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Summary

A person who is tired of group theory is a person who
is tired of life.
— SIDNEY COLEMAN

I English

he influence of the conjugacy class sizes on the structure of a group has been a widely investi-

gated problem within finite group theory. In the last decades, several researchers have obtained new
progress in this direction. Specially, some relevant information is provided by the class sizes of certain
subsets of elements of the group, as prime power order elements, p-regular elements, etc. Other subsets of
elements that have recently attracted interest are defined via the character table of the group, as vanishing
elements and real elements.

In parallel to this research on conjugacy classes, the study of groups which can be factorised as a
product of two subgroups has gained increasing interest. In particular, the structure of factorised groups
such that different families of subgroups of the factors satisfy certain permutability conditions has recently
been analysed.

In this thesis we aim to combine in a novel way both perspectives of group theory. In this frame-
work of very scarce literature, our main purpose is to obtain new contributions about the global structure
of a factorised group when the class lengths of some elements in its factors verify certain arithmetical
properties.

Square-free class length conditions on (p-regular) prime power order elements are considered for
products of two subgroups, occasionally mutually permutable. Prime power class sizes are investigated
for arbitrary products of two groups, avoiding the use of permutability conditions between the factors. The
concept of a core-factorisation of a group, which particularly extends products of mutually permutable
subgroups, is introduced for the first time in this dissertation, and it has been revealed determinant within
this context. Precisely, this notion emerges when discussing the above arithmetical properties on the class
sizes of vanishing elements, interplaying as a novelty character theory and the research on factorised
groups. Core-factorisations are also exploited when analysing w-number and 7'-number class lengths for
(prime power order) m-elements in the factors of a factorised group.

11 Spanish

n problema clésico en la teoria de grupos finitos es el estudio de como los tamafios de las clases
de conjugacion influyen sobre la estructura del grupo. En las dltimas décadas, numerosos investi-
gadores han obtenido nuevos avances en esta linea. Especialmente, se han probado resultados interesantes
a partir de la informacién proporcionada por los tamafios de clase de algin subconjunto de elementos del

xiii



Xiv Summary

grupo, como los elementos de orden potencia de primo, elementos p-regulares, etc. Ademads, ciertos sub-
conjuntos de elementos definidos a través de la tabla de caracteres del grupo estdn siendo investigados
recientemente, como los elementos anuladores y los elementos reales.

Por otra parte, en los dltimos afios, el estudio de grupos factorizados como producto de subgrupos
ha sido objeto de creciente interés. En particular, diversos autores han analizado la estructura de grupos
factorizados en los que diferentes familias de subgrupos de los factores satisfacen ciertas condiciones de
permutabilidad.

En esta tesis pretendemos conjugar ambas perspectivas de actualidad en la teoria de grupos de manera
novedosa. Asi, en este contexto de literatura escasa, el objetivo es obtener nuevas contribuciones acerca
de la estructura global de un grupo factorizado a partir de ciertas propiedades aritméticas de los tamafios
de las clases de algunos elementos de sus factores.

Estudiamos productos de dos subgrupos, eventualmente mutuamente permutables, donde los ele-
mentos (p-regulares) de orden potencia de primo de los factores tienen tamafios de clase libres de cuadra-
dos. Analizamos el caso de tamafios de clase potencias de primos para grupos factorizados arbitrarios,
evitando el uso de condiciones de permutabilidad entre los factores involucrados. EI concepto de una
core-factorizacién de un grupo, que extiende en particular a los productos mutuamente permutables, es
introducido por primera vez en esta tesis y ha resultado crucial dentro de este contexto. Esta nocién surge
precisamente cuando consideramos las anteriores propiedades aritméticas para los tamafios de clase de
elementos anuladores, interrelacionando novedosamente la teoria de caracteres con la investigacién en
grupos factorizados. Finalmente, estudiamos grupos que poseen una core-factorizacién cuyos tamafios
de clase de m-elementos (de orden potencia de primo) son 7-nimeros o 7’'-ndmeros.

111 Valencian

n problema classic dins de la teoria de grups finits és I’estudi de com els tamanys de les classes de
U conjugaci6 influeixen sobre I’estructura del grup. En les ultimes decades, nombrosos investigadors
han obtingut nous avancos en aquesta linia. Especialment, s’han provat resultats interessants a partir
de la informacié proporcionada pels tamanys de classe d’algun subconjunt d’elements del grup, com
els elements d’ordre potencia de primer, elements p-regulars, etc. A més, certs subconjunts d’elements
definits a través de la taula de caracters del grup estan sent investigats recentment, com els elements
anul-ladors i els elements reals.

Dr’altra banda, en els dltims anys, 1’estudi de grups factoritzats com a producte de subgrups ha sigut
objecte de creixent interés. En particular, diversos autors han analitzat 1’estructura de grups factoritzats
en els quals diferents families de subgrups dels factors satisfan certes condicions de permutabilitat.

En aquesta tesi pretenem conjugar ambdues perspectives d’actualitat en la teoria de grups de ma-
nera innovadora. En aquest context de literatura escassa, I’objectiu és obtenir noves contribucions sobre
I’estructura global d’un grup factoritzat a partir de certes propietats aritmetiques dels tamanys de les
classes d’alguns elements dels seus factors.

Estudiem productes de dos subgrups, eventualment mituament permutables, on els elements (p-
regulars) d’ordre potencia de primer dels factors tenen tamany de classe llibre de quadrats. Analitzem el
cas de tamanys de classe potencies de primers per a grups factoritzats arbitraris, evitant I’ts de condicions
de permutabilitat entre els factors involucrats. El concepte d’una core-factoritzacié d’un grup, que estén
particularment als productes muituament permutables, és introduit per primera vegada en aquesta tesi
i ha resultat determinant dins d’aquest context. Aquesta nocié sorgeix precisament quan considerem
les propietats aritmetiques anteriors per als tamanys de classe d’elements anul-ladors, interrelacionant
innovadorament la teoria de caracters amb la investigacio en grups factoritzats. Finalment, estudiem grups
els quals posseeixen una core-factoritzacié on els tamanys de classe dels 7-elements (d’ordre potencia de
primer) s6n -ndmeros o 7’'-nimeros.



Introduction

Innovation is taking two things that already exist
and putting them together in a new way.

— ToM FRESTON

he main topic of this thesis is framed within finite group theory. Groups are a basic alge-

braic structure, which turn out to be a significant tool in the analysis of different situations
where symmetries are involved. Within mathematics itself, groups have an instrumental charac-
ter, since numerous mathematical structures can be studied from the point of view of groups that
act on them. Furthermore, there are innumerable applications of this algebraic theory in diverse
scientific and technical areas: Informatics and Telecommunications (automata theory and lan-
guages, coding theory, cryptography, ...), Physics, Chemistry, Biology, Economy, Architecture,
and even Fine Arts.

The research developed in this dissertation aims to contribute to the knowledge of the internal
structure of a finite group, from the analysis of its arithmetical properties and the relationship
between its subgroups and the group itself. More concretely, the thesis combines two well-
established research lines in finite group theory: the influence of the conjugacy class sizes on
the group structure and the study of groups which can be written as a product of subgroups.

During the last decades, the connection between the structure of a group and certain sets of
positive integers which are naturally associated to it has been very widely investigated, and it
continues being an active line of research. One of the most classical ones is the set of the con-
jugacy class sizes. This subject is closely related to the research on representation and character
theory, which is currently a significant area of investigation. Indeed, several problems on con-
jugacy class sizes have also been analysed from the character perspective, and they surprisingly
behave often in a dual way. Besides, some results in this context require for their achievement
the use of representation and character theory. We can mention as an example the celebrated
Burnside’s p®-lemma about the non-simplicity of groups with a conjugacy class of prime power
size.

Moreover, instead of considering the full set of conjugacy class sizes, several researchers
have also examined whether some subsets of it are enough in order to provide structural crite-
ria. For instance, an important role has been played by prime power order elements, p-regular
elements for a given prime p, vanishing elements or real elements. This last approach involves
a greater difficulty, since some information about the group is partially lost, and some results
derived from the classification of finite simple groups (CFSG) are often needed.



2 Introduction

Within this research line, in 1953 Baer characterised finite groups such that every prime
power order element has prime power class size ([6]]). Chillag and Herzog ([16]) proved in 1990
that a given prime p does not divide any class size of a group G if and only if G has a Sylow
p-subgroup in its centre. Later on, Liu, Wang and Wei showed in [31]] that a group has a Sylow
p-subgroup as a direct factor if and only if all the class sizes of p-regular prime power order
elements are not divisible by p, for which they made use of the CFSG through a known result
about transitive actions of permutation groups. This arithmetical condition on the class sizes
has also been discussed for vanishing elements in [[14]], proving that such groups are p-nilpotent.
Recently, the problem about the existence of nilpotent and abelian Hall 7r-subgroups, for a set of
primes 7, has been characterised via the set of class sizes in [10]. Several international research
groups, among them the one of the supervisor Felipe, have deeply discussed this issue. The
exhaustive report [15] due to Camina and Camina describes a general perspective about the
subject until 2011, and the recent case of vanishing elements is treated in [22] by Dolfi, Pacifici
and Sanus.

In parallel with the previous developments, the research on groups which can be factorised
as a product of subgroups has become increasingly relevant, in the universe of finite groups as
well as in the infinite one. In this line, a good number of authors have carried out in-depth
investigations with the purpose of understanding how some information about the subgroups
that appear in the factorisation affects the whole group structure. We refer the interested reader
to the book [2[] which gathers excellently this progress, specially in the infinite case.

The origin of this strand of research is remote, and it could be traced back to 1903, when
Burnside proved the aforementioned result which can be rephrased as follows: a group factorised
as a product of a Sylow subgroup and the centraliser of a non-trivial element cannot be simple.
Thirty years later, Hall laid the foundations for fruitful developments on the theory of soluble
groups, and in particular he proved that a finite soluble group is characterised by being the
product of pairwise permutable Sylow subgroups. The next milestone in this context is the
elementary proof due to It in the 50’s of the following fact: a (not necessarily finite) group
is metabelian whenever it is the product of two abelian groups. All these results inspired the
conjecture about the solubility of a finite group which is the product of two nilpotent subgroups.
That conjecture was proved in the positive way by Wielandt in 1958 for the case of factors of
relatively prime orders, and later by Kegel in the general case. Indeed, Fitting had previously
demonstrated that the product of two normal nilpotent subgroups is nilpotent. In contrast to
this result, it is well-known that a finite group does not need to be supersoluble whenever it
is the product of two normal supersoluble subgroups, although central and direct products of
supersoluble subgroups so are. This last fact motivated the inquiry of new permutability pro-
perties between the factors, stronger than normality, aiming to obtain supersolubility criteria for
products of supersoluble subgroups.

The starting point of these investigations could be located in the paper [S[] due to Asaad and
Shaalan. These authors proved, among other results, that a product G = AB of supersoluble
subgroups A and B is supersoluble if either every subgroup of A permutes with every subgroup
of B, or A permutes with every subgroup of B, B permutes with every subgroup of A, and G’
is nilpotent. Subgroups A and B satisfying the latter conditions are called totally and mutually
permutable, respectively, and products of such subgroups somehow form extensions of central
and normal products. In relation to the first permutability property, the notion of total (complete)
conditional permutability is studied in [3| 4} 27]]. These concepts are still under active research,
as shown by the vast bibliography on the subject with contributions from several international
research groups, in particular that of the supervisor Martinez-Pastor. The book [8] surveys
excellently the most significant achievements in this framework until 2010.

A new research area arises when both current perspectives are joined, i.e. the analysis of the
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structure of a factorised group via the conjugacy class sizes in the whole group of the elements
in its factors. The pioneering paper within the scarce literature in this line could be situated in
[31]], where the authors proved that if a group is the product of two subgroups that permute with
any other subgroup, and all the elements in the factors have square-free class sizes, then it is
supersoluble. This publication is the motivation of [7] due to Ballester-Bolinches, Cossey and
Li, where analogous problems are examined for products of mutually permutable subgroups. A
natural path of research opens up by considering other arithmetical conditions on the class sizes
of the elements in the factors of a factorised group, as well as different families of elements lying
in that factors.

This current and incipient study that combines both perspectives is expected to be a useful
tool in order to get a better knowledge about the structure of finite groups. In this spirit, the
contributions of this thesis represent a considerable advance in this research line. This develop-
ment provides further evidence that in mathematics, and in particular in group theory, different
areas are not in watertight compartments. Not only the research lines of factorised groups and
conjugacy class sizes are interwoven in this dissertation, but also character theory and products
of groups are joined in [[C|]. Besides, this investigation introduces a new way of filtering the set
of all the conjugacy class sizes of a group with the purpose of obtaining structural criteria for it.

In all the papers presented in this dissertation we have focused on the case of a group G
which is the product of two subgroups A and B, so G = AB, as this is the first natural case to
explore. A key fact frequently used in this framework is the following one: in a factorised group
G = AB, for any prime p there exists a Sylow p-subgroup P of G such that P = (PNA)(PNB)
being P N A and P N B Sylow p-subgroups of A and B, respectively. This result, which
is a slight reformulation of [2, Corollary 1.3.3], allows us to obtain a Sylow subgroup which
somehow inherits the factorisation of the whole group. This also holds for Hall 7-subgroups
when the group is w-separable, and for products of more than two subgroups whenever they are
pairwise mutually permutable ([8, Proposition 4.1.45]). Nevertheless, we have aimed to avoid,
as far as possible, the use of conditions of permutability between the subgroups appearing in
the factorisation. In fact, one of the central open questions in this research area is whether
it is possible to remove, or at least to weaken, the permutability hypotheses on the factors in
the existing results. In this sense, in [B] we have not used any permutability condition on the
factors; and in [C] we have introduced one of the main concepts of this thesis, core-factorisations
of a group, which is a much weaker assumption than having products of mutually permutable
subgroups. As we shall see, factorisations of this kind naturally arise when dealing with minimal
normal subgroups contained in one of the factors, and they are characterised by the existence of
a chief series related to the factorisation of the group (see [C, Lemma 2]).

It is a fact of common knowledge that (normal) subgroups of factorised groups might not
inherit the factorisation of the whole group, which emphasises even more the relevance of the
aforementioned result about Sylow subgroups. If we focus now on the framework of conjugacy
classes, we remark that the information about class sizes of elements which are product of one
element in each factor is lost in this factorised-group context. Furthermore, it is widely known
that there is no relation a priori between the primes that divide the class sizes of the elements
in a subgroup and the primes that divide the corresponding class sizes in the whole group. This
fact certainly happens in our case for a factorised group and its factors. However, as it will be
shown, we have been able to obtain some surprising connection between these primes in special
situations.

In the following chapter a more detailed description of our main achievements is discussed.
In the first section we concentrate on square-free and prime power class sizes of (p-regular) prime
power order elements in products of two subgroups, occasionally mutually permutable. In the
second section we consider other families of elements as vanishing elements and w-elements,
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in the context of core-factorisations of groups. Finally, some conclusions and open questions
about the research developed are treated in the last chapter. All the results in this thesis appear
in the manuscripts listed at the beginning, which are attached as appendices in chronological
order at the final part of this dissertation. Although each publication has its own notation and
terminology explained in its introduction, hereafter we unify it for comprehensiveness. In the
sequel, all groups under consideration are finite, and G will denote a group. For an element
x € G the conjugacy class of x in G, i.e. the set of all conjugates to  in G, is denoted by &,
and its size is ’:L'G} = |G : Cg(z)|. A p-regular element is such an element whose order is not
divisible by p, where p will always be a prime number. We represent the set of all prime divisors
of a natural number n by 7(n). As customary, the set of all Sylow p-subgroups of G is expressed
by Syl, (G), whilst Hall; (G) is the set of all Hall w-subgroups of G for a set of primes 7. A
group such that G = O, (G) x O,/(G) is said to be w-decomposable. Given a group G = AB
which is the product of the subgroups A and B, a subgroup .S is called prefactorised (with respect
to this factorisation) if S = (S N A)(S N B). As usual, CFSG will denote the classification of
finite simple groups. The remaining notation and terminology is standard within the theory of
finite groups and we mainly follow the book [19].
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Groups, as people, will be known by their actions.

— GUILLERMO MORENO

2.1 Square-free and prime power class sizes

his section summarises the main results of the manuscripts [All and [BJ]. As previously said,
the background of this strand of research concerning conjugacy class sizes and factorised
groups is limited. Its origin could be traced back to the paper [31] of Liu, Wang and Wei in
2005. These authors initially studied products G = AB of two normal subgroups such that
their prime power order elements in A U B have square-free class sizes in G, and they proved
that such groups are supersoluble (cf. [31, Proposition 9]). Indeed, they also obtained the same
thesis under the weaker assumption that A and B permute with every subgroup of G (i.e. A
and B are permutable in (7), but strengthening the square-free class size hypothesis to all the
elements in A U B, instead of considering only the prime power order ones ([31, Theorem 10]).
Nonetheless, both impositions on the factors are strong since, for instance, A and B inherit the
class size hypotheses. This is due to the fact that they are subnormal in G, so by elementary
class size properties it holds that }xA‘ divides ‘xG| for any x € A (and the same happens for B).
The next contribution in this area did not appear until the year 2013 with the paper [7] due
to Ballester-Bolinches, Cossey and Li. A first purpose was to relax the above permutability
hypotheses and, in this scene, products of mutually permutable subgroups naturally emerge. We
recall that two subgroups A and B are mutually permutable if A permutes with every subgroup
of B and B permutes with every subgroup of A (thatis, HA = AH for all subgroups H of B
and KB = BK for all subgroups K of A). These researchers obtained another supersolubility
criterion for a product G = AB. More precisely, they proved that if A and B are mutually
permutable and p? does not divide ’xG| for every prime p and every p-regular element z € AUB,
then G is supersoluble. Observe that, if A and B are either normal or permutable in GG, then they
are certainly mutually permutable. Thus, the above cited Theorem 10 of [31] can be regarded
as a particular case of this last result. Besides, they also handled products of pairwise mutually
permutable subgroups (for more than two factors) whose elements in the factors have class
lengths not divisible by a fixed prime p.
Groups all of whose conjugacy classes have square-free sizes were originally examined by
Chillag and Herzog in 1990, and later on by Cossey and Wang (cf. [16, Theorem 1] and [18,
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Theorem 2], respectively). They not only proved the supersolubility of G, but also provided extra
structural information on G/F(G) and G’. Notice that if we consider the trivial factorisation
G = A = B in the aforementioned results for factorised groups, then the supersolubility of
the group is obtained. Consequently, it is natural to wonder whether some features of G /F(G)
and G’ are still valid in the factorised-group context. In this direction, and by means of certain
properties of mutually permutable products, we demonstrate in [Al] the next result.

Theorem 2.1.1. ([[Al Corollary G]) Let G = AB be the product of the mutually permutable
subgroups A and B. Suppose that ‘xG’ is square-free for every x € AU B. Then we have:

(1) G is supersoluble.

(2) G'is abelian.

(3) G/F(G) and G’ have elementary abelian Sylow subgroups.

(4) G/F(G) and F(G)' have Sylow p-subgroups of order at most p?, for each prime p.

We also prove in [|A]] that some of the above statements remain true when only prime power
order elements (or p-regular elements) in the factors are considered, and we provide examples
which show the scope of the hypotheses in each case. As a consequence, the above cited results
of [7] and [31]] now appear as corollaries.

Cossey and Wang also localised in [18, Theorem 1] this type of assumptions for a fixed prime
p, that is, they considered groups such that all their conjugacy class sizes are not divisible by p?.
Following this philosophy, in 2014, Qian and Wang ([33]]) went a step further by considering
just conjugacy class sizes of p-regular elements of prime power order. As probably expected,
they made use of the CFSG, through the next strong result in [24]: each transitive permutation
group has a fixed-point free element of prime power order. Motivated by their results, we handle
in [A]] this situation for products of groups.

Theorem 2.1.2. ([Al Theorem B]) Let G = ADB be the product of the mutually permutable
subgroups A and B, and let p be a prime such that gcd(p — 1,|G|) = 1. If p* does not divide
‘azG ’ for every p-regular element x € A U B of prime power order, then:

(1) G is soluble.
(2) G is p-nilpotent.
(3) The Sylow p-subgroups of G /O, (G) are elementary abelian.

The initial result of Cossey and Wang, which involved all the class sizes of a group G,
actually supplied more information about G. More concretely, it affirmed that “P’ has order
p for a Sylow p-subgroup P of G” and “G/O,(G) has Sylow p-subgroups of order at most
p”. Regarding this last claim, we have found an error in its proof. In fact, we present in [A] a
counterexample suggested by Cossey himself, and checked with GAP ([[34]]), which shows that
the claim is not true. Concerning the other assertion, we extend it whenever p-elements in AU B
are also considered in Theorem[2.1.2] Indeed, we prove a result for factorised p-groups.

Theorem 2.1.3. ([A| Theorem A)) Let p be a prime number and let P = AB be a p-group such
that p? does not divide |z | for all x € AU B. Then P' < ®(P) < Z(P) and P’ is elementary
abelian of order at most p°.

We point out that no permutability condition on the factors is imposed in this case. This result
generalises for products of groups the well-known Knoche’s theorem (see [30]). However, and
in contrast to this result, we show in [[A] that the converse of Theorem [2.1.3|does not hold.

Besides, in Theorem C of [Al] we extend a p-supersolubility criterion obtained in [7]], by
imposing the class size hypothesis only on p-regular elements of prime power order.
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It is worth remarking that, in products of mutually permutable subgroups, the conditions
imposed on the conjugacy class sizes are not generally acquired by the subgroups in the factori-
sation (cf. [[Al Remark 1(b)]). This significantly differs from what happens in products of two
normal (or permutable) subgroups, as handled in [31]].

The development discussed so far, together with a collection of classical results on square-
free class sizes, is gathered in the expository paper [25]] which corresponds to the Proceedings
of the Ischia Group Theory international conference in 2016.

Within this setting of products of groups and conjugacy class sizes, we also addressed the
analysis of other arithmetical properties on the class lengths. In this regard, our next contribu-
tions are motivated by the mentioned Baer’s characterisation in [6]] concerning groups in which
all the conjugacy classes of prime power order elements have prime power lengths. This result
affirms that such groups have the structure G = (1 X - - X G where the direct factors have
pairwise relatively prime orders, and if GG; is not of prime power order, then its order is divisible
by two primes and its Sylow subgroups are abelian. Some decades later, Camina and Camina
provided in [[15] an alternative shorter proof of Baer’s theorem, by means of analysing groups all
of whose p-elements have prime power class sizes, for a given prime p. Accordingly to the ter-
minology used by these authors in [15], such a group is called a p-Baer group, and a Baer group
is analogously defined as a group such that every prime power order element has prime power
class size. Following this terminology, we introduce in B the next concepts for a factorised

group.
Definition 2.1.4. Let G = AB be the product of the subgroups A and B, and let p be a prime.

e (G = AB is ap-Baer factorisation if ’:EG| is a prime power for every p-element z € AU B.
e G = AB is a Baer factorisation if |xG‘ is a prime power for every prime power order
element z € AU B, i.e. if it is a p-Baer factorisation for all p.

It is not difficult to find examples of such factorisations. As a sample, any product G = AB
of two (p-)Baer groups A and B provides a (p-)Baer factorisation whenever the commutator
subgroup [A, B is trivial (this is called a central product).

Based on the research carried out in [[6] and [15]], we study the structural properties of a
group which possesses a (p-)Baer factorisation. First, we show in [B, Theorem A], among other
facts, that groups G' with a p-Baer factorisation are p-soluble of p-length at most 1, G/F(QG)
has a unique abelian Sylow p-subgroup, and G/C¢ (0, (G)) is p-decomposable. A key result
used in its proof is due to Camina and Camina: any element of a group G with prime power
conjugacy class length lie in Fo(G), the second term of the Fitting series of G (cf. [15, Theorem
1]). Further, we get additional information about the primes appearing as class sizes of the
p-elements in the factors.

Theorem 2.1.5. ([B, Theorem B]) Let G = AB be a p-Baer factorisation, and let P € Syl,, (G).
Then there exist unique primes q and r such that ’xG} is a g-number for every p-element x € A,
and ‘yG} is an r-number for every p-element y € B, respectively. (Possiblyp € {q,r} orq=r.)
Moreover, P < C;(Oyq,y (F(G))), and PO, (G)O,(G) is normal in G. Further:

(1) If ¢ = r = p, then G is p-decomposable.
(2) Ifp ¢ {q,r}, then P is abelian.

This relevant theorem allows us to retrieve the main result of [15] regarding p-Baer groups,
and consequently it provides a new proof of Baer’s characterisation (see [B, Theorem 1]). We
point out that a crucial fact for proving Theorem [2.1.3]is Lemma 4 of [11]] (which is [B, Lemma
4]), that is of interest in its own right. In that paper, Berkovich and Kazarin also studied several
problems involving prime power class sizes in finite groups.
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Afterwards, we consider all the prime divisors of the order of G, that is, we examine groups
G with a Baer factorisation. We show in Corollary C of [B] that such groups verify that G /F(G)
is abelian, and if F(G) is abelian, then G is an A-group (that is, all the Sylow subgroups are
abelian). Nonetheless, one of the most significant results in this direction is that there is a close
relationship between the primes that divide the class lengths in a factor and in the whole group.

Theorem 2.1.6. ([B, Proposition D]) Let G = AB be a Baer factorisation, and let X € {A, B}.
If x € X is a prime power order element, then !xX } divides ‘xG| In particular, A and B are
Baer groups.

Thus the structure of A and B in a Baer factorisation G = AB is well-known. Once more,
in [B]] we frequently insist in examples which show the scope of the hypotheses handled. For
instance, the analogous conclusion to Theorem [2.1.6] fails in general for a p-Baer factorisation,
since it may happen that ‘mx ‘ and |wG‘ are relatively prime for X € {A, B}.

Example 2.1.7. (|[Bl Final examples (2)]) Let G be the semidirect product of a non-abelian
group of order 21 acting on an elementary abelian group of order 8, in such a way that the
subgroup of order 7 permutes the involutions transitively. Then there is a subgroup A of order
24 and a subgroup B of order 7 such that G = AB is a 2-Baer factorisation. Observe that every
2-element in A U B has conjugacy class size in G equal to 7, but there exists a 2-element x € A
such that ‘CL‘A’ =3.

Furthermore, in contrast to Baer groups, a Baer factorisation might not be the direct product
of Hall subgroups for disjoint sets of primes. Even so, we have attained an arithmetical charac-
terisation of Baer factorisations via the indices of the centralisers of the Sylow subgroups of the
factors.

Theorem 2.1.8. ([B, Theorem F]) Let G = AB be the product of the subgroups A and B. Then
this is a Baer factorisation if and only if |G : Cq(A,)| and |G : Cq(B,)| are prime powers, for
Ay € Syl, (A) and B, € Syl,, (B), and for every prime p.

We highlight the absence of any permutability condition on the factors in all the results pre-
sented in [Bf]. Our contributions in this section are surveyed in [26], published in the Proceedings
of Groups St Andrews 2017 in Birmingham.

2.2 Zeros of irreducible characters and 7-elements

n the previous section we have frequently imposed arithmetical conditions on the class sizes of
I not all the elements in the factors of a factorised group, but only the (p-regular) prime power
order ones. Indeed, providing structural criteria for a group from certain subsets of its class sizes
is a classical research area. In this spirit, this section is devoted to present the main results of
[C] and [D]], where we handle other families of elements in the factors of a factorised group.
Concretely, vanishing elements and 7-elements are involved, respectively. In both situations,
core-factorisations of products of two groups have been revealed a fundamental tool.

Recently, numerous researchers have filtered the full set of class sizes of a group through
its character table, and zeros of the irreducible characters have played an important role since
the manuscript [29] of Isaac, Navarro and Wolf in 1999. In that paper, the authors introduced
the next concept: an element g of a group G is said to be vanishing in G whenever x(g) =
0 for some irreducible character x of G; otherwise g is non-vanishing in G. These authors
obtained elegant results that localise the non-vanishing elements of certain groups. Surprisingly,
non-vanishing elements somehow violate the standard duality which frequently arises between
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the irreducible characters and the conjugacy classes of a group, since a non-linear irreducible
complex character always vanishes on some element (this is a celebrated result in character
theory due to Burnside, see [28, Theorem 3.15]). As an immediate consequence, it holds that a
group has no vanishing elements if and only if it is abelian. Several problems concerning such
elements have been addressed in the last few years. As a sample, groups with no vanishing
p-elements were investigated by Dolfi, Pacifici, Sanus and Spiga in [23||; Moreté and Sangroniz
classified in [32] groups whose irreducible characters vanish on “few” conjugacy classes. We
refer the interested reader to the expository paper [22] for more information on the subject. It is
to be said that the CFSG is usually needed in this development.

The terminus a quo of a current research on the so-called vanishing conjugacy class sizes
(i.e. the class sizes of vanishing elements) could be situated in 2010, when Dolfi, Pacifici and
Sanus stated that if a prime p does not divide each vanishing class size of a group G, then GG
has a normal p-complement and abelian Sylow p-subgroups ([21, Theorem A]). Notice that this
is a “vanishing version” of the result of Chillag and Herzog mentioned in the Introduction: a
group GG has a Sylow p-subgroup in its centre if and only if p does not divide any class length of
G. Later on, Brough and Kong addressed in [13] [14]] some problems regarding square-free class
sizes of vanishing elements (of prime power order), motivated by the results in [18] mentioned
in the previous section. Moreover, a graph associated to the primes that divide the vanishing
class sizes is studied in [12]] by Bianchi, Brough, Camina and Pacifici. Nevertheless, aside from
those ones, no other arithmetical condition on such class sizes has been considered so far, which
will probably lead to fruitful investigations in the coming years.

Our purpose in [C] is to analyse the vanishing versions of some results concerning prime
power class lengths, as well as to address the main results of [21] and [14] in the context of fac-
torised groups. In this respect, we combine as a novelty the research on irreducible characters
with the study of products of groups, since we obtain information about a factorised group from
the vanishing columns of its character table that correspond to the elements in the factors. It is
worthwhile noting that the product of two vanishing elements does not need to be vanishing in
general. Moreover, an element in a (normal) subgroup can be vanishing in the whole group but
not in that subgroup. Despite of these facts, non-vanishing elements behave well with respect
to quotients groups, and non-abelian minimal normal subgroups always contain vanishing ele-
ments of the whole group. This suggests the significance of having at least one minimal normal
subgroup contained in one of the factors for each quotient group, which is ensured for instance
when the factors are (totally) mutually permutable (cf. [8, Theorem 4.3.11]). Since we also aim
to weaken this permutability condition, we introduce in [[C]] the following concept.

Definition 2.2.1. Let 1 # G = AB be the product of the subgroups A and B. We say that G =
AB is a core-factorisation if for every proper normal subgroup K of G it holds that there exists
anormal subgroup 1 # M /K of G/K such that either M /K < AK/K or M/K < BK/K.

This definition generalises products of two subgroups which are mutually permutable, as
well as totally completely conditionally permutable (see Definition 1.2 and Lemma 2.5 of [4]).
If we adopt the bar convention for the quotients over K, then the above condition means that
coreg(A) corem(B) # 1, where corex (H) denotes the core in a group X of a subgroup H,
i.e. the largest normal subgroup of X contained in H. This illustrates the given name for
such factorisations. It is not difficult to prove that factorisations of this kind are inherited by
quotient groups. Further, we characterise in [Cl, Lemma 2] a core-factorisation of a factorised
group G = AB by means of the existence of a chief series of G where all the chief factors are
covered by either A or B (we recall that a subgroup U covers a section V/W of a group G if
wUunv)=V).

In [D] we show that this notion can also be approached somehow as a generalisation of the
m-separability of a group. Observe that if 7 is a set of primes and G is a group that possesses
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both Hall -subgroups and Hall 7’-subgroups, say H and L respectively, then G = HL is a
m-separable group if and only if for a chief series of G it holds that each chief factor is covered
by either H or L. Therefore, we say that a product G = AB is a core-factorisation whenever
G possesses a chief series such that each chief factor of GG is covered by either A or B. We point
out that this definition is equivalent to the one given before in virtue of [C, Lemma 2]. Moreover,
it allows us to prove in [D] that if G = AB is a core-factorisation of a m-separable group G,
and H = (H N A)(H N B) is a prefactorised Hall 7-subgroup of G with H N A € Hall; (A)
and H N B € Hall,; (B) (which always exists), then H = (H N A)(H N B) is actually a
core-factorisation.

Coming back to vanishing class sizes, we impose first prime power class length conditions on
the p-elements in the factors of a core-factorisation that vanish in the whole group. In Theorem
2 of [[C] we prove that such groups are p-soluble of p-length at most 1, and if all the considered
class sizes are precisely p-powers for the same prime p, then the Sylow p-subgroup is unique.
We also study this class length assumption for every prime power order element in the factors
that vanishes in the whole group, obtaining the next theorem.

Theorem 2.2.2. ([C, Corollary 4]) Let G = AB be a core-factorisation. If every prime power
order element © € AU B vanishing in G has prime power class size, then G /F(G) is abelian.

In particular, if these prime powers are actually p-numbers for a prime p, then G has a
normal Sylow p-subgroup and abelian Hall p'-subgroups.

In this case, when we take a trivial factorisation, we obtain new contributions for arbitrary
groups not necessarily factorised. In addition, observe that these results form the vanishing
versions of those in the previous section for a (p-)Baer factorisation. However, we emphasise
that the techniques used in both approaches are totally different.

Our next contributions analyse to what extent the results in [21]] and [14]] remain true for
a group with a core-factorisation. We first treat in [[C, Theorem 3] core-factorisations G =
AB such that every (p-regular) prime power order element x € A U B vanishing in G has
conjugacy class not divisible by a fixed prime p. As an immediate consequence, we obtain a
generalisation for prime power order elements of the main result of [21]], although we use some
similar techniques.

Regarding square-free class sizes of vanishing elements, we answer a posed question of
Brough in [13]] through the next vanishing version of Theorem [2.1.2

Theorem 2.2.3. ([C, Theorem 4]) Let G = AB be a core-factorisation, and let p be a prime
such that (p — 1,|G|) = 1. Suppose that ‘a:G’ is not divisible by p? for every prime power order
element x € AU B vanishing in G. It follows that:

(1) G is soluble.
(2) G is p-nilpotent.
(3) If P € Syl,, (G), then P' < ®(P) < Z(P), P' is elementary abelian and | P'| < p.

The third assertion follows from the fact that in Theorem [2.1.3] it is enough to consider
only the vanishing elements in the factors, since the non-vanishing ones are central due to [29,
Theorem B].

It is not always possible to get analogous theorems to those about ordinary class sizes in the
context of vanishing elements, and we show in [C|] some examples in this line. An instance of
this fact is provided by the next example about the corresponding assertion to Theorem [2.1.2](3)
in the vanishing case.

Example 2.2.4. [C, Example 5] Let G = [A]|B be the semidirect product of a cyclic group B
of order 4 which acts transitively on a cyclic group A of order 5. Let the prime p = 2. Then
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G = AB is a core-factorisation, and all the vanishing elements of G (not only those lying in
A U B) have class sizes not divisibly by 4. However, O2(G) = 1 and G/O2(G) does not have
elementary abelian Sylow 2-subgroups.

Brough and Kong also gave a supersolubility criterion for a group such that the class size
of any vanishing prime power order element is square free ([14, Theorem 3.2]). Using different
arguments, we not only get an extension of this fact for a group G with a core-factorisation,
but also enhance their result by giving more information on the structure of such a group: G’ is
abelian with elementary abelian Sylow subgroups, and F(G) has Sylow p-subgroups of order
at most p? for each prime p ([C, Theorem 7]). In fact, this result partially generalises Theorem
for vanishing elements of prime power order.

Within this research, we frequently need to understand the structure of factorised groups
such that the factors contain no vanishing prime power order elements, and the next theorem
turns out to be a crucial result. The CFSG is used via [Cl, Proposition 2].

Theorem 2.2.5. ([[C, Corollary 3]) Let G = AB be a core-factorisation. The following state-
ments are pairwise equivalent:

(1) Every element x € A U B is non-vanishing in G.
(2) Every prime power order element © € AU B is non-vanishing in G
(3) G is abelian.

As it has been said before, from a Burnside’s result it is elementary to show that a group
is abelian if and only if it has no vanishing elements. If we take a trivial factorisation in the
previous theorem, then it follows that this last characterisation remains true when only prime
power order elements are involved.

Finally, we put focus on the class lengths of other family of elements in the factors of a
factorised group: the (prime power order) m-elements. More concretely, we summarise the most
significant results of [D]], in which we study the 7-structure of products of groups when the class
sizes of some 7-elements in the factors are either m-numbers or 7’-numbers, for a set of primes
.

In Theorem A of [D] we prove a characterisation of w-decomposability for groups with
a core-factorisation: if G = AB is a core-factorisation, and GG possesses a Hall m-subgroup,
then |xG‘ is a m-number for every prime power order m-element x € AU B if and only if G =
0,(G) x O (G). We point out that the proof makes use of the knowledge on the automorphism
groups of the non-abelian simple groups. An analogous result also appears in [35]] for factorised
groups G = AB with one subnormal factor. We remark that, due to divisibility relations, if A
is the subnormal factor, then A clearly inherits the class size assumptions. Further, there exists
a normal subgroup of GG which contains A, so this normal subgroup is prefactorised. Note that
groups with a core-factorisation and factorised groups with one subnormal factor are generally
different types of groups.

The dual condition on the conjugacy class sizes of prime power order m-elements is also
studied in D} Proposition 1], i.e. when they are not divisible by any prime in 7.

The reader may observe that under the assumptions of the mentioned [D, Theorem A], if a
m-element in AU B lies in the centre of a Hall -subgroup of G, then this element has necessarily
to be central in G since its class size in GG is a m-number. Thus, a more general approach is to
analyse products of groups where the 7m-elements in the factors have class sizes equal to either
a m-number or a 7’-number. Precisely, in Theorem B of [D] we address this problem for a
m-separable group that possesses a core-factorisation, and as a direct corollary we get the next
result.
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Theorem 2.2.6. (|D| Corollary C]) Let G be a w-separable group. Then the following statements
are pairwise equivalent:
(1) Each m-element x € G has class size either a m-number or a 7'-number.
(2) Either G is w-decomposable or it has abelian Hall mw-subgroups and its m-length is at
most 1.
(3) For every m-element x € G, either all ‘xG‘ are T-numbers or they are all '-numbers.

A similar condition was investigated in [20]] by Dolfi, who characterised the structure of
groups all of whose class sizes are either w-numbers or 7/-numbers. He called such a group a
class-m-separable group. In this spirit, we introduce in [D] a factorised-group version of this
concept: G = AB is a class-m-separable factorisation whenever ‘xG‘ is either a m-number
or a w’-number for every element x € A U B. Observe that, a priori, we cannot affirm that if
G = AB is class-m-separable factorisation, then A and B are class-w-separable groups, since the
sets 7r(|:nX ‘) and w(‘xG’) are not related in general, for some x € X € {4, B}. Surprisingly, if
we further assume that G = AB is a core-factorisation, then we determine that this phenomenon
actually happens.

Theorem 2.2.7. ([D, Theorem D)) Let G = AB be the product of the subgroups A and B, and
assume that G = AB is both a core-factorisation and a class-m-separable factorisation. Then,
up to abelian direct factors, one of the following two possibilities holds for any X € {A, B}:
(1) X is either a w-group or a '-group.
(2) Up 1o interchanging m and ', X = XX, where X, € Hall; (X), X, € Hall» (X),
X <X, both X and X, are abelian, and X /O (X) is a Frobenius group. Indeed,
O, (X) =Z(X), the class sizes of X are {1,|X:/0~(X)|,|Xw|}, and X is soluble.

In particular, both A and B are class-w-separable groups.

The mentioned characterisation of Dolfi now directly follows from the above theorem. We
also present in [D] an example which shows that a core-factorisation of two class-m-separable
groups may not be a class-m-separable factorisation.

To conclude, we also study in Theorem E of [D] groups with a core-factorisation such that
all the m-elements in the factors have prime power class lengths, generalising the main result of
[9]. Indeed, we provide an alternative proof of it, since the techniques used by those authors are
based on a graph associated to the class sizes of the m-elements of a group.



Concluding remarks and future investigations

Algebra and money are essentially levellers, the
first intellectually, the second effectively.

— SIMONE WEIL

S everal conclusions arise from the research developed within this dissertation. The main
goal has been to study structural features of factorised groups via the conjugacy class sizes
of some elements in the factors. The results presented are new contributions in this respect
and, in many cases, they substantially improve already known ones. It is worth noting that
these results produce a new way of filtering the whole set of class lengths of a group with
the objective of obtaining structural properties of it. Moreover, further evidence is provided to
confirm that the whole group structure is affected by the class sizes of (p-regular) prime power
order elements, as well as m-elements and vanishing elements. Through the consideration of
this last kind of elements, it is combined as a novelty the research on factorised groups with
representation and character theory, answering in particular an open question in [13]. Indeed,
the approach considered in this dissertation can be viewed as a way of obtaining information
about factorised groups that can be read from their character tables, concretely from the columns
(i.e. class sizes) that correspond to the elements in the factors. In particular, the columns of
the character table sometimes determine structural properties of the subgroups appearing in the
factorisation of the group, as Theorems [2.1.6] and reveal. Finally, the notion of core-
factorisations of a group, introduced for the first time in this thesis, has turned out very useful,
and it might be interesting by itself in the research on factorised groups.

Within this recent research line which combines products of groups and conjugacy classes,
it can still be raised many interesting problems, on some of which we are currently working. A
first inquiry is whether it is possible to relax, or even to remove, the permutability conditions
imposed on the factors in some cases in the previous development. As a sample, in [D, Theorem
A] we extend the following result in [7]] due to Ballester-Bolinches, Cossey and Li: a mutually
permutable product has a Sylow p-subgroup in its centre if and only if all the class lengths
of the elements in the factors are not divisible by p, where p is a fixed prime. Note that in [D}
Theorem A] we consider a set of primes 7 instead of p’, and we weaken the assumption of having
mutual permutable products by the consideration of core-factorisations. A certainly ambitious
objective is to prove an analogous result for an arbitrary factorisation of two subgroups. A
positive evidence may be based on the proof of the following non-simplicity conjecture: if the
product G = AB verifies that a fixed prime p does not divide any class size of the elements in
AU B, then G is non-simple. The use of the CFSG in this context seems unavoidable. We have
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14 Concluding remarks and future investigations

obtained some partial positive results concerning this conjecture, for example when either p = 2
or p coincides with the characteristic of the field in a simple group of Lie type.

Besides, there are other questions which arise from our contributions that still remain open.
For instance, regarding square-free class sizes, we recall that in [7] it is also proved that if a
product G = AB of two mutually permutable subgroups satisfies that p? does not divide each
class size of a p-regular element in A U B, then a Sylow p-subgroup of each chief factor of G
has order at most p. In particular, if G is p-soluble, then G is p-supersoluble. In Theorem C of
[A]] we generalise the second assertion through the consideration of only p-regular prime power
order elements in the factors. However, in this situation we have not been able to demonstrate
the first claim. The core of the proof of Ballester-Bolinches, Cossey and Li is the next result
in [16], which relies heavily on the CFSG: if a fixed prime p divides |Cq(x)| for all z € G,
then G is not a non-abelian simple group. An open question of interest by itself is whether this
last result is valid when only prime power order elements are involved. If p is the largest prime
divisor of the order of G, then so is certainly in virtue of [[1, Theorem 1.3].

Concerning prime power class lengths, in Theorem[2.1.6|we showed that in a Baer factorisa-
tion G = AB there exists a divisibility relation between the class sizes of the prime power order
elements in the factors and the corresponding class sizes in the whole group. As a consequence,
A and B are Baer groups. We have provided in Example [2.1.7|a 2-Baer factorisation G = AB
where |3:A‘ = 3 and ‘a:G‘ = 7 for a 2-element z € A, so clearly the conclusion of Theorem
[2.1.6|fails in this case. However, the class size in the factor A is still a prime power, which leads
to wonder whether the factors of a p-Baer factorisation are also p-Baer groups.

If we focus on the zeros of the irreducible characters, then it has not been yet tackled the
vanishing version of Theorem [2.1.5] about the uniqueness of the primes that divide the class
lengths, even for an arbitrary group not necessarily factorised. More concretely, when all the
vanishing p-elements of a group have prime power class sizes, is it true that there exists a unique
prime ¢ such that all the class sizes are g-powers?

In view of the developments presented in the previous sections, it is also natural to consider
the class sizes of other families of elements in the factors. For instance, it may be interesting
to analyse the influence on the whole group structure of the class sizes of real elements of a
factorised group that lie in the factors. We recall that an element z of a group G is said to be
a real element of G if it is conjugate to its inverse. Equivalently, x is a real element of G if
and only if every irreducible character of GG takes a real value on z, so again we are filtering the
full set of class sizes of (& by its character table. The properties of this type of elements, and in
particular of their class sizes, have been extensively examined in the literature. Notice that in the
factorised-group case, a real element of the whole group that lie in a factor might not be a real
element of that factor.

The imposition of other arithmetical properties on the class lengths gives rise to new at-
tractive problems. In this sense, Cossey and Li investigated in [17] (which cites our work [A])
products of two mutually permutable subgroups whose prime power order elements in the factors
have class sizes not divisible by p?~!, for a given prime p. We are currently analysing whether
the mutual permutability hypothesis can be weakened by considering a core-factorisation. Ano-
ther arithmetical condition that may be intriguing is when the class sizes of the elements in the
factors have the same p-part, i.e. when the greatest p-power that divides each of these class
lengths is unique.

With respect to core-factorisations G = AB, we can construct the following normal series
which may be useful for further investigations: 1 I€4(G) <€y p(G) A€y p A(G) D--- LG,
where €4(G) = coreg(A), €4 5(G)/CA(G) := coreg/e,(q)(BCA(G)/€a(G)), etc. This
series reachs G due to DL Lemmas [I|and [2]]. The length of this series and its bounds possibly
control the global structure of G.
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Finally, a general issue is to extend the development exposed so far to products of more
than two groups. As a sample, the aforementioned result in [7]] on the p-decomposability of a
mutually permutable product is actually proved for n factors. Probably, the concept of core-
factorisations for n > 2 factors may play an important role, although prefactorised Sylow sub-
groups might not automatically exist in this scene (as mentioned in the Introduction).
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It is tribute to the genius of Galois that he recog-
nised that those subgroups for which the left and
right cosets coincide are distinguished ones.
Very often in mathematics the crucial problem is
to recognise and to discover what are the rele-
vant concepts, once this is accomplished the job
may be more than half done.

— ISRAEL NATHAN HERSTEIN
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Abstract

We obtain some structural properties of a factorised group G = AB, given that the
conjugacy class sizes of certain elements in AU B are not divisible by p?, for some prime
p. The case when G = AB is a mutually permutable product is specially considered.
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1 Introduction

All groups considered throughout this paper are finite. Over the last years, many authors
have investigated the influence of conjugacy class sizes on the structure of finite groups. In
the meantime, numerous studies in the framework of group theory have focused in factorised
groups. In this setting, a central question is how the structure of the factors affects the structure
of the whole group, in particular when they are connected by certain permutability properties.
The purpose of this paper is to show new achievements which combine both current perspectives
in finite groups. More precisely, our aim is to get some information about a factorised group,
provided that the conjugacy class sizes of some elements of its factors are square-free.

The earlier starting point of our investigation can be traced back to the paper of Chillag and
Herzog ([S]), where the structure of a group in which all elements have square-free conjugacy
class sizes was first analysed. Next, in [6]], Cossey and Wang localised one of the main theorems
in [5] for a fixed prime p, that is, they considered conjugacy class sizes not divisible by p?, for
certain prime p. Later on, this study was improved by Li in [[11], and by Liu, Wang, and Wei
in [12], by replacing conditions on all conjugacy classes by those referring only to conjugacy
classes of either p-regular elements or prime power order elements, using the classification theo-
rem of finite simple groups (CFSG). These authors also first obtained some preliminary results
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in factorised groups. This research was extended in 2012 by Ballester-Bolinches, Cossey and
Li in [2], through mutually permutable products. More recently, in 2014, Qian and Wang ([13]))
have gone a step further by considering just conjugacy class sizes of p-regular elements of prime
power order (although not in factorised groups).

In the context of factorised groups, and aiming to obtain criteria for products of supersolu-
ble subgroups to be supersoluble, several authors have considered products in which certain
subgroups of the factors permute (see [3] for a detailed account). In this scene, we are interested
in mutually permutable products, factorised groups G = AB such that the subgroups A and B
are mutually permutable, i.e., A permutes with every subgroup of B and B permutes with every
subgroup of A (see also [4]). Obviously, if A and B are normal in G, then they are mutually
permutable.

We recall that, for a group G, the set 2% = {g~'xg : g € G} is the conjugacy class of the
element z € G, and }:cG‘ denotes the conjugacy class size of x. If p is a prime number, we say
that z € G is a p-regular element if its order is not divisible by p, and that it is a p-element if its
order is a power of p. Moreover, if n is an integer, let n,, denote the highest power of p dividing
n. The mth group of order n in the SmallGroups library [[14] of GAP will be identified by
n#m. The remaining notation is standard and is taken mainly from [7]. We also refer to this
book for details about classes of groups.

In this paper, motivated by the above development, at first we focus on the case of p-groups,
extending for factorised groups the well-known Knoche’s theorem (see [10]).

Theorem A. Let p be a prime number and let P = AB be a p-group such that p* does not divide
2P| for all x € AU B. Then P' < ®(P) < Z(P), P’ is elementary abelian and |P'| < p?.

Our next goal in the paper is to prove the following theorem, regarding mutually permutable
products.

Theorem B. Let G = AB be the mutually permutable product of the subgroups A and B, and
let p be a prime such that gcd(p — 1,|G|) = 1. If p* does not divide }xG‘ for any p-regular
element x € AU B of prime power order, then:

(1) G is soluble.

(2) G is p-nilpotent.

(3) The Sylow p-subgroups of G /O,(G) are elementary abelian.

In the particular case when G = A = B, we recover [13, Theorem A] (see Section
Corollary [T)). We remark that both results use the CFSG.

Moreover, in relation to the third assertion, we have found a gap in one of the statements in
[[6, Theorem 1], as it is reported in Remark (a).

On the other hand, we point out that it is possible to find examples of groups factorised as
a product of two (mutually permutable) subgroups which satisfy the hypotheses of Theorem [B]
for some fixed prime p and, however, there exist elements « € A U B such that p? divides either
‘xA’ or }:UB’ (see Remark (b)).

The next theorem generalises the last assertion of [2, Theorem 1.3] regarding p-soluble
groups, by considering only prime power order elements:

Theorem C. Let G = AB be the mutually permutable product of the subgroups A and B, and
let p be a prime. Suppose that for every prime power order p-regular element x € AU B, }mG‘
is not divisible by p?. If G is p-soluble, then G is p-supersoluble.

In the line of [S| Theorem 1] and [[6, Theorem 2], if we consider all prime numbers, then we
obtain some information about the structure of the derived subgroup of a factorised group G.
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Theorem D. Let G = AB be the product of the subgroups A and B, and assume that G
is supersoluble. Suppose that every prime power order element xt € A U B has square-free
conjugacy class size. Then:

(1) G' is abelian.

(2) The Sylow subgroups of G' are elementary abelian.

(3) F(G)" has Sylow p-subgroups of order at most p, for every prime p.

If we limit our conditions only to p-regular elements, as a consequence of Theorems [B]and
[Cl we obtain the following result which extends [2, Corollary 1.5] (see Corollary [3]) for prime
power order elements, and also a theorem of [[11f], for products of groups.

Theorem E. Let G = AB be the mutually permutable product of the subgroups A and B.
Suppose that for every prime p and every prime power order p-regular element v € AU B,
‘xG‘ is not divisible by p*. Then G is supersoluble, and G /F(G) has elementary abelian Sylow
subgroups.

We remark that the first statement in Theorem |[D|is not further true under the weaker hy-
potheses of the above theorem, even for arbitrary groups not necessarily factorised, as pointed
out in [13]]. Indeed, as a result of Theorem [E] the supersolubility condition in Theorem [D]can be
exchanged by the mutual permutability of the factors.

On the other hand, with the stronger assumption that all p-regular elements of the factors
(not only those of prime power order) have conjugacy class sizes not divisible by p?, we get
extra information about the orders of the Sylow p-subgroups of G/F(G), extending partially [6)
Theorem 2].

Theorem F. Let G = AB be the mutually permutable product of the subgroups A and B.
Suppose that for every prime p and every p-regular element t € AU B, xG} is not divisible by
p?. Then the order of a Sylow p-subgroup of G /F(G) is at most p*.

In summary, when dealing with mutually permutable products, the next corollary follows
directly from the above theorems.

Corollary G. Let G = AB be the mutually permutable product of the subgroups A and B.
Suppose that ’xG| is square-free for each element x € AU B. Then G is supersoluble, and both
G/F(G) and G’ have elementary abelian Sylow subgroups. Moreover, G’ is abelian, and both
groups G /F(G) and F(G)' have Sylow p-subgroups of order at most p?, for each prime p.

In Section |3| we prove Theorems @ and |C| which refer to class sizes not divisible by p?,
for a fixed prime p. Theorems [D] [E] and [Fl which consider square-free conjugacy class sizes
(for all primes), are proved in Section[d] In both cases we will illustrate the scope of the results
presented with some examples.

2 Preliminary results

We use the following elementary properties frequently, sometimes without further reference.

Lemma 1. Let N be a normal subgroup of a group G, and let p be a prime. Then:
(a) |xN‘ divides ‘xG , forany x € N.
(b) ‘(xN)G/N‘ divides |xG , forany x € G.
(c) If N is a p-element of G /N, then there exists a p-element 11 € G suchthat tN = x1N.
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We need specifically the following fact about Hall subgroups of factorised groups. It is a
reformulation of [[1, 1.3.2] which is convenient for our purposes. We recall that a group is a
D,.-group, for a set of primes 7, if every m-subgroup is contained in a Hall 7-subgroup, and any
two Hall 7-subgroups are conjugate. In particular, all m-separable groups are D-groups for any
set of primes 7, and all groups are D,.-groups when 7 consists of a single prime.

Lemma 2. Let G = AB be the product of the subgroups A and B. Assume that A, B, and
G are D -groups for a set of primes w. Then there exists a Hall w-subgroup H of G such that
H = (HnA)(HNB), with HN A a Hall 7-subgroup of A and H N B a Hall w-subgroup of
B.

We collect here some results on mutually permutable products, which will be very useful
along the paper.

Lemma 3. Let the group G = AB be the product of the mutually permutable subgroups A and
B. Then we have:

(a) ([3L 4.1.10]) G/N is the product of the mutually permutable subgroups AN/N and
BN/N.

(b) ([3, 4.1.21)) If U is a subgroup of G, then (U N A)(U N B) is a subgroup, and U N A and
UN B are mutually permutable. Moreover, if N is a normal subgroup of G, then (NNA)(NNB)
is also normal in G.

Theorem 1. ([4, Theorem 1]) Let the non-trivial group G = AB be the product of the mutually
permutable subgroups A and B. Then A Bg is not trivial.

The following lemma will be essential in the proofs of our theorems.

Lemma 4. ([2, Lemma 2.4]) Let p be a prime, and Q be a p'-group acting faithfully on an
elementary abelian p-group N with |[x, N]| = p, forall 1 # x € Q. Then Q is cyclic.

The next result is the first assertion of Theorem A in [13]], which uses the CFSG.

Theorem 2. Let G be a group. For a fixed prime p with gcd(p — 1,|G|) = 1, if p? does not
divide |a:G‘ for any p-regular element x € G of prime power order, then G is soluble.

Finally, the later lemma, which is a nice result due to Isaacs, will be very useful in the proof
of Theorem

Lemma 5. ([9, 4.17]) Let K be an abelian normal subgroup of a finite group G, and let x € G
be non-central. Then |Cq(x)| < |Cq(y)|, where y = [k, x] and k € K is arbitrary.

3 Class sizes not divisible by p?, for a fixed prime p

The well-known Knoche’s theorem (see [10]) asserts that if P is a p-group, p a prime, then
the conjugacy class sizes of P are square-free if, and only if, | P’| < p. We begin this section by
proving Theorem [A] which clearly extends it for factorised groups.

Proof of Theorem[A] Since |P : Cp(x)| < p for each z € AU B, it follows ®(P) < Cp(x).
Therefore, ®(P) commutes with both A and B, so P’ < ®(P) < Z(P). Hence P/Z(P) is
elementary abelian, and 2P € Z(P) for all z € P. Since P’ < Z(P) and [z, y]P = [2P,y] = 1
(see [7, A - 7.3(a)]) for any z,y € P, it follows that P’ is elementary abelian. Now it remains
to prove that | P'| < p.

Let [z, y] be a generator of P’. Since P’ < Z(P) and y = y,y, withy, € Aand y;, € B, then
(2.9 = 2, 9atp] — [ 9w, val = [z, )z, ) € [P, BIP, 4] . Thus P’ = [P, B[P, A,
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Clearly, [P, B] is elementary abelian. Suppose [P, B] # 1, and let 1 # [z, 2] and 1 # [2/, 2/] be
two generators of [P, B], with z,2’ € P and z, 2’ € B. We distinguish three cases in order to
prove that ([z, z]) = ([2/, 2']):

i) Suppose first z, 2" € B\ Z(B). Letb € B\ (Cp(z) UCp(2')). Since [P : Cp(z)| = p
then P = Cp(2)(x). Moreover, b ¢ Cp(z) implies that 1 # [b, 2] = [2't, 2] = [2¢, 2] = [w, 2]’,
where b = tx? with t € Cp(z). On the other hand, P = Cp(b)(z) so 2’ = 27k, with k € Cp(b).
Hence 1 # [b, 2] = [b,27k] = [b,2) = [z,2]*". Finally, as b € P = Cp(z’)(z'), then
b = (2')™s with s € Cp(2'). Therefore 1 # [z, z]"T7 = [b, 2] = [(z/)™s, 2] = [, 2']™, and
recall that [z, 2] and [/, 2] both have order p. Thus, ([z, z]) = ([2/, 2']).

ii) Now suppose z, 2’ € Z(B). Then B < Cp(z) NCp(z’). There exists w € P\ (Cp(z) U
Cp(2')). Therefore, w = wywp with w, € A and w, € B < Cp(2) N Cp(2'), so w, €
A\ (Cp(z) UCp(2')). Arguing analogously as in case i) with w, instead of b, we conclude that
([z, 2]) = ([2", 2']) too.

iii) Finally, suppose z € B \ Z(B) but 2’ € Z(B). Let 2" = 22’ € B\ Z(B). Therefore,
we have [2/, 2] = [2,2/][2/,z]. If [2/,2"] = 1then 1 # [2/,2']7! = [2/, 2], and applying
case i) to both [z, z| and [z, z] we conclude that they generate the same cyclic group of order
p. On the other hand, if [2/, 2"] # 1 and [2/, 2] = 1, then we apply again the first case. Finally,
if both [/, 2"] # 1 # [2/, 2] then they generate the same cyclic group by case i) again. Thus
1 # ([2,7]) = ([2/,2"][z',2]7') < ([2,2"]). Since the last one has order p, it follows
([, 2"]) = ([2', 2"]). So we have ([2, 2']) = ([«’, 2”']), which is equal to ([z, z]) by i) again.

In conclusion, if [P, B] # 1, then it has order p. Analogously with [P, A]. Hence |P’| =
|[P, B][P, A]| < p? and this establishes the result. O

Example 1. The converse of the above result is not true in general, in contrast to Knoche’s
theorem. Let P be the group of the Small groups library of GAP with identification number
32#35, which is the product of a cyclic group of order 4 and a quaternion group of order 8.
Then its derived group is P’ = Cy x Cy, and P’ = ®(P) = Z(P). Nevertheless, there are
elements in the quaternion group with conjugacy class size equal to 4.

Example 2. Let G = (g x Dg be the direct product of a quaternion group and a dihedral
group of order 8. Then every element contained in each factor has conjugacy class size equal to
either 1 or 2, so Theorem[A]applies. However, there are elements in G with conjugacy class size
divisible by 4, and Knoche’s result cannot be applied.

Now we proceed with a key result in the sequel.

Proposition 1. Let G be a group, and let p be a prime. Suppose that N is an abelian minimal
normal subgroup of G, which is a p'-group. Then:

(1) If G is p-nilpotent, and ‘azG’ is not divisible by p* for every element x € N, then
0,(G/NO,(@))] < p.

Q) If K/NO,(G) = 0,(G/NO,(G)) has order p, and P is a Sylow p-subgroup of K, then
Cy(P) =1

Proof. (1) Suppose that the result is not true, and let G be a counterexample of minimal order.
Since the hypotheses are inherited by quotients, we may assume by standard arguments that
O,(G) = 1, and then also ®(G) = 1. Since N is abelian, by a Gaschiitz’s result ([8, 4.4])
N is complemented, that is, G = NS with N NS = 1. We may assume that G/N is not a
p-group, so O,(G/N) = O,(S) # 1 by the minimality of G. Let P be a Sylow p-subgroup
of S (so P is a Sylow p-subgroup of G). Hence it follows O,(S) NZ(P) # 1. Let Z be a
minimal normal subgroup of O,(S) N Z(P). Since S is p-nilpotent, we get S = PL, where
L is normal in S and P N L = 1. It follows that [L, Z] < [L,0,(S)] < LN O,(S) =1, so
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Z <Z(95). Note that Cy(Z) is normal in G = SN. Consequently, by the minimality of IV, we
have either Cy(Z) = 1orCn(Z) = N. If Cy(Z) = N, then Z < Z(G), which implies that
Z < 0p(G) = 1, a contradiction. So we may affirm Cx(Z) = 1, for every minimal normal
subgroup Z of O,,(S) NZ(P).

Now let 1 # 2 € N such that a Sylow p-subgroup of Cg(z), say Py, is contained in P,
so Py = Cp(z). By the hypotheses, xG’p = |G : Cg(z)|, = |P: P| is not divisible by P,
so it follows either |P : Py| = 1 or |P : Py| = p. The first case yields P = Cp(z) and then
x € Cy(Z) = 1, a contradiction. Therefore, we may assume that |P : Py| = p, and so Fj is
normal in P. In addition, since O,(S) NZ(P) is abelian, by the minimality of Z, we have either
PyNZ =1lor PyNZ = Z. The last case gives Z < Cp(z), a contradiction again. Hence,
Pyn Z =1 and it follows that P = Py x Z and |Z| = |P : Py| = p. We only need to see that
Z = 0,(S) to finish the proof.

Note that Z(P) = Z(P) N Py Z = Z(Z(P) N Py), so it follows Z(P) N O,(S) = Z(Z(P) N
Py) N O,(S) = Z(Z(P) N Py N Op(S)). If Z(P) N Py N O,(S) # 1, since it is normal in
0,(S) N Z(P), we can choose a minimal normal subgroup Z; of O,(S) N Z(P) such that
Z1 <Z(P)N PynOy(S). Butthen Z; < Py = Cp(x),so x € Cy(Z1) = 1, a contradiction.
Therefore, we may assume that Z(P) N Py N O,(S) = 1. On the other hand, we have O,(S) =
0,(S)NZPy = Z(PyNO,(S)). If PyNO,(S) is a non-trivial subgroup of P, since it is normal
in P, we have a contradiction with Z(P) N Py N O,(S) = 1. Consequently we get the final
contradiction Z = O,(S). The first assertion is then established.

(2) Let K/NO,(G) = O,(G/NO,(G)), which has order p, and let P be a Sylow p-
subgroup of K. Then K = PN. Moreover, [K, N]is normal in G and [K, N] = [P,N] < N
so, by the minimality of N, we have either [P, N] = 1 or [P, N| = N. The first case leads to
K = P x N, and then P < O,(G), a contradiction. Thus we have [P, N] = N, and by coprime
action it follows C (P) = 1. O

Note that every dihedral group of order 2¢ (for ¢ an odd prime) satisfies the hypotheses of
the above proposition (take p = 2).
Theorem [B| (3) is indeed an immediate consequence of the next more general result.

Theorem 3. Let G = AB be a soluble group, which is the mutually permutable product of the
subgroups A and B. Assume that G is p-nilpotent for a prime p. If p* does not divide ‘azG| for
any p-regular element x € AU B of prime power order, then G /O, (G) has elementary abelian
Sylow p-subgroups.

Proof. Suppose that the result is false and let G be a minimal counterexample. We may assume
by the minimality of G that O,(G) = 1, and therefore ®(G) = 1 too. By Theorem |1} we
can assume that there exists a minimal normal subgroup N of G such that N < A. Moreover,
N is g-elementary abelian, for some prime g # p. Furthermore, since N N ®(G) = 1, by
Gaschiitz’s lemma we may write G = SN, with S NN = 1. Let P be a Sylow p-subgroup
of S (so it is a Sylow p-subgroup of G). Let T' = O,(S). By the minimality of G we have
T = 0,(G/N) # 1, and by Proposition | (1) it holds |T| = p. We may choose 1 # z € N
such that Py = Cp(x) is a Sylow p-subgroup of Cg(z). Since Cn(7') = 1 by Proposition
(2), it holds that Py # P, |P: Py| = p, and PyNT = 1. Hence P = Py x T. Finally,
since Py = P/T = (PN/N)/O,(G/N), which is elementary abelian by the minimality of G,
it follows that P so is, and this leads to the final contradiction. O

Proof of Theorem [B] Note that the quotients of G satisfy the hypotheses. Moreover, if N is a
normal subgroup of G such that N = (N N A)(N N B), then N also inherits the hypotheses.
(Observe that this occurs, for instance, if either N < Aor N < B.)

(1) We first see that G is soluble by induction over |G|. Since every group of odd order is
soluble, we may affirm that p = 2 because ged(p — 1, |G|) = 1. By Theorem|[I] we can assume
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that there exists a normal subgroup M of G such that 1 # M < A. If M < G, then M is
soluble by minimality. Analogously G/M is also soluble, and then so is G. If M = G, then we
apply Theorem 2]

(2) Suppose that the result is false and let G be a counterexample of minimal order. Since the
quotients of G inherit the hypotheses, the class of p-nilpotent groups is a saturated formation,
and G is soluble, we may assume that GG possesses a unique minimal normal subgroup N, with
N = Cg(N) =F(G). If N is a p/-group, since G/N is p-nilpotent by the minimality of G, it
follows that G is p-nilpotent, which is a contradiction. Thus, we may assume that N = O, (G).
By Theorem [I] we can assume without loss of generality that N < A, and that there exists a
minimal normal subgroup £/N of G/N such that either E/N < A/N or E/N < BN/N. In
the first case, we have E < A. In the second case, it follows E = EN BN = N(ENB) <
(ENA)(ENB) < E. Therefore, we have £ = (ENA)(E N B), where the factors are mutually
permutable by Lemma [3] (b). In both cases, E is normal in G and E satisfies the hypotheses.
Hence, if £ < G, then E is p-nilpotent by the minimality of G. Since N = O,(G), we get
that £//N is g-elementary abelian for some prime ¢ # p, so it follows that £ = QN, with @
the normal Sylow g-subgroup of E. Hence, () is normal in G which implies that £ = N, a
contradiction.

Therefore, we can assume that £ = G. So we have G = E = N, where () is an abelian
Sylow g-subgroup of G. By Lemma 2] we may assume that Q = (Q N A)(Q N B), with either
QNA # 1orQNB # 1. Suppose first that QN B # 1, and take 1 # = € QNB. Let £, = (x)N,
which is normal in QN = G. Hence, we have E; = (v)N < (E1 N B)(E1NA) < Ei. If
QN B =1, then G = A and we can choose 1 # z € @, so that £y = (z)N is normal in
QN = G. Thus, in both cases, we have that F; inherits the hypotheses and, if 7 < G, it
follows that it is p-nilpotent. Therefore (x) is a normal Sylow g-subgroup of F4, which is again
a contradiction. Consequently, we may assume that G = FE; = (z) N, for some g-element z.

Note that C(z) is normal in G = (z)N, since N is abelian. By the minimality of IV, it
follows that either Cn(z) = 1 or Cy(x) = N. The second case leads to z € Cg(N) = N,
a contradiction. Hence, it follows that Cg(z) = Cg(z) N N(z) = (x)Cn(z) = (x). Then
|2%| = |G : Ca(z)| = [N(z) : (z)] = |NJ, and so [N| = p, by the hypotheses. Now, we get
that (x) =2 G/N = Ng(N)/Cg(N) is isomorphic to a subgroup of Aut(/N) = C)_1, the cyclic
group of order p — 1. Hence, |(z)| divides both p — 1 and |G/, which contradicts the fact that
ged(p — 1, |G|) = 1. This finishes the proof of the p-nilpotency of G.

(3) It follows from Theorem 3] d

In the particular case when G = A = B we recover:

Corollary 1. ([13, Theorem A]) Let G be a group. For a fixed prime p with ged(p—1,|G|) = 1,
if p* does not divide ‘a:G‘ for any p-regular element x € G of prime power order, then G is
soluble, p-nilpotent and G /O, (G) has elementary abelian Sylow p-subgroups.

Note that if G is the direct product of two symmetric groups of degree 3, then G satisfies
the hypotheses of Theorem [B|for p = 2, but not those of Corollary [Tl Moreover, the assumption
that ged(p — 1, |G|) = 1 is necessary, which can be seen by considering G = As, the alternating
group of degree 5, and the prime p = 3.

We include here a theorem due to Cossey and Wang [|6], which was the initial motivation for
our results, to notify a gap that we have found in one of the statements.

Theorem 4. ([6, Theorem 1]) Let G be a finite group, and p be a prime divisor of |G| such that
if q is any prime divisor of |G|, then q does not divide p — 1. Suppose that no conjugacy class
size of G is divisible by p*. Then G is a soluble p-nilpotent group, and G /O, (G) has a Sylow
p-subgroup of order at most p. Further, if P is a Sylow p-subgroup of G, then P’ has order at
most p, and if P # Op(G), then Op(G) is abelian.
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Remark 1. (a) The statement “G/O,(G) has a Sylow p-subgroup of order at most p” in the
above theorem (and so the corresponding one in [12, Theorem 6]) is not true.

To see this, consider the semidirect product G = [C5 x C5](Sym(3) x C2) (where Sym(3)
is a symmetric group of degree 3), which is the group of the Small groups library of GAP with
identification number 300#25, and the prime p = 2. Then G satisfies the hypotheses of Theorem
but O2(G) = 1 and |G|, = 4. We reveal that this example has been communicated to us by
John Cossey.

(b) The same example shows that the hypotheses in Theorem [B] for the conjugacy class
sizes of the elements x € A U B are not necessarily inherited by the factors, unless they are
(sub)normal in G. The above group G can be factorised as the mutually permutable product of
A = Dyg x Dyp and B = [C5 x C5]C5 (we checked this using GAP). It is clear that G = AB
satisfies the hypotheses of Theorem [B|for p = 2, but there are elements x € A with }xA‘
divisible by 4.

Remark 2. A natural question is how to extend the last assertion of Theorem @] for (mutually
permutable) products. Concerning this, we show the following example:

Let A = Dg be a dihedral group of order 8 and B = [C5]Cy = (a,b | a® =b* =1, a® =
a*), and consider the prime p = 2. Then G = A x B is a mutually permutable product of A
and B, and G is 2-nilpotent. Moreover, 4 does not divide any conjugacy class size of elements
in AU B. However, O2(G) = (02(G) N A)(02(G) N B) = Dg x C4 is not abelian.

Regarding the claim “P’ has order at most p”” in Theorem 4], we get the next extension for
factorised groups, as an immediate consequence of Theorem [A}

Corollary 2. Let G = AB be the product of the subgroups A and B. Assume that G is p-
nilpotent, and that for all p-elements in the factors, p*> does not divide }:UG‘ If P is a Sylow
p-subgroup of G, then P' < ®(P) < Z(P), with P’ elementary abelian of order at most p>.

In particular, from this fact and Theorem [B] we get [12| Theorem 7] as a corollary, taking
G=A=08.
Finally, we prove Theorem[C| which is motivated by [2, Theorem 1.3].

Proof of Theorem|C| Suppose that the result is false and let G be a counterexample of minimal
order. Note that (G cannot be simple. Since the class of p-supersoluble groups is a saturated
formation, we may assume that there exists a unique minimal normal subgroup N of (G, and that
®(G) = 1. By the minimality of G, we get that G/N is p-supersoluble. Since G is p-soluble, it
follows that NV is either a p-group or a p’-group. In the second case, since G/ N satisfies the thesis
by minimality, we get a contradiction. Consequently, we may assume that NV is p-elementary
abelian and we must show that [N| = p. As ®(G) = 1 and G is p-soluble with O,/ (G) = 1, by
[7, A - 10.6] it follows that F(G) = Soc(G) = N = C¢(V), and also N = O,(G). Applying
Theorem we may assume that there exists a minimal normal subgroup Z/N of G//N such that
Z/N < AN/N,so Z = ZNAN = N(ZN A). Since G/N is p-soluble, it follows that Z/N is
either a p-group or a p’-group. The first case leads to Z/N < O,(G/N) = 0,(G/0,(GQ)) =1,
a contradiction. Hence, we may assume that Z/N is a p’-group.

Let @ be a Sylow g-subgroup of Z N A, where ¢ # p is a prime (so () is a Sylow ¢g-subgroup
of Z). Therefore Q = QN/N is a Sylow g-subgroup of Z/N, which acts faithfully on N. If
1#a€ Q< A then N = [N,a] x Cy(a). By the hypotheses, since p? does not divide
‘aG’ = |G : Cg(a)|, then neither divides |N : Cn(a)| = |[N,a]|, so either |[N,a]| = 1 or
[N, a]| = p. The first case leads to a € C¢(N) = N, a contradiction. Thus, Lemma [4] yields
QN/N is cyclic. Since this is valid for all primes g # p, we get by [9, 5.15] that Z /N is soluble.
By the minimality of Z/N, it follows that (Z/N)" = 1 and Z/N is abelian with cyclic Sylow
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subgroups. Consequently Z/N = (zN), where x ¢ N and the order of N is g, for some prime
q # D

We may assume that z € ZNAand Z = N(x). Hence Cy(z) = Cn(Z). By the minimality
of N, we have either Cy(Z) = N orCy(Z) = 1. Thefirstcaseleadstox € Z < C(N) = N,
a contradiction. Therefore, since N = [N, 2] x Cn(z), it follows |[N| = |[N, z]| = p, and this
final contradiction establishes the theorem. O

Example 3. Let G be the symmetric group of degree 4. Then G = AB is a mutually permutable
product, where A denotes the alternating group of degree 4 and B is a Sylow 2-subgroup of G,
which satisfies the hypotheses of Theorem [C] for p = 3.

4 Square-free class sizes

We begin this section with the proof of Theorem

Proof of Theorem D} (1) Suppose that the result is false and let G be a counterexample of
least possible order. Since G supersoluble, G/F(G) is abelian, and so G’ < F(G). Moreover,
the quotients of G inherit the hypotheses and the class of metabelian groups is a formation, so
we may assume that there exists a unique minimal normal subgroup N of G with |[N| = p, for
some prime divisor p of |G|. Hence, F(G) = O,(G) < P, a Sylow p-subgroup of G. Since
G/F(G) is abelian, P = O,(G) = F(G). Hence P = (P N A)(P N B), where P N A and
P N B are Sylow p-subgroups of A and B respectively, by Lemmal[2] Applying Theorem[A] we
have P’ < ®(P) < Z(P), and P’ is elementary abelian of order at most p2. Note that P’ # 1,
because G’ < P.

By Lemma[2] we may consider H a Hall p’-subgroup of G, such that H = (HNA)(HNB),
where HNA and HN B are Hall p’-subgroups of A and B respectively. Moreover, H = G /F(QG)
is abelian. Let x € H N A be a prime power order element. Since H < Cg(z) < G, it
follows by the hypotheses that |2%| < p, and so ®(G) < Ce(z). Thus ®(G) < Ca(H N A),
and analogously for H N B. Consequently we get P/ < ®(P) < ®(G) < Cg(H). Since
P’ < ®(P) < Z(P), it follows P' < ®(P) < Z(G). In particular, ®(G) # 1 # Z(G).

If A,B < P,then G = P and G’ = P’ < Z(G), a contradiction. Hence we have either
HNA # lor HNB # 1. Assume HNA # 1. Let Q 4 be a Sylow g-subgroup of HN A, for some
prime g # p. Note that Q4 £ Z(G), because Z(G) is a p-group. Let Q4 = QAZ(G)/Z(G),
which acts on P = P/Z(G), which is elementary abelian because ®(P) < Z(G) < F(G) = P.
Suppose w = wZ(G) € CQ—A(F). Then [w,y] = 1 forally = yZ(G) € P, so [w,y] € Z(G) <
P. Let k = o(w) denote the order of w. Thus [w,y]* = [w",y] = 1. It follows [w,y] = 1 for
ally € P,sow € Cg,(P) =Cq,(F(G)) = 1. Then CQ—A(P) = 1 and the action is faithful.
Let 1 # @y = a4Z(G) € Qa. Therefore P = [P, @] x Cp(ay), with [P, a,] # 1. Moreover,
[Pq]| = [P Cp(ag)| = [P Cr(ag)| = P+ Crlay)|, which divides [
normal in G. Since H < Cg(aq) and ¢ is a non-central prime power order element in A, it
follows |al| = p, and so |[P,a@g]| = p. Applying Lemma we get that Q4 = @ 4 is cyclic.
Since this is valid for each prime divisor ¢ of |H N A|, we deduce that H N A has cyclic Sylow
subgroups, but it is abelian, so H N A is cyclic. Analogously, if H N B # 1, then it is cyclic.

Let H N A = («). Assume first that 1 # « is a g-element, for some prime ¢, and that
G = P{a). By the above argument, ()Z(G)/Z(G) acts faithfully on P, and |[P,a]| =
|P:Cp(a)] = p. Lety € P\ Cp(a). If [y,a] = 1, then [y,a] € Z(G) < P. Hence
[y, 0] = [y, a°®)] =1, 50 [y,a] = 1 and y € Cp(a), a contradiction. Then [7, @] # 1, and
since |[P,a]| = p, it follows [P, @] = ([y, @]). Therefore we have [P, o] = [P,a] = ([y,a]) =
([y,al), so [P, a] < [P, a)Z(G) = [y, a])Z(G), and then G’ = P'[P, o] < ([y, a|)Z(G) which
is abelian, a contradiction.

, because P is
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Hence, we may assume that, for every prime g, if ¢ is the g-part of «, then P(c,) < G.
Note that P(a,) is normal in G, and P{a,) = (P(og) N A)(P{aq) N B). Therefore, by
the minimality of G, it follows that (P(«,))’ is abelian. Notice that (P(ay)) = P[P, ay],
since P is normal in G. Let K = P'[P,«,], which is an abelian normal subgroup of G,
and let t € [P,oyg] < K. Then Lemma [3]leads to |[Ca(ay)| < [Ca([t, ag)|. If p divides
‘[t, aq]G’ we get a contradiction, because ‘[t, aq]G’ < ‘aqg‘ = p. Hence, P < C¢([t, o)) and
[t,aq] € Z(P), for each t € [P, o). By coprime action, P = [P, o4|Cp(ay). Thus [P, o] =
[P, og]Cp(ey), aq] = [P, g, 0. If k is a generator of [P, g, o), then k = [t, ] € Z(P)
with ¢t € [P, o), so [P, ag| = [P, ag, ag] < Z(P). Since this is valid for each prime divisor ¢ of
the order of H N A = («), we get:

[PvaA] = [P7<O‘Q1> X X <a¢Jt>]: [Pvath]”'[PvafIt] <Z(P).

Analogously, if H N B # 1, then [P, H N B] < Z(P). Since G’ = P'[P,H] = P'[P,H N
A|[P, H N BJ, we get G’ < Z(P). This final contradiction establishes statement (1).

(2) Suppose that the second assertion is not true and let G be a counterexample of minimal
order. We point out that the hypotheses are inherited by every quotient group of G and, by (1),
G’ is abelian. There exists a prime divisor p of |G’| such that G’ does not have any elementary
abelian Sylow p-subgroup. By the minimality of G, we may consider that O,/ (G) = 1. More-
over, since G is supersoluble, then G//F(G) is abelian, and F(G) = O,(G) = P is a normal
Sylow p-subgroup of G such that G’ < P. Using Lemma[2]and Theorem[A] we obtain respec-
tively that P = (P N A)(P N B), and that P’ is elementary abelian with P’ < ®(P) < Z(P).

Let G™ be the nilpotent residual of G. Note that G** # 1; in other case, G is a p-group and
then G’ = P’, a contradiction. Since G < &, it follows that G™ is abelian. By using [7, III
- 4.6, IV — 5.18], we have that G™' is complemented in G, and its complements are precisely
the Carter subgroups of G. Accordingly, G = G™H with H = Ng(H) a nilpotent subgroup
of G and G™ N H = 1. These facts yield G’ = G” x (H N G"), and Cm(H) = 1. On the
other hand, the minimality of G implies that G'/G™ = (H N G") is elementary abelian, and thus
G™is not so. If C (G™) # 1, since Cy(G™) is normal in G, by the minimality of G' we have
(G/Cx(G™)) is an elementary abelian group, but

(G/Cu(G™) = G'Cy(G™)/Cu(G™) = G™Cy(G™)/Cr(G™) = G™,

which is a contradiction. Hence, C (G™) = 1. In particular, we deduce that Z(G) = 1.

By Lemma[2] there exists a Hall p/-subgroup Hy of G such that Hy = (Hy N A)(Hy N B).
Let z € Hy N A be a non-trivial element of prime power order. Since Hy < Cg(x), it follows
that |2¢| < p, and so ®(G) < Cg(z). Thus ®(G) < Cg(Ho N A), and analogously for
Hy N B. Consequently, we get P’ < ®(P) < ®(G) < Ci(Hp). Since P’ < ®(P) < Z(P)
and G = PH,, it follows P’ < ®(P) < Z(G) = 1, which implies that P is elementary abelian,
the final contradiction.

(3) Assume that the result is false and take G a counterexample of minimal order. Consider
a prime p such that [F(G)’|, > p?. By minimality, we can affirm that O,/ (F(G)) = 1. Since G
is supersoluble, we get that F(G) = O,(G) = P is a normal Sylow p-subgroup of G. Then, we
apply both Lemma 2]and Theorem [A]to get the final contradiction. 0

Example 4. Let G = A x B be the direct product of two symmetric groups of degree 3. Then
G is supersoluble, and every element contained in each factor (not only those of prime power
order) has square-free conjugacy class size, but neither the derived subgroup G’ nor G/F(G)
are cyclic, in contrast to [6, Theorem 2].
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Example 5. In view of [6, Theorem 2], it is natural to wonder if we can affirm in the above
result that the Sylow p-subgroups of G’ have order at most p?. This fact is not further true, as
we show:

Let G = A x B, where A = D14 is a dihedral group of order 14, and B = D14 x [C7]C5 is
the direct product of such a dihedral group and a semidirect product of a cyclic group of order 7
and a cyclic group of order 3 (B has identification number 294#9 in the Small Groups library
of GAP). Then G is supersoluble, and it satisfies that all prime power order elements contained
in each factor have square-free conjugacy class size, but G’ has order 7°.

Now we proceed with the proof of Theorem [E]

Proof of Theorem [El Considering the smallest prime divisor of |G| and Theorem [B| we con-
clude that G is soluble. Hence, it is p-soluble for each prime divisor p of |G|. Applying Theorem
we get that G is p-supersoluble for each prime that divides |G|, so it is supersoluble.

Now we prove the second assertion by induction on |G|. Let p be an arbitrary prime, and P
be a Sylow p-subgroup of G. We want to show that PF(G)/F(G) = P/0O,(G) is elementary
abelian. Since G is supersoluble, we have that G/F(G) is abelian. Moreover, we may assume
by induction that O,(G) = 1. Therefore, we have that F(G) < H < G, where H is a Hall
p’-subgroup of G. Consequently, H is normal in G and G is p-nilpotent. Finally, by Theorem
the result is established. O

When considering in the above theorem all p-regular elements in the factors, we get as a
corollary:

Corollary 3. ([2, Corollary 1.5]) Let the group G = AB be the mutually permutable product of
the subgroups A and B. Suppose that for every prime p and every p-regular element x € AU B,
‘xG‘ is not divisible by p?. Then G is supersoluble.

Example 6. Consider G = A x B, where A = Sym(3) is a symmetric group of degree 3, and
B = Sym(3) x Dy is the direct product of such a symmetric group and a dihedral group of
order 10. Then G satisfies the hypotheses of Theorem [El However there exists some 2-regular
element in B, not of prime power order, such that 4 divides its conjugacy class size, so Corollary
[3] cannot be applied.

In the particular case when A and B are normal in (G, we obtain [[12} Proposition 9].

Corollary 4. Let A and B be normal subgroups of G such that G = AB. Suppose that |xG‘ is
square-free for every element x of prime power order of AU B. Then G is supersoluble.

This development has its origins in the contributions of Chillag and Herzog [5, Theorem
1], and Cossey and Wang [[6, Theorem 2]. Our next result Theorem E] and Theorem @] can be
considered somehow extensions of the ones above for (mutually permutable) products. In fact,
Theorem [ provides further information on the Sylow subgroups of G /F(G).

Proof of Theorem Suppose the result is not true and let G be a counterexample of least
order possible. Then if P is a Sylow p-subgroup of G, we have |P/O,(G)| > p®. We can
assume by the minimality of G that 0,(G) = 1 = ®&(G) = Z(G), so |P| > p3. By Lemma
2| we can choose P = (P N A)(P N B), with P N A and P N B Sylow p-subgroups of A and
B respectively. By Theorem [El we have that GG is supersoluble and G/F(G) has elementary
abelian Sylow subgroups. In particular, PF(G) is normal in G. Hence Lemma [3| (b) asserts
that L = (PF(G) N A)(PF(G) N B) is normal in G, and it is a mutually permutable product.
Moreover, P = (PN A)(PNB) < (PF(G)NA)(PF(G)NB) = L < PF(G). If we suppose
L < G, by the minimality of G it follows | P/O,(L)| = |P| < p? a contradiction. Thus, we
may assume L = G = PF(G), and so G is p-nilpotent.
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Let N be a minimal normal subgroup of G. We can assume without loss of generality
that it is contained in A by Theorem |1} Note |N| = ¢ # p. By Proposition 1| (1), it follows
|0,(G/N)| < p, and by the minimality of G we have |(PN/N)/O,(G/N)| < p*. Since
P = PN/N, we may assume |P| = p?. As ®(G) = 1, [7, A - 10.6 Theorem] leads to
F(G) = Soc(G) = C¢(F(G)). If N is the unique minimal normal subgroup of G, then P =
N¢(N)/Cq(N) which is isomorphic to a subgroup of Aut(C,) = Cy_1, so P is cyclic and
elementary abelian, which implies that its order is p, a contradiction.

Now we denote by 7" a complement of NV in F(G), so T' # 1. It follows F(G) = Soc(G) =
N x T. We denote Q1 = O,(PN) and Q2 = O,(PT). Since PN = G/T (and PT = G/N),
by the minimality of G' we may affirm Q1 # 1 # (2. On the other hand, since [O,(PN), N] <
O,(PN)NN =1, wehave ; < C; = Cp(N) (analogously Q2 < Cy = Cp(T)). In addition,
it follows C1 N Cy < Cp(F(G)) < Ce(F(G)) < F(G),s0 C1 N Cy = 1. Let Py be a Sylow p-
subgroup of C(N) such that Py < P. Hence Py = C; = Cp(N). In addition, since N = (x)
where x is a g-element contained in A, by the hypotheses it follows that p?> does not divide
‘xG’p = |G : Cg(x)], = |P : C1|. Moreover, since |P| = [P : C1|-|Cy| = p3, we may assume
|C1| > p?, and since 1 # Qo < Cs, we have |Cy| > p. Accordingly |C1Cs| = |Cy| - |Ca| > p3,
and since P is abelian, we have necessarily P = C; x C5. This leads to

G = PF(G) = C1CyNT = (C1T) x (CoN).

Suppose TN A# l,andletl #y e TNA<LCiTNA. Letl #x € N < A. Then since
xy € F(G)NAand F(G) is abelian, we have that xy is a p-regular element, so by the hypotheses
p? does not divide ’(:Uy)G ! As G is a direct product, we have ‘(J:y)G’ = ’xG} : ’yG | In addition,
(N x C1T) < Cg(z) < G, and therefore |2C| divides |G : (C1T x N)| = |C3| which is a p-
number, SO ‘a:G‘ = p (recall that Z(G) = 1), and analogously }yc‘ = p, a contradiction. We
conclude T NA=1.

If F(G) = K x M with M normal in G and K a minimal normal subgroup of G contained
in B, by similar arguments we can deduce M N B = 1. This means, in particular, that neither A
nor B can contain two distinct minimal normal subgroups of G.

On the other hand, since F(G) is the unique p’-Hall subgroup of G, Lemma [2| leads to
F(G) = (F(G)n A)(F(G) N B). Moreover, since F(G)NA=NTNA=N(TNA)=N,it
follows F(G) = N(F(G)NB). Note that (F(G)NB)NN < N with |[N| = g so we distinguish
two cases: either (F(G) N B)N N = N or (F(G) N B) N N = 1. In the first case F(G) =
F(G)N B < B. Thus there exists another minimal normal subgroup contained in B and distinct
of N, a contradiction. Hence we conclude (F(G) N B)N N =1s0F(G) = N x (F(G) N B).

Now suppose that F(G) is a g-group. Then, since F(G) = Soc(G), it follows that F(G) is
g-elementary abelian. In addition, P N A acts faithfully over F(G). Let 1 # x € PN A < A,
then F(G) = [F(G), 7] x Cp(g)(z), with Cp(y(7) < F(G) since Z(G) = 1 and P is abelian.
By the hypotheses, ¢* does not divide ||, and therefore it does not divide [F(G) : Cr)(2) .
Thus we may affirm |[F(G),z|| = ¢. By Lemma 4| we conclude that P N A is cyclic, and
analogously P N B is cyclic too. So they are both cyclic and elementary abelian, that is, they
both have order p. Thus |P| = |(P N A)(P N B)| < p?, a contradiction.

Hence we may suppose that there exists a prime r # ¢ such that r divides |F(G)|. Let1 # R
be a Sylow r-subgroup of F(G) N B (so it is a Sylow r-subgroup of F(G)). Then 1 # R =
0O,(G) < B, and since F(G) = Soc(G), necessarily we have that O,.(G) is the product of the
minimal normal subgroups of G with order r. Let M < B be one of those minimal normal
subgroups. Arguing exactly in the same way as with N, it follows F(G) = M x (ANF(G)).
But ANF(G) = N so F(G) = N x M with both minimal normal subgroups of G, N < A
and M < B. Let P; be a Sylow p-subgroup of Cg(N) = Cg(z) such that P, < P. Then
by the hypotheses we have ‘xG}p = |P: Pi| < p. Since |P| = p?, it follows |P;| > p?.
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However, P; is normal in PN so P; < O,(PN) = O,(G/M), and by Proposition |1{ (1) we
have |0,,(G/M)| < p. This final contradiction establishes the theorem. O

Example 7. Under the hypotheses of Theorem [E] (even under those of Theorem [D), it is not
possible to assure that G /F(G) has Sylow p-subgroups of order at most p?, as the following
example shows:

Let {p1,p2,...,pn} be a finite set of pairwise distinct odd primes, and let G = D), x
Doy, x -+ x Doy, be the direct product of dihedral groups of order 2p;, 1 < ¢ < n. Then
G = A x B is a mutually permutable product of A = Dy, and B = Day, X --- X Doy, , and
each prime power order element contained in the direct factors has square-free conjugacy class
size. However, G/F(G) has order 2.
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It is impossible to overstate the importance of Sylow’s
theorems in the study of finite groups. Without it the sub-
Jject would not get off the ground.

— ISRAEL NATHAN HERSTEIN
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Abstract

Let the group G = AB be the product of the subgroups A and B. We determine some
structural properties of G when the p-elements in A U B have prime power indices in G,
for some prime p. More generally, we also consider the case that all prime power order
elements in A U B have prime power indices in G. In particular, when G = A = B we
obtain as a consequence some known results.
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1 Introduction

Along this paper all groups considered are finite. Throughout the last decades, the impact
of conjugacy class sizes (also called indices) over the structure of finite groups has been highly
investigated. Simultaneously, several authors have studied groups factorised as the product of
two subgroups, in particular when those factors verify certain relations of permutability (see [4]
for a detailed account on this subject). In this setting a main problem is how to infer structural
properties from the factors to the whole group. The purpose of this paper is to present new
achievements in the study of finite groups which combine both current research lines. Although
the literature in this context is sparse, a first approach can be found either in [3], [10]], or [12],
where square-free class sizes were analysed. In this line, our concrete goal here is to obtain
some structural facts about a factorised group, provided that the indices of certain prime power
order elements in the factors are also prime powers.

One of the usual troubles in the framework of conjugacy classes is that, a priori, it is not
guaranteed that the indices of the elements in a subgroup divide the corresponding indices in
the whole group. Surprisingly, under our hypotheses, we have been able to prove that this
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happens for the considered elements in the factors of a factorised group (see Proposition D). We
also highlight that, in our development, we do not use any permutability property between the
factors, in contrast to what occurs in the three above cited papers.

The origin of our research can be located in the manuscript of Baer [2]], where the main result
characterises all finite groups such that every prime power order element has prime power index.
In 1990, Chillag and Herzog ([8]]) analysed groups all of whose conjugacy classes have prime
power size. Later on, these studies were enhanced by Camina and Camina in [[6]. Instead of
imposing the prime power index condition on all (prime power order) elements, they restricted
focus only to those elements with order a p-number for a fixed prime p. Next, in 2005, Berkovich
and Kazarin ([5]) addressed also several problems about prime power indices in finite groups. In
particular, in both papers [5] and [6], two alternative shorter proofs of the aforementioned Baer’s
characterisation are provided.

We will use the following terminology: for a group G and an element 2 € G, we call ig(z)
the index of x in G, that is, ig(z) = |G : Cg(x)| is the size of the conjugacy class . For a
natural number n, we denote by 7(n) the set of prime divisors of n. In particular, 7(G) is the
set of prime divisors of the order of G. If p is a prime, then the set of all Sylow p-subgroups
of G is represented by Syl, (G), and Hall, (G) denotes the set of all Hall 7-subgroups of G
for a set of primes 7. A group such that G = O;(G) x O (G) is said to be m-decomposable.
Given a group G = AB which is the product of the subgroups A and B, a subgroup S is called
prefactorised (with respect to this factorisation) if S = (SN A)(SN B) (see [1]). The remaining
notation and terminology is standard in this topic, and it is taken mainly from [9]]. We also refer
to this book for details about classes of groups.

According to the paper of Camina and Camina [6], given a group G and a prime p € 7(G),
we call G a p-Baer group if every p-element has prime power index (hereafter, the natural
number 1 is a power of every prime). Moreover, if each prime power order element has prime
power index, G is called a Baer group. Inspired by those definitions, we introduce the following
concepts for factorised groups:

Definition. Let G = AB be the product of the subgroups A and B, and let p € 7(G). We say
that:

e (G = ABis ap-Baer factorisation if i (x) is a prime power for every p-element z € AUB;

e G = AB is a Baer factorisation if i;(z) is a prime power for all prime power order
elements x € AU B, i.e., if itis a p-Baer factorisation for all p.

Clearly, any central product of two (p-)Baer groups provides a (p-)Baer factorisation.
Our first outcome is to determine structural information of a finite group G' which has a
p-Baer factorisation:

Theorem A. Let G = AB be a p-Baer factorisation, and let P € Syl,, (G). Then:

(1) G/Cc(0p(G)) is p-decomposable.

(2) Both PF(G) and PO,/ (G) are normal in G. In particular, G is p-soluble of p-length 1.

(3) The Sylow p-subgroup of G/F(QG) is abelian.

(4) P is abelian if and only if O,(G) so is.

BG)IfP=(PNA)(PNB)and PN X % C;(0,(Q)) for some X € {A, B}, then PN X
centralises every Hall p'-subgroup of G.

(6) If the Sylow p-subgroups of A and B are non-abelian, then G is p-decomposable.

Besides, we get additional information based on the primes appearing as indices of the p-
elements in the factors of a p-Baer factorisation:
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Theorem B. Let G = AB be a p-Baer factorisation, and let P € Syl, (G). Then there exist
unique primes q and r such that ic(x) is a q-number for every p-element x € A, and i (y) is
an r-number for every p-element y € B, respectively. (Possibly p € {q,r} orq=r.)
Moreover, P < Cg(Oyq,y (F(G))), and POy (G)O,(G) is normal in G. Further:

() Ifqg =1 = p, then G is p-decomposable.

Q) Ifp ¢ {q,r}, then P is abelian.

In the particular case when G = A = B in the above result and Theorem[A](2), we partially
recover [6, Theorem A] due to Camina and Camina (see Section [3] Corollary [3).

Afterwards, we impose the prime power index condition on all prime power order elements
in the factors (that is, we consider groups with a Baer factorisation). We start proving the main
theorem of Baer’s paper [2] from our results on p-Baer factorisations when G = A = B (see
Theorem [I).

Then our first result for a non-trivial Baer factorisation is the next consequence of Theorem

At

Corollary C. If G = AB is a Baer factorisation, then:
(1) G/F(G) is abelian.
(2) G has abelian Sylow subgroups (that is, G is an A-group) if and only if F(G) is abelian.
(3) Set 0 := {p € m(G) | Ay € Syl,(A) and B, € Syl, (B) are non-abelian}. Then
G = 0,(G) x O,/ (G) with O,(G) nilpotent.
(4) If all Sylow subgroups of A and B are non-abelian, then G is nilpotent.

It is worthwhile to wonder whether the factors of a Baer factorisation are Baer groups. We
have obtained that the answer is positive, in relation to the above comments on the divisibility
of the indices:

Proposition D. Let G = AB be a Baer factorisation. Let x € X be a prime power order
element, where X € {A, B}. If iq(x) is a g-number for some prime q, then ix(x) is also a
q-number. In particular, it follows that A and B are Baer groups.

Consequently, the structure of A and B in a Baer factorisation G = AB is well-known.
Nevertheless, we cannot expect to get an analogous characterisation as Baer’s one for Baer
factorisations, even for direct products G = A x B (see Example 2] (i)).

At best, some arithmetical and structural information about Baer factorisations arises locally,
i.e., prime by prime:

Theorem E. Let G = AB be a Baer factorisation. For a prime p, and given P € Syl (G):

(1) If P is not abelian, then |G : Cq(P)| is a {p, q}-number, for a prime q. (Possibly, p = q.)

(2) If P is abelian, then |G : Cq(P)| is a {q,r}-number, for some primes q and r, both
distinct from p. (Possibly ¢ = r.)

Further, G/Cg(0,(Q)) is p-decomposable with abelian p-complement, and the p-comple-
ment has order divisible by at most two primes.

Finally, we have attained a characterisation of Baer factorisations through the indices of the
centralisers of the Sylow subgroups of the factors:

Theorem F. Let G = AB be the product of the subgroups A and B. Then this is a Baer
factorisation if and only if |G : Ci(Ap)| and |G : C(By)| are prime powers, for A, € Syl,, (A)
and B, € Syl,, (B), and for every prime p.

In Section[3|we prove Theorems[A]and [B] which refer to prime power indices of p-elements,
for a fixed prime p. The remaining stated results, which consider prime power order elements
(for all primes), are proved in Section We illustrate the scope of our research with some
examples.
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2 Preliminary results

We will use the following elementary properties frequently, sometimes without further reference.

Lemma 1. Let N be a normal subgroup of a group G, and let p be a prime. Then:
(@) iy (x) divides ig(x), for any © € N.
(b) ig/n(xN) divides ig(x), for any x € G.
(¢) IfxN is a p-element of G /N, then there exists a p-element x1 € G such that tN = x1N.

The next result about Sylow subgroups of factorised groups will be useful along the paper.
It is a convenient reformulation of 1, 1.3.3].

Lemma 2. 1} 1.3.3] Let G = AB be the product of the subgroups A and B. Then for each
p € m(G) there exists P € Syl,, (G) such that P = (P N A)(P N B), with PN A € Syl,, (A)
and PN B € Syl, (B).

Remark 1. We call attention to some facts on Sylow subgroups of factorised groups which will
be used sometimes with no citation. Let G = AB be the product of the subgroups A and B, and
let p be a prime.

(1) Consider a Sylow p-subgroup P = (P N A)(P N B) of G such that PN A € Syl,, (A)
and PN B € Syl, (B). Then imposing arithmetical conditions on the indices of the p-elements
in A U B is equivalent to impose them on the indices of the elements in (P N A) U (P N B),
because of the conjugacy of Sylow p-subgroups.

(2) There exist easy examples which show that not every prefactorised Sylow p-subgroup
P = (PN A)(Pn B) verifies that PN A € Syl, (A) and PN B € Syl, (B).

(3) In general, O, (G) does not need to be prefactorised. However, if P = (PNA)(PNDB) €
Syl, (G) with either PN A < F(G) or PN B < F(G), then by the Dedekind law we get that in
this case O, (() is prefactorised.

The following result is due to Wielandt.

Lemma 3. [2, Lemma 6] Let G be a finite group and p € ©(G). If x € G is a p-element and
ic(x) is a p-number, then x € Op(Q).

In [6]], Camina and Camina proved the next proposition, which extends the above lemma
and a well-known result of Burnside about the non-simplicity of groups with a conjugacy class
of prime power size.

Proposition 1. [6, Theorem 1] Let G be a finite group. Then all elements of prime power index
lie in Fo(G), the second term of the Fitting series of G.

Finally, the lemma below, which is due to Berkovich and Kazarin, is a key fact in the proof
of Theorem

Lemma 4. [5, Lemma 4] Let G be a finite group, and let p be a prime. Suppose that the p-
elements x,y € G \Z(G) are such that i (x) and ic(y) are powers of distinct primes, and that
ic(xy) is also a power of a prime. Then (z,y)® < 0,(G) and ic(ry) = max{ig(z),ic(y)}
is a power of p, so a Sylow p-subgroup of G is non-abelian.

3 Groups with a p-Baer factorisation

In this section we will prove Theorems |A| and |B| via a series of results. Firstly, we show two
facts about p-decomposability in p-Baer factorisations.
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Lemma 5. Let G = AB be the product of the subgroups A and B, and let p be a prime. Then
iG(x) is a p-number for each p-element x € AU B if and only if G is p-decomposable.

Proof. Only the necessity of the condition is in doubt. Let P = (P N A)(P N B) € Syl, (G),
which exists in virtue of Lemma The hypotheses and Lemma lead to x € O,(G), for every
xz € (PNA)U(PnN B). It follows that P is normal in G and so G = O,(G)H, with H a Hall
p’-subgroup of G.

It remains only to prove that [H,O,(G)] = 1. We may assume O,(G) # 1, so there exists
a minimal normal subgroup N of G such that N < O,(G). Since the class of p-decomposable
groups is a saturated formation and the hypotheses hold for quotients of G, it follows by induc-
tion on |G| that NV is the unique minimal normal subgroup of G and N = F(G) = C¢(N) =
O,(G) (see [9, A - 15.2, 15.8]). Consequently, since each element in (O,(G)NA)U(O,(G)NDB)
has index a p-number and O,,(G) is abelian, it follows that all of them are central in G. This fact
yields O,(G) = (0,(G) N A)(0,(G) N B) < Z(G) and the claim is proved. O

Corollary 1. If G = AB is a p-Baer factorisation, then G /C(0,(G)) is p-decomposable.

Proof. We can assume 1 # O,(G) £ Z(G). Denote G := G/C¢(0,(G)). If G is a p/-group
the result follows, so let 1 # T € A U B be a p-element. Then we can consider a p-element
x € AUB suchthat T = 2C;(0,(G)), and ig(x) is a prime power. But since z ¢ C(0,(G)),
it follows that i () is a power of p, and i5(7) so is. Finally, the previous lemma applies. ~ [J

The lemma below provides the proof of Theorem [A](2).

Lemma 6. Let G = AB be a p-Baer factorisation, and let P € Syl,, (G). Then:
(a) PF(G) is normal in G.
(b) POy (G) is normal in G. In particular, G is p-soluble of p-length 1.

Proof. (a) Let P = (P N A)(P N B) € Syl, (G), which exists by virtue of Lemma 2| By
Proposition|l]and our assumptions, we have z € Fy(G) for every element z € (PNA)U(PNB).
Therefore P < Fo(G), so PF(G)/F(G) = O,(G/F(G)) and PF(G) is normal in G.

(b) We proceed by induction on |G|. If N := O,/(G) = 1, then the result follows by (a).
Hence we may assume N # 1. Since G := (/N inherits the hypotheses by Lemma |1} then
PO, (G) = PN/N is normal in G/N, and the claim is proved. O

Note that the existence of Hall p’-subgroups in p-Baer factorisations is guaranteed as a con-
sequence of the p-solubility of such groups. Indeed, if G = AB is a Baer factorisation (i.e., it is
p-Baer for all p), then it follows that G/F(G) is nilpotent. This fact will be strengthened later
(see Proposition [C)).

Proposition 2. Let G = AB be a p-Baer factorisation, and let P = (PNA)(PNB) € Syl, (G).

(a) If for some X € {A, B} it holds that PN X £ F(G), then PNX < C¢(0,(GQ)), PNX
is abelian, and [PN A, PN B] = 1.

() If both PN A £ F(G) and P N B & F(G), then P is abelian.

(c) The Sylow p-subgroup of G /F(QG) is abelian.

(d) P is abelian if and only if O,(G) so is.

(@) If PN X &£ Cq(0,(G)) for some X € {A,B}, then PN X < Cq(H) for every
H € Hally (G). In particular, this holds when P N X is non-abelian.

Proof. (a) Let 2 € (PN X) N\ O,(G). Then ig(x) is a power of a prime ¢ # p by Lemma 3] so
z € Cq(0,(G)). Now lety € O,(G)NX. Thenzy € (PNX)N0,(G),s0zxy € C;(0,(GQ))
and y € Cg(0,(G)). It follows P N X < C(0,(G)) and the first claim is proved.

Now we show that P N X is abelian. By Lemma [6] (b), we get O,/(G) # 1, and for all
g € G it holds that P9 < (PO, (G))? = POy (G), so there exists t; € O, (G) such that
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P9 = Pls. Letx € (PN X) \ O,(G). By the assumptions and Lemma we have that ig(x)
is a power of a prime r # p, so there exists P9 = P's < C(z). Hence z € C(P)0, (G) <
Ca(P N X)O,y(G). On the other hand, if + € O,(G) N X, then z € Cg(P N X) by the
first paragraph. It follows P N X < Cg(P N X)Oy(G), and [PN X, PNX] < PN[PN
X, 0,(@)[PNX,Ce(PNX) < PNO,(G)=1.

Finally, we prove that [P N A, P N B] = 1. Take for instance X = A. If PN B < F(G),
then the claim is clear since P N A < C(0,(G)). We may assume P N B &« F(G), and so
0,(G) < C(P N B). Moreover, as in the previous paragraph, if z € (PN A) \ O,(G), then
z € Cq(PNB)Oy(G). Hence PN A< Cg(PNB)Oy(G),and [PNA,PNB]=1.

(b) It is a direct consequence of (a).

(¢) The uniqueness of the Sylow p-subgroup of G/F(G) follows from Lemma [] (a). If
both PN A £ F(G) and PN B & F(G), then P is abelian by (b), and so is PF(G)/F(G).
Finally, if for instance P N A £ F(G) and P N B < F(G), then P N A is abelian by (a) and
PF(G)/F(G) = (PN A)F(G)/F(G) is also abelian.

(d) Let us show that if P is not abelian, then O, (G) cannot be abelian. Applying (b), we can
assume for instance that P N A < F(G) and P N B £ F(G). Then by (a) we have that P N B
is abelian and [P N A, P N B] = 1. Therefore P N A = O,(G) N A cannot be abelian, and so
O,,(G) is not abelian either.

(e) By (a) it holds that PN X = O,(G) N X. Letz € (PN X) \ C(0,(G)). Then
0,(G) £ Cg(x), and ig(x) is a power of p. Since x € O,(G), then C;(0,(G)) < Cq(x),
s0 |G/Cq(0,(G)) : Cq(x)/Cq(0,(G))| = |G : Cg(x)|, which is a power of p. By Coro-
lary (1} G/Cq(0,(G)) is p-decomposable, and its unique Hall p’-subgroup is contained in
Ca(2)/Cq(0p(G)). Thus if H € Hall,y (G), we deduce HY < Cg(x) for every g € G,
and forall z € (PN X) \ Cg(0,(G)). On the other hand, giveny € P N X N Cx(0,(G)), if
z e (PNX)NCq(0p(G)), thenzy € (PNX)\Cg(0,(G)),so HY < Cg(xy) NCq(z) =
Ca(z) NCa(y) < Cg(y). Therefore HY < Cq(P N X) for all g € G, and the first claim
follows.

Finally, if P N X is non-abelian, then by (a) PN X < O,(G) andso PNX £ C(0,(G)).

O

Corollary 2. Let G = AB be a p-Baer factorisation. If the Sylow p-subgroups of A and B are
non-abelian, then G is p-decomposable.

Proof. It is sufficient to take P = (P N A)(P N B) € Syl, (G) with PN A € Syl, (A) and
PN B € Syl, (B) and to apply the last statement of the above proposition. O

If we combine the previous results, we get the proof of Theorem [A]

Proof of Theorem [Al The statement (1) is exactly Corollary [[] Lemma [6] yields (2), whilst
claims (3), (4) and (5) are Proposition [2] (c), (d) and (e), respectively. Corollary 2] gives the last
assertion. ]

In the remainder of the section, we focus on proving Theorem [B]

Lemma 7. Let G = AB be a p-Baer factorisation. Let P = (P N A)(P N B) € Syl, (G). If
for some X € {A, B} it holds P £ C(0,(G) N X), then |G : C¢(P N X)| is a p-number.

Proof. If P N X & F(G), then by Proposition [2| (a) we get a contradiction. Therefore P N
X = 0,(G)N X. Since P £ C;(0,(G) N X), we have that either P N X is non-abelian or
[PNX,PNY]#1where {A, B} = {X,Y}. Inthe last case, P N'Y < F(G) by Proposition
(a), and therefore P N X & C(0,(G)). Thus we can apply in both cases Proposition [2| (e)
to deduce P N X < Cg(H), for every H € Hally (G). It follows that |G : Cg(P N X)|is a
power of p. O
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Proposition 3. Let G = AB be a p-Baer factorisation, and let P € Syl,, (G). Then:

(a) There exist unique primes q and r such that iG(x) is a q-number for every p-element
x € A, and ig(y) is an r-number for every p-element y € B, respectively. (Possibly p € {q,r}
orq=r.)

(b) P < Cg(Oyyry (F(G))) and PO4(G)O,(G) is normal in G.

(c)Ifp ¢ {q,r}, then P is abelian.

Proof. By Lemma we can assume that P = (P N A)(P N B) where PN A € Syl, (A) and
PN B e Syl,(B):

(a) We argue for instance with A. If the result is false, then there exist p-elements a1, a2 € A
such that 1 # ig(a1) and 1 # ig(ag) are relatively prime. By the conjugacy of the Sylow p-
subgroups in A, we may assume aj,a2 € P N A, and ig(ajaz) is a prime power. By Lemma
ig(a1a2) = max{ig(a1),ig(az)} is a p-number, and a1, as € O,(G) N A. Let assume that
max{ig(a1),ig(az2)} = ig(a1). Since a; is not central, we get P £ C(0,(G) N A), and
Lemma [7]leads to as € Z(G), the final contradiction.

(b) By () Ogy,y/(F(G)) < Cq(P N A)NCq(P N B) = Cq(P). Applying Lemma 6] (a),
we deduce that PO, (G)0O,(G) is normal in G.

(c) Let suppose that P is not abelian. Then by Proposition 2/ (d), P N X £ Cg(0,(G))
for some X € {A, B}. Finally, we deduce from Proposition [2| (e) that |G : Cq(P N X)| is a
p-number, and so p € {q,r}. O

Example 1. The primes ¢ and r in the previous result may not be equal. Let G = A x B be
the direct product of a symmetric groups A = 33 of three letters and a dihedral group B = Dy
of order ten, and consider the prime p = 2. Clearly, that factorisation is 2-Baer. Nevertheless,
the 2-elements x € A have i () = 3 and the 2-elements y € B have i(y) = 5. Moreover, if
P € Syl, (G), neither PO3(G) nor PO5(G) are normal in G.

Finally, we are ready to prove Theorem [B]

Proof of Theorem The existence of the unique primes g and r follows from Proposition
(a). Then, the statement (1) is Lemma 5] and the remaining assertions follow by Proposition [3]
(b) and (c). L]

If we take the trivial factorisation G = A = B in Theorems[A](2) and[B] we partially recover
the main theorem of Camina and Camina in [6]] about p-Baer groups.

Corollary 3. [6, Theorem A] Let GG be a p-Baer group for some prime p. Then:
(a) G is p-soluble with p-length 1, and
(b) there is a unique prime q such that each p-element has q-power index.
Further, let () € Squ (G), then
(©) if p = q, P is a direct factor of G, or
(d) if p # q, P is abelian, and PO,(G) is normal in G.

Finally, we emphasise the relation between the primes appearing as indices of the p-elements
in the factors of a p-Baer factorisation.

Lemma 8. Let G = AB be a p-Baer factorisation. Let assume that there exist non-central
p-elements a € A and b € B, so that i¢(a) is a g-number and i (b) is an r-number, for some
primes q and r.

Let assume that q # p and the factorisation is also q-Baer. Then:

(a) If the g-elements in AU B have indices an s-power, then s € {p,r}.

(b) Moreover, if ¢ = r and s is the prime in (a), then s = p and a Hall {p, q}-subgroup of G
is normal with abelian Sylow subgroups.
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Proof. (a) Take P = (PN A)(P N B) € Syl, (G) such that PN A € Syl (A) and PN B €
Syl, (B). We may assume thata € PN Aand b € PN B. Suppose that s # p, and we claim
that s = r. If s = ¢, then by Lemma [5| we obtain that G is g-decomposable, which contradicts
that 1 # i (a) is a g-number and a is a ¢’-element. Hence, s ¢ {p, ¢}. Now if we assume also
that s # r, then 7(i¢(2)) N {p, ¢, 7} = 0 for any g-element z € AU B. Since PO, (G)0,(G) is
anormal {p, ¢, 7 }-subgroup of G by Proposition (b), given Q = (Q N A)(Q N B) € Syl (G)
it follows PN A < PO, (G)0,(G) < Ca(QNA)NCe(QNB) = Ce(Q). But this contradicts
again that ig(a) # 1 is a g-number.

(b) By (a), we deduce s € {p,r}. As above, since ¢ = r we get s = p because of Lemma
As a consequence, Proposition [3[ (b) yields that PO,(G) and QO,(G) are normal in G,
for P € Syl, (G) and Q € Syl, (G). Hence PQO,(G)0,(G) = PQ < G, and it is a Hall
{p, q}-subgroup of G. Finally, the Sylow subgroups of P() are abelian because of Proposition
Bl (c). d

If we choose the trivial factorisation G = A = B in the above result, we recover:

Corollary 4. [6, Lemma 5] Let G be a p-Baer group and a q-Baer group for primes p # q.
Suppose that all p-elements have q-power index. Then all q-elements have p-power index.

4 Groups with a Baer factorisation

In the sequel, the prime power index condition is imposed on all prime power order elements in
the factors, that is, we consider Baer factorisations.

We start this section by proving Baer’s theorem ([2]]) as a consequence of the results obtained
in Section [3] when we consider the trivial factorisation G = A = B.

Theorem 1. [2| Section 3 - Theorem] Let G be a finite group. Each element x € G of prime
power order has prime power index if and only if

G:G1XG2X--~XGT,

where G and G have relatively prime orders for i # j, and if G; is not of prime order, then
|7(G;)| = 2 and its Sylow subgroups are abelian.

Proof. The converse is clear. Let P € Syl, (G). If P is not abelian, then P is a direct factor of
G by Corollary 2] Therefore, all non-abelian Sylow subgroups of GG are direct factors of it.

Now suppose that P is abelian and non-central in G. Hence there is a p-element x € G
such that 1 # ig(x) is a g-number, for some prime g # p. Necessarily, by Lemma there is
a g-element y € G such that 1 # ig(y) is a ¢’-number. For some Q € Syl, (G), Lemma (b)
yields that PQ is a normal Hall {p, ¢ }-subgroup of G, and Q) is also abelian.

Take a prime r ¢ {p,q} and R € Syl, (G). We may assume that R is abelian and non-
central. Thus, for each element z € R, we deduce 7(ig(z)) N {p, ¢} = 0 by virtue of Lemma
(b) again. Consequently PQQ < Cq(R). Since this is valid for all primes r ¢ {p, ¢}, the
{p, q}-decomposability of G follows. The result is now established. ]

Remark 2. The results stated in Section [3| can be also used to give an alternative proof of [8,
Theorem 2] due to Chillag and Herzog, avoiding Theorem I}

Proof of Corollary[C} We deduce the first two statements from a direct application of Theorem
[A](3) and (4), respectively. The final two assertions follow from Theorem [A] (6). ]

Next we are proving that the factors of a Baer factorisation are Baer groups. This is because
in such a factorisation G = AB, the prime power index condition is inherited by both factors,
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even if A and B are not subnormal in G. This is no longer true for other arithmetical conditions
on the indices (see for instance [[10] for the square-free property). In particular, as pointed out in
[5], subgroups of Baer groups are also Baer groups. It is an open question whether the factors
of a p-Baer factorisation are p-Baer groups. Nevertheless, it might happen for such a group that
the indices in a factor and in the whole group are powers of distinct primes (see Final examples

(2)).

Proof of Proposition[D} Let P = (P N A)(P N B) € Syl, (G) such that P N A € Syl,, (A)
and P N B € Syl, (B), for some prime p. Let X € {A, B} and take v € (P N X) \ Z(G)
such that ig(x) is a g-number. If ¢ = p, then Proposition (a) and Lemmayields PNX =
0,(G) N X. Moreover, P & C(0,(G) N X) because 1 # ig(x) is a p-power. Thus, by
virtue of Lemmal [7} we deduce that |G : C¢(P N X)| is a p-power. As P N X is normal in X,
then | X : Cx(PNX)| = | XCq(PNX):Cq(PNX)| divides |G : Cq(P N X)|. Therefore
ix () divides the p-number |G : Co(P N X)|.

Hence we may assume ¢ # p. Suppose Oy(G) # 1. Note that the quotient G :=
G/04(G) inherits the hypotheses. It follows by induction that i(Z) = |X : Cx(z)| is a
g-number, because i(7) divides ig(x). However, since ¢ # p, applying [11, 3.2.8] and
the isomorphism X = X/(X N O4(G)) we deduce Cx(z) = Cx(z). Thus |X : C¢(Z)] -
(X NOy(Q)) : (Cx(x) NOy(G))| = |X : Cx(z)|, which is also a g-power, and the result is
proved in this case.

Now we assume F(G) = O, (F(G)). Let M := XF(G) which is normal in G by Corollary
[C](1). Then M = X (M NY) with {X,Y} = {4, B}, and M verifies the hypotheses. If M <
G, by induction we get that i x (x) is a power of the same prime that divides i, (), which divides
ic(x). Consequently we may assume G = M = XOy(F(G)). Let Gy € Hally (G). Then
Gq/ = Oq/(F(G))(X N Gq/). Moreover, |G : Gq/ = ’qu/(F(G)) : (X N Gq/)OqI(F(G))l =
‘X : X NGy|. Therefore, for each Gy € Hally (G), we have that X N Gy is also a Hall
¢'-subgroup of X. Since ig(x) is a g-number, there exists some Hall ¢’-subgroup of G that
centralises x, and so there exists a Hall ¢’-subgroup of X that centralises x, and we are done. []

Example 2. (i) In contrast to Baer’s theorem (Theorem|I)), and in spite of the above proposition,
in a Baer factorisation G = AB it is not guaranteed that G is a direct product of proper Hall
subgroups for pairwise disjoint sets of primes, even for direct products: To see this consider
A= Cg X [07]02 X [011]05 and B = 05 X [07]03 X [011]02. Then G = A x B is a Baer
factorisation, but there are no pairwise coprime proper direct factors of G.

(i) We highlight that there are Baer factorisations which are not just a central product of
Baer groups: Let G = H x K be the direct product of a symmetric group H = X3 and a
dihedral group K = Djp. Let A be a Sylow 2-subgroup of K, and let B be the direct product
of H and the Sylow 5-subgroup of K. Then G = AB is a Baer factorisation. Note that there is
a2-element g € G\ (AU B) such that i (g) = 15, so G is not a Baer group.

Now, as a step to prove Theorem [E] an application of Lemma 5 gives the next result.

Corollary 5. Let G = AB be the product of the subgroups A and B, and let p be a prime.
Then ig(x) is a p-number for each prime power order element x € AU B if and only if G =
0,(G) x Oy (G), and O (Q) is abelian.

Proof. The sufficiency of the condition is straightforward. The p-decomposability of GG follows
directly from Lemma 5] Finally, if we take a prime g # p and a prefactorised Sylow g-subgroup
Q= (QNA)(QNDB), then i0,,(G) (x) = 1foreachelement x € (QNA)U(QNB). Therefore
Q < Z(Q) for every q # p, and the result follows. O

Furthermore, from the previous corollary we get:
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Corollary 6. Let G = AB be the Baer factorisation. Then for each prime p we have that
G/Cq(0,(G)) is p-decomposable with abelian p-complement.

In the remainder of the section, we focus on proving Theorem [E]

Proposition 4. Let G = AB be a Baer factorisation, and let P € Syl,, (G). If P < C(0,(G)N
X) for some X € {A, B}, then C(0,(G) N X) is normal in G and G /C(0,(G) N X) is an
abelian q-group, for a prime q # p.

Proof. We denote G := G /Cc(0p(G)) and we have G = Op(é) x H by Corollary@, where
H € Hall,/(G) is abelian for any H € Hall,y (G). Since PC(0,(G)) < Ca(0,(G) N X),
we get by the Dedekind law

Cc(0,(G) N X)/Ca(0,(G)) = 0,(G) x Hy < 0,(G) x H =G,

where Hy := H N C¢(0,(G) N X), and thus C;(0,(G) N X) is normal in G.

Set G := G/C¢(0,(G)NX). Then G is a p’-group, and since it is isomorphic to a quotient
of G, it is abelian. We may affirm that there exists an element z € (0,(G) N X) . Z(G). Then
ic(z) is a g-number for some prime ¢ # p (actually, this holds for every element in O,,(G) N X).
Moreover, |G : Cg(z)| = |G : Cg(x)| so ¢ divides |G|. Let suppose that there exists another
prime 7 # ¢ such that r divides |G|. Since |G : Cg(z)| = |G : C(x)], it follows that the unique
Sylow r-subgroup R of G is contained in C¢ (). Hence R < Cg(x) forevery x € 0,(G)N X,
so R < C;(0,(G) N X), which contradicts that r divides |G]|. O

This last proposition is not longer true for p-Baer factorisations, as Final examples (1) shows.
The next result is the last step to prove Theorem [E]

Proposition 5. Let G = AB be a Baer factorisation, and let P = (PN A)(P N B) € Syl, (G).
Let assume that P N X £ F(G) for some X € {A, B}. Then:

(@) PN X <Z(P).

(b) There exists a unique prime q # p such that P N X £ C(04(G)).

(©) |G : Ca(P N X)| is a power of the prime q in statement (b).
If, moreover, PNY & F(G) where {X,Y} = {A, B}, then:

(d) P is abelian and |G : Cq(P)| is a {q,r}-number, with p ¢ {q,r}, q is the prime in (b),
and r is the unique prime such that PNY & Cq(0,(G)). (Possibly ¢ = r.)

Proof. (a) This is exactly Proposition (a).

(b) By (a), for every z € P N X it hold that i¢(x) is a g-power, for a fixed prime g # p.
Then Oy (F(G)) < Cq(P N X). Finally, O4(G) £ Cc(P N X) since otherwise P N X <
Cc(F(G)) < F(G), a contradiction.

(c) Take T' € Hally, ;1 (G) such that PT'is a g-complement of G. As G /F(G) is abelian by
Proposition|C|(a), then L := PO, (G)T is normal in G. Consequently, for every x € PN X we
obtain that iz, (z) is a g-power, and there exists g € L such that 79 centralises z, (actually by (a)
we may assume g € O4(G)). Set K := (PN X)0y(G). Hence K C Ugei (Cx(T)04(G))Y C
K. Tt follows that K = Cg(T)04(G) and [P N X,T] < [K,T] = [Cx(T)04(G),T]| =
[04(G),T] < O4(G). But [PN X, T] < PT, whichis a ¢’-group. Then [PNX,T| =1, and P
also centralises P N X by (a). The claim is now proved.

(d) Certainly P is abelian by (a). Moreover, by (c), |G : Cq(P N A)| is a g-number and
|G : Cq(P N B)| is an r-number for some primes ¢ and r. Note that Cq(P) = Cg(P N
A)NCg(PNB). If ¢ # r, then G = Cg(P N A)Cq(P N B), and thus |G : Cx(P)| =
|G :Cq(PNA)|-|G:Cq(PnNB)|isa{qg,r}-number. Therefore we may assume that ¢ = r,
and so every p-element in A U B has g-power index. Arguing analogously as in (c), for a
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T € Hally, v/ (G) such that PT is a g-complement, we deduce that PO, (G) = (PN A)(P N
B)O,(G) < C(T')04(G), and [P, T] < PT NO4(G) = 1. Then T centralises P, and P is
abelian, so |G : C(P)] is a g-power. The result is now established. O

Proof of Theorem (1) Let P = (PN A)(P N B) € Syl, (G) non-abelian. If P = O,(G),
then either P &£ Cg(0,(G) N A) or P & C;(0,(G) N B). Assume for instance that P £
C;(0,(G) N A). Then by Lemmal(7] we get that |G : Cg(P N A)| is a p-number. Moreover,
if P £ C;(0,(G) N B), then |G : C(P N B)| is also a p-number, and each element in (P N
A)U (PN B) has index a p-number. Therefore G is p-decomposable by virtue of Lemma and
|G : C(P)| is clearly a p-power. On the other hand, if P < C(0,(G) N B), Proposition 4]
yields that C; (0, (G) N B) is normal in G and the quotient G/C¢(0,(G) N B) is an abelian
g-group (q # p). We deduce G = C(P N A)Cq(P N B), and since C(P) = Co(P N A)N
Ce(PNB),then |G :Cq(P)|=|G:Cq(PNA)|-|G:Cq(PnNB)|isa{p,q}-number.

Now we assume P £ F(G). It cannot happen that both PN A £ F(G) and P N B £ F(G)
by Proposition |5 (a). We may assume for instance that P N A £ F(G) and P N B < F(G).
By Proposition |5 (a) and (c), we get that P N A < Z(P) and |G : Co(P N A)| is a g-number,
where ¢ # p. On the other hand, as P is not abelian, P £ Cg(P N B), so Lemma yields
|G : Cq(P N B)|is ap-number. Then |G : C(P)]| is a {p, ¢}-number.

(2) Consider that P = (P N A)(P N B) € Syl, (G) is abelian. If PN A £ F(G) and
PN B &£ F(G) then the claim follows from Proposition |5 (d). Assume that P N A £ F(G)
and PN B < F(G),s0 |G : Cg(P N A)| is a g-number with ¢ # p by Proposition[5](c). Since
P < Cg(0,(G)NB), we deduce from Proposition d|that Ci (P N B) is normal in G with index
an r-number (r # p). If ¢ # r, then G = Cg(P N A)Cq(P N B) and the claim follows. If
g = r, weobtain that [Cq(PNA) : Ca(P)| = |Ca(PNA)Cq(PNB):Cq(Pn B)|divides
the g-number |G : C¢(P N B)|. Hence the index |G : C(P)| is a g-power.

Now suppose P = O,(G). Note that, by Proposition4} both subgroups C:(0,,(G)NA) and
Cc(0,(G) N B) are normal in G with indices a g-number and an r-number, respectively. The
case ¢ # r is again clear. If ¢ = r, the above reasoning on the index of |Cq(P N A) : Ca(P)|
shows that |G : Cg(P)]| is a g-power. Finally, from (1), (2) and Corollary@we conclude we last
assertion of the theorem. O

Now we end by proving Theorem [F] as a consequence of the previous result.

Proof of Theorem[Fl The converse direction is trivial. Assume that G = AB is a Baer factorisa-
tion, and let P = (PNA)(PNB) € Syl, (G) such that PNA € Syl,, (A) and PN B € Syl, (B).
Let X € {A, B}. We claim that |G : C¢(P N X)| is a prime power. Now we distinguish two
cases: either PN X £ F(G) or PN X = 0,(G) N X. In the first case, the claim follows from
Proposition[5](c). In the second case, if P < C(0,(G) N X), then we apply Proposition[d] and
if P £ C¢(0,(G) N X), then Lemmal(7]follows. O

Final examples. Some of the results stated in this section fail when the hypotheses are weakened
to p-Baer factorisations, as the following examples show:

(1) Proposition 4] and Theorem [F do not hold for p-Baer factorisations: Let G = AB be
the semidirect product of a non-abelian group B of order 21 acting on an elementary abelian
group A of order 8, in such a way that the subgroup of order 7 permutes the involutions tran-
sitively (this group appears in [7]). Then ig(g) = 7 for every 2-element g € G (i.e., G is
2-Baer), and the unique abelian Sylow 2-subgroup P of G is equal to A, but |G : C(P)| =
|G : Cc(02(G) N A)| = 21.

(2) Proposition [D] does not hold either for p-Baer factorisations: Let G be the group in (1).
Then there is a subgroup H of G of order 24 and a subgroup K of order 7 such that G = HK
is also a 2-Baer factorisation, and there exists a 2-element x € H such that iy (x) = 3, which
clearly is not a 7-number.
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(3) Proposition[5](c) is neither true for p-Baer factorisations: Let now () be a cyclic group of
order 7. Consider the regular wreath product ' = ) wr G with G the group in (1), and denote by
Q" the basis group (we point out that this group appears in [5]). Then the factorisation T = QG
is 2-Baer. Let P be the Sylow 2-subgroup of G, so P € Syl, (T'). Then P = PN G £ F(T),
but the index |T": C7(P N G)| is divisible by 3 and 7.
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Zeros of irreducible characters in factorised groups
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Abstract

An element g of a finite group G is said to be vanishing in G if there exists an irreducible
character x of G such that x(g) = 0; in this case, g is also called a zero of G. The
aim of this paper is to obtain structural properties of a factorised group G = AB when
we impose some conditions on prime power order elements g € A U B which are
(non-)vanishing in G.
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1 Introduction

Within finite group theory, the close relationship between character theory and the study of
conjugacy classes is widely known. Regarding this last topic, several authors have investigated
the connection between certain conjugacy class sizes (also called indices of elements) of a group
G and its structure. Further, recent results show up that the conjugacy classes of the elements in
the factors of a factorised group exert a strong impact on the structure of the whole group (see
(31, (10], [15], [16]).

In character theory, a celebrated Burnside’s result asserts: every row in a character table of a
finite group which corresponds to a non-linear complex character has a zero entry [17, Theorem
3.15]. Nevertheless, a non-central conjugacy class column may not contain a zero. This fact
somehow violates the standard duality arising in many cases between the two referred research
lines. Therefore, in [18] the authors introduce the next concept: an element g € G is vanishing
in G if there exists an irreducible character x of G such that x(g) = 0 (in the literature, g is also
called a zero of ). Otherwise the element g is said to be non-vanishing in GG. As an immediate
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consequence of the cited Burnside’s result, we get that a group has no vanishing elements if
and only if it is abelian. It is to be said that various questions concerning the (non-)vanishing
elements of a group have been studied by numerous authors (in particular, those appearing as
references in this paper).

It is therefore natural to wonder whether results based on conjugacy class sizes remain true if
we restrict focus only to those indices that correspond to vanishing elements, i.e. if we consider
only the so-called vanishing indices. In this spirit, some researchers have recently obtained
positive results in certain cases. For instance, in 2010, Dolfi, Pacifici and Sanus proved that if a
prime p does not divide each vanishing index of a group G, then GG has a normal p-complement
and abelian Sylow p-subgroups [13, Theorem A]. In 2016, Brough showed that for a fixed
prime p such that (p — 1,|G|) = 1, if all vanishing indices of G are not divisible by p?, then
G is soluble [7, Theorem A]. Moreover, if each vanishing index of G is square-free, then G is
supersoluble [[7, Theorem B]. The last two results turn to be the “vanishing versions™ of [11}
Theorem 1] and [[11}, Theorem 2], respectively. Besides, Brough and Kong have also showed in
[8] that the hypotheses in the previous results can be weakened to vanishing indices of prime
power order elements. We remark that the classification of finite simple groups (CFSG) is used
in this development.

In this paper, we are interested in combining as a novelty the research on irreducible charac-
ters with the study of products of groups. More concretely, we want to analyse which infor-
mation of a factorised group GG can be obtained from its character table when we consider the
conjugacy classes in G of elements in the factors. In particular, inspired by the aforementioned
investigations, we deal with factorised groups having irreducible characters which evaluate zero
on some elements in the factors. It is worthwhile to note that the product of two vanishing ele-
ments does not need to be vanishing in general. Moreover, an element in a (normal) subgroup
can be vanishing in the whole group but not in that subgroup (see Example [3).

Focusing in products of groups, along the last decades, some relations of permutability be-
tween the factors have been considered by many authors, as for instance total permutability,
mutual permutability (see [4]) and tcc-permutability (see [[1], [2]). These last permutability re-
lations are inherited by quotients, and they ensure the existence of a minimal normal subgroup
contained in one of the factors. We are principally concerned about products of groups that
satisfy both particular conditions, which we will name core-factorisations (see Definition I)).

In this framework, our purpose is to get a better understanding of how the vanishing elements
in the factors control the structure of a group with a core-factorisation. Moreover, we will also
deal with arithmetical conditions on the indices of those elements.

The paper is structured in the following way: Firstly, core-factorisations are defined in Sec-
tion[2]and some properties of them, which will be crucial along the paper, are proved. In Section
we analyse the case that a group with a core-factorisation has no vanishing p-elements in the
factors for a prime p (see Theorem[I). As a consequence, we obtain information of a factorised
group when all prime divisors of its order are considered, that is, when there are no vanishing
prime power order elements in the factors (see Corollary [3). Later on we obtain structural pro-
perties of groups with a core-factorisation from the vanishing indices in the whole group of some
elements in the factors. Concretely, in Sectiond] we study the case when those vanishing indices
are prime powers (Theorem [2] and Corollary f). Next, we focus in Section [5] on the case that
the indices are not divisible by a prime p (see Theorem [3). The situation when those indices
are square-free is also handled in this last section (see Theorems [] and [7). In particular, we
highlight that an affirmative answer to a question posed by Brough in [[7] is given (Corollary [6).
It is significant to mention again that all the previous results for core-factorisations will remain
true when the factors are either totally, mutually or tcc-permutable (see Example[I)). We remark
that, in order to avoid repeating arguments from previous papers, when some proof runs as in
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the one of a known result with suitable changes, we refer to the corresponding one.

Throughout this paper, every group is assumed to be finite. The terminology here is as
follows: for a group GG and an element x € G, we call ig(x) the index of x in G, that is,
ig(z) = |G : Cg(x)| is the size of the conjugacy class x&. The set of prime divisors of the
order of G is denoted by 7(G). If p is a prime, then = € G is a p-regular element if its order is
not divisible by p. As customary, the set of all Sylow p-subgroups of G is denoted by Syl, (G),
whilst Hall; (G) is the set of all Hall 7r-subgroups of G for a set of primes 7. We write Irr(G)
for the set of all irreducible complex characters of G. Given a group G = AB which is the
product of the subgroups A and B, a subgroup S is called prefactorised (with respect to this
factorisation) if S = (S N A)(S N B) (see [4]). We recall that a subgroup U covers a section
V/W of a group G if W(U N'V) = V. The remaining notation is standard, and it is taken
mainly from [12]]. In particular, a normal subgroup N of a group G such that N # G is denoted
symbolically by N <1 G. We also refer to [[12] for details about classes of groups.

2 Core-factorisations: definition and properties

We analyse in this section the kind of factorisations we manage along the paper.

Definition 1. Let 1 # G = AB be the product of the subgroups A and B. We say that G = AB
is a core-factorisation if for every proper normal subgroup K of G it holds that there exists a
normal subgroup 1 # M /K of G/K such that either M/K < AK/K or M/K < BK/K (i.e.
either A or B covers M/ K).

Note that if we adopt the bar convention for the quotients over K, the above condition means
that AzBx # 1, where H x denotes the core in a group X of a subgroup H. This illustrates the
given name for such factorisations.

Remark 1. Let us state some immediate facts:
1. Ifeither 1 # G = Aor1 # G = B, then G = AB is always a core-factorisation.
2. If G = AB is a core-factorisation of a simple group G, then either G = A or G = B.

3. If we take K = 1 in the above definition, then there exists a (minimal) normal subgroup
of G = AB contained in either A or B.

We present now some non-trivial examples.

Example 1. Let 1 # G = AB be the product of the subgroups A and B, and let assume that A
and B satisfy one of the following permutability properties:

(1) A and B are mutually permutable, that is, A permutes with every subgroup of B and B
permutes with every subgroup of A.

(i) A and B are tcc-permutable, that is, if for every subgroup X of A and every subgroup Y
of B, there exists g € (X, Y) such that X permutes with Y9.

(iii) A and B are totally permutable, that is, every subgroup of A permutes with every subgroup
of B. (In particular, if this property holds, then A and B satisfy both (i) and (ii).)

Applying [4, Theorem 4.3.11] in (i) and [2, Lemma 2.5] in (ii), it can be seen that AgBg # 1.
Also, the above permutability properties are clearly inherited by quotients. Thus G = AB is a
core-factorisation in all cases. We shall see later in Example [2|a group with a core-factorisation
whose factors are neither mutually permutable nor tcc-permutable.
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Now we prove that the quotients of core-factorisations inherit the property.

Lemma 1. Let G = AB be a core-factorisation, and let M be a proper normal subgroup of G.
Then G/M = (AM/M)(BM /M) is also a core-factorisation.

Proof. We use the bar convention to denote the quotients over M. We take a normal subgroup
K <1 G, and we claim that there exists a normal subgroup 1 # N /K of G/K covered by either
Aor B. As G = AB is a core-factorisation, then G/ K has a normal subgroup 1 # N/K such
that either N/ K is covered by either A or B. It follows

N _N/M _ AK/M _ (AM/M)(K/M) _AK

K K/M ™~ K/M K/M K’
or analogously the same is valid for B instead of A. 0

The lemma below is a characterisation of core-factorisations via normal series.

Lemma 2. Let 1 # G = AB be the product of the subgroups A and B. The following statements
are pairwise equivalent:

(1) G = AB is a core-factorisation.

(ii) There exists a normal series 1 = Nog < Ny < --- < N,,_1 < N,, = G such that ei-
ther Ni/Nifl < ANl;l/Nifl or Ni/Ni,1 < BNifl/Nifl, fOl" each 1 < 7 <n (le
N;/N;_1 is covered by either A or B).

(iii) There exists a chief series 1 = Nog I Ny < --- < N1 < N, = G such that either
Ni/Ni—l < ANifl/Nifl or Ni/Ni,1 < BNifl/Nz;l, fOl" each 1 < 1 <n (le
N;/N;_1 is covered by either A or B).

Further, each term N; of such (chief) normal series is prefactorised and N; = (N;NA)(N; N B)
is also a core-factorisation.

Proof. (i) implies (ii): Let 1 # N7 < G such that either N < Aor Ny < B,so1 < Ny <G.
Next, take G/N; = (AN1/N1)(BN1/Ny). If G/N; = 1, then we have the desired series. If
1 # G/Ny, then it is again a core-factorisation by the previous lemma. Therefore, there exists
1 # N3 /N; < G/Ny such that either No /Ny < AN /Nj or Ny/N1 < BN;/Njp. So we get the
series 1 <1 N1 <0 Ny < . Repeating this process until we reach a trivial quotient G /N, we get
the desired series.

(i1) implies (iii): If we refine the series in (ii) to a chief series, then we get for each factor
that there exist N; = Tp < T <75 < --- 4T}, = N;41 such that each T} /T}_; is a minimal
normal subgroup of G'/T;_;. Let us see that either T;/T;_1 < ATj_1/Tj—1 or T;/Tj—1 <
BT;_1/Tj—1. We may assume for instance N; 1 < AN;. Thus T; = T;NN; 11 < N;(T;NA) <
ijlA, and so T’j/Tj,1 < AT‘jfl/Tyjfl.

(iii) implies (i): We have to show that for each K <1 G, there exists a non-trivial normal
subgroup of G/ K covered by either A or B. Let 1 < r < n be the minimum number such that
N, & K. Then 1 # N,K/K is normal in G/K. We suppose for instance that N, /N,_; <
AN,_1/N,_1,s0 N, < AN,_;. By the minimality of r it follows N, K/ K < AK/K.

Now we claim that each NN; in such (chief) normal series is prefactorised, and we work by
induction on ¢. The case ¢ = 1 is clear since either N7 < A or N7 < B. Now we assume that
N;—1 = (N;—1 N A)(N;_1 N B) and we want to show that N; is also prefactorised. We may
consider N; < AN;_1, and then N; = (Nl N A)Ni_l = (NZ N A)(Nl_l N A)(Nl_l N B) -
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Fix a prefactorised N; = (N; N A)(V; N B) of a (chief) normal series of G like in (ii) or (iii),
for some i € {1,...,n}. We are showing that N; = (N; N A)(N; N B) is a core-factorisation.
Consider the following portion of such (chief) normal series 1 = Ng I Ny <--- I N,. Letm €
{1,...,i}. We claim that N,, satisfies either N,,, < (N; N A)N;;,—1 or Ny, < (N; N B)Nyp—q
in order to apply the equivalence between (ii) and (i). We have by assumption that for instance
Ny < Npyp—1A4,30 Ny < N1 AN N; = N1 (AN N;). The lemma is now established. [

We point out that if N is an arbitrary prefactorised normal subgroup of a core-factorisation
G = AB, then N = (N N A)(N N B) might not be a core-factorisation, as the next example
shows.

Example 2. Consider G = Sym(4) x (x), where Sym(4) denotes the symmetric group of 4
letters and o(z) = 2. If A = (((1,2),z), ((3,4),x), ((1,3)(2,4),x)) and B = (((2,3,4),1),
((3,4),1), (1,x)), then G = AB is a core-factorisation, and N = Sym(4) = (NN A)(NN B)
is not a core-factorisation, since there is no minimal normal subgroup of N neither in N N A nor
in N N B. Moreover, it can be seen that A and B are not either mutually nor tcc-permutable.

3 On vanishing elements

The main objective of this section is to prove Theorem [I|and Corollary [3] Let us state first some
key ingredients for locating vanishing elements in a given group.

Lemma 3. [[14, Lemma 2.9] Let N < M < G be such that N and M are normal in G and
(IN|,|M/N|) = 1. If N is minimal normal in G, Cp;(N) < N and M/N is abelian, then

every element in M ~. N is vanishing in G.
In 2017, Bianchi, Brough, Camina and Pacifici obtained the subsequent result.

Lemma 4. [5, Corollary 4.4] Let G be a group, and K an abelian minimal normal subgroup
of G. Let M /N be a chief factor of G such that (|[K|,|M/N|) =1, and N = Cp;(K). Then
every element of M ~. N is a vanishing element of G.

Let p be a prime, and x € Irr(G). Recall that x is of p-defect zero if p does not divide
1GL A well-known result of Brauer [17, Theorem 8.17] highlights the significance that this
x(1) o oL . .
property has for vanishing elements: if X 1s an irreducible character of p-defect zero of G then,
for every g € G such that p divides the order of g, it holds x(g) = 0. The following lemma

yields elements of normal subgroups that vanish in the whole group.

Lemma 5. [7, Lemma 2.2] Let N be a normal subgroup of a group G. If N has an irreducible

character of p-defect zero, then every element of N of order divisible by p is a vanishing element
in G.

We now focus on vanishing elements in simple groups. The combination of some results in
[14]], which use the classification, gives the following.

Proposition 1. Ler S be a non-abelian simple group, and let p € 7(S). Then, either there exists
X € Irr(S) such that x is of p-defect zero, or there exists a p-element x € S and x € Irr(S)
such that x extends to Aut(S) and x vanishes on x.

Proof. If either S is a group of Lie type or p > 5, then [[14, Proposition 2.1] applies and .S has an
irreducible character of p-defect zero (note that this case includes the groups A5 = PSL(2,5)
and Ag = PSL(2,9)). Hence it remains to consider sporadic simple groups and alternating
groups, and p € {2,3}. Firstly, in virtue of [14, Lemma 2.3], for a sporadic simple group S
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there exists always an irreducible character which extends to Aut(.S) and it vanishes on a p-
element. For alternating groups A,, with n > 7, it is known by [[14, Proposition 2.4] that A,, has
two irreducible characters 2, x3 such that o vanishes on a 2-element and 3 vanishes on an
element of order 3. Further, both x2 and x3 extend to Aut(Ay,). O

An argument included within the proof of [14, Theorem A] provides the following proposi-
tion, which turns to be essential in the remainder of the section.

Proposition 2. Let N be a non-abelian minimal normal subgroup of a finite group G, and let
p € (). Then there exists a p-element in N which is vanishing in G.

Proof. We have that N = 57 x --- x S, where each S; is isomorphic to a non-abelian simple
group S with p dividing its order. If S has a character 6 of p-defect zero, then y := 6 x---x 0 €
Irr(N) and it is clear that x is also of p-defect zero. Let 1 # x; € S; be a p-element. Then
1+# x:=x -z} € N is a p-element and Lemma [5|provides that « is vanishing in G.

Let i € {1,...,k} and suppose that .S; does not have a character of p-defect zero. By
Proposition|[1] there exists § € Irr(S;) and a p-element y; € S; such that 6(y;) = 0 (so 1 # y;)
and 6 extends to Aut(.S;). Thus 1 # y := y1 - - - yx € N is a p-element, and by [14, Proposition
2.2] it follows that y := 6 x - - - x 6 € Irr(IN) extends to G. Moreover, x(y) = 0, and the result
is now established. O

From now on we deal with (non-)vanishing elements in factorised groups. The next example
gives insight into occurring phenomena.

Example 3. Let G = Sym(4) x (z) = AB be the factorised group as in Example[2] Note that
although ((3,4), x) is a vanishing element in A and ((3,4), 1) is a vanishing element in B, the
product ((3,4),2)((3,4),1) = (1,2) € Z(G) and so it is non-vanishing in G. On the other
hand, ((2,3,4),1) is a non-vanishing element in B which is vanishing in G.

Remark 2. We claim that the hypotheses regarding vanishing elements of the results stated
from now on are inherited by every non-trivial quotient of a group G, where G = AB is
a core-factorisation. Indeed, let N be a proper normal subgroup of G. Note that G/N =
(AN/N)(BN/N) is also a core-factorisation by Lemma |1} Since there exists a bijection be-
tween Irr(G/N) and the set of all characters in Irr(G) containing N in their kernel, if N €
AN/N U BN/N is a vanishing (prime power order) element of G/N, then we can assume
x € AU B, and that z is also a vanishing (prime power order) element of GG. This fact will be
used in the sequel, sometimes with no reference.

Our first significant result analyses core-factorisations with no vanishing p-elements in the
factors. We remark that the CFSG is needed.

Theorem 1. Let G = AB be a core-factorisation, and let p be a prime. If every p-element in
AU B is non-vanishing in G, then G has a normal Sylow p-subgroup.

Proof. Let G be a counterexample of minimal order to the result, and take P € Syl, (G).
Clearly we can assume that O, (G) is proper in G. Hence by Remark and the minimality of G
we may suppose O, (G) = 1. Since G = AB is a core-factorisation, we can consider a minimal
normal subgroup N of G such that N < A, for instance. Let us suppose that p divides its order.
Then N is non-abelian, and by Proposition [2| there is a p-element z € N which is vanishing in
G, a contradiction. So p does not divide the order of N. In particular, we may assume that N is
proper in GG. By minimality and Remarkwe obtain that PN/N is normal in G/N, and then G
is p-separable.
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We can choose by Lemma@]a chief series1 = Ng <Ny = N<---<dN,_14dN, =G
such that each chief factor IV;/NN;_; is covered by either A or B. Let j € {2,...,n} be the
minimum number such that p divides | N /N;_1|. Then N;/N;_; is a minimal normal subgroup
of G/N;_1 and it is p-elementary abelian. It follows that N;/N = N;_1/N x Py/N, where
1 # Py/N = PN/N N N;/N is the unique Sylow p-subgroup (and elementary abelian) of
Nj/N. We claim that every element of P \. N is vanishing in G. Note that Fy/N is abelian
and normal in G/N. It also holds (|N|,|Py/N|) = 1. In addition, since N = O, (F) and
0,(Py) < 0,(G) = 1, then Cp,(N) < N. Lemma 3| yields that every element in Py \. N is
vanishing in GG. Therefore, it remains to find a p-element in Py ~. IV lying in either A or B in
order to get the final contradiction.

Since N; = (N; N A)(N; N B) by Lemmal]2} applying [15, Lemma 2] we can affirm that the
unique Sylow p-subgroup Py /N of N; /N is also prefactorised, that is, Py/N = (Py/N N (N;N
A)/N)(Po/N N (NjNB)N/N). Let X € {A, B} suchthat 1 # Py/N N (N; N X)N/N =
(PyN'N; N X)N/N. If we pick a p-element 1 # 2 € (Py N N; N X) \ N, then z is vanishing
in GG. Hence the result is established. U

As an immediate consequence, when we take the trivial factorisation G = A = B in the
above theorem, we obtain [14, Theorem A]. In their proof, the authors apply Lemma [3|to the
centre of a Sylow subgroup in order to get the final contradiction. We highlight that the centre
subgroup may not be prefactorised (see [4, Example 4.1.43]) and so our reasonings differ.

Another consequence of Theorem I]is the following.

Corollary 1. Let G = AB be a core-factorisation, and let o be a set of primes. If every o-
element of prime power order in A U B is non-vanishing in G, then G has a nilpotent normal
Hall o-subgroup.

Proof. Apply Theorem |l|for each prime in o. O

Note that if ¢ = p’ in the above result, then it generalises [14, Corollary B]. Indeed, the next
corollary extends [[14, Corollary C] for factorised groups.

Corollary 2. Let G = AB be a core-factorisation, and let {p,q} C ©(G). If every element in
AU B vanishing in G has order a {p, q}-number, then G is soluble.

Proof. We denote by o := {p,¢}’. In virtue of Corollary |1, G has a nilpotent normal Hall
o-subgroup N. Now, G/N is soluble because it is a {p, ¢ }-group, so G is also soluble. O

If we consider the case when the hypotheses in Theorem I|hold for all primes, then it follows
clearly that those groups are nilpotent. But actually we obtain the stronger fact that they are
abelian. The next result is essential in the proof of this fact.

Proposition 3. [18, Theorem B] If G is supersoluble, then every element in G \ Z(F(G)) is
vanishing in G. In particular, if G is nilpotent, then all elements in G ~\. Z(G) are vanishing in

G.

Corollary 3. Let G = AB be a core-factorisation. The following statements are pairwise
equivalent:

(1) Every element x € A U B is non-vanishing in G.

(2) Every prime power order element x € A U B is non-vanishing in G.

(3) G is abelian.



58 Zeros of irreducible characters in factorised groups

Proof. There is no doubt in the implications (1) = (2) and (3) = (1), so let us prove (2) =
(3). Clearly, by Theorem [I} G is nilpotent. Since we are assuming that every prime power
order element lying in A U B is non-vanishing in G, then Proposition [3| provides that all Sylow
subgroups of A and B are central in G, and thus G = AB < Z(G). O

As it has been said before, from Burnside’s result quoted in the introduction it is elementary
to show that a group is abelian if and only if it has no vanishing elements. Indeed, it is enough
to consider in this last characterisation only prime power order elements, as we directly deduce
by taking the trivial factorisation in the previous corollary. This claim can be also obtained
from [19, Theorem B], which asserts that a non-linear complex character vanishes on a prime
power order element (it also uses the CFSG). In any case, both proofs emphasize the difficulty
of handling only prime power order elements. Moreover, observe that [19, Theorem B] does not
imply directly Corollary |3} since we cannot assure in a factorised group that a vanishing prime
power order element lies in one of the factors.

4 Prime power vanishing indices

In [9], Camina and Camina analysed the structure of the so-called p-Baer groups, i.e. groups all
of whose p-elements have prime power indices for a given prime p. Next, in [15] we extended
this study through products of two arbitrary groups. Thus, as stated in the introduction, it seems
natural to address the corresponding vanishing problem, i.e. vanishing indices which are prime
powers, in particular for factorised groups.

Let us enunciate first some preliminary results. The subsequent well-established one is due
to Wielandt.

Lemma 6. Let G be a finite group and p a prime. If x € G is a p-element and ic(x) is a
p-number, then = € Op(Q).

In [9], Camina and Camina proved the next proposition, which extends both the above
lemma and the celebrated Burnside’s result about the non-simplicity of groups with a conju-
gacy class of prime power size.

Proposition 4. [9, Theorem 1] All elements of prime power index of a finite group G lie in
F3(G), the second term of the Fitting series of G.

The main result of [6] is the following one.

Proposition 5. Let G be a group which contains a non-trivial normal p-subgroup N for p a
prime. Then each x € N such that p does not divide i(x) is non-vanishing in G.

Finally, the lemma below is elementary.
Lemma 7. Let N be a normal subgroup of a group G. We have:
(a) in(x) divides i(x), for any x € N.
(b) iq/n(zN) divides ic(z), for any x € G.

Remark 3. Note that, hereafter, in the results stated the arithmetical hypotheses on the indices
are inherited by non-trivial quotients of core-factorisations. Indeed, let G = AB be a core-
factorisation and suppose for an element x € A U B that i (x) is a prime power, square-free,
or not divisible by a given prime, respectively. Since ig/y(vN) divides ig(x) by the above
lemma, we get that i/ (2N ) is also a prime power, square-free, or not divisible by such prime,
respectively.
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We are now ready to prove the following vanishing versions of [15, Theorem A (1-2)] and
[15) Theorem B (1)] for core-factorisations, respectively. We emphasize that the techniques used
in that approach are not valid when we work with zeros of irreducible characters.

Theorem 2. Let G = AB be a core-factorisation. Let p be a prime, and P € Syl,, (G). Assume
that every p-element x € A U B vanishing in G has prime power index. Then:

(1) If all the considered indices are p-numbers, then P is normal in G.
(2) G/Oy (F(G)) has a normal Sylow p-subgroup. So G is p-soluble of p-length 1.

Proof. (1) If all the indices of vanishing p-elements x € A U B are p-numbers, then it is enough
to reproduce the proof of Theorem [I] Notice that the contradictions now will be derived from
Lemmal6l

(2) It is enough to show that G /F(G) has a normal Sylow p-subgroup, since it is isomorphic
to (G/0, (F(G)))/(F(G)/0, (F(G))) and F(G) /0O, (F(G)) is a p-group. Let us denote G :=
G/F(G), and let us assume G # 1. If the statement is false, then by Theorem [1| there exists
a vanishing p-element 1 # = = 2F(G) in AU B. By Remark x ¢ F(G) is a vanishing p-
elementin AUB, and so i () is a power of a prime ¢ # p. It follows x € F2(G) by Proposition
so 1 # T € Op(G). Proposition [5| implies that p divides iz(Z), and so p divides ig(z), a
contradiction. Finally, the second assertion about the p-solubility of G follows directly. O

We remark that the vanishing analogue of [[15, Theorem B (2)] is not true, that is, if the
considered vanishing indices are powers of primes distinct from p, then the Sylow p-subgroup
might not be abelian:

Example 4. Let G be a Suzuki group of degree 8, and let H be the normaliser of a Sylow 2-
subgroup of GG. Then H is a core-factorisation of its Sylow 2-subgroup and a Sylow subgroup
of order 7, and H does not have vanishing 2-elements. Nevertheless, the Sylow 2-subgroup of
H is non-abelian.

Moreover, [15, Theorem B] asserts that if all the p-elements in a factor have prime power
indices in the whole factorised group, then there is a unique prime that divides all the considered
indices. However, we do not know if the vanishing version of this fact is true.

Finally, note that if we consider the assumptions in Theorem for every prime in 7(G), then
the third statement tells us that G/F(G) is nilpotent. In fact, the following result shows that
G/F(G) is abelian for such a group (compare with [15, Corollary C (1)]).

Corollary 4. Let G = AB be a core-factorisation. If every prime power order element x €
A U B vanishing in G has prime power index, then G /F(G) is abelian. In particular, if these
prime powers are actually p-numbers for a prime p, then G has a normal Sylow p-subgroup and
abelian Hall p’-subgroups.

Proof. G/F(G) is nilpotent by Theorem [2| (3). Let us denote by G := G/F(G), and let
us assume that G # 1 and that there exists 1 # T = xF(G) a prime power order element
in A U B vanishing in G. Then 7 is a p-element for some prime p, and we may suppose
x € (AU B) \ F(G) is a p-element vanishing in G. By assumption, we have that ig(z) is a
prime power. Since G is nilpotent, then by Proposition it follows that i=(Z) is a p-number, and
so i8 i(z). It follows by Wielandt’s lemma that € O,(G), so T = 1, a contradiction. Thus
G does not have any vanishing prime power order element in A U B, and by Corollary [3{we get
that it is abelian.

For the second assertion, note that P is the unique Sylow p-subgroup of G by Theorem
(1), so we claim that H 2 G/ P is an abelian Hall p/-subgroup of G. Let us denote G:=G /P,
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so G = AB. Hence, G does not have any vanishing prime power order element in AU B,
since otherwise those elements are central by our assumptions, a contradiction. So it follows by
Corollarythat G = G/P = H is abelian. O

5 Square-free vanishing indices

In this last section we focus on vanishing indices in factorised groups which are square-free,
motivated by previous developments in [7], [8] and [13]]. Our first theorem treats the case when
the vanishing indices are not divisible by a fixed prime p. We should comment that, although
some arguments in the proof of the first statement are similar to those in [8, Theorem 3.3], we
include them here for the sake of comprehensiveness.

Theorem 3. Let G = AB be a core-factorisation.

(1) Assume that p does not divide ic(x) for every p-regular element of prime power order
x € AU B vanishing in G. Then G is p-nilpotent.

(2) If p does not divide ic(x) for every prime power order element x € A U B vanishing in
G, then G is p-nilpotent with abelian Sylow p-subgroups.

Proof. (1) Assume the result is false. We argue with G a minimal counterexample to the theo-
rem. By minimality, we may suppose that O, (G) = 1. Let NV be a minimal normal subgroup
of GG such that N < A, for instance. If IV is soluble, since p divides its order it follows that
N is a p-group. We can assume that NV is proper in G since otherwise G is a p-group, so by
minimality we get that G/N is p-nilpotent. Hence G is p-separable, and C;(0,(G)) < O,(G).
This last fact and our assumptions produce that there are no p-regular elements of prime power
order x € A U B vanishing in G, and Corollary |1|applies with & = p’. Thus N is non-soluble,
and applying the same arguments as in the second paragraph in the proof of [8, Theorem 3.3],
it can be obtained a p-regular element of prime power order in N < A which is vanishing in G
and whose conjugacy class size in G is divisible by p, the final contradiction.

) Gisp- -nilpotent by (1). Let us denote G:=G /H where H is the unique Hall p’-subgroup
of G, and then G = AB. Then, G does not have any vanishing prime power order element in
AU B, because otherwise the hypotheses imply that those elements are central, a contradiction.
Now in virtue of Corollary [3 I we get that G is abelian. O

Note that Theorem [3| provides a vanishing version of [3, Theorem 1.1] for products of two
groups, even relaxing the mutual permutability of the factors. We also remark that [8, Theorem
3.3] is Theorem [3] (1) for the trivial factorisation. Indeed, (2) implies the next corollary, which
improves the main result of [[13]] by considering only vanishing indices of prime power order
elements:

Corollary 5. Let G be a group, and p be a prime. If p does not divide any vanishing index of a
prime power order element, then G is p-nilpotent with abelian Sylow p-subgroups.

Regarding square-free vanishing indices, we first analyse those which are not divisible by
p?, for a fixed prime p. The next proposition is actually the vanishing version of [16, Theorem
A]. We point out that this result is valid for any arbitrary factorisation of a p-group.

Proposition 6. Let p be a prime number and let P = AB be a p-group such that p* does not
divide ip(x) for all x € AU B vanishing in P. Then P' < ®(P) < Z(P), P’ is elementary
abelian and |P'| < p?.
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Proof. Since the non-vanishing elements of a p-group lie in its centre because of Proposition [3]
we can apply directly [16, Theorem A] in order to get the thesis. O

The following lemma will be essential in the sequel.

Lemma 8. [3, Lemma 2.4] Let p be a prime, and Q be a p'-group acting faithfully on an
elementary abelian p-group N with |[x, N]| = p, forall 1 # x € Q. Then Q is cyclic.

In [[7], the author posed the following question: a group such that all its vanishing indices are
not divisible by p?, for a prime satisfying (p — 1, |G|) = 1, must be p-nilpotent? The following
theorem gives a positive answer to this question, even for some factorised groups (see Corollary
[0 for the case G = A = B).

Theorem 4. Let G = AB be a core-factorisation, and let p be a prime such that (p—1, |G|) = 1.
Suppose that ig(x) is not divisible by p? for every prime power order element v € AU B
vanishing in G. It follows that:

(1) G is soluble.
(2) G is p-nilpotent.
(3) If P € Syl (G), then P' < ®(P) < Z(P), P' is elementary abelian and | P'| < p*.

Proof. (1) Suppose that the result is false and let G be a counterexample of minimal order. Since
every group of odd order is soluble, we may assume that p = 2 because (p — 1,|G|) = 1. The
class of soluble groups is a saturated formation, so we can suppose that there exists a unique
minimal normal subgroup N. Moreover, N is non-soluble. We have for instance N < A,
because G = AB is a core-factorisation. Then it is enough to reproduce the arguments in the
proof of [8, Theorem 3.1] to obtain a prime power order element in N < A which is vanishing
in G and whose conjugacy class size is divisible by 4, a contradiction.

(2) Assume that the result is not true and let G be a counterexample of least possible order.
By the minimality of G we may suppose that O,/ (G) = 1. Let N be a minimal normal subgroup
of G. Thus p divides its order and, since G is soluble by (1), then N is p-elementary abelian.
Moreover, the class of p-nilpotent groups is a saturated formation, so /N is the unique minimal
normal subgroup of G and by [12, A - 15.6, 15.8] we get N = O,(G) = F(G) = Cg(N). We
can consider N < A, for instance. We take K /N a minimal normal subgroup of G/N such
that it is covered by either A or B. We claim that each element in K ~ N is vanishing in G.
Since N = O,(G), then K /N is g-elementary abelian for some prime ¢ # p. Indeed, we get
Ck(N) < Cg(N) = N. It follows by Lemma 3| that every element in K ~. N is vanishing in
G.

Note that K = [N]Q where Q € Syl (K) is elementary abelian. If we take 1 # zN €
K/N, then we can assume that x € K ~\ N is a g-element in A U B by conjugation. Hence
p? does not divide ig(r) = |G : Cg(z)|. Note that the p-number 1 # |N : Cy(z)| divides
i(x). On the other hand, x acts coprimely on N, which is abelian, so N = Cy(z) x [N, z].
It follows |[N,z]| = p. Observe that Co(N) = Q N Cg(N) = 1, so Q acts faithfully and
coprimely on V. Further, if 1 # y € @, then y € K ~. N and by the previous argument we get
|[N,y]| = p. Now Lemma [8]leads to the fact that Q) is cyclic, so |[K/N| = g and K = N(x).
Hence Cy(z) = Cn(K) is normal in G. Since Cy(x) < N, by the minimality of N we obtain
Cny(z) = 1and so N = [N, z| has order p. Now G/N = Ng(N)/Cq(N) is isomorphich to
a subgroup of Aut(/N), which is isomorphic to C},_;. It follows that |G /N | divides both p — 1
and |G|, the final contradiction.

(3) Notice that P € Syl, (G) is isomorphic to G//O, (G) by the previous assertion. Hence
the result follows by Proposition [6] O
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Corollary 6. Let G be a group, and let p be a prime such that (p — 1,|G|) = 1. Assume
that p? does not divide ig(x) for each prime power order element x vanishing in G. Then G
is a soluble p-nilpotent group. Moreover, if P € Syl (G), then P' < ®(P) < Z(P), P’ is
elementary abelian and | P'| < p.

In [16, Theorem B (c)] it is proved the following: “Let G = AB be the product of the
mutually permutable subgroups A and B. Let p be a fixed prime satisfying (p — 1,|G|) = 1. If
all p-regular prime power order elements in AU B have i () not divisible by p?, then G/O,(G)
has elementary abelian Sylow p-subroups”. We point out that this property does not remain true
under the hypotheses of Theoremd] as the following example shows:

Example 5. Let G = [A] B be the semidirect product of a cyclic group B of order 4 which acts
transitively on a cyclic group A of order 5. Let the prime p = 2. Then G = AB is a core-
factorisation, and all the vanishing elements of G (not only those lying in A U B) have index not
divisible by 4. However, O2(G) = 1 and G/O2(G) does not have elementary abelian Sylow
2-subgroups.

We highlight that the arguments used in [16, Theorem C] can be generalised in order to
obtain the following more general result for core-factorisations.

Theorem 5. Let G = AB be a core-factorisation, and let p be a prime. Suppose that for every
prime power order p-regular element x € AU B vanishing in G, i (z) is not divisible by p*. If
G is p-soluble, then G is p-supersoluble.

Proof. It is sufficient to follow the proof of [16, Theorem C]. Notice that, in this case, we can
use Lemma {4 with a minimal normal subgroup Z/N of G//N such that lies in either AN/N or
BN/N. Thus, we can affirm that every element in Z ~. N is vanishing in G, in order to apply
the assumption that ig(z) is not divisible by p? for every prime power order p-regular element
x € Z~NN. O

When we consider square-free indices for all primes, we will derive some information for
groups with a core-factorisation (Theorem [7) from the next more general result:

Theorem 6. Let G = AB be the product of the subgroups A and B, and assume that G is
supersoluble. Suppose that ic(x) is square-free for every prime power order element x € AUB
vanishing in G. Then:

(1) G'is abelian.
(2) G’ has elementary abelian Sylow subgroups.
(3) F(G) has Sylow p-subgroups of order at most p?, for each prime p.

Proof. We adapt the proof of [16, Theorem D] for our hypotheses regarding vanishing elements.

To prove either (1) or (2), arguing by minimal counterexample in each case we can assume
that there exists a prime p such that F(G) = O,(G) = P is a Sylow p-subgroup of G. Since G
is supersoluble, then Proposition 3 yields that every g-element (¢ # p) x € A U B is vanishing
in G. Thus we can apply for such an element the class size hypothesis.

We claim that P satisfies the hypotheses in Proposition [6] Note that P = (P N A)(P N B)
in virtue of [16, Lemma 2]. If we take a p-element x € (PN A) U (P N B) vanishing in P, then
it follows that 2 is vanishing in G; otherwise we get by Proposition[3|that z € Z(F(G)) = Z(P)
which is impossible. Therefore ip(x) divides i¢(x) which is square-free. Now Proposition [6]
applies, so P’ < ®(P) < Z(P) with P’ elementary abelian of order at most p?. By [16, Lemma
2], we may take H = (H N A)(H N B) a Hall p’-subgroup of G such that H N A € Hall,y (A)
and H N B € Hally (B). Note that we can assume either H N A # lor HN B # 1. If
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x € HN A (orx € HN B) is a prime power order element, then x is vanishing in G and so
iG(x) is square-free. Arguing as in the second paragraph of the proof of [16, Theorem D (1)],
we deduce that P’ < ®(P) < Z(G), and so ®(G) # 1 # Z(G).

We can also argue as in the third paragraph of the proof of [16, Theorem D (1)] to deduce
that H N A and H N B are cyclic subgroups, since the class size hypotheses are applied to ¢-
elements in A U B which are vanishing in G. Let H N A = («). Following the proof of [[16,
Theorem D (1)], we can assume that for every prime ¢ (¢ # p), if oy is the g-part of «, then
N := P{ay) < G,and N = (N N A)(N N B) is normal in G. Let us see that N inherits the
hypotheses of the theorem. First, NV is clearly supersoluble. If a p-element z € (NNA)U(NNB)
is vanishing in IV but not in G, then by Proposition 3| we obtain z € Z(F(G)) = Z(P), and so
Proposition [5]leads to the fact that z is non-vanishing in N, a contradiction. Moreover, all the
g-elements (¢ # p) in (N N A) U (N N B) are vanishing in G by the first paragraph. Thus,
in both cases, iy () divides ig(x) which is square-free. Then we get a contradiction with the
same arguments as in the proof of [16, Theorem D (1)] to prove the statement (1).

The assertion (2) can be obtained similarly as in the proof of [16, Theorem D (2)] since the
hypotheses are applied to g-elements in A U B which are vanishing in G.

The proof of the statement (3) runs as the one of [[16, Theorem D (3)], but applying Propo-
sition[6] which is the vanishing version of [16, Theorem A]. O

Theorem 7. Let G = AB be a core-factorisation. Suppose that ic(x) is square-free for every
prime power order element x € AU B vanishing in G. Then:

(1) G is supersoluble.

(2) G’ is abelian.

(3) G’ has elementary abelian Sylow subgroups.

(4) F(G)' has Sylow p-subgroups of order at most p?, for each prime p.

Proof. (1) Considering the smallest prime divisor of |G| and Theorem {4{ (1), we conclude that
G is soluble. Hence, it is p-soluble for each prime p. Applying Theorem [5] we get that G is
p-supersoluble for each prime p, so it is supersoluble.

(2-4) These assertions follow from the previous theorem. 0

In [8, Theorem 3.2] the author gives a supersolubility criterion for a group such that every
vanishing index of a prime power order element is square-free. We want to highlight that the
following consequence of Theorem [/| gives more information on the structure of such a group.
Moreover, our techniques differ from those used in [[8, Theorem 3.2].

Corollary 7. Let G be a group, and let assume that i (x) is square-free for each prime power
order element x vanishing in G. Then G is supersoluble, and G' is abelian with elementary
abelian Sylow subgroups. Further, F(G)" has Sylow p-subgroups of order at most p?, for each
prime p.
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In a certain sense the subject of group theory is
built up out of three basic concepts: that of a
homomorphism, that of a normal subgroup, and

that of the factor group of a group by a normal
subgroup.
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Products of groups and class sizes of 7-elements
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Abstract

We provide structural criteria for some finite factorised groups G = AB when the
conjugacy class sizes in G of certain 7-elements in A U B are either m-numbers or
7/-numbers, for a set of primes 7. In particular, we extend for products of groups some
earlier results.
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1 Introduction

Along the last decades, numerous researchers have investigated groups which can be fac-
torised as the product of two subgroups. In this setting, one of the main goals is to study the
influence that the structure of the factors has on the structure of the whole group (and vice versa).
In some occasions, the imposition of certain permutability conditions on the subgroups in the
factorisation has proved to be useful. A detailed account on this topic can be found in the book
[3]. Throughout this paper, we deal with the so-called core-factorisations, introduced in [11]
(see also Definition[I)).

On the other hand, a current activity shows up that, in a factorised group, the sizes of the
conjugacy classes in the group of the elements in the factors have a strong impact on the structure
of the whole group (see, for instance, [2, 10, 11, 14]). Our main purpose here is to study the
m-structure of groups with a core-factorisation when the class lengths in the group of the -
elements in the factors are either m-numbers or 7/-numbers, for a set of primes 7. In fact,
we present alternative proofs of some earlier results as consequences of our theorems when
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trivial factorisations are considered. We point out that Dolfi ([8]) considered class lengths which
are either w-numbers or 7'-numbers in a (not necessarily factorised) group, but focusing on
all its elements (not only on those with order a w-number). It is worth also to highlight that,
although some results on class sizes could be proved through elementary arguments, the analysis
of the considered class size properties in the context of products of groups may need a wider
approach, even for core-factorisations. Indeed, in a core-factorisation, there is no relation in
general between the class size of an element in one factor and the size of the corresponding
conjugacy class in the whole group, in contrast to other developments (see, for example, [14]).

The paper is structured in the following way: in Section [2| we gather the definition and
some properties of core-factorisations. Later on, in Section [3] we analyse groups with a core-
factorisation such that the class lengths in the whole group of 7-elements of prime power order in
the factors are m-numbers (Theorem[A]). Then, in Section[d] we put focus on groups with a core-
factorisation whose m-elements (not necessarily of prime power order) in the factors have class
sizes equal to either -numbers or 7/-numbers (Theorem and Corollary |C|for not necessarily
factorised groups). We also analyse in Theorem |D|this last condition on the class sizes of every
element in the factors. Finally, as a consequence of the previous results, prime power class sizes
are studied for the 7-elements in the factors of a group with a core-factorisation (Theorem [E).
We want to remark that, along the whole paper, we provide numerous examples which show the
scope of the results presented.

In the sequel, all groups under consideration are finite. For a group GG and an element x € G,
the conjugacy class of z in G is z, and its size is || = |G : Cg(z)|. We denote the set of
all prime divisors of a natural number n by 7(n), and in particular we use 7(G) for the set of all
prime divisors of the order of G. The set of all Hall w-subgroups of G is expressed by Hall (G),
where 7 will always denote a set of primes. A group such that G = O (G) x O (G) is said
to be m-decomposable. By corex (H) we mean the core in a group X of a subgroup H, i.e. the
largest normal subgroup of X contained in H. Given a group G = AB which is the product of
the subgroups A and B, a subgroup S is called prefactorised (with respect to this factorisation)
if S =(SNA)(SNB) (see [1]). We recall that a subgroup U covers a section V/W of a group
Gif W({U NV) = V. As usual, CFSG will denote the classification of finite simple groups.
The remaining notation and terminology is standard within the theory of groups, and it is taken
mainly from [7]. We also refer to this book for details about classes of groups.

2 On core-factorisations

As mentioned in the introduction, along the paper we deal with core-factorisations. We
start this section by introducing that concept. Besides our initial inspiration in [[11f] within the
framework of products of groups with certain permutability conditions on the factors, this notion
can be also motivated by the following observation: If 7 is a set of primes and G is a group
that possesses both Hall w-subgroups and Hall 7’-subgroups, say H and L respectively, then
G = HL is a w-separable group if and only if for a chief series of G it holds that all the chief
factors are covered by either H or L.

Definition 1. Let 1 # G = AB be the product of the subgroups A and B. We say that G = AB
is a core-factorisation whenever GG possesses a chief series such that each chief factor of G is
covered by either A or B.

We point out that this definition of a core-factorisation is equivalent to that given in [11] (see
Lemma [I] below). Next we collect some of its properties, some of which appear in the cited

paper.
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Remark 1. Let us state some facts:

(i) Ifeither 1 # G = Aor 1 # G = B, then G = AB is always a core-factorisation.
(ii) If G = AB is a core-factorisation, then there exists always a minimal normal subgroup
of GG contained in either A or B.
(iii)) As noted in [11, Example 1], every (totally) mutually permutable product of two sub-
groups is a core-factorisation (see [3|] for definitions).

(iv) By the initial paragraph, if GG is w-separable, then G = H L is a core-factorisation for any
H € Hall; (G) and L € Hall (G).

Notice that, in the above statement (iv), the property that A and L have coprime orders is
essential, as the next example shows.

Example 1. Let G be a symmetric group of 4 letters. Then G = AB where A = ((1,3,2,4),
(1,2)(3,4)) and B = ((3,4),(2,3,4)). Note that G is clearly m(A)-separable (indeed it is
soluble), but the unique minimal normal subgroup of GG is not covered by either A or B, so
G = AB is not a core-factorisation.

We also provided a useful characterisation of core-factorisations via quotients (compare with
[11, Lemma 2]).

Lemma 1. Let 1 # G = AB be the product of the subgroups A and B. The following statements
are pairwise equivalent:

(1) G = AB is a core-factorisation.

(2) There exists a normal series 1 = Ny I N1 <--- < N,_1 <N, = G such that ei-
ther Ni/Nz'—l < ANi—l/Ni—l or Ni/Ni—l < BNi—l/Ni—L for eachl <1 <n (i.e.
N;/N;_1 is covered by either A or B).

(3) For every proper normal subgroup K of G it holds that there exists a normal subgroup
1 # M/K of G/K such that either M/ K < AK/K or M/K < BK/K (i.e. either A
or B covers M/ K).

Further, in (2), each term N; of such (chief) normal series is prefactorised and N; = (N; N
A)(N; N B) is also a core-factorisation.

If we adopt the bar convention in statement (3) for the quotients over K, we point out that
this condition means coreg(A) coreg(B) # 1. This illustrates the given name for such factori-
sations.

Moreover, as noted in [11, Example 2], if IV is an arbitrary prefactorised normal subgroup
of a core-factorisation G = AB, then N = (N N A)(/N N B) may not be a core-factorisation.
Nevertheless, core-factorisations behave well with respect to quotients.

Lemma 2. [11, Lemma 1] Let G = AB be a core-factorisation, and let M be a proper normal
subgroup of G. Then G/M = (AM/M)(BM /M) is also a core-factorisation.

The next result on Hall 7-subgroups of 7-separable factorised groups is a key step for our
development (indeed the 7-separability condition can be relaxed to the D, -property, as can be
seen in [1, 1.3.2]).

Lemma 3. Let the w-separable group G = AB be the product of the subgroups A and B. Then
there exists a Hall w-subgroup H of G such that H = (H N A)(H N B), with H N A a Hall
w-subgroup of A and H N B a Hall w-subgroup of B.

In particular, if G = AB is a core-factorisation, then H = (H N A)(H N B) is also a
core-factorisation.
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Proof. The first assertion is just a reformulation of [1, 1.3.2], so we concentrate on the second
claim. We assume that G = AB is a core-factorisation, and let us prove that H = (HNA)(H N
B) so is. There exists a chief series 1 = Ny I N; <--- I N,,_; < N,, = G such that each
N;/N;_q is covered by either A or B, forall 1 <i < n.

Notethatl = NgoN HIN NH<I---<4dN,_1NH<N,NH = H is anormal series of
H. We claim that each (N; N H)/(N;—1 N H) is covered by either H N A or H N B, in order
to apply Lemma Since G is m-separable, then N;/N;_; is either a w-group or a 7/-group. In
the latter case, (N; N H)/(N;—1 N H) = 1 is clearly covered by either H N A or H N B. If
N;/N;_1 is a m-group, since we may assume for instance that V;/N,_; is covered by A, then
Ni/Nifl < (H N A)Nifl/Nifl because H N A € Hall, (A) Now N; = Nifl(Ni NHN A)
and HNN;, = HnN Ni—l(Nz' NHN A) = (Nz NHN A)(H N Ni—l) < (H N A)(H N Nz‘—l)-
Thus (H N N;)/(H N N;_1) is covered by H N A and we are done. O

3 On conjugacy class sizes of prime power order m-elements

We start by presenting some preliminary results. The next elementary properties are used
frequently and without further reference.

Lemma 4. Let N be a normal subgroup of a group G, and A be a subgroup of G. We have:
(a) ‘asN’ divides |xG , forany x € N.

(b) ‘(xN)G/N‘ divides |xG , for any = € G.
(¢) IfxN is a m-element of AN/N, then tN = x1 N for some m-element 1 € A.

The next observation is crucial in the sequel.

Remark 2. Let G = AB be a w-separable group. Consider by Lemma [3] a Hall 7w-subgroup
H = (HNA)(HnNB) of Gsuch that H N A € Hall; (A) and H N B € Hall,; (B). Then,
imposing arithmetical conditions on the class sizes of the (prime power order) 7-elements in
A U B is equivalent to impose them on the class sizes of the (prime power order) elements in
(H N A) U (H N B), because of the conjugacy of Hall w-subgroups.

The lemma below is a transcription of a well-known Wielandt’s result for a set of primes 7.

Lemma 5. 6, Lemma 1] Let G be a group and H € Hall, (G). If ’xG‘ is a m-number for some
x € H, then x € O,(G).

Indeed, we can provide a useful 7-separability criterion for factorised groups having a Hall
m-subgroup by means of the previous class size condition.

Lemma 6. Assume that G = AB with Hall, (G) # 0. If ‘I‘G’ is a m-number for every m-element
x € AU B of prime power order, then O (G) € Hall; (G). In particular, G is w-separable.

Proof. Let H € Hall; (G). We choose P = (P N A)(P N B) € Syl, (G) for some p € 7.
Clearly P is G-conjugate to a Sylow p-subgroup of H, say P;. Hence for some g € G we have
P = P{ < HY € Hall, (G). It follows by Lemma [3| that if 2 € (P N A) U (P N B), then
r€04(G),s0 (PNA)YU(PNB) CO0L(G). Thus P < O,(G) for all h € G. Since this is
valid for all p € 7, we deduce that H = O, (G). The second claim follows directly. O

In the next theorem, we get further information when the group has a core-factorisation. Our
proof involves the following lemma, which makes use of the knowledge on the automorphism
groups of the non-abelian simple groups.
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Lemma 7. [9, Lemma 2.6] Let S be a simple group. Then there exists r € m(S) such that
ged(r, |Cs(a)|) = 1 for every non-trivial o € Aut(.S) of order coprime to |S|.

Theorem A. Let G = AB be a core-factorisation such that Hall,. (G) # (. Then:

(1) Each |xG‘ is a w-number for every m-element x € A U B of prime power order if and
only if G is w-decomposable.

(2) Each |xG‘ is a w-number for every prime power order element x € A U B if and only if
G is w-decomposable and its Hall 7' -subgroup is abelian.

Proof. (1) The sufficiency of the condition is clear. Let us prove that G = AB is m-decomposa-
ble whenever every |a:G‘ is a m-number for each 7-element x € A U B of prime power order.
Take G a minimal counterexample to the assertion. In virtue of Lemma [6| we can affirm that
H := 0,(G) € Hall; (G), so G is w-separable. Applying Lemma [3| we can choose F' €
Hall,/ (G) prefactorised. Take y € F' N A. We claim that G, :== H (y) satisfies the hypotheses
of the theorem. We have

Gy = () (H N A)(H 1 B) C (G, N A)(GyN B) C G,

so Gy is prefactorised and Hall, (G,) = {H} # (. Now we take p € m and P a prefactorised
Sylow p-subgroup of G, as in Lemma [3| Any ‘mG| is a m-number for the elements z € P N
Gy, N A= PN A. Hence, there exists g € G such that 9 < Cg(x). We can assume g € H
because G = HF'. Since (y) < F, we get (y)? < Cg,(x), so ‘xGy‘ is a m-number. This
is analogously valid for the elements in P NGy, N B = P N B, and for all p € 7. Now
Remark [2| provides that all w-elements in (G, N A) U (G, N B) of prime power order have
conjugacy class size in G, a m-number. It remains to show that G, = (G, N A)(Gy N B)
is a core-factorisation. If we reproduce the techniques in the proof of Lemma |3} we get that
1=NgNH<IN{NH---<N,,_1NH<IN,NH = H is anormal series of H such that each
(N;NH)/(N;j—1NH)is covered by either HNA < GyNAor HNB < G,N B. But H and all
the N; are normalin G,so1 = NoNnH<INNH<---IN, 1NHAN,NH = HJH(y) = Gy
is a normal series of G,. Moreover, G,/ H is clearly covered by G, N A because y € G, N A.
Thus all the factors are covered by either G, N Aor G, N B and G, = (G, N A)(Gy,N B)isa
core-factorisation by Lemmal 1]

If G < G, then it follows by minimality that H < C(y). Hence, we can suppose for some
y € (FNA)U(FNB)that G = H(y); otherwise H < Cg(F), a contradiction. Indeed, by the
decomposition of y as product of prime power order elements, the same arguments apply and
we can assume that o(y) is a g-number for some prime number ¢ € 7.

Since the hypotheses are inherited by quotients of G, and the class of m-decomposable
groups is a saturated formation, we may assume ®(G) = 1 and that there exists a unique mini-
mal normal subgroup N of G, so N < H. Thus O/(G) = 1. As G/N is m-decomposable,
then (y)N < G, and [H, (y)] = [H,y] < N. Moreover, by coprime action we get H =
[H,y|Cr(y) < NCr(y),so G = H(y) = NCq(y).

We claim that G = N (y). Set T := N(y) and assume that 7' < G. Note that Hall, (T") =
{N} # 0. Since G = AB is a core-factorisation and N is the unique minimal normal subgroup
of G, we may suppose that N < A. Asy € (FNA)U(FNB), thenclearly T' = (TTNA)(TNDB).
If we consider the normal series 1 <N <N (y) = T, then the factors are covered by either "N A
or TNBand T = (T'NA)(T N B) is a core-factorisation by Lemmal[l] Moreover, the class size
conditions are inherited by 7" because it is prefactorised and normal in G. By minimality we
obtain that N < C(y) and G = NCq(y) = Ci(y), which leads to a contradiction. Therefore,
G = N(y).

Next we demonstrate that /V is non-abelian. Otherwise N = Cg(/N) because of standard
group theoretic arguments ([7, Theorem A - 10.6]). By coprime action we get N = [N, y| x
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Cn(y). But Cx(y) is normal in G and N = Cg(N), so necessarily Cn(y) = 1. Since N is
t-elementary abelian for some prime ¢ € m, any non-trivial element n € N < A satisfies that
‘nG‘ is a m-number, so a G-conjugate of n lies in C(y) = 1, a contradiction.

Thus N is non-abelian and we can write N = L X - - - X Ly where all L; are isomorphic non-
abelian simple groups and they form a full G-conjugacy class of subgroups. Since G = N (y),
then (y) acts transitively on { L1, ..., Ly }. If £ > 1, then k = |G : Ng(L;)| divides the order of
the g-element y, so k is a non-trivial g-power. Now for any 1 # x; € L; of prime power order
we get that C(z1) < Ng(L1), so k divides |x1G‘ But this class size is a 7-number because
x1 € N < Ais a prime power order 7m-element. It follows that kK = 1 and N is simple. Now
we can apply Lemma [7|in order to affirm that there exists a prime s € (V) such that s does
not divide |Cx(y)|. Let = be a non-trivial s-element in N < A. Since by hypotheses there is a
conjugate of x which lies in C(y) = 1, we have reached the final contradiction. The proof of
(1) is now completed.

(2) It is enough to show the necessity of the condition. Assume that ‘:UG} is a m-number for
every prime power order element x € AUB. Clearly, G is m-decomposable by (1). Moreover, its
unique Hall 7/-subgroup O (G) is prefactorised by Lemma[3]} Since O,/(G)N A and O (G)N
B are generated by prime power order elements, all of which lying in Z(O,(G)) due to the
class size assumptions, then O, (G) is abelian. O

A question which remains open is whether the hypothesis of being a core-factorisation in
Theorem[A]can be eliminated. Moreover, when we consider the trivial factorisation G = A = B
in the above theorem, we retrieve the next result in [14]. In fact, our arguments provide an
alternative proof. We remark that the proof given in that paper uses deeply the CFSG via a result
due to Fein, Kantor and Schacher (see [14, Lemma 2]).

Corollary 1. [14, Theorem 3.1] Let G be a group with Hall; (G) # 0. Then each ‘xG| is a
m-number for every m-element x € G of prime power order if and only if G is w-decomposable.

Remark 3. Actually, when all the w-elements are considered in the above result (not only those
of prime power order), then the CFSG can be avoided (see either [6, Supplement to Theorem 1]
or Lemma [9] below).

Zhao et al. also provided in [14, Theorem 3.2] a similar characterisation to the one in
Theorem [A] but considering a factorised group G = AB with one factor which is subnormal.
It is worth to remark that, if A is subnormal, then for every element x € A it holds that }xA‘
divides ‘xG , although in general this is not the case. Besides, there exists a normal subgroup of
G which contains A, so this normal subgroup is prefactorised.

Example 2. Notice that, a priori, groups with a core-factorisation and factorised groups with one
subnormal factor are different types of groups. For instance, let G be the natural wreath product
of a symmetric group of degree 3 and a cyclic group (z) of order 2. If A = ((2,3), (1,2, 3)7,
(2,3)%*) and B = ((1,3,2)(4,5,6)%,(1,3,2)(4,5,6)%z), then G = AB is not a core-factorisa-
tion and B is subnormal in G. On the other hand, it is not difficult to find core-factorisations
where the factors are neither subnormal in the whole group nor mutually permutable ([[11, Exam-

ple 2]).

Next, we deal with the dual condition on the class sizes of prime power order m-elements,
i.e. when they are not divisible by any prime in m. We characterise arbitrary factorisations of
m-separable groups which have abelian Hall 7w-subgroups through elementary reasonaments.

Proposition 1. Let G = AB be a w-separable group. Then ‘xG| is a ©'-number for each -
element x € AU B of prime power order if and only if the Hall w-subgroups of G are abelian.
Moreover, if this occurs, then the w-length of G is at most 1.
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Proof. We can work with H = (H N A)(H N B) € Hall,; (G) such that H N A € Hall; (A)
and H N B € Hall; (B) in virtue of Lemma [3] The converse of the first claim is clear by
Remark [2| So let us prove that H = (H N A)(H N B) is abelian when |2| is a 7/-number
for each 7w-element € A U B of prime power order. Suppose that the assertion is false and let
us take G’ a minimal counterexample. Then O,/(G) = 1 by minimality, and so C5(0,(G)) <
O, (G). Take a Sylow g-subgroup @ of H N A. Then each y € () satisfies by assumption that
y € Ce(0,(G)) < 0,(G). Since H N A is generated by its Sylow subgroups, it follows that
HNA < Cg(0:(G)) < 0-(G) and analogously for H N B. Hence H < C(0:(G)) <
O,(G), so H is abelian. The last claim follows easily from the fact that O, (G /O, (G)) is
self-centralising in G/O, (G). O

Example 3. Without the 7-separability hypothesis, the previous result is not true, even for a
not necessarily factorised group: Let G = Jy be a Janko group, and let 7 = {3}. Then all the
3-elements of G have conjugacy class size not divisible by 3, although a Sylow 3-subgroup is
non-abelian. This example appears in [13].

Now we prove a result related to the above theorems.

Proposition 2. Let G = AB be a ww-separable group. Assume that a given prime p does not
divide ‘%G‘ for each m-element x € A U B of prime power order. Then there exists a Sylow
p-subgroup of G which normalises some Hall m-subgroup of G.

Proof. We may assume clearly that p € 7’. Besides, by conjugation and Lemma |3, we may
work with H = (H N A)(H N B) € Hall; (G). Let G be a counterexample of least possible
order. If O,(G) # 1, then by minimality we get the thesis. Hence we necessarily have that
N :=0,(G) # 1.

We claim that p does not divide |V : Ny (H)|. Certainly, we may suppose that p € w(V).
Let Py € Syl,(N), and G = Ng(Fo)N in virtue of Frattini’s argument. For ¢ € m, let
Q=(QNHNA)(QNHNB)=(QNA)(QN B) be a prefactorised Sylow g-subgroup of H.
If a € @ N A, then by hypotheses we get a € Cgna(Fy') for some n € N. It follows

(@QNA)N C Cgnayn(Po)N € (QNA)N,

so (QNA)N = Cgnayn(Fo)N < Con(F)N. We can argue analogously with Q N B and
thus QN = (QN A)(Q N B)N = Con(Po)N < Cyn(Py)N < HN. Now for any h € H,
we also have Q"N = (QN)" < (Cyn(Py)N)" = Cyn(P})N. Buth € G = Ng(Py)N, so
we may assume h € N and so Q"N < Cyn (PN = (Cun(Py)N)* = Cyn(Py)N. Since
this is valid for each ¢ € m we deduce HN = Cyn(Pp)N. But N is a 7’-group, so there exists
n € N such that H < Cyy(Fy). Hence P! < Cn(H) < Ny(H) < N. As Py € Syl, (N), it
follows that p does not divide |V : Ny (H)|.

On the other hand, by minimality there exists a Sylow p-subgroup P of G such that P <
Ng(HN). Again Frattini’s argument for Hall 7-subgroups produces NHP = NHNygp(H)
= NNypgp(H). Therefore p does not divides [NHP : Nygp(H)| = |N : Ny(H)|. Thus
there is a Sylow p-subgroup of HN P (which is a Sylow p-subgroup of () that normalises
H. O

In particular, when G = A = B and m = {q} we partially get [5, Theorem 4.1]. It is
worth to remark again that both Propositions [I] and [2 hold for any arbitrary factorisation of a
m-separable group G = AB.

4 On conjugacy class sizes of T-elements

The assumptions in Corollary [1|imply that the elements in the centre of a Hall 7-subgroup
H of a group G have to be central in G. Thus, a more general approach is to consider only
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the elements in H ~\ Z(H ), as Berkovich and Kazarin did through elementary arguments in [6,
Supplement to Theorem 1] for 7-separable groups. For the sake of completeness, we present a
proof of that result for groups which have a Hall 7-subgroup (see Lemma 9] below).

Lemma 8. Let H be a proper subgroup of a group G. Then G = (G \ H).
Proof. This follows from the fact that G = H U (G \ H). O

Lemma 9. Let G be a group with a non-abelian Hall w-subgroup H. Then G is w-decomposable
whenever every class size of elements in H ~. Z(H) is a m-number.

Proof. In virtue of Lemma [J]it follows that every element 2 € H \ Z(H) lies in O,(G), and
Lemma [§ leads to H = (H \Z(H)) < O,(G). So G has a normal Hall 7-subgroup and
it is w-separable. Let F' be a Hall 7’-subgroup of G. If g € H ~ Z(H), then by hypotheses
g € Cy(F*) for some x € H since G = HF. Thus H C Uyeg(Z(H)Cg(F))* C H, so
H = Z(H)Cy(F) and Cy(F') is normal in H. Thus, every element g € H \ Z(H) lies in
Cu(F). Since H = (H \Z(H)) < Cy(F),itfollows G = HF = H x F, as desired. O

Example 4. In view of the previous section, one might wonder whether the hypotheses in
Lemma [J] can be restricted to only prime power order m-elements. However, this is simply
not possible:

Let G be the direct product of a symmetric group of degree 3 and a non-abelian group of
order 55, and let 7 = {2,3,11}. Then H € Hall; (G) is clearly non-abelian, G is not 7-
decomposable, and ‘xG‘ is a m-number for every element z € H \ Z(H) of prime power order.

Our next objective is to generalise Lemma [9] to m-separable groups which possess a core-
factorisation.

Theorem 1. Let G = AB be a core-factorisation, and suppose that G is w-separable. Let
H = (HNA)(HNB) be a Hall w-subgroup of G such that HNX € Hall,; (X)for X € {A, B},
and assume that H is non-abelian. Then the following statements are equivalent:

(1) Every element in (H N A) U (H N B)) \ Z(H) has G-class size a w-number.
(2) For each X € {A, B}, either HN X < Z(H) or HN X < Cg(F) for every F' €
Hall, (G).

In case (2), if HN X < Z(H), then X has m-length at most 1; and if H N X < Cy(F) for
every F' € Halls (G), then X is m-decomposable.

Proof. Let F = (F'N A)(F N B) be a prefactorised Hall 7/-subgroup of G as in Lemma
Since H N X € Hall; (X), the last claim of the result follows from the fact that either H N X
is abelian, or H N X < Cpynx(F) < Cx(F N X) being F N X € Halls (X). Moreover, the
implication (2) = (1) is clear. Therefore, it is enough to show that (1) = (2). Notice that H is
non-abelian by assumption, so there exists some X € {4, B} such that H N X & Z(H). Now,
let us fix some arbitrary ' € Hall,» (G), and note that G = H F'. We split the proof in a number
of steps.

STEP 1: If HN X £ Z(H) and H N X is normal in H, then H N X < Cy(F).

Let {X,Y} = {A4,B}. We claim that H = (H N X)Cy(F)Z(H), and we distinguish
two cases. If HNY < Z(H), thenclearly H = (HNX)Z(H) = (HN X)Cyx(F)Z(H). If
HNY £ Z(H), then we can pick y € (H NY) \ Z(H). By our hypotheses, it follows that
y € Cg(F)" for some h € H, and hence H NY C UpecgCr(F)"Z(H). Since HN X < H,
then

Hc(HNX) | Cu(P)'zZ(H) < |J[(HNX)Cx(F)Z(H)" C H.
heH heH
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This fact yields H = (H N X)Cpu(F)Z(H).
Now we choose z € (HNX)\Z(H). Thus, we getx € Cynx (F") withh € (HNX)Z(H).
Indeed, h = gz withg € HN X and z € Z(H),s0 29 = 2" ' € Cpynx(F). We deduce

HnX= |J Cunx(PPEZH)NX)= |J [Cunx(F)Z(H)NX),
geHNX geHNX

so HNX = Cuynx(F)(Z(H) N X) and Cynx (F) is normal in H N X. Now each element in
(HN X)NZ(H) liesin Cynx(F). Since ( HNX)NZ(H) = (HNX)~N (Z(H)N X), in
virtue of Lemma 8| we obtain H N X = ((H N X) \Z(H)) < Cy(F), as wanted.

Now we assume without loss of generality that H N A & Z(H). So the remainder of the proof
aims to show that H N A < Cy (F).

STEP 2: We may suppose that neither H N A nor H N B are normal in H.

By Step 1, we may assume that H N A is not normal in H. If H N B < Z(H), then
H = (HNA)Z(H) and HN A< H, acontradiction. Therefore H N B £ Z(H). If H N B is
normal in H, then by Step 1 it centralises F'. So H = (H N A)Cp(F') and arguing similarly as
in the last paragraph of Step 1, we can deduce that H N A < Cy(F).

STEP 3: If N is a minimal normal subgroup of G, then NV is a w-group.

Otherwise, we may assume that N is a 7’-group because G is w-separable. We argue by
induction on the order of G. We claim that the quotient G := G//N inherits the hypotheses.
Clearly we can assume 1 # G, since N = G implies the result trivially. Note that for X €
{A,B},itholds HN X < HNX and,as HN X € Hall, (X),then HN X = HNX. Thus H
is prefactorised as in Lemma 3] Also H is non-abelian, G is a core-factorisation, and the class
size condition is clearly inherited by quotients of G, so G satisfies the assumptions.

By induction either H N X < Z(H) or HNX < Cx(F) forall X € {A,B}. If HN X <
Z(H), then [HNX,H] < NNH = 1and HN X < Z(H), a contradiction with Step 2.
Therefore we necessarily have [H N X, F] < N < F, so H N X normalises F'. Since this is
valid for all X € {A, B}, we get that F' is normal in G. If z € (H N A) \ Z(H), then the fact
that {:UG‘ is a m-number implies that z € Cy(F'). As H N A is generated by the elements in
(HNA)\Z(H), then H N A centralises F', as wanted.

STEP 4: Conclusion.

Since G = AB is a core-factorisation, we can choose a minimal normal subgroup N of G
which is covered by some X € {A, B}. Moreover, N is a m-group by the previous step. We
consider G := G/N. If H is abelian, then 1 +#H < N<HNX < H,so HNX is normal in
H, which cannot happen because of Step 2. Thus, G inherits the hypotheses, and so G satisfies
the thesis by induction on |G|.

Nowif HN X < Z(H),then[HNX,HNY] < N < HN X, so HN X is normal in H, a
contradiction again with Step 2. Therefore, both H N A and H N B centralise F, and it follows
that H centralises F. Hence F'N normal in G, and for all ¢ € G there is some n € N such that
F9 =Fm,

Next we claim that N = (Z(H) N N)Cy(F). If N < Z(H) then the claim is clear. If
N & Z(H), then we can take m € N ~ Z(H) and by assumptions m € Cy(F)" for some
n € N.Hence N = Upen[(Z(H)NN)Cn(F)|"andso N = (Z(H) N N)Cn(F).

Consequently, since each element z € (HNA)\Z(H) liesin Cy (F)" for some n € N and
N = (Z(H)NN)Cn(F),itfollows z € Cy(F). Thus HNA = (HNA)NZ(H)) < Cy(F).

Finally, we can argue analogously with H N B in case that H N B £ Z(H). The result is
now proved. O
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Example 5. In contrast to Lemma[9] the following example shows that in Theorem [I]we cannot
affirm that GG is w-decomposable: Let A be a dihedral group of order 8 and let B be a dihedral
group of order 10, and consider m = {2}. Then G = A x B satisfies the hypotheses in Theorem
[T]but clearly it is not 2-decomposable.

As a consequence, we obtain the next result.

Theorem B. Let G = AB be a core-factorisation, and suppose that G is w-separable. Let
H = (HnN A)(H N B) be a Hall w-subgroup of G such that H N X € Hall, (X) for all
X € {A, B}. Then the next assertions are pairwise equivalent:

(1) Every elementin (H N A)U (H N B) has G-class size either a m-number or a 7'-number.

(2) Foreach X € {A, B}, either HN X < Cy(F) forevery F € Hally (G) or HN X <
Z(H).

In addition, for X € {A, B}:

(@) HN X < Z(H) if and only if all ‘xG‘ are w'-numbers for v € H N X. In this case the
w-length of X is at most 1.

(b) HN X < Cy(F) for every F' € Hall,s (G) if and only if all ‘l’G‘ are T-numbers for
x € HN X. In this case X is m-decomposable.

Proof. The implication (2) = (1) is clear. Let us prove (1) = (2). We may suppose that H is
non-abelian. We work by induction on the order of (=, and we first claim that we can assume
O, (G) # 1. Otherwise O,(G) is self-centralising in G. If x € (H N A) U (H N B), then
|2¢| is either a m-number or a 7/-number. In the first case 2 € O (G) because of Lemma
and in the second case © € C(0,(G)) < Ox(G). Since this is valid for every element
x € (HNA)U(HNB),itfollows that O, (G) = H is prefactorised. Thus, foreach X € {A, B}
the elements z € O (G)NX with [29| a7’-number lie in Z(O(G)). So any |2 is a r-number
for the elements z € ((H N A) U (H N B)) \ Z(H). Applying Theorem |I| we obtain for each
X € {A, B} thateither HN X <Z(H)or HN X = 0,(G) N X < Cg(F) for every n’-Hall
subgroup F' of G, as desired. It follows then O/ (G) # 1.

Now, by induction, we get that G := G/O.(G) satisfies the thesis. Let X € {A, B}, so we
have either HNX = HNX <Z(H)or HNX = HN X < Cg(F) forany F € Hall (G).
The first case leads to [H N X, H] < HN O (G) = 1,s0 HN X < Z(H) and we are done.
Hence, let us suppose H N X < Cx(F) and H N X & Z(H). Now if || is a 7’-number for
some z € (H N X)\Z(H), then [z so is too. ButT € HN X < Cz(F), and we get that
is central in G. In particular, [H, (x)] < O.(G) N H = 1, so z € Z(H), a contradiction. Thus,
any ‘I’G’ is a m-number for the elements = € ((HNA)U(H N B))\Z(H), so the thesis follows
as an application again of Theorem [I] This completes the proof of (1) = (2).

Next we prove (a). For the first claim, certainly only the sufficiency of the condition is
in doubt. So let us suppose that all ‘xG] are 7'-numbers for + € H N X. By (2), either
HNX <Z(H)or HN X < Cy(F) for every F' € Hall/ (G). In the first case we are done,
and in the second case it follows that any element in H N X is central in G, so H N X < Z(H)
also. Moreover, the last assertion follows from the fact that X has abelian Hall 7w-subgroups.

Finally we prove (b). Again, it is enough to show in the first claim the sufficiency of the
condition. Let us suppose that all |a:G‘ are m-numbers for x € HNX. If the case HNX < Z(H)
in (2) holds, then H N X is central in G and we are done. So H N X < Cg(F) for every
F € Hall,» (G). Further, the last assertion can be deduced from the fact that H N X centralises
a prefactorised Hall 7’-subgroup F' of G as in Lemma |3} so H N X < Cx(F N X) where
FNX € Hally (X). 0
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Example 6. The 7-separability assumption in the previous result is necessary: Let G = A x B
be the direct product of A = J; a Janko group and B = C} a cyclic group of order 3, and let
m = {3}. Note that this is clearly a core-factorisation, and G is not 3-separable. Moreover,
if we take P € Syl; (G) such that P = (PN A)(P N B) with PN A € Syl;(A) and B =
P N B € Syl (B), then P is non-abelian and all ‘xG‘ are not divisible by 3 for the elements
re(PNA)U(PNB))NZ(P) = (PNA)NZ(P). However, neither P N A is central in P
nor P N A centralises every Hall 3’-subgroup of G.

When G = A = B in Theorem [B] the corollary below follows.

Corollary C. Let G be a m-separable group. Then the following statements are pairwise equiva-
lent:

(1) Each }mG‘ is either a w-number or a ’-number for every m-element v € G.

(2) Either G is w-decomposable or it has abelian Hall w-subgroups and its w-length is at
most 1.

(3) For every m-element x € G, either all ‘xG‘ are w-numbers or they are all 7' -numbers.

In [8, Theorem 4] (see the next theorem, which is a little reformulation) Dolfi characterised
the so-called class-m-separable groups, i.e. groups all of whose class sizes are either m-numbers
or 7w'-numbers.

Theorem 2. A group G is class-w-separable if and only if, up to abelian direct factors, one of
the following two cases happens:

(1) G is either a m-group or a 7' -group.

(2) Up to interchanging m and ©', G = HL with H € Hall; (G), L € Hall» (G), L < G,
both H and L are abelian, and G /O, (G) is a Frobenius group. Indeed, O, (G) = Z(G),
the set of the class sizes of G is {1,|H/O(G)|,|L|}, and G is soluble.

Motivated by Dolfi’s result, we introduce the following factorised-group version of the con-
cept of class-m-separability.

Definition 2. Let G = AB be the product of two subgroups A and B. We say that G = AB is
a class-m-separable factorisation whenever |$G‘ is either a m-number or a 7’-number for every
elementz € AU B.

Certainly, G = AB is a class-m-separable factorisation if and only if it is a class-7'-separable
factorisation. Besides, any central product of two class-m-separable groups provides a class-7-
separable factorisation.

We cannot assert in a class-w-separable factorisation G = AB, a priori, that both A and B
are class-m-separable groups. This is because, for z € A, there is no relation in general between
the sets W(‘.’IJA‘) and 7(|z|). Nevertheless, under the additional assumption of being a core-
factorisation, we determine in Theorem [D] that this phenomenon actually occurs. To prove that
fact we need firstly some preparation. The next result generalises Lemma 3]

Lemma 10. [4, Theorem C] Let G be a w-separable group. If ‘;UG‘ is a w-number for some
x € G, then ((x%))" is a w-group. In particular, x € O /(G).

There are easy examples which illustrates that the above lemma is simply not true when the
m-separability hypothesis is removed (cf. [4]).
The following well-known result is due to Itd.
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Lemma 11. [12, Proposition 5.1] Let G be a group. Suppose that p and q are distinct primes
that divide two different conjugacy class sizes of G, but there is no g € G with pq dividing ’ g ’
Then G is either p-nilpotent or q-nilpotent.

In relation to Theorem [B] when we consider all the elements in the factors (not just those of
order a m-number), we obtain the proposition below. Actually, this generalises [8, Lemma 6].

Proposition 3. Let G = AB be the product of the subgroups A and B, and assume that G =
AB is both a core-factorisation and a class-m-separable factorisation. Then G is m-separable.

Proof. Since G = AB is a core-factorisation, there exists a chief series 1 = Ng < Ny <--. <
N,_1 < N,, = G with each chief factor covered by either A or B. In fact, we can refine that
series in order to get a composition series whose factors are covered by either A or B. Thus, for
each 1 < i < n, there exist subgroups 7} such that N;_1 = Ty Ty 115 < --- 1T, = N;
and T} / T;_1 is simple for every 1 < j < m. We claim that each of these T} / T;_1 is either
a m-group or a m'-group, and so G will be w-separable. Note that 7;/T;_ is isomorphic to
(Tj/Ni-1)/(Tj—1/Ni—1). Moreover Tj/N;_; is subnormal in N;/N;_1, which is normal in
G/N;_1 and it is covered by either A or B, as G/N;_1 = (AN;_1/N;_1)(BN;_1/N;_1) is a
core-factorisation. Then all the class sizes of N;/N;_1, and so all the class sizes of T} / T; 1,
are either m-numbers or 7’-numbers. If there are two primes p € 7 and ¢ € 7' that divide
two different class sizes of 7);/T;_1, as pq does not divide any class size of T;/7);_1, applying
Lemmawe get that the simple group 7’ /T;_1 has either a normal p-complement or a normal
g-complement. We deduce that either p or ¢ does not divide the order of 7);/T;_1, a contradic-
tion. Thus, we may assume that each prime ¢ € 7’ does not divide any class size of Tj/T;_1, so
it has a central Sylow g-subgroup. It follows that ¢ ¢ 7 (7} /Tj_1) for every g € ', s0 T;/Tj_1
is a -group and ( is 7-separable. O

We are now ready to prove Theorem D] We will use mainly Theorem [B]and some of Dolfi’s
techniques in [§].

Theorem D. Let G = AB be the product of the subgroups A and B, and assume that G = AB
is both a core-factorisation and a class-m-separable factorisation. Then, up to abelian direct
factors, one of the following two possibilities holds for any X € {A, B}:

(1) X is either a w-group or a '-group.

(2) Up to interchanging 7 and 7', it holds X = X X,» where X, € Hall; (X) and X, €
Hall, (X), X <X, both X and X+ are abelian, and X /O, (X) is a Frobenius group.
Indeed, O, (X) = Z(X), the class sizes of X are {1,|X:/0(X)|,|Xw|}, and X is
soluble.

In particular, both A and B are class-m-separable groups.

Proof. Observe that G is 7-separable by Proposition[3| Take H = (HNA)(HNB) € Hall, (G)
and F = (FNA)(FNB) € Hall,» (G) with HN X € Hall; (X) and FF'N X € Hall,» (X) for
all X € {A, B} asin Lemma[3] Set X, := HN X and X, := FNX. Certainly, X = X, X .
Let us analyse the structure of any X € {A, B}. We may assume that X has no abelian direct
factors. We proceed in five steps.

STEP 1: Let o € {m,7'}. If every G-class size of elements in X is a o-number, then X is a
o-group.

Applying Theorem [B| for the elements in X, and in X/, we deduce X = X, x X, with
X, abelian. Then X, is an abelian direct factor of X, so X, = 1 and X is a o-group, as
wanted.
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In particular, we may assume in the sequel that X is nor a w-group nor a 7’-group, and that there
exist z,y € X such that W(‘QZ‘GD contains a prime in 7 and w(‘yG}) contains a prime in 7/,
respectively.

STEP 2: X has both abelian Hall 7r-subgroups and Hall 7’-subgroups.

In virtue of Theorem we get that either every element in X, has G-class size a m-number
or every element in X ; has G-class size a 7'-number. In the first case we get X = X, x X, and,
as we are assuming that X, # 1, it cannot be an abelian direct factor, so necessarily there is a
non-trivial element y € X, with yG‘ a 7’-number. Hence, for any z € X, \Z(X,) we get that
‘(wy)G‘ is neither a w-number nor a 7’-number, a contradiction. Hence all ‘xG’ are 7’'-numbers
for the elements x € X ; and analogously all |yG‘ are w-numbers for the elements y € X ». Now
Theorem [B|(a) yields that X has abelian Hall 7-subgroups and Hall 7’-subgroups, as wanted.

Note that our class size assumptions imply X = Cx (O,(G))UCx (0, (G)), so we may assume
[X,0-(G)] = 1 in the remainder of the proof.

STEP 3: X,v is normal in X. In particular, X is soluble.

Denoting G := G/O,(G), in virtue of Lemma and Lemmait follows X, < O (G)N
X < 0,/(X). Since X,» € Hall (X), we get X, = O,+(X), and then X,/O,(G) is nor-
malised by X. Now for any € X, we deduce that X?, < (XO0(G))* = X04(G), so
there exists some n € O, (G) such that X7, = X7, As [X,0,(G)] = 1, then Xv < X, and X
is soluble.

STEP 4: O, (X) =Z(X).

Since X, is abelian and normal in X, by coprime action, we deduce X,» = [X,/, X] X
Cx_, (Xx). Note that Cx_, (Xr) < Z(X), so Cx_, (Xr) is an abelian direct factor of X and we
may assume Cy _, (X;) = 1. Hence X;v NZ(X) = 1 and Z(X) < O, (X). The other inclusion
is clear because X/ is normal in X and X is abelian.

STEP 5: X/O,(X) is a Frobenius group. In particular, the set of class sizes of X is
{1, [X7/Ox(X)|, | Xz [}

Set X := X/O(X). We claim that X acts fixed-point-freely on X,. Take 1 # § € X
and & € X, such that [§,Z] = 1. Then [y, 2] € OL(X) and it is a 7’-element since X, < X.
Now zy = yx and both |xG‘ and 1 # ‘yG{ divides !(my)G{ It follows necessarily that x €
Z(G)NX <Z(X) = 0,(X) soz = 1 and we are done.

Finally, note that O,(X) = Z(X) implies Z(X) N X’ < Z(X) N X,» = 1. This fact
leads to Cx (9)/Z(X) = Cx/z(x)(9Z(X)) for all g € X, so the class sizes of X and X/Z(X)
coincides. Since X/Z(X) is a Frobenius group, then clearly the set of class sizes of X is
{L ’XTF/OW(X)’ ) |X7r’|}~

To conclude, from the described structure of X, we get that X is a class-m-separable group.

O

Observe that 8, Theorem 4] (Theorem [2|above) is now a direct consequence of the previous
theorem when G = A = B.

Example 7. A core-factorisation whose factors are two class-m-separable groups might not be
a class-m-separable factorisation: Let G be the semidirect product of a cyclic group of order 35
and a cyclic group of order 6. If we take 7w := {3,7}, A € Hall; (G) and B € Hall» (G), then
G = AB is a core-factorisation since G is w-separable (indeed it is soluble). Certainly, G = AB
is not a class-w-separable factorisation, although A and B are class-m-separable groups.

The next example illustrates that, in a class-m-separable factorisation, G might be non-
soluble, and both the Hall 7-subgroups and the Hall 7’-subgroups of G' might be non-abelian.
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Example 8. Let A be an alternating group of degree 5 and B a Frobenius group of order 29 - 7.
Consider G = A x B, and 7 = {2,3,5}. Clearly, every class size of an element in A U B is
either a T-number or a 7’-number, but G is non-soluble. Moreover, neither the Hall 7-subgroup
nor the Hall r’-subgroup of G is abelian.

To conclude, inspired by [4]], we concentrate on factorised groups whose 7-elements in the
factors have conjugacy class lengths equal to prime powers. Indeed, in [10] we analysed products
of groups where, for a given prime p, the p-elements in the factors have prime power class sizes.

Proposition 4. [10, Theorems A and B] Let G = AB be the product of the subgroups A and B,
and let P € Syl, (GQ). Assume that ’gG’ is equal to a prime power for each p-element g € AUB.
Then we have:

(1) PF(G) is normal in G.

(2) There exist unique primes q and r such that ‘xG’ is a g-number for every p-element € A,
and ‘yG| is an r-number for every p-element y € B, respectively. (Possibly, p € {q,r} or
q=r.)

Lemma 12. Let G be a group, and let x,y € G ~ Z(G) be m-elements such that ‘:UG‘ and
‘yG’ are two distinct prime powers, and assume that ‘(:cy)G‘ is also a prime power. Then
(z,1)¢ < O0,(G), and ‘(xy)G‘ = max{‘azG , |yG‘} is a power of a prime q € . In particular,
if Hall; (G) # 0, then a Hall m-subgroup of G is non-abelian.

Proof. It is enough to mimic the proof of [6, Lemma 4] with 7 instead of p. 0

Theorem E. Let G = AB be a core-factorisation. Suppose that ‘xG| is a prime power for
every m-element v € AU B. Then G is w-separable of m-length at most 1. Moreover, for each
X € {A, B}, one of the following two possibilities holds:

(1) All {xG‘ are powers of a fixed prime q for every w-element x € X. In addition:

(@) If ¢ ¢ m, then X has an abelian Hall mw-subgroup Xr. In this case X;04(G) is
normalised by X.

(b) If q € 7, then X is m-decomposable with nilpotent Hall m-subgroup X, and the
Sylow subgroups of X are all abelian except possibly for the prime q.

2) All ‘xG} are powers of two distinct fixed primes q and r, both in T, for every m-element
x € X. In this case, X is w-decomposable, and the Hall w-subgroup X, of X satisfies
that X /Z(Xy) is a Frobenius group with abelian kernel and complement of orders a
q-power and an r-power, respectively.

Proof. First of all, we prove the assertion on the m-separability of G. Applying Proposition[4|(1)
for each prime p € 7, we can affirm that G/F(G) has a normal Sylow p-subgroup. Therefore, G
is p-separable with p-length at most 1 for each prime p € 7 and, in particular, it is 7w-separable
with 7-length at most 1. Henceforth, we can take H = (H N A)(H N B) € Hall; (G) with
HnN A € Hall; (A) and H N B € Hall; (B).

Next we assume that every ‘xG‘ is a power of a fixed prime ¢ for the elements in H N X, as
in case (1). If ¢ ¢ 7, then we obtain that X has an abelian Hall 7r-subgroup X, := H N X in
virtue of Theorem [B| (a). Let us prove that X;O,(G) is normalised by X. Since G /F(G) has
a normal Sylow p-subgroup for each p € 7, then HF(G) = HO, (F(G)) < G. We denote by
bars the quotients over O, (F(G)), so H = O, (G). In particular X; < 0,(G)NX < 0,(X),
and then X0,/ (F(G)) is normal in XO,/(F(G)). Since ‘xG’ is a ¢g-power for all the elements
in X, then Oy (F(G)) centralises X. Thus X;04(G) is a normal Hall 7 U {q}-subgroup of
X0 (F(G)), so X;04(G) is normal in XO./(F(G)). Hence X;0,(G) is normalised by X,
as wanted in (a).
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If ¢ € m, then Theorem [B| (b) provides that X = X, x O,/(X), so it remains to show
that X is nilpotent with abelian Sylow subgroups, except possibly for the prime q. Recall that
G is p-separable for every prime p € w. Hence, Theorem [B| (b) applied for the prime ¢ gives
X = Xq x0y(X),s0 Xz = X, X Os(X) where 0 := 7 \ {q}. Finally, O,(X) is abelian in
virtue again of Theorem [B|(a) applied for o, and (b) is proved.

From now on, we assume that, for either X = A or X = B, there exist x1, x9 m-elements in X
such that }a:? and ‘a:ZG\ are powers of distinct primes.

STEP 1: At most two different primes appear as divisors of the class sizes of the 7-elements
in X.

Assuming the contrary, there exists three non-central m-elements in X, say x1, 2 and x3,
such that their G-class sizes are equal to powers of three different primes, say pi, p2 and ps,
respectively. All the z; decompose as product of commuting prime power order (7-)elements,
so Proposition [] (2) joint with this last fact allow us to suppose that the orders of the z; are
coprime prime powers. Hence, from now on we assume that z; is a ¢;-element with ‘azﬂ equal
to a p;-power, for each i € {1,2,3}. Since either p; # g2 or p1 # g3, we may assume the first
case and so there exists g € G such that Q9 < Cg(z1), where Q = (QNA)(QNB) € Syl,, (G),
QNA € Syl,, (A)and QNB € Syl , (B). We may suppose z2 € QNX by Remark and so we
get 25 € C(z1). But (}mﬂ , ‘xg;’) = 1,50 G = Cg(x1)Cq(x2) and we obtain x3 € Cg(z1).
Now x1x9 = 2921 € X is a m-element, and it follows that ‘(xlmg)c} is divisible by both p; and
pa, a contradiction.

STEP 2: Assuming that all ‘xG} are powers of two distinct fixed primes ¢ and r for every
m-element x € X, we claim that {¢,r} C 7.

Let x and y be 7m-elements in X such that ‘xG‘ is a non-trivial g-power and ‘yG‘ is a non-
trivial r-power. Again by Remark[2] we can assume without loss of generality that z,y € HNX.
Hence xy € H N X and ‘(xy)G‘ is a prime power also. Thus, in virtue of Lemma we have
that the prime which corresponds to the largest class size lies in . So let us suppose that the
largest one is ‘xG ,thatis, ¢ € 7. If r ¢ 7, then there exists g € G such that 29 € H9 < Cg(y).
Also G = Cg(z)Cq(y), so zy = yz € H N X and we conclude that |(zy)®| is divisible by
both ¢ and r, a contradiction.

STEP 3: X is m-decomposable, and the Hall 7-subgroup X of X satisfies that X /Z(X )
is a Frobenius group with abelian kernel and complement of orders a g-power and an r-power,
respectively.

Since we are assuming that all !xG‘ are powers of two distinct fixed primes ¢ and r, both
in 7, for every m-element x € X, then by Theorem |B| we get that X, centralises every Hall
7/-subgroup of G. Indeed it is m-decomposable. For proving the remaining assertion, we dis-
tinguish two cases for the class sizes of the m-elements in Y, where {X,Y} = {A, B}: ei-
ther they are powers of a prime in 7 or in 7/. In the second case, by Theorem [B| we obtain
Y. =HNY <Z(H) < Cy(X,). As X, centralises every Hall ’-subgroup of G, it follows
that X is normal in G. Then all the X -class sizes of elements in X, are either g-powers or
r-powers, and Theorem [2| yields the desired structure of X, /Z(X ). In the other case, Y, also
centralises every Hall 7/-subgroup of G, so H = XY} is normal in G. We deduce that the class
sizes in H of all elements in X U Y, are either g-powers or r-powers. But we may affirm that
H = XX, is a core-factorisation in virtue of Lemma([3] so Theorem D]applied to H completes
the proof of (2). ]

The main result of [4] now can be retrieved from the above theorem (see the corollary below).
It is significant to notice that our proof, however, uses different tools.
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Corollary 2. Let G be a group for which every {xG‘ is a prime power for the m-element x € G.
Then one of the following possibilities occurs.

(1) All |xG‘ are powers of a fixed prime q. Moreover,

(a) ¢ ¢ mifand only if G has an abelian Hall w-subgroup H. In this case, HOy(G) is
normal in G.

(b) q € wifand only if G is w-decomposable with nilpotent Hall w-subgroup H, and
the Sylow subgroups of H are all abelian except possibly for the prime q.

2) All }xG‘ are powers of two distinct primes, say q and r. This happens if and only if

{¢,7} C 7, G is w-decomposable, and the Hall m-subgroup H of G satisfies that H/Z(H)
is a Frobenius group with abelian kernel and complement of orders a q-power and an r-

power, respectively.

Furthermore, in all cases, G has w-length at most 1.

The following example gives insight into the possible global 7-structure of a group satisfying
the hypotheses of Theorem [E]

Example 9. Let A be a symmetric group of degree 3 and B a dihedral group of order 10.
Consider G = A x B, and m = {2,3}. Clearly, the hypotheses in Theoremare satisfied, but
neither the Hall -subgroup of G is abelian (as in case (1)(a) above) nor G is m-decomposable
(case (2) above).
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