
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/125683

Jorge-Cano, J.; Paredes Palacios, R. (2018). Passive-Aggressive online learning with
nonlinear embeddings. Pattern Recognition. 79:162-171.
https://doi.org/10.1016/j.patcog.2018.01.019

http://doi.org/10.1016/j.patcog.2018.01.019

Elsevier



Passive-Aggressive online learning with nonlinear
embeddings

Javier Jorge∗, Roberto Paredes
Pattern Recognition and Human Language Technologies Research Center

Universitat Politècnica de València
Campus de Vera, Camino de Vera, s/n, 46022 Valencia

Abstract

Nowadays, there is an increasing demand for machine learning techniques

which can deal with problems where the instances are produced as a stream

or in real time. In these scenarios, online learning is able to learn a model

from data that comes continuously. The adaptability, efficiency and scalabil-

ity of online learning techniques have been gaining interest last years with the

increasing amount of data generated every day. In this paper, we propose a

novel binary classification approach based on nonlinear mapping functions un-

der an online learning framework. The non-convex optimization problem that

arises is split into three different convex problems that are solved by means of

Passive-Aggressive Online Learning. We evaluate both the adaptability and gen-

eralization of our model through several experiments comparing with the state

of the art techniques. We improve significantly the results in several datasets

widely used previously by the online learning community.
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1. Introduction

Nowadays, there is an increasing demand for machine learning techniques

which can deal with problems where instances are produced in real time. Under

these conditions, online learning, a set of machine learning algorithms, can learn

models from data that comes continuously. Moreover, online learning techniques5

are used in large-scale problems as an alternative to batch learning, in order to

alleviate the computational cost. Additionally, there are environments such as

social media or stock markets where it is essential to deal with the changes of the

underlying probability distribution over time. These requirements are adopted

by online learning techniques, aiming at learning from each example, by using10

it once and updating the model at that moment. Therefore, according to this

pure online learning scenario, it is not necessary to store or revisit the previous

examples. This idea provides a set of simple, fast and efficient techniques re-

garding computation and memory as well. Recent successful approaches based

on this technique have been used to medical diagnosis [1], detecting topics on15

text streams [2], action recognition [3] or face recognition [4] among others.

1.1. State of the art

Among well-known online learning algorithms, Passive-Aggressive (PA) [5]

offers an interesting analytical closed solution for this kind of tasks. This tech-

nique in its simplest formulation within a classification framework aims at find-20

ing for every new instance a linear model, that is, a weight vector which is close

to the current one, but guaranteeing the correct classification of the present in-

stance. This scheme represents a trade-off between the passive behaviour, where

the algorithm wants to update the model the least possible, and the aggressive

behaviour, where it tries to classify the current instance correctly.25

Due to PA was proposed based on linear models, some extensions have

been developed to take advantage of the underlying relationships between fea-

tures. Following this idea, several techniques have been developed assuming

that the weight vector follows a Gaussian distribution, such as Confidence-
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Weighted Linear Classification (CW) [6], Adaptive Regularization of Weight30

Vectors (AROW) [7] and Exact Soft Confidence-Weighted Learning (SCW) [8].

PA, as many other linear algorithms, has been extended using the kernel

trick as in the Support Vector Machines (SVM) [9, 10, 11] to cope with non-

linear problems. However, it is important to note that this extension relies on

storing all the previous instances where the model failed, calling them Support35

Vectors (SV). After that, these methods must compute the kernel of the current

sample against all these SV to classify a new instance. For this reason, using the

kernel extension leads to a very intensive computational model. Several tech-

niques followed the idea of obtaining a maximum margin solution, as in SVM,

in an online manner, approximating [12] or relaxing the conditions to obtain the40

hyperplane [13].

This drawback is normally alleviated by applying strategies to control the

number of these SV. In the literature, the size of this set is seen as a budget

that has to be administered. According to this, these techniques are called

budget strategies. Several approaches based on the Perceptron algorithm [14]45

were developed to control the growth of the SV’s set, for instance Random

Budget Perceptron (RBP) [15], Forgetron [16] and Projectron [17]. In addition,

based on PA, in [18] the Budget Passive Aggressive (BPA) learning is proposed.

In this paper, authors provide some constraints, related to the budget, that are

included in the optimization. Using an index, they decide which vectors to store50

or discard, obtaining a closed-form solution that explicitly limits the growth of

SV. A different approach using PA is presented in [19], in this case with a

stochastic sampling that creates new SV from the examples. This probabilistic

decision is weighted by the loss suffered from the current instance. This set of

techniques represents different heuristic measures to deal with the management55

of SV.

Other strategies to reduce the computational cost of these kernel-based tech-

niques are focused on Online Gradient Descent (OGD) algorithms [20] such as

Bounded Online Gradient Descent (BOGD) [21], where authors propose uniform

and non-uniform sampling for discarding SV. Pursuing the optimum projection60
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is another strategy, as it was proposed in [22], combining this with a budget.

A similar idea was used in Budgeted Stochastic Gradient Descent (BSGD) [23]

where the number of SV is limited by implementing merging or projecting strate-

gies over this set.

Recently, other techniques have appeared with a different perspective beyond65

the disadvantage of budget maintenance. In [24] the Fourier Online Gradient

Descent (FOGD) and Nÿstrom Online Gradient Descent (NOGD) are proposed.

These approaches work as follows: first, they try to approximate kernel functions

or the kernel matrix with Fourier/Nÿstrom methods, second they transform data

from one space to another using these approximations, and finally, the data is70

classified in the transformed space performing OGD.

In the same line of avoiding the use of kernel-based strategies, in [25] the

Local Online Learning (LOL) is proposed, which poses a model that carries out

multiple hyperplanes learning with the combination of PA and clustering. Ad-

ditionally, there is an extension where the independence between hyperplanes75

is assumed which is called Independent Local Online Learning (I-LOL). A dif-

ferent approach that avoids the use of the kernel-based methods is the On-Line

Sequential Extreme Learning Machine (OS-ELM) [26, 27, 28], which is based

on the Extreme Machine Learning framework [29], where the output weights

of a single layer neural network are learned by regularized least square method80

and the input weights are randomly assigned. This last family of techniques

has been closely related to neural networks, more than with the online learning

community.

In the present paper an approach based on the PA online learning procedure

is presented, to deal with binary classification problems by means of nonlinear85

mapping functions. By using these nonlinear projections, a new space can be

obtained where a linear model can manage the problem. Both the projection

and the classification process are performed as data arrives, modifying the whole

model in order to follow the changes in the distribution accordingly.
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2. Problem setting90

Under the prism of an online learning binary classification problem, data is

provided sequentially. After the observation presented in the round t, xt ∈ Rd,

the aim is to predict the correct label, yt ∈ {−1,+1}. To solve this problem, we

propose a nonlinear mapping function in order to project data onto a new space

where the problem could be managed using a linear model. The prediction ŷt95

will be provided as follows:

ŷt = sgn(w · fΘ(xt)) = sgn(w · z) (1)

Where xt is the current input vector and z ∈ Rh is the nonlinear projection

in the h dimensional space. This projection is performed by the function fΘ(·),

with parameters Θ. For this classification task, a weight vector w ∈ Rh will be

used and it is considered that w ·fΘ(xt) ≥ 0 implies ŷt = +1, and w ·fΘ(xt) < 0100

implies ŷt = −1. This process is illustrated in Figure 1.

fΘt(xt)

!

z1

X

z2

wt
zt

Figure 1: The objective is to learn a good projection for the problem through the nonlinear

mapping fΘ(·) that ease the classification procedure through the linear model w. Combining

these two steps, we will be able to cope with nonlinear problems in an online fashion, updating

both nonlinear projection and linear classifier.

2.1. Training with Passive-Aggressive Online Learning

The Passive-Aggressive online learning framework proposes an optimization

problem, and it provides a closed form solution for model’s update. In the case
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of binary classification task, there is the instance x, the label y and the weight

vector w, as they have been presented previously. With these elements, the

hinge loss is defined as follows:

`w(x, y) =

 0 y(w · x) ≥ 1

1− y(w · x) otherwise
(2)

The purpose of this algorithm is to find the new weight vector wt+1 that

is near to the current one but obtaining zero loss with the present instance.105

Regarding linear models, the quantification of this change is represented by the

squared norm of the difference between models. With this distance to minimize

the objective and the loss’ restriction, the problem is formulated as an opti-

mization. Moreover, we could include a slack variable ξ and the parameter C to

cope with label noise and avoiding restricting the update too much, following110

the steps of [11]. The final constrained optimization problem that results is the

following:

wt+1 = argmin
w

1

2
|| w −wt ||2 + Cξ

s.t `(w; (xt , yt)) ≤ ξ and ξ ≥ 0

(3)

This optimization pursues updating the model to get another one near to

the current, while the loss is under certain threshold which is adjusted by the

parameter C. This represents the room for the aggressive behaviour. Solving115

this optimization, we obtain the closed forms to update the model:

wt+1 = wt + τytxt (4)

τ = min

{
C,
`wt

(xt , yt)

||xt ||2

}
(5)

As can be seen, the parameter C ends up controlling the aggressiveness of the

process by means of limiting the amount of change. Both a detailed derivation
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of these process and theoretical lower bounds obtained for the proposed loss can120

be found in [5].

2.2. Nonlinear embedding learning with PA

In order to cope with nonlinear problems, projecting the original represen-

tation space into a new representation space is required. Eventually, this pro-

jection allows using a linear PA model. To this end we propose the following

PA optimization problem:

Φt+1 = argmin
Φ

Ω(Φ,Φt) s.t `(Φ; (xt , yt)) = 0 (6)

Where Φ denotes the set of parameters that compose our model, Φ =

{w,Θ}, where w is the weight vector and Θ denotes the parameters for non-

linear mapping functions. Regarding the divergence between current and new125

parameters, this is denoted by Ω(Φ,Φt). The expression `Φ(xt , yt) represents

the loss suffered with the current prediction. By adapting the hinge loss, fol-

lowing plain PA, with the projection fΘ(xt) we obtain:

`Φ(xt , yt) =

 0 yt(w · fΘ(xt)) ≥ 1

1− yt(w · fΘ(xt)) otherwise
(7)

The behaviour of these steps could vary between a conservative/non-conservative

regime using an additional parameter C, in the same way as in the original ver-130

sion of PA. If this is included in the optimization, the initial formula will change:

Φt+1 = argmin
Φ

Ω(Φ,Φt) + Cξ (8)

s.t `Φ(xt , yt) ≤ ξ and ξ ≥ 0 (9)

With the weight vector w in the projected space and the parameters of this

projection Θ, the formula could be interpreted as below:
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wt+1,Θt+1 = argmin
w

1

2
|| w −wt ||2 + argmin

Θ
Ψ(Θ,Θt) + Cξ (10)

s.t `w,Θ(xt , yt) ≤ ξ and ξ ≥ 0 (11)

Where Ψ(Θ,Θt) represents the divergence between using the current pa-

rameters Θt and the new ones Θ, that is, between the present embedding and135

the updated version.

2.3. Combined learning of embeddings and hyperplane

In order to obtain zero loss globally, and following the configuration that is

shown before, the modification of wt and Θt is needed.

The whole procedure works as follows: modifying wt in order to reduce a140

ratio α, 0 < α < 1, of the current loss, obtaining wt+1 . After this step and with

this new wt+1 , finding a new value for the nonlinear projection, that is, a new

vector zt+1 , an updated version of the previous one, which leads to a zero loss.

Finally, a new set of parameters Θt+1 has to be found to provide this updated

projection zt+1 . The decrease of the loss according to these steps is illustrated145

in Figure 2.

It is required to tackle this optimization step by step. First, the parameters

of the nonlinear function could be fixed. Maintaining the same parameters for

the nonlinear mapping on each step, the optimization changes as follows:

wt+1 = argmin
w

1

2
|| w −wt ||2 + Cξ (12)

s.t `w,Θ(xt , yt) ≤ ξ and ξ ≥ 0 (13)

This is equivalent to the original PA’s optimization problem, but using our150

adapted loss. Therefore, solving this optimization, we obtain the following for-

mulation:

wt+1 = wt + τytfΘ(xt) (14)
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Hinge Loss

ℓwt ,Θt (xt , yt)

ℓwt+1 ,Θt (xt , yt)

ℓwt+1 ,Θt+1 (xt , yt)

10

Figure 2: These optimization processes decrease the loss in two steps, first, reducing an α

portion of the loss using the changes included in the linear model wt+1, and second, reducing

the missing loss with the update of the projection that is performed using the parameters

Θt+1.

τ = min

{
C,
`wt,Θ(xt , yt)

||fΘ(xt)||2

}
(15)

This procedure updates the model over the projected space as can be seen in155

Figure 3, to get the minimum loss with the current instance. However, the aim is

to follow a projection learning approach where the model learns how to project

data in another space. It can be done applying PA algorithm to the part that

carries out the projection, leaving some loss after updating the weight vector.

This remaining loss will be solved changing the projection, that is, updating the160

parameters of the function fΘ(·) that performs the nonlinear mapping.

These steps in the procedure imply different optimization problems that have

to be solved in the following sequence. The first step, related to the update of

the linear model wt , leads to the following optimization problem, where an α
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fΘt(xt)

!

z1

X

z2

wt

zt

wt+1

Figure 3: The constrained optimization results in the update of the model controlled by the

parameter τ , a by-product of the optimization, and the current tuple (xt, yt). In this case, it

is only changed the linear model over the projected space, resulting in the same procedure as

in the original PA.

proportion of the total loss is reduced:

wt+1 = argmin
w

1

2
|| w −wt ||2 + Cξ (16)

s.t `w,Θ(xt , yt) = α · `wt,Θt(xt , yt) and `w,Θ(xt , yt) ≤ ξ and ξ ≥ 0 (17)

Solving this constrained optimization, the updating rule and τwt result in

the following:

wt+1 = wt + τwt
ytzt (18)

τwt
= min

{
C,

(1− α)`wt,Θt
(xt , yt)

||zt ||2

}
(19)

To alleviate the notation, fΘt
(xt) and zt are used equally. Once wt+1 is165

obtained, a new value for the projection, zt+1, is required in order to reduce the

remaining loss:

zt+1 = argmin
z

1

2
||z− zt||2 s.t `wt,Θ(xt , yt) = 0 (20)

At this level, the change in the resulting projected sample is not bounded,

because it is pursued a solution that leads to the lowest loss. The previous
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optimization problem is solved with the following closed form of the updating170

rule and τzt
:

zt+1 = zt + τzt
ytwt (21)

τzt
=
`wt,Θt

(xt, yt)

||zt||2
(22)

This could imply an aggressive displacement but it will be controlled by

the following step. After updating zt to zt+1 , the third optimization problem

requires another set of parameters Θt+1 in order to provide the projection zt+1175

that leads to zero loss with the current sample. For doing this, a function

that can provide any value in the range of this last modification is required. A

representation of updating this projection is presented in Figure 4.

!

z1

X

z2 zt

wt+1

zt+1

Figure 4: After updating the weight vector, modifying the position of the current instance in

the projected space (light circle) to a new one (bold circle) leads to a loss equal to zero.

2.4. Passive Aggressive on Max-Out functions

Max-Out nonlinear functions [30] were proposed to improve the performance180

of Neural Networks with the ability to mimic different activation functions on

demand. Inspired by this, the same principle based on the combination of

different hyperplanes could be applied, to learn the shape of a nonlinear function
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that fits the problem. The Max-Out function is composed of k hyperplanes, and

the output is the maximum scalar product among all these hyperplanes.185

Similar to this, it is proposed a set of hyperplanes, ui,j , defining the following

formula for the general case where x,ui,j ∈ Rd and z ∈ Rh:

fΘ(x) = z = (23)max(x · u1,1,x · u1,2, . . . ,x · u1,k)︸ ︷︷ ︸
z1

, . . . ,max(x · uh,1,x · u1,2, . . . ,x · uh,k)︸ ︷︷ ︸
zh


(24)

Being h the dimensionality of the projection z, and k the number of hyper-

planes per each dimension. The set of parameters for this nonlinear projection

are summarized as below:190

Θ = {ui,j : i ∈ [1, . . . , h]; j ∈ [1, . . . , k];ui,j ∈ Rd} (25)

With this incorporation, a third optimization problem is posed to obtain the

required value for the projection zt+1 solving h different regression problems:

ut+1
i,j = argmin

ui,j

1

2
||ui,j − uti,j ||2 + Crξ (26)

s.t `ε(u
t
i,j ; (xt, z

i
t)) ≤ ξ and ξ ≥ 0 (27)

Where ui,j is the j−hyperplane associated with the dimension i of the pro-

jection, while zit+1 is the particular output on this dimension, and xt is the

current sample. Here appears a new parameter, Cr to control the aggressive-195

ness of the projection in this regression procedure. An example of this last step

is shown in Figure 5. For this optimization, the epsilon loss function, commonly

applied in regression problems, is used. This function is defined as detailed
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below:

`ε(ui,j ; (xt , z
i
t+1)) =

 0 |(ui,j · xt)− zit+1| ≤ ε

|(ui,j · xt)− zit+1| − ε otherwise
(28)

200

This optimization has also a closed solution provided by PA formulation:

ut+1
i,j = ui,j + sign(zit+1 − ui,j · xt)τui,jxt (29)

τui,j = min

{
Cr,

`ε(ui,j ; (xt , z
i
t+1))

||xt ||2

}
(30)

Regarding what hyperplane has to be used for each dimension, two strate-

gies have been evaluated. First, selecting the vector that provides the product

ui,j · xt nearest to zit+1 , in order to minimize the divergence of the update,205

Ψ(Θ,Θt), following a conservative behaviour according to the changes in the

model. Second, selecting the hyperplane that had provided the maximum value

among the other in the same dimension, focusing on changing directly parame-

ters that have more influence in the model. The second method has been chosen

due to the better results obtained empirically.210

The PAMO (Passive-Aggressive Max-Out) algorithm 1 provides a whole pic-

ture of the proposed method1. Note that we have normalized the input xt and

projected vector zt to use unit vectors in order to ease the PA steps. We have

proposed two versions of our algorithm, one where the parameters Θ are up-

dated only when there is loss and another where these parameters will be always215

updated, independently of the loss. Performing this update in every step is forc-

ing our model into learning the inner normalization, enabling a fast adaptation

of the parameters to this normalized space. We named this two versions as

PAMO-I and PAMO-II respectively.

1Code: https://goo.gl/dWdYbf
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Algorithm 1: PAMO, Passive-Aggressive Max-Out algorithm
Input : X , h, k, C,Cr, α

Output: w,Θ = {ui,j : i ∈ [1, · · · , h]; j ∈ [1, · · · , k]}

1 w0,Θ0 ← initialize()

2 for (xt , yt) ∈ X do

3 #Normalize the input

4 xt ← xt/||xt ||

5 #Perform the nonlinear projection

6 zt ← fΘt
(xt)

7 #Normalize the projection

8 zt ← zt/||zt ||

9 #Predict

10 ŷt ← sign(zT
t ·wt)

11 #Suffer loss `w,Θ(xt , yt)

12 if `wt,Θt(xt, yt) > 0 then

13 #PA modifying hyperplane and the projected sample

14 wt+1 ← PA_class(zt,wt, ŷt, yt, C, α)

15 zt+1 ← PA_class(wt+1, zt, ŷt, yt)

16 #PA modifying the projection (always performed in PAMO-II)

17 for i ∈ [1, .., h] do

18 uti,j ← select_vector({uti,n : n ∈ [1, · · · , k]})

19 ut+1
i,j ← PA_regr(xt,uti,j , zit+1, Cr)

20 end

21 end

22 end

14
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z1

X

z2

wt+1

zt+1

fΘt+1(xt)

Figure 5: Finally, it is only left the update of the parameters of the nonlinear mapping, in

order to obtain the new position in the projected space, zt+1. This step encourages the

process to modify the projection to get a good space for performing the classification using

wt+1

Summing up, the parameters of the whole model are the following: the220

dimension of the projection, h, the number of hyperplanes for each dimension,

k, the aggressiveness of updates that are controlled by parameters C and Cr,

and α that controls the proportion of loss that is solved by each part of the

model.

Regarding the computational complexity, with every instance’s update there225

are involved different vector/matrix multiplications. First, the projection, that

is a vector-matrix multiplication and maximum selection, where the dimension

depends on the number of dimensions for the projection and for hyperplanes that

are considered. Once this projection is performed, the dot product between z

and w provides the label. Considering the dimensions that are involved in this230

operations, the complexity is O(d·k·h+h). The difference in complexity between

versions involves the projection’s update, which will be omitted if there is no

loss in PAMO-I, while it is always carried out in PAMO-II. All these operations

are done efficiently with the modern architectures and they are extremely fast.

This advantage enables the model process instances as they come.235
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3. Analysis and limitations of the model

Similarly to other online learning techniques, we could analyze the bound

for the accumulated loss. Unfortunately, the non-convex nature of the pro-

posed method makes extremely difficult to provide any useful bound, beyond to

establish two different scenarios:240

• If α = 0, it implies a projection using the initial weights and a standard

PA over the resulting random projection, that is modifying only w. If we

set this value in Formula 17, we obtain the Formula 3, that is the basic

PA with the same error bound analysis but performing it over a random

projection of the input.245

• If α = 1, it implies modifying the projection to solve the problem with a

fixed w. The solution involves a regression PA at every zi, represented by

the Formula 27 that coincides with the original formulation of the PA for

regression.

On the other hand, one of the limitations of the model emerges when we250

consider using more than just one non-linear projection. According to this, this

PAMO’s configuration could be considered as a neural network model with more

than one hidden layer h. Under the neural network perspective, regarding Deep

Learning in particular, representation learning could be performed by more than

one hidden layer. Therefore we could be interested in including these ideas in255

our model to solve much more complicated problems.

However, adding more than one non-linear functions makes even more diffi-

cult to obtain a closed-form solution, as it was shown in 3. To solve this problem

there are some possibilities, one of them is to expand this first projection to be

composed of groups of non-linear functions, each one assigned to each dimen-260

sion of the next projection. This approach will widen the model exponentially.

According to this, our model becomes quite large and impractical in order to

provide a closed-form solution.
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Nevertheless, beyond the above difficulties, the here proposed technique has

demonstrated good performance in all the experiments, as we can see in the265

next section.

4. Experiments and results

On this section, we will perform experiments to evaluate three main char-

acteristics: the ability for tracking changes of data distributions, the capacity

to learn nonlinear problems and the generalization provided by the model. For270

these tasks, we will use a synthetic and some widely used datasets for binary

problems.

4.1. Sensitivity analysis of parameter settings

In this section, we have conducted experiments to analyse the influence of

parameters on two different datasets, to evaluate how they affect the model.275

We have focused our analysis on parameters C, Cr and α which control and

balance the behaviour of the algorithm. To limit the exploration to a two-

dimensional space of parameters, we have decided to set up C equal to Cr from

these experiments and onwards, calling it C.

The Figure 6 shows the variations between the parameters C and α for280

two different datasets and the effect on test error rate. These results are re-

marking that in approximately separable data, classic PA algorithms get good

results. Variations of parameters have less influence than in a non-separable, as

in SVMGUIDE dataset, where plain PA obtains 25.2% of error, providing the

noisy surface that is seen in the Figure 6. However, in both cases, large α or285

low C values provide good results, limiting the influence of one over the other.

The Figure 7 represents the cumulative error rate over these training sets

considering different values for α and C separately, showing the α’s stability

when C is fixed, and vice-versa with a C’s value among 0.1 and 100.

As a consequence of these results, we have selected the default values C =290

Cr = 0.125 and α = 0.9. With these parameters set, we have evaluated different
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Figure 6: Test error rate for different values of the parameters α ∈ [0.1, 0.2, ...0.9] and C,Cr ∈

[2−4, 2−3, ..., 23, 24], for SVMGUIDE1 (left) and CBLCFace dataset (right).

Figure 7: Cumulative training error rate for different values of the parameters α and C, for

SVMGUIDE1 and CBLCFace datasets.

dimensions among {21, 22, ..., 28}, choosing those that provide the best results

in validation. We have fixed to 2 the number of hyperplanes to the Max-Out

projection.
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4.2. Online learning adaptation295

In order to evaluate the capacity of online adaptation and as a sanity check

of our algorithm, we have generated a two dimensional XOR synthetic problem

with 1000 samples using 4 Gaussian distributions. To simulate changes along

time the means of Gaussians have been rotated counterclockwise every 100 sam-

ples. With the synthetic data generated, we have evaluated if our model might300

follow these changes over time.

Regarding the parameters of our model, we use the following: h = 3 and

k = 2. The learning parameters C and Cr have been selected by validation

from values in {2−4, 2−3, ..., 23, 24}, and the balancing parameter α has been

evaluated over the range {0.1, 0.2, ...0.9}. The parameters that have shown bet-305

ter results have been selected. For this experiment and the following, all the

weights have been initialized randomly on the interval {−0.1, 0.1}, distributed

uniformly, and posteriorly an orthogonalization of the hyperplanes for each di-

mension has been performed. Furthermore, we have normalized data to a mean

of 0 and a standard deviation of 1.310

In order to analyse the adaptability to changes in the original distribution,

we have generated plots every 100 samples with the resulting decision boundary

and plotting the last 100 instances as well. We can see on Figure 8 the evolution

of decision boundaries following the modifications of underlying class-dependent

data distributions.315

Figure 8: From left to right, decision boundaries and samples every 100 samples where the

means are rotated counterclockwise.

The model tracks the changes of class-distributions despite the relatively low

amount of samples that produces these changes (100). The nonlinear projection

has modified the representation in order to adapt the distribution and forget
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the influence on the class boundaries of previous samples.

4.3. Batch and Online Binary Classification tasks320

We have performed experiments2 with datasets widely used on online learn-

ing benchmarks. These are in the LIBSVM repository3 and in the CBCL-Face

website 4. We have considered the same data partitions provided by the repos-

itories, but in the case of WEBSPAM, we have used the 200.000 first samples

for training, and the rest for testing.325

We have evaluated two measures that are commonly used in previous on-

line learning references. First, test error rate over unseen samples and second,

cumulative misclassification over the training partition.

Test error rate means that the training partition is used for learning the

model and the evaluation is performed with the test partition, thus simulating330

a batch learning but only using once each training sample. We have performed

experiments with several techniques in the literature: First order approaches

(PA-I and PA-II) as well as second order approaches (CW, AROW, SCW-I and

SCW-II). For these methods we have performed cross-validation for selecting the

parameters of each technique, using the implementation provided by LIBOL [31].335

For the other approaches based on Budget or Kernel approximation (BSGD,

FOGD and NOGD), LOL and I-LOL techniques, we have taken the results

from [25]. Each experiment was repeated 20 times with a random permutation

of the data and taking the average and the deviation.

For selecting the parameters in our model we have followed the same cross-340

validation method as in the previous experiment. First we have evaluated the

influence of PA parameters: C,Cr and α. We have used C equal to Cr in all the

experiments, referring them as only C. After the process, we have selected the

default values C = Cr = 0.125 and α = 0.9. With these parameters fixed, we

have evaluated a different number of inner dimensions (h) among {21, 22, ..., 28}345

2Code: https://goo.gl/dWdYbf
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
4http://cbcl.mit.edu/software-datasets/FaceData2.html
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and the number of hyperplanes per dimension (k) among {21, 22, ..., 25}, and we

have selected the ones that give the best results in validation.

The results of the experiments for test error rate are summarized in Table 1.

We also show in the last row the number of hyperplanes and dimensions of the

nonlinear projection. The Figure 9 shows the cumulative training error rate350

for 10 repetitions for some datasets that were used for the experimentation,

illustrating a similar evolution independently of the instances’ order.

Figure 9: Cumulative training error rate for datasets A9A, .

We have improved the results provided in the literature of online learning

techniques in terms of test error rate. In the datasets that seem nonlinear,

according to the poor results of linear techniques such as PA, our model outper-355

forms the approaches based on first and second order statistics and improves the

results in comparison with other budget techniques. In these scenarios our model
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Table 1: Comparative results of test error (%).

Algorithms/Data SVMGUIDE1 CBCL Face IJCNN1 WEBSPAM

(#tr/#te/d) 3k /4k /4 6.9k /24k /361 49.9k /91.7k /22 200k /150k /254

PA-I 25.19±7.12 3.75±1.31 7.85±0.33 7.94±0.72

PA-II 25.84±4.50 3.43±0.80 8.07±0.39 8.27±0.55

CW 22.92±2.34 3.09±0.15 11.20±2.09 10.62 ±0.79

AROW 20.99±0.09 2.88±0.09 8.22±0.08 7.28±0.01

SCW-I 21.08±0.20 2.73±0.09 6.44±0.08 6.58±0.02

SCW-II 21.29±0.18 2.64±0.06 6.93±0.15 6.59±0.04

BSGD 5.73±0.01 2.14±0.04 4.36±0.00 5.27±0.00

FOGD 7.68±0.01 6.47±0.03 11.48±0.07 5.68±0.00

NOGD 5.75±0.01 6.38±0.02 11.99±0.06 14.82±0.00

I-LOL 6.54±0.02 5.34±0.01 4.10±0.00 5.56±0.00

LOL 5.26±0.01 3.68±0.01 3.15±0.00 4.95±0.00

PAMO-I 4.13±0.59 1.99±0.09 2.77±0.32 2.19±0.47

PAMO-II 4.35±0.67 1.79±0.08 2.53±0.23 1.82±0.09

Dimension × Hyperplanes 64x2 64x4 256x2 256x2

can perform complex decision boundaries but with a limited model complexity.

On the datasets with high dimensions, as CBCLFace and WEBSPAM with 361

and 254 features respectively, our method obtains also significant improvements.360

We have also obtained better results in datasets with a high number of samples,

such as IJCNN1, with 49.990/91.701, and WEBSPAM, with 200.000/150.000.

On the other hand, the number of projected dimension times the number of hy-

perplanes gives us an idea of the budget employed by PAMO. In this sense, our

approach obtains significantly better results using a model complexity similar365

to the other budgeted algorithms.

For evaluating the online classification performance by the cumulative mis-

take rate over training we have selected techniques from the state of the art, as

BPA-S, FOGD and NOGD, and we have included other recent approach based
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on budget strategies as BOGD.370

The budget used in these approaches is B = 100, as reported in the liter-

ature. Similarly, for FOGD the number of Fourier components have fixed to

D = 4 · B. Regarding our model, we have set a fixed configuration for all the

experiments of 64 dimensions and 2 hyperplanes for each one, maintaining the

other parameters as the previous experiments. For this evaluation, we have375

considered the same datasets that have been used previously with the men-

tioned techniques. These datasets also come from the LIBSVM site and they

are publicly available. Table 2 shows the average and standard deviation over

20 experiments.

Table 2: Comparative results of mistake rate (%).

Algorithms/Data a9a w7a w8a IJCNN1

(#tr/d) 48.8k/123 24.6k/300 64.7k/300 141k/22

BPA-S 21.1 ± 0.20 2.99 ± 0.06 2.84 ± 0.03 11.33 ± 0.04

BOGD 27.9 ± 0.20 3.49 ± 0.16 3.43 ± 0.08 11.67 ± 0.13

FOGD 17.4 ± 0.10 2.75 ± 0.03 2.43 ± 0.03 9.06 ± 0.05

NOGD 17.4 ± 0.20 2.98 ± 0.01 2.92 ± 0.03 9.55 ± 0.01

PAMO (I) 16.99 ± 0.07 1.72 ± 0.04 1.47 ± 0.02 2.87 ± 0.05

PAMO (II) 17.11 ± 0.10 1.76 ± 0.04 1.53 ± 0.01 3.09 ± 0.11

PAMO improves the state of the art in this kind of evaluation that measures380

the cumulative error rate along the training process. Our approach overcomes

the other techniques based on kernels using a similar complexity. It is important

to note that our model does not require complex procedures as merging strate-

gies, matrix decomposition or sampling distributions, as it is done in BPA-S,

NOGD, FOGD and BOGD, and it results in a fast procedure that does not385

require either much memory nor computational resources.
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5. Conclusions

In this paper, we propose a new online learning model based on nonlinear

embeddings. Max-out functions have been chosen to provide such this nonlin-

earity because it provides two interesting properties. First, Max-out can provide390

any needed value of the alternative representation. Second, Max-out can be op-

timized in a linear and closed form. The whole optimization problem is solved

using three different Passive-Aggressive procedures.

We have evaluated the adaptability of the model as well as its generalization

capacity through synthetic data and widely used benchmarks. We provided a395

very fast online learning model, that does not rely on kernels. Moreover, the

budget model complexity is fixed by means of determining the dimensionality

of the alternative representation space and the number of Max-out pieces. We

proposed two algorithms, PAMO-I and PAMO-II, carrying out experiments on

datasets that are widely used by the online research learning community. Our400

proposed algorithms have improved the results regarding the state of the art such

as first and second order methods as well as budget and kernel approximation

techniques.

Although our model could be extended with more than one non-linear func-

tion, resembling a Neural Network with different hidden layers, deeper models405

are impractical due to the model’s exponential growth. Future research could

be oriented to provide an extension mechanism that will be able to alleviate this

structural issue.
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