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A full probabilistic solution of the random
linear fractional differential equation via the
Random Variable Transformation technique

C. Burgosa, J. Calatayuda, J.-C. Cortésa,∗, A. Navarro-Quilesa

This paper provides a full probabilistic solution of the randomized fractional linear non-homogeneous differential equation

with a random initial condition via the computation of the first probability density function of the solution stochastic

process. To account for most generality in our analysis, we assume that uncertainty appears in all input parameters

(diffusion coefficient, source term and initial condition) and that a wide range of probabilistic distributions can be assigned

to these parameters. Throughout our study we will consider that the fractional order of Caputo derivative lies in ]0, 1], that

corresponds to the main standard case. To conduct our analysis, we take advantage of the Random Variable Transformation

technique to construct approximations of the first probability density function of the solution process from a suitable infinite

series representation. We then prove these approximations do converge to the exact density assuming mild conditions on

random input parameters. Our theoretical findings are illustrated through two numerical examples.

Keywords: Random fractional differential equations; Random Variable Transformation technique; First

probability density function.

1. Introduction and motivation

Over the last decades, fractional differential equations are having an impact in mathematical modelling in a variety of complex

problems belonging to different scientific areas. Apart from the intrinsec interest of Fractional Calculus as an extension of the

Newton-Leibniz Calculus, hence providing smart generalizations of classical results [1, 2], a number of contributions has shown

its potentiality to model problems where memory plays a key role into the modelling process. Specific examples can be found

in different realms, for example in Engineering where appear problems of viscoelasticity, electromagnetism, etc., whose answers

depend upon memory and hereditary properties of materials [3, 4]; in Epidemiology, where competition dynamics may reinforce

certain genogroups by DNA recombination or mutations and this would depend on the other genogroups coexisting with them

as well as the time this coexistence lasts and their populations [5].

On the one hand, the aforementioned strong impact of fractional differential equations in mathematical modelling applications,

and on the other hand, the need of quantifying uncertainty involved in measurements or surveys used to fix the input parameters

of fractional differential equations lead to two main classes of fractional differential equations with uncertainty, namely, Stochastic

Fractional Differential Equations (SFDEs) and Random Fractional Differential Equations (RFDEs). A comprehensive overview on

the ways that uncertainty can be considered in fractional differential equations can be found in [6]. It is important to point out that

besides solving SFDEs and RFDEs, in the stochastic/random context a major goal is to compute the main statisitical information

associated to the solution as well. In the context of SFDEs, uncertainty is introduced via stochastic processes, like Wiener process,

having an irregular sample behaviour (nowhere differentiable). The analytic and numerical treatment of SDEs requires the so-

called Itô-Doob Calculus [7, 8, 9]. Some interesting applications based on this approach are reported in [10, 11, 12], for instance.

While RFDEs consist of the direct randomization of input parameters of their deterministic counterpart via random variables or

regular stochastic processes (e.g., sample continuous). The analysis of RFDEs has been undertaken recently. Interesting results
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on the existence and uniqueness of solutions for initial value problems (IVPs) for random fractional differential equations that

extend their deterministic counterpart are exhibited in [13, 14]. In [15] one adapts the polynomial chaos method to solve some

RFDEs. Recently, some of the authors have studied autonomous and non-autonomous linear RFDEs using the so-called mean

square calculus [16, 17]. In both contributions, we have taken advantage of random Fröbenius method to solve linear RFDEs

through mean square random generalized power series and then to obtain the statistical information of the solution stochastic

process through the mean and the variance. However, if y(t, ω) denotes the solution stochastic process of a RFDE defined in a

complete probability space (Ω,F ,P), then a more ambitious target is the computation of the first probability density function

(1-PDF), f1(y, t), of y(t, ω) because from it one can compute all one-dimensional statistical moments at every time instant t,

E
[

(y(t, ω))k
]

=

∫ ∞
−∞

(y(t))k f1(y, t)dy, k = 1, 2, . . . , ω ∈ Ω. (1)

In particular, the mean µy (t) = E[y(t, ω)] and the variance σ2
y (t) = V[y(t, ω)] = E[(y(t, ω))2]− (µy (t))2. Furthermore, the

1-PDF allows us to calculate the probability that the solution lies in a particular interval of interest at each time instant t̂ fixed,

i.e.,

P
[
a ≤ y(t̂ , ω) ≤ b

]
=

∫ b

a

f1(y, t̂)dy.

In this paper, we shall go beyond and we revisit the linear RFDE in order to compute the 1-PDF of its solution stochastic process

under mild conditions. Although the computation of the 1-PDF of different classes of random differential equations has been

dealt in the extant literature (see [18, 19, 20, 21] and references therein), to the best of our knowledge, this interesting problem

is not been addressed yet. In this spirit, let us consider the following random IVP(
CDα

0 y
)

(t, ω)− λ(ω)y(t, ω) = γ(ω), 0 < α ≤ 1, t > 0,

y(0, ω) = β0(ω),

}
(2)

where CDα
0 stands for the random Caputo derivative defined in [13]. In (2), the initial condition β0(ω), the forcing term γ(ω)

and the diffusion coefficient λ(ω) are assumed to be absolutely continuous random variables defined on a common complete

probability space (Ω,F ,P). For sake of clarity, hereinafter we will denote by DX the domain of any random vector, say X(ω), in

particular, D(β0,γ,λ) will stand for the domain of input random vector X(ω) = (β0(ω), γ(ω), λ(ω)) and fβ0,γ,λ(β0, γ, λ) will denote

its joint PDF.

According to [16], using a random Fröbenius method, the solution stochastic process of random fractional IVP (2) can be

represented by

y(t, ω) = β0(ω)S1(t, α;λ(ω)) + γ(ω)S2(t, α;λ(ω)), (3)

being

S1(t, α;λ(ω)) =

∞∑
m=0

(λ(ω))m

Γ(αm + 1)
tαm, S2(t, α;λ(ω)) =

∞∑
m=0

(λ(ω))m

Γ(α(m + 1) + 1)
tα(m+1). (4)

Remark 1.1 As it can be observed in (3)–(4) series, S1(t, α;λ(ω)) and S2(t, α;λ(ω)), and thus the solution y(t, ω), can be

represented as a random series in both parameters λ(ω), ω ∈ Ω, and t. Taking into account the uniqueness of the solution of

random IVP (2), both series expansions match (as powers of t and as powers of λ(ω), ω ∈ Ω). In addition, it can be proved by

applying the ratio test together with Stirling’s formula that both series converge in R for all ω ∈ Ω, Therefore, there is uniform

convergence in every closed set contained in R.

As the solution y(t, ω) of random IVP (2) is given by a linear combination of infinite series (3)–(4), to compute its 1-PDF,

f1(y, t), from a computational point of view it is convenient to consider its approximation via the truncation of both series

yM(t, ω) = β0(ω)SM1 (t, α;λ(ω)) + γ(ω)SM2 (t, α;λ(ω)), (5)

where

SM1 (t, α;λ(ω)) =

M∑
m=0

(λ(ω))m

Γ(αm + 1)
tαm, SM2 (t, α;λ(ω)) =

M∑
m=0

(λ(ω))m

Γ(α(m + 1) + 1)
tα(m+1). (6)

Then, we will first obtain the 1-PDF, f M1 (y, t), of the truncated solution yM(t, ω), and second, we will prove that f M1 (y, t)→
f1(y, t) as M →∞, under certain conditions on the input random vector (β0(ω), γ(ω), λ(ω)) that will be specified later.

To compute f M1 (y, t), Random Variable Transformation method (RVT) will be applied. This technique allows us to obtain the

PDF of a random vector that results from mapping of another random vector whose PDF is known. For the sake of completeness

in the presentation and notation, down below we state a multidimensional version of RVT method.

Theorem 1.2 (Multidimensional Random Variable Transformation method) [22, p.25]. Let us consider X = (X1, . . . , Xn) and

Z = (Z1, . . . , Zn) two n-dimensional absolutely continuous random vectors defined on a common probability space (Ω,F ,P).

Let r : Rn → Rn be a one-to-one deterministic transformation of X into Z, i.e., Z = r(X). Assume that r is continuous in
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X and has continuous partial derivatives with respect to each Xi , 1 ≤ i ≤ n. Then, if fX(x) denotes the joint probability

density function of random vector X, and s = r−1 = (s1(z1, . . . , zn), . . . , sn(z1, . . . , zn)) represents the inverse mapping of

r = (r1(x1, . . . , xn), . . . , rn(x1, . . . , xn)), the joint probability density function of random vector Z is given by

fZ(z) = fX (h(z)) |J| , (7)

where |J|, which is assumed to be different from zero, is the absolute value of the Jacobian defined by the determinant

J = det

(
∂sT

∂z

)
= det


∂s1(z1,...,zn)

∂z1
· · · ∂sn(z1,...,zn)

∂z1

...
. . .

...
∂s1(z1,...,zn)

∂zn
· · · ∂sn(z1,...,zn)

∂zn

 . (8)

The following technical remark will be useful later to legitimate the application of RVT technique in an appropriate

neighbourhood where the 1-PDF of the solution stochastic process will be computed.

Remark 1.3 Let α ∈]0, 1], taking into account expression (6) it is clear that SM1 (0, α;λ(ω)) = 1 6= 0, ∀ω ∈ Ω, ∀M ≥ 0 integer.

From Remark 1.1 S1(t, α;λ(ω)) can be represented via a power series in t and λ(ω), ∀ω ∈ Ω. Since SM1 (t, α;λ(ω)) is a polynomial

in both variables t and λ(ω), then is a continuous function in these variables. Therefore, there exists a neighbourhood, N (0, 0(ω))

of (t = 0, λ(ω) = 0(ω)) such that

0 < mS1 < |S
M
1 (t, α;λ(ω))|, ∀(t, λ(ω)) ∈ N (0, 0(ω)), ∀ω ∈ Ω, ∀M ≥ 0 integer. (9)

On the other hand, by Remark 1.1 both series Si(t, α;λ(ω)), i = 1, 2, converge uniformly in every closed set of R. Then, we

can take, without loss of generality, the closure of neighbourhood N (0, 0(ω)), N ∗(0, 0(ω)). This guarantees the existence of

positive constants MSi , i = 1, 2, such that

|SMi (t, α;λ(ω))| < MSi , ∀(t, λ(ω)) ∈ N ∗(0, 0(ω)) ⊂ N (0, 0(ω)), ∀ω ∈ Ω, ∀M ≥ 0, integer, i = 1, 2. (10)

Notice that in Remark 1.3, we have taken the neighbourhood of point (t, λ(ω)) = (0, 0(ω)). This choice is motivated by the

expression of S1(t, α;λ(ω)) given in (4), where, as it has been previously pointed, one can observe that is a power series in

λ(ω), ∀ω ∈ Ω. Then, it is centered in λ(ω) = 0(ω), ∀ω ∈ Ω.

This paper is organized as follows. In Section 2 the 1-PDF of the truncated solution stochastic process given by (5) is

constructed by applying the RVT technique stated in Theorem 1.2. Then, we prove the convergence of this function to the

1-PDF of the exact solution of RFDE (2) under suitable hypotheses on random inputs. Section 3 is devoted to show several

examples that illustrate our theoretical findings. Finally, in Section 4 our main conclusions are drawn.

2. Main result: Computing approximations of the 1-PDF of the solution stochastic process

In this section, we will first compute the 1-PDF f M1 (y, t) by taking advantage of RVT technique. With this goal, let α ∈]0, 1],

t > 0, ω ∈ Ω fixed, such that (t, λ(ω)) belongs to the neighbourhood N ∗(0, 0(ω)) introduced in Remark 1.3 and let us apply

Theorem 1.2 with the following identification: X(ω) = (β0(ω), γ(ω), λ(ω)), Z(ω) = (Z1(ω), Z2(ω), Z3(ω)) and the mapping

r : R3 −→ R3 whose components (r1, r2, r3) are defined as

z1 = r1(β0, γ, λ) = β0S
M
1 (t, α;λ) + γSM2 (t, α;λ),

z2 = r2(β0, γ, λ) = γ,

z3 = r3(β0, γ, λ) = λ.

The inverse mapping s of r is given by

β0 = s1(z1, z2, z3) =
z1 − z2S

M
2 (t, α; z3)

SM1 (t, α; z3)
,

γ = s2(z1, z2, z3) = z2,

λ = s3(z1, z2, z3) = z3,

From (9), it is known that
∣∣SM1 (t, α;λ(ω))

∣∣ 6= 0, ∀(t, λ(ω)) ∈ N ∗(0, 0(ω)), and thus the absolute value of the Jacobian of

inverse mapping s is well-defined and non-zero

|J| =

∣∣∣∣∂s1

∂z1

∣∣∣∣ =

∣∣∣∣ 1

SM1 (t, α; z3)

∣∣∣∣ 6= 0.
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As a consequence, by applying Theorem 1.2, the PDF of random vector Z(ω) is given by

fZ1,Z2,Z3 (z1, z2, z3) = fβ0,γ,λ

(
z1 − z2S

M
2 (t, α; z3)

SM1 (t, α; z3)
, z2, z3

) ∣∣∣∣ 1

SM1 (t, α; z3)

∣∣∣∣ .

Finally, marginalizing with respect to Z2(ω) = γ(ω) and Z3(ω) = λ(ω) and taking t > 0 arbitrary, the 1-PDF of the truncated

solution stochastic process, yM(t, ω), of random fractional IVP (2) is obtained

f M1 (y, t) =

∫
D(γ,λ)

fβ0,γ,λ

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)
, γ, λ

) ∣∣∣∣ 1

SM1 (t, α;λ)

∣∣∣∣ dλdγ. (11)

Now, we address the proof of the convergence of the 1-PDF, f M1 (y, t), given in (11), to the 1-PDF of the exact solution,

f1(y, t), given by

f1(y, t) =

∫
D(γ,λ)

fβ0,γ,λ

(
y − γS2(t, α;λ)

S1(t, α;λ)
, γ, λ

) ∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣ dλdγ, (12)

where S1(t, α;λ) and S2(t, α;λ) are defined in (4), for each (y, t) ∈ R× [0,∞[ fixed, as M →∞, i.e., limM→∞ f
M

1 (y, t) =

f1(y, t) for each (y, t) ∈ R× [0,∞[ fixed with t such that (t, λ(ω)) ∈ N ∗(0, 0(ω)). To this end, henceforth the following

hypotheses will be assumed

H1: Inputs parameters β0(ω), γ(ω) and λ(ω) of random IVP (2) are independent random variables defined in a common

complete probability space (Ω,F ,P).

H2: The expectation of the absolute value of random variable defining the non-homogeneous term of random IVP (2) is finite,

i.e., E [|γ(ω)|] = C <∞.

H3: The PDF of the random initial condition fβ0 (β0) is Lipschitz continuous in R, i.e.,

∃L0 > 0 : |fβ0 (β0,1)− fβ0 (β0,2)| ≤ L0|β0,1 − β0,2|, ∀β0,1, β0,2 ∈ R.

Now, we comment about the generality of above assumptions from a practical point of view. Hypothesis H1 is just imposed

to simplify the subsequent development. In particular, it allows us to apply the following factorization fβ0,γ,λ(β0, γ, λ) =

fβ0 (β0)fγ(γ)fλ(λ). As a consequence, expression (11) can be written as follows

f M1 (y, t) =

∫
D(γ)

∫
D(λ)

fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

)
fγ(γ)fλ(λ)

∣∣∣∣ 1

SM1 (t, α;λ)

∣∣∣∣ dλdγ. (13)

Independence among random inputs is a usual assumption in the analysis of RFDEs (see [16, 17], for instance), moreover it is

also natural from an applied standpoint since random inputs usually have not direct relationship. Hypothesis H2 is equivalent to

assume that γ ∈ L1(Ω), being L1(Ω) the biggest of Lp(Ω)-Banach spaces [23], so this is a very general assumption since to this

space belong the majority of important random variables (Gaussian, Gamma, Beta, etc.). Finally, it is worth mentioning that H3

only affects the random initial condition β0 and, again it is fulfilled for most of relevant random variables (Gaussian, Gamma,

Beta, etc.,) since it is easy to check that the first derivative of the PDF of random variables is bounded, hence it is Lipschitz.

Let ε > 0 arbitrary and let us consider the following development addressed to prove the convergence of f M1 (y, t) to

f1(y, t) as M →∞ for every (y, t) ∈ R× [0,∞[ fixed, where t > 0 is such that (t, λ(ω)) ∈ N ∗(0, 0(ω)) being N ∗(0, 0(ω))
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the neighbourhood whose existence is guaranteed by Remark 1.3

∣∣f M1 (y, t)− f1(y, t)
∣∣ =

∣∣∣∣∫
D(γ)

∫
D(λ)

fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

)
fγ(γ)fλ(λ)

∣∣∣∣ 1

SM1 (t, α;λ)

∣∣∣∣ dλdγ

−
∫
D(γ)

∫
D(λ)

fβ0

(
y − γS2(t, α;λ)

S1(t, α;λ)

)
fγ(γ)fλ(λ)

∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣ dλdγ

∣∣∣∣
≤

∫
D(γ)

∫
D(λ)

∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

) ∣∣∣∣ 1

SM1 (t, α;λ)

∣∣∣∣ − fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

) ∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣
+fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

) ∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣ −fβ0

(
y − γS2(t, α;λ)

S1(t, α;λ)

) ∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣∣∣∣∣ fγ(γ)fλ(λ)dλdγ

≤
∫
D(γ)

∫
D(λ)

fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

)
︸ ︷︷ ︸

(I)

∣∣∣∣∣∣∣∣ 1

SM1 (t, α;λ)

∣∣∣∣− ∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(II)

+

∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

)
− fβ0

(
y − γS2(t, α;λ)

S1(t, α;λ)

)∣∣∣∣︸ ︷︷ ︸
(III)

∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣︸ ︷︷ ︸
(IV)

 fγ(γ)fλ(λ)dλdγ.

(14)

Now, we will obtain some adequate bounds for the terms (I)–(IV) of (14), that will be used later. Let us start with bound (I).

According to Remark 1.3, hypothesis H3, and denoting F0 = fβ0 (0) without loss of generality, one obtains

fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

)
≤

∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

)
− fβ0 (0)

∣∣∣∣+ F0 ≤ L0

∣∣∣∣y − γSM2 (t, α;λ)

SM1 (t, α;λ)

∣∣∣∣+ F0

≤ L0

|y |+ |γ|
∣∣SM2 (t, α;λ)

∣∣∣∣SM1 (t, α, λ)
∣∣ + F0 ≤

L0

mS1

(|y |+ |γ|MS2 ) + F0.

(15)

Let us obtain a suitable bound for the term (II). On the one hand, by expression (9) of Remark 1.3, we know that

0 < mS1 ≤ |S1(t, α;λ)| for all for all (t, λ) ∈ N ∗(0, 0(ω)) and α ∈]0, 1]. On the other hand, let us recall that in agreement

with Remark 1.1 it is known that SMi (t, α;λ), converges uniformly to Si(t, α;λ) for all (t, λ) ∈ N ∗(0, 0(ω)) and α ∈]0, 1],

i = 1, 2, i.e., for all εi > 0, there exists M0, which may depends on εi , such that

∣∣∣Si(t, α;λ)− SMi (t, α;λ)
∣∣∣ < εi , i = 1, 2, ∀M ≥ M0. (16)

Therefore, applying (16) for i = 1, one gets

∣∣∣∣∣∣∣∣ 1

SM1 (t, α;λ)

∣∣∣∣− ∣∣∣∣ 1

S1(t, α;λ)

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣ 1

SM1 (t, α;λ)
− 1

S1(t, α;λ)

∣∣∣∣ =

∣∣S1(t, α;λ)− SM1 (t, α;λ)
∣∣∣∣SM1 (t, α;λ)

∣∣ |S1(t, α;λ)|
≤ ε1

(mS1 )2
. (17)

As it shall be seen later on, the term (IV) we will be bounded by

|1/S1(t, α;λ)| < 1/mS1 , (18)

which is straightforwardly derived from expression (9) in Remark 1.3. Finally, we will obtain a proper bound to be used for the

term (III). To this end, we will apply Remark 1.3, hypothesis H3 and the convergence of both series Si(t, α;λ), i = 1, 2 (taking
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ε2 =
(mS1 )3

L0MS1

ε

2
> 0 in (16)). This yields∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)

SM1 (t, α;λ)

)
− fβ0

(
y − γS2(t, α;λ)

S1(t, α;λ)

)∣∣∣∣
≤ L0

∣∣∣∣y − γSM2 (t, α;λ)

SM1 (t, α;λ)
− y − γS2(t, α;λ)

S1(t, α;λ)

∣∣∣∣
= L0

∣∣yS1(t, α;λ)− γSM2 (t, α;λ)S1(t, α;λ)− ySM1 (t, α;λ) + γS2(t, α;λ)SM1 (t, α;λ)
∣∣

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣
≤ L0

[
|y |
∣∣S1(t, α;λ)− SM1 (t, α;λ)

∣∣+ |γ|
∣∣S2(t, α;λ)SM1 (t, α;λ)− SM2 (t, α;λ)S1(t, α;λ)

∣∣]
|S1(t, α;λ)|

∣∣SM1 (t, α;λ)
∣∣

≤ L0

[
|y | ε1 + |γ|

∣∣S2(t, α;λ)SM1 (t, α;λ)− S2(t, α;λ)S1(t, α;λ) + S2(t, α;λ)S1(t, α;λ)− SM2 (t, α;λ)S1(t, α;λ)
∣∣]

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣
≤ L0

[
|y | ε1 + |γ| |S2(t, α;λ)|

∣∣SM1 (t, α;λ)− S1(t, α;λ)
∣∣+ |S1(t, α;λ)|

∣∣S2(t, α;λ)− SM2 (t, α;λ)
∣∣]

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣
≤ L0

(mS1 )2
[|y | ε1 + |γ|MS2ε1 +MS1ε2] =

L0

(mS1 )2
(|y |+ |γ|MS2 )ε1 +

mS1ε

2
.

(19)

Now, we firstly substitute bounds (15), (17)–(19) in (14), secondly we apply that
∫
D(λ)

fλ(λ)dλ = 1 and the expression of

expectation operator via an integral as well. This leads∣∣f M1 (y, t)− f1(y, t)
∣∣ ≤ ∫

D(γ)

∫
D(λ)

[(
L0

mS1

(|y |+ |γ|MS2 ) + F0

)
ε1

(mS1 )2

+

(
L0

(mS1 )2
(|y |+ |γ|MS2 )ε1 +

mS1ε

2

)
1

mS1

]
fγ(γ)fλ(λ)dλdγ

=

∫
D(γ)

[(
2L0

(mS1 )3
(|y |+ |γ|MS2 ) +

F0

(mS1 )2

)
ε1 +

ε

2

]
fγ(γ)dγ

= E
[(

2L0

(mS1 )3
(|y |+ |γ|MS2 ) +

F0

(mS1 )2

)
ε1 +

ε

2

]
=

(
2L0

(mS1 )3
(|y |+ E [|γ|]MS2 ) +

F0

(mS1 )2

)
ε1 +

ε

2
.

Finally, taking ε1 =
(mS1

)3

2L0(|y |+CMS2
)+F0mS1

ε
2

and applying hypothesis H2 in the latter expression, one concludes∣∣∣f M1 (y, t)− f1(y, t)
∣∣∣ ≤ ( 2L0

(mS1 )3
(|y |+ CMS2 ) +

F0

(mS1 )2

)
ε1 +

ε

2
=
ε

2
+
ε

2
= ε.

Summarizing the following result has been established:

Theorem 2.1 Let us consider random IVP (2) and assume that

H1: β0(ω), γ(ω) and λ(ω) are independent random variables defined in a common complete probability space (Ω,F ,P).

H2: E [|γ(ω)|] = C <∞.

H3: The PDF fβ0 (β0) of β0(ω) is Lipschitz continuous in R.

Let SM1 (t, α;λ) and SM2 (t, α;λ) denote the random finite sums given by (6). Then, f M1 (y, t) defined by (13) is the first probability

density function of the approximate solution stochastic process (5) of random IVP (2). Furthermore, for each (y, t) ∈ R×]0,∞[

fixed, f M1 (y, t) converges to the first probability density function f1(y, t), given by (12), of the exact solution y(t, ω) defined by

(3)–(4).

3. Numerical examples

In this section we will show two numerical examples addressed to illustrate our previous theoretical findings. In each example, a

variety of probability distributions for input parameters of random fractional IVP (2) will be considered.
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Figure 1. Plots of the 1-PDF, f M1 (y, t), given by (13), for different truncations M at the time instants t̂ = 0.1 (left), t̂ = 1 (center) and t̂ = 5 (right) in

Example 1.

eM(t̂) M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8

t̂ = 0.1 0.031 0.006 - - - - - -

t̂ = 1 0.094 0.040 0.019 0.009 - - - -

t̂ = 5 0.190 0.105 0.064 0.041 0.027 0.018 0.013 0.009

Table 1. Values of error eM(t̂) defined in (20) at the time instants t̂ = {0.1, 1, 5} in Example 1. The truncation order M has

been computed so that eM(t̂) ≤ 10−2.

3.1. Example 1

Let us assume that the fractional order of Caputo derivative is α = 0.3, the diffusion coefficient λ(ω) has a Beta distribution with

parameters 30 and 40, i.e., λ(ω) ∼ Be(30; 40), the non-homogeneous term γ(ω) is a Gaussian RV with mean 0 and standard

deviation 0.1, γ(ω) ∼ N(0; 0.1) and the initial condition β0(ω) has an Exponential distribution with mean 1, β0(ω) ∼ Exp(1).

In agreement with hypothesis H1, we will assume that λ(ω), γ(ω) and β0(ω) are independent. A direct computation shows

that E [|γ|] = 1

5
√

2π
<∞, thus hypothesis H2 holds. Also the PDF of β0(ω) is fβ0 (β0) = e−β0 , β0 > 0 (and null otherwise), it

first derivative satisfies |f ′β0
(β0)| = e−β0 < 1 for all β0 > 0, i.e., fβ0 is bounded and hence is Lipschitz. As a result, hypothesis H3

fulfils too.

In Figure 1 the approximate 1-PDF, f M1 (y, t), given by (13) has been plotted for different values of the truncation order M

and the time instants t̂ = {0.1, 1, 5}. From it, one can observe that rapid convergence of approximations. As a measure of the

error of these approximations, we have define

eM(t̂) =

∫ ∞
−∞
|f M1 (y, t̂)− f M+1

1 (y, t̂)|dy, M ≥ 1 integer. (20)

In Table 1, we have collected these errors for time instants t̂ = {0.1, 1, 5} taking as stopping criterion that eM(t̂) ≤ 10−2.

In Figure 2, we show the mean, µyM (t), and the variance, σ2
yM (t), for different values of truncation order M on the time

interval t ∈ [0, 5]. In these plots, the convergence of both statistical moments is clearly observed. To account for the quality of

approximations of the mean and the variance, we consider the following global error over the whole time interval [0, 5]

eµM =

∫ 5

0

|µyM (t)− µyM+1 (t)|dt, eσ
2

M =

∫ 5

0

|σ2
yM (t)− σ2

yM+1 (t)|dt, M ≥ 1 integer. (21)

In agreement with (1), the above term µyM (t) is computed as

µyM (t) = E
[
yM(t, ω)

]
=

∫ ∞
−∞

yM(t)f M1 (y, t)dy, ω ∈ Ω, (22)

where yM(t, ω) and f M1 (y, t) are given by, (5)–(6) and (13), respectively. Analogously,

σ2
yM (t) = E

[
(yM(t, ω))2

]
−
(
E
[
yM(t, ω)

])2

=

∫ ∞
−∞

(yM(t))2f M1 (y, t)dy − (µyM (t))2, ω ∈ Ω. (23)

In Table 2, we show the values of errors defined in (21). These figures have been computed taking values of the truncation order

M so that error is less or equal than 10−2. Notice that greater values of M are required to accomplish for the stopping criterion

of the error of the variance as expected. From this table we observe that both errors, eµM and eσ
2

M , decrease as M increases.
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Figure 2. Plots of approximations µ
yM

(t) (left) and σ2

yM
(t) (right), given by (22) and (23), respectively, to the exact mean and variance of the solution

stochastic process to random fractional IVP (2), respectively, for different values of the truncation order M in the context of Example 1.

M=1 M=2 M=3 M=4 M=5 M=6 M=7

eµM 1.746 0.987 0.547 0.298 0.160 0.085 0.045

eσ
2

M 6.877 4.871 3.164 1.949 1.157 0.668 0.378

M=8 M=9 M=10 M=11 M=12 M=13

eµM 0.023 0.012 0.006 - - -

eσ
2

M 0.210 0.115 0.062 0.0335 0.0178 0.0094

Table 2. Values of errors defined in (21) to quantify the quality of approximations µyM (t) and σ2
yM (t), given by (22) and (23),

respectively, to the exact mean and variance of the solution stochastic process to random fractional IVP (2), respectively, for

different values of the truncation order M in the context of Example 1. The truncation order M has been computed so that

eM(t̂) ≤ 10−2.

eM(t̂) M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

t̂ = 0.05 0.009 - - - - - - - - -

t̂ = 0.2 0.338 0.159 0.077 0.038 0.018 0.009 - - - -

t̂ = 1 0.817 0.516 0.337 0.223 0.148 0.099 0.066 0.043 0.029 0.010

Table 3. Values of error eM(t̂) defined in (20) at the time instants t̂ = {0.05, 0.2, 1} in Example 2. The truncation order M has

been computed so that eM(t̂) ≤ 10−2.

3.2. Example 2

This second example aims to complete our numerical experiments by taking different probability distributions for random inputs

and the order of fractional derivative from the ones chosen in Example 1. In this spirit, our subsequent presentation will be more

concise since it follows in broad outline a similar structure as in Example 1. Let us consider the random fractional IVP (2) where

α = 0.7, λ(ω) is a Gaussian random variable with mean 1 and standard deviation 0.1, λ(ω) ∼ N(1; 0.1), γ(ω) has a Uniform

distribution on interval [2, 3], γ(ω) ∼ Un(2, 3) and β0(ω) has a Gamma distribution with parameters 1 and 2, β0 ∼ Ga(1; 2).

Hereinafter, we assume that λ(ω), γ(ω) and β0(ω) are independent, this ensures hypothesis H1 is fulfilled. Furthermore, it is

clear that E [|γ|] = 5/2 and |f ′β0
(β0)| = |(1/2 e−β0/2)′| ≤ 1/4 for all β0 > 0. As a consequence, hypotheses H2 and H3 hold.

In Figure 3, we have plotted the 1-PDF, f M1 (y, t) given in (13), for different orders of truncation M and time instants

t̂ = {0.05, 0.2, 1}. From these graphical representations, we can observe the convergence of approximations even using few

terms. As a measure of the accuracy of these approximations, in Table 3 we show the values of error defined in (20) time

instants t̂ = {0.05, 0.2, 1} taking as stopping criterion for the order of truncation M that eM(t̂) ≤ 10−2.

Finally, in Figure 4 the mean, µyM (t) and the variance σ2
yM (t) for different truncation order M are plotted to t from 0 to 1.

As in the case of the 1-PDF we can observe the convergence. In Table 4 the following error for the mean and the variance is

calculated as in Example 3.1.
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Figure 3. Plots of the 1-PDF, f M1 (y, t), given by (13), for different truncations M at the time instants t̂ = 0.05 (left), t̂ = 0.2 (center) and t̂ = 1 (right) in

Example 2.
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Figure 4. Plots of approximations µ
yM

(t) (left) and σ2

yM
(t) (right), given by (22) and (23), respectively, to the exact mean and variance of the solution

stochastic process to random fractional IVP (2), respectively, for different values of the truncation order M in the context of Example 2.

M=1 M=2 M=3 M=4 M=5 M=6

eµM 1.062 0.454 0.173 0.060 0.019 0.006

eσ
2

M 0.712 0.331 0.136 0.050 0.017 0.005

Table 4. Values of errors defined in (21) to quantify the quality of approximations µyM (t) and σ2
yM (t), given by (22) and (23),

respectively, to the exact mean and variance of the solution stochastic process to random fractional IVP (2), respectively, for

different values of the truncation order M in the context of Example 2. The truncation order M has been computed so that

eM(t̂) ≤ 10−2.

4. Conclusions

In this paper, we have computed approximations to the first probability density function of random fractional linear differential

equations using the so-called Random Variable Transformation method. Under mild conditions on random data, we have proved

the convergence of approximations to the exact probability density function of the solution stochastic process. The generality of

our findings relies upon the facts that uncertainty has been considered in all inputs (initial condition, forcing term and diffusion

coefficient) and a wide variety of probability distributions can be assigned to each one of them. To the best of our knowledge,

this is the first time this analysis has been conducted for random fractional differential equations. We hope this contribution

stimulate further studies in the emergent realm of Fractional Calculus with randomness.
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