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Abstract

This paper presents a new knock model which combines a deterministic knock model
based on the in-cylinder temperature and an exogenous noise disturbing this tem-
perature. The autoignition of the end-gas is modelled by an Arrhenius-like function
and the knock probability is estimated by propagating a virtual error probability
distribution. Results show that the random nature of knock can be explained by
uncertainties at the in-cylinder temperature estimation. The model only has one
parameter for calibration and thus can be easily adapted online.

In order to reduce the measurement uncertainties associated with the air mass
flow sensor, the trapped mass is derived from the in-cylinder pressure resonance,
which improves the knock probability estimation and reduces the number of sensors
needed for the model.

A four stroke SI engine was used for model validation. By varying the intake tem-
perature, the engine speed, the injected fuel mass, and the spark advance, specific
tests were conducted, which furnished data with various knock intensities and prob-
abilities. The new model is able to predict the knock probability within a sufficient
range at various operating conditions. The trapped mass obtained by the acoustical
model was compared in steady conditions by using a fuel balance and a lambda
sensor and differences below 1% were found.
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1 Introduction

In spark-ignited (SI) engines the combustion is initiated by the energy released
by the spark. This combustion generates a flame front which moves along all
the cylinder volume in a uniform manner [1]. During the flame propagation the
temperature of the unburned gas increases due to the rise of the in-cylinder5

pressure. In normal combustion events, the flame front reaches all of the cylin-
der volume in a controlled scheme; however, high unburned gas temperatures
can cause the autoignition of the end-gas.

The autoignition of the end-gas (knock) is an undesirable phenomenon and is10

one of the main limitations in SI engines. The rapid combustion of the end-gas
heavily excites cylinder head resonance, and its vibration reduces the combus-
tion efficiency and can damage the engine [2, 3, 4].

Current approaches for knock control use the spark advance (SA) timing for15

modifying the combustion phasing and thus, the likelihood of knock. The con-
trol strategies can be divided into two groups: stochastic and model-based.
Stochastic methods aim to directly control the knock probability by varying
the SA [5, 6, 7], while model-based methodologies use the spark advance for
keeping in-cylinder conditions, e.g. un-burned gas temperature, within a de-20

sired range [8, 9, 10].

Regarding the physics behind the knock phenomenon, several studies state
that knock cannot be predicted in a deterministic manner [11, 12]. One one
hand, when operating in steady-state conditions, the flame propagation in SI25

combustion has a significant cycle-to-cycle variability [13, 14], which directly
influences the cycle-to-cycle knock probability. On the other hand, some re-
search suggest that the autoignition of the end-gas could be initiated at hot
spots, influenced by inhomogeneities of the mixture [15, 16, 17]. Furthermore,
the autoignition of the end-gas is driven by an Arrhenius-like function [18, 19],30

and small errors in the gas temperature are propagated in knock models by an
exponential function resulting in important errors in the prediction of knock.

The present paper proposes estimating the knock probability by adding an
exogenous noise over the in-cylinder temperature model. This noise represents35

uncertainties such as temperature hot spots, in-cylinder pressure pegging, wall
heat transfer, residual mass variations, and sensor errors. Hence, the model is
developed with the assumption that the random nature of knock is due only
to in-cylinder temperature uncertainties. It is beyond the scope of this paper
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to prove this assumption; however, the experimental results show that it im-40

proves the prediction capabilities of a control-oriented knock model.

The model presented aims to reduce the unburned gas uncertainties estimating
the trapped mass by identifying the resonant frequencies of the in-cylinder
pressure waves. The method was recently applied to DI and HCCI engines [20,45

21, 22], and some applications, i.e. NOx and residual gas fraction estimation,
have been already explored [23, 24]. One of the most important sources of error
is the estimation of the trapped mass, which is a crucial parameter for the
estimation of the unburned gas temperature. Measurement errors of hot-film
air mass flow sensors, which are widely employed in automotive applications,50

can attain up to 20% because of ageing and other non-calibrated effects [25,
26]. Furthermore, there are no sensors for estimationg the residual gases, which
in SI engines without negative valve overlap represent between 3 % and 5% of
the total mass trapped, and they exhibit important cycle-by-cycle variations
[27, 28].55

In addition, past works on the method, as tested in cylinders with an in-
piston bowl, do include the engine speed fluctuations with the bowl effect by
a crank angle dependent parameter [29]. In this paper, a spark-ignited engine
was used and the instantaneous engine speed was measured and modelled by
the camshaft model given by Li and Stone in [30]. Herein, the frequency is60

demonstrated to follow Draper’s equation [31] with no need for any calibration
effort. A fuel balance, a lambda sensor, and a residual mass model were used
for validation in steady conditions.

The resonance methodology is specially suitable for the knock modelling of SI65

engines for three reasons:

(1) SI engines normally do not have a bowl. Theory based on a cylindrical
combustion chamber thus fits the physics better.

(2) Knocking conditions are produced at high loads, where combustion heav-
ily excites the resonant frequencies, even in the absence of knock.70

(3) SI combustion is performed in stoichiometric conditions and the resulting
end-gas properties can be easily identified [32].

In order to evaluate the improvement associated with the methodology based
on in-cylinder pressure for estimating the trapped mass, the knock model was
run by using the trapped mass from the resonance method and by using the75

air mass flow sensor.

The paper is organized as follows: The next section introduces the experimen-
tal set-up and the tests performed. Section three describes the methodology for
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determining the knock autoignition and Section four describes the procedure80

for estimating the knock probability by the addition of an exogenous noise.
Section five shows the performance of the knock model and illustrates the ef-
fect of sensor errors by comparing the air mass flow sensor and the trapped
mass obtained from resonance. Finally, the last section highlights the main
contributions of the method and points out the future work required for using85

the model in a control scheme.

2 Experimental set-up

Tests were performed in a turbocharged four-stroke SI engine with 0.5 l of
unitary displacement. The air-to-fuel ratio was maintained at stoichiometric90

conditions by controlling in a closed-loop the amount of fuel injected with a
lambda sensor placed at the exhaust line. The air mass flow was measured by a
hot-film anemometer and controlled by a waste-gate valve at the turbocharger.
The main characteristics of the engine are summarized in Table 1.

Table 1
Main engine characteristics

Units Value

Cylinders [-] 3

Combustion type [-] SI

Unitary displacement [cc] 499.6

Bore [mm] 82

Compression ratio [-] 10.1:1

The engine was equipped with a variable valve timing (VVT) system and di-95

rect gasoline injection. The timing of the gasoline injection was set at 270 CAD
before top dead center (TDC), the intake valve opening and closing (IVO and
IVC) were set at 387 and 180 CAD before TDC, respectively, and the exhaust
valve opening and closing (EVO and EVC) were set at 146 and 357 CAD after
TDC. The two valve lift profiles are shown in Figure 1.100

A fuel balance was used for fuel mass flow metering, which implies accurate
measurements in steady-state conditions. Used in conjunction with a lambda
sensor, this measurement provides an air mass flow estimation, as follows:

mair = λ14.7mfuel (1)
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Fig. 1. Valves opening configuration

The residual gas fracion (RGF) was estimated from in-cylinder conditions at105

the EVO and EVC, such as several authors proposed [33, 34], as follows:

RGF =
(
VEV C

VEVO

)(
pEV C

pEVO

)
1/γ

(2)

To analyse the pressure signals a short time Fourier transform (STFT) and
Wigner distribution (WD) were used. The former uses the Fourier transform
and a time-varying window to obtain the frequency spectrum with time res-
olution, while the latter multiplies the signal at a past time by the signal at110

a future time [35, 36, 37]. Each method has some advantages and disadvan-
tages: On one hand, STFT is the most commonly used methodology as it is
a robust method and does not require much computational time. However,
STFT dilutes the signal by using a window function, which means that the
frequency content obtained at instant t is affected by the surroundings. On the115

other hand, WD has a precise frequency spectrum, but ghost terms caused by
artificial frequencies mask the real components. In this work Blackman-Harris
window of 2.8 ms was used for STFT, while WD was implemented over the
full signal.

120

Knock was detected by analysing the frequency content of the in-cylinder pres-
sure signal such as in [38]. This methodology does detect low-knocking cycles
by comparing the resonance excitation near the maximum heat release rate
(normal combustion) and next to the maximum unburned temperature (au-
toignition).125

Various SA settings, ranging from 0 to 13 CAD before TDC, were applied by
performing steps at eight operating conditions. Table 2 summarizes the op-
erating conditions tested. Here, the engine speed, the air mass flow, and the
coolant temperature (controlled by varying the coolant flow) were changed to130
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create diverse knocking conditions. Figure 2 shows the spark advance evolu-
tion during an SA step test.
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Fig. 2. SA evolution during an example of the steady-state SA steps test

Table 2
Operating conditions

OP mref
air n Tcool

[g/s] [rpm] oC

A 25 1500 85

B 22 1500 85

C 25 1500 90

D 22 1500 90

E 19 1250 85

F 16 1250 85

G 16 1250 90

H 19 1250 90

3 Arrhenius-based knock model

As stated above, the autoignition of the end-gas is characterized by the in-135

cylinder chamber conditions and it can be modelled by an Arrhenius-like func-
tion, such as:

τ = C1e
C3
Tub pC2 (3)

where τ is the ignition delay and Tub are the pressure and temperature of the
unburned gasses, respectively, and C1, C2 and C3 are constants defining the
autoignition process.140
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In the present work, the values suggested by Douaud and Eyzat were used
[39], namely C2 = −1.7 and C3 = 3800. The model is easily adaptable for a
model-based knock control scheme and the only parameter that needs calibra-
tion is C1.145

Autoignition is produced when

AI =
∫ EOC

IV C

1

τ
dα > 1 (4)

and the unburned temperature can be calculated by assuming a polytropic
process after the spark is produced.

Tub =

⎧⎪⎨
⎪⎩

pV
mR

if α < SA

T SA
ub

(
p

pSA

)κ−1
κ otherwise

(5)

where κ is the polytropic exponent. In this work, a value of 1.3 was used.150

Note that the trapped mass calculated is used in an exponential function, such
that, if there was an error in the trapped mass input, it would become in a
high deviation at the autoignition delay output.

155

Figure 3 shows the probability functions of the AI index defined in (4) for four
values of SA steps and for all the cycles together, i.e. the steps illustrated in
Figure 2. The AI index increases as the spark is advanced because combustion
starts closer to TDC provoking higher temperatures of the unburned gas.

160
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Fig. 3. AI probability functions of various SA steps at point H

Figure 4 shows the knock probability found for the cycles at point H. The

7



knock probability was calculated by dividing the data in groups of similar
AI values, with a resolution of 0.025. Clearly, the knock events are more fre-
quent when the AI index increases, nevertheless, the autoignition hypothesis
stated at (4) is not always accomplished, as some cycles with AI values below165

1 present knock and others above do not.

0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

AI [−]

Kn
oc

k 
pr

ob
ab

ilit
y 

[%
]

Fig. 4. Knock probability measured as a function of the AI index at point H

4 Exogenous noise and knock probability estimation

Errors at the temperature estimation of the unburned gas preclude a determin-
istic prediction of knock. These errors can be caused by unobservable effects,170

e.g. temperature hot spots or residual mass variations, but also by measure-
ment and modelling errors, such as pegging errors or errors at the occurring
estimations of the trapped mass and γ.

The present paper proposes the use of an error probability distribution ϕT175

which is added in the computed unburned gas temperature and which takes
into account all the uncertainties in the measurement. This probability dis-
tribution is used to calculate, at each cycle, a probability distribution for the
autoignition parameter defined in Equation (4), as follows:

ϕAI = AI +
dAI

dT
ϕT (6)

where dAI
dT

is numerically calculated by:180

dAI

dT
=

AI(Tub +ΔT, p)− AI(Tub, p)

ΔT
(7)
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Finally, the knock probability can be obtained by integrating the probability
that knock occurs:

pKE =
∫
AI>1

ϕAI (8)

Following these steps, if the exogenous noise was set to 0, the function of the
knock probability would be a digital function. If the noise was a bias in any185

measurement, this would result in an offset of the final probability function.
And if the error was a random function, it would smooth the probability func-
tion by having the 50% probability at AI = 1. Figure 5 exemplifies the effect
of various exogenous noises at the knock probability function by using a con-
stant temperature sensitivity dAI/dT of 0.04.190

0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

AI [−]

Kn
oc

k 
pr

ob
ab

ilit
y 

[%
]

no error
5 % bias
random noise, σ = 2.5 %
random noise, σ = 5 %

Fig. 5. Effect of various types of errors to the knock probability function

The exogenous noise was chosen to be a normal distribution with 0 mean and
constant standard deviation. The standard deviation was calibrated at point
H by using the least squares method. The value found was 5.29% and the
result of the model is shown in Figure 6.195
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Fig. 6. Effect of various type of errors on the knock probability function
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Note that the knock probability shown in Figure 6 is calculated cycle-by-cycle
by varying the temperature sensitivity dAI/dT , while the example whown in
Figure 5 is computed with a constant temperature sensitivity of 0.04. Figure 7
plots the autoignition parameters for 50 consecutive cycles for each SA value
at the point H. It must be noticed that the SA not only strongly influences200

the autoignition time (AI) calculated, but also the temperature sensitivity.
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Fig. 7. Autoignition parameter and temperature sensitivity for different SA settings
at point H

Figure 8 illustrates the knock probability calculation by plotting the probabil-
ity function of the AI for four individual cycles with different SA values. The
knocking probability is computed by integrating the area above the knocking205

criteria, which is represented by a dashed line. Note that, the autoignition
parameter (AI) determines whether a cycle is knocking or not, i.e. above or
below 50% of knock probability, while the temperature sensitivity determines
the trust worthiness of this estimation.
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5 Model Validation

As stated above, the knock model was validated at eight operating conditions,
as summarized in Table 2. Each cycle was analysed independently and an ex-
ogenous noise with σ = 5.29% was used for all of them. Figure 9 shows the
probability density function of AI for each test. Clearly, points G and H have215

higher values of AI, while points B and D have lower values.
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Fig. 9. Probability density functions for each OP

Left plot of Figure 10 shows the results of the knock model when Tub is com-
puted by using the air mass flow sensor for all the operating conditions. The
model shows an offset when the operating conditions are varied. This offset220

is caused by air mass flow sensor errors. If traditional sensors were employed,
each operating condition would need a different value of C1 for dealing with
the sensor bias, and the model would require a constant adaptation when
transients are performed. Nevertheless, this offset can be corrected by using
the pressure resonance of the cylinder for detecting the total mass trapped.225

This methodology for inferring the mass trapped from in-cylinder pressure
resonance oscillations was recently developed and it is the first time that it is
used in conventional SI engines. A more detailed description of the procedure
can be found in Appendix A. The right plot of Figure 10 shows the results230

obtained when the unburned temperature is detected by using the resonant
frequencies. Note that all the experimental lines collapse around the predicted
value and only a single value of C1 was required for running the model. This
model could be used for knock control by maintaining the AI index at a desired
level, e.g. if the AI index was maintained at 0.8, the percentage of knocking235

cycles would remain below 20%.

The complete model uses the in-cylinder pressure and the geometrical param-
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Fig. 10. Knock probability calculation

eters of the engine to estimate the probability of knock. The model can be
summarized by the following steps:240

(1) The content of the in-cylinder pressure compressed on the frequency band
of resonance (between 4 kHz and 20 kHz) is used for characterizing the
acoustical waves and estimating the in-cylinder trapped mass.

(2) The low-frequency band of the pressure signal is used to analyse the com-
bustion, compute the temperature of the unburned gases, and estimate245

the autoignition delay.
(3) An exogenous noise is added to the unburned gas temperature and it is

propagated along the model. This yields a probability distribution of the
autoignition delay (not a single value).

(4) The knock probability is obtained by integrating the autoignition delay250

probability distribution which predicts an autoignition of the end-gas
before the combustion ends.

Figure 11 shows a scheme of the complete model. Note that the in-cylinder
pressure signal is the only input required for computing the knock probability.

255

6 Conclusions

A knock model was developed for predicting knock probability. The knock
probability is calculated by assuming an error probability distribution on the
temperature of the unburned gases and propagating this error along a simple
knock model based on an Arrhenius-like function. The model uses in-cylinder260

pressure resonant frequencies to determine the unburned gas temperature. Do-
ing so, sensor bias is avoided and the model does not need to be constantly
adapted in transient operation.
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Fig. 11. Model scheme for knock probability estimation

The most important contributions of the model developed are:265

• The in-cylinder conditions of the SI engines when knock must be controlled
are specially suitable for detecting the resonance phenomenon: High loads
excite in-cylinder pressure resonance, the absence of a bowl in SI engines
ensures a constant Bessel factor and there is no air after combustion, facil-
itating the estimation of the gas properties.270

• Only the pressure signal is required, which significantly reduces the sources
of errors.

• The trapped mass is directly computed, with no need for a residual gas
fraction model.

• The model can be adapted by actualizing a single parameter. This is essen-275

tial for knock models as they must be continuously adapted to deal with
any variation, e.g. caused by ageing.

The model was validated in a four-stroke SI engine by varying several knocking
conditions; namely spark advance, engine speed, load, and coolant tempera-
ture. Results show an important bias when using current sensors for computing280

the trapped mass. However, the model accurately predicts the knock proba-
bility when the trapped mass is obtained from the resonant content of the
pressure signal.

A Estimation of the trapped mass

It is possible to determinate the in-cylinder trapped mass from the acous-285

tic characteristics of the pressure waves, caused by the combustion [20, 21].
As known from [31], the evolution of the resonant frequency depends on the
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cylinder geometry and the in-cylinder speed of sound, as follows:

fres (α) =
a (α)B

πD
(A.1)

where a is the speed of sound, fres is the resonant frequency, B is the Bessel
coefficient for the given resonant mode, D is the cylinder bore and α repre-290

sents the crank angle evolution.

Hickling et al. were the first authors trying to take advantage of resonance
by measuring the oscillation period and estimating the bulk temperature [40].
The approach was adapted by Guardiola et al. for obtaining the trapped mass295

by using STFT [20, 21]:

m = γpV

(
B

fresπD

)
2

(A.2)

where p is the in-cylinder pressure, V the instantaneous cylinder volume and
γ is the ratio between constant pressure and constant volume heat capacities
(cp/cv), as shown in Figure A.1:

300

Fig. A.1. Trapped mass calculation by the STFT method

The methodology was finally systematized by developing a specific transforma-
tion which implicitly takes into account the resonant frequency evolution [22],
thus avoiding time-frequency calculations. Instead of using constant frequency
harmonics, this transformation uses time-varying harmonics that depend on
virtual masses, such as:

S(m) = R[p(t)] =
∫ ∞
−∞

p(t)e
−j2π

∫ t

−∞
B
√

γ(τ)p(τ)V (τ)

πD
√
m

dτ
dt (A.3)

The actual trapped mass makes this transformation maximum, and the value
of the peak provides information about the strength of that resonant mode. A
scheme of the trapped mass estimation procedure that uses the direct trans-
formation is shown in Figure A.2.

305

Fig. A.2. Trapped mass calculation by direct transformation
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Equation A.3 was discretized and computed from 30 to 80 CAD after TDC,
which yields:

S(m) =
α=30∑
α=80

T (α)p(α)e
−j2π

∑φ=α

φ=0

T (φ)B
√

γ(φ)p(φ)V (φ)

πD
√
m (A.4)

As the engine is closed-loop controlled by a lambda sensor to have stoichio-
metric conditions, all the gases after combustion are burned products and the
value of γ can be computed by a single polynomial equation, such as in [41].310

In past works [20, 21, 22], the method was applied to CI engines and a crank-
angle-dependent parameter was included to take into account the disturbance
associated with the existence of the bowl in the proximity of the TDC and the
engine speed fluctuations. Herein, the method is applied for the first time in315

a conventional SI engine and it was improved by modelling the instantaneous
engine speed by using the model proposed by Li and Stone [30]. This model
predicts the engine speed fluctuations by modelling the inertial forces of the
piston movement. Figure A.3 shows the measured and modelled engine speed
for 50 consecutive cycles, at the operating conditions of point A.320

Fig. A.3. Measured and modelled engine speed for 50 consecutive cycles in steady
conditions

The inclusion of the engine speed fluctuations into the trapped mass estima-
tions is needed for relying on Draper’s equation. Figure A.4 shows one cycle
pressure signal (top plot), analysed by WD (medium plot) and by STFT (bot-
tom plot). Herein, the resonance frequency evolution, computed by Equation325

(A.3), is represented by a dashed line and was calculated for the first radial
mode using a constant Bessel factor (B = 1.842) and including the engine
speed fluctuations in the sampling period (T = 1/Fs = 1/30n).

If a constant engine speed is assumed, the frequency shift does not correspond330
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Fig. A.4. Bessel constant found for different crank angle locations

with theory of a cylindrical combustion chamber and a variable Bessel factor
is needed. Figure A.5 shows the band-passed pressure signal of Figure A.4 and
the Bessel factor evolution identified with and without including the engine
speed fluctuations. This coefficient was computed by measuring the trapped
mass, computing the speed of sound, and measuring the resonant frequencies335

(fres), as follows:

B (α) =
fres (α)πD

a (α)
(A.5)

The resonant frequencies fres were identified by using the WD and by selecting
the most excited frequency at each crank angle location.
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There are two benefits of including the engine speed fluctuations in the calcu-
lation. First, there is no need for calibration and the method can be directly
used. Second, a crank-angle-dependent calibration, as suggested in previous
works, does not take into account the effect of the load at the engine speed
fluctuations. The differences at the engine speed between high load and low345

load can cause errors of up to 2% in the trapped mass calculation for the crank
angle range considered.

A.1 Trapped mass results over steady-state tests

The trapped mass was computed from the fuel balance, from the air mass flow350

sensor, and by using the resonance methodology for all the steady operating
conditions listed in Table 2. The RGF was estimated between 2.9% and 3.5%
and lambda was maintained near stoichiometric conditions (mair ≈ 14.7mfuel).
Figure A.6 compares all three methodologies. Measurement data from reso-
nance better fits the measurement results obtained by the fuel balance, and355

the small discrepancies between them can also be attributed to the λ sensor
or to the RGF estimation.
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Fig. A.6. Results of trapped mass computations over steady operating points
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