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Abstract

This work describes a new methodology for Robust Identification (RI), meaning the

identification of the parameters of a model and the characterization of uncertainties.

The alternative proposed handles non-linear models and can take into account the

different properties demanded by the model. The indicator that leads the identifi-

cation process is the identification error (IE), that is, the difference between experi-

mental data and model response. In particular, the methodology obtains the feasible

parameter set (FPS set of parameters values which satisfy a bounded IE) and a

nominal model in a non-linear identification problem. To impose different properties

on the model, several norms of the IE are used and bounded simultaneously. This

improves the model quality, but increases the problem complexity. The methodology

proposes that the Robust Identification problem is transformed into a multimodal

optimization problem with an infinite number of global minima which constitute the

FPS. For the optimization task, a special Genetic Algorithm (ε−GA), inspired by
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Multiobjective Evolutionary Algorithms, is presented. This algorithm characterizes

the FPS by means of a discrete set of models well distributed along the FPS. Fi-

nally, an application for a biomedical model which shows the blockage that a given

drug produces on the ionic currents of a cardiac cell is presented to illustrate the

methodology.

Key words: Robust Identification, Multimodal Optimization, Multiobjective

Optimization, Evolutionary Algorithms, Biomedical Processes.

1 Introduction

Obtaining mathematical models which describe systems or process behaviour

is a fundamental task in many scientific areas, especially in biomedicine where

the process is the human being. When the model is obtained from first princi-

ples, the problem finally consists of identifying the model parameters through

process information which can be obtained from experimental information re-

garding the process inputs and outputs.

The fact that the process behaviour is not completely known and that avail-

able data is insufficient, or unreliable, forces the identified parameters to have

uncertainty, which should be taken into account when the model is used for

predictions, controller design, or other tasks. The work of identifying the nom-

inal model and its uncertainty is called robust identification (RI).

Two different approaches are possible in RI: stochastic or deterministic. In

the former, the identification error (IE), meaning the difference between the

process output measurements and the model simulated outputs, is assumed

to be modelled as a random variable with several statistical properties. Under
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this approach, it is possible to use classical techniques of identification (Walter

and Pronzalo, 1997; Ljung, 1999) to obtain the nominal model and its uncer-

tainty; which is related to the covariance matrix of the estimated parameters.

When these assumptions do not work, the deterministic approach can be more

appropriate (Norton, 1987; Walter and Piet-Lahanier, 1990; Milanese and Vi-

cino, 1991), where the identification error, although unknown, is assumed to

be bounded.

The objective of the deterministic approach is to obtain the nominal model

and its uncertainty; or directly, the feasible parameter set (FPS), i.e. the

parameter set which keeps the IE bounded for certain IE functions or norms,

and their bounds.

When the model has linear parameters, the FPS is, if it exists, a convex poly-

tope. This polytope may be complex because the number of vertices can grow

exponentially as the number of observations increases, and so the complex-

ity involved in obtaining the polytope can be considerable. The polytope is

often approximated using orthotopes (Belforte et al., 1990), ellipsoids (Fogel

and Huang, 1882), or parallelotopics (Chisci et al., 1998); and these generally

result in a more conservative characterization of the FPS.

When the model is non-linear, the FPS may be a non-convex, and even dis-

joint and polytope - and this makes it more difficult to find a tight characteriza-

tion of the FPS. Some techniques: such as interval computation (Walter and

Kieffer, 2003); support vector machine (Keesman and Stappers, 2004), and

others, can be used. However, these techniques suffer limitations (the type

of function for bounding the IE, the inability to characterize a non-convex

or disjoint FPS), or their use is complicated when the model is complex

3



(non-differentiable with respect to its parameters, discontinuities in parame-

ters and/or signals, etc.).

To overcome these handicaps, a more flexible and general methodology for

characterizing FPS is presented. It can identify many processes and charac-

terize convex, non-convex, and even disjoint FPS. In addition, several norms

can be taken into account at the same time. This enables, for instance, bound-

ing the IE for each experimental sample and its integral simultaneously; as

well as the consideration of independent norms for each output. The practical

sense of simultaneous norms is justified: for example, it would be useful if the

model predictions attempt to satisfy a limited maximal error (∞-norm) and -

at the same time - find a good average fitting between model and experiment

(absolute norm).

The proposed methodology is based on the optimization of a function which

is built from IE norms and bounds, and whose global minima will characterize

the FPS. It will be a multimodal function, which can be non-convex and/or

present local minima, and therefore classical optimizers (for instance, SQP 1 )

can be inappropriate.

The FPS depends on the norms used to bound the IE, and especially on their

corresponding bounds 2 .

To select the bounds, a priori process knowledge (for instance, non-modelled

1 Sequential Quadratic Programming is a variant of the iterative Gauss-Newton

optimization method.
2 For instance, the FPS obtained by taking into account the ∞-norm and the η

bound corresponds to the parameter set which forces the IE not to be greater than

η in all the output samples.
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dynamics) and noise characteristics must be used. However, as this can be a

hard task, the bound is often selected by taking into account the desired per-

formance for the model predictions. Low values for the bounds could achieve

an empty FPS, whereas high values could provide a more conservative FPS;

so the IE bound selection is a critical decision.

For selecting the bounds and avoiding an FPS = ∅, a procedure which uses

solutions (Pareto Front information) of a multiobjective problem associated

with norms used will be proposed. The Pareto Front is obtained by the simul-

taneous minimization of the IE norms, through a multiobjective optimization

(MO).

In relation to the nominal model, a well-known estimate is the Chebyshev

centre (Garulli et al., 2000) of the FPS. This is the best worst case nominal

model, in the sense that it minimizes the maximum distance to FPS. Ob-

taining the Chebyshev centre is sensitive to the bounds and besides, when the

FPS is unavailable, it can become a difficult task, so other possibilities could

be used: for instance; analytic centre (Bai, 1999); interpolatory projection;

central projection; or restricted projection (Garulli et al., 2000).

In this work, a method to obtain a nominal model using a restricted interpo-

latory projection is presented. This nominal model is optimal from the point

of view of both the IE and the estimation error in the parameter space.

The work is organized as follows: in section 2 a new global optimization tech-

nique for multimodal problems, which is required for solving the proposed RI

methodology, is presented. The section describes the fundamentals of the al-

gorithm developed (ε-GA). The proposed RI methodology is shown in section

3. Section 4 shows an example of modelling and RI of a process, in particu-
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lar, the behaviour of a certain drug on the blockage of the ionic currents of a

cardiac cell. The main conclusions are given in section 5.

2 ε-GA evolutionary algorithm

Before the detailed description of the algorithm it is important to define some

related concepts and properties to satisfy. ε-GA is an evolutionary algorithm

designed to optimize multimodal mono-objective functions which have an in-

finite number of global optima.

2.1 Concepts related to the ε-GA

The solution of the optimization problem consists of:

Definition 1 (Global minimum set) Given a finite domain D ⊆ RL, D 6= ∅
and a function to optimize J : D →R, the set Θ∗ will be the global minimum

set of J , if and only if, Θ∗ contains all the global optima of J .

Θ∗ := {θ ∈ D : J(θ) = J∗}, (1)

being J∗ the global minimum of J for the searching space D.

From this definition, Θ∗ is assumed to be a unique set and the best that can be

achieved is to obtain a discretized approximation to Θ∗ in the solution space

D, that means, a finite set Θ∗
ε .

An important property to satisfy is the requirement that the algorithm ob-

tains a well distributed solution (the points of the solution set have to cover, as
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uniformly as possible, the space of the global minimum). Notice that the com-

plete solution is not usually reachable (it is an infinite set) and the objective

is to obtain a good approximation.

To achieve this, the solution space is divided by a grid into boxes of width εi

for each dimension i ∈ [1 . . . L] and the algorithm is forced to produce just

one solution for each box. The solutions Θ∗
ε are forced to be well distributed

and characterize Θ∗.

A practical approach to definitions required for the algorithm description is

as follows (formal definition can be consulted in Herrero (2006)):

• Quasi-global minimum: a point with a value of J near to the global mini-

mum. The distance to the global minimum value is set with the parameter

δ.

θ is a quasi-global minimum ⇔ J(θ) ≤ J∗ + δ, (2)

• Quasi-global minimum set: the set of quasi-global minima.

• Box: number of the zone in which the parameter space is divided by the

grid. The size of the grid is set, for each dimension i, by the parameter εi.

• Box-representative: because several points can be at the same box, a method

to characterize all of them is defined, the box-representative is a point of a

box that characterizes all the other points of the box. The representative

has the lowest value of J inside the box, and if several points have the same

value the nearest to the geometrical center of the box is preferred.

Notice that the box is defined as having a finite good discretization of the

solution, and it is not necessary to have several points of the same box in

the resulting solution.
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• ε-global minimum set: a set of quasi-global minimum points which are box-

representative. This set is not unique.

All these definitions help to describe the methodology for producing a solution

(set of point Θ∗
ε that represents the solution Θ∗). In particular, the methodol-

ogy on how to include points in Θ∗
ε can be set as follows: "A point is included

in Θ∗
ε if it is a quasi-global minimum and box-representative". In other words,

the point is near enough to the solution and is well distributed (according

to the defined boxes). Moreover, once a point is added to Θ∗
ε the whole set

must be revised to remove those that do not satisfy the conditions any more.

This means "Points non-quasi global minimum or non box-representative are

removed from Θ∗
ε".

Notice that for quasi-global minimum definition, it is necessary to know the

global minimum J∗, but this value is usually unknown, instead Jmin
Θ is used,

the approximation whose value of the function J is the smallest among the

set of evaluated points (Θ).

Jmin
Θ = min

θ∈Θ
J(θ). (3)

It can be proven (see Herrero (2006)) that with this inclusion procedure the

contents of Θ∗
ε converge towards an ε-global minimum set; as long as Jmin

Θ∗ε

converges towards the global minimum J∗.

Finally, the effect of parameters εi and δ is described. Parameters εi show

the desired discretization degree to apply to Θ∗
ε and they are directly related

to the physical meaning of the parameters which define the searching space

dimensions.
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The parameter δ plays two roles related to convergence and diversity:

• A value δ ' 0 improves the convergence and Θ∗
ε ⇒ Θ∗, but worsens the

approximation of Θ∗ and so its characterization.

• On the contrary, a too high value of δ could cause the quasi-global minimum

solutions of Θ∗
ε to distort Θ∗ instead of characterizing it.

A good procedure to choose δ could consist of starting from a value δ = δini and

modifying it during algorithm execution - (for instance, by using a decreasing

exponential function) towards a value δ = δfin low enough to make the quasi-

global minimum solutions be near the global minimum solutions.

2.2 ε-GA description

The objective of the ε-Genetic Algorithm (ε-GA) is to provide an ε-global

minimum set, Θ∗
ε . This algorithm is inspired in evolutionary optimization al-

gorithms and shares the well known basic concepts of population, genetic

operator, codification, etc.

ε-GA uses the populations P (t), A(t) and G(t) (see figure 1):

(1) P (t) is the main population and explores the searching space D. The

population size is NindP .

(2) A(t) is the archive where Θ∗
ε is stored. Its size NindA is variable but

bounded.

(3) G(t) is an auxiliary population which is used to store the new individu-

als generated at each iteration by the algorithm. The population size is

NindG.
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The pseudocode of the ε-GA algorithm is given by:

1. t:=0

2. A(t):=∅
3. P(t):=ini_random(D)

4. eval(P(t))

5. A(t):=store(P(t),A(t))

6. mode:=exploration

7. while t<t_max do

8. G(t):=create(P(t),A(t))

9. eval(G(t))

10. A(t+1):=store(G(t),A(t))

11. P(t+1):=update(G(t),P(t))

12. mode:=determinemode(P(t))

13. t:=t+1

14. end while

P(t)

A(t)

G(t)

c
re

a
te

update

store

store

Figure 1. ε-GA algorithm structure.
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The main steps of the above algorithm are detailed below:

Step 3. Population P (0) is initialized with NindP individuals, created inside

the searching space D.

Steps 4 and 9. Function eval calculates the value of the fitness function J(θ)

for every individual θ from P (t) (step 4) or G(t) (step 9).

Step 12. The function determinemode selects the algorithm operation mode

between the exploration and exploitation modes. These modes affect how new

individuals are created (function create). When the population P (t) has con-

verged, the exploitation mode must be selected, by using the difference be-

tween the best value

Jmin
P (t) = min

θ∈P (t)
J(θ) (4)

and the worst value

Jmax
P (t) = max

θ∈P (t)
J(θ) (5)

at iteration t. If Jmax
P (t) − Jmin

P (t) < δ the exploitation mode 3 will be selected, on

the contrary, the exploration mode will be selected.

Step 5 and 10. Function store analyzes whether every individual of P (t)

(step 5) or G(t) (step 10) must be included in archive A(t). So the individual

will have to satisfy the inclusion condition described and, according to this,

other individuals will be removed. When including a new individual, if there

is already a box-representative in the same box, then the nearest to the center

3 If Jmin
P (t) = J∗ all the individuals in P (t) will be quasi-global minimum solutions.
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of the box is preferred. So, a better distribution of the solutions inside the

archive is achieved.

Step 8. Function create creates new individuals and stores them in population

G(t) using the following procedure:

(1) Two individuals are randomly selected, θp1 from P (t), and θp2 from A(t).

(2) If the algorithm operates in exploration mode, θp2 is not altered, whereas

if the mode is exploitation, the individual is mutated, according to:

θp2
i = θp2

i + N(0, βini). (6)

(3) A random number u ∈ [0 . . . 1] is selected. If u > Pc/m (crossover-

mutation probability) step 4 (crossover) is taken, otherwise step 5 (mu-

tation).

(4) θp1 and θp2 are crossed over by the extended linear recombination tech-

nique and two new individuals θh1 and θh2 are created 4 :

θh1
i = αi(t) · θp1

i + (1− αi(t)) · θp2
i , (7)

θh2
i = (1− αi(t)) · θp1

i + αi(t) · θp2
i . (8)

(5) θp1 and θp2 are mutated by random mutation with gaussian distribution 5 .

θh1
i = θp1

i + N(0, β1i(t)), (9)
θh2

i = θp2
i + N(0, β2i(t)). (10)

This procedure is repeated NindG/2 times until G(t) is full.

4 αi(t) is a random value with uniform distribution ∈ [−d(t), 1 + d(t)] and

d(t) is a parameter tuned by a decreasing exponential function d(t) =

dini√
1+

((
dini
dfin

)2

−1

)
t

(tmax−1)

.

5 Variances β1i(t) and β2i(t) are expressed in percentage of (θi max − θi min) and

are tuned by a function similar to the one used for tuning d(t).
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Step 10. Function update updates P (t) with individuals from G(t). One in-

dividual θG from G(t) will be inserted in P (t) and it will replace θp, J(θG) <

J(θp) being

θp = arg max
θ∈P (t)

J(θ) (11)

so, the contents of P (t) are converging.

Finally, when t = tmax, the individuals included in the archive A(t) will be

the solution Θ∗
ε to the multimodal optimization problem, being Θ the set of

individuals generated by steps 3 and 8, that is,

Θ = P (0)
⋃


 ⋃

0≤τ<tmax−1

G(t)


 (12)

and being Θ ∩Θ∗ 6= ∅.

3 Robust Identification problem

The task of identifying the nominal model and its uncertainty is called robust

identification (RI). For problem statement, a model structure is assumed and

the parameters have to be identified. The uncertainty is characterized with a

set of possible value of the parameters called Feasible Parameters Set (FPS).

Assuming the following model structure:

ŷ(t, θ) = f(t,u(t), θ) (13)

where:

• f(.) is the model function.
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• θ ∈ D ⊂ RL is the vector 6 of the unknown model parameters.

• u(t) ∈ Rm is the vector of model inputs.

• ŷ(t, θ) ∈ Rl is the vector of model outputs.

The objective is that the model behaviour (obtained by experiments) will be

as similar as possible to the real process behaviour (obtained by simulation).

This objective can be achieved by a minimization of a function which penalizes

the Identification Error (IE) for process outputs.

The identification error ej(θ) for the output j ∈ [1 . . . l] is stated:

ej(θ) = yj − ŷj(θ), (14)

where:

• yj = [yj(t1), yj(t2) . . . yj(tN)] are the process output j measurements 7 when

the inputs U = [u(t1),u(t2) . . .u(tN)] are applied to the model.

• ŷj(θ) = [ŷj(t1, θ), ŷj(t2, θ) . . . ŷj(tN , θ)] are the simulated model output j

when the same inputs U are applied to the model 8 .

To introduce desirable characteristics in the model it is very helpful to be

able to bound IE in different ways. For instance, a practical and intuitive

approach is to bound average IE and maximum IE simultaneously, meaning

that on average, the model will fit experimental data and the maximum error

is limited. Then the identification error must be bounded by several norms 9

6 θ, x(t), u(t) and ŷ(t, θ) are all column vectors.
7 y(t) ∈ Rl is the column vector of process outputs.
8 N is the measurements number of each output and input. The interval between

measurements is constant ti = i · Ts, being Ts the sample time.
9 In a more general case, it would be possible to use bounds on any function.

14



simultaneously.

Let N denote a p-norm of the identification error vector for an output j as:

N(θ) = ‖ej(θ)‖p, (15)

If s norms must be bound simultaneously, the feasible parameter set FPSi is

consistent with a specific norm Ni and bound ηi for i ∈ A := [1, 2, . . . s], is

defined as:

FPSi := {θ ∈ D : Ni(θ) ≤ ηi, ηi > 0}. (16)

The FPSi is the set of points in the search space that verifies the constraint

established with the bounded norm.

To characterize FPS, it is important to define its boundary:

∂FPSi := {θ ∈ D : Ni(θ) = ηi, ηi > 0}. (17)

Therefore, the FPS for all the norms simultaneously is stated as:

FPS := {⋂

i∈A

FPSi} = {θ ∈ D : ∀i ∈ A,Ni(θ) ≤ ηi, ηi > 0}. (18)

and its boundary

∂FPS := {θ ∈ D : ∃i|Ni(θ) = ηi ∧Nj(θ) ≤ ηj} (19)

with ηi, ηj > 0 and i, j ∈ A.

Then the RI problem solution is FPS, and in particular ∂FPS. The method

proposed to solve it is to reformulate the RI problem as a multimodal opti-
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mization problem, and to solve it using the ε − GA described in last section

to solve it.

3.1 RI problem as a multimodal optimization problem

To characterize the FPS, and in particular its boundary ∂FPS, a function

J(θ) is stated in such a way that its global minima constitutes the ∂FPS and

the FPS constitutes quasi-global minimum solutions, the parameter δ is the

one used by ε−GA to define quasi-global minimum.

J(θ) :=





∑
B Ji if B(θ) 6= ∅

min(δ,
∏

A Ji) if B(θ) = ∅
(20)

where:

B(θ) := {i ∈ A : Ni(θ) > ηi}, (21)
Ji(θ) = |Ni(θ)− ηi|. (22)

Some of the properties of function J(θ) are:

(1) Global minimum of J(θ) is J∗ = 0 and marks the contour of FPS

(∂FPS). Notice that for the points of the FPS (B(θ) = ∅) the value

of J(θ) is min(δ,
∏

A Ji) and exactly for points of ∂FPS one, or more, of

Ji are Ji(θ) = 0.

(2) J(θ) < δ when θ ∈ FPS, therefore, it is ensured that these solutions

are quasi-global minimum ones and they will be never removed from

archive A(t) by algorithm ε-GA. Besides, they will not prevail over the

solutions θ ∈ ∂FPS either, therefore the boundary characterization will
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be a priority.

Below, a case with two norms is evaluated to clarify J(θ) building. To simplify

visualization, parameter space dimension is L = 1 (that is, θ ∈ R). η1, η2, J1(θ)

and J2(θ) are set as:

η1 = 20⇒ J1(θ) = |N1(θ)− 20|, (23)
η2 = 35⇒ J2(θ) = |N2(θ)− 35|. (24)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

θ

 

 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

θ

J
1
(θ)

J
2
(θ)

J(θ)  

 

 

N
1
(θ)

N
2
(θ)

η
1

η
2

FPS
1

FPS
2

FPS

Global minimum of J
(contour of FPS)

FPS approximation

Figure 2. J(θ) building for a case with 2 norms to minimize simultaneously. δ = 40.

Figure 2 shows J building for the case of δ = 40. Notice that the global

minimum of J are ∂FPS independently of the value of δ. The parameter δ is

set to characterize the complete FPS and all values of J under δ constitute a

FPS approximation. If δ is too high, the approximation is bad (see figure 2).

Results of the example are:

FPS1 := {θ : θ ∈ [1 . . . 5]}, (25)
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FPS2 := {θ : θ ∈ [3 . . . 9]}, (26)

and then,

FPS := {θ : θ ∈ [3 . . . 5]}, (27)
∂FPS = {3, 5}, J(3) = J(5) = 0. (28)

For this particular case, where L = 1, ∂FPS is a finite set with only two

points.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

θ

J(
θ)

δ
FPS

FPS approximation

Global minimum of J
(contour of FPS)

Figure 3. J(θ) building for a case with 2 norms to minimize simultaneously. δ = 5.

Adjusting δ = 5 gives a better approximation of the entire FPS, see figure 3.

∂FPS is always characterized by global minimum of J .

3.2 Bound selection

To select the bounds ηi on Ni, a priori process knowledge (for instance, non-

modelled dynamics) and noise characteristics must be taken into account.

However, this can be a difficult task, and the bounds may often be selected

according to the desired performance for the model predictions. An inappro-

priate selection of the bounds might result in a conservative FPS if too high
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values are chosen, or an FPS = ∅ if the values are too low.

According to other authors (Walter and Piet-Lahanier, 1991), to avoid this last

case (FPS = ∅) when a unique norm N1(θ) is used, it is useful to select the

minimization bound by the N1(θ), that is, the lower bound ηmin
1 = minθ N1(θ)

and an FPS 6= ∅ is satisfied if η1 ≥ ηmin
1 .

When several norms are simultaneously taken into account, the fact of select-

ing ηi ≥ ηmin
i (being ηmin

i = minθ Ni(θ)) does not imply that FPS 6= ∅.

This work proposes an alternative method to select the ηi bounds by the simul-

taneous optimization of the Ni norms, through the following multiobjective

optimization problem:

min
θ∈D

J(θ); J(θ) = {N1(θ), N2(θ), . . . , Ns(θ)}. (29)

The optimization problem solution is the Pareto optimum solutions set Θ̂P (or

a discrete approximation Θ̂∗
P ). Once the optimization problem is solved (ap-

plying a multiobjective optimization algorithm, for instance, ε↗-MOGA (Her-

rero et al., 2005)), it is possible to use the Pareto Front information J(Θ̂∗
P )

for selecting the ηi bounds - as is shown below. Figure 4 shows the case in

which two norms, N1 and N2 of the identification error, are used. If bounds

are selected as η1 and η2 the FPS is not empty, points of FPS belong to

shadowed area in figure 4. However, a selection of bound as η̄1 and η̄2, even if

they satisfy η̄1 > ηmin
1 and η̄2 > ηmin

2 , produces an empty FPS.
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Figure 4. Example of bound selection to avoid empty FPS. {N1(FPS), N2(FPS)} ∈
shadowed area.

3.3 Nominal model selection

Once characterized the FPS through the FPS∗ (discretized approximation

obtained with ε-GA), it is possible to approximate the worst case optimum

nominal model by calculating the Chebyshev centre of the FPS∗ as:

θ̂∗c = arg min
θ∈D

max
θ∈FPS∗

‖θ − θ‖2, (30)

This nominal model selection is based exclusively on geometrical layout of

the FPS set. The option proposed in this work includes information about

optimality in the IE. Because the multiobjective problem has been solved to

select bounds, the Pareto set is available. The proposal is to choose the nearest

point to the Chebyshev center belonging to Pareto set (Θ̂∗
P ) and FPS∗.

θ̂∗pi = min
θ∈Θ̂∗P

⋂
FPS

‖θ − θ̂∗c‖. (31)

The advantage of this nominal selection is that θ∗pi belongs to the Pareto set,

and so is an optimal solution with respect to IE.
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3.4 FPS validation

A good practice in model identification requires a model validation using dif-

ferent experimental data.

Calling FPSide to the feasible parameter set determined via robust identifica-

tion, using the experimental data Ωide = {Yide,Uide}, the s norms Ni and their

bounds ηi. One method of validation consists of checking whether the FPSide

contains models which are consistent with new data Ωval = {Yval,Uval}.
This means that the FPS obtained by process identification with data Ω =

{Ωide, Ωval} would be FPS 6= ∅.

Figure 5. Validation process. On the left, the FPSide is validated, since FPS 6= ∅.
On the right, the FPSide is invalidated since FPS = ∅.

In figure 5 two cases are shown. In the first example, there are models in the

FPSide which also belong to the FPSval (set consistent with Ωval and with the

same s norms Ni and bounds ηi used for FPSide), and therefore, the FPSide

is validated; and in the second example, this does not occur and so the FPSide

is invalidated 10 .

10 In the same way, it is possible to validate a certain model θ̂ ∈ FPS by checking

whether θ̂ ∈ FPSval.
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If the FPSide is validated, the final FPS will be FPS = FPSide
⋂

FPSval.

It is not necessary to obtain the FPSval, but only to maintain in the FPS

those models from FPSide which are consistent with the data Ωval. Since the

finite set FPS∗ide is available, obtaining the FPS∗ is easy, because it is only

necessary to simulate the models θ ∈ FPS∗ide (using Ωval) and choose those

which satisfy Ni(θ) ≤ ηi ∀i ∈ A.

If the FPSide is invalidated, several options could be considered:

• To increase some, or all, the ηi bounds until the FPSide can be validated

with data Ωval.

• To modify the model (for instance, by adding part of the non-modelled

dynamics) until the FPSide is validated.

In this second option, it is not necessary to increase the ηi bounds and so

model prediction performance does not deteriorate as occurs with the first

action. However, the model would surely be more complex.

3.5 Summary

The proposed methodology to solve an RI problem follows several steps:

(1) Collect experimental data for identification and validation.

(2) Establish a model structure and the parameters to identify.

(3) Select desirable properties for the model, that is, select the norms to

consider.

(4) Choose adequate bounds using the results of the multiobjective problem

solution as proposed. If resulting bounds are above the desired bounds,
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go to step (2). This case occurs when desired bounds are too restrictive,

or the structure model is not adequate for the process.

(5) Obtain an FPS with the algorithm ε−GA.

(6) Validate FPS with other experimental data and if necessary recalculate

FPS.

(7) Obtain, if required, a nominal model.

4 RI of a biomedical model

4.1 Biomedical model

The objective of this section is to show the equations which model the periodic

iteration between a certain drug and a certain ion channel in cardiac cells. The

drug can plug the channel and modify its action potential (AP) 11 , helping to

correct certain pathologies which occur in normal cardiac behaviour 12 .

There are many alternatives (see Cardona (2005) and its references) to model

the interaction between the drug and the receptor (ion channel), although in

this work the Guarded Receptor (GRT) hypothesis is adopted. The channel

configuration depends on the AP and involves accesible channels (A) which

can be bound (B) by the drug, and inaccesible channels (I) (due to the channel

gates which impede the blockage).

11 The AP is the potential difference between the intracellular and the extracellular

media.
12 This work is part of a collaboration project with the Dept. of Electronic Eng. of

the UPV.
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Figure 6. GRT model of interaction between the drug and the channels, and the

gates which impede access.

The interaction dynamics between the I and A states is rapid in comparison

to those between A and B. If the cell is stimulated by a pulse, the channel

behaviour can be described as a two-step process, involving an activation state

(activation interval, ta) and a recovery channel state (recovery interval, tr)

U + D

Ki

⇐⇒

Li

B, (32)

where i represents the state (activation a or recovery r), and U the unbound

channels. Ki and Li are the apparent rates of binding and unbinding between

the drug and the channel, which are used to compare the drugs - Starmer

(1988).

The time course of the fraction of bound channels is adjusted to the following

first order system.

db

dt
= KiD(1− b)− Lib. (33)

Figure 7 shows the exponential evolution (typical of first order systems) of
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b(t) depending on the interval (activation or recovery).
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Figure 7. Evolution of b(t) depending on the interval (activation or recovery). an

and rn represent the fraction of bound channels just prior to each time interval. The

sequences (an, rn) also follow an exponential pattern.

The solution to equation (33) is:

b(t) = bi,∞ + (b0 − bi,∞)e−λit, (34)

where bi,∞ = KiD
KiD+Li

is the fraction of bound channels at t = ∞, λi = KiD+Li

is the time constant and b0 is the fraction of bound channels at t = 0.

The fraction of bound channels just prior to each time interval can be described

by a sequence of recurrence equations such as:

rn = an−1e
−λrtr + r∞(1− e−λrtr), (35)

an = rne−λata + a∞(1− e−λata), (36)

where rn and an represent b(t) at t = nta and t = n(ta + tr) respectively, and
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λr = KrD + Lr, (37)

r∞ =
KrD

KrD + Lr

, (38)

λa = KaD + La, (39)

a∞ =
KaD

KaD + La

, (40)

being Kr, Lr, Ka and La the apparent binding rates associated with the two

intervals (activation and recovery). rn and an follow an exponential trajectory.

Focusing on rn, its behaviour can be described as (by combining equation (35)

and (36)):

rn = rss + (r0 − rss)e
−nλ, (41)

where:

rss = a∞ + γr(r∞ − a∞), (42)
λ = λata + λrtr, (43)

γr =
1− e−λrtr

1− e−λ
. (44)

It is possible to estimate the fraction of bound channels by observing how the

blockage modifies the channels conductance and the sodium channel current

I. Given a membrane potencial V

I = g(1− b)V. (45)

Since it is difficult to measure I, the maximum first derivative of the mem-

brane potencial V̇max can be used, because it is theoretically proportional to

I. Several measurements of V̇max are made just at the beginning of the activa-

tion interval. So the measurement sequence will follow an exponential pattern
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proportional to the one expressed in (41):

V̇max,n = V̇ss + (V̇0 − V̇ss)e
−nλ. (46)

The proportionality rate between V̇max and bn = rn can be determined by:

bn = 1− V̇max,n

V̇c

, (47)

being V̇c the observation of V̇max made in the absence of the drug.

4.2 Robust identification

The data from Starmer (1988) will be used in the identification process. A

concentration D = 16µM of cibenzoline, ta = 1ms. and tr = 0.5, 1.0, 1.5, 2.0

and 2.5s. are used in different experiments which are shown in figure 8. The

data is divided into two groups, Ωide which contains data for the identification

process of the FPS (columns 1 and 5) and Ωval which contains data for the

FPS validation (columns 2, 3 and 4)

Figure 9 shows the I/O model structure where:

• V̇max is the maximum first derivative of the membrane potential in V/s

• ta and tr are the activation and recovery intervals respectively.

• D is the drug concentration in M (mol/l).

• θ = [Ka, La, Kr, Lr]
T are the model parameters. The model is non-linear

with respect to θ.

It is necessary to know V̇o to determine V̇max. So V̇o = V̇max(0) is assumed.

Both ∞-norm N1(θ) and absolute norm N2(θ) are simultaneously used with
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Figure 9. I/O model structure.

the Ωide data to determine the FPSide.

N1(θ) = ‖e(θ, Ωide)‖∞ (48)

N2(θ) =
‖e(θ, Ωide)‖1

NΩide

(49)

To select the norm bounds η1 and η2 and to ensure that it is possible to validate

FPSide with Ωval, the Pareto Front information from following multiobjective

optimization problem is considered:

min
θ∈D

J(θ) = {N3, N2, N4}, (50)
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where 13 :

N3(θ) = ‖e(θ, {Ωide, Ωval})‖∞ (51)

N4(θ) =
‖e(θ, Ωval)‖1

NΩval

(52)

Figure 10 shows the Pareto Front corresponding to the projection optimum

models Θ̂∗
P .
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Figure 10. On the top right the J(Θ̂∗
P ) Pareto Front and its projection on different

planes (the rest of figures).

Bounds η1 = 8 and η2 = 2.5 are selected from the Pareto Front analysis to hold

the FPSide model prediction errors not greater than 8V/s and their average

values not greater than 2.5V/s. So Θ̂Pr 6= ∅ and FPS 6= ∅. The FPSide

13 Since ‖e(θ, {Ωide, Ωval})‖w∞ = max(‖e(θ,Ωide)‖w∞, ‖e(θ, Ωval)‖w∞) it is sufficient to

use the N3(θ) norm with data Ωide and Ωval simultaneously to determine a maximum

bound on the ∞-norm with data Ωide and Ωval separately.
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validation is also ensured since there are FPSide models consistent with Ωval

and bounds η1 and η2 (see the projection (N3(θ), N4(θ)) of J(Θ̂∗
P )).

The FPSide is determined next by ε−GA with the following parameters:

• Searching space: Ka ∈ [1e−4 . . . 1e8]M
s
, La ∈ [1e−4 . . . 1e3]1

s
, Kr ∈ [1e−4 . . . 1e4]M

s

and Lr ∈ [1e−4 . . . 0.5]1
s
.

• tmax = 40000 and ε = [1e6, 10, 100, 0.005] so the grid contains 100 divisions

per dimension.

• NindP = 100, NindG = 4, Pc/m = 0.1, dini = 0.25, dfin = βfin = 0.1 and

βini = 10.

• The parameter δ(t) is tuned as

δ(t) = δ′(t) · J̄ , (53)

in order to be useful for other optimization problems, where J̄ is the J

average for all the individuals inserted in the population P (t) during the

optimization process. An average estimation of function J is obtained and

δ is related to the optimization problem 14 . δ′(t) is determined by:

δ′(t) =
δini√

1 +
((

δini

δfin

)2 − 1
)

t
(tmax−1)

, (54)

with δini = 0.1 and δfin = 0.01.

Figure 11 shows the ε-GA optimization process result, i.e. FPS∗ide. The FPSide

has been characterized by 927 models and the J(∂FPS∗ide) average is 0.00942,

which shows good algorithmic convergence (the ideal J(∂FPS∗ide) average

would be 0). The FPS∗ide is validated because it contains 19 models consistent

14 Only those values inserted in P (t) lower than J̄ are taken into account to ensure

that δ(t) never increases.
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with Ωval.
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Figure 11. The FPS∗ide model projections inside the searching space.

Figure 12 shows the Ωide data, and the envelope generated by the FPS∗ide,

whereas the Ωval data and the envelope from FPS∗ide is shown in figure 13.

Once the FPS∗ide has been validated, the restricted interpolatory projection

nominal model θ̂∗pi is determined by first obtaining the worst case model θ̂∗c .

θ̂∗c = [8.252e6, 67.28, 1406.80, 0.1657]T , (55)
θ̂∗pi = [8.493e6, 82.56, 11.38, 0.1142]T . (56)

With these models, the following N1, N2, N3 and N4 norm values are obtained:

N1(θ̂
∗
c ) = 6.74V/s, N1(θ̂

∗
pi) = 7.41V/s (57)

N2(θ̂
∗
c ) = 2.21V/s, N2(θ̂

∗
pi) = 2.37V/s (58)

N3(θ̂
∗
c ) = 8.83V/s, N3(θ̂

∗
pi) = 7.41V/s (59)

N4(θ̂
∗
c ) = 3.12V/s, N4(θ̂

∗
pi) = 2.24V/s (60)
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so θ̂∗c is not validated (since N3(θ̂
∗
c ) > 8V/s and N4(θ̂

∗
c ) > 2.5V/s), whereas θ̂∗pi

is (since to FPS = FPSide
⋂

FPSval) and, therefore, its selection as nominal

model is more appropriate.

Figure 14 shows the location of model θ̂∗c , θ̂∗pi together with the FPS∗ide and

the restricted projection models Θ̂∗
Pr.
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Figure 14. Optimum nominal models. (*) θ̂∗c , (¦) θ̂∗pi and (·) Θ̂∗
Pr.

The following nominal model is identified by Starmer (Starmer, 1988) using

non-linear programming

θ̂Starmer = [7.49e6, 43.19, 1.439, 0.1148]T (61)

with data {Ωide, Ωval}, to minimize

N5(θ) =
‖e(θ, {Ωide, Ωval})‖2

N{Ωide,Ωval}
(62)
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and comparing the following result with θ̂∗c and θ̂∗pi

N5(θ̂
∗
c ) = 0.354V/s, N5(θ̂

∗
pi) = 0.292V/s, N5(θ̂Starmer) = 0.41V/s. (63)

As can be seen, the θ̂Starmer result is worse than θ̂∗c and θ̂∗pi, in spite of the fact

that the final results have not been estimated by minimizing N5(θ)
15 . It is

proven that θ̂Starmer is not a global minimum. In Martínez (2006) a minimum

of N5(θ) is obtained 16

θ̂N5 = [7.02e6, 663.577, 215.06, 0.1046] (64)

N5(θ̂N5) = 0.263V/s, N3(θ̂N5) = 10.125V/s (65)

whose result is the best with respect to N5, although it does not belong to the

FPS since the result of N3 norm exceeds the desired bounds of 8V/s.

5 Conclusions

A methodology, based on a specific genetic algorithm ε−GA, has been devel-

oped to find the Feasible Parameter Set (FPS) of a non-linear model under

parametric uncertainty. That robust identification problem is stated by as-

suming, simultaneously, the existence of several bounds in identification error.

The algorithm presents the following features:

• Assuming parametric uncertainty, many processes can be identified if their

outputs can be calculated by model simulation. Differentiability with respect

15 In the same way, the θ̂∗c and θ̂∗pi results are better than θ̂Starmer for the rest of

norms.
16 A classic GA has been used for the optimization.
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to the unknown parameters is unnecessary.

• Because more than one norm is taken into account at the same time, the

computational cost is reduced since various FPSi intersections are implicitly

performed.

• Non-convex and even disjoint FPS can be calculated.

• Since FPS is not approximated by either orthotopes, or ellipsoids, a non-

conservatism is provided.

An approach has been presented which makes the determination of the ηi

bounds for the Ni(θ) norms easier. It is based on the Pareto Front analysis

which is obtained by minimizing the norms simultaneously. So, it is possible

to choose ηi to achieve FPS 6= ∅.

The technique obtains a good approximation of the worst case nominal model

θc, calculating the Chebyshev centre θ∗c of FPS∗.

This model, in the same way as the FPS determination, is sensitive to ηi

bounds, so an alternative to the Chebyshev centre of FPS∗ has been presented,

which consists of determining the nearest Pareto point to the Chebyshev cen-

tre: θ̂∗pi. This model is optimal from two points of view: the identification error

(since it belongs to the Pareto Front and so is a projection model); and esti-

mation in the searching space (since it is the nearest projection model to the

Chebyshev centre of FPS).

The RI application with real data about cardiac cell blockage caused by the

cibenzoline shows the flexibility and power of the proposed RI methodology.

It is evidence that the proposed nominal model θ̂∗pi belongs to the FPS and

it is a good trade-off solution for the simultaneously stated norms.
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