first construct a family of derivative-free
optimal eighth-order methods without memory, involving
four parameters in such a way that their corresponding
error equations have the most suitable forms to achieve the
highest possible convergence order and efficiency indexwhen
they are extended to with-memory methods. Then, by using
Newton’s interpolating polynomials passing through best
saved points, we approximate the accelerating parameters
involved at each step to construct highly efficient with-
memory methods. As far as we know, there are a few iterative
methods with memory in the literature involving four accel-
erators. It is necessary to remark that, in this work, without
additional functional evaluations, the𝑅-order of convergence
increases from 8 to 15.5156 and thus efficiency index is
significantly improved from 1.68179 to 15.51561/4 ≈ 1.9847.

The content of the rest of the paper is as follows:
In Section 2, an optimal three-step derivative-free family
of methods without memory involving four parameters is
defined which can be extended to methods with memory.
Another derivative-free class of three-step optimal methods
without memory is also presented as a special case of the
proposed family. In Section 3, the extension of new without-
memory iterativemethods towith-memorymethods is given.
This is done by approximating the accelerating parameters
involved at each step by using Newton’s interpolating poly-
nomials. Some weight functions and particular methods are
given in Section 4. In Section 5, we give some dynamical
aspects of the new methods. Section 6 includes numerical
comparisons of the new methods with the existing efficient
methods and conclusions.

2. A Family of Optimal Eighth-Order Methods
without Memory

Let us consider the following three-step iterative scheme
obtained by composing Newton’s method three times with
“frozen” derivative:

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,
𝑧𝑛 = 𝑦𝑛 − 𝑓 (𝑦𝑛)𝑓󸀠 (𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝑓󸀠 (𝑥𝑛) ,
𝑛 = 0, 1, . . . .

(3)

By using the approximation

𝑓󸀠 (𝑥𝑛) ≈ 𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜃2𝑓 (𝑤𝑛) , (4)

where 𝑤𝑛 = 𝑥𝑛 + 𝜃1𝑓(𝑥𝑛) at the first step and

𝑓󸀠 (𝑥𝑛)
≈ 𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2𝑓 (𝑤𝑛) + 𝜃3 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛)𝐴 (𝑢𝑛) 𝐺 (𝑢𝑛)

(5)

at the second step (𝐴 and 𝐺 being weight functions with
variable 𝑢𝑛 = 𝑓(𝑦𝑛)/𝑓(𝑥𝑛)) and also

𝑓󸀠 (𝑥𝑛) ≈ 𝜓𝑛
= 𝑓 [𝑦𝑛, 𝑧𝑛] + 𝑓 [𝑧𝑛, 𝑦𝑛, 𝑥𝑛] (𝑧𝑛 − 𝑦𝑛)
+ 𝑓 [𝑧𝑛, 𝑦𝑛, 𝑥𝑛, 𝑤𝑛] (𝑧𝑛 − 𝑦𝑛) (𝑧𝑛 − 𝑥𝑛)
+ 𝜃4 (𝑧𝑛 − 𝑤𝑛) (𝑧𝑛 − 𝑦𝑛) (𝑧𝑛 − 𝑥𝑛) ,

(6)

at the third step of (3), we get three-step derivative-free class
of methods in the following form:

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜃2𝑓 (𝑤𝑛) ,
𝑤𝑛 = 𝑥𝑛 + 𝜃1𝑓 (𝑥𝑛) , 𝜃1 ̸= 0,

𝑧𝑛 = 𝑦𝑛 − 𝐴 (𝑢𝑛) 𝐺 (𝑢𝑛)
⋅ 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2𝑓 (𝑤𝑛) + 𝜃3 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝜓𝑛 ,

(7)

where 𝜃1, 𝜃2, 𝜃3, and 𝜃4 are free parameters and the weight
functions 𝐴(𝑢𝑛) and 𝐺(𝑢𝑛) will be chosen in such a way that
the above method (7) achieves optimal order 8 for a given
initial estimation 𝑥0.

Moreover, we consider two-step Ostrowski’s method [2]
and add a third step as follows:

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,

𝑧𝑛 = 𝑦𝑛 − 𝑓 (𝑥𝑛)𝑓 (𝑥𝑛) − 2𝑓 (𝑦𝑛)
𝑓 (𝑦𝑛)𝑓󸀠 (𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝑓󸀠 (𝑥𝑛) .

(8)
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By using the approximations (4) at the first step,

𝑓󸀠 (𝑥𝑛)
≈ 𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2𝑓 (𝑤𝑛) + 𝜃3 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛)𝐺 (𝑢𝑛) , (9)

at the second step (where𝐺 is a weight function with variable𝑢𝑛 = 𝑓(𝑦𝑛)/𝑓(𝑥𝑛)), and (6) at the third step of (8), we obtain
the following family of three-step derivative-free schemes:

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜃2𝑓 (𝑤𝑛) ,
𝑤𝑛 = 𝑥𝑛 + 𝜃1𝑓 (𝑥𝑛) , 𝜃1 ̸= 0,

𝑧𝑛 = 𝑦𝑛 − 𝐺 (𝑢𝑛)
⋅ 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2𝑓 (𝑤𝑛) + 𝜃3 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛)
⋅ 𝑓 (𝑥𝑛)𝑓 (𝑥𝑛) − 2𝑓 (𝑦𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝜓𝑛 .

(10)

Function 𝐺(𝑢𝑛) should be found in such a way that the
method (10) gives optimal eighth-order convergence. We
note that expression (10) is a particular case of (7), taking𝐴(𝑢𝑛) = 1/(1 − 2𝑢𝑛), where 𝑢𝑛 = 𝑓(𝑦𝑛)/𝑓(𝑥𝑛). The following
result shows that family (7) has eighth-order convergence.

Theorem 1. Let 𝛼 ∈ 𝐼 be a simple zero of a sufficiently
differentiable function 𝑓 : 𝐼 ⊆ R → R, where 𝐼 is an open
interval and the initial guess 𝑥0 is close enough to 𝛼.Then, class
(7) has convergence order of at least eight if

𝐺 (0) = 1,
𝐺󸀠 (0) = −1,
𝐺󸀠󸀠 (0) < ∞,

(11)

𝐴 (0) = 1,
𝐴󸀠 (0) = 2,
𝐴󸀠󸀠 (0) < ∞.

(12)

The error equation of (7) for all values of 𝜃1, 𝜃2, 𝜃3, and 𝜃4 is
given by

𝑒𝑛+1 = 1
4𝑓󸀠 (𝛼)2 (𝑐2 + 𝜃2)

2 (1 + 𝜃1𝑓󸀠 (𝛼))4𝑊𝑒8𝑛
+ 𝑂 (𝑒9𝑛) ,

(13)

where 𝑐𝑘 = 𝑓(𝑘)(𝛼)/𝑘!𝑓󸀠(𝛼), 𝑘 ≥ 2, and 𝑊 depends on the
parameters and the values of 𝑓󸀠(𝛼), 𝐴󸀠󸀠(0), and 𝐺󸀠󸀠(0).

Proof. Let 𝛼 be a simple real zero of a nonlinear function𝑓(𝑥). Let 𝑒𝑛 = 𝑥𝑛 − 𝛼 be the error at 𝑛th step.
Expanding 𝑓(𝑥) about 𝛼 by Taylor’s series, we have
𝑓 (𝑥𝑛) = 𝑓󸀠 (𝛼) [𝑒𝑛 + 𝑐2𝑒2𝑛 + 𝑐3𝑒3𝑛 + 𝑐4𝑒4𝑛 + 𝑐5𝑒5𝑛 + 𝑐6𝑒6𝑛
+ 𝑐7𝑒7𝑛 + 𝑐8𝑒8𝑛] + 𝑂 (𝑒9𝑛) .

(14)

Now, by using again Taylor expansion, we get the error
term of 𝑤𝑛 = 𝑥𝑛 + 𝜃1𝑓(𝑥𝑛)
𝑒𝑛,𝑤 = (1 + 𝜃1𝑓󸀠 (𝛼)) 𝑒𝑛 + 𝜃1𝑓󸀠 (𝛼)
⋅ (𝑐2𝑒2𝑛 + 𝑐3𝑒3𝑛 + 𝑐4𝑒4𝑛 + 𝑐5𝑒5𝑛 + 𝑐6𝑒6𝑛 + 𝑐7𝑒7𝑛 + 𝑐8𝑒8𝑛)
+ 𝑂 (𝑒9𝑛) ,

(15)

where 𝑒𝑛,𝑤 = 𝑤𝑛 − 𝛼.
Similarly, we can find the expression of 𝑓(𝑤𝑛). Thus, the

error term of 𝑦𝑛 is
𝑒𝑛,𝑦 = (1 + 𝜃1𝑓󸀠 (𝛼))2 (𝑐2 + 𝜃2) 𝑒2𝑛 + ⋅ ⋅ ⋅ + 𝑂 (𝑒9𝑛) . (16)

Also, by applying conditions (11) and (12), we have the error
term of 𝑧𝑛
𝑒𝑛,𝑧 = − 1

2𝑓󸀠 (𝛼) (1 + 𝑓󸀠 (𝛼) 𝜃1)
2 (𝜃2 + 𝑐2)

⋅ (−6𝜃1𝜃22𝑓󸀠 (𝛼)2 + 𝜃1𝜃22𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0)
+ 𝜃1𝜃22𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) − 12𝜃1𝜃2𝑐2𝑓󸀠 (𝛼)2
+ 2𝜃1𝜃2𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐2 + 2𝜃1𝜃2𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐2
+ 𝜃1𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐22 − 6𝑐22𝜃1𝑓󸀠 (𝛼)2
+ 𝜃1𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐22 − 6𝑓󸀠 (𝛼) 𝜃22
+ 𝜃22𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) + 𝜃22𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0)
− 16𝑓󸀠 (𝛼) 𝜃2𝑐2 + 2𝜃2𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐2
+ 2𝜃2𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐2 + 2𝑓󸀠 (𝛼) 𝑐3
+ 𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐22 − 10𝑓󸀠 (𝛼) 𝑐22 + 𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐22
− 2𝜃3) 𝑒4𝑛 + ⋅ ⋅ ⋅ + 𝑂 (𝑒9𝑛) .

(17)

By expanding 𝑓(𝑧𝑛) and𝜓𝑛 in terms of 𝑒𝑛 and replacing them
in the third step, we obtain

𝑒𝑛+1 = 1
4𝑓󸀠 (𝛼)2 (𝑐2 + 𝜃2)

2 (1 + 𝜃1𝑓󸀠 (𝛼))4𝑊𝑒8𝑛
+ 𝑂 (𝑒9𝑛) ,

(18)
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where

𝑊 = (−6𝜃1𝜃22𝑓󸀠 (𝛼)2 + 𝜃1𝜃22𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0)
+ 𝜃1𝜃22𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) − 12𝜃1𝜃2𝑐2𝑓󸀠 (𝛼)2
+ 2𝜃1𝜃2𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐2 + 2𝜃1𝜃2𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐2
+ 𝜃1𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐22 − 6𝑐22𝜃1𝑓󸀠 (𝛼)2
+ 𝜃1𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐22 − 6𝑓󸀠 (𝛼) 𝜃22
+ 𝜃22𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) + 𝜃22𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0)
− 16𝑓󸀠 (𝛼) 𝜃2𝑐2 + 2𝜃2𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐2
+ 2𝜃2𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐2 + 2𝑓󸀠 (𝛼) 𝑐3
+ 𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐22 − 10𝑓󸀠 (𝛼) 𝑐22 + 𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐22
− 2𝜃3) (2𝜃4 − 2𝑓󸀠 (𝛼) 𝑐4 − 2𝜃3𝑐2 + 2𝑐2𝑓󸀠 (𝛼) 𝑐3
− 10𝑐32𝑓󸀠 (𝛼) − 16𝜃2𝑐22𝑓󸀠 (𝛼) − 6𝜃22𝑐2𝑓󸀠 (𝛼)
+ 𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐32 + 2𝜃2𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐22
+ 𝑐2𝜃22𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) + 𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐32
+ 2𝜃2𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐22 + 𝑐2𝜃22𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0)
− 6𝑐32𝜃1𝑓󸀠 (𝛼)2 − 12𝜃2𝑐22𝜃1𝑓󸀠 (𝛼)2 − 6𝜃22𝑐2𝜃1𝑓󸀠 (𝛼)2
+ 𝜃1𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐32 + 2𝜃1𝜃2𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐22
+ 𝑐2𝜃1𝜃22𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) + 𝜃1𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐32
+ 2𝜃1𝜃2𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐22 + 𝑐2𝜃1𝜃22𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0)) .

(19)

Remark 2. It is clear from Theorem 1 that the convergence
order of class of methods without memory (7) is eight, with
efficiency index 81/4 ≈ 1.68179.
Remark 3. If we take 𝜃1 = −1/𝑓󸀠(𝛼) and 𝜃2 = −𝑐2, then the
resulting error equation (18) is

𝑒𝑛+1
= 𝑐
4
2 𝑐23 (𝜃3 − 𝑓󸀠 (𝛼) 𝑐3) (𝑐2 (𝜃3 − 𝑓󸀠 (𝛼) 𝑐3) + 𝑓󸀠 (𝛼) 𝑐4 − 𝜃4)

𝑓󸀠 (𝛼)2
⋅ 𝑒14𝑛 + 𝑂 (𝑒15𝑛 )

(20)

and, by choosing 𝜃3 = 𝑓󸀠(𝛼)𝑐3 and 𝜃4 = 𝑓󸀠(𝛼)𝑐4, the resulting
method has, at least, sixteenth-order convergence.

So, from this error analysis, it can be inferred that the
derivative-free class (7) and the particular case (10) are
extendable to procedures with memory.

Remark 4. Taking into account the variable used in the
weight functions and the expressions of the different denom-
inators that appear in the iterative formula, it is not possible
to extend our parametric family to themultidimensional case
for solving nonlinear systems.

3. The Iterative Methods with Memory

To extend the proposed optimal class of methods (7) to
the with-memory one, we choose the involved parameters𝜃1, 𝜃2, 𝜃3, and 𝜃4 in such a way that the optimal order of
convergence is increased, as it has been introduced in the
previous remarks. If we choose 𝜃1 = −1/𝑓󸀠(𝛼), 𝜃2 = −𝑐2, 𝜃3 =𝑓󸀠(𝛼)𝑐3, and 𝜃4 = 𝑓󸀠(𝛼)𝑐4, the order of the method increases
up to sixteen. Therefore, the process can be improved by
selecting the accelerating parameters at each iterative step as

𝜃1 = 𝜃1,𝑛 = − 1
𝑁󸀠4 (𝑥𝑛) ≈ −

1
𝑓󸀠 (𝛼) ,

𝜃2 = 𝜃2,𝑛 = − 𝑁
󸀠󸀠
5 (𝑤𝑛)2𝑁󸀠5 (𝑤𝑛) ≈ −𝑐2,

𝜃3 = 𝜃3,𝑛 = 𝑁
󸀠󸀠󸀠
6 (𝑦𝑛)6 ≈ 𝑐1𝑐3,

𝜃4 = 𝜃4,𝑛 = 𝑁
𝑖V
7 (𝑧𝑛)24 ≈ 𝑐1𝑐4,

(21)

where 𝑁4(𝑡), 𝑁5(𝑡), 𝑁6(𝑡), and 𝑁7(𝑡) are Newton’s interpo-
lating polynomials of fourth, fifth, sixth, and seventh degree,
respectively, passing through best saved points as follows:

𝑁4 (𝑡) = 𝑁4 (𝑡; 𝑥𝑛, 𝑧𝑛−1, 𝑦𝑛−1, 𝑤𝑛−1, 𝑥𝑛−1) ,
𝑁5 (𝑡) = 𝑁5 (𝑡; 𝑤𝑛, 𝑥𝑛, 𝑧𝑛−1, 𝑦𝑛−1, 𝑤𝑛−1, 𝑥𝑛−1) ,
𝑁6 (𝑡) = 𝑁6 (𝑡; 𝑦𝑛, 𝑤𝑛, 𝑥𝑛, 𝑧𝑛−1, 𝑦𝑛−1, 𝑤𝑛−1, 𝑥𝑛−1) ,
𝑁7 (𝑡) = 𝑁7 (𝑡; 𝑧𝑛, 𝑦𝑛, 𝑤𝑛, 𝑥𝑛, 𝑧𝑛−1, 𝑦𝑛−1, 𝑤𝑛−1, 𝑥𝑛−1) ,

(22)

for any 𝑛 ≥ 1.
Now,we define the three-stepwith-memory extensions of

(7) and (10) as follows:

𝑤𝑛 = 𝑥𝑛 + 𝜃1,𝑛𝑓 (𝑥𝑛) , 𝑛 ≥ 0, 𝜃1,𝑛 = − 1
𝑁󸀠4 (𝑥𝑛) ,

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) ,

𝜃2,𝑛 = − 𝑁
󸀠󸀠
5 (𝑤𝑛)2𝑁󸀠5 (𝑤𝑛) ,

𝜃3,𝑛 = 𝑁
󸀠󸀠󸀠
6 (𝑦𝑛)6 ,

𝜃4,𝑛 = 𝑁
𝑖V
7 (𝑧𝑛)24 ,

𝑧𝑛 = 𝑦𝑛 − 𝐴 (𝑢𝑛) 𝐺 (𝑢𝑛)
⋅ 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) + 𝜃3,𝑛 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝜓𝑛 ;

(23)
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𝑤𝑛 = 𝑥𝑛 + 𝜃1,𝑛𝑓 (𝑥𝑛) , 𝑛 ≥ 0, 𝜃1,𝑛 = − 1
𝑁󸀠4 (𝑥𝑛) ,

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) ,

𝜃2,𝑛 = − 𝑁
󸀠󸀠
5 (𝑤𝑛)2𝑁󸀠5 (𝑤𝑛) ,

𝜃3,𝑛 = 𝑁
󸀠󸀠󸀠
6 (𝑦𝑛)6 ,

𝜃4,𝑛 = 𝑁
𝑖V
7 (𝑧𝑛)24 ,

𝑧𝑛 = 𝑦𝑛 − 𝐺 (𝑢𝑛) 𝑓 (𝑥𝑛)𝑓 (𝑥𝑛) − 2𝑓 (𝑦𝑛)
⋅ 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) + 𝜃3,𝑛 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝜓𝑛 ,

(24)

where 𝜃1,0, 𝜃2,0, 𝜃3,0, and 𝜃4,0 should be chosen suitably. The
weight functions 𝐴(𝑢𝑛) and 𝐺(𝑢𝑛) have the same properties
as in (7) and (10) and 𝜓𝑛 = 𝑓[𝑦𝑛, 𝑧𝑛] +𝑓[𝑧𝑛, 𝑦𝑛, 𝑥𝑛](𝑧𝑛 −𝑦𝑛) +𝑓[𝑧𝑛, 𝑦𝑛, 𝑥𝑛, 𝑤𝑛](𝑧𝑛−𝑦𝑛)(𝑧𝑛−𝑥𝑛)+𝜃4,𝑛(𝑧𝑛−𝑤𝑛)(𝑧𝑛−𝑦𝑛)(𝑧𝑛−𝑥𝑛).
Lemma 5. If 𝜃1,𝑛 = −1/𝑁󸀠4(𝑥𝑛), 𝜃2,𝑛 = −𝑁󸀠󸀠5 (𝑤𝑛)/2𝑁󸀠5(𝑤𝑛),𝜃3,𝑛 = 𝑁󸀠󸀠󸀠6 (𝑦𝑛)/6, and 𝜃4,𝑛 = 𝑁𝑖V7 (𝑧𝑛)/24 for 𝑛 = 1, 2, . . ., then
the following holds:

1 + 𝜃1,𝑛𝑓󸀠 (𝛼) ∼ 𝑒𝑛−1,𝑧𝑒𝑛−1,𝑦𝑒𝑛−1,𝑤𝑒𝑛−1,
(𝑐2 + 𝜃2,𝑛) ∼ 𝑒𝑛−1,𝑧𝑒𝑛−1,𝑦𝑒𝑛−1,𝑤𝑒𝑛−1,

𝐴𝑛 ∼ 𝑒𝑛−1,𝑧𝑒𝑛−1,𝑦𝑒𝑛−1,𝑤𝑒𝑛−1,
𝐵𝑛 ∼ 𝑒𝑛−1,𝑧𝑒𝑛−1,𝑦𝑒𝑛−1,𝑤𝑒𝑛−1,

(25)

where
𝐴𝑛 = (−6𝜃1,𝑛𝜃22,𝑛𝑓󸀠 (𝛼)2 + 𝜃1,𝑛𝜃22,𝑛𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0)
+ 𝜃1,𝑛𝜃22,𝑛𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) − 12𝜃1,𝑛𝜃2,𝑛𝑐2𝑓󸀠 (𝛼)2
+ 2𝜃1,𝑛𝜃2,𝑛𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐2
+ 2𝜃1,𝑛𝜃2,𝑛𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐2 + 𝜃1,𝑛𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐22
− 6𝑐22𝜃1,𝑛𝑓󸀠 (𝛼)2 + 𝜃1,𝑛𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐22
− 6𝑓󸀠 (𝛼) 𝜃22,𝑛 + 𝜃22,𝑛𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0)
+ 𝜃22,𝑛𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) − 16𝑓󸀠 (𝛼) 𝜃2,𝑛𝑐2
+ 2𝜃2,𝑛𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐2 + 2𝜃2,𝑛𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐2
+ 2𝑓󸀠 (𝛼) 𝑐3 + 𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐22 − 10𝑓󸀠 (𝛼) 𝑐22
+ 𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐22 − 2𝜃3,𝑛) ,

(26)

𝐵𝑛 = (2𝜃4,𝑛 − 2𝑓󸀠 (𝛼) 𝑐4 − 2𝜃3,𝑛𝑐2 + 2𝑐2𝑓󸀠 (𝛼) 𝑐3
− 10𝑐32𝑓󸀠 (𝛼) − 16𝜃2,𝑛𝑐22𝑓󸀠 (𝛼) − 6𝜃22,𝑛𝑐2𝑓󸀠 (𝛼)
+ 𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐32 + 2𝜃2,𝑛𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) 𝑐22
+ 𝑐2𝜃22,𝑛𝑓󸀠 (𝛼) 𝐺󸀠󸀠 (0) + 𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐32
+ 2𝜃2,𝑛𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0) 𝑐22 + 𝑐2𝜃22,𝑛𝑓󸀠 (𝛼) 𝐴󸀠󸀠 (0)
− 6𝑐32𝜃1,𝑛𝑓󸀠 (𝛼)2 − 12𝜃2,𝑛𝑐22𝜃1,𝑛𝑓󸀠 (𝛼)2
− 6𝜃22,𝑛𝑐2𝜃1,𝑛𝑓󸀠 (𝛼)2 + 𝜃1,𝑛𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐32
+ 2𝜃1,𝑛𝜃2,𝑛𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) 𝑐22
+ 𝑐2𝜃1,𝑛𝜃22,𝑛𝑓󸀠 (𝛼)2 𝐺󸀠󸀠 (0) + 𝜃1,𝑛𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐32
+ 2𝜃1,𝑛𝜃2,𝑛𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0) 𝑐22
+ 𝑐2𝜃1,𝑛𝜃22,𝑛𝑓󸀠 (𝛼)2 𝐴󸀠󸀠 (0)) ,

(27)

and 𝑐𝑘 = 𝑓(𝑘)(𝛼)/𝑘!𝑓󸀠(𝛼), 𝑘 ≥ 2.
Proof. The proof is similar to Lemma 3.1 in [23].

Theorem 6. Let 𝑓(𝑥) be a nonlinear function which is
sufficiently differentiable and 𝑥0 be an initial approximation
sufficiently close to its simple root 𝛼. If the parameters 𝜃1,𝑛, 𝜃2,𝑛,𝜃3,𝑛, and 𝜃4,𝑛 are recursively computed by the formulae given
in (21), then the 𝑅-order of convergence of class (23) is at least
15.5156 with efficiency index 15.51561/4 ≈ 1.9847.
Proof. We consider that sequence {𝑥𝑛}, generated by method
(23), converges to root 𝛼 with at least order R. Then we can
write

𝑒𝑛+1 ∼ 𝑒R𝑛 , (28)

where 𝑒𝑛 = 𝑥𝑛 −𝛼. We are going to determine the value ofR.
Hence,

𝑒𝑛+1 ∼ 𝑒R𝑛 = (𝑒R𝑛−1)R = 𝑒R2

𝑛−1. (29)

We assume that 𝑅-order of the iterative sequences {𝑤𝑛}, {𝑦𝑛},
and {𝑧𝑛} is at least 𝑝, 𝑞, and 𝑠, respectively; that is,

𝑒𝑛,𝑤 ∼ 𝑒𝑝𝑛 = 𝑒R𝑝𝑛−1, (30)

𝑒𝑛,𝑦 ∼ 𝑒𝑞𝑛 = 𝑒R𝑞𝑛−1, (31)

𝑒𝑛,𝑧 ∼ 𝑒𝑠𝑛 = 𝑒R𝑠𝑛−1. (32)

Considering (30), (31), (32), and Lemma 5, we get

1 + 𝜃1,𝑛𝑓󸀠 (𝛼) ∼ 𝑒𝑝+𝑞+𝑠+1𝑛−1 ,
(𝑐2 + 𝜃2,𝑛) ∼ 𝑒𝑝+𝑞+𝑠+1𝑛−1 ,

𝐴𝑛 ∼ 𝑒𝑝+𝑞+𝑠+1𝑛−1 ,
𝐵𝑛 ∼ 𝑒𝑝+𝑞+𝑠+1𝑛−1 ,

(33)

where 𝐴𝑛 and 𝐵𝑛 are given by (26) and (27), respectively.
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ByTheorem 1, it can be seen that

𝑒𝑛,𝑤 ∼ (1 + 𝜃1,𝑛𝑓󸀠 (𝛼)) 𝑒𝑛,
𝑒𝑛,𝑦 ∼ (1 + 𝜃1,𝑛𝑓󸀠 (𝛼)) (𝑐2 + 𝜃2,𝑛) 𝑒2𝑛,
𝑒𝑛,𝑧 ∼ [(1 + 𝜃1𝑓󸀠 (𝛼))2 (𝑐2 + 𝜃2) 𝐴𝑛] 𝑒4𝑛,
𝑒𝑛+1 ∼ [(1 + 𝜃1𝑓󸀠 (𝛼))4 (𝑐2 + 𝜃2)2 𝐴𝑛𝐵𝑛] 𝑒8𝑛.

(34)

Now, by (28) and using (33) in (34), we obtain

𝑒𝑛,𝑤 = 𝑒𝑝+𝑞+𝑠+1+R𝑛−1 , (35)

𝑒𝑛,𝑦 = 𝑒2(𝑝+𝑞+𝑠+1)+2R𝑛−1 , (36)

𝑒𝑛,𝑧 = 𝑒4(𝑝+𝑞+𝑠+1)+4R𝑛−1 , (37)

𝑒𝑛+1 = 𝑒8(𝑝+𝑞+𝑠+1)+8R𝑛−1 . (38)

By comparing the powers of error exponents of 𝑒𝑛−1 in pairs
of relations (30) ∧ (35), (31) ∧ (36), (32) ∧ (37), and (29) ∧
(38), we obtain the following nonlinear system:

R𝑝 −R − (𝑝 + 𝑞 + 𝑠 + 1) = 0,
R𝑞 − 2R − 2 (𝑝 + 𝑞 + 𝑠 + 1) = 0,
R𝑠 − 4R − 4 (𝑝 + 𝑞 + 𝑠 + 1) = 0,
R
2 − 8R − 8 (𝑝 + 𝑞 + 𝑠 + 1) = 0.

(39)

The unique positive solution of this system is 𝑝 =1.939451, 𝑞 = 3.878902, 𝑠 = 7.757804, and R = 15.515609,
which define the 𝑅-order of the three-step method (23) with
memory.

Remark 7. It can be observed that we have obtained the
minimum𝑅-order 15.5156, which gives the highest efficiency
index 15.51561/4 ≈ 1.9847 for the presented family with
memory (23). Similarly, as (24) is a particular case of (23),
their 𝑅-order and efficiency index coincide.

4. Particular Iterative Schemes

To develop particularmethods, we select functions𝐴(𝑢𝑛) and𝐺(𝑢𝑛) in such away that the following conditions are satisfied:
𝐴 (0) = 1,
𝐴󸀠 (0) = 2,
𝐴󸀠󸀠 (0) < ∞,
𝐺 (0) = 1,
𝐺󸀠 (0) = −1,
𝐺󸀠󸀠 (0) < ∞.

(40)

By using 𝐴(𝑢𝑛) = 1 + 2𝑢𝑛 and 𝐺(𝑢𝑛) = 1 − 𝑢𝑛, (where𝑢𝑛 = 𝑓(𝑦𝑛)/𝑓(𝑥𝑛)) in family (23), we obtain the following
particular method denoted by M1:

𝑤𝑛 = 𝑥𝑛 + 𝜃1,𝑛𝑓 (𝑥𝑛) , 𝑛 ≥ 0, 𝜃1,𝑛 = − 1
𝑁󸀠4 (𝑥𝑛) ,

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) ,
𝜃2,𝑛 = − 𝑁

󸀠󸀠
5 (𝑤𝑛)2𝑁󸀠5 (𝑤𝑛) ,

𝜃3,𝑛 = 𝑁
󸀠󸀠󸀠
6 (𝑦𝑛)6 ,

𝜃4,𝑛 = 𝑁
(𝑖V)
7 (𝑧𝑛)24 ,

𝑧𝑛 = 𝑦𝑛 − (1 + 2𝑢𝑛) (1 − 𝑢𝑛)
⋅ 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) + 𝜃3,𝑛 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝜓𝑛 .

(41)

By taking 𝐴(𝑢𝑛) = 1/(1 − 2𝑢𝑛) and 𝐺(𝑢𝑛) = 1 − 𝑢𝑛, where𝑢𝑛 = 𝑓(𝑦𝑛)/𝑓(𝑥𝑛) in the family (23), we obtain a new scheme
that we denote by M2:

𝑤𝑛 = 𝑥𝑛 + 𝜃1,𝑛𝑓 (𝑥𝑛) , 𝜃1,𝑛 = − 1
𝑁󸀠4 (𝑥𝑛) , 𝑛 ≥ 0,

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) ,

𝜃2,𝑛 = − 𝑁
󸀠󸀠
5 (𝑤𝑛)2𝑁󸀠5 (𝑤𝑛) ,

𝜃3,𝑛 = 𝑁
󸀠󸀠󸀠
6 (𝑦𝑛)6 ,

𝜃4,𝑛 = 𝑁
(𝑖V)
7 (𝑧𝑛)24 ,

𝑧𝑛 = 𝑦𝑛 − (1 − 𝑢𝑛) 𝑓 (𝑥𝑛)𝑓 (𝑥𝑛) − 2𝑓 (𝑦𝑛)
⋅ 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑤𝑛] + 𝜃2,𝑛𝑓 (𝑤𝑛) + 𝜃3,𝑛 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝜓𝑛 ,

(42)

where 𝑢𝑛 = 𝑓(𝑦𝑛)/𝑓(𝑥𝑛) and 𝜓𝑛 = 𝑓[𝑦𝑛, 𝑧𝑛] +𝑓[𝑧𝑛, 𝑦𝑛, 𝑥𝑛](𝑧𝑛 − 𝑦𝑛) + 𝑓[𝑧𝑛, 𝑦𝑛, 𝑥𝑛, 𝑤𝑛](𝑧𝑛 − 𝑦𝑛)(𝑧𝑛 − 𝑥𝑛) +𝜃4,𝑛(𝑧𝑛 − 𝑤𝑛)(𝑧𝑛 − 𝑦𝑛)(𝑧𝑛 − 𝑥𝑛).
5. Some Dynamical Aspects of
the New Methods

It is known (see, e.g., [24–26]) that the analysis of the
dynamical behavior of iterativemethods bymeans of complex
dynamics tools (on low-degree polynomials) is an important
resource that helps us to understand the reliability of the
methods. In fact, these techniques cannot be applied to
iterative methods with memory that require multidimen-
sional real analysis (see the recent papers [27, 28]). However,
the extremely high degree of the polynomials involved in
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Figure 1: Dynamical planes of different schemes on 𝑥2 − 1.

the resulting rational functions makes this analysis for the
proposed methods in this paper not possible.

The dynamical behavior of the rational function asso-
ciated with an iterative method on low-degree polynomials
gives us important information about its stability and relia-
bility. This analysis applied to a family of iterative schemes
allows us to select the more stable members of the family and
refuse those that have chaotic behavior.

Now, we are going to recall some dynamical concepts (see
[29]) that we use in this work. Let 𝑅 : Ĉ → Ĉ be a rational
function, where Ĉ is the Riemann sphere.The orbit of a point
𝑧0 ∈ Ĉ is defined as

{𝑧0, 𝑅 (𝑧0) , 𝑅2 (𝑧0) , . . . , 𝑅𝑛 (𝑧0) , . . .} . (43)

The phase plane of 𝑅 is analyzed for classifying the starting
points from the asymptotic behavior of their orbits. 𝑧0 ∈ Ĉ is
called a fixed point if 𝑅(𝑧0) = 𝑧0. Moreover, a fixed point 𝑧0 is
called attractor if |𝑅󸀠(𝑧0)| < 1, superattractor if |𝑅󸀠(𝑧0)| = 0,
repulsor if |𝑅󸀠(𝑧0)| > 1, and parabolic if |𝑅󸀠(𝑧0)| = 1. Then,
the basin of attraction of an attractor 𝛼 is defined as

A (𝛼) = {𝑧0 ∈ Ĉ : 𝑅𝑛 (𝑧0) 󳨀→ 𝛼, 𝑛 󳨀→ ∞} . (44)

We are going to show the dynamical planes of the
proposed method on quadratic and cubic polynomials (see
Figures 1 and 2, resp.). These planes are obtained as follows:
in the area [−2, 2] × [−2, 2] of the complex plane, a mesh of200 × 200 initial estimations is defined. From each of these
initial points, the first estimation is calculated by using an
initial value of 0.01 for all the accelerating parameters. Then,
the following elements of the orbit are obtained from these
two initial guesses. If the sequence generated by the iterative
method reaches a root of the polynomial (superattracting
fixed point) with an error estimation lower than 10−5 and
a maximum of 5 iterations, we decide that the initial point
is in the basin of attraction of this root and we paint it in

a color previously selected for this root. The roots of each
polynomial are marked with a white star. Black color denotes
lack of convergence to any of the roots (with the maximum
of iterations established) or convergence to the infinity.These
dynamical planes have been generated by using the software
shown in [30], implemented in Matlab R2014a.

Let us observe that the basin of the roots is wide, in
general, specially on the real axis (see Figures 1 and 2). This
fact justifies the good convergence behavior of the methods
when the initial estimation is not very close to the solution,
as what happens in the numerical section.

6. Numerical Experiments
In this section, we compare the proposedmethods with some
existing ones of similar kind. All the numerical computations
are carried out on the computer algebra system Maple 16. As
far aswe know, there exist few iterativemethodswithmemory
of so high order of convergence. We compare our methods
M1 and M2 with the triparametric with-memory methods of
Soleymani et al. [20] (SM) and Lotfi et al. [19] (LM1) and
four-parametric with-memory method of Lotfi and Assari
[31] (LM2) given as follows:

SM:

𝑤𝑛 = 𝑥𝑛 + 𝑞𝑛𝑓 (𝑥𝑛) , 𝑞𝑛 = − 1
𝑁󸀠3 (𝑥𝑛) , 𝑛 ≥ 0,

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑤𝑛, 𝑥𝑛] + 𝑝𝑛𝑓 (𝑤𝑛) , 𝑝𝑛 = −
𝑁󸀠󸀠4 (𝑤𝑛)2𝑁󸀠4 (𝑤𝑛) ,𝑥𝑛+1 = 𝑦𝑛

− 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑤𝑛] + 𝑝𝑛𝑓 (𝑤𝑛) + 𝑠𝑛 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛) (1
+ 𝑓 (𝑦𝑛)𝑓 (𝑥𝑛)) ,

𝑠𝑛 = 𝑁
󸀠󸀠󸀠
4 (𝑤𝑛)6 .

(45)
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Figure 2: Dynamical planes of different schemes on 𝑥3 − 𝑥.

LM1:

𝑤𝑛 = 𝑥𝑛 + 𝑝𝑛𝑓 (𝑥𝑛) , 𝑝𝑛 = − 1
𝑁󸀠3 (𝑥𝑛) , 𝑛 ≥ 0,

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] (1 + 𝑞𝑛
𝑓 (𝑤𝑛)𝑓 [𝑥𝑛, 𝑤𝑛]) ,
𝑞𝑛 = − 𝑁

󸀠󸀠
4 (𝑤𝑛)2𝑁󸀠4 (𝑤𝑛) ,

𝑥𝑛+1 = 𝑦𝑛 − 𝑓 (𝑦𝑛)𝑓 [𝑥𝑛, 𝑦𝑛] + 𝑠𝑛 (𝑦𝑛 − 𝑥𝑛) (𝑦𝑛 − 𝑤𝑛) (𝐷𝑛

+ (𝐷𝑛 − 1)4) ,

𝐷𝑛 = 𝑓 [𝑥𝑛, 𝑤𝑛]𝑓 [𝑦𝑛, 𝑤𝑛] ,

𝑠𝑛 = −14
𝑁󸀠󸀠5 (𝑦𝑛)2𝑁󸀠5 (𝑦𝑛) +

1
6𝑁󸀠󸀠󸀠5 (𝑦𝑛) .

(46)

LM2:

𝑤𝑛 = 𝑥𝑛 + 𝛾𝑛𝑓 (𝑥𝑛) , 𝛾𝑛 = − 1
𝑁󸀠4 (𝑥𝑛) , 𝑛 ≥ 0,

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓 [𝑥𝑛, 𝑤𝑛] + 𝜇𝑛𝑓 (𝑤𝑛) , 𝜇𝑛 = −
𝑁󸀠󸀠5 (𝑤𝑛)2𝑁󸀠5 (𝑤𝑛) ,

𝜆𝑛 = 𝑁
󸀠󸀠󸀠
6 (𝑦𝑛)6 ,

𝛽𝑛 = 𝑁
𝑖V
7 (𝑧𝑛)24 ,

𝑧𝑛 = 𝑦𝑛 − 𝑓 (𝑦𝑛)𝑓 [𝑦𝑛, 𝑥𝑛] + 𝑓 [𝑤𝑛, 𝑥𝑛, 𝑦𝑛] (𝑦𝑛 − 𝑥𝑛) + 𝜆𝑛 (𝑦𝑛 − 𝑤𝑛) (𝑦𝑛 − 𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑓 (𝑧𝑛)𝜒𝑛 ,

(47)

where 𝜒𝑛 = 𝑓[𝑥𝑛, 𝑧𝑛] + (𝑓[𝑤𝑛, 𝑥𝑛, 𝑦𝑛] − 𝑓[𝑤𝑛, 𝑥𝑛, 𝑧𝑛] −𝑓[𝑦𝑛, 𝑥𝑛, 𝑧𝑛])(𝑥𝑛 − 𝑧𝑛) + 𝛽𝑛(𝑧𝑛 − 𝑥𝑛)(𝑧𝑛 − 𝑤𝑛)(𝑧𝑛 − 𝑦𝑛) and𝑥0, 𝛾0, 𝜇0, 𝜆0, and 𝛽0 are given.
We have considered three iterations for the comparison

of different methods with memory by applying 2000-fixed-
floating-point arithmetic. In most of the applications, there is
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Table 1: Test functions.

Test functions Exact root Initial guess
𝑓1 (𝑥) = 0.0005V + 10−15 (𝑒38.46153846V − 1) − 0.0005 𝛼 ≈ 0.671445366 𝑥0 = 0.8𝑓2 (𝑥) = 𝑥4 + 2𝑥3 − 14𝑥2 + 2𝑥 + 1 𝛼 ≈ 0.362199992 𝑥0 = 1.0𝑓3 (𝑥) = 𝑥4 + 11.50𝑥3 + 47.49𝑥2 + 86.0325𝑥 + 51.233 𝛼 = −1.45 𝑥0 = −1.2𝑓4 (𝑥) = 𝑒𝑥2−3𝑥 sin (𝑥) + log (𝑥2 + 1) 𝛼 = 0 𝑥0 = 0.35

no need for so much digits, but when higher order methods
are compared and checked, it is necessary to distinguish them
on the basis of high precision.

Table 1 shows the nonlinear test functions used for the
comparison along with their exact roots 𝛼 and initial guess𝑥0.

We see that these examples have applications in engineer-
ing. Let us describe the phenomena as follows.

Example 1 (the Shockley diode equation and electric circuit).
Let us consider the equation describing the exact current
flowing through a diode, given the voltage drop across the
junction, the temperature of the junction, and the physical
constants involved as follows:

𝑖 = 𝑖𝑆 (𝑒𝑞V/𝑛𝑘𝑇 − 1) , (48)

where 𝑖 is the diode current in amperes, 𝑖𝑆 is saturation
current (10−15 amperes), 𝑞 is the charge of electron (1.6×10−19
coulombs), 𝑛 is the emission constant (1 ≤ 𝑛 ≤ 2 for silicon
diode), 𝑘 is Boltzmann’s constant (1.38 × 10−23), 𝑇 is the
junction temperature in kelvins, and V is the voltage applied
across diode. At room temperature and for 𝑛 = 1, (48) takes
the form

𝑖 = 10−15 (𝑒38.46153846V − 1) . (49)

Now, for a given electric circuit involving a diode with source
voltage of 1 volt and a resistor of 2 kilo ohms, we have the
following equation:

0.0005V + 10−15 (𝑒38.46153846V − 1) − 0.0005 = 0. (50)

An approximation of the root of this equation is
0.6714453666.

Example 2 (the beam positioning problem). We consider a
beam positioning problem (see [32]) where a 4-meter-long
beam is leaning against the edge of the cubical box with sides
of length 1 meter each such that one of its ends touches the
wall and the other touches the floor as shown in Figure 3.

What should be the distance along the floor from the base
of the wall to the bottom of the beam? Let 𝑦 be the distance in
meters along the beam from the floor to the edge of the box
and let 𝑥 be the distance in meters from the bottom of the
box to the bottom of the beam. Then, we have the following
equation:

𝑥4 + 2𝑥3 − 14𝑥2 + 2𝑥 + 1 = 0. (51)

The positive solutions of the equation, 0.3621999926 and
2.7609056329, are the solutions to the beam positioning
problem.

y

x

Figure 3: Beam positioning problem.

Example 3 (continuous stirred tank reactor (CSTR)). Con-
sider the isothermal continuous stirred tank reactor (CSTR).
Components A and R are fed to the reactor at rates of 𝑄 and𝑞-𝑄, respectively. The following reaction scheme develops in
the reactor (see [33]):

𝐴 + 𝑅 󳨀→ 𝐵
𝐵 + 𝑅 󳨀→ 𝐶
𝐶 + 𝑅 󳨀→ 𝐷
𝐶 + 𝑅 󳨀→ 𝐸.

(52)

The problemwas analyzed by Douglas [34] in order to design
simple feedback control systems. In the analysis, he gave the
following equation for the transfer function of the reactor:

𝐾𝐶 2.98 (𝑥 + 2.25)
(𝑠 + 1.45) (𝑠 + 2.85)2 (𝑠 + 4.35) = −1, (53)

where 𝐾𝐶 is the gain of the proportional controller. The
control system is stable for values of 𝐾𝐶 that yields roots of
the transfer function having negative real part. If we choose𝐾𝐶 = 0, we get the poles of the open-loop transfer function
as roots of the nonlinear equation:

𝑓3 (𝑥) = 𝑥4 + 11.50𝑥3 + 47.49𝑥2 + 83.06325𝑥
+ 51.23266875 = 0 (54)

given as

𝑥 = −1.45, −2.85, −2.85, −4.35. (55)

So, we see that there are two simple roots. We take 𝛼 = −1.45.
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Table 2: Comparison table for methods with memory on 𝑓1(𝑥).
𝑓1(𝑥), 𝑥0 = 0.8

SM LM1 LM2 M1 M2
|𝑥1 − 𝛼| 8.07 (−2) 7.58 (−2) 5.60 (−2) 6.46 (−2) 5.59 (−2)
|𝑥2 − 𝛼| 0.265304511 1.23 (−2) 2.52 (−3) 6.51 (−3) 2.76 (−3)
|𝑥3 − 𝛼| 0.265318862 2.08 (−7) 1.04 (−24) 3.57 (−17) 3.47 (−23)
𝑟𝑐 −0.9 (−5) 3.38 11.55 9.13 11.01
CPU time (sec) 0.063 0.078 0.094 0.093 0.079

Table 3: Comparison table for methods with memory on 𝑓2(𝑥).
𝑓2(𝑥), 𝑥0 = 1.0

SM LM1 LM2 M1 M2
|𝑥1 − 𝛼| 2.84 (−2) 4.54 (−2) 6.79 (−4) 2.64 (−3) 1.34 (−3)
|𝑥2 − 𝛼| 1.24 (−12) 2.16 (−11) 1.44 (−51) 1.74 (−41) 3.93 (−46)
|𝑥3 − 𝛼| 3.93 (−96) 4.34 (−85) 2.55 (−814) 2.58 (−652) 1.19 (−726)
𝑟𝑐 8.07 7.88 15.99 15.99 15.99
CPU time (sec) 0.047 0.031 0.062 0.063 0.063

Table 4: Comparison table for methods with memory on 𝑓3(𝑥).
𝑓3(𝑥), 𝑥0 = −1.2

SM LM1 LM2 M1 M2
|𝑥1 − 𝛼| 3.11 (−4) 1.03 (−5) 6.79 (−4) 2.64 (−3) 1.34 (−3)
|𝑥2 − 𝛼| 9.99 (−28) 1.14 (−39) 1.44 (−51) 1.74 (−41) 3.93 (−46)
|𝑥3 − 𝛼| 9.66 (−212) 6.87 (−303) 2.55 (−814) 2.58 (−652) 1.19 (−726)
𝑟𝑐 7.83 7.75 15.99 15.99 15.99
CPU time (sec) 0.031 0.063 0.062 0.063 0.078

Table 5: Comparison table for methods with memory on 𝑓4(𝑥).
𝑓4(𝑥), 𝑥0 = 0.35

SM LM1 LM2 M1 M2
|𝑥1 − 𝛼| 9.56 (−3) 2.71 (−3) 1.31 (−5) 1.54 (−8) 2.86 (−8)
|𝑥2 − 𝛼| 5.83 (−16) 2.27 (−20) 1.62 (−69) 3.30 (−106) 4.39 (−104)
|𝑥3 − 𝛼| 3.60 (−110) 2.76 (−141) 2.48 (−1068) 1.87 (−1642) 2.08 (−1608)
𝑟𝑐 7.13 7.08 15.63 15.73 15.70
CPU time (sec) 0.125 0.125 0.172 0.157 0.156

Tables 2–5 display the errors |𝑥𝑛 − 𝛼| of approximations
to the sought zeros produced by different methods at the first
three iterations, where 𝐸(−𝑖) denotes 𝐸 × 10−𝑖. The initial
approximation 𝑥0 for each test function, computational order
of convergence (𝑟𝑐), and CPU time are also included in these
tables. Computational order of convergence is computed by
the following expression [35]:

𝑟𝑐 ≈ log 󵄨󵄨󵄨󵄨𝑓 (𝑥𝑛+1) /𝑓 (𝑥𝑛)󵄨󵄨󵄨󵄨
log 󵄨󵄨󵄨󵄨𝑓 (𝑥𝑛) /𝑓 (𝑥𝑛−1)󵄨󵄨󵄨󵄨 . (56)

The numerical results displayed in Tables 2–5 illustrate
that the proposed iterative methods with memories M1
and M2 have much better accuracy than the methods of
Soleymani et al. [20] (SM), Lotfi et al. [19] (LM1), and Lotfi
and Assari [31] (LM2). We observe that the CPU time of

the proposed methods is less than or equal to the CPU time
of the existing methods. For all the compared with-memory
methods, we have considered 𝑝0 = 𝑞0 = 𝑠0 = 𝜇0 =−0.1, 𝜃2,0 = 𝜆0 = 0.1 and 𝜃1,0 = 𝜃3,0 = 𝜃4,0 = 𝛾0 = 𝛽0 = 0.01
to start the initial iteration. It is worth noticing that, for the
execution of the proposed with-memory method M1 (41),
for 𝑛 = 0, we obtain the scheme (7) of maximum order8 and for 𝑛 ≥ 1, the successive iterates of the method M1
(41) are computed where the recently estimated information
is used (which is already saved in memory) to provide the
order of convergence of at least 15.5156. Thus, it is observed
that, in the first iteration, efficiency of the with-memory
methods cannot be seen. This means the correct values of
the accelerating parameters are required in the interpolation
processes to clearly observe the 𝑅-order of convergence of
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Figure 4: Comparison of efficiency indices for different methods.

with-memory methods. Figure 3 presents the comparison of
the real efficiency indices (RE) of without-memory method
(7) and with-memory methods (SM), (LM1), (LM2), (M1),
and (M2) computed by the following expressions [19]:

RE (7) = 𝑛 (8
1/4)
𝑛 ,

RE (SM) = 4
1/3 + (𝑛 − 1) (7.238141/3)

𝑛 ,

RE (LM1) = 4
1/3 + (𝑛 − 1) (7.531121/3)

𝑛 ,

RE (LM2) = 8
1/4 + (𝑛 − 1) (15.51561/4)

𝑛 ,

RE (M1) = RE (M2) = 8
1/4 + (𝑛 − 1) (15.51561/4)

𝑛 ,

(57)

where 𝑛 is the number of iterations. Figure 4 reveals the supe-
riority of the proposed methods in terms of real efficiency
indices.

7. Conclusions

In this paper, we have developed a new derivative-free
without-memory family of optimal iterativemethods extend-
able to with-memory ones. Error analysis is presented to
demonstrate that the family of without-memory meth-
ods have optimal eighth-order convergence. We have also
extended the proposed family to the with-memory one with
low computational load. Two special cases, M1 and M2,
of the proposed with-memory family are also obtained.
It has been shown that the new methods possess a very
high computational efficiency index 15.51561/4 ≈ 1.9847
which is even higher than the efficiency of many of the
developed with-memory methods and of a two-step with-
memory method using two accelerators given by Cordero
et al. [16]; that is, 71/3 ≈ 1.913. Moreover, the proposed

methods can be used even for nonsmooth functions as they
do not require any derivatives. Finally, numerical results and
dynamical behavior of the new methods are given which
illustrate that the proposed with-memory iterative methods
have much better accuracy and efficiency than the methods
of the respective domain for finding roots of nonlinear
functions.
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