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ABSTRACT

Recently, the serial approach to solving the Square-Root Ensemble Kalman

Filter (ESRF) equations in the presence of covariance localization was found

to depend on the order of observations. As shown previously, correctly updat-

ing the localized posterior covariance in serial requires additional effort and

computational expense. A recent work, Steward et al. (2017), details an all-

at-once direct method to solve the ESRF equations in parallel. This method

uses the eigenvectors and eigenvalues of the forward observation covariance

matrix to solve the difficult portion of the ESRF equations. The remaining

assimilation is easily parallelized, and the analysis does not depend on the

order of observations. While this allows for long localization lengths that

would render local analysis methods inefficient, in theory an eigenpair-based

method scales as the cube number of observations, making it infeasible for

large numbers of observations. In this work, we extend this method to use

the theory of matrix functions to avoid eigenpair computations. The Arnoldi

process is used to evaluate the covariance localized ESRF equations on the

reduced-order Krylov subspace basis. This method is shown to converge

quickly and apparently regains a linear scaling with the number of obser-

vations. The method scales similarly to the widely-used serial approach of

Anderson and Collins (2007) in wall-time but not in memory usage. To im-

prove the memory usage issue, this method potentially can be used without an

explicit matrix. In addition, hybrid ensemble and climatological covariances

can be incorporated.
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1. Introduction38

Data assimilation of increasingly plentiful satellite and radar observations requires efficient and39

accurate algorithms. A single overpass of a polar orbiting satellite over a regional numerical40

weather prediction (NWP) domain can produce tens of thousands of potentially usable observa-41

tions, especially when all-sky observations are considered. The Japanese K computer assimilates42

radar observations every 30 seconds with a 100-m grid spacing (Miyoshi et al. 2016), and with43

the next generation GOES-16 (Schmit et al. 2016) and Himawari 8 (Bessho et al. 2016) geosta-44

tionary observing platforms providing observations with approximately kilometer resolution ap-45

proximately every 5 minutes, data assimilation algorithms need to handle increasingly large data46

volumes to keep pace. In this paper we describe a new, efficient, and parallel technique for solving47

the covariance-localized Square-Root Ensemble Kalman Filter equations that overcomes several48

issues in previously described implementations.49

The Ensemble Kalman Filter, first introduced in Evensen (1994), is one of the most widely used50

methods for data assimilation. Using an ensemble with a relatively small number of members51

to estimate the flow-dependent background error covariance from the Kalman filter as originally52

formulated (Kalman 1960) made it feasible to run statistical data assimilation problems even on53

very large domains. However, two main issues became apparent in the implementation of the54

Ensemble Kalman Filter. The first is that using the same observations to update the mean and55

ensemble perturbations leads to a systematic underestimation of covariance. Secondly, the unlo-56

calized estimated covariances contain sample error due to the low number of ensemble members57

used, leading to spurious relationships.58

The issue of systematic covariance underestimation was first solved by perturbing observations59

with independently sampled noise for each ensemble member (Houtekamer and Mitchell 1998;60
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Burgers et al. 1998). While this solves the underestimation of covariance, adding additional noise61

increases sampling error, causing the filter to be suboptimal especially when the ensemble size62

is small (Whitaker and Hamill 2002). Subsequently, the Ensemble Square-Root Filter (ESRF)63

was introduced that corrects for the under-representation of error covariance by adding a square-64

root term to the Kalman update for the ensemble. Various flavors of ESRF have been developed65

(Bishop et al. 2001; Anderson 2001; Whitaker and Hamill 2002), which Tippett et al. (2003)66

showed are all equivalent in the sense they perform analysis in the same vector space and find67

the same covariance. These methods as originally formulated assume the rank of the covariance68

matrices is the number of ensemble members.69

Independently from covariance underestimation, the issue of spurious correlations due to small70

ensemble size has been addressed in two main ways: covariance localization and local analysis.71

Sakov and Bertino (2011) demonstrated that these two approaches are approximately equal, and72

the choice of approach is therefore dependent upon other factors. Critically, the localization ra-73

dius used in local methods will determine their efficiency, and large localization radii will require74

repetitive solution of large problems for each grid point. In this work we investigate covariance75

localization, which uses a Schur product (component-wise multiplication) to zero out correlations76

further than a specified distance (Gaspari and Cohn 1999; Houtekamer and Mitchell 2001; Hamill77

et al. 2001). This causes the rank of the forward-observation-covariance matrix used in the inverse78

of the Kalman gain to increase beyond the number of ensemble members. As shown in Steward79

et al. (2017), a relatively short localization radius will lead to a full-rank forward-observation-80

covariance matrix, while a long localization radius will lead to a rank deficient one.81

The combination of these factors leads to several different possibilities for scalable parallel im-82

plementations of the Ensemble Kalman filter equations. Local methods with perturbed obser-83

vations and covariance localization include Keppenne and Rienecker (2002); Houtekamer et al.84
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(2013); Bishop et al. (2015); Nino-Ruiz et al. (2015), while local analysis methods based on the85

ESRF equations include Ott et al. (2002); Anderson (2003); Zhang et al. (2005); Hunt et al. (2007);86

Wang et al. (2013); Nino-Ruiz et al. (2017). Note that the widely used Local Ensemble Kalman87

Transform Filter of Hunt et al. (2007, LETKF) applies a localization strategy based on the ob-88

servation error covariance matrix R rather than on the sample covariance matrices estimated by89

the ensemble. The widely-used and highly efficient method of Anderson and Collins (2007) is a90

“global” analysis (i.e. non-local) parallel implementation based on the serial assimilation of the91

ESRF equations with covariance localization. This method also treats the observations as part of92

an augmented state in order to update the observations in parallel without requiring excessive com-93

munication. Houtekamer and Mitchell (2001) describes a global analysis method with perturbed94

observations and covariance localization.95

Due to the difficulties in solving the global ESRF equations directly, in implementations such as96

Anderson (2001), Whitaker and Hamill (2002), Anderson and Collins (2007) and Aksoy (2013)97

a serial approach is utilized where a single observation is assimilated at a time. This approach98

is provably identical to the global analysis without covariance localization and linear observation99

operators. However, with covariance-based localization, the ordering of observations affects the100

analysis as shown in Nerger (2015) and Bishop et al. (2015) due to the nonlinear nature of co-101

variance localization. In other words, in the presence of ensemble sample covariance localization,102

serially assimilating observation A before observation B may give different results than assimilat-103

ing observation B before A. The magnitude of this issue has not yet been fully explored.104

As shown in Bishop et al. (2015), the issue of observation-ordering dependent analysis in serial105

covariance localized methods stems from the inconsistent application of the high-rank localized106

covariance matrices. In particular, when covariance localization is used, the matrix to invert in107

the Kalman gain becomes full rank or nearly full-rank as shown in e.g. Steward et al. (2017).108
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Without covariance localization (or in a local analysis method that does not increase the rank of109

the matrix using a Schur product), as shown in Tippett et al. (2003), the Sherman Woodbury update110

is sufficient for an unlocalized matrix as the rank of the matrix is at most the number of ensemble111

members (Godinez and Moulton 2012). However, the fundamental shift to high-rank matrices112

requires additional effort to correct.113

Several strategies have been proposed to handle this observation-ordering dependence within a114

serial filter. Bishop et al. (2015) proposes the Consistent Hybrid Ensemble Filter (CHEF) with115

local analysis and perturbed observations that will ensure the analysis is consistent and does not116

depend on the order of assimilation. Kotsuki et al. (2017) presents a study of observation ordering117

with a Lorenz-96 model and investigates rules for observation assimilation ordering to minimize118

analysis forecast error. The method of correcting sample correlation described in Anderson (2012)119

has also been used to reduce the dependence of observation ordering in a serial filter (J. Anderson120

2017, personal communication).121

Extending upon these works, as an alternative to attempting to apply and update the high-rank122

localized matrices serially in a consistent way, we propose assimilating all observations within the123

assimilation window in a single pass as a potential alternative. In other words, we do not utilize124

the single observation processing strategy normally employed for serial filter solutions and instead125

solve the ESRF equations directly. This is done by dividing the necessary matrix operators across126

the set of processing elements in a “top-down” fashion as opposed to the “bottom-up” approach127

of local analysis. This method was utilized in Steward et al. (2017) (hereafter S17) to provide a128

global, “all-at-once,” parallel, direct solution of the covariance-localized ESRF equations. Note129

that “all-at-once” here is used to refer to assimilating all observations that the serial filter would130

assimilate one-by-one but not all observations within all assimilation windows at once, i.e. the131

method in S17 as well as the one presented below are both sequential filters in that batches of132
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observations can also be assimilated. The benefit of this approach is that the analysis consistently133

applies the high-rank covariance-localized matrices and, as a result, does not depend on the order134

of observations. It provides a solution to the ESRF equations with a proven error bounds that can135

be used as a benchmark against other methodologies.136

The cost of this approach is that a product with the entire full-rank matrix inverse (which also137

requires a square-root term) of the forward observation error covariance is required. S17 solves138

for eigenvalues and eigenvectors of the observation covariance matrix and uses the ESRF matrix139

function “scalarized” on the eigenvalues to find the required matrix inverses and products. As140

eigenpairs are extremely convenient for mathematical analysis, the approach in S17 also includes141

an error bounds related to the smallest eigenvalue used. The final analysis is also shown not to142

depend on the ordering of observations. This error-bounded method, which directly solves the143

ESRF equations, is therefore a highly accurate solution to the ESRF equations known to be the144

minimum variance solution to the data assimilation problem.145

However, as predicted by theory and shown in this work, while the method described in S17 is146

accurate to within a configurable tolerance, it is impractical for large numbers of observations due147

to the nature of the eigenproblem, where for general matrices finding a large number of eigen-148

pairs scales as O(n3) for a matrix of size n× n (Golub and Van Loan 1996). n is the number149

of quality-controlled observations in this case. This paper extends S17 to take advantage of re-150

cent improvements in the theory and computation of matrix functions to transform the problem151

of solving the difficult inverse and square-root portion of the ESRF equations into to computing152

matrix-vector products that are used to build up a Krylov subspace and, through a library call, ap-153

plying the matrix function directly to a small dense matrix. This small dense matrix represents the154

compression of the larger localized forward-observation covariance matrix onto the reduced-order155

Krylov subspace basis.156
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As we show below, this matrix function method gives results that are practically identical to the157

error-bounded methodology of S17 but is much more computationally efficient. As only a matrix-158

vector product with the observation covariance matrix is required, this matrix function approach is159

well-suited for a matrix-free implementation where the covariance matrix is not explicitly formed.160

This method is also amenable to hybrid covariance models using both ensemble and climatological161

covariances.162

We implement the matrix function method and compare the performance results with both S17 as163

well as the parallel augmented-state method of Anderson and Collins (2007), hereafter referred to164

as AC07. As a proof-of-concept application, we test this method on the difficult, highly-nonlinear165

case of first cycle tropical cyclone (TC) data assimilation. In this case, the background ensemble166

can contain position errors of features and the posterior analysis increment can be large (e.g. Chang167

et al. 2014). As we show, the order-dependence issue of a serial filter is non-trivial in this case.168

In order to demonstrate the unique properties of our new method, we investigate TC assimilation169

with a long covariance length-scale that would be impractical for local analysis methods. As we170

show, the matrix function method is roughly comparable in terms of wall-time performance to171

AC07 and far superior to S17. The analysis results do not depend on observation ordering like172

S17 but contrary to AC07. However, our results demonstrate the memory scaling of the matrix173

function method is inferior to AC07, and suggest that matrix-free methods would be required to174

scale this method to the order of millions of observations at once.175

This paper is organized as follows. Section 2 summarizes S17 in order to build upon it. In section176

3, the eigenpair computation of S17 is replaced with a much more efficient matrix function based177

approach that uses a basis for the Krylov space to compress the forward observation covariance178

matrix and apply the covariance-localized ESRF matrix functions to this reduced-order matrix.179

Section 4 summarizes AC07. Section 5 presents numerical results of the matrix function approach180
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and a performance comparison to S17 and AC07. Finally, section 6 presents conclusions and a181

discussion.182

2. Eigenvalue/eigenvector solution of S17183

In this section, we briefly review S17 in order to introduce the new matrix function method that184

extends it. Given an ensemble X f of a previous forecast, the updated analysis to the ensemble185

mean x f of size Nstate× 1 and ensemble perturbations X′f of size Nstate×Nens, the square-root186

Ensemble Kalman filter without perturbed observations (Whitaker and Hamill 2002) is:187

xa = x f +K
(

y−H(X f )
)
,

X′a = X′f + K̃(0−HX) , (1)

where y (Nobs× 1) are the observations, H(X f ) (Nobs× 1) is the mean of the forward-calculated188

observation operators, and HXi, j = hi

(
X( j)

f

)
−hi

(
X f
)

is the mean-subtracted ith observation op-189

erator acting on the jth ensemble member X( j)
f . HX is Nobs×Nens (as is 0, a matrix filled with190

zeros). The traditional Kalman gain, K (Nstate×Nobs), is191

K = Cx,Hx D−1 , (2)

where Cx,Hx = cov
(
x f ,H

(
x f
))

is the localized covariance between x f (an Nstate×1 random vari-192

able representing the previous forecast) and H(x f ) (the observation operator acting on this random193

variable). D = CHx,Hx +R for CHx,Hx = cov
(
H
(
x f
)
,H
(
x f
))

, the localized forward observation194

covariance, and R is the observation error covariance cov
(
yt−H(x f )

)
for a random variable yt195

representing the true observations without observation noise.196

K̃ (Nstate×Nobs), the correction from using non-perturbed observations, is197

K̃ = Cx,Hx D−1/2
(√

D+
√

R
)−1

. (3)
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As detailed in S17, the covariance matrices we consider can include localized-ensemble198

based correlations in observation space and/or variational-style model-space localization. For199

observation-space localization, a component-wise multiplication ◦ between two matrices is used200

as201

Cobs
Hx,Hx = ρy,y ◦ QHx,Hx (4)

where ρy,y is the localization matrix arising from a localization function (Gaspari and Cohn 1999)202

` such that203

(ρy,y)i, j = `(di, j|Li, j) (5)

where di, j is the distance between the location of the ith and jth observation, and Li, j is the charac-204

teristic length scale for the localization function `. QHx,Hx is the sample covariance matrix205

QHx,Hx =
HX(HX)T

Nens−1
. (6)

Likewise, the observation-space localized model and observation cross-covariance is given by206

Cobs
x,Hx = ρx,y ◦ Qx,Hx (7)

for207

(ρx,y)i, j = `(di, j|Li, j) (8)

where di, j is the distance between the location of the model state i and observation j with the same208

localization function as equation (5), and209

Qx,Hx =
X′f (HX)T

Nens−1
(9)

As noted in Campbell et al. (2010), integrated observations such as satellite scans do not have a210

particular vertical location to ascribe. In these cases, model-space localization is more applicable.211

For model-space localization, the observation operator tangent-linear H and adjoint HT are applied212
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to the localized model covariance as213

Cmodel
Hx,Hx = H(ρx,x ◦ Qx,x)HT (10)

where214

Qx,x =
X′f
(

X′f
)T

Nens−1
(11)

for the ensemble perturbations X′f , and215

(ρx,x)i, j = `(di, j|Li, j) (12)

where di, j is the distance between the location of two model states i and j with the same localiza-216

tion function as equation (5). Equation (7) is changed analogously as217

Cmodel
x,Hx = (ρx,x ◦ Qx,x)HT (13)

Note that all of these localized matrices are sparse, and zero elements (i.e. the correlations farther218

than the specified localization distance) are not stored in memory or computed. Thus, for example,219

only those elements of QHx,Hx that will be non-zero after localization are calculated. Furthermore,220

the full model-space matrix Qx,x will never be explicitly formed due to its prohibitively large size.221

See S17 for more detail.222

As we will allow for full-rank matrices, our method is compatible with either of these local-223

ization methods, a linear combination of the two, or any other “reasonable” modeled covariance224

between Hx and Hx and x and Hx, which we denote in general CHx,Hx and Cx,Hx. Note that in225

this work we only present results for the observation-based localization of equations (4) and (7),226

however.227

We now return to solving equation (1). Both S17 and the matrix function approach utilize a228

pre-processing step of a transformation first introduced in Bishop et al. (2001) to whiten the ob-229

servations as y = R−1/2
old yold, where the “old” subscript represents the untransformed observations.230
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The observation operator is also scaled as H(x) = R−1/2
old Hold(x). As a result of this pre-processing231

transformation, the R matrix is now identity, which makes equation (3) much easier to solve. For232

the diagonal observation error matrix Rold typically used in data assimilation (which assumes un-233

correlated observation errors), multiplying by R−1/2
old is equivalent to dividing each observation234

by the standard deviation of the observation error, and for non-diagonal Rold, this transformation235

removes that off-diagonal correlation using principal components.236

As Dnew = CHx,Hx + I by this transformation (note that we drop the “new” subscript in what237

follows as it could be applied to virtually all matrices; i.e. we write Dnew as D in a slight abuse of238

notation), this leads to239

K̃ = Cx,Hx M−1 (14)

for M = D+
√

D. Let λi,vi denote the ith eigenpair of CHx,Hx. Then240

Mvi = CHx,Hx vi +vi +(CHx,Hx + I)1/2 vi . (15)

As shown in S17, we have241

Mvi =
(

λi +1+(λi +1)1/2
)

vi . (16)

Therefore,242

M−1vi = λ
′
i vi (17)

for243

λ
′
i =

1

λi +1+(λi +1)1/2 . (18)

We find the largest r eigenvalues and corresponding eigenvectors of CHx,Hx, where r is chosen244

such that λr+1 ≤ ελ for some small constant ελ , and we can therefore solve245

M−1(0−HX) j ≈
r

∑
i=1

λ
′
i αi, jvi (19)

for αi, j =−vT
i HX j. An error bound on this approximation related to ελ is proved in S17.246
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Similarly, for the mean update:247

D−1(y−H(X f ))≈
r

∑
i=1

βi

λi +1
vi , (20)

where βi = vT
i (y−H(X f )).248

The Nobs×Nens +1 matrix (E|g), where249

E j =
r

∑
i=1

λ
′
i αi, jvi (21)

and250

g =
r

∑
i=1

βi

λi +1
vi , (22)

is then distributed to all processing elements. The remaining Kalman gain from equation (1) only251

requires multiplication with Cx,Hx, which can proceed in an embarrassingly parallel fashion. This252

makes an efficient parallel method that only requires the eigenpairs of the Nobs×Nobs, sparse,253

positive semi-definite symmetric matrix CHx,Hx. The Scalable Library for Eigenproblem Com-254

putation (SLEPc, Hernandez et al. 2005), which is built upon the Portable Extensible Toolkit for255

Scientific Computing (PETSc, Balay et al. 1997, 2016, 2017), is used to solve this eigenproblem256

using sparse matrices in a manner that scales well as a function of the number of processors, as257

shown in S17.258

3. New matrix function approach259

We first note that while S17 evaluates the largest r eigenpairs of CHx,Hx in order to solve equation260

(1), only those eigenvectors i such that αi, j 6= 0 for all j and βi 6= 0 are required. This suggests261

a more efficient solution that does not require all eigenpairs. In this section we develop such a262

solution that requires only the matrix-vector product CHx,Hxb for some vector b to compute a263

reduced-order, accurate basis for representation of the ESRF matrix functions.264
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In addition to solving the eigenproblem, SLEPc can also evaluate the action of a matrix function265

on a vector, z = f (A)b where z and b are vectors, A is a matrix, and f is a matrix function in the266

sense given in Higham (2008). In the case of the mean K in equation (2) given above267

f1(D) = D−1 , (23)

while for K̃ in equation (14),268

f2(D) = (D+
√

D)−1 . (24)

Recall that D = CHx,Hx + I. Also note that f1 involves the standard linear system of equations269

Dx = b, solving for x, which is normally handled by other methods; in this work, we test using270

the matrix function approach for both the mean and the perturbations.271

The matrix function solvers in SLEPc are based on Krylov subspace methods (Higham 2008,272

Ch. 13). Earlier works using Krylov subspace methods to approximate matrix functions in-273

clude Van Der Vorst (1987), Saad (1992) and Hochbruck and Lubich (1997). These meth-274

ods are appropriate for the case of our large, high-rank matrix D as they compute the result275

z without explicitly building the matrix f (D). The calculation of f (D)b proceeds in a man-276

ner similar to the Arnoldi method (Arnoldi 1951) for finding eigenpairs. At the first step,277

V1 = b
‖b‖2

, and at step m, given an Nobs× (m− 1) orthonormal basis Vm−1 of the Krylov sub-278

space Km−1(D,b) = span
{

b,Db,D2b, . . . ,Dm−2b
}

, we seek the orthonormal basis Vm that spans279

Km(D,b). This is done by the Arnoldi relation DVm−1 = Vm−1Hm−1 + hm,m−1vmeT
m−1, where280

Hm−1 is an (m−1)× (m−1) upper Hessenberg matrix that contains the values of the projections281

of D onto the basis Vm−1, vm is the mth column to be added to Vm this iteration, and hm,m−1 is the282

(m,m− 1) entry in the Hm matrix. em−1 is the m− 1 unit coordinate vector, so hm,m−1vmeT
m−1 is283

the Nobs× (m− 1) zero matrix except column m− 1 which is hm,m−1vm. Once Vm is found, the284
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approximation of z can be computed as285

z̃m = βVm f (Hm)e1 (25)

where β = ‖b‖2. e1 is the first coordinate vector, so right multiplying by it gives the first column286

of βVm f (Hm) in equation (25). Note that b = βVme1. In addition, note that Hm represents the287

compression of D onto Km(D,b) with respect to the basis Vm. Hence, the problem of computing288

the function of a large matrix D of order Nobs is reduced to computing the function of a small289

matrix Hm of order m with m� Nobs. For the latter task, we can employ algorithms for dense290

matrices as discussed below.291

Note that in the above description, the Arnoldi process requires a numerically stabilized Gram-292

Schmidt process to orthonormalize the basis vectors in a way that the final result is not overly af-293

fected by numerical noise. Furthermore, the parallelization of this stabilized process requires care-294

ful implementation to avoid negatively impacting performance by creating bottlenecks. Thus, the295

relatively straight-forward (conceptually) Gram-Schmidt process becomes rather complex when296

implemented in a parallel setting as discussed in Björck (1994) and Frayssé et al. (1998). SLEPc297

utilizes an efficient parallel version of the Iterated Classical Gram-Schmidt (ICGS) in the Arnoldi298

process that does not require global communication but maintains numerical stability. As in the299

high-level description given above, the resulting projections in the ICGS process onto the previous300

basis vectors are stored in the Hm matrix. For more details on the orthogonalization process in301

SLEPc, see Hernandez et al. (2007).302

The m parameter is of paramount importance for this method. If m is too small the Krylov sub-303

space will not contain enough information to build an accurate approximation. On the other hand,304

if m is too large, the memory requirements for storing Vm (as well as the computational cost) will305

be prohibitive. For this reason, SLEPc implements a restarted variant of the method, where m is306
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prescribed to a fixed value; here we use m = 150, which as shown below is based on testing for our307

particular application. When the subspace reaches this size, a restart is carried out by keeping part308

of the data computed so far and discarding unnecessary information. Investigation into restarting309

matrix function iterations is still an area of active research (Afanasjew et al. 2008; Eiermann et al.310

2011; Frommer et al. 2017). SLEPc implements the Eiermann-Ernst restart (Eiermann and Ernst311

2006), in which only the last basis vector vm+1 is kept (in order to continue the Arnoldi recur-312

rence) along with the matrix Hm that is “glued” together with the previous ones. After k restarts,313

the matrix used in the approximation (25) has the form314

Hkm =

 H(k−1)m 0m

h(k−1)
m+1,me1eT

(k−1)m H(k)
m

 , (26)

where H(k)
m is the matrix computed by the Arnoldi method in the kth restart. Note that in the315

Eiermann-Ernst restart, the glued matrix (26) is not used directly in (25) because Hkm has size km×316

km but Vm has only m columns. Therefore, only the last m components of the vector f (Hkm)e1 are317

used in (25) to give a correction to be added to the approximation available in the previous restart.318

This correction is given by z̃(k) = z̃(k−1)+ c(k), where319

c(k) = βV(k)
m [0,Im] f (Hkm)e1 , (27)

and V(k)
m is the basis computed in the last restart. Equations (25) through (27) are implemented in320

a numerically efficient way in SLEPc.321

SLEPc bases the stopping criterion on the norm of the correction, i.e. restarting continues until322

‖c(k)‖2 < β · εtol for some user-defined εtol (10−8 by default for 8-byte floating point precision).323

As noted in Eiermann and Ernst (2006), the Arnoldi method converges rapidly with superlinear324

behavior for smooth functions. The convergence behavior when including restarting is presented325

in Afanasjew et al. (2008) for a related method.326
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In this work, we are interested in solving g = f1(D)(y−H(X f )) to replace equation (22) and327

E j = f2(D)(0−HX) j to replace equation (21) for j = 1, . . . ,Nens. Applying the method described328

above leads to the evaluation of f1(H1) and f2(H2) explicitly for small dense matrices H1 and H2329

of the form in eq. (26). Note that these matrices are not symmetric even though D is symmetric,330

and also note that the matrices grow at each restart of the Krylov method.331

SLEPc allows flexibility in the definition of functions by combining two simpler functions. In332

our case, we define f1(·) as the reciprocal of the identity function and f2(·) as the reciprocal of333

another function, which in turn is defined as the sum of two functions (identity and the square root).334

All these sub-functions can be evaluated easily except the matrix square root. For this SLEPc335

implements a reduction to (real) Schur form followed by a block version of a Schur algorithm336

(Higham 1987; Deadman et al. 2012).337

Note that only the matrix action Db is required in this algorithm, allowing for matrix-free imple-338

mentations. This could be potentially useful for defining matrix-vector products using the “mod-339

ulation product” defined in Bishop and Hodyss (2009) or for variational-style covariances that340

use Fast Fourier Transforms (FFT) to define the action of a circulant covariance matrix. Hybrid341

methods are also possible; as long as the action of the covariance CHx,Hx as well as Cx,Hx can be342

applied, any such modeled covariance can be imposed on the analysis through the ESRF equations343

through this approach.344

4. Serial augmented-state filter of AC07345

In order to compare the performance of our new matrix function approach to an existing method,346

we briefly summarize the method of AC07 here. AC07 details a highly scalable approach to347

solving the ESRF equations in serial that is provably identical to the global solution with linear348

observation operators and without covariance localization. With covariance localization, however,349
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the results will depend upon the ordering of observations as discussed above, although to what350

extent this difference will impact ensemble NWP forecasts has not yet been explored.351

AC07 describes an algorithm that loops over each observation in serial. Each observation is352

owned by a particular processing element. For each observation n, the owner of that observa-353

tion broadcasts the observation details (including the observation location, ensemble forward-354

calculated values hn(x j) for j = 1, . . . ,Nens, and QC status) to the other processing elements, which355

then each process the observation in parallel. An important innovation of AC07 is the treatment of356

observations themselves as part of the augmented state vector. In other words, just as water vapor,357

temperature, and other geophysical variables are updated by the Kalman filter equations, the ob-358

servations (which are assumed to have a particular location in space) are also updated during the359

assimilation process. Thus the nth observation that is broadcast by the owner processing element360

will have been potentially updated by observations 1 through n−1. This saves the computational361

expense of having to communicate in order to recompute the observation operators.362

A scalar form of the ESRF equations (1) is used to efficiently update all of the covariance363

localized state points and observations. The mean of each state i is updated as364

xi = xi + ki,n

(
yn− (H(X f ))n

)
(28)

for the Kalman gain ki,n from equation (2) scalarized for point i for observation n as365

ki,n =
ρi,n

dn

1
Nens−1

Nens

∑
j=1

(X′f )i, j(HX)n, j. (29)

Here,366

dn =
1

Nens−1

Nens

∑
j=1

(HX)2
n, j +Rn,n, (30)

where Rn,n (R is assumed diagonal) is the observation error variance of the nth observation, and367

ρi,n is the localization factor between the state point i and observation n, i.e. it corresponds to368
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the (i,n) component of the ρx,y matrix in equation (8), although this matrix is not formed in this369

implementation.370

Similarly, given the scalar square-root correction371

βn =
1

1+
√

rd
, (31)

where372

rd =
Rn,n

dn
, (32)

the jth ensemble perturbation at state point i is updated as373

X′i, j = X′i, j +βnki,n

(
0− (HX)n, j

)
. (33)

Note that the analogous equations are used to update the approximations of the forward observa-374

tion mean (H(X f ))k and perturbations (HX)k, j for k = n+1 to Nobs, i.e. the remaining unassimi-375

lated forward observations are treated as part of the augmented state vector.376

5. Numerical results377

The implementation described in section 3 was used to replace the computation of (E|g) from378

equations (21) and (22) from S17, retaining the remaining components. For comparison, the379

serial method of AC07 was implemented and tested as well. To ensure consistent comparisons, an380

object-oriented approach was incorporated in the Hurricane Ensemble Data Assimilation System381

(HEDAS, Aksoy et al. 2012, 2013; Aksoy 2013; Vukicevic et al. 2013; Aberson et al. 2015) to382

maintain consistency in observation processing, quality control, and disk input/output among all383

three implementations. Only the filter aspect differs.384

All timings were tested on the NOAA Jet supercomputing system xjet installed in 2015/2016385

where each node has 24 cores with a 2.3 GHz Intel Haswell CPU and 2.66 GB RAM connected386

via FDR Infiniband. As a proof-of-concept for this method, we ran two experiments, each with387
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30 Hurricane WRF (Gopalakrishnan et al. 2010, HWRF) ensemble members, using the Hurri-388

cane Edouard (2014) study described in Christophersen et al. (2017). Both of these experiments389

use quality-controlled observations from sources including satellite retrievals and the NASA AV6390

Global Hawk 20140916GH Storm Survey mission (Zawislak et al. 2016; Rogers et al. 2016;391

Christophersen et al. 2017).392

The first experiment, to illustrate the performance on a relevant single cycle as in Christophersen393

et al. (2017), uses HWRF to spin up 30 GFS ensemble members initialized at 2014-09-16 12:00394

UTC for 4 hours, then assimilates 15.2K quality-controlled observations from this set at 2014-395

09-16 16:00 UTC ± 30 minutes using the HEDAS system. The localization length-scale was396

set to L = 240 as c = L/2 from equation 4.10 of Gaspari and Cohn (1999) as described in S17.397

Figure 1 shows the analyzed water vapor field at level 20 (out of 60) for the EPS, MFN, and serial398

implementation of AC07. Ten different random observation orderings were assimilated. The mean399

and standard deviation of the ten different AC07 analyses are shown in fig. 1a) and 1b). As shown,400

the standard deviation of these different orderings can reach up to approximately 1.5 g kg−1. The401

same 10 random orderings were assimilated with the MFN solution as shown in fig. 1c) and 1d).402

Each time, the MFN analysis was identical to within 10−7; the standard deviation is less than 10−7
403

(“zero”) as well. For comparison, the absolute difference between the average serial analysis and404

the EPS analysis is shown in fig. 1e), which as shown is greater than 2 g kg−1 in places. The405

absolute difference between the MFN and EPS solution is shown in fig. 1f), which is also “zero.”406

To emphasize the order independence issue, figure 2 shows the assimilation of the first two407

random observation orderings assimilated in figure 1 (order 1 and order 2). No effort was made to408

maximize this difference for AC07 – the first two random orderings were chosen – but likewise no409

attempt was made to minimize forecast impact in AC07 by optimizing the ordering as in Kotsuki410

et al. (2017). The differences at this level reach up to 3.5 g kg−1. The root-mean-squared difference411
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of the entire domain at this level was approximately 0.5 g kg−1. However, the MFN analyzed412

solutions with different orderings were found to be identical to within 10−8. A similar tolerance413

was found by comparing the MFN and EPS solutions.414

Figure 3a) shows the level 20 water vapor standard deviation (across the ensemble) of the prior415

ensemble perturbations X′f , while the standard deviation of the MFN posterior perturbations X′a416

with orderings 1 and 2 (which are numerically equivalent up to single precision) is shown in fig.417

3b). Figure 3c) and 3d) show the standard deviation of X′a at this level for the ordering 1 and 2,418

respectively, with the AC07 filter. Figure 3e) shows the two standard deviations differ by up to419

0.1 g kg−1, while the difference between the AC07 order 1 X′a and the EPS solution is up to 0.35420

g kg−1. As in the mean, the MFN perturbations and the EPS perturbations are identical to within421

10−7.422

As shown in figures 1 through 3, the differences in the xa analysis with random orderings using423

the AC07 filter are large enough that they are comparable to the posterior covariance in certain424

locations. This is likely due to the highly non-linear nature of the first-cycle tropical cyclone425

data assimilation problem. In this application, flights are used as observing platforms to narrow426

the inner core uncertainty as shown in figure 3. The first cycle background contains ensemble427

members with simulated tropical cyclones with features centered at different locations, leading428

to large analysis updates. The main area of uncertainty in the AC07 analyses is actually outside429

of the inner core in the south-west quadrant near an area of dry air inflow. As shown, over the430

different serial courses of assimilation the order-dependent error standard deviation of this region431

can grow to be roughly equivalent in magnitude to the posterior covariance. The matrix function432

approach, however, is order independent and therefore removes this source of error and is thus433

more numerically consistent with the eigenpair-based solution to the ESRF equations.434
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Having established that in this case the matrix function solution is numerically similar to the435

EPS method, which has a proven error bounds, we now turn our attention to the computational436

performance of the new method. For this purpose we use a second experimental setup that com-437

bines the observations at all times that fall within the same domain as the first experiment. This438

leads to up to 35,420 quality-controlled observations that can be used for performance testing.439

Keeping 1/2 of the total number of observations from all cycles fixed at 17.7K, the scaling as440

a function of number of cores is shown in figure 4. The matrix function method scales nearly441

linearly as a function of the number of processing elements as in S17, but overall the wall time442

remains bound by I/O time.443

As a function of the number of observations the MFN implementation scales much better than444

the eigenproblem-based solution (EPS) as shown in figure 5, where the number of processing445

elements is fixed at 386, L = 240 for the correlation length-scale, and the number of observations446

vary. As discussed in S17, L = 240 leads to points across more than half of the domain being447

correlated which in turn leads to a relatively dense, nearly full-rank matrix. As predicted by theory,448

the EPS solution appears to scale as the cube of the number of observations. However, the MFN449

approach apparently scales linearly. Times for the EPS solution longer than 45 minutes are not450

shown. With 17.7k observations on 386 processing elements, the EPS solution took 41 minutes451

and 28 seconds to complete from start to finish (including expensive disk reading and writing),452

while the MFN solution took only 16 minutes and 42 seconds. The MFN solution continues to453

scale well even at 35.4K observations, completing in 30 minutes and 45 seconds, which is still454

more than 10 minutes faster than the EPS solution with half as many observations. Therefore, as455

shown, the MFN approach scales much better as function of the number of observations than the456

EPS solution.457
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The MFN solution is also roughly comparable to the AC07 solution in terms of wall time. While458

the MFN approach is actually slightly faster for small amounts of observations, for the largest459

number of observations tested (35.4K observations) the serial filter is faster with a wall time of 28460

minutes 24 seconds as opposed to 30 minutes 45 seconds. However, the wall-time differences are461

small enough that the observation order independence of MFN apparently makes it competitive462

with AC07 for these numbers of observations. This is somewhat surprising as the only communi-463

cation used by the AC07 filter is to broadcast observations, while distributed matrix multiplications464

are required by the MFN approach. However, the MFN approach has the potential benefit that it465

does not serially iterate over the observations, but instead can process all observations in parallel.466

The number of matrix multiplications, and hence the overall timing of the matrix function solu-467

tion, is directly related to the number of restarts and m, the maximum basis size before restarting.468

Increasing m leads to fewer restarts but requires additional memory and dense matrix processing469

time. The number of Eiermann-Ernst restarts necessary for convergence with m = 150 as used470

in our study ranged from 1 for the smallest number of observations (2,760) to 2 for the largest471

number of observations (35,420). The SLEPc error estimate at the end of each restart iteration for472

the smallest number of observations was on the order of 10−2 for k = 0 and 10−15 for k = 1, while473

for the largest the error was on the order of 10−2 for k = 0, 10−8 for k = 1, and 10−13 for k = 2. It474

appears the number of restarts grows very weakly with Nobs.475

Table 1 shows the time necessary to solve the matrix function portion of the ESRF equations476

per ensemble member with L = 240 for the 17.7k observation case as a function of varying the m477

parameter. As shown, m less than 100 requires an excessive amount of restarts and total matrix478

product evaluations; for m greater than 100, the overall performance is dependent upon the exact479

number of matrix product evaluations required to reach the numerical accuracy of εtol = 10−8.480

For this case, m = 125 requires the fewest number of matrix-product evaluations, which is highly481
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correlated with the total amount of MFN solve time. Table 2 shows the same results with the482

localization length-scale L= 60. In this case, m= 150 gives the optimal results. The best particular483

value of m therefore depends upon the factorization of the total number of evaluations required. m484

larger than 100 is recommended to avoid excessive restarting, and m less than 200 is recommended485

due to the expense of dense matrix evaluations. We choose m = 150 to split the difference.486

The scaling of memory usage on 386 xjet processors as a function of number of observations487

is shown in fig. 6. As shown, and as expected by theory, the EPS solution memory usage scales488

cubically as a function of the number of observations. The serial filter of AC07 apparently scales489

linearly as it only processes a single observation at once. The MFN solution, which currently490

stores the entire sparse CHx,Hx matrix in memory, scales better than S17 but apparently worse than491

linearly. This is because with L = 240 the CHx,Hx matrix is relatively dense. For a dense matrix,492

the memory requirements would be quadratic, while for a sparse matrix the memory requirements493

would be closer to linear. The memory scaling here is consistent with a factor somewhere in494

between quadratic and linear. Note, however, that the expense here is related to the representation495

of CHx,Hx and not directly to the MFN approach.496

Indeed, the computational performance of the MFN method comes down to computing the ma-497

trix product. As mentioned, as only Db is required in this method, it is not necessary to explicitly498

store the matrix D in memory. This so-called “matrix-free method” was implemented and tested499

successfully. As a first test, we used a simple implementation that brute-force recalculated the ele-500

ments of CHx,Hx when required and avoided storing these elements in memory. While the memory501

usage decreased as expected, the time necessary to recompute the covariances made the method502

uncompetitive with the stored-in-memory matrix approach. The matrix-free implementation took503

29:19 minutes on 386 processors for 4.5k observations versus just 5:40 minutes with a stored ma-504
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trix. A more suitable matrix-free implementation such one based on FFT would make this feature505

of the matrix function algorithm more attractive. Additional research is required in this area.506

As an additional note, the MFN approach for solving the mean x = f1(D)(y−H(X f )) was507

compared with the more traditional method of solving for Dx = y−H(X f ) using GMRES. In508

this particular case, the MFN was found to be competitive with GMRES. This may be due to509

the fact that D is relatively dense and an efficient pre-conditioner for use with GMRES was not510

found. Regardless, the novel contribution here is computing the more difficult f2(D)(0−HX)511

using MFN.512

6. Discussion and conclusions513

In this work we describe the utilization of matrix functions, a powerful linear algebra tool, to514

derive numerically accurate and efficient solutions of the ESRF equations. With this method, high-515

rank localized covariance matrices can be applied consistently in such a way that the final analysis516

does not depend upon the ordering of observations. For the number of observations investigated,517

this method is roughly competitive in terms of wall-time with the highly efficient serial filter of518

AC07.519

The matrix function approach is built on the Arnoldi iteration, which provides a basis for the520

Krylov subspace spanned by the covariance matrix of the forward-computed observations CHx,Hx521

and a vector b. This basis allows for evaluation of the ESRF matrix functions over a much smaller,522

upper Hessenberg matrix. The Scalable Library for Eigenproblem Computation (SLEPc, Her-523

nandez et al. 2005) includes an efficient implementation of the matrix function method along with524

the Eiermann-Ernst restart (Eiermann and Ernst 2006). Only the matrix-vector product is required,525

which can be used to provide matrix-free implementations, although for performance reasons stor-526

ing the entire sparse CHx,Hx matrix across processing elements may be preferable as shown in our527
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case. The ability to consistently incorporate high-rank covariance models with a known error528

bounds provides a platform to investigate hybrid ensemble/climatological covariances as well as529

observation versus model space covariance issues.530

Additional effort will be needed to fully understand the computational performance of this531

method in comparison to other existing parallel EnKF techniques, but a few basic conclusions can532

be drawn. First, in comparison to the S17 eigenpair solution method of Steward et al. (2017), the533

matrix function approach scales much better as a function of the number of observations assimi-534

lated and uses less memory while maintaining independence of observation ordering and achieving535

nearly identical numerical results. Second, while this method and the Consistent Hybrid Ensem-536

ble Filter of Bishop et al. (2015, CHEF) are similarly independent of the order of observations for537

high-rank covariance models, as the matrix function approach applies the high-rank covariance538

matrices globally, it may be more computationally efficient than CHEF (which applies the matri-539

ces locally), especially for long localization lengths. This approach also solves the ESRF equations540

rather using than perturbed observations. Finally, the matrix function method is competitive with541

the serial AC07 implementation of Anderson and Collins (2007) in terms of wall-time for the cases542

tested here. While it uses more memory, the matrix function approach is shown to be more faithful543

to the eigenpair-based solution of the ESRF equations than AC07. It is unknown if this additional544

precision will have a positive impact on forecasts. The recent work of Emanuel and Zhang (2017)545

demonstrates the crucial impact of inner core moisture on TC predictability, and the two serial546

AC07 analyses shown in fig. 2 with merely different observation orderings differ on the extent of547

dry air near the inner core. As shown, the two water vapor analyses for this difficult first-cycle TC548

case can differ by up to 3 g kg−1, and therefore it is reasonable to expect the two serial analyses549

shown in figure 2 may produce qualitatively different medium-term forecasts. A method that can550

increase fidelity to the ESRF equations, known to be the minimum variance solution (e.g. Bishop551
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et al. 2015), for tropical cyclone cases may be worth the additional computational expense. Due to552

the efficiency and ease of implementation of the serial filter, continued research into minimizing553

observation ordering impact is also likely to be beneficial.554

Comparison of this method to other local analysis methods remains more unclear. The perfor-555

mance of local analysis methods is most critically related to the radius of influence. For large556

radii as considered here, this would likely make local analysis methods inefficient as the problem557

for each local grid point becomes nearly as large as the entire domain. However, in such cases,558

when sample-based covariance localization is utilized with the ESRF approach, the matrix func-559

tion approach could also potentially be used to improve performance versus O(n3) algorithms such560

as finding eigenpairs or the Cholesky decomposition. This may be unnecessary, however, if the561

number of local observations does not exceed ≈ 102.562

At the moment, a major weakness of the non-local matrix function approach in comparison to563

the AC07 serial approach is the memory usage scaling. Extrapolating the results presented in564

figure 6 on 386 processors and keeping the number of processors constant, with approximately565

80k observations (assuming quadratic growth) to 115k observations (assuming linear growth) the566

matrix function approach would run out of memory. By comparison, the serial filter would run567

out of memory (assuming linear growth) at approximately 3.2 million observations. A matrix free568

implementation would address this issue. Since in the matrix function approach, computational569

performance comes down efficient methods of applying the matrix product, we aim to investigate570

application of the modulation product of Bishop and Hodyss (2009) to apply correlations in or-571

der improve the memory scaling issue. In the meantime, batch processing of large numbers of572

observations is one potential work-around.573

The algorithm described in this paper requires a distributed sparse matrix implementation such574

as that available in the Portable Extensible Toolkit for Scientific Computing (PETSc, Balay et al.575
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1997, 2016, 2017) which SLEPc is built upon. In addition, the restarted Arnoldi process (including576

a numerically stable parallel Gram-Schmidt orthogonalization process) must be implemented to577

estimate the required reduced-order matrix function products. When using the SLEPc library that578

provides this functionality, this approach is not more difficult than the eigenpair implementation579

of S17. However, either implementation is certainly more complex than the serial approximation.580

Finally, while the order-dependency issue shown here is non-trivial, the TC first-cycle case is581

likely to be a “worst-case” scenario due to the highly non-linear nature of feature misalignment.582

While Nerger (2015) hypothesized that the effect of the observation-order dependency in the serial583

implementation is small when the analysis is not far from the prior, the filter described here may be584

useful to test the practical effect of this hypothesis in a variety of large-scale cases and to develop585

mitigation solutions for the serial approach when necessary.586
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TABLE 1. Time to complete the solution, number of restarts (per control vector), and total number of matrix

product evaluations as a function of m, the size of the Krylov subspace before restarting, required to solve

the perturbation update matrix function f2 in equation (24) with L = 240 (in equations (5) and (8)) and 17.7K

observations as described in section 5. The timings are with a single MPI process on an Intel Core i7 server.

Note these times are for a single ensemble member.

790

791

792

793

794

m Time (s) Restarts Total evals

25 2.5743e+04 74 1875

50 4.8219e+03 12.2 660

75 3.2298e+03 5 450

100 2.8686e+03 3 400

125 2.6897e+03 2 375

150 3.2460e+03 2 450

175 2.5257e+03 1 350

200 2.8950e+03 1 400
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TABLE 2. As in table 1 but with L = 60. The reduction in time versus L = 240 is due to the increased sparsity

of the localization matrices ρy,y and ρx,y.

795

796

m Time (s) Restarts Total evals

25 1.6822e+04 66.2 1705

50 3.8763e+03 15.0333 802

75 2.7369e+03 6.9 593

100 2.2974e+03 4 500

125 2.2872e+03 3 500

150 2.0749e+03 2 450

175 2.4319e+03 2 525

200 2.2491e+03 1.43333 487
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(a) Serial avg xa (b) Serial xa stddev

(c) MFN avg xa (d) MFN xa stddev

(e) |Avg serial - EPS| (f) |Avg MFN - EPS|

FIG. 1. Comparison between water vapor (g kg−1) at level 20 (of 60 total, corresponding to a height of

approximately 2.5 km) of the Hurricane Edouard single cycle case of Christophersen et al. (2017) with 15.2K

observations and L = 240 as described in S17. Ten different random orderings of observations were used. (a)

The average of the ten AC07 xa analyses. (b) The standard deviation of these ten AC07 xa analyses. (c) The

average of the ten matrix function (MFN) xa analyses. (d) The standard deviation of the MFN analyses, which

is less than 10−7 at all points. (e) The absolute difference between (a) and the EPS solution. (f) The absolute

difference between (c) and the EPS solution (also less than 10−7 for all points).
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(a) Serial order 1 (b) Serial order 2

(c) MFN order 1 (d) MFN order 2

(e) Serial |order 1 - 2| (f) MFN |order 1 - 2|

FIG. 2. Comparison between analyzed xa level 20 water vapor as in fig. 1 for two of the ten different random

orderings of observations. (a) The serial filter of Anderson and Collins (2007) with ordering 1 and (b) ordering

2. (c) MFN analyzed xa ordering 1. (d) MFN xa ordering 2. (e) The absolute value difference between (a) and

(b). (f) The difference between the two MFN orderings in (c) and (d), which is less than 10−7. The difference

between the MFN and EPS analysis for this case is also less than 10−7 at all levels.
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(a) X′
f (prior) stddev (b) X′

a MFN stddev

(c) X′
a serial stddev 1 (d) X′

a serial stddev 2

(e) |X′
a order 1 - 2| (f) |X′

a order 1 - EPS|

FIG. 3. Ensemble spread (i.e. standard deviations over the ensemble) of water vapor (g kg−1) at level 20 as

in figures 1 and 2. Here the first two random orderings of observations were used as in fig. 2. (a) The standard

deviation of the prior distribution X′f at this level. (b) The standard deviation of the MFN posterior distribution

X′a (ordering 1, 2, and the EPS solution are the same to with 10−7). (c) Standard deviation of X′a for AC07

ordering 1 and (d) ordering 2. (e) The absolute difference between the serial analysis with ordering 1 and 2 from

(c) and (d). (f) The absolute difference between the EPS solution and ordering 1 from (c).
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FIG. 4. (a) Speed increase of applying the MFN filter, including the time to calculate (E|g) using the matrix

function approach and solve equation (1) as a function of number of processing elements with the number of

observations fixed at 17k. The speedup is nearly linear and is dominated by the time applying Cx,Hx. This

should be compared with figure 6d) from S17 which likewise shows a nearly linear speed increase as a function

of number of processors during filter time. (b) Total speed increase of wall-time including disk reads and writes.

As the process is I/O bound, the total speed increase is sublinear. Compare with figure 6f) from S17 which

likewise shows a sub-linear increase (and even an eventual decrease) as a function of total wall time due to

degradation in parallel I/O performance.
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FIG. 5. Scaling as a function of number of observations with 386 processors. The MFN approach described

in this paper appears to scale approximately linearly (y = 4.86×10−2x+152), while the EPS scales consistent

with a cubic fit (y = 4.43×10−10x3 + 302). The serial filter of Anderson and Collins (2007) likewise scales

linearly (y = 4.04×10−2x+224.72). Times longer than 2500 seconds for the EPS solution are not shown.
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FIG. 6. Memory usage as a function of the number of observations with 386 processors. The EPS scales

cubically as predicted by theory, while the serial filter of Anderson and Collins (2007) scales linearly in mem-

ory usage. The MFN approach apparently scales worse than linearly. A matrix-free implementation of MFN

improves memory scaling.
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