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Abstract

We consider the computation of a few eigenpairs of a generalized eigen-
value problem Ax = λBx with block-tridiagonal matrices, not necessarily
symmetric, in the context of Krylov methods. In this kind of computation,
it is often necessary to solve a linear system of equations in each iteration
of the eigensolver, for instance when B is not the identity matrix or when
computing interior eigenvalues with the shift-and-invert spectral transforma-
tion. In this work, we aim to compare different direct linear solvers that
can exploit the block-tridiagonal structure. Block cyclic reduction and the
Spike algorithm are considered. A parallel implementation based on MPI is
developed in the context of the SLEPc library. The use of GPU devices to
accelerate local computations shows to be competitive for large block sizes.

Keywords: MPI, GPU computing, Eigenvalue computation,
Block-tridiagonal linear solvers

1. Introduction

We are interested in computing a few eigenvalues (and corresponding
eigenvectors) of a matrix (or matrix pair) that has block-tridiagonal struc-
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ture. We focus on the case where the blocks are dense, for instance in the
discretization of partial differential equations in which the Fourier transform
has been applied on two spatial dimensions [1].

Our particular interest is in assessing the convenience of using a combined
MPI-CUDA parallelization scheme in order to benefit from graphics process-
ing units (GPU) that are often available in computing clusters nowadays.
This approach will perform best when addressing very large-scale problems,
with many blocks of considerable size.

Given two n × n matrices A and B, we seek pairs (x, λ) satisfying the
relation

Ax = λBx, (1)

where λ is a scalar (eigenvalue) and x 6= 0 is a vector (eigenvector). This is
called the generalized eigenvalue problem, while the particular case when B
is the identity matrix is referred to as the standard eigenvalue problem. Our
description will assume that the matrices are real, although our code can also
handle the case of complex matrices. When the matrix pencil (A,B) is sym-
metric positive-definite, then all eigenvalues are real, otherwise eigenvalues
are complex in general. We do not restrict ourselves to the symmetric case.

In this work, we consider Krylov methods for solving the eigenvalue prob-
lem, rather than direct methods. The main reason is that we need to com-
pute just a few eigenpairs, not the whole spectrum. An additional reason
is that, while the block-tridiagonal structure may seem favorable for trans-
formation methods that reduce to a condensed form, this is not true for
the non-symmetric case since already the first step (reduction to Hessenberg
form) will destroy the block-tridiagonal structure. Even in the symmetric
case, if the problem is generalized (B 6= I) then one has to first transform to
a standard eigenproblem that also implies losing the block-tridiagonal struc-
ture. In contrast, Krylov methods will preserve the block-tridiagonal struc-
ture throughout the computation, and will be very effective provided that (1)
convergence is not too bad, and (2) operations related to block-tridiagonal
matrices are implemented efficiently.

Convergence of Krylov methods for eigenvalue computations is a non-
trivial issue, that depends on separation of eigenvalues, among other things
(see for instance [2]). Without entering into details, we could state that,
if eigenvalues of interest are exterior (that is, lying in the periphery of the
spectrum), a (restarted) Krylov method will be able to retrieve them without
problems. However, if we seek for eigenvalues in the interior of the spectrum,
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then it is necessary to do something else. A standard technique to compute
interior eigenvalues is the shift-and-invert transformation, where the Krylov
method is applied to the transformed problem

(A− σB)−1Bx = θx, (2)

where largest magnitude θ = (λ − σ)−1 correspond to eigenvalues λ closest
to a given target value σ. Convergence in this case will be fast because the
transformation also improves the separation, but the drawback is that the
solver must implicitly handle the inverse of A − σB via direct linear solves.
Direct linear solvers are costly because they need a matrix factorization,
and scale quite poorly in parallel due to the required triangular solves. In
this paper, we put special emphasis on efficient and scalable solution of linear
systems in this context, exploiting the block-tridiagonal structure, in an MPI-
CUDA programming model.

We now mention some related works, especially those dealing with the
computation of eigenvalues using GPUs. Some authors have focused on in-
creasing the arithmetic intensity for the first step of dense methods, namely
the reduction to Hessenberg (or tridiagonal) form via orthogonal transfor-
mations [3, 4]. As pointed out before, these techniques are not relevant for
our problem, because they would destroy the block-tridiagonal structure.
Furthermore, we are interested in very large problems that do not fit the
memory of a single GPU. In dense methods, after reducing to Hessenberg
(or tridiagonal) form, the algorithm that actually computes the eigenvalues
is then invoked, for instance the QR iteration for non-symmetric problems,
or the divide-and-conquer method for symmetric ones. In contrast to the
reduction step, this part is difficult to implement and has modest arithmetic
intensity. Investigations to enhance efficiency have focused on using a hybrid
CPU-GPU approach [5] or extending the algorithms to operate directly on a
symmetric band matrix [6]. These methods compute all eigenvalues, which is
wasteful in our case. With respect to projection methods for sparse matrices,
recently Anzt et al. [7] have shown good performance results of a LOBPCG
implementation for GPUs. Unfortunately, the LOBPCG eigensolver is spe-
cific for symmetric problems and cannot compute interior eigenvalues; we are
targeting a much more general case. Several authors have reported about
GPU implementation of Krylov eigensolvers. For instance, Aliaga et al. [8]
accelerates Krylov methods by off-loading the matrix-vector products to the
GPU, after carrying out a band reduction of the matrix (and losing the
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sparse character). This work is restricted to computing exterior eigenval-
ues of symmetric matrices, while our main concern is interior eigenvalues of
non-symmetric block-tridiagonal matrices.

The rest of the paper is organized as follows. Section 2 describes SLEPc,
the library in which our codes are based, paying special attention to its
support for GPUs. Section 3 describes different algorithms for the parallel
solution of linear systems with block-tridiagonal matrices, and section 4 dis-
cusses specific details of our particular implementation of such algorithms.
Performance results are reported in section 5. Finally, some concluding re-
marks are given in section 6.

2. Sparse linear algebra computations on GPU

Our code has been developed on top of SLEPc and PETSc, and we de-
scribe next how these libraries provide GPU support. We must note that,
although some parts of the computation are carried out within these libraries,
the majority of the computational cost lies in the user-provided subroutines,
most notably those solving linear systems of equations that will be described
in section 3.

SLEPc, the Scalable Library for Eigenvalue Problem Computations [9], is
a parallel library intended to solve large-scale eigenvalue problems, comput-
ing a subset of eigenvalues and associated eigenvectors. It covers both the
standard and generalized eigenproblems, as well as other related problems.
SLEPc provides a collection of eigensolvers, including a restarted Krylov
method which is the default one. It also furnishes a built-in tool for the
shift-and-invert transformation (2) to compute interior eigenvalues.

SLEPc is built on top of PETSc[10], an object-oriented parallel frame-
work for the numerical solution of partial differential equations. In PETSc
the code is organized as a set of data structures for representing, e.g., vectors
and matrices, and algorithmic objects (solvers) for different types of prob-
lems, including linear systems of equations. The application code interacts
with the interface of these objects without caring about the details of the
underlying data structures. In particular, SLEPc solvers are data-structure
neutral, meaning that the computation can be done with different sparse
matrix storage formats, for instance one that keeps a copy of the data on the
GPU, as explained below. Furthermore, both SLEPc and PETSc are exten-
sible in the sense that it is possible to plug user-provided code to customize
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the solvers. We have used this feature to implement optimized kernels for
block-tridiagonal matrices.

In the development version, PETSc incorporates some support for NVIDIA
GPUs. The initial implementation [11] required an external package called
CUSP [12], but during the development of this work we have contributed
code to PETSc in order to avoid this dependence and enable GPU support
simply with the NVIDIA CUDA toolkit1. Our contributions also allow some
enhancements such as the use of complex arithmetic on the GPU.

The GPU support in PETSc is based on using cuBLAS and cuSPARSE2

[13] to perform vector operations and matrix-vector products through VEC-
CUDA, a special vector class whose array is mirrored in the GPU, and MATAI-
JCUSPARSE, a matrix class where data generated on the host is copied to
the device on demand. The GPU model considered in PETSc uses MPI for
communication between different processes, each of them having access to
a single GPU [11]. The implementation includes mechanisms to guarantee
coherence of the mirrored data-structures in the host and the device.

SLEPc inherits this GPU support philosophy, and extends it a bit with
some multi-vector operations that are often encountered in eigenvalue meth-
ods. This operations replace BLAS-1 computations with BLAS-2 (and even
BLAS-3 in some cases), with the consequent increase in arithmetic intensity.
When computing eigenvalues in the periphery of the spectrum, it is possi-
ble to perform most of the computation on the GPU, see [14] for a sample
application. However, when computing interior eigenvalues with the shift-
and-invert transformation (2), a direct linear solver is required to handle the
inverse, and this is not currently available in PETSc for GPU. Hence, in this
case data would be copied back and forth between the CPU and the GPU,
in a transparent way, with a considerable loss of efficiency. Sparse direct
solvers are difficult to implement on the GPU efficiently. Here, we restrict to
the simpler case of block-tridiagonal matrices, and have implemented custom
subroutines that work completely on the GPU. In a previous work [15], we
presented some results for the case of a single GPU, and here we consider
the general case where both MPI and GPU are used in the parallelization of

1PETSc also features OpenCL support for GPU hardware other than NVIDIA, but we
do not consider this here.

2cuBLAS and cuSPARSE are libraries included in the CUDA software development
toolkit: cuBLAS implements BLAS for CUDA, while cuSPARSE provides linear algebra
operations on sparse matrices.
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linear solves.
The default eigensolver in SLEPc is the Krylov-Schur method [16], which

essentially consists in the Arnoldi recurrence enriched with an effective restart
mechanism. After j−1 steps, the Arnoldi recurrence computes an orthogonal
basis of the Krylov subspace Kj(M, v1) := span{v1,Mv1,M

2v1, . . . ,M
j−1v1},

where v1 is a unit-norm initial vector. In the generalized eigenvalue problem
(1), the subspace is built for matrix M = B−1A (assuming B is non-singular),
or alternatively M = (A−σB)−1B if the shift-and-invert transformation (2)
is being used.

In some cases, Ritz approximations may require many iterations to con-
verge. The number of Arnoldi steps cannot be arbitrarily large, because of
storage requirements for the basis and also because the computational cost
grows with j. For this reason, a practical implementation must be able to
restart, that is, discard part of the information contained in the subspace and
extend the subspace again. In Krylov-Schur [16], restart is accomplished by
truncating the Krylov decomposition in a simple-to-implement way.

Without entering into the details of the algorithm, the different steps
involve the following computational kernels:

1. Basis expansion. The last Arnoldi vector vj must be multiplied by M .
In the considered cases, this is a matrix-vector multiplication, followed
by a linear system solve.

2. Orthogonalization and normalization of vectors. The new vector must
be orthonormalized against the previous ones, Vj = [v1, v2, . . . , vj].

3. Solution of projected eigenproblem. A small eigenvalue problem must
be solved at each restart, for matrix Hj = V ∗j MVj.

4. Restart. The associated computation is VjQ1:k, k < j, whereQ contains
the Schur vectors of Hj.

The cost of step 3 is usually negligible compared to the rest of opera-
tions, because we are assuming that the size of the projected problem is
very small (often several orders of magnitude smaller) with respect to the
original problem size. Hence this computation is not parallelized, it is per-
formed in a replicated way on the CPU for every MPI process. Regarding
steps 2 and 4, they involve vector operations that are easily parallelizable
in terms of MPI. They can also be mapped easily to the GPU since they
involve simple calls to the BLAS. Finally, the basis expansion (step 1) is the
most critical computation, since it is often the most expensive one and may
be difficult to implement efficiently in parallel, especially in cases where it
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involves solving linear systems. In the next section we provide details for this
step, particularized for the case of block-tridiagonal matrices.

3. Parallel linear system solvers for block-tridiagonal matrices

As discussed above, in Krylov methods the basis expansion with matrix
M involves a matrix-vector multiplication and a linear system solve with
either A, B, or A−σB, depending on whether shift-and-invert is being used
or not. In this paper, we are assuming that all these matrices have a block-
tridiagonal structure.

Consider a block-tridiagonal matrix T of order n, with ` blocks of size k,

T =



B1 C1

A2 B2 C2

A3 B3 C3

. . . . . . . . .

A`−1 B`−1 C`−1
A` B`


, (3)

with n = `k. The matrix-vector product y = Tv can be easily computed by
blocks as

yi = [Ai Bi Ci]

 vi−1
vi
vi+1

 , i = 2, . . . , `− 1, (4)

with analogous expressions for the first and last block-rows. The vectors y
and v have been partitioned in a way consistent with T . As will be discussed
in section 4, we choose to store the matrix in such a way that it is possible
to do the computation with a single call to BLAS gemv per each block-
row (or the equivalent cuBLAS subroutine for the GPU case). In the MPI
setting, the matrix is distributed by blocks of block-rows, where none of the
` blocks are cut across process boundaries. Then, the multiplication with the
local matrix must be preceded by the exchange of one block of v between
neighbouring processes.

In contrast to the matrix-vector product operation, the solution of linear
systems is much more difficult to implement in an efficient way. The rest of
this section is devoted to describing the algorithms that we have implemented
for this.
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3.1. Direct linear solvers

We now focus on direct methods to solve linear systems of the form

Tx = z. (5)

As can be found in [17, ch. 5], besides the classical Gaussian elimination there
are several well known algorithms to solve tridiagonal linear systems such
as recursive doubling, cyclic reduction or parallel cyclic reduction. These
methods can also be extended to the block-tridiagonal case. One of the
solvers that we have implemented is based on the cyclic reduction [18] (also
known as odd/even reduction or CORF).

The cyclic reduction algorithm has two main steps: the forward elimina-
tion, that reduces the rows of the system, and the backward substitution to
obtain the solution. It is a recursive algorithm that successively reduces the
number of rows. It divides the rows in even-indexed and odd-indexed, and
in the forward elimination, it recursively eliminates the even-indexed rows in
terms of the odd-indexed ones. Depending on the dimension of the matrix,
the number of rows is approximately halved in each recursion (if the number
of rows is a power of two, it is actually halved) until a single row is left.
Assuming that no division by zero is encountered in any of these steps, with
the last row, an equation with a single unknown is trivially solved. The back-
ward substitution step progresses increasing the number of rows used in the
same proportion as the forward elimination reduces them. It uses the current
recursion level solution(s) to compute the adjacent even-indexed rows on the
previous level until all the unknowns are solved.

As noted in [19, 20], the cyclic reduction method has the property of
being equivalent to Gaussian elimination without pivoting on the system
(PTP T )(Px) = Pz, where P is a permutation matrix that places first indices
that are odd multiples of 20, then odd multiples of 21, and so on. Such
link with Gaussian elimination supports the conclusion that cyclic reduction
is numerically stable in the same cases where Gaussian elimination with
diagonal pivots is. If T is strictly diagonally dominant or symmetric positive
definite, then no pivoting is necessary and cyclic reduction is stable.

A version of the algorithm that works with general block-tridiagonal ma-
trices was proposed in [21] and more recently reworked in [1] as BCYCLIC,
where block-rows are reduced cyclically instead of rows. In this case, the
algorithm can progress as long as the diagonal blocks are non-singular, since
it is necessary to compute their inverse, or, more precisely, their inverse is
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handled implicitly via factorization. Pivoting can be used when factorizing
the diagonal blocks but this does not guarantee the stability of the algorithm.
Some aspects of the numerical stability of the block cyclic reduction were an-
alyzed in [21] and [22], where a study of the bounds of the forward error is
conducted for the cases of (strictly) diagonally dominant matrices assuming
that the matrix is block column diagonal dominant.

During the forward elimination stage, the block cyclic reduction computes
the inverse of the even-indexed diagonal blocks and a modified (hatted) ver-
sion of the lower and upper blocks. In the same way, a modified version of
the even-indexed blocks of the right-hand side (RHS) vector z is computed.
In the first recursion, the computed quantities are

B̂2j = B−12j , (6a)

Â2j = B̂2jA2j, (6b)

Ĉ2j = B̂2jC2j, (6c)

ẑ2j = B̂2jz2j, (6d)

for j = 1, . . . , `/2. The respective modified version of the odd-indexed blocks
is then computed by using the adjacent modified even-indexed blocks,

B̂2j−1 = B2j−1 − A2j−1Ĉ2j−2 − C2j−1Â2j, (7a)

Â2j−1 = −A2j−1Â2j−2, (7b)

Ĉ2j−1 = −C2j−1Ĉ2j, (7c)

ẑ2j−1 = z2j−1 − A2j−1ẑ2j−2 − C2j−1ẑ2j. (7d)

In subsequent recursion levels, the computation is analogous to (6)-(7), but
for a matrix that has about half of the blocks with respect to the previous
level (even blocks have been removed).

In an MPI implementation, if the matrix is distributed across several
processes, prior to the computation of (7) it is necessary to send Â2j, Ĉ2j

and ẑ2j to the processes that own the adjacent odd-indexed block-rows, so
communication is necessary in this case. That occurs for every recursive
step of the algorithm. The modified even-indexed blocks can overwrite the
original ones, but for the odd-indexed blocks, in order to back-solve with
multiple right-hand sides, both the original lower and upper blocks and their
modified versions must be retained producing a 66% increase of memory
usage during this stage.
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The backward substitution stage starts by solving the single block equa-
tion

x1 = B̂1ẑ1, (8)

where B̂1 and ẑ1 correspond to quantities computed in the last recursion level.
Once this final odd-indexed block, which is the first part of the solution, is
obtained, the recursion tree is traversed in reverse order. The solution blocks
from a certain recursion level are used to compute the adjacent even-indexed
blocks on the previous level, with

x2j = ẑ2j − Â2jx2j−1 − Ĉ2jx2j+1. (9)

Communication occurs in an analogous way as in the forward elimination,
but in the opposite direction. The algorithm continues until all blocks are
processed.

The computational cost is concentrated in the first 3 operations of (6)
and (7). These operations represent the factorization itself, and can be amor-
tized in the case of multiple right-hand sides. This is what happens in the
Arnoldi method, that needs to invoke the linear solver in each iteration of
the eigensolver.

An alternative algorithm that uses a different approach is Spike [23],
which is intended for the parallel solution of banded linear systems (with a
possibly sparse band). Here, we particularize the algorithm for our block-
tridiagonal structure. At the outset of the algorithm, matrix T is partitioned
and distributed evenly among the p available processes, and, as before, we
assume that none of the ` block-rows are split across different processes. Each
process r organizes its local data in the form

Tr =

[
0

Dr

0
Er

0
Fr

0

]
, r = 0, . . . , p− 1, (10)

distinguishing between the diagonal portion Er (that is, the column range
corresponding to local rows), and the lower (Dr) and upper (Fr) blocks that
represent the coupling with neighbouring processes. Note that the sizes of
these three blocks differ, being the diagonal block larger than the lower and
upper blocks. In our case, the size of Dr and Fr is k, the original block size of
the block-tridiagonal matrix, whereas the diagonal block has an approximate
size of n/p, being p the number of processes used.

The Spike algorithm has two main phases: factorization and post-processing.
The factorization phase consists in computing the so-called Spike matrix, S,
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defined from the decomposition T = ES, where E = diag(E0, E1, . . . , Ep−1).
This amounts to multiplying the local matrix Tr by the inverse of the diag-
onal block Er to get the local matrix Sr. In order to do that, the first step
is to factorize the diagonal blocks Er, and compute matrices Vr and Wr by
solving the system

Er
[
Vr Wr

]
=

[ [
0
Fr

] [
Dr

0

] ]
(11)

on each process. We must emphasize that (11) is a system of linear equations
with 2k right-hand sides, where the coefficient matrix is block-tridiagonal,
and hence a solver that exploits this structure can be used. Furthermore,
this computation can be performed independently by each process, without
communication.

These Vr and Wr matrices are the spikes on a matrix S whose main
block-diagonal is the identity matrix,

S =



I V̂0
Ŵ1 I V̂1

Ŵ2 I V̂2
. . . . . . . . .

Ŵp−2 I V̂p−2
Ŵp−1 I


, (12)

where we use the notation V̂r =
[
Vr 0

]
and Ŵr =

[
0 Wr

]
.

For the post-processing stage, each process divides the local portion of
the matrix S in top, middle and bottom parts, being the top and bottom
parts of size k, and the middle part of the same size as Er minus 2k. For

instance, the upper spike is written as Vr =

 V
(t)
r

V
(m)
r

V
(b)
r

. Selecting the top and
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bottom blocks of the spikes, a reduced matrix

Ŝ =



I V
(t)
0

I V
(b)
0

W
(t)
1 I V

(t)
1

W
(b)
1 I V

(b)
1

. . . . . . . . .

W
(t)
p−2 I V

(t)
p−2

W
(b)
p−2 I V

(b)
p−2

W
(t)
p−1 I

W
(b)
p−1 I


(13)

is built, also with an identity matrix on its diagonal.
The first stage in the post-processing phase is the factorization of the

reduced matrix Ŝ. For the algorithm to work, the size of the original matrix
has to be large enough to distribute at least two blocks per process, so the
number of processes has to be limited to allow this ratio when factorizing
small matrices.

Once Ŝ has been factored, the next stage is to locally compute vector
g = E−1z by solving the system

Ergr = zr, (14)

in a similar way as (11). Note that zr now denotes the whole subvector of
z stored locally in process r, not an individual block. Vector gr is in turn
partitioned in the same top, middle and bottom parts as the spikes. From
the top and bottom parts of each process, a reduced vector ĝ is formed and
used as RHS to solve the reduced system

Ŝx̂ = ĝ, (15)

where x̂ refers to the top and bottom blocks of x on each process.
Finally, to fully solve the whole system, the middle parts of x can be

obtained in parallel with
x
(m)
0 = g

(m)
0 − V (m)

0 x̂
(t)
1 ,

x
(m)
j = g

(m)
j − V (m)

j x̂
(t)
j+1 −W

(m)
j x̂

(b)
j−1, j = 1, . . . , p− 2,

x
(m)
p−1 = g

(m)
p−1 −W

(m)
p−1 x̂

(b)
p−2.

(16)
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For the case of diagonally dominant matrices, as noted in [23], it is in-
teresting to consider that the value of the elements of the right spikes (Vr)
decays in magnitude from bottom to top. The decay is greater, the more
diagonally dominant the matrix is. As a consequence, the value of the ele-
ments of the top block of Vr can be expected to be zero and discarded from
the computation. The same assumption can be done for the bottom block of
the left spikes Wr. Discarding these zero blocks, the extra reduced matrix

S̄ =



I V
(b)
0

W
(t)
1 I

I V
(b)
1

W
(t)
2 I

. . . . . . . . .

I V
(b)
p−3

W
(t)
p−2 I

I V
(b)
p−2

W
(t)
p−1 I


(17)

can be built and factored as a block-diagonal matrix, instead of as a block-
tridiagonal one. Data movement between processes is necessary to form the
matrix S̄, and all but one of the processes can work in parallel during the
factorization without communication.

Polizzi and Sameh presented in [23] an optimization for the diagonally
dominant case denoted as Truncated Spike that computes only the bottom
block of Vr and the top block of Wr. It requires to perform one LU fac-
torization and one UL factorization of the diagonal block Er. Their exper-
iments proved that this approach reduces the computing time on machines
with arithmetic operations much faster than accesses to the memory. As
the spikes are not fully computed, the post-processing stage differs from the
general Spike algorithm. A study of the Truncated Spike [24] found that if
the degree of diagonal dominance

d =

(
max
i

{∑
j 6=i |aij|
|aii|

})−1
(18)

of the original matrix is not too close to 1 and if the partitions are sufficiently
large, then the errors at every stage of the algorithm are small. A more
recent work [25] discusses several strategies to approach the diagonally and
non-diagonally dominant cases.
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3.2. Inexact shift-and-invert

For the non-diagonally dominant case, the Truncated Spike can be used
as a preconditioner of an iterative method to solve the linear system. In this
case, the decay of the values in the spikes is considerably less prominent,
and the Truncated Spike discards blocks with non zero elements. The larger
the block size and/or number of processes are, the greater the valid data
discarded on this step, and the worse the approximated solution is. In such
case, a large number of outer iterations is needed, dramatically increasing the
communication and the computation, making this algorithm not worthwhile
to solve such kind of systems. We have not considered this variant in the
numerical experiments of section 5.

4. Implementations

Given the block-tridiagonal matrix T of (3), we store it in memory as

store(T ) =


� B1 C1

A2 B2 C2

A3 B3 C3
...

...
...

A` B` �

 , (19)

where the � symbols indicate blocks with memory allocated but not being
used. In the MPI implementation, block-rows are split across processes, and
hence only the first and last process have an unused block. Regarding the
GPU implementation, this compact storage shape allows us to use 2D mem-
ory (pitched memory) in CUDA where we store the beginning of the blocks
aligned, which is important for coalesced memory accesses. As mentioned
in the previous section, this storage allows us to use a single gemv BLAS
call per block-row to perform the matrix-vector product on CPU and GPU,
but apart from this and for the GPU case, we have also implemented a cus-
tomized CUDA kernel that performs the whole matrix-vector computation
with a single kernel invocation.

As a classical algorithm, the cyclic reduction has been already widely im-
plemented for different programming paradigms and computer architectures.
Studies of its performance on GPU against other solvers for tridiagonal ma-
trices were carried out by Zhang et al. [26]. MPI-based implementations
were studied for the block-tridiagonal case in [1] and [27]. The authors of
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the former combined the use of MPI parallelism over the block-rows with
a threaded parallelism with OpenMP or GotoBLAS to perform the local
operations. The effect of the block size in the performance was studied in
[27]. A heterogeneous approach was implemented by Park and Perumalla
[28], who use MPI and the block arithmetic is done simultaneously on GPU
with cuBLAS or MAGMA [29] and multicore processors with ACML. An-
other single-GPU implementation for the block-tridiagonal case was done
in [30], whose authors tested a variety of block and matrix sizes, showing
that better performance is obtained with systems with relatively large block
sizes by better utilizing the available GPU threads. Recently, a compari-
son of the classical solvers, including the Thomas algorithm (a specialized
Gaussian elimination for tridiagonal systems), was addressed in [31], imple-
menting them on CPU, many integrated cores (MIC) architecture and GPU
accelerators for the case of using a single node.

The Spike algorithm is available in the Intel Spike library3 with an MPI-
based implementation. Another implementation, specific for tridiagonal ma-
trices, was developed in [32] for the (multi-)GPU case and later included in
the cuSPARSE library. A Spike variation, that makes use of QR factorization
without pivoting via Givens rotations, presented in [33] as g-Spike, safeguards
the algorithm in case that the partitioning of the matrix results in at least
one of the diagonal blocks being singular. This work was later adapted to the
Intel Xeon Phi platform in [34]. An implementation of the Truncated Spike
was used as a preconditioner to solve tridiagonal linear systems on GPU in
[35] through the use of the CUSP library.

In our case, we focus on developing fast implementations of the solvers
making use of several NVIDIA GPUs to perform the block arithmetic man-
aged by a multi-process MPI solution in a similar way as [28]. When using
the Spike algorithm to solve a block-tridiagonal system, the band has to be
large enough to cover all the entries of the original matrix and additional
triangular zero borders are included in the computation. We avoid the extra
work that this would entail by factorizing the main diagonal block exploiting
its block-tridiagonal structure. We have implemented several versions of the
algorithms, both in CPU and GPU, to compare their performance.

The implementations have been split in two subroutines, factorization
and solve, as the factorization is invoked only once, and the solve is invoked

3https://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/
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in each iteration of the Arnoldi algorithm. In both cases, BCYCLIC and
Spike, the factorization of the matrix excludes the operations with the RHS
vector. Those steps of the algorithms are done during the solve subroutine.

Algorithms 1 and 2 summarize the operations done on each of the sub-
routines of the BCYCLIC algorithm in an iterative implementation. Please
note that some (parts) of the operations of the algorithms only take place if
the involved blocks exist on the process at the current level. In Algorithm 1,
those operations correspond to steps 11, 12, 14, 15 and 16, and in Algorithm
2 they correspond to steps 10, 12, 14, 21 and 22.

Step 2 of Algorithms 1 and 2, which is detailed in Algorithm 3, obtains
the lower and upper limit of the range of block-rows owned by the calling
process. Algorithm 1 goes exclusively through the dlog2(`)e levels of the
forward elimination, while Algorithm 2 performs the forward elimination
and the backward substitution.

Algorithm 1: BCYCLIC factorization

1 For all processes (with rank r) do in parallel
2 [low, high] = GetOwnershipRange(p,r,`)
3 for i = 1 : dlog2(`)e do /* For each iteration level */

4 begin = 2i−1 + 1
5 if begin ≤ high then
6 while begin < low do begin = begin + 2i

7 begin = begin− low

8 for j = begin : 2i : `r do /* For each even block row */

9 B̂2j = B−12j

10 Â2j = B̂2jA2j

11 Ĉ2j = B̂2jC2j

12 Send/receive Â and Ĉ to/from adjacent block-rows
13 for j = 1 : 2i : `r do /* For each odd block row */

14 Â2j−1 = −A2j−1Â2j−2

15 B̂2j−1 = B2j−1 − A2j−1Ĉ2j−2 − C2j−1Â2j

16 Ĉ2j−1 = −C2j−1Ĉ2j

17 if r == 0 then B̂1 = B−11
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Algorithm 2: BCYCLIC solve

1 For all processes (with rank r) do in parallel
2 [low, high] = GetOwnershipRange(r,`,p)
3 for i = 1 : dlog2(`)e do /* For each iteration level */

4 begin = 2i−1 + 1
5 if begin ≤ high then
6 while begin < low do begin = begin + 2i

7 begin = begin− low

8 for j = begin : 2i : `r do /* For each even block row */

9 ẑ2j = B̂2jz2j

10 Send/receive ẑ to/from adjacent block-rows
11 for j = 1 : 2i : `r do /* For each odd block row */

12 ẑ2j−1 = z2j−1 − A2j−1ẑ2j−2 − C2j−1ẑ2j

13 if r == 0 then x1 = ẑ1 = B̂1z1
14 Send/receive x1 to/from adjacent block-rows
15 for i = dlog2(`)e : −1 : 1 do /* For each iteration level */

16 begin = 2i−1 + 1;
17 if begin ≤ high then
18 while begin < low do begin = begin + 2i

19 begin = begin− low

20 for i = begin : 2i : `r do /* For each even block row */

21 x2j = ẑ2j − Â2jx2j−1 − Ĉ2jx2j+1

22 Send/receive x to/from adjacent block-rows

17



Algorithm 3: GetOwnershipRange

Input: number of processes: p, process identifier: r, number of
block-rows: `

Output: global index of the first block-row owned by the process:
low, global index of the last block-row owned by the process:
high

1 if r < (` mod p) then
2 low = r(b`/pc+ 2)
3 high = low + b`/pc+ 1

4 else
5 low = rb`/pc+ (` mod p) + 1
6 high = low + b`/pc

In Algorithm 1, there are two alternatives available to deal with the in-
verse of the diagonal blocks in step 9. One is to explicitly compute the inverse
by means of LAPACK routines getrf and getri. It could seem inappropri-
ate to do this due to the high cost of computing the inverse, but once it is
computed, the rest of the steps of the algorithm can be done with optimized
matrix-matrix and matrix-vector multiplications. The other alternative is
to solve linear systems by using LAPACK routines getrf and getrs, that a
priori seems the more reasonable way to go due to the cheaper cost of the
operations.

In steps 14 and 22 of Algorithm 2, parts of the solution vector are ex-
changed between processes. One block of the solution vector can be adjacent
to multiple blocks at different levels of the backward substitution, and those
blocks can belong to the same or different processes. To avoid repeating the
same communication twice between the same pair of processes, the imple-
mentations of Algorithm 2 store and take note of the parts of the solution
vector already sent/received.

The mathematical library used within the CPU version is Intel’s MKL
(with threads enabled), but for the GPU version we have different implemen-
tations that use the cuBLAS or MAGMA libraries, respectively. Both GPU
libraries provide batched operations allowing us to use a single function call
to factorize, solve, invert or multiply all the even-indexed diagonal blocks
owned by a process, per recursive step. We use these batched operations
in the GPU implementations, but, in the case of the gemm function, the
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Table 1: BCYCLIC implementations with each of the mathematical libraries.

Non-batched Batched

Math library getri getrs getri 1 getri 2 getrs

CPU MKL 3 3 - - -

GPU
cuBLAS - - 3 3 3

MAGMA 3 3 3 3 3

batched variant is expected to perform well with small matrices only. In
our case, we have created two variants of the GPU version that computes
the inverse of the diagonal blocks, one with normal gemm in a loop (de-
noted as getri 1) and another one with batched gemm (denoted as getri 2).
The CPU-equivalent implementations (run on GPU without batched oper-
ations) make use of the MAGMA library. Table 1 summarizes the different
BCYCLIC implementations.

The implementations of the Spike algorithm make use of the BCYCLIC
implementations to solve the linear systems involved as, in our case, the
systems are block-tridiagonal. The factorization subroutine of Spike is rep-
resented in Algorithm 4, in which only step 5 requires communication.

Algorithm 4: Spike factorization

1 For all processes (with rank r) do in parallel

2 Ẽr = bcyclic factorize(Er)

3 [Vr,Wr] = bc4spike solve(Ẽr, Fr, Dr)

4 Build Ŝ with top and bottom parts of Vr and Wr

5 S̃ = bcyclic factorize(Ŝ)

Step 2 factorizes the diagonal block (block-tridiagonal) Er and step 3
solves the corresponding system (11) to compute the spikes. For step 3,
a different version of Algorithm 2 was implemented to deal with multiple
RHS and to send/receive multiple times the same block of the solution vec-
tor (in this case, the re-sending option was chosen to reduce the allocated
memory by eliminating the buffer mechanism, as no communication exists
on this step). Also, due to the high number of zeros in the RHS matrices
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of (11), another modification was introduced in the BCYCLIC solve used
(bc4spike solve) that saves time by skipping operations involving zero blocks
on every recursion of the algorithm.

The second factorization needed in step 5 of Algorithm 4 is the factor-
ization of the reduced matrix (Ŝ), that is also done by means of BCYCLIC
and, in this case, communication occurs between the processes as the matrix
is distributed across them.

The solve subroutine of Spike is shown in Algorithm 5 in which the steps
involving communication are 4, 5 and 6. Step 8 of Algorithm 5, that computes
the middle part of the final solution on each process, corresponds to (16).

Algorithm 5: Spike solve

1 For all processes (with rank r) do in parallel

2 gr = bcyclic solve(Ẽr, zr)
3 Build ĝ with top and bottom parts of gr
4 x̂ = bcyclic solve(S̃, ĝ)

5 Send x̂
(t)
r and x̂

(b)
r to r − 1 and r + 1, respectively

6 Receive x̂
(t)
r+1 and x̂

(b)
r−1

7 x(t) = x̂(t)

8 x
(m)
r = g

(m)
r − V (m)

r x̂
(t)
r+1 −W

(m)
r x̂

(b)
r−1

9 x(b) = x̂(b)

The memory requirements of our Spike implementations are higher than
those of BCYCLIC, since in addition to the original matrix size and the 66%
extra amount of BCYCLIC to perform the factorization of the local diagonal
block Er, more memory has to be allocated to build the reduced matrix,
whose block size is twice as large as the original block size, and it has its own
66% increase. Besides that, the auxiliary memory buffers used to send and
receive blocks have to be of this new double block size.

For diagonally dominant matrices, a variant of the Truncated Spike al-
gorithm that works with the extra reduced matrix S̄ of (17) is used. In the
sequel, this method is referred to as reduced Spike. In our case, the imple-
mentation does not limit the solve to the first and last k × k blocks, but
computes the full spikes (done via the BCYCLIC algorithm). The reduction
in the computation is obtained through the use of the extra reduced system,
as the blocks discarded should not contain any nonzero elements. Since the
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Table 2: Operations used to factorize the two matrices and solve the systems on the Spike
implementations.

Spike Reduced Spike

Matrix Er Matrix Ŝ Matrix Er Matrix S̄

Factorization
subroutine

Fact. bcyclic Fact. bcyclic
Solve bc4spike Solve bc4spike

Fact. bcyclic Fact. getrf

Solve
subroutine

Solve bcyclic Solve bcyclic
Solve bcyclic Solve getrs

spikes are fully computed, the logic of the algorithm that processes the diag-
onal blocks Er does not change with respect to the general Spike. The extra
reduced matrix can be factored in parallel with a getrf call on each process
without any communication or additional storage.

The solve subroutine of both variants of the Spike algorithm differs in
the second solve used with the reduced matrix. A summary of the different
operations employed by both variants can be seen in Table 2.

5. Computational experiments

In this section, we present results of some computational experiments
aiming at assessing the performance of our codes. We are especially interested
in scalability for increasing number of MPI processes (and GPUs), and also
in how the block size has an impact on performance. Another question we
want to answer is which of the implemented variants performs best.

We point out that our codes are prepared for real and complex arithmetic,
with both single and double precision. All presented results correspond to
real scalars with double precision.

5.1. Computing platform

All executions have been carried out on a cluster equipped with four
GPUs per node. The cluster is formed by 39 servers with two Intel Xeon
E5-2630 v3 processors and 128 GB of RAM, interconnected with fourteen
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data rate (FDR) Infiniband cards at 56 Gb/s in a switched fabric network
topology, and two NVIDIA K80 cards (with two GPUs each).

The servers run RedHat Linux 6.7 as operating system, and our software
has been compiled with gcc 4.6.1 using SLEPc and PETSc 3.7-dev, and linked
with the Intel MKL 11.3.2, NVIDIA CUDA 7.5 and MAGMA 1.7.0 libraries.
The MPI version used for the inter-process communication is the cluster’s
manufacturer bullxmpi 1.2.9.1.

Since our codes use a single GPU per process, the number of processes
per node has been limited to four in order to fully utilize the servers without
oversubscribing the GPU cards with more than one process when running
the GPU executions. In the case of the CPU runs, the same limit of four
processes per node has been used to have the same communication overhead,
and in this case the number of threads has been set also to four, to allow the
software to use all the computational cores (one thread per core) with the
four processes.

5.2. Test cases

The ultimate goal of this work is to extend SLEPc with eigensolvers
that specialize for the particular case of block-tridiagonal matrices, that for
instance can appear in applications like [1], whose blocks are dense, and that
can also be used for dense banded matrices generated by applications like
[36].

For the scalability studies, we consider an application coming from astro-
physics, where the matrices are banded (with a dense band) and we are able
to generate any matrix size with arbitrary bandwidth. The integral operator
T : X → X, arising from a transfer problem in stellar atmospheres [36], is
defined by

(Tϕ) (τ) =
$

2

∫ τ?

0

∫ ∞
1

e−|τ−τ
′|µ

µ
dµϕ(τ ′)dτ, τ ∈ [0, τ ?] , (20)

which depends on the albedo, $ ∈ [0, 1], and the optical thickness of the
stellar atmosphere, τ ?. We are interested in the eigenvalue problem Tϕ = λϕ
with λ ∈ C and ϕ ∈ X. This problem can be solved via discretization, that is,
by projection onto a finite dimensional subspace Xn, resulting in an algebraic
eigenvalue problem Anxn = θnxn of dimension n, where An is the restriction
of the projected operator to Xn. Further details can be found in [37].

Due to the exponential decay, the matrix An has a banded structure,
with a bandwidth depending on the ratio between the matrix size, n, and
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Table 3: Block sizes and number of block-rows used for the strong and weak scaling
experiments. The column of the weak scaling shows the number of rows used with 128
processes, that is halved with the number of processes.

Number of block-rows

Block size Strong scaling Weak scaling

64 4800 51200
96 3200 38400

128 2400 25600
256 1200 12800
384 800 9600
512 600 6400
640 480 5600
768 400 4800
896 343 4000

1024 300 3200

the parameter τ ?,

bw =

⌊
n

(
1− exp

(
− n

tcτ ?

))⌋
, (21)

where tc = max(n/100, 5). We always choose τ ? in such a way that the
band is contained within the block-tridiagonal structure, that we compute
as dense.

The problem size n is defined by the number of block-rows, `, and by
the size of the blocks, k. The strong and weak scaling analyses have been
obtained with a batch of experiments on which the number of processes vary
in powers of two from 1 to 128, and ten different block sizes that vary from
64 up to 1024 have been tested. Table 3 details the block sizes used and
the number of block-rows with each block size. When computing the weak
scaling, as the problem size per process is maintained fixed, the number of
block-rows per process depends exclusively on the block size (for a given
matrix size). For the strong scaling, the number of block-rows depends on
the number of processes used, on the block size and on the process index, as
the total matrix size does not change.

We are interested in computing eigenvalues closest to the albedo parame-
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ter. As we know that all the eigenvalues are smaller than the albedo, we use it
as shift with the shift-and-invert technique operating on matrix (An−$I)−1,
where $ = 0.75 in our runs. All tests compute 5 eigenvalues, except the runs
corresponding to Fig. 8, which compute just 1 eigenvalue. In all cases, the
relative residual norm of the computed eigenpairs, ‖Ax−θx‖/‖θx‖, is always
below the requested tolerance, tol = 10−8. We have set the eigensolver to
restart with a basis size of 16. In most runs, all eigenvalues converge with-
out needing to restart, and hence 16 linear solves are performed per each
factorization.

A final comment is that matrix An is not diagonally dominant in gen-
eral. For the tests of Fig. 8, we have forced An to be artificially diagonally
dominant, so that the reduced Spike method can be employed.

5.3. Performance results

Three sets of experiments show the weak scaling of the software versions.
In the following figures we show the factorization time and the aggregated
time of the multiple solves of the Arnoldi algorithm needed to obtain five
eigenvalues working in double precision arithmetic for the smallest and the
largest block sizes used.

The first set shows the time needed with the non-batched versions of the
BCYCLIC algorithm for both approaches: explicitly computing the inverse
of the diagonal block ( getri) or not ( getrs). The initial highlight is the better
performance of the CPU executions with small block sizes and the better on
the GPU with large block sizes. With small block sizes, the kernels executed
on the GPU do not allow the devices to obtain their maximum performance.

In Figure 1 it is clear how explicitly computing the inverse takes more
time during the factorization stage, and less in the solving stage, as could be
expected. For larger block sizes the differences between the getri and getrs
versions disappear in both stages, and the getri times turn to be slightly
smaller in the factorization while maintain the better performance during
the solve, as can be seen in Figure 2.

The factorization with getri on the CPU requires a block size larger than
512 to be faster than getrs, while the GPU executions start to be faster with
a block size larger than 128.

The second set of experiments shows exclusively executions on the GPU.
We carry out a comparison of the five implementations that compute the
inverse: the ones already used in the first set ( getri) and two more batched
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Figure 1: Weak scaling for the BCYCLIC algorithm running on CPU and on GPU with
the non-batched version with k = 64 and l = p · 400, where p is the number of MPI
processes.

1 2 4 8 16 32 64 128

1.00

2.00

3.00

4.00

5.00

6.00

p

T
im

e
(s

)

Factorization

1 2 4 8 16 32 64 128

0.00

0.50

1.00

1.50

p

Solves

Figure 2: Weak scaling for the BCYCLIC algorithm running on CPU and on GPU with
the non-batched version with k = 1024 and l = p · 25, where p is the number of MPI
processes. Consult the legend in Figure 1.
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implementations ( getri 1 and getri 2) per library used. Both batched ver-
sions share the same solve stage, so no different results should be seen in
it.

Figure 3 allows us to see how for a small block size any of the batched
versions performs faster than the non-batched one during the factorization.
As expected, the batched versions allow the software to gain performance
by computing the blocks in parallel. The solve results show a significant
difference between the cuBLAS and MAGMA libraries due to their inherent
performance, being cuBLAS faster in this stage.

The executions with a large block size seen in Figure 4 do not show the
difference in time between the batched and non-batched implementations
that occurs in the factorization with small sizes, as in this case, the large
block size is enough to fulfill the massive parallel processing of the GPU.
This occurs with block sizes larger than 512.

It is noticeable in Figure 4 how the cuBLAS implementations need con-
siderably more time to perform the factorization while they are the fastest
during the solve stage. These findings made us build a combined version of
the software to benefit from the best of each libraries. This hybrid imple-
mentation selects the routines to use in the factorization based on the block
size of the matrix. More precisely, cuBLAS getri 2 is used with block sizes
up to 128 and MAGMA getri 1 for larger block sizes. The solve stage is
managed by cuBLAS regardless of the block size.

Finally, the third set compares the performance of the BCYCLIC and
the Spike algorithms running on the GPU and on the CPU. For the GPU
versions, both algorithms use the combined implementation originated from
the results of the previous set of experiments. For the sake of simplicity, an
exception to the ‘select the fastest functions’ rule has been made, since for
the case of using a block size smaller than 128 and no more than 4 processes
the getrs variant was slightly faster. Note that some executions of the Spike
implementation with large block sizes could not run on the GPU due to
memory constraints.

Figure 5 shows the behaviour of the algorithms with a small block size.
Spike scales better than BCYCLIC in the factorization stage for this size
and for sizes no larger than 128. That is evident in both the GPU and CPU
executions. It starts being slower than BCYCLIC, but as soon as the number
of processes is increased, it is able to obtain smaller times, needing a larger
number of processes when executed on the GPU.

On the other hand, BCYCLIC scales worse due to the relatively higher

26



1 2 4 8 16 32 64 128

0.00

0.20

0.40

0.60

0.80

p

T
im

e
(s

)

Factorization

1 2 4 8 16 32 64 128

0.20

0.40

0.60

p

Solves

getri 1 cublas getri 2 cublas
getri 1 magma getri 2 magma
getri nobatch

Figure 3: Weak scaling for the BCYCLIC algorithm running on GPU with batched and
non-batched versions with k = 64 and l = p ·400, where p is the number of MPI processes.
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Figure 4: Weak scaling for the BCYCLIC algorithm running on GPU with batched and
non-batched versions with k = 1024 and l = p·25, where p is the number of MPI processes.
Consult the legend in Figure 3.
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cost of communication with respect to the poor computing performance. We
can see how the time increases noticeable when using several nodes (more
than 4 processes). A block size larger than 128 is required for the BCYCLIC
algorithm to perform better than Spike for any number of processes used
during the factorization stage.

With all of the block sizes tested, the BCYCLIC algorithm has always
performed faster than Spike in the solve stage. For small block sizes, the
results highlight the better CPU performance with small BLAS-2 operations
and the benefit of the absence of GPU-CPU data copies. From block sizes
larger than 128, the payload of calling the kernels is worth the performance
obtained with the GPU. On the CPU executions, the time gap between the
two algorithms tends to increase when the block size grows while in the GPU
executions it tends to decrease.

If the block size is increased up to 1024 as can be seen in Figure 6,
the differences between the two algorithms and the two platforms are more
prominent.

The different times obtained when varying the block size and the number
of processes can be seen in more detail in Tables 4 and 5. The first one shows
the total eigenproblem times obtained for all the different block sizes when
using 128 processes. This table does not intend to contrast the performance
obtained with different block sizes, as their computational cost differs and
are not comparable in that sense. It allow us to compare the behaviour of the
implementations for a specific block size. Spike is clearly faster with small
block sizes as well as the executions on CPU. Once the block size exceeds
128, the executions on GPU with BCYCLIC obtain the smallest times.

Table 5 shows the total eigenproblem times for all the different number of
processes when using the largest block size. When increasing the problem size
by a factor of 128, the time increasing factor for the fastest implementation
(BCYCLIC on GPU) is 3.3, whereas the same algorithm scales slightly better
on CPU with a factor of 2.0. Even not being very close to a perfect scaling,
these factors are reasonably good and contrast with the Spike factors, that
double them.

The total eigenproblem time is also represented in Figure 7, in which we
can highlight the case of using a block size of 640, where on CPU, the Spike
algorithm performed faster than BCYCLIC against the normal behaviour,
due to a drop in the performance of BCYCLIC with block sizes between 512
and 1024. From 640 and up to 1024 the BCYCLIC algorithm progressively
recovers performance and obtains smaller times with larger block sizes.
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Figure 5: Weak scaling for the BCYCLIC and the Spike algorithms running on CPU and
on GPU with k = 64 and l = p · 400, where p is the number of MPI processes.

1 2 4 8 16 32 64 128
0.00

5.00

10.00

p

T
im

e
(s

)

Factorization

1 2 4 8 16 32 64 128

0.00

0.50

1.00

1.50

p

Solves

Figure 6: Weak scaling for the BCYCLIC and the Spike algorithms running on CPU and
on GPU with k = 1024 and l = p · 25, where p is the number of MPI processes. The
executions on GPU with the Spike algorithm with more that 16 processes could not be
done due to memory constraints. Consult the legend in Figure 5.
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Table 4: Total eigenproblem time obtained with the weak scaling tests for 128 processes.

CPU GPU

Spike BCYCLIC Spike BCYCLIC

Block size Seconds Seconds Seconds Seconds

64 0.67 1.18 0.68 0.85
96 0.96 1.42 0.75 0.81

128 0.85 1.04 0.75 0.76
256 1.34 1.88 1.13
384 3.04 2.50 1.06
512 5.12 3.91 1.90
640 7.83 10.46 6.91
768 14.05 9.62 6.03
896 17.06 8.76 3.55

1024 22.08 8.42 3.01

Table 5: Total eigenproblem time obtained with the weak scaling tests for a block size
k = 1024.

CPU GPU

Spike BCYCLIC Spike BCYCLIC

Processes Seconds Seconds Seconds Seconds

1 4.37 4.29 0.91 0.91
2 8.07 3.70 1.68 1.12
4 10.22 4.78 2.32 1.38
8 13.17 5.57 3.76 1.85

16 14.91 6.36 4.55 2.21
32 17.22 6.50 2.39
64 19.12 7.37 2.89

128 22.08 8.42 3.01
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Figure 7: Total eigenproblem time obtained with the weak scaling tests for a block size
k = 1024 (left) and for 128 processes (right).

The experiments to measure the strong scaling use diagonally dominant
matrices and compare the performance of the already tested implementations
with the reduced Spike, used as a direct solver. The figures represent the
results obtained when measuring the strong scaling for a fixed matrix size of
3072004. For the case of one process, this size is larger than the one used
in weak scaling tests, in order to have enough workload with a reasonable
number of processes.

Since for the strong scaling tests the time needed to complete the solve
stage does not vary significantly between the algorithms, we present the total
eigenvalue problem solve operation time in the figures, that have an almost
direct correspondence with the time needed to perform the factorization stage
and at the same time provide us with a more global view.

Figure 8 shows the strong scaling results for three different block sizes.
Again, for small block sizes where the GPU has a large overhead launching a
lot of small kernels, the CPU times tend to be smaller. And when the block
size is increased, the same algorithm performs faster on GPU. For a block
size of 64, the three algorithms scale well up to 8 processes, and from that
point on the performance of BCYCLIC decays due to a higher ratio between
communication and computation time. Spike achieves a better scalability

4The actual size of the matrix when using a block size of 896 is 307328.
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Figure 8: Strong scaling for the BCYCLIC, the Spike and the reduced Spike algorithms
running on CPU and on GPU with a total matrix dimension of 307200 and different block
sizes k.

than the other two algorithms.
The middle and right plots in Figure 8 show that the scalability of the

algorithms with larger block sizes is not good. Spike turns into the slowest of
the algorithms and the one with the worst scalability. On the other side, the
reduced Spike benefits of a larger block size scaling up to a larger number of
processes where the BCYCLIC algorithm performance starts to decay.

6. Conclusions and future work

We have developed a set of codes for computing a few eigenpairs of large-
scale matrices with tridiagonal structure via Krylov methods. Most of the
developing effort has been concentrated on the scalable solution of block-
tridiagonal linear systems. The codes are integrated in the SLEPc/PETSc
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framework, with an MPI-CUDA programming style, and allow to use many
processors/GPUs to address very large-scale problems.

Performance analysis allows us to draw several conclusions. In general,
BCYCLIC performs better than Spike, but Spike scales better when using
small block sizes. All GPU implementations have shown to be faster than
the CPU counterparts, except for small block sizes. In terms of scalability,
we can state that for sufficiently large block sizes, the codes scale well for up
to 128 MPI processes (GPUs). Our implementations can use either cuBLAS
or MAGMA, or a combination of the two. The best performance has been
obtained with the mixed implementation.

Another conclusion is that, for large block size, BCYCLIC is able to solve
larger problem sizes with respect to Spike, because Spike has larger memory
requirements. Finally, for the case of diagonally dominant block-tridiagonal
matrices, the reduced Spike method achieves better scalability.

Although the performance analysis was carried out in the context of
Krylov eigensolvers, the conclusions could be applied to other applications
where a sequence of linear systems with block-tridiagonal matrices must be
solved, since in our tests almost all computation is associated with the factor-
ization and linear solves. The solvers can also be used with banded matrices,
in which case the off-diagonal blocks are triangular (although we have not
exploited this fact).

As a work in progress, we mention that we are extending our codes for
the case that periodic boundary conditions make the matrix block-tridiagonal
with an additional block in the upper-right and lower-left corners. Future
work also includes a further optimization of the orthogonalization phase in
Arnoldi, possibly with the implementation of fused kernels as in [38].
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[38] K. Rupp, J. Weinbub, A. Jüngel, T. Grasser, Pipelined iterative solvers
with kernel fusion for graphics processing units, ACM Trans. Math.
Software 43 (2) (2016) 11:1–11:27.

37


